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Introduction

The systematic study of character sums over finite fields may be
said to have begun over 200 years ago, with Gauss. The Gauss sums
over Fp are the sums ∑

x∈F×p

ψ(x)χ(x),

for ψ a nontrivial additive character of Fp, e.g., x 7→ e2πix/p, and χ
a nontrivial multiplicative character of F×p . Each has absolute value√
p. In 1926, Kloosterman [Kloos] introduced the sums (one for each

a ∈ F×p ) ∑
xy=a in Fp

ψ(x+ y)

which bear his name, in applying the circle method to the problem of
four squares. In 1931 Davenport [Dav] became interested in (variants
of) the following questions: for how many x in the interval [1, p−2] are
both x and x+ 1 squares in Fp? Is the answer approximately p/4 as p
grows? For how many x in [1, p− 3] are each of x, x+ 1, x+ 2 squares
in Fp? Is the answer approximately p/8 as p grows? For a fixed integer
r ≥ 2, and a (large) prime p, for how many x in [1, p − r] are each of
x, x+ 1, x+ 2, ..., x+ r− 1 squares in Fp. Is the answer approximately
p/2r as p grows? These questions led him to the problem of giving
good estimates for character sums over the prime field Fp of the form∑

x∈Fp

χ2(f(x)),

where χ2 is the quadratic character χ2(x) := (x
p
), and where f(x) ∈

Fp[x] is a polynomial with all distinct roots. Such a sum is the “error
term” in the approximation of the number of mod p solutions of the
equation

y2 = f(x)

by p, indeed the number of mod p solutions is exactly equal to

p+
∑
x∈Fp

χ2(f(x)).

1



2 INTRODUCTION

And, if one replaces the quadratic character by a character χ of F×p of
higher order, say order n, then one is asking about the number of mod
p solutions of the equation

yn = f(x).

This number is exactly equal to

p+
∑

χ|χn=1,χ 6=1

∑
x∈Fp

χ(f(x)).

The “right” bounds for Kloosterman’s sums are

|
∑

xy=a in Fp

ψ(x+ y)| ≤ 2
√
p

for a ∈ F×p . For f(x) =
∑d

i=0 aix
i squarefree of degree d, the “right”

bounds are

|
∑
x∈Fp

χ(f(x))| ≤ (d− 1)
√
p

for χ nontrivial and χd 6= 1, and

|χ(ad) +
∑
x∈Fp

χ(f(x))| ≤ (d− 2)
√
p

for χ nontrivial and χd = 1. These bounds were foreseen by Hasse
[Ha-Rel] to follow from the Riemann Hypothesis for curves over finite
fields, and were thus established by Weil [Weil] in 1948.

Following Weil’s work, it is natural to “normalize” such a sum by
dividing it by

√
p, and then ask how it varies in an algebro-geometric

family. For example, one might ask how the normalized1 Kloosterman
sums

−(1/
√
p)

∑
xy=a in Fp

ψ(x+ y)

vary with a ∈ F×p , or how the sums

−(1/
√
p)

∑
x∈Fp

χ2(f(x))

vary as f runs over all squarefree cubic polynomials in Fp[x]. [In this
second case, we are looking at the Fp-point count for the elliptic curve
y2 = f(x).] Both these sorts of normalized sums are real, and lie in the
closed interval [−2, 2], so each can be written as twice the cosine of a

1The reason for introducing the minus sign will become clear later.
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unique angle in [0, π]. Thus we define angles θa,p, a ∈ F×p , and angles
θf,p, f a squarefree cubic in Fp[x]:

−(1/
√
p)

∑
xy=ainFp

ψ(x+ y) = 2 cos θa,p,

−(1/
√
p)

∑
x∈Fp

χ2(f(x)) = 2 cos θf,p.

In both these cases, the Sato-Tate conjecture asserted that, as p grows,
the sets of angles {θa,p}a ∈ F×p (respectively {θf,p}f ∈ Fp[x] squarefree cubic)

become equidistributed in [0, π] for the measure (2/π) sin2(θ)dθ. Equiv-
alently, the normalized sums themselves become equidistributed in
[−2, 2] for the “semicircle measure” (1/2π)

√
4− x2dx. These Sato-

Tate conjectures were shown by Deligne to fall under the umbrella of
his general equidistribution theorem, cf. [De-Weil II, 3.5.3 and 3.5.7]
and [Ka-GKM, 3.6 and 13.6]. Thus for example one has, for a fixed
nontrivial χ, and a fixed integer d ≥ 3 such that χd 6= 1, a good
understanding of the equidistribution properties of the sums

−(1/
√
p)

∑
x∈Fp

χ(f(x))

as f ranges over various algebro-geometric families of polynomials of
degree d, cf. [Ka-ACT, 5.13].

In this work, we will be interested in questions of the following type:
fix a polynomial f(x) ∈ Fp[x], say squarefree of degree d ≥ 2. For each
multiplicative character χ with χd 6= 1, we have the normalized sum

−(1/
√
p)

∑
x∈Fp

χ(f(x)).

How are these normalized sums distributed as we keep f fixed but
vary χ over all multiplicative characters χ with χd 6= 1? More gen-
erally, suppose we are given some suitably algebro-geometric function
g(x), what can we say about suitable normalizations of the sums∑

x∈Fp

χ(x)g(x)

as χ varies? This case includes the sums
∑

x∈Fp χ(f(x)), by taking for

g the function x 7→ −1 + #{t ∈ Fp|f(t) = x}, cf. Remark 17.7.
The earliest example we know in which this sort of question of

variable χ is addressed is the case in which g(x) is taken to be ψ(x), so
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that we are asking about the distribution on the unit circle S1 of the
p− 2 normalized Gauss sums

−(1/
√
p)

∑
x∈F×p

ψ(x)χ(x),

as χ ranges over the nontrivial multiplicative characters. The answer
is that as p grows, these p−2 normalized sums become more and more
equidistributed for Haar measure of total mass one in S1. This results
[Ka-SE, 1.3.3.1] from Deligne’s estimate [De-ST, 7.1.3, 7.4] for multi-
variable Kloosterman sums. There were later results [Ka-GKM, 9.3,
9.5] about equidistribution of r-tuples of normalized Gauss sums in
(S1)r for any r ≥ 1. The theory we will develop here “explains” these
last results in a quite satisfactory way, cf. Corollary 20.2.

Most of our attention is focused on equidistribution results over
larger and larger finite extensions of a given finite field. Emanuel
Kowalski drew our attention to the interest of having equidistribution
results over, say, prime fields Fp, that become better and better as p
grows. This question is addressed in Chapter 28, where the problem is
to make effective the estimates, already given in the equicharacteristic
setting of larger and larger extensions of a given finite field. In Chapter
29, we point out some open questions about “the situation over Z” and
give some illustrative examples.

We end this introduction by pointing out two potential ambiguities
of notation.

(1) We will deal both with lisse sheaves, usually denoted by cal-
ligraphic letters, most commonly F , on open sets of Gm, and with
perverse sheaves, typically denoted by roman letters, most commonly
N and M , on Gm. We will develop a theory of the Tannakian groups
Ggeom,N and Garith,N attached to (suitable) perverse sheaves N . We
will also on occasion, especially in Chapters 11 and 12, make use of
the “usual” geometric and arithmetic monodromy groups Ggeom,F and
Garith,F attached to lisse sheaves F . The difference in typography,
which in turns indicates whether one is dealing with a perverse sheaf
or a lisse sheaf, should always make clear which sort of Ggeom or Garith

group, the Tannakian one or the “usual” one, is intended.
(2) When we have a lisse sheaf F on an open set of Gm, we often

need to discuss the representation of the inertia group I(0) at 0 (re-
spectively the representation of the inertia group I(∞) at∞) to which
F gives rise. We will denote these representations F(0) and F(∞)
respectively. We will also wish to consider Tate twists F(n) or F(n/2)
of F by nonzero integers n or half-integers n/2. We adopt the con-
vention that F(0) (or F(∞)) always means the representation of the
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corresponding inertia group, while F(n) or F(n/2) with n a nonzero
integer always means a Tate twist.





