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1111....0000    RRRReeeevvvviiiieeeewwww    ooooffff    tttthhhheeee    TTTTaaaatttteeee    CCCCoooonnnnjjjjeeeeccccttttuuuurrrreeee

1.1 Let us begin by recalling the general Tate Conjectures about algebraic cycles on varieties

over finitely generated ground fields, cf. Tate's articles [Tate-Alg] and [Tate-Conj]. We start with

a field k, a separable closure äk of k, and Gal(äk/k) its absolute galois group. We consider a

projective, smooth, geometrically connected variety X/k of dimension dim(X) ≥ 1. For each integer

i with 0 ≤ i ≤ dim(X), we denote by Ûi(X) the free abelian group generated by the irreducible

subvarieties on X of codimension i. For each prime number … invertible in k, we have the …-adic

cohomology group H2i(X‚käk, $…), on which Gal(äk/k) acts continuously, and its Tate-twisted

variant H2i(X‚käk, $…(i)) = H2i(X‚käk, $…)(i), cf. [Tate-Alg]. An element Z in Ûi(X) has a

cohomology class cl(Z) in H2i(X‚käk, $…(i)) which is known to be invariant under Gal(äk/k), so

we may view the formation of this cycle class as a map of abelian groups

1.1.1 Ûi(X) ¨ H2i(X‚käk, $…(i))Gal(äk/k),

which extends to a $…-linear map

1.1.2 Ûi(X)‚#$… ¨ H2i(X‚käk, $…(i))Gal(äk/k).
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1.2 The Tate conjecture asserts that if the field k is finitely generated over its prime field, then

this last map is surjective.

1.3 For any field k, let us denote by AlgH2i(X‚käk, $…(i)) the subspace of H2i(X‚käk, $…(i))

spanned by codimension i algebraic cycles on X, i.e., AlgH2i(X‚käk, $…(i)) is the image of

Ûi(X)‚#$… under the cycle class map. Let us denote by ®i,…(X) the dimension of this subspace:

1.3.1 ®i,…(X/k) := dim$…
 AlgH2i(X‚käk, $…(i)).

We will refer to ®i,…(X/k) as the …-adic i'th Picard number of X/k. This Picard number is not

known in general to be independent of …: it is independent of … if numerical equivalence on X is

equal to …-adic homological equivalence for every … invertible in k, cf. [Kl-SC, page 17], where

this conjecture is called D(X) and [Ta-Alg, page 72], where it is called E(X). It will also be

convenient to denote 

1.3.2 ®i,…,geom(X/k) := ®i,…(X‚käk/äk),

the geometric …-adic i'th Picard number of X/k. 

2222....0000    TTTThhhheeee    TTTTaaaatttteeee    CCCCoooonnnnjjjjeeeeccccttttuuuurrrreeee    oooovvvveeeerrrr    aaaa    ffffiiiinnnniiiitttteeee    ffffiiiieeeelllldddd

2.1 Now let us specialize to the case in which the field k is a finite field, of cardinality denoted

q. In this case, the group Gal(äk/k) has a standard generator, the automorphism x ÿ xq, whose

iiiinnnnvvvveeeerrrrsssseeee is called the geometric Frobenius element and denoted Fq, or Fk, or just F if no confusion

is likely. Since F is itself a generator of Gal(äk/k), we have

2.1.1 H2i(X‚käk, $…(i))Gal(äk/k) = H2i(X‚käk, $…(i))F=1

:= Ker(F-1 | H2i(X‚käk, $…(i))) ¶ Ker(F-qi | H2i(X‚käk, $…)).

Now it is unknown in general that F acts semisimply on H2i(X‚käk, $…(i)), so a priori we have an

inclusion (which is conjecturally an equality)

2.1.2 H2i(X‚käk, $…(i))F=1 fi H2i(X‚käk, $…(i))F-1 nilpotent,

i.e., \ \

H2i(X‚käk, $…)F=qi
 fi H2i(X‚käk, $…)F-qi nilpotent

The cycle class map thus sits in a commutative diagram

2.1.3 Ûi(X)‚#$… ¨ H2i(X‚käk, $…(i))F=1

õ ¤

 H2i(X‚käk, $…(i))F-1 nilpotent,

and a stronger form of the Tate Conjecture asserts that the diagonal arrow

2.1.4 Ûi(X)‚#$… ¨ H2i(X‚käk, $…(i))F-1 nilpotent

is surjective. 

2.2 This last conjecture is equivalent to the following numerical statement, in terms of various

flavors of "Picard numbers". We have defined above ®i,…(X/k), the …-adic i'th Picard number of
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X/k. 

2.3 Let us denote by ®i,…,an(X/k) the multiplicity of 1 as a zero of the characteristic polynomial

of F on H2i(X‚käk, $…(i)), or equivalently the multiplicity of qi as a zero of the characteristic

polynomial of F on H2i(X‚käk, $…). We know by Deligne [Del-Weil I, 1.6] that these

characteristic polynomials are independent of …, so we may write simply ®i,an(X/k) for

®i,…,an(X/k). We will refer to ®i,an(X/k) as the analytic i'th Picard number of X/k. Then the above

cited stronger version of the Tate Conjecture is equivalent to the equality

2.3.1 ®i,…(X/k) = ®i,an(X/k).

Notice that in this case of a finite ground field, we have an a priori inequality

2.3.2 ®i,…(X/k) ≤ ®i,an(X/k).

[In the case when k is $ or a number field, there is a Tate conjecture which asserts that ®i,…(X/k) is

the order of pole at s=i+1 of the L-function built on H2i(X‚käk, $…)) viewed as a representation of

Gal(äk/k). But in that case there is, as yet, no a priori inequality (in either direction~) between

®i,…(X/k) and the order of zero at s=i+1. (The Euler product defining the L-function converges in

Re(s) > i + 1, so it makes unconditional sense to speak of the order of pole, as the largest integer r

such (s-1-i)rL(s) has a nonzero limit as s ¨ i+1 from the right.)]

2.4 Over a finite field k, there is a unique extension kn/k of any given degree n. If we start with

X/k and apply the Tate conjecture to X‚kkn/kn, it becomes

2.4.1 ®i,…(X‚kkn/kn) = ®i,an(X‚kkn/kn),

where ®i,an(X‚kkn/kn) is the total of the multiplicities of all n'th roots of unity as eigenvalues of F

on H2i(X‚käk, $…(i)). If we pass to äk, viewed as the increasing union of the fields kn~, then the

Tate conjecture predicts

2.4.2 ®i,…,geom(X/k) = ®i,an,geom(X/k),

where 

2.4.3 ®i,an,geom(X/k) := the total of the multiplicities of all roots of unity as

eigenvalues of F on H2i(X‚käk, $…(i)).

3333....0000    MMMMiiiiddddddddlllleeee----ddddiiiimmmmeeeennnnssssiiiioooonnnnaaaallll    ccccoooohhhhoooommmmoooollllooooggggyyyy

3.1 Continuing over a finite field k, suppose X/k, still projective, smooth, and geometrically

connected, has even dimension 2d, and let us take i=d in the above discussion. The cup-product

pairing on middle dimensional cohomology

H2d(X‚käk, $…(d)) ≠ H2d(X‚käk, $…(d)) ¨ H4d(X‚käk, $…(2d)) ¶ $…

is an oooorrrrtttthhhhooooggggoooonnnnaaaallll (because X is even-dimensional) autoduality on H2d(X‚käk, $…(d)) which is

Gal(äk/k)-equivariant. In particular, the cup-product is F-equivariant. As F, and all of Gal(äk/k),

acts trivially on $…, this equivariance means that under cup-product, we have
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3.1.3 (Fx, Fy) = (x, y)

for any two elements x, y in H2d(X‚käk, $…(d)). If we denote by O the orthogonal group

Aut(H2d(X‚käk, $…(d)), cup product), then what we are observing is that F lies in O.

4444....0000    HHHHyyyyppppeeeerrrrssssuuuurrrrffffaaaacccceeee    sssseeeeccccttttiiiioooonnnnssss    ooooffff    aaaa    ffffiiiixxxxeeeedddd    aaaammmmbbbbiiiieeeennnntttt    vvvvaaaarrrriiiieeeettttyyyy

4.1 Suppose further that we are given a projective, smooth, geometrically connected Y/k of odd

dimension 2d+1, together with a very ample invertible sheaf Ò on Y. For example, Y might be

@2d+1 with Ò taken to be Ø@2d+1(D) for some positive integer D, or Y might be @1≠@2d with Ò

taken to be Ø@1(a)$Ø@2d(b) for positive integers a and b. Denote by LY in H2(Y‚käk, $…(1)) the

class of Ò.

4.2 Suppose that our X is a closed subscheme of Y, defined in Y by the vanishing of a global

section of Ò. Denote by i : X ¨ Y the inclusion. Denote by L in H2(X‚käk, $…(1)) the restriction

i*(LY) of the class LY. The restriction map

4.2.1 i* : H2n(Y‚käk, $…(n)) ¨ H2n(X‚käk, $…(n))

is bijective for n < d, and is injective for n=d (by the weak Lefschetz theorem, [SGA 5, VII, 7.1],

or, in dual form, [SGA 4, XIV, 3,3]). For n=d it sits in a commutative diagram

4.2.2 i*

H2d(Y‚käk, $…(d))    ¨  H2d(X‚käk, $…(d))

LYõ Ñ i* (Gysin map)

H2d+2(Y‚käk, $…(d+1))

in which the slanted map, multiplication by LY, is an isomorphism (by the hard Lefschetz theorem,

proven by Deligne [De----Weil II, 4.1.1]). Thus we may view H2d(Y‚käk, $…(d)) as a subspace of

H2d(X‚käk, $…(d)), and on this subspace the intersection form (i.e., cup product on X) is

nondegenerate. The orthogonal of this subspace is denoted Ev2d(X‚käk, $…(d)), "ev" for

ïevanescante, because in a Lefschetz pencil setting it is the subspace spanned by all the vanishing

cycles, cf. [De-Weil I, 5.8]. [The notation should strictly speaking be something like

EvY
2d(X‚käk, $…(d)), since the space in question depends crucially on the ambient Y.] 

