
APPENDIX: LEFSCHETZ PENCILS WITH IMPOSED
SUBVARIETIES

NICHOLAS M. KATZ

Abstract. In this appendix, which is entirely expository, we give
some basic facts about the existence of Lefschetz pencils with im-
posed subvarieties. These facts are certainly well known to the
experts, but we are unaware of a suitable reference. We thank de
Caltaldo and Kollar for a very helpful conversation.

1. Introduction

We work over a field k. We are given a projective, smooth, geo-
metrically connected k-scheme X/k of dimension n ≥ 2, a projective
embedding X ⊂ P, and a closed subscheme Z ⊂ X which is smooth,
each of whose connected components Zi ⊂ X satisfies the inequality

dim(Zi) < codimX(Zi)− 1.

We will show

Theorem 1.1. There exists an integer d0 = d0(Z,X, P) such that for
any degree d ≥ d0, and for any extension field E/k with #E infinite,
there exist E-rational Lefschetz pencils of degree d hypersurface sections
of X all of which contain Z.

Thus when k is a finite field, one may have to pass to a finite exten-
sion to obtain such a Lefschetz pencil.

2. Incidence varieties and dual varieties

We denote by OX(1) the pullback to X of OP(1) by the given pro-
jective embedding. We denote by Hypd the vector space H0(P,OP(d)),
and by PHypd the projective space of lines in Hypd. Thus PHypd is
the space of degree d hypersurfaces in P.

For a scheme T , and a closed subscheme W ⊂ T , we denote by
IT (W ) ⊂ OT the sheaf of ideals defining W . The closed subschemes of
T form a monoid with unit the empty subscheme in the obvious way:
W1 + W2 is the closed subscheme whose sheaf of ideals IT (W1 + W2) is
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the image in OT of IT (W1) ⊗OT
IT (W2) under the multiplication map

f ⊗ g 7→ fg.
We apply these considerations in the following way. For any k-scheme

S/k, we denote by XS and ZS the base changes to S of X/k and Z/k
respectively. We denote by

πS : XS → S

the structural morphism. Given a point x ∈ X(S), we denote by [x] the
corresponding section of XS/S, viewed as a closed subscheme of XS.
We say that two points x1, x2 in X(S) are everywhere disjoint if the
schemes [x1], [x2] are disjoint in XS, or equivalently if for all geometric
points φ : Spec(L) → S of S, the points x1,φ, x2,φ in X(L) are distinct.

When Z is nonempty, we will be interested in the ideal sheaves on
XS, for varying S, of the form

IXS
(ZS + a[x1] + b[x2] + c[z]),

where a, b, c are nonnegative integers, x1, x2 ∈ (X \ Z)(S) are every-
where disjoint, and z ∈ Z(S). When Z is empty, we will be interested
in the ideal sheaves

IXS
(a[x1] + b[x2]),

where a, b are nonnegative integers, and x1, x2 ∈ X(S) are everywhere
disjoint.

Lemma 2.1. Fix an integer D ≥ 1. There exists an integer d1 =
d1(Z,X, D) with the following properties.

(1) Suppose Z is nonempty. For any k-scheme S/k, any three non-
negative integers a, b, c all ≤ D, any ideal sheaf IXS

(ZS +a[x1]+
b[x2] + c[z]) as above, and any d ≥ d1, we have

RiπS?(IXS
(ZS + a[x1] + b[x2] + c[z])(d)) = 0

for i ≥ 1, and R0πS?(IXS
(ZS +a[x1]+b[x2]+c[z])(d)) is a locally

free OS module of finite rank whose formation commutes with
arbitrary change of base on S.

