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1. Introduction, and the basic setting

Let k be a �nite �eld of characteristic p and cardinality q,  a nontrivial C � -valued

additive character of k, and � a nontrivial C � -valued multiplicative character of k�.
We extend � to a function on all of k by de�ning �(0) := 0:
Recall that, given an integer n, a number � 2 C is said to be pure of weight n

(relative to q) if it and all its Aut(C =Q)-conjugates have absolute value
p
qn. Such

an � is necessarily algebraic over Q.

Fix a polynomial f(X) in k[X] of degree d � 1. If d is prime to p, one has the

estimate

j
X
x2k

 (f(x))j � (d � 1)
p
q:

More precisely, the associated L-function is a polynomial of degree d � 1 which is

pure of weight one, i.e., all its reciprocal zeroes have absolute value
p
q.

The analogue for multiplicative character sums in one variable is this. Whatever

the value of d, if f has d distinct zeroes (in some over�eld of k), then one has the

estimate

j
X
x2k

�(f(x))j � (d� 1)
p
q:

The associated L-function is again a polynomial of degree d� 1, but in general it is

mixed of weights one and zero. It is pure of weight one if and only if in addition �d is
nontrivial, otherwise it has d � 2 reciprocal roots which are pure of weight one, and

one reciprocal root which is pure of weight zero.

It was known to Davenport and Hasse (cf. [Dav-Ha], [Ha], [We-OSES], and [We-NS,

footnote on page 498]) in 1934 that both these results followed from the then unproven

Riemann Hypothesis for curves over �nite �elds (in the �rst case for the curve of

aÆne equation Y q � Y = f(X), in the second case for the curve of aÆne equation

Y N = f(X), for N the order of �).
What happens to these results in several variables? Fix an integer n � 1, and a

polynomial f(X) := f(X1; : : : ;Xn) in k[X1; : : : ;Xn] of degree d � 1, say

f = fd + fd�1 + : : :+ f0
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with fi homogeneous of degree i. If d is prime to p and if the equation fd = 0 de�nes

a smooth, degree d hypersurface in Pn�1 (for n = 1, this means only that fd is not
identically 0), then Deligne proved [De-Weil I, Theorem 8.4] the estimate

j
X
x2kn

 (f(x))j � (d� 1)n
p
qn:

Moreover, he proved that the associated L function is a polynomial (for n odd) or a

reciprocal polynomial (for n even) of degree (d � 1)n which is pure of weight n.
We will establish n-variable multiplicative character sum analogues of Deligne's n-

variable additive character sum results (and of the mild generalizations of Deligne's

results given in [Ka-SE, 5.1.1 and 5.4.1]). With these results, the n-variable situation

almost perfectly mirrors the one-variable situation, except that in several variables

our method sometimes requires the assumption that d be prime to p, an assumption

which was never necessary in the one-variable case. One striking aspect of this

mirroring is that the degrees of the L functions for the multiplicative character sums

we consider coincide with the degrees for the corresponding additive character sums.

2. Statement of the two main theorems

Fix a �nite �eld k of characteristic p and cardinality q. Let � be a nontrivial

C � -valued multiplicative character of k�. Fix an integer n � 1, and a polynomial

f(X) := f(X1; : : : ;Xn) in k[X1; : : : ;Xn] of degree d � 1, say

f = fd + fd�1 + : : :+ f0

with fi homogeneous of degree i. Suppose that

(a) the equation fd = 0 de�nes a smooth, degree d hypersurface in Pn�1
k

;
(b) the equation f = 0 de�nes a smooth hypersurface in A n

k
:

Theorem 1. In the above situation, if d is prime to p and if �d is nontrivial, we

have the estimate

j
X
x2kn

�(f(x))j � (d � 1)n
p
qn:

The associated L function is a polynomial P (T ) (for n odd) or a reciprocal polynomial

1=P (T )(for n even) of degree (d� 1)n, and P (T ) is pure of weight n:

Theorem 2. In the above situation, If �d is trivial, we have the estimate

j
X
x2kn

�(f(x))j � (d � 1)n
p
qn:

The associated L function is a polynomial P (T ) (for n odd) or a reciprocal polynomial

1=P (T )(for n even) of degree (d� 1)n, and P (T ) is mixed of weights n and n� 1: it

has ((d � 1)n+1 � (�1)n+1)=d reciprocal roots which are pure of weight n, and it has