4.3 So we have an orthogonal direct sum "vanishing" decomposition

4.3.1 H2d(X‚käk, $…(d))  = Ev2d(X‚käk, $…(d)) · H2d(Y‚käk, $…(d)).

We can also characterize Ev2d(X‚käk, $…(d)) as the kernel of the Gysin map
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4.3.2 i* : H2d(X‚käk, $…(d)) ¨ H2d+2(Y‚käk, $…(d+1)).

We can describe the above decomposition as follows. Start with a class x in H2d(X‚käk, $…(d)),

and write i*x as LYb for a unique b in H2d(Y‚käk, $…(d)). Then a := x - i*b lies in Ker(i*) =

Ev2d(X‚käk, $…(d)), and x = a + i*b is the desired decomposition.

RRRReeeemmmmaaaarrrrkkkk    4444....4444 If we start with an algebraic cohomology class x in AlgH2d(X‚käk, $…(d)), the class

i*x lies in AlgH2d+2(Y‚käk, $…(d+1)), but we do nnnnooootttt know in general that the unique class b in

H2d(Y‚käk, $…(d)) with LYb = i*x is algebraic. In other words, we do not know in general that

the map 

LY : AlgH2d(Y‚käk, $…(d)) ¨ AlgH2d+2(Y‚käk, $…(d+1))

is bijective, a condition we could name A(Y, L, 2d, …) a la [Kl-Alg] or [Kl-SC]. [The interest of

knowing this is that once b is algebraic, then i*b is algebraic, and hence a = x - i*b is algebraic.]

One important case when we do know A(Y, L, 2d, …), albeit for a trivial reason, is when all of

H2d(Y‚käk, $…(d)) is algebraic. For example, a smooth hypersurface or complete intersection (of

any dimension, odd or even) in an ambient space all of whose cohomology is algebraic, such as a

projective space or a Grassmannian or any product of these, will have the property that all of its

cohomology outside the middle dimension is algebraic (use the weak Lefschetz theorem to get the

cohomology strictly below the middle dimension from the ambient space, and then the hard

Lefschetz theorem to get the cohomology strictly above the middle dimension from that strictly

below).

4.5 Let us denote by 

4.5.1 AlgEv2d(X‚käk, $…(d)) fi AlgH2d(X‚käk, $…(d))

the intersection

4.5.2 AlgEv2d(X‚käk, $…(d)) = Ev2d(X‚käk, $…(d)) ¤AlgH2d(X‚käk, $…(d))

inside H2d. [If A(Y, L, 2d, …) holds, e.g., if H2d(Y‚käk, $…(d)) is entirely algebraic, we can also

describe AlgEv2d(X‚käk, $…(d)) as the image of AlgH2d(X‚käk, $…(d)) in Ev2d(X‚käk, $…(d))

under the "vanishing" decomposition. If A(Y, L, 2d, …) is false, this image might be strictly larger

than AlgEv2d(X‚käk, $…(d)).]

4.6 Let us denote by ®d,…,ev(X) the dimension of this subspace:

4.6.1 ®d,…,ev(X/k) := dim$…
 AlgEv2d(X‚käk, $…(d)).

We will refer to ®d,…,ev(X/k) as the …-adic middle vanishing Picard number of X/k.

4.7 Let us denote by ®d,…,an,ev(X/k) the multiplicity of 1 as a zero of the characteristic

polynomial of F on Ev2d(X‚käk, $…(d))), or equivalently the multiplicity of qd as a zero of the
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characteristic polynomial of F on Ev2d(X‚käk, $…)). This analytic vanishing Picard number is

independent of the choice of … invertible in k. [To see this, recall that we have an injective map

4.7.1 i* : H2d(Y‚käk, $…(d)) Ú H2d(X‚käk, $…(d)),

so we have

4.7.2 det(1 - TF | Ev2d(X‚käk, $…(d)))

=det(1 - TF | H2d(X‚käk, $…(d)))/det(1 - TF | H2d(Y‚käk, $…(d))),

and in this last expression, both numerator and denominator are independent of the choice of …

invertible in k. Taking degrees shows that the dimension of Ev2d is independent of … as well.]

4.8 Thus we will write

4.8.1 ®d,an,ev(X/k) := ®d,…,an,ev(X/k),

and we will refer to ®d,an,ev(X/k) as the analytic middle vanishing Picard number of X/k. Then the

Tate Conjecture for H2d in the strong form ®d,…(X/k) = ®d,an(X/k) implies the equality

4.8.2 ®d,…,ev(X/k) = ®d,an,ev(X/k).

Just as above, we have the a priori inequality

4.8.3 ®d,…,ev(X/k) ≤ ®d,an,ev(X/k).

4.9 The space Ev2d(X‚käk, $…(d)) is orthogonally self-dual under the Gal(äk/k)-equivariant

cup product pairing

4.9.1 Ev2d≠Ev2d ¨ H4d(X‚käk, $…(2d)) ¶ $….

Then F (or any element of Gal(äk/k) acting on Ev2d(X‚käk, $…(d))) lies in Oev, the orthogonal

group Aut(Ev2d(X‚käk, $…(d)), cup prod.). 

4.10 Now let us recall some standard facts about orthogonal groups O(N) and special

orthogonal groups SO(N) over fields of odd characteristic. We denote by O-(N) fi O(N) the set of

elements of determinant -1. First of all, if N is odd, then every element in SO(N) has an eigenvalue

1, and every element in O-(N) has an eigenvalue -1. The remaining N-1 eigenvalues can be

grouped into (N-1)/2 pairs of inverses (å, 1/å). If N is even, every element in O-(N) has both 1

and -1 as eigenvalues, and the remaining N-2 eigenvalues can be grouped into (N-2)/2 pairs of

inverses. For even N, the eigenvalues of an element of SO(N) can be grouped into N/2 pairs of

inverses. For later use, let us observe that we can summarize the information about the automatic

occurence of 1 as an eigenvalue independently of the parity of N as follows: If A in O(N) has

det(-A) = -1, then A has an eigenvalue 1. [Here is a mnemonic to rememeber this, based on ideas

which have become widespread in the context of the Birch Swinnerton Dyer conjecture: det(-A) is

the sign in the functional equation of det(1-TA), namely det(1 - T-1A) = T-Ndet(-A)det(1-TA)

and we get forced vanishing of det(1-TA) at T=1 when the sign in the functional equation is odd.]

4.11 Now let us apply these standard facts to middle analytic Picard numbers. Let k be a finite
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field, X and Y as above. Denote by ev2d(X‚käk) the middle vanishing Betti number:

4.11.1 ev2d(X‚käk) := dim Ev2d(X‚käk, $…(d))

= dim H2d(X‚käk, $…(d)) - dim H2d(Y‚käk, $…(d)).

4.12 Suppose first ev2d(X‚käk) is odd. Either F lies in SOev, and has 1 an eigenvalue, whence

®d,an,ev(X/k) ≥ 1, or F lies in O-,ev, so has -1 as an eigenvalue, whence F2 has 1 as eigenvalue,

so over the quadratic extension k2 of k, we have ®d,an,ev(X‚kk2/k2) ≥ 1.

4.13 If ev2d(X‚käk) is even, then we get no conclusion if F lies in SOev, but if F lies in O-,ev,

then F has both 1 and -1 as eigenvalues, and so we get two inequalities

4.13.1 ®d,an,ev(X/k) ≥ 1, ®d,an,v(X‚kk2/k2) ≥ 2.

5555....0000    SSSSmmmmooooooootttthhhh    hhhhyyyyppppeeeerrrrssssuuuurrrrffffaaaacccceeeessss    iiiinnnn    pppprrrroooojjjjeeeeccccttttiiiivvvveeee    ssssppppaaaacccceeee

5.1 Let us take for X a smooth hypersurface of degree D in @n+1. Then X has dimension n,

and evn(X‚käk) is given by 

5.1.1 evn(X‚käk) = (D-1)((D-1)n+1 - (-1)n+1)/D,

cf. [Dw, page 5]. In the case when n=2d is even, this becomes

5.1.2 ev2d(X‚käk) = (D-1)((D-1)2d+1 +1)/D.