CHAPTER 1

Overview

Let k be a finite field, q its cardinality, p its characteristic,

ψ : (k,+)→ Z[ζp]
× ⊂ C×

a nontrivial additive character of k, and

χ : (k×,×)→ Z[ζq−1]× ⊂ C×

a (possibly trivial) multiplicative character of k.
The present work grew out of two questions, raised by Ron Evans

and Zeev Rudnick respectively, in May and June of 2003. Evans had
done numerical experiments on the sums

S(χ) := −(1/
√
q)

∑
t∈k×

ψ(t− 1/t)χ(t)

as χ varies over all multiplicative characters of k. For each χ, S(χ)
is real, and (by Weil) has absolute value at most 2. Evans found
empirically that, for large q = #k, these q − 1 sums were approxi-
mately equidistributed for the “Sato-Tate measure”1 (1/2π)

√
4− x2dx

on the closed interval [−2, 2], and asked if this equidistribution could
be proven.

Rudnick had done numerical experiments on the sums

T (χ) := −(1/
√
q)

∑
t∈k×,t 6=1

ψ((t+ 1)/(t− 1))χ(t)

as χ varies now over all nontrivial multiplicative characters of a finite
field k of odd characteristic, cf. [KRR, Appendix A] for how these sums
arose. For nontrivial χ, T (χ) is real, and (again by Weil) has absolute
value at most 2. Rudnick found empirically that, for large q = #k,
these q−2 sums were approximately equidistributed for the same “Sato-
Tate measure” (1/2π)

√
4− x2dx on the closed interval [−2, 2], and

asked if this equidistribution could be proven.

1This is the measure which is the direct image of the total mass one Haar
measure on the compact group SU(2) by the trace map Trace : SU(2) → [−2, 2],
i.e., it is the measure according to which traces of “random” elements of SU(2) are
distributed.

7



8 1. OVERVIEW

We will prove both of these equidistribution results. Let us begin
by slightly recasting the original questions. Fixing the characteristic p
of k, we choose a prime number ` 6= p; we will soon make use of `-adic
étale cohomology. We denote by Z` the `-adic completion of Z, by Q`

its fraction field, and by Q` an algebraic closure of Q`. We also choose
a field embedding ι of Q` into C. Any such ι induces an isomorphism
between the algebraic closures of Q in Q` and in C respectively.2 By
means of ι, we can, on the one hand, view the sums S(χ) and T (χ) as
lying in Q`. On the other hand, given an element of Q`, we can ask if
it is real, and we can speak of its complex absolute value. This allows
us to define what it means for a lisse sheaf to be ι-pure of some weight
w (and later, for a perverse sheaf to be ι-pure of some weight w). We
say that a perverse sheaf is pure of weight w if it is ι-pure of weight w
for every choice of ι.

By means of the chosen ι, we view both the nontrivial additive
character ψ of k and every (possibly trivial) multiplicative character χ

of k× as having values in Q×` . Then, attached to ψ, we have the Artin-
Schreier sheaf Lψ = Lψ(x) on A1/k := Spec(k[x]), a lisse Q`-sheaf of
rank one on A1/k which is pure of weight zero. And for each χ we
have the Kummer sheaf Lχ = Lχ(x) on Gm/k := Spec(k[x, 1/x]), a

lisse Q`-sheaf of rank one on Gm/k which is pure of weight zero. For a
k-scheme X and a k-morphism f : X → A1/k (resp. f : X → Gm/k),
we denote by Lψ(f) (resp. Lχ(f)) the pullback lisse rank one, pure of
weight zero, sheaf f ?Lψ(x) (resp. f ?Lχ(x)) on X.

In the question of Evans, we view x− 1/x as a morphism from Gm

to A1, and form the lisse sheaf Lψ(x−1/x) on Gm/k. In the question of
Rudnick, we view (x+ 1)/(x− 1) as a morphism from Gm \ {1} to A1,
and form the lisse sheaf Lψ((x+1)/(x−1)) on Gm \ {1}. With

j : Gm \ {1} → Gm

the inclusion, we form the direct image sheaf j?Lψ((x+1)/(x−1)) on Gm/k
(which for this sheaf, which is totally ramified at the point 1, is the
same as extending it by zero across the point 1).

The common feature of both questions is that we have a dense
open set U/k ⊂ Gm/k, a lisse, ι-pure of weight zero sheaf F on U/k,
its extension G := j?F by direct image to Gm/k, and we are looking at
the sums

−(1/
√
q)

∑
t∈Gm(k)=k×

χ(t)Trace(Frobt,k|G)

2Such an ι need not be a field isomorphism of Q` with C, but we may choose
an ι which is, as Deligne did in [De-Weil II, 0.2, 1.2.6, 1.2.11].
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= −(1/
√
q)

∑
t∈Gm(k)=k×

Trace(Frobt,k|G ⊗ Lχ).

To deal with the factor 1/
√
q, we choose a square root of the `-adic

unit p in Q`, and use powers of this chosen square root as our choices
of
√
q. [For definiteness, we might choose that

√
p which via ι becomes

the positive square root, but either choice will do.] Because
√
q is an

`-adic unit, we may form the “half”-Tate twist G(1/2) of G, which for
any finite extension field E/k and any point t ∈ Gm(E) multiplies the
traces of the Frobenii by 1/

√
#E, i.e.,

Trace(Frobt,E|G(1/2)) = (1/
√

#E)Trace(Frobt,E|G).

As a final and apparently technical step, we replace the middle
extension sheaf G(1/2) by the same sheaf, but now placed in degree
−1, namely the object

M := G(1/2)[1]

in the derived category Db
c(Gm/k,Q`). It will be essential in a moment

that the object M is in fact a perverse sheaf, but for now we need ob-
serve only that this shift by one of the degree has the effect of changing
the sign of each Trace term. In terms of this object, we are looking at
the sums

S(M,k, χ) :=
∑

t∈Gm(k)=k×

χ(t)Trace(Frobt,k|M).

So written, the sums S(M,k, χ) make sense for any object M ∈
Db
c(Gm/k,Q`). If we think of M as fixed but χ as variable, we are

looking at the Mellin (:= multiplicative Fourier) transform of the func-
tion t 7→ Trace(Frobt,k|M) on the finite abelian group Gm(k) = k×.
It is a standard fact that the Mellin transform turns multiplicative
convolution of functions on k× into multiplication of functions of χ.

On the derived category Db
c(Gm/k,Q`), we have a natural operation

of !-convolution

(M,N)→M ?! N

defined in terms of the multiplication map

π : Gm ×Gm → Gm, (x, y)→ xy

and the external tensor product object

M �N := pr?1M ⊗ pr?2M

in Db
c(Gm ×Gm/k,Q`) as

M ?! N := Rπ!(M �N).
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It then results from the Lefschetz Trace formula [Gr-Rat] and
proper base change that, for any multiplicative character χ of k×, we
have the product formula

S(M ?! N, k, χ) = S(M,k, χ)S(N, k, χ);

more generally, for any finite extension field E/k, and any multiplica-
tive character ρ of E×, we have the product formula

S(M ?! N,E, ρ) = S(M,E, ρ)S(N,E, ρ).

At this point, we must mention two technical points, which will
be explained in detail in the next chapter, but which we will admit
here as black boxes. The first is that we must work with perverse
sheaves N satisfying a certain supplementary condition, P . This is
the condition that, working on Gm/k, N admits no subobject and
no quotient object which is a (shifted) Kummer sheaf Lχ[1]. For an
N which is geometrically irreducible, P is simply the condition that
N is not geometrically a (shifted) Kummer sheaf Lχ[1]. Thus any
geometrically irreducible N which has generic rank ≥ 2, or which is not
lisse on Gm, or which is not tamely ramified at both 0 and∞, certainly
satisfies P . Thus for example the object giving rise to the Evans sums,
namely Lψ(x−1/x)(1/2)[1], is wildly ramified at both 0 and ∞, and the
object giving rise to the Rudnick sums, namely j?Lψ((x+1)/(x−1))(1/2)[1],

is not lisse at 1 ∈ Gm(k), so both these objects satisfy P . The second
technical point is that we must work with a variant of ! convolution ?!,
called “middle” convolution ?mid, which is defined on perverse sheaves
satisfying P , cf. the next chapter.