((d� 1)n � (�1)n)=d reciprocal roots which are pure of weight n � 1:
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3. Statement of a second version of the main theorems

In this section, we give a generalization which is analogous to our additive char-

acter generalization [Ka-SE, 5.1.1] of [De-Weil I, Theorem 8.4]. Fix a �nite �eld k
of characteristic p and cardinality q. Let � be a nontrivial C � -valued multiplicative

character of k�. Fix an integer n � 1:Let X=k be a projective, smooth, and geomet-

rically connected k-scheme of dimension n � 1, given with a projective embedding

X ,! PN
k
:= P. Fix a strictly positive integer d. Denote by L the class of OP(1), and

by c(X) the total Chern class of X. De�ne non-negative integers C0, C1, and C by

C0 := (�1)n
Z
X

c(X)

(1 + dL)
;

C1 := (�1)n�1
Z
X

Lc(X)

(1 + L)(1 + dL)
;

C := (�1)n
Z
X

c(X)

(1 + L)(1 + dL)
:

Notice that

C = C0 + C1:

Let Z 2 H0(P;OP(1)) de�ne a hyperplane (itself denoted Z) in P. Let H 2
H0(P;OP(d)) de�ne a hypersurface (itself denoted H) in P . Assume that

(a) X \ Z is lisse of codimension 1 in X.

(b) X \H is lisse of codimension 1 in X.

(c) X \H \ Z is lisse of codimension 2 in X.

To this data, we attach the smooth aÆne k-scheme

V := X �X \ Z;
,and the function

f := H=Zd : V ! A 1
k
:

Theorem 3. Hypotheses and notations as above, suppose that d is prime to p; and
that �d is nontrivial. Then we have the estimate

j
X

x2V (k)

�(f(x))j � C
p
qn:

The associated L function is a polynomial P (T ) (for n odd) or a reciprocal polynomial

1=P (T )(for n even) of degree C, and P (T ) is pure of weight n: all its reciprocal roots
are pure of weight n:

Theorem 4. Hypotheses and notations as above, suppose that �d is trivial. Then we

have the estimate

j
X

x2V (k)

�(f(x))j � C
p
qn:
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The associated L function is a polynomial P (T ) (for n odd) or a reciprocal polynomial

1=P (T )(for n even) of degree C, and P (T ) is mixed of weights n and n � 1: it has

C0 reciprocal roots which are pure of weight n, and it has C1 reciprocal roots which

are pure of weight n � 1:

4. Statement of a third version of the main theorems

In this section, we give a generalization which is analogous to our additive char-

acter generalization [Ka-SE, 5.4.1] of [De-Weil I, Theorem 8.4]. Fix a �nite �eld k
of characteristic p and cardinality q. Let � be a nontrivial C � -valued multiplicative

character of k�. Fix an integer n � 1:Let X=k be a projective, smooth, and geomet-

rically connected k-scheme of dimension n � 1, given with a projective embedding

X ,! PN
k
:= P. Fix an integer r � 1, and two r-tuples (d1; : : : ; dr) and (b1; : : : ; br)

of strictly positive integers. De�ne

d :=

rX
i=1

bidi:

De�ne

b := lcm(b1; : : : ; br):

Denote by L the class of OP(1), and by c(X) the total Chern class of X. De�ne a

non-negative integer C by

C := (�1)n
Z
X

c(X)

(1 + dL)�r

i=1(1 + diL)
:

Suppose given

Zi 2 H0(P;OP(di))

for each i, which de�nes a hypersurface (also denoted Zi) in P. Suppose given

H 2 H0(P;OP(d))

which de�nes a hypersurface (also denoted H) in P. Assume that

(a) All the bi are prime to p.
(b) For every subset I � f1; 2; : : : ; rg, X \T

i2I
Zi is lisse of codimension #I in X.

(c) For every subset I � f1; 2; : : : ; rg, X\H\T
i2I
Zi is lisse of codimension 1+#I

in X.