The vanishing decomposition is simply

5.1.3 H2d(X‚käk, $…(d)) = Ev2d(X‚käk, $…(d)) · $…Ld.

LLLLeeeemmmmmmmmaaaa    5555....2222 The integers ev2d(X‚käk) and D have opposite parities.

pppprrrrooooooooffff The ratio ((D-1)2d+1 +1)/D is an integer-coefficient polynomial in D with odd constant

term 2d+1. So if D is even, both terms D-1 and the ratio ((D-1)2d+1 +1)/D are odd. If D is odd,

then D-1 is even, and hence ev2d, is even. QED

5.3 Thus the Tate conjecture implies that for any smooth projective hypersurface X/k of even

dimension 2d ≥ 2 and of even degree D over a finite field k, if we pass to the quadratic extension

k2 of k, we always have ®d,…,ev(X‚kk2/k2) ≥ 1. This striking observation was already made by

Shioda nearly twenty years ago, cf. [Sh-Pic, 7.5] and [Sh-Alg, 5.2]. Equivalently, we can look at

the middle Picard number instead of the middle vanishing one, the two being related for

hypersurfaces by

5.3.1 ®d,…(X‚kk2/k2) = 1 + ®d,…,ev(X‚kk2/k2),

as is immediate from the particular shape 5.1.3 of the vanishing decomposition. In terms of the

middle Picard number, the Tate conjecture predicts that we always have ®d,…(X‚kk2/k2) ≥ 2. In

particular, any smooth, even dimensional hypersurface X of even degree X over äk is supposed to

have middle vanishing Picard number at least 1, and middle Picard number at least 2. How can one

exhibit a priori a nonzero algebraic class in Ev2d?
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5.4 The situation over a finite field thus seems to be in striking contrast with that of Noether's

theorem, according to which in the universal family of smooth hypersurfaces in @2d+1 of any

degree D with 2d(D-2) ≥ 4, in any given characteristic, the geometric generic fibre (in the

universal family) has middle Picard number ®d,…,geom = 1. But the two situations are in fact

closely related. In the universal family, the image of π1
geom is Zariski dense in the full orthogonal

group Oev, cf. 6.2 below. For Noether's theorem, one needs only the absolute irreducibility of the

action of the image of π1
geom, not the exact determination of its Zariski closure as Oev, cf. [SGA

7, Exposïe XIX, 1.3 and 1.4]. Our finite field results depend on its exact determination as Oev. The

"paradox" is that although O(odd) is irreducible in its standard representation (the phenomenon

underlying Noether's theorem), every element in O(odd) has 1 or -1 as an eigenvalue (the

phenomenon underlying our finite field predictions in even degree D).

5.5 Terasoma has observed [Ter] that by combining the proof of Noether's theorem with a

clever use of Hilbert irreducibility, one gets the existence of examples over $ of smooth

hypersurfaces in @2d+1 of any given degree D with 2d(D-2) ≥ 4 which over ^ have ®d,…,geom

=1. [We should also mention in passing that Shioda [Shi-Alg] has constructed beautiful explicit

examples over $ of smooth surfaces in @3 of any degree m ≥ 5 prime to 6 which over ^ have

®d,…,geom = 1, but as their degree is odd, these examples are not strictly germane to the present

discussion.] . Therefore it would seem there can be no "universal" construction of the "extra"

algebraic cycle which is to exist in even degree over the algebraic closure of a finite field (indeed, it

is to exist already over at worst the quadratic extension over which we begin). The situation is

perhaps reminiscent of the situation regarding the self-product E≠E of an elliptic curve with itself.

Over the algebraic closure of a finite field, ® is either 4 (if E is ordinary) or 6 (if E is

supersingular), whereas "in general" ® for E≠E is only 3. What happens is that ® is 2 + rank of

End(E), and over a field which is not algebraic over a finite field, "most" elliptic curves have

End(E) = #. Over the algebraic closure of a finite field, all but finitely many curves are ordinary,

and for these it is the Frobenius which provides the "extra" element of End(E). 

6666....0000    FFFFaaaammmmiiiilllliiiieeeessss    ooooffff    ssssmmmmooooooootttthhhh    hhhhyyyyppppeeeerrrrssssuuuurrrrffffaaaacccceeeessss    iiiinnnn    pppprrrroooojjjjeeeeccccttttiiiivvvveeee    ssssppppaaaacccceeee

6.1 Let us fix an even dimension 2d ≥ 2, and a degree D ≥ 3. The universal family of smooth

hypersurfaces of degree D in @2d+1 is parameterized by the open set Hyp(2d, D) in the (giant)

projective space (with homogeneous coordinates the coefficients) of all homogeneous forms of

degree D in 2d+2 variables where the discriminant is invertible, cf. [Ka-Sar, 11.4.4], where

Hyp(2d, D) is denoted Ó2d, D. If we invert a prime …, then over Hyp(2d, D)[1/…] the spaces

Ev2d(X‚käk, $…(d)) attached to the various hypersurfaces fit together to form a lisse $…-sheaf

Ev2d. The orthogonal autodualities on each Ev2d(X‚käk, $…(d)) fit together in an orthogonal

autoduality 
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6.1.1 Ev2d ≠ Ev2d ¨ $…

of lisse sheaves on Hyp(2d, D)[1/…], and thus the corresponding monodromy representation

6.1.2 π1(Hyp(2d, D)[1/…], base point) ¨ Aut(Ev2d, cup product)

lands in the orthogonal group Oev:

6.1.3 π1(Hyp(2d, D)[1/…], base point) ¨ Oev($…).

TTTThhhheeeeoooorrrreeeemmmm    6666....2222 ([De-Weil II, 4.4.1], cf. also [Ka-Sar, 11.4.9]) Fix 2d ≥ 2 and D ≥ 3 as above. If 2d

= 2, suppose further that D ≥ 4. Fix a prime number p ± …, and consider the restriction of the lisse

$…-sheaf Ev2d to the spaces Hyp(2d, D)‚Ép and Hyp(2d, D)‚äÉp. Under the monodromy

representation, the group

π1
arith := π1(Hyp(2d, D)‚Ép, any base point ≈)

and its subgroup

π1
geom := π1(Hyp(2d, D)‚äÉp, same base point ≈)

both land in Oev($…). The Zariski closure Ggeom of the image of π1
geom in Oev($…) is the entire

group Oev.

6.3 We now use this together with Deligne's equidistribution theorem [De-Weil II, 3..5.3] in

the form given in [Ka-GKM, 3.6] and in [Ka-Sar, 9.2.6, in part 5) of whose statement "g" should

be "Ú"]. We denote

6.3.1 N := rank of Ev2d = dim Ev2d(X‚käk, $…(d))

for X any particular smooth hypersurface in @2d+1 of degree D. We denote by O(N)% the

classical compact orthogonal group of size N: intrinsically, O(N)% is a maximal compact subgroup

of the complex orthogonal group O(N)(^). A key fact is that on O(N)% the function "reversed

characteristic polynomial", A ÿ det(1 - TA), separates conjugacy classes. 

6.4 Given X/k a smooth hypersurface in @2d+1 of degree D over a finite field k, we now recall

the construction of its ("vanishing") Frobenius conjugacy class ø(X/k) in the classical group

O(N)%. Pick a prime … invertible in k, and form the $…-coefficient polynomial

6.4.1 det(1 - TFk | Ev2d(X‚käk, $…(d))).

This polynomial has $-coefficients, independent of the choice of … invertible in k, all of its

complex roots lie on the unit circle, and viewed …-adically it is the reversed characteristic

polynomial of an element in Oev($…). As explained in [Ka-Sar, 11.4.1], it results from [De-Weil

I] that det(1 - TFk | Ev2d(X‚käk, $…(d))) is the reversed characteristic polynomial det(1-Tø(X/k))

of a unique conjugacy class ø(X/k) in the classical group O(N)%. 

6.5 According to Deligne's equidistribution theorem, for a large finite field k, as X/k runs over
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all the smooth hypersurfaces in @2d+1 of degree D over k, the conjugacy classes are approximately

equidistributed in the space O(N)%
ù of conjugacy classes of O(N)% for Haar measure. More

precisely, for any ^-valued continuous central function A ÿ f(A) on O(N)%, and for dA the total

mass one Haar measure on O(N)%, we have the limit formula

6.5.1 —O(N)% f(A)dA = limùk¨‘ (1/ùHyp(2d, D)(k))‡X/k in Hyp(2d, D)(k) f(ø(X/k)).

6.6 There is a standard extension of this result, to more general functions f, cf. [Ka-Sar,

AD11.4], which will be useful for us below. Let Z be any closed subset of O(N)% of Haar

measure zero which is stable by O(N)%-conjugation, and let f be a bounded, ^-valued central

function on O(N)% whose restriction to O(N)% - Z is continuous. For such an f the limit formula

6.5.1 remains valid.

6.7 Let us explain the set Z we have in mind. Suppose first that N is odd. Then for A in O(N),

det(A) is an eigenvalue of A, and we can form the "reduced" characteristic polynomial

6.7.1 Rdet(1-TA) := det(1-TA)/(1-Tdet(A)).

If N is even, then for A in O-(N) both _1 are eigenvalues of A, and we define the "reduced"

characteristic polynomial to be

6.7.2 Rdet(1-TA) := det(1-TA)/(1-T2).

For N even and A in SO(N), we define the "reduced" characteristic polynomial to be

6.7.3 Rdet(1-TA) := det(1-TA).

6.8 Whatever the parity of N, A ÿ Rdet(1-TA) is a continuous central function on O(N) with

values in the space of real polynomials of degree at most N. The idea is that the zeroes of Rdet(1-

TA) are those zeroes of det(1-TA) that are in addition to the ones automatically imposed by A's

being in O(N) and having given determinant.

6.9 For any complex number å, we denote by Z(å) fi O(N)% the set 

Z(å) := {A in O(N)% with Rdet(1-åA) = 0}.