In order to explain the simple underlying ideas, we will admit four
statements, and explain how to deduce from them equidistribution the-
orems about the sums S(M,k, χ) as χ varies.

(1) If M and N are both perverse on Gm/k (resp. on Gm/k) and
satisfy P , then their middle convolution M ?mid N is perverse
on Gm/k (resp. on Gm/k) and satisfies P .

(2) With the operation of middle convolution as the “tensor prod-
uct,” the skyscraper sheaf δ1 as the “identity object,” and
[x 7→ 1/x]?DM as the “dual” M∨ of M (DM denoting the
Verdier dual of M), the category of perverse sheaves on Gm/k
(resp. on Gm/k) satisfying P is a neutral Tannakian cate-
gory, in which the “dimension” of an object M is its Euler
characteristic χc(Gm/k,M).

(3) Denoting by

j0 : Gm/k ⊂ A1/k
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the inclusion, the construction

M 7→ H0(A1/k, j0!M)

is a fibre functor on the Tannakian category of perverse sheaves
on Gm/k satisfying P (and hence also a fibre functor on the
subcategory of perverse sheaves on Gm/k satisfying P). For
i 6= 0, H i(A1/k, j0!M) vanishes.

(4) For any finite extension field E/k, and any multiplicative char-
acter ρ of E×, the construction

M 7→ H0(A1/k, j0!(M ⊗ Lρ))

is also such a fibre functor. For i 6= 0, H i(A1/k, j0!(M ⊗ Lρ))
vanishes.

Now we make use of these four statements. Take for N a perverse
sheaf on Gm/k which is ι-pure of weight zero and which satisfies P . De-
note by <N>arith the full subcategory of all perverse sheaves on Gm/k
consisting of all subquotients of all “tensor products” of copies of N
and its dual N∨. Similarly, denote by <N>geom the full subcategory

of all perverse sheaves on Gm/k consisting of all subquotients, in this
larger category, of all “tensor products” of copies of N and its dual
N∨. With respect to a choice ω of fibre functor, the category <N>arith

becomes the category of finite-dimensional Q`-representations of an
algebraic group Garith,N,ω ⊂ GL(ω(N)) = GL(“ dim ”N), with N it-
self corresponding to the given “ dim ”N -dimensional representation.
Concretely, Garith,N,ω ⊂ GL(ω(N)) is the subgroup consisting of those
automorphisms γ of ω(N) with the property that γ, acting on ω(M),
for M any tensor construction on ω(N) and its dual, maps to itself
every vector space subquotient of the form ω(any subquotient of M).

And the category<N>geom becomes the category of finite-dimensional

Q`-representations of a possibly smaller algebraic group Ggeom,N,ω ⊂
Garith,N,ω (smaller because there are more subobjects to be respected).

For ρ a multiplicative character of a finite extension field E/k, we
have the fibre functor ωρ defined by

M 7→ H0(A1/k, j!(M ⊗ Lρ))

on <N>arith. The Frobenius FrobE is an automorphism of this fibre
functor, so defines an element FrobE,ρ in the group Garith,N,ωρ defined
by this choice of fibre functor. But one knows that the groups Garith,N,ω

(respectively the groups Ggeom,N,ω) defined by different fibre functors
are pairwise isomorphic, by a system of isomorphisms which are unique
up to inner automorphism of source (or target). Fix one choice, say
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ω0, of fibre functor, and define

Garith,N := Garith,N,ω0 , Ggeom,N := Ggeom,N,ω0 .

Then the element FrobE,ρ in the group Garith,N,ωρ still makes sense as
a conjugacy class in the group Garith,N .

Let us say that a multiplicative character ρ of some finite extension
field E/k is good for N if, for

j : Gm/k ⊂ P1/k

the inclusion, the canonical “forget supports” map

Rj!(N ⊗ Lρ)→ Rj?(N ⊗ Lρ)
is an isomorphism. If ρ is good for N , then the natural “forget sup-
ports” maps

H0
c (Gm/k,N⊗Lρ) = H0

c (A1/k, j0!(N⊗Lρ))→ H0(A1/k, j0!(N⊗Lρ)),
together with the restriction map

H0(A1/k, j0!(N ⊗ Lρ))→ H0(Gm/k,N ⊗ Lρ),
are all isomorphisms. Moreover, as N is ι-pure of weight zero, each of
these groups is ι-pure of weight zero.

Conversely, if the group ωρ(N) := H0(A1/k, j0!(N ⊗ Lρ)) is ι-pure
of weight zero, then ρ is good for N , and we have a “forget supports”
isomorphism

H0
c (Gm/k,N ⊗ Lρ) ∼= ωρ(N) := H0(A1/k, j0!(N ⊗ Lρ)).

This criterion, that ρ is good for N if and only if ωρ(N) is ι-pure of
weight zero, shows that if ρ is good for N , then ρ is good for every
object M in the Tannakian category <N>arith generated by N , and
hence that for any such M , we have an isomorphism

H0
c (Gm/k,M ⊗ Lρ) ∼= ωρ(M).

Recall that geometrically, i.e., on Gm/k, we may view the various Kum-
mer sheaves Lρ coming from multiplicative characters ρ of finite sub-

fields E ⊂ k as being the characters of finite order of the tame inertia
group I(0)tame at 0, or of the tame inertia group I(∞)tame at ∞, or of
the tame fundamental group πtame1 (Gm/k). In this identification, given
a character ρ of a finite extension E/k and a further finite extension
L/E, the pair (E, ρ) and the pair (L, ρ ◦ NormL/E) give rise to the

same Kummer sheaf on Gm/k. Up to this identification of (E, ρ) with
(L, ρ ◦ NormL/E), there are, for a given N , at most finitely many ρ
which fail to be good for N (simply because there are at most finitely
many tame characters which occur in the local monodromies of N at
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either 0 or ∞, and we need only avoid their inverses). Indeed, if we
denote by rk(N) the generic rank of N , there are at most 2rk(N) bad
ρ for N .

Recall [BBD, 5.3.8] that a perverse N which is ι-pure of weight
zero is geometrically semisimple. View N as a faithful representation
of Ggeom,N . Then Ggeom,N has a faithful, completely reducible repre-
sentation, hence Ggeom,N is a reductive group.

Let us now suppose further that N is, in addition, arithmetically
semisimple (e.g., arithmetically irreducible). Then Garith,N is also a
reductive group. Choose a maximal compact subgroup K of the re-
ductive Lie group Garith,N(C) (where we use ι to view Garith,N as an
algebraic group over C). For each finite extension field E/k and each
character ρ of E× which is good for N , we obtain a Frobenius con-
jugacy class θE,ρ in K as follows. Because ρ is good for N , FrobE
has, via ι, unitary eigenvalues acting on ωρ(N), i.e., the conjugacy
class FrobE,ρ in Garith,N has unitary eigenvalues when viewed in the
ambient GL(ω0(N)). Therefore its semisimplification in the sense of
the Jordan decomposition, FrobssE,ρ, is a semisimple class in Garith,N(C)
with unitary eigenvalues. Therefore any element in the class FrobssE,ρ
lies in a compact subgroup of Garith,N(C) (e.g., in the closure of the
subgroup it generates), and hence lies in a maximal compact subgroup
of Garith,N(C). All such are Garith,N(C)-conjugate, so we conclude that
every element in the class FrobssE,ρ is conjugate to an element of K. We
claim that this element is in turn well-defined in K up to K-conjugacy,
so gives us a K-conjugacy class θE,ρ. To show that θE,ρ is well-defined
up to K-conjugacy, it suffices, by Peter-Weyl, to specify its trace in
every finite-dimensional, continuous, unitary representation ΛK of K.
By Weyl’s unitarian trick, every ΛK of K is the restriction to K of a
unique finite-dimensional representation Λ of the C-group Garith,N/C.
Thus for every ΛK , we have the identity

Trace(ΛK(θE,ρ)) = Trace(Λ(FrobθssE,ρ)) = Trace(Λ(FrobθE,ρ)).