To this data, we attach the smooth aÆne k-scheme

V := X �X \
[
i2I

Zi;

and the function

f := H=�r

i=1Z
bi

i
: V ! A 1

k
:
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Theorem 5. Hypotheses and notations as above, suppose that �b is nontrivial. Then
we have the estimate

j
X

x2V (k)

�(f(x))j � C
p
qn:

The associated L function is a polynomial P (T ) (for n odd) or a reciprocal polynomial

1=P (T )(for n even) of degree C, and P (T ) is pure of weight n: all its reciprocal roots
are pure of weight n:

Theorem 6. Hypotheses and notations as above, suppose that �b is trivial. Then we

have the estimate

j
X

x2V (k)

�(f(x))j � C
p
qn:

The associated L function is a polynomial P (T ) (for n odd) or a reciprocal polynomial

1=P (T )(for n even) of degree C, and P (T ) is mixed of weight � n: each of its

reciprocal roots is pure of some non-negative integer weight w � n.

5. Proof of the theorems: first steps

Fix a prime number l invertible in k, an algebraic closure �Ql of Ql, and a �eld

isomorphism � of �Ql with C . By means of �, we view � as a nontrivial �Q�
l
-valued

character of k�. We denote by L� on A 1
k
the extension by zero across the origin of

the lisse rank one Kummer sheaf [De-AFT] on the multiplicative group Gm;k . For

any scheme X and any morphism f : X ! A 1
k
, we de�ne the constructible �Ql-sheaf

L�(f) := f?L� on X: it is lisse of rank one on X[1=f ], and extended by zero to all of

X.

Theorem 1 is the special case of Theorem 3 in which X isPn
k
:= Proj(k[X0; : : : ;Xn]),

Z is X0, and H :=
P

d

i=0X
d�i

0 fi. See [Ka-ESES, Introduction] for the veri�cation that
the constant C of Theorem 3 is (d� 1)n in this special case. Similarly, Theorem 2 is

a special case of Theorem 4. Theorem 3 is visibly a special case of Theorem 5.

So it suÆces to prove Theorems 4, 5, and 6. All of these concern the exponential

sum X
x2V (k)

�(f(x)) =
X

x2V [1=f ](k)

�(f(x)):

Let us denote
�V := V �k

�k:

By the Lefschetz trace formula, we know thatX
x2V [1=f ](k)

�(f(x)) =
X
i

(�1)iTrace(FkjH i

c
( �V [1=f ];L�(f))):

Theorem 5 results in the standard way (compare [Ka-SE, 5.4.1]) from Deligne's

Weil II estimate [De-Weil II, 3.3.3 and 3.3.4] and the following l-adic theorem.
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Theorem 7. Hypotheses and notations as in Theorem 5, we have

(1) The natural "forget supports" map is an isomorphism

H?

c
( �V [1=f ];L�(f)) �= H?( �V [1=f ];L�(f)):

(2) The compact Euler characteristic is given by

�c( �V [1=f ];L�(f)) = (�1)nC:
(3) For i 6= n, H i

c
( �V [1=f ];L�(f)) = 0:

(4) The group Hn

c
( �V [1=f ];L�(f)) has dimension C, and is pure of weight n.

(5) For �� the inverse character to �, the cup-product pairing

Hn

c
( �V [1=f ];L�(f))�Hn

c
( �V [1=f ];L��(f))! H2n

c
( �V [1=f ]; �Ql) �= �Ql(�n)

is a Gal(�k=k)-equivariant perfect pairing. In particular, if � has order two,

then Hn

c
( �V [1=f ];L�(f)) is Gal(�k=k)-equivariantly self-dual toward �Ql(�n), by a

pairing which is orthogonal for n even and symplectic for n odd.

Because V [1=f ]=k is smooth and aÆne, and L�(f) is lisse and pure of weight zero,

parts (3) and (4) result from parts (1) and (2), cf. [Se-MSE]. Part (5) is not needed

for Theorem 5, but may be useful in other contexts. It results from part (1) and

Poincar�e duality. The sign of the pairing is as asserted because the coeÆcients L�(f)
are themselves orthogonally self-dual when � has order two.

Similarly, Theorem 6 results from [De-Weil II, 3.3.3 and 3.3.4] and the following

l-adic theorem.

Theorem 8. Hypotheses and notations as in Theorem 6, the groups H i

c
( �V [1=f ];L�(f))

vanish for i 6= n, and the compact Euler characteristic is given by

�c( �V [1=f ];L�(f)) = (�1)nC:
Thereom 6 asserts that in addition the weights are non-negative integers � n.

Because L�(f) is pure of weight zero, we know that Hn

c
( �V [1=f ];L�(f)) is mixed of

integer weights � n. The trace function of L�(f) has values which are algebraic

integers, so the L function as a power series has algebraic integer coeÆecients, and

constant term 1. But by the theorem we have

L(T )(�1)
n+1

= det(1� TFkjHn

c
( �V [1=f ];L�(f)):

Therefore all the eigenvalues of Fk on H
n

c
( �V [1=f ];L�(f)) are algebraic integers. Hence

their weights must be non-negative.

