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1. Introduction

We �x a a prime number l. We denote by E� a �nite extension of Ql inside a

chosen algebraic closure �Ql of Ql, by O� the ring of integers in E�, by F� its residue

�eld, and by �F� an algebraic closure of F� . We take as coeÆcient �eld A one of the

�elds on the following list: F� , �F� , E�, or �Ql.

We work over a �eld k in which l is invertible. We are given a smooth connected

k-scheme S=k, separated and of �nite type, of dimension r � 1. In S, we are given a

reduced and irreducible closed subscheme Z, of some dimension d � 0. We assume

that an open dense set V1 � Z is smooth over k (a condition which is automatic if

the ground �eld k is perfect).

On S, we are given a constructible A-sheaf F . Because F is constructible, its

restriction to S � Z is constructible, so there exists a dense open set U in S � Z on

which F is lisse. Similarly, the restriction of F to V1 is lisse, so there exists a dense

open set V in V1 on which F is lisse. Let us denote by j the inclusion of U into S,
and by i the inclusion of V into S. Thus we have a lisse A-sheaf j?F on U , and a

lisse A-sheaf i?F on V .
In this generality, there is absolutely nothing one can say relating the monodromy

of the lisseA-sheaf i?F on V to the monodomy of the lisseA-sheaf j?F on U:However,
there is a class of constructible A-sheaves F on S for which these monodromies are

related, namely those \of perverse origin".

We say that a constructible A-sheaf F on S is of perverse origin if there exists a

perverse A-sheaf M on S such that

F �= H�r(M):

We say that any such perverse sheaf M gives rise to F .
The geometric interest of this notion is that, as we shall recall below (cf Corollaries

5 and 6), for any aÆne morphism f : X ! S, and for any perverse A-sheaf M on X,

the constructible A-sheaf

R�rf!M := H�r(Rf!(M))
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on S is of perverse origin. In particular, suppose X=k is a local complete intersection,

everywhere of dimension n+ r. Then for any lisse A-sheaf G on X,

M := G[dim(X)] = G[r + n]

is perverse on X. Hence for any aÆne morphism f : X ! S, the constructible

A-sheaf

Rnf!G = H�r(Rf!(M))

on S is of perverse origin .

Our main result is that for F of perverse origin, the monodromy of the lisse A-sheaf
i?F on V is \smaller" than the monodromy of the lisse A-sheaf j?F on U .
To make this precise, let us pick geometric points u of U and v of V . We have

monodromy homomorphisms

�U : �1(U; u)! AutA(Fu)

and

�V : �1(V; v)! AutA(Fv)

attached to j?F on U and to i?F on V respectively. We de�ne compact subgroups

�U := Image(�U) � AutA(Fu)

and

�V := Image(�V ) � AutA(Fv):

Theorem 1. For S=k smooth and connected of dimension r � 1 and for F a con-
structible A-sheaf on S of perverse origin, the group �V is isomorphic to a subquotient
of the group �U . More precisely, there exists a compact group D, a continuous group
homomorphism

D ! �U ;

a closed normal subgroup

I �D;

and an A-linear embedding

Fv � F
I
u

with the following property: if we view F I
u as a representation of D=I, then the

subspace

Fv � F
I
u

is D=I-stable, and under the induced action of D=I on Fv, the image of D=I in
AutA(Fv) is the group �V .

Before giving the proof of the theorem, we must develop some basic properties of

sheaves of perverse origin.
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2. Basic properties of sheaves of perverse origin

Throughout this section, S=k is smooth and connected, separated and of �nite

type, of dimension r � 1, and F is a constructible A-sheaf on S of perverse origin.

Recall that forM a perverse A-sheaf on S, its ordinary cohomology sheavesHi(M)

vanish for i outside the interval [-r, 0]. This is obvious for simple objects from their

explicit description as middle extensions, and it follows for the general case because

any perverse sheaf is a successive extension of �nitely many simple objects, cf. [BBD,

2.1.11 and 4.3.1].