With these preliminaries out of the way, we can state the main
theorem.

Theorem 1.1. Let N be an arithmetically semisimple perverse sheaf
on Gm/k which is ι-pure of weight zero and which satisfies condition
P. Choose a maximal compact subgroup K of the reductive Lie group
Garith,N(C). Suppose that we have an equality of groups

Ggeom,N = Garith,N .

Then as E/k runs over larger and larger finite extension fields, the
conjugacy classes {θE,ρ}good ρ become equidistributed in the space K#
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of conjugacy classes in K, for the induced Haar measure of total mass
one.

Proof. For each finite extension field E/k, denote by Good(E,N) the
set of multiplicative characters ρ of E× which are good for N . We must
show that for any continuous central function f on K, we can compute∫
K
f(k)dk as the limit, as E/k runs over larger and larger extension

fields, large enough that the set Good(E, N) is nonempty, of the sums

(1/#Good(E,N))
∑

ρ∈Good(E,N)

f(θE,ρ).

By the Peter-Weyl theorem, any such f is a uniform limit of finite
linear combinations of traces of irreducible representations of K. So it
suffices to check when f is the trace of an irreducible representation
ΛK of K. If ΛK is the trivial representation, both the integral and each
of the sums is identically 1.

For an irreducible nontrivial representation ΛK of K, corresponding
to an irreducible nontrivial representation Λ of Garith,N , we have∫

K

Trace(ΛK(k))dk = 0.

So it remains to show that for any such ΛK , as #E → ∞ over finite
extensions large enough that Good(E,N) is nonempty, we have

(1/#Good(E,N))
∑

ρ∈Good(E,N)

Trace(ΛK(θE,ρ))

→
∫
K

Trace(ΛK(k))dk = 0.

To see that this is the case, denote by M the object corresponding to
the irreducible nontrivial representation Λ of Garith,N . By the hypoth-
esis that Ggeom,N = Garith,N , it follows that M is itself geometrically
irreducible and nontrivial. In terms of this object, the sums above are
the sums

(1/#Good(E,N))
∑

ρ∈Good(E,N)

S(M,E, ρ).

We next compare these sums to the sums

(1/#E×)
∑

ρ char of E×

S(M,E, ρ).

Each individual term S(M,E, ρ) has |S(M,E, ρ)| ≤ “ dim ”M (cf.
Lemmas 2.1 and 3.4), and the number of terms in the two sums com-
pare as

#E× ≥ #Good(E,N) ≥ #E× − 2rk(N).



1. OVERVIEW 15

So it is equivalent to show instead that the sums

(1/#E×)
∑

ρ char of E×

S(M,E, ρ)

tend to 0 as #E grows.
We now distinguish two cases. If M is punctual, then it must

be a (unitary, but we will not need this) constant field twist αdegδt0
of a skyscraper sheaf δt0 concentrated at a point t0 6= 1 in Gm(k)
( 6= 1 because geometrically nontrivial, a single rational point because
punctual and both arithmetically and geometrically irreducible). In
this case we have

S(M,E, ρ) = αdegE/kρ(t0),

and the sum over all ρ vanishes (orthogonality of characters).
If M is nonpunctual, then it is of the form G(1/2)[1] for a geomet-

rically irreducible middle extension sheaf G on Gm/k which is ι-pure of
weight zero and which is not geometrically isomorphic to any shifted
Kummer sheaf Lχ[1]. In this case, rk(M) = rk(G), the generic rank of
G. Here

S(M,E, ρ) = (−1/
√

#E)
∑
t∈E×

ρ(t)Trace(FrobE,t|G).

By orthogonality, we get

(1/#E×)
∑

ρ char of E×

S(M,E, ρ) = (−1/
√

#E)Trace(FrobE,1|G).

As G is a middle extension which is ι-pure of weight zero, we have
|Trace(FrobE,1|G)| ≤ rk(G), cf. [De-Weil II, 1.8.1]. �

Taking the direct image of this approximate equidistribution of con-
jugacy classes by the Trace map, we get the following corollary, which
addresses the sums with which we were originally concerned.

Corollary 1.2. As E/k runs over larger and larger finite extension
fields, the sums {S(N,E, ρ)}good ρ become equidistributed in C for the
probability measure which is the direct image by the Trace map

Trace : K → C

of Haar measure of total mass one on K.

In the book itself, we will explain in greater detail both condition
P and middle convolution. Here we owe a tremendous debt to the
paper [Ga-Loe] of Gabber and Loeser for basic Tannakian facts, and
to Deligne for suggesting the fibre functor of which we make essential
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use, cf. [Ka-GKM, 2.2.1] where we used Deligne’s fibre functor in a
slightly different context.

Once we have proper foundations, we then explore various cases
where we can both show thatGgeom,N = Garith,N and compute what this
group is. For example, we will show that in both the Evans and Rudnick
situations, we have Ggeom,N = Garith,N = SL(2), thus K = SU(2),
and we recover the approximate equidistribution of their sums for the
classical Sato-Tate measure on [−2, 2]. We will also give examples
where the common value of the groups is GL(n), any n, or Sp(2n),
any n, or SO(n), any n ≥ 3, or SL(n), any n ≥ 3 which is either
a prime number3 or not a power of the characteristic, or O(2n), any
n ≥ 2 which is not a power of the characteristic. We also give, in
every characteristic, families of objects “most of which” give rise to
the exceptional group G2, cf. Theorem 25.1. We do not know how to
obtain the other exceptional groups.

For a broader perspective on the Tannakian approach we take here,
consider the corresponding additive version of this same problem, where
we are now given a geometrically irreducible perverse sheaf M on A1/k
which is pure of weight zero. For variable additive characters ρ of k,
we wish to study the sums

S(M,k, ρ) :=
∑

x∈A1(k)

ρ(x)Trace(Frobx,k|M).

In this additive case, we have the advantage that having fixed one
choice of nontrivial additive character ψ, the additive characters of k
are each of the form x 7→ ψ(tx) for a unique t ∈ k, so these sums are
the sums

S(M,k, t) :=
∑

x∈A1(k)

ψ(tx)Trace(Frobx,k|M).

These sums are (minus) the traces of Frobenius on the Fourier Trans-
form of M , cf. [Lau-TFCEF, 1.2.1.2]. Recall that for any N ∈
Db
c(A1,Q`), its Fourier Transform FT (N) is defined by

FT (N) := R(pr2)!(pr
?
1N ⊗ Lψ(tx)[1]),

where pr1 and pr2 are the two projections of A2, with coordinates
(x, t), onto A1. The formation of the Fourier Transform is essentially
involutive, and, by the “miracle” of Fourier Transform, if M is a geo-
metrically irreducible perverse sheaf on A1 which is pure of weight zero,
then FT (M) is a geometrically irreducible perverse sheaf on A1 which is

3In the examples where we require that n be prime, this requirement is a
reflection of our ignorance; see Chapter 21.
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pure of weight one, cf. [Ka-Lau, 2.1.3, 2.1.5, 2.2.1] and [Lau-TFCEF,
1.2.2.3, 1.3.2.3, 1.3.2.4]. If in addition M is not geometrically isomor-
phic to a shifted Artin-Schreier sheaf Lψ(ax)[1] for some a, then FT (M)
is of the form G[1], where G is a geometrically irreducible middle ex-
tension sheaf on A1/k which is pure of weight zero, cf. [Lau-TFCEF,
1.4.2.1] and [Ka-Lau, 2.2.1]. The sums above are simply given by

Trace(Frobt,k|G) =
∑

x∈A1(k)

ψ(tx)Trace(Frobx,k|M),

cf. [Lau-TFCEF, 1.2.1.2]. So in this additive case, to study the
equidistribution properties of these sums, we need “only” apply Deligne’s
equidistribution theorem to the sheaf G, restricted to a dense open set,
say U , where it is lisse. Then we are “reduced” to computing the Zariski
closure of the geometric monodromy group of G|U , and showing that
the Zariski closure of the arithmetic monodromy group is no bigger, cf.
[Ka-GKM, Chapter 3]. In many cases, the computation of the geo-
metric monodromy group depends on knowing the local monodromies
of G at the points of P1 \ U , where G fails to be lisse.