6. Further reduction steps, via the incidence variety

We now pass from V to the incidence variety ~XA 1 � X � A 1 de�ned as the locus

of points (x 2 X;� 2 A 1) where H � ��iZ
bi

i
vanishes. This incidence variety ~XA 1 is
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smooth over k, cf. [Ka-SE, pp. 173-174]. The second projection de�nes a proper at

k-morphism
~f : ~XA 1 ! A 1

with
~f�1(�) = X \ (H = ��iZ

bi

i
):

We denote by ~XGm � X � Gm the inverse image of Gm under ~f . The variety V sits

in ~XA 1 as an open set, with closed complement the product (X \ H \
S
i
Zi) � A 1.

The function ~f agrees with f on V , and is the second projection on the complement.

Similarly, V [1=f ] sits in ~XGm as an open set, with closed complement the product

(X \H \S
i
Zi) � Gm . The function ~f agrees with f on V [1=f ], and is the second

projection on the complement.

Because � is nontrivial, we have H?

c
(G

m;�k ;L�) = 0. By Kunneth we get

H?

c
(((X \H \

[
i

Zi)� Gm)�k;L�( ~f)) = 0:

So the excision sequence for L
�( ~f) and

V [1=f ] � ~XGm � (X \H \
[
i

Zi)� Gm

gives

H?

c
( �V [1=f ];L�(f)) �= H?

c
( ~XG

m;�k
;L

�( ~f)):

The Poincar�e dual of this isomorphism, applied with the inverse character ��, is an
isomorphism

H?( ~XG
m;�k
;L

�( ~f))
�= H?( �V [1=f ];L�(f)):

Moreover, if we surround the "forget supports" map on ~XG
m;�k

with these isomor-

phisms,

H?

c
( �V [1=f ];L�(f)) �= H?

c
( ~XG

m;�k
;L

�( ~f))! H?( ~XG
m;�k
;L

�( ~f))
�= H?( �V [1=f ];L�(f));

we get the "forget supports" map on �V [1=f ]. Thus Theorem 7 results from

Theorem 9. Hypotheses and notations as in Theorem 5, we have

(1) The natural "forget supports" map is an isomorphism

H?

c
( ~XG

m;�k
;L

�( ~f))
�= H?( ~XG

m;�k
;L

�( ~f)):

(2) The compact Euler characteristic is given by

�c( ~XG
m;�k
;L

�( ~f)) = (�1)nC:

Similarly, Theorem 8 results from
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Theorem 10. Hypotheses and notations as in Theorem 6, the groups H i

c
( ~XG

m;�k
;L

�( ~f))

vanish for i 6= n, and the compact Euler characteristic is given by

�c( ~XG
m;�k
;L

�( ~f)) = (�1)nC:

7. Proof of Theorems 9 and 10, by the method of pencils

We now turn to a study of the proper at k-morphism

~f : ~XA 1 ! A 1;

and the higher direct image sheaves (remember ~f is proper)

Ri ~f! �Ql
�= Ri ~f? �Ql

on A 1 .

Proposition 11. The morphism

~f : ~XA 1 ! A 1

is proper and smooth of relative dimension n � 1 over a Zariski open neighborhood

of the origin 0 in A 1. Its singular �bres have at worst isolated singularities. The

sheaves Ri ~f? �Ql are all lisse in a Zariski open neighborhood of the origin in A 1.

Proof. The �bre over a point � is X \ (H = ��iZ
bi

i
), which is smooth for � = 0,

hence smooth for � in a Zariski open neighborhood of 0. By [SGA4, Expos�e XV, 2.1

and Expos�e XVI, 2.1], the sheaves Ri ~f? �Ql are all lisse in a Zariski open neighborhood

of the origin in A 1. Whatever the point �, the intersection ~f�1(�) \ Z1 is always the

same, namely X \ H \ Z1, which by hypothesis is smooth of codimension 2 in X.

Therefore Z1 does not meet the singular locus of ~f�1(�). But Z1 is the intersection

with X of a hypersurface in the ambient P, so it meets every closed subscheme of X

of strictly positive dimension. Therefore the singular locus of ~f�1(�) has dimension

at most 0.