This set is empty unless å lies on the unit circle. For any å, is it a closed subset of O(N)%, stable

by O(N)%-conjugation, and of Haar measure zero. For given N, the roots of unity Ω in ^ which

satisfy an equation over $ of degree at most N form a finite set, say µ(deg≤N). We will take

6.9.1 Z := ⁄Ω in µ(deg≤N) Z(Ω) fi O(N)%.

LLLLeeeemmmmmmmmaaaa    6666....11110000 Given a finite field k and a smooth hypersurface X/k in @2d+1 of degree D, consider

the conjugacy class ø(X/k). If any root of unity ∫ is a zero of the polynomial Rdet(1-Tø(X/k)), then

∫ lies in µ(deg≤N), and ø(X/k) lies in Z.

pppprrrrooooooooffff The polynomial det(1-Tø(X/k))    has $-coefficients and degree N, and hence the polynomial

Rdet(1-Tø(X/k)) has $-coefficients and degree at most N. QED

TTTThhhheeeeoooorrrreeeemmmm    6666....11111111 Fix an even integer 2d ≥ 2, and an integer D ≥ 3. If d=1, assume D ≥ 4. Put N :=
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ev(2d, D) = (D-1)((D-1)2d+1 +1)/D. Given a finite field k, a prime number … invertible in k, and

a smooth hypersurface X/k in @2d+1 of degree D, denote by ø(X/k) the conjugacy class in the

classical group O(N)% given by the action of F on Ev2d(X‚käk, $…(d)). 

1) Denote by Hyp(2d, D)(k,+) and Hyp(2d, D)(k,-) the subsets of Hyp(2d, D)(k) consisting of

those X/k for which det(-ø(X/k)), the sign in the functional equation, has the indicated sign. The

fraction of those X/k in Hyp(2d, D)(k) which lie in Hyp(2d, D)(k,+) (respectively in Hyp(2d,

D)(k,-)) tends to 1/2 as ùk ¨ ‘.

2) Suppose N is odd, or equivalently that D is even. 

2a)The fraction of those X/k in Hyp(2d, D)(k,-) whose ø(X/k) has 1 as an eigenvalue of

multiplicity one and has no other eigenvalue which is a root of unity, tends to 1 as ùk ¨ ‘. 

2b)The fraction of those X/k in Hyp(2d, D)(k,+) whose ø(X/k) has -1 as an eigenvalue of

multiplicity one and has no other eigenvalue which is a root of unity, tends to 1 as ùk ¨ ‘. 

3) Suppose that N is even, or equivalently that D is odd. 

3a) The fraction of those X/k in Hyp(2d, D)(k,-) whose ø(X/k) has both _1 as eigenvalues of

multiplicity one and has no other eigenvalue which is a root of unity, tends to 1 as ùk ¨ ‘. 

3b) The fraction of those X/k in Hyp(2d, D)(k,+) whose ø(X/k) has no eigenvalues which are

roots of unity, tends to 1 as ùk ¨ ‘. 

pppprrrrooooooooffff Assertion 1) is immediate from Chebotarev and the fact that the _1-valued character of

π1(Hyp(2d, D)‚Ép) given by det(Ev2d) is nontrivial on π1
geom := π1(Hyp(2d, D)‚äÉp). This

nontriviality is itself immediate from the fact that π1 lands in O(N) and the deep fact that the image

of π1
geom is Zariski dense in O(N)). Once we have 1), the rest of the assertions follow by

applying Deligne's equidistribution theorem to the following functions on O(N)%, all of which are

bounded, central, and continuous on O(N)% - Z:

for 2a) (char. fct. of SO(N)%)≠(char. fct. of O(N)% - Z).

for 2b) (char. fct. of O-(N)%)≠(char. fct. of O(N)% - Z).

for 3a) (char. fct. of O-(N)%)≠(char. fct. of O(N)% - Z).

for 3b) (char. fct. of SO(N)%)≠(char. fct. of O(N)% - Z). QED

CCCCoooorrrroooollllllllaaaarrrryyyy    6666....11112222 Hypotheses and notations as in Theorem 6.11, recall (from 4.7 and 4.8.1) the

definition

6.12.1 ®d,an,ev(X/k) := the multiplicity of 1 as eigenvalue of F on Ev2d(X‚käk, $…(d)),

and define

6.12.2 ®d,an,ev,quad(X/k) := the total of the multiplicities of _1 as eigenvalues of F on

Ev2d(X‚käk, $…(d)),
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6.12.3 ®d,an,ev,geom(X/k) := the total of the multiplicities of all roots of unity as

eigenvalues of F on Ev2d(X‚käk, $…(d)).

Recall (from 4.6.1) the definition

6.12.4 ®d,…,ev(X/k) := dimension of AlgEv2d(X‚käk, $…(d)),

and define

6.12.5 ®d,…,ev,quad(X/k) = ®d,…,ev(X‚kk2/k2),

6.12.6 ®d,…,ev,geom(X/k) = ®d,…,ev(X‚käk/äk).

The limit as ùk ¨ ‘ of the averages over Hyp(2d, D)(k) and Hyp(2d, D)(k, _) of the non-

negative integer-valued functions ®d,an,ev(X/k), ®d,an,prim,ev(X/k), and ®d,an,ev,geom(X/k) are

given by the following tables:

6.12.7

NNNN    oooodddddddd Hyp(2d, D)(k)  Hyp(2d, D)(k, -)  Hyp(2d, D)(k, +)

®d,an,ev(X/k) 1/2 1 0

®d,an,ev,quad(X/k) 1 1 1

®d,an,ev,geom(X/k) 1 1 1

6.12.8

NNNN    eeeevvvveeeennnn Hyp(2d, D)(k)  Hyp(2d, D)(k, -)  Hyp(2d, D)(k, +)

®d,an,ev(X/k) 1/2 1 0

®d,an,ev,quad(X/k) 1 2 0

®d,an,ev,geom(X/k) 1 2 0

pppprrrrooooooooffff By part 1) of Theorem 6.11, the first column of the tables is the average of the second and

third. To compute the second and third columns, we argue as follows. Outside the points of

Hyp(2d, D)(k, _) whose ø(X/k)'s lie in the closed set Z of measure zero, the functions being

averaged are constant, with the values given in the table. The functions being averaged are all

bounded (by N), so their values on points in Z does not matter for the average, because the fraction

of points of Hyp(2d, D)(k, _) whose ø(X/k)'s lie in Z tends to zero as ùk ¨ ‘. QED

6.13 If we combine these results on analytic Picard numbers together with the trivial inequalities
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(cf. 4.8.3)

6.13.1 0 ≤ ®d,…,ev(X/k) ≤ ®d,an,ev(X/k),

6.13.2 0 ≤ ®d,…,ev,geom(X/k) ≤ ®d,an,ev,geom(X/k),

we find the following corollary of Theorem 6.11.

CCCCoooorrrroooollllllllaaaarrrryyyy    6666....11114444 Hypotheses and notations as in Theorem 6.11, we have the following unconditional

results about actual Picard numbers.

1) The fraction of X/k in Hyp(2d, D)(k, +) with ®d,…,ev(X/k) = 0 tends to 1 as ùk ¨ ‘. 

1a) If N is even, the fraction of X/k in Hyp(2d, D)(k, +) with ®d,…,ev,geom(X/k) = 0 tends to 1 as

ùk ¨ ‘. 

1b) If N is odd, the fraction of X/k in Hyp(2d, D)(k, +) with ®d,…,ev,quad(X/k) ≤ 1 tends to 1 as

ùk ¨ ‘. 

1c) If N is odd, the fraction of X/k in Hyp(2d, D)(k, +) with ®d,…,ev,geom(X/k) ≤ 1 tends to 1 as

ùk ¨ ‘. 

2) The fraction of X/k in Hyp(2d, D)(k, -) with ®d,…,ev(X/k) ≤ 1 tends to 1 as ùk ¨ ‘. 

2a) If N is odd, the fraction of X/k in Hyp(2d, D)(k, -) with ®d,…,ev,geom(X/k) ≤ 1 tends to 1 as

ùk ¨ ‘. 

2b) If N is even, the fraction of X/k in Hyp(2d, D)(k, -) with ®d,…,ev,quad(X/k) ≤ 2 tends to 1 as

ùk ¨ ‘. 

2c) If N is even, the fraction of X/k in Hyp(2d, D)(k, -) with ®d,…,ev,geom(X/k) ≤ 2 tends to 1 as

ùk ¨ ‘. 

QQQQuuuueeeessssttttiiiioooonnnn    6666....11115555 Fix an even integer 2d ≥ 2 and an odd integer D, with D ≥ 5 if 2d = 2, and D ≥ 3

otherwise. According to part 1a), if we take a large finite field k, then at least 49 percent the smooth

hypersurfaces X/k of degree D in @2d+1 have ®d,…,ev,geom(X/k) = 0. Shioda has constructed

explicit such examples for degree D prime to 6(2d+1) over every prime field Ép with p • 1 mod

(D-1)2d+1 + 1. Are there examples of every predicted odd degree D and even dimension 2d over

every prime field? Is there some a priori reason this cannot be true?

7777....0000    FFFFaaaammmmiiiilllliiiieeeessss    ooooffff    ssssmmmmooooooootttthhhh    hhhhyyyyppppeeeerrrrssssuuuurrrrffffaaaacccceeeessss    iiiinnnn    pppprrrroooodddduuuuccccttttssss    ooooffff    pppprrrroooojjjjeeeeccccttttiiiivvvveeee    ssssppppaaaacccceeeessss

7.1 Let us now fix an integer r ≥ 2, and two r-tuples of positive integers

7.1.1 ˆ = (n1, n2, ..., nr) and Î = (D1, D2, ..., Dr).