If we were to transpose to the additive case the techniques we de-
velop here to handle the case of variable multiplicative characters χ, it
would amount to the following. Another interpretation of the Zariski
closure of the geometric (resp. arithmetic) monodromy group of G|U is
that it is the Tannakian group governing the tensor category generated
by G|Uk (resp. by G|U). This tensor category for G, with usual tensor
product as the tensor operation, is tensor equivalent to the Tannakian
category generated by the input object M on A1, where now the “ten-
sor operation” is additive middle convolution (reflecting the fact that
on functions, Fourier Transform interchanges multiplication and con-
volution). So we would end up studying the Tannakian subcategory,
generated by M , consisting of those perverse sheaves on A1 which sat-
isfy the additive version of condition P , under the “tensor” operation
of additive middle convolution. In such a study, we do not “see” the
local monodromies of G, or even the existence of G. So in the additive
case, the methods we develop here would lead us to attempt to prove,
in some few cases successfully, known theorems about the monodromy
groups of various Fourier Transform sheaves with our hands tied behind
our back.

In this work, dealing with varying multiplicative characters and an
arithmetically semisimple perverse N on Gm/k which is pure of weight
zero and satisfies P , we have a weak substitute for the apparently
nonexistent notion of “local monodromy” at a bad (for N) multiplica-
tive character ρ of some finite extension E/k. This substitute, cf.
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Chapter 16, is Serre’s Frobenius torus attached to the (semisimplified)
Frobenius class FrobssE,ρ, cf. [Se-Let]. In fact, following an idea of
Deligne [Se-Rep, 2.3], we make use only of the archimedean absolute
values of the eigenvalues of FrobE,ρ, and the fact that these absolute
values are not all equal to one (because of the badness of ρ). This ap-
proach breaks down completely for an N which has no bad ρ, i.e., for
an N which is totally wildly ramified at both 0 and ∞. Much remains
to be done.



CHAPTER 2

Convolution of Perverse Sheaves

Let k be a finite field, q its cardinality, p its characteristic, ` 6= p
a prime number, and G/k a smooth commutative groupscheme which
over k becomes isomorphic to Gm/k. We will be concerned with per-
verse sheaves on G/k and on G/k.

We begin with perverse sheaves on G/k ∼= Gm/k. On the derived
category Db

c(Gm/k,Q`) we have two notions of convolution, ! convolu-
tion and ? convolution, defined respectively by

N ?! M := Rπ!(N �M),

N ??M := Rπ?(N �M),

where π : Gm × Gm → Gm is the multiplication map. For neither of
these notions is it the case that the convolution of two perverse sheaves
need be perverse. In our book [Ka-RLS], we addressed this difficulty
by introducing the full subcategory P of all perverse sheaves consisting
of those perverse sheaves N with the property that for any perverse
sheaf M , both convolutions N ?! M and N ??M were perverse. For N
and M both in P , we then defined their middle convolution N ?midM
as

N ?midM := Image(N ?! M → N ??M)

under the natural “forget supports” map. We viewed the perverse
sheaves with P as a full subcategory of the category Perv of all per-
verse sheaves. We showed that a perverse sheaf N lies in P if and
only if it admits no shifted Kummer sheaf Lχ[1] as either subobject or
quotient. In particular, any irreducible perverse sheaf which is not a
shifted Kummer sheaf Lχ[1] lies in P .

One disadvantage of this point of view was that if

0→ A→ B → C → 0

was a short exact sequence of perverse sheaves which all lay in P , it
was not the case that the sequence of their middle convolutions with
an object N in P was necessarily exact.

Gabber and Loeser [Ga-Loe] took a different point of view. They
defined a perverse sheaf N to be negligible if its Euler characteristic

19
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χ(Gm/k,N) vanished. [The negligible N are precisely the objects F [1]
with F a lisse sheaf which is a successive extension of Kummer sheaves
Lχ attached to characters χ of πtame1 (Gm/k), cf. [Ka-ESDE, 8.5.2]
and [Ka-ACT, the end of the proof of 2.5.3].] The negligible N form a
thick [Ga-Loe, 3.6.2] subcategory Neg of the abelian category Perv,
and they showed [Ga-Loe, 3.75] that the quotient category Perv/Neg
was an abelian category on which the two middle convolutions existed,
coincided, and made Perv/Neg into a neutral Tannakian category,
with δ1 as the unit object, M 7→ [x 7→ 1/x]?DM as the dual, and
χ(Gm/k,M) as the dimension. They further showed [Ga-Loe, 3.7.2]
that the composition of the inclusion P ⊂ Perv followed by the passage
to the quotient Perv → Perv/Neg gives an equivalence of categories

P ∼= Perv/Neg

under which middle convolution on P becomes “the” convolution on
Perv/Neg. The upshot for P is while it remains a full subcategory
of Perv, the correct structure of abelian category on it decrees that a
sequence

0→ A
α→→B β→ C → 0

of objects of P is exact if α is injective, β is surjective, β ◦ α = 0,
and Ker(β)/Im(α) is negligible. With this notion of exactness, middle
convolution with a fixed N in P is exact, and middle convolution makes
P into a neutral Tannakian category, cf. [Ga-Loe, Remarque following
3.7.7, page 535]. The notion of an irreducible object of P remains
unchanged; it is an irreducible perverse sheaf which lies in P , i.e., it
is an irreducible perverse sheaf which is not a shifted Kummer sheaf
Lχ[1]. Similarly for the notion of a semisimple object of P ; it is a direct
sum of irreducible perverse sheaves, each of which lies in P (i.e., none
of which is a shifted Kummer sheaf Lχ[1]).

Lemma 2.1. For a semisimple object N ∈ P, the compact cohomology
groups H i

c(Gm/k,N) vanish for i 6= 0.

Proof. We reduce immediately to the case whenN is irreducible. In this
case N is either a delta sheaf δa supported at some point a ∈ Gm(k),
in which case the assertion is obvious, or it is F [1] for F an irreducible
middle extension sheaf which is not a Kummer sheaf, so in particular is
not geometrically constant. Then H i

c(Gm/k,N) = H i+1
c (Gm/k,F), so

we must show that Ha
c (Gm/k,F) vanishes for a 6= 1. Being a middle

extension, F has no nonzero punctual sections, so its H0
c vanishes.

Being geometrically irreducible and not constant gives the vanishing of
its H2

c . �



CHAPTER 3

Fibre Functors

At this point, we introduce the fibre functor suggested by Deligne.
The proof that it is in fact a fibre functor is given in the Appendix.

Theorem 3.1. (Deligne) Denoting by

j0 : Gm/k ⊂ A1/k

the inclusion, the construction

M 7→ H0(A1/k, j0!M)

is a fibre functor on the Tannakian category P.

For any Kummer sheaf Lχ on Gm/k, the operation M 7→M⊗Lχ is
an autoequivalence of P with itself as Tannakian category. So we get
the following corollary.

Corollary 3.2. For any Kummer sheaf Lχ on Gm/k, the construction

M 7→ H0(A1/k, j0!(M ⊗ Lχ))

is a fibre functor ωχ on the Tannakian category P.