Recall that attached to any object K in Db
c(S;A) are its perverse cohomology

sheaves pHi(K): these are perverse A-sheaves on S, all but �nitely many of which

vanish. Their behavior under shifts is given by

pHi(K[j]) = pHi+j (K):

A distinguished triangle gives rise to a long exact sequence of perverse cohomology

sheaves.

Given two integers a � b, an object K in Db
c(S;A) is said to lie in pD[a;b] if its

perverse cohomology sheaves pHi(K) vanish for i outside the closed interval [a; b].
Similarly, an object K in Db

c(S;A) is said to lie in pD�a (respectively in pD�b) if its

perverse cohomology sheaves pHi(K) vanish for i < a (respectively for i > b). An

object of pD[a;a] is precisely an object of the formM [�a] withM perverse. For a < b,

any object K of pD[a;b] is a successive extension of its shifted perverse cohomology

sheaves pHi(K)[�i], i 2 [a; b]. More precisely, any object K of pD[a;b] sits in a

distinguished triangle

pHa(K)[�a]! K ! p��a+1(K)!

with the third term p��a+1(K) in pD[a+1;b].

Lemma 2. Let K be an object of pD[a;b]. Then its ordinary cohomology sheaves
Hi(K) vanish for i outside the interval [a� r; b].

Proof. We proceed by induction on b� a. If K lies in pD[a;a], then K is M [�a] with
M perverse. The ordinary cohomology sheaves of M , Hi(M), vanish for i outside
the interval [�r; 0]. So those of M [�a] vanish outside [a� r; a]. To do the induction

step, use the distinguished triangle

pHa(K)[�a]! K ! p��a+1(K)!

above, and its long exact cohomology sequence of ordinary cohomology sheaves.

Corollary 3. Let K be an object of pD�a. Then its ordinary cohomology sheaves
Hi(K) vanish for i < a� r.

Proposition 4. Let K be an object of pD�0 on S. Then its �r'th ordinary coho-
mology sheaf H�r(K) is of perverse origin.
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Proof. We have a distinguished triangle

M ! K ! p��1(K)!

whose �rst termM :=p H0(K) is perverse, and whose last term p��1(K) lies in pD�1.

From the long exact cohomology sequence for ordinary cohomology sheaves, we �nd

H�r(M) �= H�r(K):

Corollary 5. For any aÆne morphism f : X ! S, and for any perverse A-sheaf M
on X, the constructible A-sheaf

R�rf!M := H�r(Rf!(M))

on S is of perverse origin.

Proof. Indeed, one knows [BBD, 4.1.1] that for an aÆne morphism f , Rf? maps pD�0

on X to pD�0 on S. Dually, Rf! maps pD�0 on X to pD�0 on S [BBD, 4.1.2]. So for

M perverse on X, Rf!M lies in pD�0 on S, and we apply to it the previous result.

Corollary 6. Suppose X=k is a local complete intersection, everywhere of dimension
n + r. For any lisse A-sheaf G on X, and any aÆne morphism f : X ! S, the
constructible A-sheaf Rnf!G on S is of perverse origin .

Proof. Because X=k is a local complete intersection, everywhere of dimension n+ r,
given any lisse A-sheaf G on X, the object

M := G[dim(X)] = G[r + n]

is perverse on X. [See [Ka-PES II, Lemma 2.1] for the case when G is the constant

sheaf A, and reduce to this case by observing that if K is perverse on X and G is

lisse on X, then G 
AK is perverse on X.] Now apply the previous result to M .

Proposition 7. Let F be of perverse origin on S. For any connected smooth k-
scheme T=k, and for any k-morphism f : T ! S, the pullback f?F is of perverse
origin on T .

Proof. We factor f as the closed immersion i of T into T �k S by (id; f), followed
by the projection pr2 of T �k S onto S. So it suÆces to treat separately the case

when f is smooth, everywhere of some relative dimension a, and the case when f is

a regular closed immersion, everywhere of some codimension b. Pick M perverse on

S giving rise to F . In the �rst case, K := f?M [a] is perverse on T [BBD, paragraph

above 4.2.5], dim(T ) = r + a, and

f?F = f?H�r(M) = H�r�a(f?M [a]) = H�r�a(K)

is thus of perverse origin on T . In the second case, K := f?M [�b] lies in pD[0;b]

(apply [BBD, 4.1.10(ii)] b times Zariski locally on T , and observe that the property
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of lying in pD[0;b] can be checked Zariski locally, since it amounts to the vanishing of

certain perverse cohomology sheaves), dim(T ) = r � b, and

f?F = f?H�r(M) = Hb�r(f?M [�b]) = Hb�r(K)

is thus, by the previous Proposition, of perverse origin on T .