We take as ambient variety Y the product of projective spaces

7.1.2 Y := °i=1 to r @
ni

, 

on which we have the very ample line bundle

7.1.3 Ò := $i=1 to r Ø@ni(Di).

7.2 We suppose that ‡ni is odd, say
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7.2.1 ‡ni = 2d+1.

7.3 Given a finite field k, a prime …  invertible in k, and a smooth, geometrically connected X/k

which is defined inside Y‚#k by the vanishing of a multi-homogeneous form of multi-degree

(D1, D2, ..., Dr), i.e., by the vanishing of a global section of Ò, we have its middle "vanishing"

cohomology group Ev2d(X‚käk, $…(d)). 

7.4 The universal family of smooth hypersurfaces of multi-degree (D1, D2, ..., Dr) in Y :=

°i=1 to r @
ni

,  is parameterized by the open set

7.4.1 Hyp(2d, ˆ, Î) := Hyp(2d, (n1, n2, ..., nr), (D1, D2, ..., Dr))

in the (giant) projective space (with homogeneous coordinates the coefficients) of all multi-

homogeneous forms of multi-degree (D1, D2, ..., Dr) where the discriminant (:= equation of the

dual variety) is invertible. As soon as we invert a prime …, then on the parameter space Hyp(2d, ˆ,

Î)[1/…] the groups Ev2d(X‚käk, $…(d)) attached to the various hypersurfaces fit together to form a

lisse $…-sheaf Ev2d. The orthogonal autodualities on each Ev2d(X‚käk, $…(d)) fit together in an

orthogonal autoduality 

7.4.2 Ev2d ≠ Ev2d ¨ $…

of lisse sheaves on Hyp(2d, ˆ, Î)[1/…], and thus the corresponding monodromy representation

7.4.3 π1(Hyp(2d, ˆ, Î)[1/…], base point) ¨ Aut(Ev2d, cup prod.)

lands in the orthogonal group Oev:

7.4.4 π1(Hyp(2d, ˆ, Î)[1/…], base point) ¨ Oev($…).

TTTThhhheeeeoooorrrreeeemmmm    7777....5555 ([De-Weil II, 4.4.1]) Fix an even integer 2d ≥ 2, an integer r ≥ 2, and r-tuples of

positive integers

(n1, n2, ..., nr) and (D1, D2, ..., Dr),

with

‡ni = 2d+1.

Suppose that for each i = 1 to r, we have

Di ≥ 1 + ni.

Fix an odd prime number p ± …, and consider the restriction of the lisse $…-sheaf Ev2d to Hyp(2d,

ˆ, Î)‚Ép and Hyp(2d, ˆ, Î)‚äÉp. Under the monodromy representation, the group

π1
arith := π1(Hyp(2d, ˆ, Î)‚Ép, any base point ≈)

and its subgroup

π1
geom := π1(Hyp(2d, ˆ, Î)‚äÉp, same base point ≈)

both land in Oev($…). The Zariski closure Ggeom of the image of π1
geom in Oev($…) is the entire
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group Oev.

pppprrrrooooooooffff We first prove that over any algebraically closed field k of odd characteristic, there exist

Lefschetz pencils on Y := °i=1 to r @
ni

 of hypersurface sections of multidegree (D1, D2, ..., Dr),

provided that for all i we have Di ≥ 2. [This statement is presumably true in characteristic two as

well, by some adaptation to the multihomogeneous case of Deligne's argument as given in [SGA 7,

Expose XVII, section 4], but we will not pursue this question here.]

Because we are in odd characteristic, it suffices,by [SGA 7, XVII, 3.7], to show that given

any k-point x0 of Y, there is a hypersurface of multidegree (D1, D2, ..., Dr) in Y/k which has an

ordinary double point at x0. By a suitable choice of coordinates, we may assume the point x0 in Y

:= °i=1 to r @
ni

 is the product of the points with homogeneous coordininates Xi,j, j=0 to ni, in the

the i'th factor given by (1, 0,..., 0). Take affine coordinates xi,j := Xi,j/Xi,0 for j =1 to ni on the i'th

factor. Then we want to write down an equation in the xi,j which has an ordinary double point at

the origin, and each monomial of which has, for each i, total degree at most Di in the xi,* variables.

Because for all i we have Di ≥ 2, we may take the equation

‡i,j (xi,j)
2 = 0.

Once we know Lefschetz pencils exist, we argue as follows. If we restrict the lisse sheaf

Ev2d to a general line in Hyp(2d, ˆ, Î)‚äÉp, we do not change the image of π1
geom. Thus we are

reduced to showing that a sufficiently general Lefschetz pencil has geometric monodromy Zariski

dense in Oev. By Deligne [De-Weil II, 4.4.1], for Lefschetz pencils with even fibre dimension,

either the geometric monodromy Zariski dense in Oev, or the geometric monodromy is a finite and

absolutely irreducible subgroup of Oeven. 

So what we must rule out is that on the entire parameter space Hyp(2d, ˆ, Î)‚äÉp, the

geometric monodromy of Ev2d is a finite and absolutely irreducible subgroup, say G, of Oeven.

Suppose it were. Since π1
geom is normal in π1

arith, each Frobenius FE,x attached to a point x of

Hyp(2d, ˆ, Î)‚Ép with values in a finite extension E of Ép normalizes G. But G is finite, so

Aut(G) is finite, so a fixed power of FE,x commutes with G, hence is scalar. Since the only scalars

in Oev are _1, a fixed power of every Frobenius is 1. Therefore for every finite field k of

characteristic p, and every smooth hypersurface X/k in Y/k of multidegree (D1, D2, ..., Dr), every

eigenvalue of F on Ev2d(X‚käk, $…(d)) is a root of unity. Now all the cohomology of the ambient

Y is algebraic, so we find

1) every eigenvalue of F on H2d(X‚käk, $…(d)) is a root of unity,

2) all the cohomology of X‚käk outside its middle dimension is algebraic.
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Therefore the reduction mod p of the zeta function of every X/k as above is 1/(1-T):

Zeta(X/k, T) • 1/(1-T) mod p#[[T]].

 On the other hand, by the congruence formula for the zeta function [SGA 7 Expose XXII, 3.1],

we have

Zeta(X/k, T) • °i=0to 2d det(1-TF|Hi(X, ØX)(-1)i+1
,

valid for aaaannnnyyyy proper X/k of dimension at most 2d. 

Now for any hypersurface in Y/k of any multi-degree, we have

H0(X, ØX) = k, F acts as the identity,

Hi(X, ØX) = 0 for 0 < i < 2d 

Thus we find that, if we have finite monodromy, then

det(1-TF|H2d(X, ØX)) = 1 in k[T],

for every ssssmmmmooooooootttthhhh hypersurface X/k in Y/k of multidegree (D1, D2, ..., Dr). This means precisely

that F on H2d(X, ØX) is nilpotent. If we denote by Fabs the p-th power map, it induces a p-linear

endomorphism of H2d(X, ØX), whose deg(k/Ép)'th power is F. Thus finite monodromy implies

that for every ssssmmmmooooooootttthhhh hypersurface X/k in Y/k of multidegree (D1, D2, ..., Dr), we have

Fabs on H2d(X, ØX) is nilpotent.

Thus if we denote by ga the classical "arithmetic genus" of X,

ga := dimH2d(X, ØX) = °i=1 to r dimH
ni

(@
ni

, Ø(-Di)),

we find that

(Fabs)ga = 0 on H2d(X, ØX).

From this it follows that for every hypersurface X/k in Y/k of multidegree (D1, D2, ..., Dr),

smooth or not, we have

(Fabs)ga = 0 on H2d(X, ØX).

[The point is that if we denote by f : Ù ¨ @giant the universal family of all hypersurfaces in Y of

given multidegree (D1, D2, ..., Dr), the coherent higher direct images Rif*ØÙ on @giant are locally

free Ø@ modules of formation compatible with arbitrary change of base, which vanish for i not 0 or

2d, and which have f*ØÙ = Ø@. Since @giant‚#Ép is reduced and the open set Hyp(2d, ˆ,

Î)‚Ép of @giant‚#Ép is dense, we get the vanishing of (Fabs)ga first on R2df*ØÙ | Hyp(2d, ˆ,

Î)‚Ép, then on R2df*ØÙ on all of @giant, then on the individual fibres H2d(X, ØX).]

Once we have this nilpotence of Fabs, we return to the congruence formula to infer that, if

we have finite monodromy, then we have the congruence

ùX(k) • 1 mod p
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for every finite extension k of Ép and for every hypersurface X/k in Y/k of multidegree (D1, D2,

..., Dr).

It is this last statement which we will show to be false as soon as each Di ≥ 1 + ni for each

i = 1 to r. Indeed, we will exhibit an X/k for which ùX(k) = 0. For this, we simply take an equation

which is the product over i =1 to r of forms Fi over k, with Fi of degree Di in the i'th set of

variables, say °i Fi(Xi,0, Xi,1, ..., Xi,ni
), with the property that Fi has no nontrivial zeroes in

(k)1+ni. The easiest way to do this is to take the extension field E/k of degree Di, pick a set of 1 +

ni elements e0, e1, ..., eni
 in E which are linearly independent over k ( possible because 1 + ni ≤

Di), and to take Fi to be the norm form

Fi(Xi,0, Xi,1, ..., Xi,ni
) := NormE/k(‡j=0 to ni

 ejXi,j). QED

Once we have this result, we get exactly the same results, in odd characteristic, that we had

in the case of hypersurfaces in a single projective space. We state them briefly.