Corollary 12. For i � n + 1, the sheaf Ri ~f? �Ql is lisse on A 1 . For i = n, denote

by j : U ,! A 1 the inclusion of a dense open set on which Rn ~f? �Ql is lisse. Then we

have a short exact sequence of sheaves on A 1,

0! (punctual)! Rn ~f? �Ql ! j?j
?Rn ~f? �Ql ! 0

and the sheaf j?j
?Rn ~f? �Ql is lisse on A 1 .

Proof. This is immediate from [SGA7, Expos�e I, Cor. 4.3] and the preceding result,

cf. [Ka-ESES, proof of Theorem 13].

Proposition 13. The sheaves Ri ~f? �Ql on A 1 are all tamely rami�ed at 1, and in

their semisimpli�cations as representations of the inertia group I(1) only characters

of order dividing b occur.
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Proof. This is proven in [Ka-SE, 5.4.2].

Corollary 14. For i � n+1, the sheaf Ri ~f? �Ql is geometrically constant on A 1 . For

i = n, the sheaf j?j
?Rn ~f? �Ql is geometrically constant on A 1 .

Proof. These sheaves are lisse on A 1 and tamely rami�ed at 1, so are geometrically

constant.

Proposition 15. For any nontrivial �, the groups H i

c
( ~XG

m;�k
;L

�( ~f)) vanish for i 6= n.

Proof. For i � n� 1, use the isomorphism

H?

c
( �V [1=f ];L�(f)) �= H?

c
( ~XG

m;�k
;L

�( ~f)):

Since V [1=f ] is smooth and aÆne of dimension n, and the coeÆcients are lisse, these

groups vanish for i � n � 1 by the Poincar�e dual of the Lefschetz aÆne theorem.

For i � n+ 1, use the Leray spectral sequence for compact cohomology for

~f : ~XGm ! Gm

and the sheaf L
�( ~f) :=

~f?L�,

E
a;b

2 = Ha

c
(Gm;�k ; R

b ~f?L�( ~f)) �= Ha

c
(Gm;�k ; R

b ~f? �Ql 
 L�)) Ha+b
c

( ~XG
m;�k
;L

�( ~f)):

The only possibly nonvanishing Ea;b

2 terms have a 2 [0; 2]. It suÆces to show that

E
a;b

2 = 0 for a+b � n+1. They vanish for b � n+1, because Rb ~f? �Ql is geometrically

constant, andH?

c
(Gm;�k ;L�) vanishes. For b = n, Rn ~f? �Ql sits in a short exact sequence

0! (punctual)! Rn ~f? �Ql ! (geometrically constant)! 0;

so we get E
a;n

2 = 0 for a � 1. It remains to show that E
2;n�1
2 = 0. For this we use

the i = n � 1 case of the fact (Proposition 11 above) that all the sheaves R ~f? �Ql on

A 1 are lisse near the origin. The required vanishing then results from the �rst part

of the following lemma.

Lemma 16. Let F be a constructible �Ql-sheaf on A 1
�k
, � a nontrivial multiplicative

character of k�, and  a nontrivial additive character of k. Then we have the fol-

lowing results.

(1) If F is lisse on a Zariski open neighborhood of the origin, then

H2
c
(Gm;�k ;F 
 L�) = 0:

(2) If F is lisse on a Zariski open neighborhood of the origin and is tamely rami�ed

at 1, then we have an equality of Euler characteristics

�c(Gm;�k ;F 
 L�) = �c(A
1
�k
;F 
 L ) = �c(A

1
�k
;F)� rank(F��):
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(3) Suppose F is lisse on a Zariski open neighborhood of the origin and tamely

rami�ed at1, and that the only characters of I1 which occur have order dividing

b. If �b is nontrivial, then the "forget supports" map is an isomorphism

H?

c
(Gm;�k ;F 
 L�) �= H?(Gm;�k ;F 
 L�):