(2) Suppose Z isempty. For any k-scheme S/k, any two nonnega-
tive integers a, b both ≤ D, any ideal sheaf IXS

(a[x1] + b[x2]) as
above, and any d ≥ d1, we have

RiπS?(IXS
(a[x1] + b[x2])(d)) = 0

for i ≥ 1, and R0πS?(IXS
(a[x1] + b[x2])(d)) is a locally free OS

module of finite rank whose formation commutes with arbitrary
change of base on S.
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Proof. We first prove (1). The ideal sheaf IXS
(ZS + a[x1] + b[x2] + c[z])

is flat over S. Indeed, this is tautological for IXS
(ZS), as it began life

over the field k. Then looking locally on S and on XS, one sees that
in the short exact sequence

0 → IXS
(ZS + a[x1] + b[x2] + c[z]) → IXS

(ZS) → Quot → 0,

the term Quot is a sheaf, supported on the disjoint sections [x1], [x2], [z],
of locally free S modules.

Consider now the universal case, when the base Suniv is

((X \ Z)× (X \ Z)−Diag)× Z

and the three sections are the tautological ones. Then Serre vanishing
[Ha, III, 5.2] gives the existence of a d1 such that we have the asserted
vanishings in the universal case for the finitely many ideal sheaves in
question. It then follows [Mum-AV, page 53, Cor. 4] that we have the
same vanishing after any base change from the universal base Suniv to
any geometric point of that base. The asserted vanishing then follows
over any noetherian base S from [Mum-AV, page 53, Cor. 3] and
Nakayama’s lemma, and then over any base by first reducing to the
affine case, say S = Spec(A), and then writing A as the direct limit of
its finitely generated subrings. To get the local freeness of the R0’s for
d ≥ d1, we start with the case a = b = c = 0, in which case the result
is obvious, as then the R0 is the pullback to S of the finite-dimensional
k-vector space H0(X, IX(Z)(d)). Then we use exact sequences of the
form

0 → IXS
(ZS+(a+1)[x1]+b[x2]+c[z]) → IXS

(ZS+a[x1]+b[x2]+c[z]) → Quot → 0,

in which Quot is a locally free OS module on [x1] ∼= S, and

0 → IXS
(ZS+a[x1]+b[x2]+(c+1)[z]) → IXS

(ZS+a[x1]+b[x2]+c[z]) → Quot → 0,

in which Quot is a locally free OS module on [z] ∼= S. We twist by (d)
with d ≥ d1, and apply the long exact cohomology sequence of the Ri

to get short exact sequences of R0’s, in which the third term Quot is
a locally free OS module of finite rank, to build up to arbitrary a, b, c
in the allowed range. Once all the R0 are locally free, then we have,
for each d ≥ d1, a situation of an S-flat coherent sheaf on a proper
XS/S for which all the Ri are locally free, in which case base change
is automatic (e.g., from [Mum-AV, page 46, Theorem] and universal
coefficients).

The proof of (2) is entirely analogous, with the universal case now
taking place over Suniv = X ×X −Diag. �
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Lemma 2.2. There exists an integer d2 = d2(X, P) ≥ 1 such that for
any d ≥ d2, the restriction map

H0(P,OP(d)) → H0(X,OX(d))

is surjective.

Proof. This is Serre vanishing on P for the ideal sheaf IP(X). �

We now define the integer d0 = d0(Z,X, P) by

d0 := Max(d1(Z,X, 3), d1(∅, X, 3), d2(X, P)).

When Z is nonempty, then for any affine k-scheme S = Spec(A), any
pair of everywhere disjoint sections x1, x2 ∈ (X−Z)(S), any connected
component Zi of Z and any section z ∈ Zi(S), we denote by

Hypd(ZS + a[x1] + b[x2] + c[z]) ⊂ H0(PS,OPS
(d) ∼= H0(P,OP(d))⊗k A

the kernel of the composite restriction map

H0(PS,OPS
(d)) −→ H0(XS,OXS

(d))

↓
H0(XS, (OXS

/IXS
(ZS + a[x1] + b[x2] + c[z]))(d)).