TTTThhhheeeeoooorrrreeeemmmm    7777....6666 Fix an even integer 2d ≥ 2, an integer r ≥ 2, and r-tuples of positive integers

(n1, n2, ..., nr) and (D1, D2, ..., Dr),

with

‡ni = 2d+1.

Suppose that for each i = 1 to r, we have

Di ≥ 1 + ni.

Denote by N the common middle "vanishing" Betti number 

N := dim Ev2d(X‚käk, $…(d)), … invertible in k,

of smooth hypersurfaces over fields X/k in °i=1 to r @
ni

 of given multidegree (D1, D2, ..., Dr).

Given a finite field k, denote by ø(X/k) the conjugacy class in the classical group O(N)% given by

the action of F on Ev2d(X‚käk, $…(d)). Then the conclusions of Theorem 6.11, and of Corollaries

6.12 and 6.14 remain valid, provided that in their statements we systematically replace "Hyp(2d,

D)" by "Hyp(2d, ˆ, Î)[1/2]", and restrict the variable finite field k to run only over those of odd

characteristic.

8888....0000    HHHHyyyyppppeeeerrrrssssuuuurrrrffffaaaacccceeeessss    iiiinnnn    @@@@1111≠≠≠≠@@@@nnnn    aaaassss    ffffaaaammmmiiiilllliiiieeeessss    oooovvvveeeerrrr    @@@@1111

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    8888....1111 In @1≠@n, take a smooth hypersurface X of any bidegree (d, D) over a field k. The

first projection pr1 : X ¨ @1 is smooth over the generic point of @1, provided char(k) = 0 or

char(k) > Max(D, (D-1)n).
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pppprrrrooooooooffff The generic fibre X˙ of this projection is a regular scheme over the function field K := k(@1),

and at the same time it is a degree D hypersurface in @n, defined over K. If K has characteristic

zero, the notions "smooth" and "regular" agree for schemes of finite type over K. If char(K) = p >

0, we apply the following elementary lemma.

LLLLeeeemmmmmmmmaaaa    8888....2222 Over an infinite field K, suppose X fi @n is a hypersurface of degree D, say of

equation F(Xi's)=0, which is a regular scheme. If char(K) = p > Max(D, (D-1)n), then X/K is

smooth.

pppprrrrooooooooffff For any separable algebraic extension L of K, X‚KL remains a regular scheme. So it

suffices to treat the case when the field K is separably closed. Consider Sing(X/K), the subscheme

of @n defined by the vanishing of F and all the ∆F/∆Xi. Since p > D, Sing(X/K) is defined by the

vanishing just of all the ∆F/∆Xi, which all have the same degree D-1. Because X is regular,

Sing(X/K) has no K-rational points. Let us temporarily admit the truth of the following elementary

but useful sublemma.

SSSSuuuubbbbLLLLeeeemmmmmmmmaaaa    8888....3333 Over an infinite field K, suppose we are given a closed subscheme S in @n which

is defined by the vanishing of some collection of homogeneous forms, all of the same degree d.

Either the scheme S is empty, or there exists a field extension L/K of degree at most dn (in fact, of

degree at most dn-dim(S)) such that S(L) is nonempty. 

8.4 We apply the sublemma to S = Sing(X/K), which is defined in @n by the vanishing of

forms of degree D-1. Then either S is empty, in which case X/K is smooth, or S(L) is nonempty

for some field extension of K of degree at most (D-1)n. But p > (D-1)n, so L/K is separable, and

hence, K being separably closed, L = K, and S(K) is nonempty, which contradicts the regularity of

X. QED modulo the sublemma.

pppprrrrooooooooffff    ooooffff    SSSSuuuubbbblllleeeemmmmmmmmaaaa    8888....3333 If S is empty, there is nothing to prove. If S is nonempty, denote by ∂ ≥ 0

its dimension: ∂ := dim(S). Because the field K is infinite, there exists a K-rational linear subspace

H ¶ @n-∂ of codimension ∂ in @n whose scheme-theoretic intersection with S is finite over K.

Replacing S by H¤S, which is defined in H by the vanishing of forms of degree d, we reduce to

treating universally the case in which S/K is finite. 

In this case, we argue as follows. S is defined in @n by the vanishing of some forms Fi of

degree d, so by finitely many, say F1, F2, ..., Fr. Because the field K is infinite, and S has

dimension zero, there exist n sufficiently general K-linear combinations of the Fi's, say G1, ..., Gn,

such that (G1, ..., Gn) defines a complete intersection in @n, call it Z, necessarily of dimension zero

(cf. [Eis-St] for a discussion of how to find such linear combinations Gi effectively). Then Sred fi

S fi Z, and Z/K is finite of degree dn. Therefore Sred/K is finite of degree at most dn. But Sred is

then a disjoint union of spectra of fields, Sred = ‹Spec(Li), with
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dn ≥ deg(Sred/K) = ‡deg(Li/K).

Thus Sred and hence S itself, have points with values in fields (namely the Li) of degree at most dn

over K.  QED

8.5 We now explore the situation in arbitrary characteristic. 

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    8888....6666 Fix an integer n ≥ 1 and a bidegree (d, D), both d, D ≥ 1. There exists an open set

SGFHyp(n, (1,n), (d, D)) fi Hyp(n, (1,n), (d, D))

with the following property: for any field k and any k-valued point h in Hyp(n, (1,n), (d, D))(k),

corresponding to a smooth hypersurface X/k of bidegree (d, D) in @1≠@n, h lies in SGFHyp(n,

(1,n), (d, D)) if and only if the first projection 

pr1 : X ¨ @1 

has smooth generic fibre (SGF) over @1.

pppprrrrooooooooffff Write Ó for Hyp(n, (1,n), (d, D)), and consider the universal smooth hypersurface Funiv= 0

in Ó≠@1≠@n of the given bidegree, say Ù/Ó≠@1. Denote by Sing(Ù/Ó≠@1) its singular locus,

defined in Ó≠@1≠@n by the vanishing of Funiv and its partial derivatives with respect to the

homogeneous coordinates of @n. Then Sing(Ù/Ó≠@1) is proper over Ó≠@1, so its image in

Ó≠@1 is closed. Denote by S fi Ó≠@1 the reduced closed subscheme which is the image of

Sing(Ù/Ó≠@1) with its reduced structure. Then a k-valued point h in Ó(k) lies in SGFÓ(k) if and

only if S¤(h≠@1), the closed subscheme of @1/k over which pr1 : X ¨ @1 has singular fibres, is

finite. So our result is a special case of the following lemma (itself a special case of [EGA IV, Part

3, 13.1.5]).

LLLLeeeemmmmmmmmaaaa    8888....7777 Let H be scheme, and S a closed subscheme of H≠@1. There exists an open set U fi H

with the following property: for any field k, a point h in H(k) lies in U(k) if and only if the

intersection S¤(h≠@1) in @1/k is finite.

pppprrrrooooooooffff Pick homogeneous coordinates X, Y in @1. Fix a field k, and a k-valued point h in H(k).

Because S¤(h≠@1) in @1/k is closed, it is either finite or it is all of @1/k. It is finite if and only if it

is defined in @1/k by the vanishing of some nonzero homogeneous form G(X,Y) over k. Given

any nonzero form G over k, we claim there is a homogeneous form K(X,Y) with # coefficients

having no common factor (i.e., K is primitive over #) such that over k, G and K have no common

zero. To see this, we use the fact that over the prime field k0 of k (i.e., k0 is either $ or Ép), there

are irreducible polynomials km(x) in one variable of every degree m ≥ 1. Take for each m ≥ 1 a

primitive Km(X, Y) over # of degree m whose image over k0 is k0
≠-proportional to

Ymkm(X/Y). Then the Km for two distinct m have no common zero. Therefore G can have a

common zero with Km for at most degree(G) distinct values of m. 
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So either S¤(h≠@1) is finite, in which case there exists a primitive form K(X, Y) over #

such that S¤(h≠@1)¤(K=0) is empty, or S¤(h≠@1) is @1/k, in which case S¤(h≠@1)¤(K=0) is

nonempty for every primitive K. 

Now for each #-primitive form K, consider the closed subscheme S¤(K=0) in H≠@1,

which is automatically pppprrrrooooppppeeeerrrr over H. The complement in H of its image is therefore an ooooppppeeeennnn set

UK in H. A k-valued point of UK is precisely a point h in H(k) for which S¤(h≠@1)¤(K=0) is

empty. Therefore the open set of H given by

U := ⁄#-primitive forms K UK

does the job. QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    8888....8888 The open set 

SGFHyp(n, (1,n), (d, D)) fi Hyp(n, (1,n), (d, D)) 

has non-void intersection with every fibre of Hyp(n, (1,n), (d, D)) over Spec(#), i.e., the open set

SGFHyp(n, (1,n), (d, D))‚Ép fi Hyp(n, (1,n), (d, D))‚Ép

is nonempty for every prime p.

pppprrrrooooooooffff Given p, we must show there exists a smooth X/k over some field k of characteristic p,

whose generic fibre over @1 is smooth. If d=1, then X/k is of bidegree (1, D), which means

precisely that X/k is a pencil of hypersurface sections of degree D in @n. Since Lefschetz pencils of

hypersurfaces in @n of any degree D exist (trivially for D=1, when any pencil is Lefschetz, by

[SGA 7, Expose XVII, 2.5.1] for D ≥ 2]), we have only to take X to be a Lefschetz pencil in this

case. Once we have an X/k of bidegree (1, D) which is a Lefschetz pencil, we take a map f: @1 ¨

@1 of degree d which is finite etale over each point of the target @1 over which our Lefschetz pencil

has a singular fibre. 