Let us say that a Kummer sheaf Lχ on Gm/k is good for the object

N of P if, denoting by j : Gm/k ⊂ P1/k the inclusion, the canonical
“forget supports” map is an isomorphism

Rj!(N ⊗ Lχ) ∼= Rj?(N ⊗ Lχ).

Lemma 3.3. Given a semisimple object N of P and a Kummer sheaf
Lχ on Gm/k, the following conditions are equivalent.

(1) The Kummer sheaf Lχ is good for N .
(2) The natural “forget supports” and “restriction” maps

H0
c (Gm/k,N ⊗ Lχ)→ ωχ(N) := H0(A1/k, j0!(N ⊗ Lχ))

and

ωχ(N) := H0(A1/k, j0!(N ⊗ Lχ))→ H0(Gm/k,N ⊗ Lχ)

are both isomorphisms.

21
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(3) The natural “forget supports” map is an isomorphism

H0
c (Gm/k,N ⊗ Lχ) ∼= H0(Gm/k,N ⊗ Lχ).

Proof. We reduce immediately to the case when N is irreducible. If N
is δt for some point t ∈ Gm(k), then every χ is good for N , all three
conditions trivially hold, and there is nothing to prove. Suppose now
that N is G[1] for G an irreducible middle extension sheaf on Gm/k
which is not a Kummer sheaf. Replacing N by N ⊗ Lχ, we reduce
to the case when χ is the trivial character 1. Then (1) is the state-
ment that the inertia groups I(0) and I(∞) acting on G have neither
nonzero invariants nor coinvariants, i.e., that GI(0) = H1(I(0),G) = 0
and GI(∞) = H1(I(∞),G) = 0. We factor j as j∞ ◦ j0, where j0 is the
inclusion of Gm into A1, and j∞ is the inclusion of A1 into P1. We have
a short exact sequence of sheaves

0→ j!G = j∞!j0!G → j∞?j0!G → GI(∞) → 0,

where GI(∞) is viewed as a punctual sheaf supported at ∞. We view
this as a short exact sequence of perverse sheaves

0→ GI(∞) → j!G[1] = j∞!j0!G[1]→ j∞?j0!G[1]→ 0.

Similarly, we have a short exact sequence of perverse sheaves

0→ j∞?j0!G[1]→ Rj∞?j0!G[1]→ H1(I(∞),G)→ 0,

where now H1(I(∞),G) is viewed as a punctual sheaf supported at∞.
Taking their cohomology sequences on P1, we get short exact sequences

0→ GI(∞) → H0
c (Gm/k,G[1])→ H0(P1/k, j∞?j0!G[1])→ 0

and

0→ H0(P1/k, j∞?j0!G[1])→ H0(A1/k, j0!G[1])→ H1(I(∞),G)→ 0.

Splicing these together, we get a four term exact sequence

0→ GI(∞) → H0
c (Gm/k,G[1])→ H0(A1/k, j0!G[1])→ H1(I(∞),G)→ 0.

A similar argument, starting with Rj∞?j0!G[1], gives a four term exact
sequence

0→ GI(0) → H0(A1/k, j0!G[1])→ H0(Gm/k,G[1])→ H1(I(0),G)→ 0.

These two four term exact sequences show the equivalence of (1) and
(2). It is trivial that (2) implies (3). We now show that (3) implies (1).

Suppose (3) holds. Then the composition of the two maps

H0
c (Gm/k,N)→ H0(A1/k, j0!N)→ H0(Gm/k,N)

is an isomorphism. Therefore the first map is injective, and this implies
that GI(∞) = 0, which in turn implies that H1(I(∞),G) = 0 (since
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GI(∞) and H1(I(∞),G) have the same dimension). And the second
map is surjective, which gives the vanishing of H1(I(0),G), and this
vanishing in turn implies the vanishing of GI(0). �

As noted at the end of the last chapter, an irreducible object of P
is just an irreducible perverse sheaf which lies in P , i.e., it is an irre-
ducible perverse sheaf which is not a Kummer sheaf Lχ[1]. Similarly
for the notion of a semisimple object of P ; it is a direct sum of irre-
ducible perverse sheaves, each of which lies in P (i.e., none of which
is a Kummer sheaf Lχ[1]). Let us denote by Pss the full subcategory
of P consisting of semisimple objects. This is a subcategory stable by
middle convolution (because given two semisimple objects M and N
in P , each is a completely reducible representation of the Tannakian
group Ggeom,M⊕N . This group is reductive, because it has a faithful
completely reducible representation, namely M ⊕N . Then every rep-
resentation of Ggeom,M⊕N is completely reducible, in particular the one
corresponding to M?midN , which is thus a semisimple object in P . For
this category Pss, its inclusion into Perv is exact, and the Tannakian
group Ggeom,N attached to every N in Pss is reductive.

We end this chapter by recording two general lemmas.

Lemma 3.4. For any perverse sheaf N on Gm/k, whether or not in
P, the groups H i(A1/k, j0!N) vanish for i 6= 0, and

dimH0(A1/k, j0!N) = χ(Gm/k,N) = χc(Gm/k,N).

Proof. Every perverse sheaf on Gm/k is a successive extension of finitely
many geometrically irreducible ones, so we reduce to the case when N
is geometrically irreducible. If N is punctual, some δa, the assertion
is obvious. If N is G[1] for an irreducible middle extension sheaf, then
H i(A1/k, j0!N) = H i+1(A1/k, j0!G). The group H2(A1/k, j0!G) van-
ishes because an affine curve has cohomological dimension one, and the
group H0(A1/k, j0!G) vanishes because G has no nonzero punctual sec-
tions on Gm. Once we have this vanishing, we have dimH0(A1/k, j0!N) =
χ(A1/k, j0!N). Then χ(A1/k, j0!N) = χc(A1/k, j0!N) because χ = χc
on a curve (and indeed quite generally, cf. [Lau-CC]). Tautologically
we have χc(A1/k, j0!N) = χc(Gm/k,N), and again χc(Gm/k,N) =
χ(Gm/k,N). �

Lemma 3.5. For any perverse sheaf N on Gm/k, whether or not in
P, the groups H i

c(Gm/k,N) vanish for i < 0 and for i > 1.

Proof. Using the long exact cohomology sequence, we reduce immedi-
ately to the case when N is irreducible. If N is punctual, the assertion
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is obvious. If N is a middle extension F [1], then F has no nonzero
punctual sections, i.e., H−1

c (Gm/k,F [1]) = H0
c (Gm/k,F) = 0; the

groups H i
c(Gm/k,F [1]) = H i+1

c (Gm/k,F) with i ≤ −2 or i ≥ 2 vanish
trivially. �



CHAPTER 4

The Situation over a Finite Field

Let us now turn our attention to the case of a finite field k, and a
groupscheme G/k which is a form of Gm. Concretely, it is either Gm/k
itself, or it is the nonsplit form, defined in terms of the unique quadratic
extension k2/k inside the chosen k as follows: for any k-algebra A,

G(A) := {x ∈ A⊗k k2| NormA⊗kk2/A(x) = 1}.

We denote by Parith the full subcategory of the category Pervarith of
all perverse sheaves on G/k consisting of those perverse sheaves on G/k
which, pulled back to G/k, lie in P . And we denote by Negarith the
full subcategory of Pervarith consisting of those objects which, pulled
back to G/k, lie in Neg. Then once again we have

Parith ∼= Pervarith/Negarith,

which endows Parith with the structure of abelian category. Thus a
sequence

0→ A
α→→B β→ C → 0

of objects of Parith is exact if and only if it is exact when pulled back to
G/k; equivalently, if and only if α is injective, β is surjective, β ◦α = 0,
and Ker(β)/Im(α) lies in Negarith.

An irreducible object in Parith is an irreducible object in Pervarith
which is not negligible, i.e., whose pullback to G/k has nonzero Euler
characteristic.