Thus for d ≥ d0 and a, b, c all ≤ 3, the various Hypd(ZS + a[x1] +
b[x2]+c[z]) are locally free A-modules of finite rank. If 0 ≤ a ≤ 2, then
the quotient

Hypd(ZS + a[x1] + b[x2] + c[z])/Hypd(ZS + (a + 1)[x1] + b[x2] + c[z])

is the locally free A-module of rank Binom(n + a − 1, a) given by
Syma(I/I2), for I the ideal IXS

([x1]).
If Spec(A) is connected, then the point z ∈ Z(S) lies entirely in one

connected component, say z ∈ Zi(S). If also 0 ≤ c ≤ 2, then the
quotient

Hypd(ZS + a[x1] + b[x2] + c[z])/Hypd(ZS + a[x1] + b[x2] + (c + 1)[z])

is the locally free A-module of rank Binom(codimX(Zi)+c−1, c) given
by the pullback to [z] ⊂ Zi,S of the locally free sheaf of that rank on
Zi,S given by Symc(I/I2), for I the ideal IXS

(Zi,S).
When Z is empty, then for any affine k-scheme S = Spec(A), any

pair of everywhere disjoint sections x1, x2 ∈ X(S), we denote by

Hypd(a[x1] + b[x2]) ⊂ H0(PS,OPS
(d) ∼= H0(P,OP(d))⊗k A

the kernel of the composite restriction map
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H0(PS,OPS
(d)) −→ H0(XS,OXS

(d))

↓
H0(XS, (OXS

/IXS
(a[x1] + b[x2]))(d)).

Again in this case, for d ≥ d0 and a, b both≤ 3, the various Hypd(a[x1]+
b[x2]) are locally free A-modules of finite rank. If 0 ≤ a ≤ 2, then the
quotient

Hypd(a[x1] + b[x2])/Hypd((a + 1)[x1] + b[x2])

is the locally free A-module of rank Binom(n + a − 1, a) given by
Syma(I/I2), for I the ideal IXS

([x1]).
For d ≥ d0 and a, b, c all ≤ 3, we denote by

PHypd(ZS + a[x1] + b[x2] + c[z]) ⊂ PHypd,S

and
PHypd(a[x1] + b[x2]) ⊂ PHypd,S

the projective bundles over S of lines in the vector bundles Hypd(ZS +
a[x1] + b[x2] + c[z]) and Hypd(a[x1] + b[x2]) respectively.

Fix d ≥ 1. The incidence variety Incd ⊂ PHypd ×k X is the closed
subscheme consisting of pairs (H, x) with H a degree d hypersurface
such that H(x) = 0 and such that the scheme-theoretic intersection
X ∩H is singular at x. If we view Incd as mapping to X by the second
projection, it is a PM bundle, for M = dim(Hypd)−1−n; the fibre over
a point x ∈ X is the projective space PHypd(2[x]), which is a linear
subspace of PHypd of codimension 1 + n. Thus Incd is itself proper,
smooth, and geometrically connected of dimension dim(Hypd)− 1, be-
ing the total space of a PM bundle over the n-dimensional X. The
image of Incd in PHypd under the first projection, with its induced
reduced structure, is called the dual variety X∨

d ⊂ PHypd. It is thus a
geometrically irreducible subvariety of PHypd of codimension at least
one.

Lemma 2.3. Suppose that either d ≥ 3 or that d = 2 and n = dim(X)
is odd. Then X∨

d ⊂ Hypd has codimension one, i.e., it is a hypersurface
in PHypd.

Proof. The statement is geometric, so we may extend scalars to reduce
to the case when k is algebraically closed. We argue by contradiction.
If our geometrically irreducible X∨

d ⊂ Hypd has codimension ≥ 2, then
after extending scalars to any infinite overfield of k, we can find a line
L (which we identify to P1) in PHypd which is disjoint from X∨

d , i.e.,
we can find a Lefschetz pencil of degree d hypersurface sections of X
which has no singular fibres. Denote by ∆ ⊂ X the base of the pencil,
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i.e., the intersection of any two of the fibres. For general L, ∆ ⊂ X is
smooth of codimension 2. Denote by X̃ := Blow∆(X) the blow up of
X along ∆, and by

ρ : X̃ → P1

the corresponding fibration. This morphism is proper and smooth, and
hence for any prime number ` invertible in k, the Q`-sheaves Riρ?Q`

on the base P1 are everywhere lisse, hence constant. So for every i
we have H1(P1, Riρ?Q`) = 0. Thus the only possibly nonvanishing E2

terms in the Leray spectral sequence are

E0,i
2 = H0(P1, Riρ?Q`)

and

E2,i
2 = H2(P1, Riρ?Q`).