Then the fibre product of pr1 : X ¨ @1 with f: @1 ¨ @1 is the desired smooth

hypersurface of bidegree (d, D). In terms of homogeneous coordinates (¬, µ) on @1 and (Xi) on

@n, the original Lefschetz pencil has an equation of the form 

¬F(X) = µG(X), 

the map f has the form 

f : (¬, µ) ÿ (P(¬, µ), Q(¬, µ)),

with P and Q forms of degree d, and the fibre product has equation

 P(¬, µ)F(X) = Q(¬, µ)G(X). QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    8888....9999 Fix integers n ≥ 2, d ≥ 1, D ≥ 2. 

1) In the projective space P := AllHyp(n, (1,n), (d, D)) of all (not necessarily smooth)

hypersurfaces in @1≠@n of bidegree (d, D), there is an open set AFH fi P with the following

property: for any field k, a k-valued point p of P lies in AFH if and only if the corresponding
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hypersurface X/k of bidegree (d, D) in @1≠@n, viewed as fibred over @1 by pr1, has all its fibres

hypersurfaces ("AFH") in @n.

2) In the open set AFH of P, there is an open set AFGI with the following property: for any field

k, a k-valued point p of AFH lies in AFGI if and only if the corresponding hypersurface X/k of

bidegree (d, D) in @1≠@n, viewed as fibred over @1 by pr1, has all its fibres geometrically

irreducible ("AFGI").

pppprrrrooooooooffff 1) A hypersurface X in @1≠@n of bidegree (d, D) is defined by the vanishing of a

bihomogeneous form F of bidegree (d, D) on @1≠@n , i.e., by the vanishing of a nonzero global

section F of Ø@1(d)$Ø@n(D). When we view X as fibred over @1, the fibre over a point å in @1 is

the zero locus of the restriction of F to å≠@n. This fibre fails to be a hypersurface if and only it the

the restriction of F to å≠@d is identically zero, and this in turn happens if and only if we can write

F as LG, where L is the linear form on @1 whose vanishing defines å, and where G is some

bihomogeneous form on @1≠@n of bidegree (d-1, D). So if we denote by Pd-1,D the projective

space of all bihomogeneous forms on @1≠@n of bidegree (d-1, D), then the points in P which fail

to be AFH are the image in P of the multiplication map

(@1)£ ≠ Pd-1,D ¨ P

(L, G) ÿ LG.

This map is proper, so its image is closed. Its complement is the desired opens set AFH in P.

2) View AFH as the space of degree d maps from @1 to the projective space T := AllHyp(n, D) of

all degree D hypersurfaces in @n. In T, the geometrically reducible hypersurfaces form a closed set

Red fi T, namely Red is the union of the images of the (necessarily proper) "multiplication of

homogeneous forms" maps

AllHyp(n, A)≠AllHyp(n, D-A) ¨ AllHyp(n, D).

for A =1 to D-1. 

From the interpretation of AFH as the space of degree d maps of @1to T, we have a

tautological map † : AFH≠@1 ¨ AllHyp(n, D). We denote by Z fi AFH≠@1 the closed subset †-

1(Red). Thus, for any field k, a k-valued point (p, x) in AFH≠@1 lies in Z if and only if the

hypersurface X/k in @1≠@n corresponding to p has its fibre pr1
-1(x) over x geometrically

reducible. Because @1 is proper over Spec(#), the image of Z in AFH is a closed set, say W fi

AFH. The complementary open set AFH - W is the desired open set AFGI. QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    8888....11110000 Suppose n ≥ 2, d ≥ 1, and D ≥ 2. If n=2, suppose D ≥ 3. Then the open set

AFGI in P := AllHyp(n, (1,n), (d, D)) meets every fibre of P over Spec(#), i.e., AFGI‚Ép fi



Monodromy and the Tate conjecture-22

P‚Ép is nonempty for every prime p.

pppprrrrooooooooffff We claim that the examples we used to prove 8.8 all lie in AFGI. These examples have, as

geometric fibres, hypersurfaces that are smooth except for, at worst, one ordinary double point.

Any reducible hypersurface has a singular locus of codimension at most one, so if n ≥ 3 any

hypersurface in @n with at worst isolated singularities is irreducible, and if n=2 any smooth plane

curve is irreducible. We must show that if a reducible plane curve of degree D ≥ 2 is smooth

outside a single point x0, and x0 is an ordinary double point, then D=2. [Of course this happens

for D=2, as the example XY=0 in @2 shows.] If we factor the equation F of our curve into

irreducible factors F1F2...Fr, then any point where any two Fi intersect is singular, so x0 must be

the unique point of interesection of every two of the Fi. In local coordinates x, y at x0, each

equation Fi is fi(x,y), fi(0,0) = 0. Thus °i=1 to r fi(x,y) starts only in degree r, so we must have r=2

if x0 is to be an ordinary double point. Thus F = F1F2, and x0 is the unique point of intersection of

F1 and F2. Because x0 is an ordinary double point, the curve in the formal neighborhood of x0 has

an equation xy=0. Therefore if the curve in the formal neighborhood of x0 also has an equation

f1f2 = 0 with both fi in the maximal ideal, then f1 and f2 intersect transversely at x0. But if the

degrees of F1 and F2 are A and B respectively, and if x0 is their unique point of intersection, then

the intersection multiplicity of F1 and F2 at x0 is AB. As the intersection is transverse, AB=1, so

A = B =1, and D = A + B = 2. QED

8.11 We now specialize the general multihomogeneous case to the special case of Hyp(2n, (1,

2n), (d, D)). The arguments work just as well over either of the spaces

SGFHyp(2n, (1, 2n), (d, D))[1/2] or

AFGI¤SGFHyp(2n, (1, 2n), (d, D))[1/2]

as over the bigger space Hyp(2n, (1, 2n), (d, D))[1/2], and we get the following.

TTTThhhheeeeoooorrrreeeemmmm    8888....11112222 Fix an even integer 2n ≥ 2, a bidegree (d, D) with d ≥ 2 and D ≥ 2n+1. Denote by N

the common middle "vanishing" Betti number 

N := dim Ev2n(X‚käk, $…(n)), … invertible in k,

of SGF smooth hypersurfaces over fields X/k in @1≠@2n of given bidegree (d, D). Given a finite

field k, denote by ø(X/k) the conjugacy class in the classical group O(N)% given by the action of F

on Ev2n(X‚käk, $…(n)). Then the conclusions of Theorem 7.6 remain valid, provided that in their

statements we systematically replace "Hyp(2n, (1, 2n), (d, D))[1/2]" by "SGFHyp(2n, (1, 2n), (d,

D))[1/2]", or by "AFGI¤SGFHyp(2n, (1, 2n), (d, D))[1/2]".

9999....0000    MMMMoooorrrrddddeeeellllllll----WWWWeeeeiiiillll    rrrraaaannnnkkkk    iiiinnnn    ffffaaaammmmiiiilllliiiieeeessss    ooooffff    JJJJaaaaccccoooobbbbiiiiaaaannnnssss

9.1 We now specialize to a smooth (hyper)surface Ç/k in @1≠@2 of some bidegree (d, D), with
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d ≥ 2 and D ≥ 3, over a field k. We will think of pr1 : Ç ¨ @1 as a family of plane curves of

degree D, and we will assume that the generic fibre Ç˙ is smooth over the rational function field

k(@1). As we have seen above, this SGF assumption is automatic in characteristic p > (D-1)2. We

denote by r(Ç/k) the Mordell-Weil rank of the Jacobian J˙ of Ç˙, viewed as an abelian variety

over the rational function field k(@1):

9.1.1 r(Ç/k) := Mordell Weil rank of Jac(Ç˙/k(@1)).

We will study how this rank r(Ç/k) varies as Ç ranges over all the smooth SGF hypersurfaces in

@1≠@2 of the given bidegree (d, D) over a large finite field k of odd characteristic.

9.2 We will also be concerned with the "geometric" rank

9.2.1 rgeom(Ç/k) := r(Ç‚käk/äk),

and, when k is finite, with unique quadratic extension k2, with the "quadratic" rank

9.2.2 rquad(Ç/k) := r(Ç‚kk2/k2).

9.3 Let us recall the connection between the Mordell-Weil rank r(Ç/k) and the classical Picard

number ®(Ç/k) of Ç viewed as surface over a perfect field k. For divisors on a surface, we have the

Hodge index theorem, so torsion algebraic equivalence coincides with numerical equivalence, and

both coincide with …-adic homological equivalence for any … invertible in k. We write

9.3.1 ®(Ç/k) := ®1,…(Ç/k),

9.3.2 ®ev(Ç/k) := ®1,…,ev(Ç/k).

The ambient space @1≠@2 has all of its cohomology algebraic. Its H2 is of rank two, so we have

9.3.3 ®ev(Ç/k) = ®(Ç/k) - 2.