Middle convolution then endows Parith with the structure of a neu-
tral Tannakian category, indeed a subcategory of P such that the in-
clusion Parith ⊂ P is exact and compatible with the tensor structure.

Recall [BBD, 5.3.8] that an object N in Parith which is ι-pure of
weight zero is geometrically semisimple, i.e., semisimple when pulled
back to G/k. Recall also that the objects N in Parith which are ι-pure
of weight zero are stable by middle convolution and form a full Tan-
nakian subcategory Parith,ι wt=0 of Parith. [Indeed, if M and N in Parith
are both ι-pure of weight zero, then M �N is ι-pure of weight zero on
Gm×Gm, hence by Deligne’s main theorem [De-Weil II, 3.3.1] M?!N
is ι-mixed of weight ≤ 0, and hence M?midN , as a perverse quotient
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of M?!N , is also ι-mixed of weight ≤ 0, cf. [BBD, 5.3.1]. But the
Verdier dual D(M?midN) is the middle convolution DM?midDN (be-
cause duality interchanges Rπ! and Rπ?), hence it too is ι-mixed of
weight ≤ 0.]

This same stability under middle convolution holds for the objects
N in Parith which are geometrically semisimple, resp. which are arith-
metically semisimple, giving full Tannakian subcategories Parith,gss,
resp. Parith,ss. Thus we have full Tannakian subcategories

Parith,ι wt=0 ⊂ Parith,gss ⊂ Parith
and

Parith,ss ⊂ Parith,gss ⊂ Parith.
Also the objects which are both ι-pure of weight zero and arithmetically
semisimple form a full Tannakian subcategory Parith,ι wt=0,ss.

Pick one of the two possible isomorphisms of G/k with Gm/k,
viewed as A1/k \ 0. Denote by j0 : Gm/k ⊂ A1/k the inclusion, and
denote by ω the fibre functor on Parith defined by

N 7→ ω(N) := H0(A1/k, j0!N).

The definition of this ω depends upon the choice of one of the two k-
points at infinity on the complete nonsingular model, call it X, of G/k.
If G/k is already Gm/k, then these two points at infinity on X are both
k-rational. But if G/k is nonsplit, these two points at infinity are only
k2-rational, and they are interchanged by Frobk. So it is always the
case that Frobk2 acts on ω(N), but Frobk may not act.

Theorem 4.1. Suppose that N in Parith is ι-pure of weight zero and
arithmetically semisimple. Then the following six conditions are equiv-
alent.

(1) For j : G/k ⊂ X/k the inclusion of G/k into its complete non-
singular model, the “forget supports” map is an isomorphism
j!N ∼= Rj?N .

(2) The natural “forget supports” and restriction maps

H0
c (G/k,N)→ ω(N)→ H0(G/k,N)

are both isomorphisms.
(3) The cohomology group ω(N) is ι-pure of weight zero for the

action of Frobk2.
(3bis) The cohomology group H0

c (G/k,N) is ι-pure of weight zero for
the action of Frobk (or equivalently, for the action of Frobk2).

(4) For every object M in <N>arith, ω(M) is ι-pure of weight zero
for the action of Frobk2.



4. THE SITUATION OVER A FINITE FIELD 27

(4bis) For every object M in <N>arith, the cohomology group H0
c (G/k,M)

is ι-pure of weight zero for the action of Frobk (or equivalently,
for the action of Frobk2).

(5) For every object M in <N>arith, the “forget supports” map is
an isomorphism j!M ∼= Rj?M .

(6) For every object M in <N>arith , the natural “forget supports”
and restriction maps

H0
c (G/k,M) 7→ ω(M)→ H0(G/k,M)

are both isomorphisms.

When these equivalent conditions hold, the construction

M 7→ H0
c (G/k,M)

is a fibre functor on <N>arith, on which Frobk acts and is ι-pure of
weight zero.

Proof. We first show that (1), (2), and (3) are equivalent. Since N is
arithmetically semisimple, we reduce immediately to the case when N
is arithmetically irreducible. If N is punctual, each of (1), (2), and (3)
holds, so there is nothing to prove. So it suffices to treat the case when
M is G[1] for an arithmetically irreducible middle extension sheaf G
which is ι-pure of weight −1. As we saw in the proof of Lemma 3.3,
we have four term exact sequences

0→ GI(∞) → H0
c (Gm/k,G[1])→ H0(A1/k, j0!G[1])→ H1(I(∞),G)→ 0

and

0→ GI(0) → H0(A1/k, j0!G[1])→ H0(Gm/k,G[1])→ H1(I(0),G)→ 0.

In particular, we have an injection

GI(0) ⊂ H0(A1/k, j0!G[1])

and a surjection

H0(A1/k, j0!G[1]) � H1(I(∞),G).

Now (1) holds for G[1] if and only if we have either of the following
two equivalent conditions:

(a) GI(0) = 0 = H1(I(0),G) and GI(∞) = 0 = H1(I(∞),G).
(b) GI(0) = 0 and H1(I(∞),G) = 0.

[That (a) and (b) are equivalent results from the fact that dimGI(0) =
dimH1(I(0),G) and dimGI(∞) = dimH1(I(∞),G).] So if (1) holds,
then (a) holds, and the above four term exact sequences show that (2)
holds. If (2) holds, then the “forget supports” map

H0
c (G/k,N)→ H0(G/k,N)
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is an isomorphism, which implies that each is ι-pure of weight zero
(the source being mixed of weight ≤ 0 and the target being mixed of
weight ≥ 0), and hence (3) holds. If (3) holds, we claim that (b) holds.
Indeed, the four term exact sequences above give us an injection

GI(0) ⊂ H0(A1/k, j0!G[1])

and a surjection

H0(A1/k, j0!G[1]) � H1(I(∞),G).

But GI(0) has ι-weight ≤ −1, so must vanish, and H1(I(∞),G) has ι-
weight≥ 1, so also must vanish, exactly because ω(M) = H0(A1/k, j0!G[1])
is ι-pure of weight zero.

We next show that (1) and (3bis) are equivalent. We have (1)
implies (3bis) (the source is mixed of weight ≤ 0, and the target is
mixed of weight ≥ 0). If (3bis) holds, we infer (1) as follows. The
question is geometric, so we may reduce to the case where G is Gm.
Then on P1 we have the short exact sequence

0→ j!G → j?G → δ0 ⊗ V
⊕

δ∞ ⊗W → 0,

with V and W representations of Gal(k/k) which, by [De-Weil II,
1.81], are mixed of weight ≤ −1. Because G[1] has P , G has no constant
subsheaf, and so the group H0(P1, j?G) vanishes. So the cohomology
sequence gives an inclusion

V ⊕W ⊂ H1
c (G/k,G) := H0

c (G/k,N).

As the second group is pure of weight 0, we must have V = W = 0.
Thus we have

j!G ∼= j?G,
and this in turn implies that

j!G ∼= Rj?G.

Each object M in <N>arith is itself ι-pure of weight zero and arith-
metically semisimple, so applying the argument above object by object
we get the equivalence of (4), (4bis), (5), and (6). Trivially (5) implies
(2). Conversely, if (2) holds, then (5) holds. Indeed, it suffices to check
(5) for each arithmetically irreducible object M in <N>arith, (i.e., for
any irreducible representation of the reductive group Garith,N), but any
such M is a direct factor of some multiple middle convolution of N and
its dual, so its ω(M) lies in some ω(N)⊗r ⊗ (ω(N)∨)⊗s, so is ι-pure of
weight zero.

Once we have (4) and (6), the final conclusion is obvious. �
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Given a finite extension field E/k, and a Q×` -valued character ρ
of the group G(E), we have the Kummer sheaf Lρ on G/E, defined
by pushing out the Lang torsor 1 − FrobE : G/E → G/E, whose
structural group is G(E), by ρ. For L/E a finite extension, and ρL :=
ρ ◦ NormL/E, the Kummer sheaf LρL on G/L is the pullback of Lρ
on G/E. Pulled back to G/k, the Kummer sheaves Lρ are just the

characters of finite order of the tame fundamental group πtamei (G/k);
here we view this group as the inverse limit, over finite extensions E/k,
of the groups G(E), with transition maps provided by the norm.