One knows that this spectral sequence degenerates at E2, either by
combining Deligne’s general degeneration theorem [De-Degen, 2.4] with
the Hard Lefschetz Theorem [De-Weil II, 4.1.1], or by doing a ”spread-
ing out” argument to reduce to the case of a finite field, and using
Grothendieck’s original weight argument, cf. [Ka-MMP, 7.5.2]. Thus
we have a short exact sequence, for every i,

0 → H2(P1, Ri−2ρ?Q`) → H i(X̃, Q`) → H0(P1, Riρ?Q`).

Now let X ∩H be one of the fibres of the pencil. By the constancy of
Riρ?Q`, we have

H0(P1, Riρ?Q`) ∼= H i(X ∩H, Q`),

and thus we find that the restriction map

H i(X̃, Q`) → H i(X ∩H, Q`)

is surjective. On the other hand, one knows [SGA 7 II, XVIII, 5.1.6]
that for i ≤ n− 1, this restriction map has the same image in H i(X ∩
H, Q`) as does the restriction map

H i(X, Q`) → H i(X ∩H, Q`).

Taking i = n− 1, we find a surjective restriction map

Hn−1(X, Q`) � Hn−1(X ∩H, Q`).

But the dimension of the cokernel of this map, denoted

Nd := Nd(X, given embedding in P)

in [Ka-Pan], is strictly positive in the stated range of d, cf. [Ka-Pan,
Theorem 1 and preceding two paragraphs]. This is the desired contra-
diction. �
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One knows [SGA 7 II, XVII, 3.2] that the points H ∈ X∨
d such

that X ∩ H has one and only one singular point, and such that this
unique singular point is an ordinary double point, form an open set
Good(X∨

d ) ⊂ X∨
d . We define

Bad(X∨
d ) := X∨

d \Good(X∨
d ).

Thus Bad(X∨
d ) ⊂ X∨

d is closed.
We can be more precise in the case when either n is even or char(k) 6=

2. Then for d ≥ 2, we see from [SGA 7 II, XVII, 3.3 and 3.7.1] that the
first projection, from the incidence variety Zd to PHypd, is generically
unramified. Hence X∨

d is a hypersurface, and by [SGA 7 II, XVII, 3.5]
the set Good(X∨

d ) is precisely its smooth locus.
For ease of future reference, we state explicitly the following slight

sharpening of the previous lemma.

Lemma 2.4. Suppose that d ≥ 2. Then X∨
d ⊂ Hypd is a hypersurface.

Proof. The only case not covered by the previous lemma is when d = 2
and n is even, and that case is handled by the [SGA 7 II] results recalled
just above. �

We will need the following existence results.

Lemma 2.5. Suppose that d ≥ d0, and that k is infinite. Fix a point
x0 ∈ X(k). Then there exists a degree d hypersurface H such that
X ∩H has an ordinary double point at x0 and is smooth elsewhere.

Proof. That X∩H be singular at x0 means precisely that H ∈ PHypd(2[x0]).
Since d ≥ d0, the map

Hypd(2[x0]) → IX([x0])
2/IX([x0])

3)(d)

is surjective, i.e., we can achieve arbitrary quadratic terms at x0. The
condition that quadratic terms define an ordinary double point, i.e.
that their vanishing define a smooth quadric in the projective space on
MX,x0/M2