9.4 The Mordell-Weil rank r(Ç/k) and the Picard number ®(Ç/k) are related by

9.4.1 ®(Ç/k) = r(Ç/k) + 2 + ‡
closed points P of @1 (mP -1),

where, at each closed point P of @1/k, the integer mP is the number of irreducible components of

the fibre over P, viewed as scheme over the residue field k(P). cf [Tate-BSD, 4.5 and discussion

immediately above]. For our Ç/k, we may rewrite this as

9.4.2 ®ev(Ç/k) = r(Ç/k) + ‡closed points P (mP -1).

We extract from this the inequality

9.4.3 r(Ç/k) ≤ ®ev(Ç/k).

We remark that for Ç/k in the open dense set AFGI¤SGF (cf. 8.9) all the fibres are geometrically

irreducible, so each mP = 1. Thus 

9.4.4 r(Ç/k) = ®ev(Ç/k) for Ç/k in the open dense set AFGI¤SGF.

9.5 When k is finite, we write
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9.5.1 ®an, ev(Ç/k) := ®1,an, ev(Ç/k)

 := the multiplicity of 1 as eigenvalue of F on Ev2(Ç‚käk, $…(1)).

So over a finite field we have the chain of inequalities

9.5.2 0 ≤ r(Ç/k) ≤ ®ev(Ç/k) ≤ ®an, ev(Ç/k).

9.3 Now we bring to bear the results we have already obtained about the behavior of ®an,

ev(Ç/k) as k varies over large finite fields of odd characteristic, and Ç/k varies over smooth

hypersurfaces of bidegree (d, D) in @1≠@2. 

9.4 Before stating the result, we need to calculate the middle "vanishing" Betti number of a

smooth surface in @1≠@2.

LLLLeeeemmmmmmmmaaaa    9999....5555 Fix integers d ≥ 1 and D ≥ 1. Over an algebraically closed field of characteristic not …,

any smooth surface X in @1≠@2 of bidegree (d, D) has …-adic Euler characteristic ç(X, $…) and

dim Ev2(X, $…(1)) given by the explicit formula

ç(X, $…) = 4 + dim Ev2(X, $…(1)) = 2D(3-D) + 3d(D-1)2.

pppprrrrooooooooffff For the first equality, we argue as follows. For a smooth surface X in @1≠@2, weak

Lefschetz gives h1(X) = 0, so by Poincare duality h3(X) = 0. We have h0(X) = h4(X) = 1, so all

in all ç(X) = h2(X) + 2 = ev2(X) + 4.

We now turn to the numerical evaluation of ç(X). Suppose first that d=1. Then we may

compute by taking X to be the total space of a Lefschetz pencil of plane curves of degree D. Thus

X is the blowup of @2 at the D2 points of intersection of any two members of the pencil, and hence

ç(X, $…) = çc(@2 - (D2 points)) + D2ç(@1) = D2 + 3.

If we think of this X as fibred over @1 by plane curves of degree D, which are smooth except over

a finite set of points S in @1, over each of which the fibre is smooth except for one ordinary double

point, and remember that for a Lefschetz pencil of odd fibre dimension the Rif*$… are tame (local

monodromies are unipotent, by the Picard-Lefschetz formula), we get

ç(X, $…) = ç(X - singular fibres, $…) + (ùS)ç(a singular fibre)

= ç(@1 - S)ç(a smooth fibre) + (ùS)ç(a singular fibre).

But for plane curves, an ordinary double point increases the Euler characteristic by 1, so we find

ç(X, $…) = (2 - ùS)ç(a smooth fibre) +(ùS)(1 + ç(a smooth fibre))

= 2ç(a smooth fibre) + ùS = 2D(3-D) + ùS.

This allows us to solve for ùS, the number of singular fibres in a Lefschetz pencil of plane curves

of degree D:

ùS = D2 + 3 + 2D(D-3) = 3(D-1)2.

To do the general case of bidegree (d, D), we may compute for the pullback, call it Xd, of
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the Lefschetz pencil by a self-map of degree d of @1 which is finite etale over the points where the

pencil has singular fibres. Now we have dùS singular fibres, each smooth except for an ordinary

double point, so by the fibration calculation method above we now find 

ç(Xd, $…) 

= (2 - dùS)ç(a smooth fibre) +(dùS)(1 + ç(a smooth fibre))

=2ç(a smooth fibre) + dùS

= 2D(3-D) + dùS

= 2D(3-D) + 3d(D-1)2. QED

9.6 Combining this numerical lemma with the inequalities (9.5.2)

9.6.1 0 ≤ r(Ç/k) ≤ ®ev(Ç/k) ≤ ®an, ev(Ç/k)

and the bihomogeneous AFGI¤SGF and SGF variants 8.12 of 7.6, we find the following result.

TTTThhhheeeeoooorrrreeeemmmm    9999....7777 Fix integers d ≥ 2 and D ≥ 3, and consider smooth surfaces Ç/k in @1≠@2 of bidegree

(d, D), over variable finite fields k of odd characteristic. Denote by N the rank of Ev2 for any such

Ç/k:

 N := dim Ev2(Ç‚käk, $…(1)) = 2D(3-D) + 3d(D-1)2 - 4.

Denote by SGFÓ the parameter space

SGFÓ := SGFHyp(2, (1, 2), (d, D)) fi Hyp(2, (1, 2), (d, D)).

0) The fraction of those Ç/k in SGFÓ(k) which lie in SGFÓ(k, +) (resp. SGFÓ(k), -)) tends to

1/2 as ùk ¨ ‘.

1) The fraction of Ç/k in SGFÓ(k, +) with r(Ç/k) = 0 tends to 1 as ùk ¨ ‘. 

1a) If N is even, the fraction of Ç/k in SGFÓ(k, +) with rgeom(Ç/k) = 0 tends to 1 as ùk ¨ ‘. 

1b) If N is odd, the fraction of Ç/k in SGFÓ(k, +) with rquad(Ç/k) ≤ 1 tends to 1 as ùk ¨ ‘. 

1c) If N is odd, the fraction of Ç/k in SGFÓ(k, +) with rgeom(Ç/k) ≤ 1 tends to 1 as ùk ¨ ‘. 

2) The fraction of Ç/k in SGFÓ(k, -) with r(Ç/k) ≤ 1 tends to 1 as ùk ¨ ‘. 

2a) If N is odd, the fraction of Ç/k in SGFÓ(k, -) with rgeom(Ç/k) ≤ 1 tends to 1 as ùk ¨ ‘. 

2b) If N is even, the fraction of Ç/k in SGFÓ(k, -) with rquad(Ç/k) ≤ 2 tends to 1 as ùk ¨ ‘. 

2c) If N is even, the fraction of Ç/k in SGFÓ(k, -) with rgeom(Ç/k) ≤ 2 tends to 1 as ùk ¨ ‘. 

3) All statements 0) through 2c) above remain valid if we replace "SGFÓ" by "AFGI¤SGFÓ"

throughout.
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CCCCoooorrrroooollllllllaaaarrrryyyy    oooonnnn    aaaavvvveeeerrrraaaaggggeeee    rrrraaaannnnkkkkssss    9999....8888 Hypotheses and notations as in Theorem 9.7:

1) We have the following ("unconditional") upper bounds:

9.8.1.1 limsupodd ùk ¨ ‘(average over SGFÓ(k) of r(Ç/k)) ≤ 1/2,

9.8.1.2 limsupodd ùk ¨ ‘(average over SGFÓ(k) of rquad(Ç/k)) ≤ 1,

9.8.1.3 limsupodd ùk ¨ ‘(average over SGFÓ(k) of rgeom(Ç/k)) ≤ 1.

2) The above statements 9.8.1.1-3 remain valid if we replace SGFÓ by AFGI¤SGFÓ

throughout.

3) IIIIffff the Tate conjecture holds for all the surfaces Ç/k in AFGI¤SGFÓ, these inequalities are

equalities:

9.8.3.1 limodd ùk ¨ ‘(average over AFGI¤SGFÓ(k) of r(Ç/k)) = 1/2,

9.8.3.2    limodd ùk ¨ ‘(average over AFGI¤SGFÓ(k) of rquad(Ç/k))=1,

9.8.3.3  limodd ùk ¨ ‘(average over AFGI¤SGFÓ(k) of rgeom(Ç/k)) = 1.

4) IIIIffff the Tate conjecture holds for all the surfaces Ç/k in AFGI¤SGFÓ, then we also have the

equalities

9.8.4.1 limodd ùk ¨ ‘(average over SGFÓ(k) of r(Ç/k)) = 1/2,

9.8.4.2    limodd ùk ¨ ‘(average over SGFÓ(k) of rquad(Ç/k))=1,

9.8.4.3  limodd ùk ¨ ‘(average over SGFÓ(k) of rgeom(Ç/k)) = 1.

pppprrrrooooooooffff The only point that needs to be explained is how part 4) follows from part 3), i.e, why the

points in SGFÓ(k) not in AFGI¤SGFÓ(k) make a contribution to the average which goes to zero

as ùk ¨ ‘. This is immediate from the following two facts:

1) The ratio ùAFGI¤SGFÓ(k)/ùSGFÓ(k) ¨ 1 as ùk ¨ ‘.

2) The function rgeom(Ç/k) is uniformly bounded (indeed we have

rgeom(Ç/k)  ≤ ®ev,geom(Ç/k) ≤ ev2 = 2D(3-D) + 3d(D-1)2 - 4). QED

QQQQuuuueeeessssttttiiiioooonnnn    9999....9999 What, if any, are the number field analogues of the quantities rquad(Ç/k) and

rgeom(Ç/k)?
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