Proof. To prove (1), use the fact that H2
c
is a birational invariant, i.e. for any dense

open set U � Gm;�k we have

H2
c
(U;F 
 L�) �= H2

c
(G

m;�k ;F 
 L�):
Take for U a dense open set where F 
 L� is lisse. Then H2

c
(U;F 
 L�) is the

(Tate-twisted) coinvariants of �1(U) acting on (F 
 L�)��. These coinvariants are

themselves a quotient of the coinvariants under the inertia group I0. But the I0-

coinvarinats vanish, because as I0-representation we have is simply a direct sum of

several copies of the nontrivial character of I0 given by �.
To prove (2), we simply apply the Grothendieck-Neron-Ogg-Shafarevic Euler- Poincar�e

formula. Because L� is lisse of rank 1 on Gm;�k and tame at both 0 and 1, for any

constructible �Ql-sheaf F on on A 1
�k
we have

�c(Gm;�k ;F 
 L�) = �c(Gm;�k ;F):
For F lisse near 0, we have

�c(Gm;�k ;F) = �c(A
1
�k ;F)� rank(F��):

For F tame at 1, we have

�c(A
1
�k ;F 
 L ) = �c(A

1
�k ;F)� Swan1(F) = �c(A

1
�k ;F)� rank(F��):

To prove (3), denote by j : Gm;�k ! A 1
�k
the inclusion. We must show that the

natural "forget supports" map

j!(F 
 L�)! Rj?(F 
L�)
is an isomorphism. At 0, F is lisse, and at 1 its inertia representation involves only

characters of I1 of order dividing b. So at both 0 and at 1, F 
 L� is a successive

extension of nontrivial characters of the inertia group, so we indeed get

j!(F 
L�) �= Rj?(F 
 L�):

Corollary 17. We have an equality of Euler characteristics

�c( ~XG
m;�k
;L

�( ~f)) = �c( ~XA 1�k
;L

 ( ~f)) = (�1)nC:

Proof. To see that the � and  Euler characteristics are equal, compute each using the

Leray spectral sequence as the alternating sum of the dimensions of the E2 terms. By

Propositions 11 and 13, we may apply part (2) of the previous result to the E2 terms.

That the  Euler characteristic is equal to (�1)nC is proven in [Ka-SE, 5.4.1].
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Thus Theorem 10 is now completely proven. To complete the proof of Theorem 9,

we must show that the "forget supports" map

H?

c
( �V [1=f ];L�(f))! H?( �V [1=f ];L�(f))

is an isomorphism. To see this, compare the Leray spectral sequences for both com-

pact and ordinary cohomology,

E
a;b

2 = Ha

c
(G

m;�k ; R
b ~f?L�( ~f)) �= Ha

c
(G

m;�k ; R
b ~f? �Ql 
 L�)) Ha+b

c
( ~XG

m;�k
;L

�( ~f))

and

E
a;b

2 = Ha(Gm;�k ; R
b ~f?L�( ~f)) �= Ha(Gm;�k ; R

b ~f? �Ql 
 L�)) Ha+b( ~XG
m;�k
;L

�( ~f)):

It suÆces to show that the "forget supports" map on the E2 terms

Ha

c
(Gm;�k ; R

b ~f? �Ql 
 L�)! Ha(Gm;�k ; R
b ~f? �Ql 
 L�)

is an isomorphism for all (a; b). This is given by part (3) of the above lemma.

Thus we have proven Theorems 9 and 10, and with them Theorems 1, 3, 5, 6, 7,

and 8. It remains only to prove Theorem 4 (of which Theorem 2 was a special case).

8. Proof of Theorem 4

Let us recall the situation. We are given a positive integer d (which is not nec-

essarily prime to p) and a nontrivial multiplicative character � with �d trivial. We

have X=k which is projective, smooth, and geometrically connected, of dimension n,
sitting in P. We are given a linear form Z which de�nes a hyperplane Z transverse

to X, and a degree d form H which de�nes a hypersurface which is transverse both

to X and to X \ Z. On V := X[1=Z] we have the function f := H=Zd.

Because H has degree d and �d is trivial, it makes sense to speak of the lisse,

rank one Kummer sheaf L�(H) on X[1=H]. Concretely, for any linear form L, we can

form the usual Kummer sheaf L�(H=Ld) on X[1=LH]. For any two linear forms L1

and L2, the Kummer sheaf L
�(Ld

1
=Ld

2
) on X[1=L1L2] is canonically trivial. This allows

us to patch together L�(H=Ld) on X[1=LH] for variable L to get the desired lisse,

rank one Kummer sheaf L�(H) on X[1=H]. This Kummer sheaf agrees with L�(f) on
V [1=f ] = X[1=ZH]. So we have (writing �X for X�k)

H?

c
( �V [1=f ];L�(f)) �= H?

c
( �X[1=HZ];L�(H)):

Now look at the excision sequence for

�X[1=HZ] = �V [1=f ] � �X[1=H] � �X \ �Z[1=H];

� � � ! H i

c
( �X[1=HZ];L�(H))! H i

c
( �X[1=H];L�(H))! H i

c
( �X \ �Z[1=H];L�(H))! : : : ;

which we may rewrite as

� � � ! H i�1
c

( �X \ �Z[1=H];L�(H))! H i

c
( �V [1=f ];L�(f))! H i

c
( �X[1=H];L�(H))! : : : :
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Using this excision sequence, we see that Theorem 4 results immediately from the

following theorem.