X,x0
, is an open condition. So a dense open set, say U1, of

PHypd(2[x0]) consists of degree d hypersurfaces H such that X ∩ H
has an ordinary double point at x0. It remains to show that a second
dense open set, say U2, of PHypd(2[x0]) consists of d hypersurfaces H
such that X ∩H is smooth outside of x0, for then a point in U1 ∩U2 is
the desired H. To construct U2, we consider another incidence variety,
call it

Incd(2[x0]) ⊂ PHypd(2[x0])× (X \ {x0})
consisting of pairs (H, x) such that X ∩H is singular at x. Viewed as
lying over X Incd(2[x0]) is a PM -bundle, for M = dim(PHypd(2[x0]))−
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1−n (the fibre over x 6= x0 is PHypd(2[x0]+2[x]), which has codimen-
sion n + 1 in PHypd(2[x0])). Thus Incd(2[x0]) is smooth and geomet-
rically irreducible of dimension dim(PHypd(2[x0])) − 1, and hence its
image in PHypd(2[x0]) under the first projection has a closure which
is of codimension at least one. The complement of this closure in
PHypd(2[x0]) is the desired dense open set U2. �

Corollary 2.6. If d ≥ d0, the open set Good(X∨
d ) ⊂ X∨

d is nonempty,
and its complement Bad(X∨

d ) has codimension ≥ 2 in PHypd.

Proof. The assertion is geometric, so we may extend scalars and reduce
to the case whenX(k) is nonempty. Then the first assertion is immedi-
ate from the lemma above, and the second then follows from the fact
that X∨

d is an irreducible hypersurface in PHypd. �

Now we put Z into the picture.

Lemma 2.7. Suppose d ≥ d0, and that k is infinite. Then we have the
following results.

(1) There exists a degree d hypersurface H ∈ PHypd(Z) such that
X ∩H is smooth.

(2) The intersection X∨
d ∩PHypd(Z) is an irreducible hypersurface

in PHypd(Z).
(3) Fix a point x0 ∈ (X −Z)(k). There exists a degree d hypersur-

face H ∈ PHypd(Z) such that X ∩ H has an ordinary double
point at x and is smooth elsewhere.

(4) The intersection Good(X∨
d ) ∩ PHypd(Z) is nonempty. The

intersection Bad(X∨
d ) ∩ PHypd(Z) has codimension ≥ 2 in

PHypd(Z).

Proof. Clearly (2) ⇒ (1). Once we have proven (2) and (3), then
(4) follows exactly as in the preceding corollary. To prove (2), we
argue as follows. Let us denote by Incd(Z) ⊂ PHypd(Z) × X the
incidence variety consisting of pairs (H, x) with H ∈ PHypd(Z) and
x ∈ X such that X ∩ H is singular at x. We first view Incd(Z) as
mapping to X. Over X \ Z, Incd(Z) is a PM -bundle, now for M =
dim(PHypd(Z))− 1− n(the fibre over x ∈ X \ S is PHypd(Z + 2[x]),
which has codimension n + 1 in PHypd(Z)). Over a point z ∈ Zi,
the fibre is PHypd(Z + [z]), which has codimension codimX(Zi) in
PHypd(Z). So Incd(Z) is the union of an open set which is smooth
and geometrically connected of dimension dim(PHypd(Z))−1, namely
the total space of a PM -bundle over X\Z, and of a finite union of closed
sets, namely the total spaces of projective bundles over the Zi of fibre
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dimensions dim(PHypd(Z))− codimX(Zi). Because of the hypothesis

dim(Zi) < codimX(Zi)− 1,

we see that each of these total spaces has dimension at most dim(PHypd(Z))−
codimX(Zi) + dim(Zi) ≤ dim(PHypd(Z)) − 2. The image of Incd(Z)
in PHypd(Z), which is precisely the intersection X∨

d ∩ PHypd(Z), is
therefore the union of a geometrically irreducible variety of codimen-
sion ≥ 1 and of finitely many geometrically irreducible varieties of
codimension ≥ 2. So certainly X∨

d ∩ PHypd(Z) has codimension ≥ 1
in PHypd(Z). On the other hand, X∨

d is a hypersurface in PHypd,
so the intersection X∨

d ∩ PHypd(Z) is either all of PHypd(Z), or it
is a hypersurface in PHypd(Z). The first case being impossible, we
conclude that X∨

d ∩ PHypd(Z) is a hypersurface in PHypd(Z). From
its description as the image of Incd(Z), we conclude it is the union of
a geometrically irreducible variety of codimension precisely 1 and of
finitely many geometrically irreducible varieties of codimension ≥ 2.
Looking at the maximal points of the hypersurface X∨

d ∩ PHypd(Z),
we see that there is only one. This proves (2).