Proposition 8. Let F be of perverse origin on S. Given a connected smooth k-
scheme T=k of dimension a, with function �eld k(T ) and generic point � := Spec(k(T )),
and given a smooth k-morphism f : S ! T with generic �bre S�=k(T ), the restriction
F� := FjS� is of perverse origin on S�=k(T ).

Proof. Indeed, for M perverse on S giving rise to F , M�[�a] is perverse on S�=k(T )

and gives rise to F�.

Proposition 9. Let F be of perverse origin on S. For j : U ! S the inclusion of
any dense open set on which F is lisse, the canonical map

F ! j?j
?F

is injective.

Proof. Let M be a perverse A-sheaf on S which gives rise to F . We know [BBD,

4.3.1] that the category of perverse A-sheaves on S is an abelian category which is

both artinian and noetherian, so every object is a successive extension of �nitely

many simple objects. We proceed by induction on the length of M .

If M is simple, then in fact we have F �= j?j
?F . To see this, we distinguish two

cases. The �rst case is that M is supported in an irreducible closed subschemeW of

S with dim(W ) � r� 1. In this case its ordinary cohomology sheaves Hi(M) vanish

for i outside the closed interval [1� r; 0]. Thus F = 0 in this case, so the assertion

trivially holds. The second case is that M is the middle extension of its restriction

to any dense open set on which it is lisse. In this case M is j?!(j
?F [r]), and from the

explicit description [BBD, 2.1.11] of middle extension we see that

H�r(M) = j?j
?F :

In the general case, we pick a simple subobject M1 of M , and denote

M2 :=M=M1:

We put

Fi := H
�r(Mi)

for i = 1; 2. Then the short exact sequence

0!M1 !M !M2 ! 0

leads to a left exact sequence

0! F1 ! F ! F2:
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By induction, we know that

Fi ,! j?j
?Fi

for i = 1; 2. A simple diagram chase shows that F ,! j?j
?F , as required.

3. Proof of the theorem

Proof. If the theorem is true for one choice of geometric points u of U and v of V ,
it is true for any other choice. So we may assume that u lies over the generic point

of U , and that v lies over the generic point of V . By Proposition 7, we may at will

shrink S to any dense open set S 0 � S which meets Z, then replace U and V by their

intersections with S 0. This changes neither �U nor �V .

Denote by Z1 � Z the closed subset Z � V . Shrinking S to S � Z1 we reduce to

the case when Z is smooth in S, and F is lisse on Z. Pulling F back to the blowup

of S along Z, allowable by Proposition 7, changes neither �U nor �V , and reduces us

to the case where Z is a connected smooth divisor in S.
We now focus on the relative dimension r of S=k. We �rst treat the case r = 1.

In this case, S is a smooth connected curve over k, and Z is a closed connected

subscheme of S which is etale over k. Thus Z is a closed point Spec(L) of S, with
L=k a �nite separable extension. Deleting from S the �nitely many closed points

other than Z at which F is not lisse, we may further assume that F is a sheaf of

perverse origin on S which is lisse on S � Z.
We now come to the essential point, that denoting by j the inclusion S � Z � S,

the canonical map

F ! j?j
?F

is injective (by Proposition 9).

Let us spell out what this mean concretely (compare [Mil, II.3.12 and II.3.16]).