Theorem 18. Let d be a positive integer, � a nontrivial multiplicative character with

�d trivial, and X=k projective, smooth, and geometrically connected, of dimension n,
sitting in P.

(1) Suppose given a degree d formH which de�nes a hypersurface which is transverse

to X. Then the "forget supports" map de�nes an isomorphism

H?

c
( �X[1=H];L�(H)) �= H?( �X[1=H];L�(H)):

The groups H i

c
( �X[1=H];L�(H)) vanish for i 6= n. The remaining group Hn

c
is

pure of weight n, and has dimension C0 := (�1)n
R
X

c(X)

(1+dL)
:

(2) Suppose that we are given in addition a linear form Z on X which is transverse

both to X and to X\H. Then the "forget supports" map de�nes an isomorphism

H?

c
( �X \ �Z[1=H];L�(H)) �= H?( �X \ �Z[1=H];L�(H)):

The groups H i

c
( �X \ �Z[1=H];L�(H)) vanish for i 6= n� 1. The remaining group

Hn�1
c

is pure of weight n� 1, and has dimension C1 := (�1)n�1
R
X

Lc(X)

(1+L)(1+dL)
:

Proof. Because H is transverse to X, and � is nontrivial, if we denote by

j : X[1=H] ,! X

the inclusion, we have

j!L�(H)
�= Rj?L�(H):

[Indeed, at a point of X \H the situation is etale over that at the origin in A n of

(j : Gm ,! A 1)� A n�1

and the sheaf pr�11 L� on the source.] Hence

H?

c
( �X[1=H];L�(H)) �= H?( �X[1=H];L�(H)):

Since �X [1=H] is smooth and aÆne of dimension n, and the coeÆcients are lisse and

pure of weight zero, we �nd that H i

c
( �X[1=H];L�(H)) vanishes for i 6= n and that Hn

c

is pure of weight n.
Because L�(H) is lisse of rank one and trivialized by a �nite etale covering of degree

prime to p (namely of degree the order of �), we have [Ka-SE, Cor. 1 of 5.5.2] the

equalities (\Hurwitz's formula")

�c( �X[1=H];L�(H)) = �c( �X [1=H]; �Ql) = �c( �X; �Ql)� �c( �X \ �H; �Ql):

Because H is transverse to X \ Z, this same argument shows that the "forget

supports" map de�nes an isomorphism

H?

c
( �X \ �Z[1=H];L�(H)) �= H?( �X \ �Z[1=H];L�(H));
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that H i

c
( �X \ �Z[1=H];L�(H)) vanishes for i 6= n� 1, and that Hn�1

c
is pure of weight

n� 1. And just as above, we have the equalities

�c( �X \ �Z[1=H];L�(H)) = �c( �X \ �Z[1=H]; �Ql) = �c( �X \ �Z; �Ql)� �c( �X \ �Z \ �H; �Ql):

We recall now the Chern class formulas [SGA7, Expos�e XVII, 5.7.5] [Ka-SE, page

163] for Euler characteristic:

�c( �X; �Ql) =

Z
X

c(X);

�c( �X \ �H; �Ql) =

Z
X

dLc(X)

1 + dL
;

�c( �X \ �Z; �Ql) =

Z
X

Lc(X)

1 + L
;

�c( �X \ �Z \ �H; �Ql) =

Z
X

dL2c(X)

(1 + L)(1 + dL)
:

Recall the constants

C0 := (�1)n
Z
X

c(X)

(1 + dL)
;

C1 := (�1)n�1
Z
X

Lc(X)

(1 + L)(1 + dL)
:

We leave to the reader the elementary veri�cation that we have

(�1)n�1C1 = �c( �X \ �Z; �Ql)� �c( �X \ �Z \ �H; �Ql);

and

(�1)nC0 = �c( �X; �Ql)� �c( �X \ �H; �Ql):
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