It remains to prove (3). Here we proceed exactly as we did in proving
the double point lemma above. Again, it is an open dense condition
on PHypd(Z + 2[x0]) that X ∩H have an ordinary double point at x0.
We next consider the incidence variety

Incd(Z + 2[x0]) ⊂ PHypd(Z + 2[x0])× (X \ x0)

consisting of points (H, x) such that X∩H is singular at x. The comple-
ment of its image in PHypd(Z +2[x0]) is the set of those hypersurfaces
H ∈ PHypd(Z + 2[x0]) such that X ∩ H is smooth outside of x0. It
remains to show that this complement contains an open dense set, i.e.,
that the closure of the image of Incd(Z + 2[x0]) has codimension ≥ 1
in PHypd(Z + 2[x0]). For this, it suffices to show that

dim(Incd(Z + 2[x0])) = dim(PHypd(Z + 2[x0]))− 1.

Indeed over X\Z, Incd(Z+2[x0]) is a PM -bundle with M = dim(PHypd(Z+
2[x0]))− n− 1. Over a point z ∈ Zi, its fibre is the space PHypd(Z +
2[x0] + [z]), of dimension dim(PHypd(Z + 2[x0]))− codimX(Zi). Thus
over Zi, Incd(Z + 2[x0]) is the total space of a PM -bundle with M =
dim(PHypd(Z + 2[x0])) − codimX(Zi), hence has dimension at most
dim(PHypd(Z + 2[x0])) − codimX(Zi) + dim(Zi) ≤ dim(PHypd(Z +
2[x0])) − 2. Thus Incd(Z + 2[x0]) is the union of an open set which
is smooth and geometrically connected of dimension dim(PHypd(Z +
2[x0]))− 1, and of a closed set of strictly lower dimension. �
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3. Lefschetz pencils, and proof of the theorem

A pencil of degree d hypersurfaces in P is a line L ⊂ PHypd, say P1 3
t = (λ, µ) 7→ Ht := λF + µG, for F and G two linearly independent
elements of Hypd. Its axis ∆ ⊂ X is the closed subscheme X ∩ F ∩G
obtained by intersecting X with any two distinct hypersurfaces in the
pencil. One says that L ⊂ PHypd is a Lefschetz pencil of degree d
hypersurface sections of X if the following three conditions are satisfied:

(1) L is not entirely contained in the dual variety X∨
d .

(2) L is disjoint from Bad(X∨
d ).

(3) ∆ ⊂ X is smooth of codimension 2 in X.

Suppose now that we are in the situation which the theorem purports
to treat. Thus k is an infinite field, n = dim(X) ≥ 2, and Z ⊂
X is a closed subscheme which is smooth, each of whose connected
components Zi ⊂ X satisfies the inequality

dim(Zi) < codimX(Zi)− 1.

We have shown that X∨
d ∩ PHypd(Z) is an irreducible hypersurface in

PHypd(Z) and the intersection Bad(X∨
d )∩PHypd(Z) has codimension

≥ 2 in PHypd(Z).
Because the intersection X∨

d ∩PHypd(Z) is an irreducible hypersur-
face in PHypd(Z), the lines L ∈ Gr(1, PHypd(Z)) not contained in it
form a dense open set, say U1. The fact that Bad(X∨

d )∩PHypd(Z) has
codimension≥ 2 in PHypd(Z) insures that the lines L ∈ Gr(1, PHypd(Z))
which are disjoint from Bad(X∨

d ) form a second dense open set, say U2.
In the Grassmannian Gr(1, PHypd(Z)) of lines in PHypd(Z), the con-
dition that the axis ∆ ⊂ X be smooth of codimension 2 in X defines a
third open set, say U3. We will show that the set U1 is nonempty (and
hence dense). Then the intersection U1 ∩ U2 ∩ U3 is a dense open set
in the rational variety Gr(1, PHypd(Z)), so has k-points so long as k
is infinite.