Denote by K the function �eld of S, by

� : Spec(K)! S

the (inclusion of the) generic point of S, by �K an algebraic closure of K, by

�� : Spec( �K)! S

the (inclusion of the) corresponding geometric generic point of S, and byKsep � �K the

separable closure of K inside �K. The stalk F�� is the representation of Gal(Ksep=K)

obtained from viewing FjS � Z as a representation of �1(S � Z; ��) and composing

with the canonical surjection

Gal(Ksep=K)! �1(S � Z; ��):

View the closed point Z as a discrete valuation v ofK, and extend v to a valuation �v
of �K, with valuation ring O�v � �K. The residue �eld of O�v is an algebraic closure of L,
so a geometric generic point �z of Z. Inside Gal(Ksep=K), we have the corresponding
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decomposition group D := D�v, which contains as a normal subgroup the inertia group

I := I�v. We have a short exact sequence of groups

0! I ! D ! Gal(Lsep=L)! 0:

The stalk F�z of F at �z is the representation ofD=I �= Gal(Lsep=L) �= �1(Z; �z) given by
FjZ. The stalk (j?j

?F)�z of j?j
?F at �z is the representation of D=I �= Gal(Lsep=L) �=

�1(Z; �z) on the subspace of I-invariants in the restriction to D of the representation

of Gal(Ksep=K) on F��:

(j?j
?F)�z �= (F��)

I

For F any constructible sheaf on S which is lisse on S � Z, the injectivity of

F ,! j?j
?F

means precisely that at the single point Z we have an A-linearD-equivariant inclusion

F�z ,! (j?j
?F)�z �= (F��)

I :

So to conclude the proof of the theorem in the case r = 1, we have only to take I�D
as our groups, and use the composite homomorphism

D ,! Gal(Ksep=K)! �1(S � Z; ��)! AutA(F��)

to map D to

�U := Image(�1(S � Z; ��)! AutA(F��)):

For general r � 1, we argue as follows. Recall that F is lisse on an open dense set

U � S � Z, and is lisse on Z. Pick a closed point z in Z. Shrinking S to a Zariski

open neighborhood of z in S, we reduce to the case where there exist r functions

si; i = 1; : : : ; r on S which de�ne an etale k-morphism S ! A r
k and such that Z is

de�ned in S by the single equation sr = 0. Then the map S ! A r�1
k de�ned by

si; i = 1; : : : ; r � 1 is smooth of relative dimension 1, and makes Z etale over A r�1
k .

Denote by F the function �eld of A r�1
k , and make the base change of our situation

(S;Z)=A r�1
k from A r�1

k to Spec(F ). This is allowable by Proposition 8. We obtain

a situation (SF ; ZF )=F in which SF is a connected smooth curve over F , and ZF is

a nonvoid connected closed subscheme of SF which is etale over F . Thus ZF is a

closed point Spec(L) of SF , with L a �nite separable extension of F . The r = 1 case

of the theorem applies to this situation over F . Its truth here gives the theorem for

our situation (S;Z)=A r�1
k . Indeed, the connected normal schemes U and UF have the

same function �elds, and, being normal, their fundamental groups are both quotients

of the absolute galois group of their common function �eld. So the groups �U and

�UF
coincide. Similarly for V = Z, the groups �V and �VF coincide.
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4. Application to Zariski closures of monodromy groups

As an immediate corollary of the theorem, we obtain:

Corollary 10. Hypotheses and notations as in the theorem, denote by NU the rank
of the lisse A-sheaf j?F on U , and by NV the rank of the lisse A-sheaf i?F on V .

(1) We have the inequality of ranks

NV � NU :

(2) Suppose in addition that A is �Ql. Denote by GU the �Ql- algebraic group which is
the Zariski closure of �U in Aut �Ql

(Fu) �= GL(NU ; �Ql); and denote by GV the �Ql-

algebraic group which is the Zariski closure of �V in Aut �Ql
(Fv) �= GL(NV ; �Ql):

Then the algebraic group GV is a subquotient of GU .

In particular, we have

(2a) if GU is �nite (or equivalently if �U is �nite) then GV is �nite (or equivalently
�V is �nite),

(2b) dim(GV ) � dim(GU ),
(2c) rank(GV ) � rank(GU ):

5. Appendix: when and where is a sheaf of perverse origin lisse?

Proposition 11. Hypotheses and notations as in the theorem, the sheaf F of per-
verse origin on S is lisse, say of rank N , if and only if its stalks Fs at all geometric
points s of S have constant rank N .