To show that U1 is nonempty, it suffices to show that in the product
space Hypd(Z) ×Hypd(Z), the open set U0 consisting of pairs (F, G)
such that X∩F ∩G is smooth of codimension 2 in X is nonempty. The
pairs (F, G) which lie outside of U0 are those for which there exists a
geometric point x ∈ X at which F (x) = 0, G(x) = 0, and such that at
x, the linear terms of F and G fail to be linearly independent. Thus
we are led to consider the incidence variety

Incd,d(Z) ⊂ Hypd(Z)×Hypd(Z)×X × P1,
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consisting of quadruples (F, G, x, (λ, µ)) for which F (x) = 0, G(x) = 0,
and λF − µG has no linear term at x. This third condition means
explicitly that

(1) If x ∈ X \ Z, then λF − µG ∈ Hypd(Z + 2[x]),
(1) If x = z ∈ Z, then λF − µG ∈ Hypd(Z + [z]).

The image of Incd,d(Z) in Hypd(Z)×Hypd(Z) is then the complement
of U0. So it suffices to show that

dim(Incd,d(Z)) ≤ 2dim(Hypd(Z))− 1.

For this, we view Incd,d(Z) as lying over X×P1. Over a point (x, (λ, µ)) ∈
(X\Z)×P1, the fibre is the linear subspace of Hypd(Z+[x])×Hypd(Z+
[x]) consisting of those pairs (F, G) for which λF−µG ∈ Hypd(Z+2[x]).
For a fixed representative (λ0, µ0) ∈ A2 \ (0, 0) of (λ, µ) ∈ P1, and a
fixed element H ∈ Hypd(Z + 2[x]), the equation for variable (F, G) ∈
Hypd(Z + [x])×Hypd(Z + [x])

λ0F − µ0G = H

certainly has solutions (e.g. F = (1/λ0)H, G = 0 if λ0 6= 0), and the
set of all solutions is principal homogeneous under the space of pairs
(F, G) with

λ0F = µ0G.

This space is isomorphic to Hypd(Z + [x]) (e.g., by (F, G) 7→ G if λ0 6=
0). Thus the fibre of Incd,d(Z) over a point (x, (λ, µ)) ∈ (X \ Z)× P1

is itself a Hypd(Z + [x])-bundle over Hypd(Z + 2[x]), so has dimension

dim(Hypd(Z))− 1 + dim(Hypd(Z))− 1− n = 2dim()− 2− n.

Thus the part of Incd,d(Z) lying over(X \ Z) × P1 has dimension at
most 2dim(Hypd(Z))− 1.

Over a point (z, (λ, µ)) ∈ Zi × P1, the fibre is analyzed in the same
way. We pick a representative (λ0, µ0) ∈ A2 \ (0, 0) of (λ, µ) ∈ P1. The
fibre is then the linear subspace of Hypd(Z) × Hypd(Z) consisting of
those pairs (F, G) for which λ0F−µ0G ∈ Hypd(Z +[z]). Just as above,
this fibre is a Hypd(Z)-bundle over Hypd(Z + [z]), so has dimension

dim(Hypd(Z)) + dim(Hypd(Z))− codimX(Zi).

Thus the part of Incd,d(Z) lying overZi × P1 has dimension at most

2dim(Hypd(Z))− codimX(Zi) + dim(Zi) + 1 ≤ 2dim(Hypd(Z))− 1.

Putting together these pieces of Incd,d(Z), we get the asserted estimate
on its dimension.
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