Proof. It is trivial that if F is lisse on S, then its stalks have constant rank. Suppose

now that F on S is of perverse origin, and that all its stalks have constant rank N .

We must show that F is lisse on S.
It suÆces to show that F is lisse on an open set V � S whose complementS�V has

codimension � 2 in S. Indeed, by Zariski-Nagata purity, if we denote by j : V ! S
the inclusion, the lisse sheaf j?F on V extends uniquely to a lisse sheaf E on S. For

any lisse sheaf E on S, and any dense open set V � S, we have E �= j?j
?E. But

j?E �= j?F , so we �nd that E �= j?j
?F . In particular, j?j

?F is lisse on S, and hence

all its stalks have constant rank N . The injective (by Proposition 9) map

F ,! j?j
?F

must be an isomorphism, because at each geometric point the stalks of both source

and target have rank N . Thus we �nd

F �= j?j
?F �= E;

which shows that F is lisse on S.
We now show that an F of perverse origin on S which has constant rank N must

be lisse. Thanks to the above discussion, we may remove from S any closed set

of codimension 2 or more. Thus we may assume that F is lisse on an open set
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U � S, inclusion denoted j : U ! S, and that that the complement S � U is a

disjoint union of �nitely many irreducible divisors Zi. Denote by � the generic point

of S. At the generic point zi of Zi, the local ring OS;zi is a discrete valuation ring.

For suitable geometric points �� and �zi lying over � and zi respectively, we have the
inertia and decomposition groups Ii and Di. We have an injective (by Propostion 9)

Di-equivariant map

F �zi ,! (j?j
?F) �zi

�= (F��)
Ii � F��:

As both F �zi and F�� have the same rank N , all the displayed maps must be isomor-

phisms. Therefore Ii acts trivially on F��. Thus j?F is a lisse sheaf on U which is

unrami�ed at the generic point of each Zi. So by Zariski-Nagata purity, j
?F extends

to a lisse sheaf E on S. Exactly as in the paragraph above, we see that

F �= j?j
?F �= E;

which shows that F is lisse on S.

Proposition 12. Hypotheses and notations as in the theorem, let F be of perverse
origin on S. The integer-valued function on S given by

s 7! rank(Fs)

is lower semicontinuous, i.e., for every integer r � 0, there exists a reduced closed
subscheme S�r � S such that a geometric point s of S lies in S�r if and only if the
stalk Fs has rank � r. If we denote by N the generic rank of F , then S = S�N , and
S � S�N�1 is the largest open set on which F is lisse.

Proof. Once we show the lower semicontinuity of the rank, the second assertion is

immediate from the preceeding proposition.

To show the lower semicontinuity, we �rst reduce to the case when k is perfect.

Indeed, for kper the perfection of k, and S1 := S
kk
per, the natural map � : S1 ! S is

a universal homeomorphism, S1=k
per is smooth and connected, and �?F is of perverse

origin on S1=k
per. Thus it suÆces to treat the case when k is perfect.

Because F is a constructible sheaf, its rank function is constructible. So to show

lower semicontinuity, it suÆces to show that the rank decreases under specialization.

Thus let Z � S be an irreducible reduced closed subscheme, with geometric generic

point ��Z. We must show that at any geometric point z 2 Z, we have

rank(F��Z ) � rank(Fz):

Because the �eld k is perfect, we may, by de Jong [de Jong, Thm. 3.1], �nd a

smooth connected k-scheme Z1 and a proper surjective k-morphism f : Z1 ! Z. By
Proposition 7, f?F is of perverse origin on Z1. By Corollary 10, (1), applied on Z1,

we get the asserted inequality of ranks.

Acknowledgement This work began as a diophantine proof of Parts (2a) and (2c)

of the Corollary, in the special case when the ground �eld k is �nite, and when the
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sheaf F of perverse origin on S is Rnf!G for f : X ! S a smooth aÆne morphism

everywhere of relative dimension n, with G a lisse sheaf on X. I owe to Deligne both

the idea of formulating the theorem in terms of subquotients , and the idea that it

applied to sheaves of perverse origin.
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