We say that a character ρ of some G(E) is good for an object N in
Parith if this becomes true after extension of scalars to G/k, i.e., if the
“forget supports” map is an isomorphism j!(N ⊗ Lρ) ∼= Rj?(N ⊗ Lρ).
As an immediate corollary of the previous theorem, applied to N ⊗Lρ
on G/E, we get the following.

Corollary 4.2. Suppose N in Parith is ι-pure of weight zero and arith-
metically semisimple. If a character ρ of some G(E) is good for N ,
then for every M in <N>arith, H0

c (G/k,M ⊗ Lρ) is ι-pure of weight
zero for FrobE, and the construction

M 7→ H0
c (G/k,M ⊗ Lρ)

is a fibre functor on <N>arith, on which FrobE acts and is ι-pure of
weight zero.





CHAPTER 5

Frobenius Conjugacy Classes

Let G/k be a form of Gm, and N in Parith an object which is ι-pure
of weight zero and arithmetically semisimple. If G/k is Gm/k, then we
have the fibre functor on <N>arith given by

M 7→ ω(N) := H0(A1/k, j0!M),

on which Frobk operates. And for each finite extension field E/k and
each character χ of G(E), we have the fibre functor ωχ on <N>arith

given by
ωχ(M) := ω(M ⊗ Lχ),

on which FrobE operates. This action of FrobE on ωχ gives us an
element in the Tannakian group Garith,N,ωχ for <N>arith, and so a
conjugacy class FrobE,χ in the reference Tannakian group Garith,N :=
Garith,N,ω. By the definition of this conjugacy class, we have an identity
of characteristic polynomials

det(1− TFrobE,χ|ω(N)) = det(1− TFrobE|ωχ(N)).

When G/k is the nonsplit form, then the definition of ω depends
upon a choice, and so in general only Frobk2 acts on it. For a finite
extension field E/k and a character χ of G(E), we have the fibre functor
ωχ on <N>arith given by

ωχ(M) := ω(M ⊗ Lχ),

but we have FrobE acting on it only if either deg(E/k) is even (in
which case G/E is Gm/E) or if χ is good for N , in which case ωχ is
the fibre functor

M 7→ H0
c (G/k,M ⊗ Lχ),

on which FrobE acts. So we get conjugacy classes FrobE,χ in the
reference Tannakian group Garith,N when either χ is good for N or
when E/k has even degree. And again here we have an identity of
characteristic polynomials

det(1− TFrobE,χ|ω(N)) = det(1− TFrobE|ωχ(N)).

In either the split or nonsplit case, when χ is good for N , the con-
jugacy class FrobE,χ has unitary eigenvalues in every representation of
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the reductive group Garith,N . Now fix a maximal compact subgroup K
of the complex reductive group Garith,N(C). As explained in the intro-
duction, the semisimple part (in the sense of Jordan decomposition) of
FrobE,χ gives rise to a well-defined conjugacy class θE,χ in K.

As we will see later when we try to compute examples, the Frobenius
conjugacy classes FrobE,χ in Garith,N attached to χ’s which are not
good for N will also play a key role, providing a substitute for local
monodromy. But for the time being we focus on the classes θE,χ in K.



CHAPTER 6

Group-theoretic Facts about Ggeom and Garith

Theorem 6.1. Suppose N in Parith is geometrically semisimple. Then
Ggeom,N is a normal subgroup of Garith,N .

Proof. Because N is geometrically semisimple, the group Ggeom,N is
reductive, so it is the fixer of its invariants in all finite dimensional
representations of the ambient Garith,N . By noetherianity, there is a
finite list of representations of Garith,N such that Ggeom,N is the fixer of
its invariants in these representations. Taking the direct sum of these
representations, we get a single representation of Garith,N such that
Ggeom,N is the fixer of its invariants in that single representation. This
representation corresponds to an object M in <N>arith, and a Ggeom,N -
invariant in that representation corresponds to a δ1 sitting insideMgeom.
So the entire space of Ggeom,N -invariants corresponds to the subobject
Homgeom(δ1,M)⊗δ1 ofM . [This is an arithmetic subobject, of the form

(a Gal(k/k)-representation)⊗δ1.] Thus the space of Ggeom,N -invariants
is Garith,N -stable (because it corresponds to an arithmetic subobject of
M). But the fixer of any Garith,N -stable subspace in any representation
of Garith,N is a normal subgroup of Garith,N . �

Theorem 6.2. Suppose that N in Parith is arithmetically semisimple
and pure of weight zero (i.e., ι-pure of weight zero for every ι). If
Garith,N is finite, then N is punctual. Indeed, if every Frobenius conju-
gacy class FrobE,χ in Garith,N is quasiunipotent (:= all eigenvalues are
roots of unity), then N is punctual.

Proof. We argue by contradiction. If N is not punctual, it has a non-
punctual irreducible constituent. The Garith of this constituent is a
quotient of Garith,N which inherits the quasiunipotence property. So
we reduce to the case when N is G[1] for an (arithmetically irreducible,
but we will not use this) middle extension sheaf G which is pure of
weight −1. As every FrobE,χ is quasiunipotent, in particular it has
unitary eigenvalues, so every fibre functor ωχ is pure of weight zero,
and hence every χ is good for N , and its fibre functor is just

ωχ(M) ∼= H0
c (G/k,M ⊗ Lχ).
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On some dense open set U ⊂ G, G|U is a lisse sheaf on U , pure of
weight −1 and of some rank r ≥ 1. For any large enough finite field
extension E/k, U(E) is nonempty. Pick such an E/k of even degree,
and a point a ∈ U(E). For each character χ of G(E) ∼= E×, we have

Trace(FrobE,χ|ω(N)) = Trace(FrobE|H0
c (G/k,G[1]⊗ Lχ)

= −
∑

t∈G(E)

χ(t)Trace(FrobE,t|G).

By multiplicative Fourier inversion, we get

#G(E)Trace(FrobE,a|G) = −
∑

χ char of G(E)

χ(a)Trace(FrobE,χ|ω(N)).

And for the finite extension En/E of degree n, we get

#G(En)Trace((FrobE,a)
n|G) = −

∑
χ char of G(En)

χ(a)Trace(FrobEn,χ|ω(N)).

For each n, #G(En) = (#E)n − 1. So in terms of the r eigenvalues
α1, ..., αr of FrobE,a|G, we find that for every n ≥ 1, the quantity

((#E)n − 1)(
∑
i

(αi)
n)

is a cyclotomic integer (because each FrobEn,χ|ω(N) is quasiunipotent).
From the relation of the first r Newton symmetric functions to the

standard ones, we see that the characteristic polynomial of FrobE,a|G
has coefficients in some cyclotomic field, call it L. Hence all Newton
symmetric functions of the αi lie in L. Now consider the rational
function of one variable T ,∑

i

1/(1− αiT )−
∑
i

1/(1− (#E)αiT ) =
∑
n≥1

AnT
n,

where the coefficients An = −((#E)n − 1)(
∑

i(αi)
n) are, on the one

hand, cyclotomic integers, and on the other hand lie in the fixed cy-
clotomic field L. Therefore the An lie in OL, the ring of integers in
L. Therefore the power series around 0 for this rational function con-
verges λ-adically in |T |λ < 1, for every nonarchimedean place λ of any
algebraic closure of L.

By purity, each αi has complex absolute value 1/
√

#E, and hence
for all i, j we have αi 6= (#E)αj. So there is no cancellation in the
expression ∑

i

1/(1− αiT )−
∑
i

1/(1− (#E)αiT )
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of our rational function. Hence for each i, 1/αi is a pole. Therefore we
have

|1/αi|λ ≥ 1

for each nonarchimedean λ, which is to say

|αi|λ ≤ 1

for each nonarchimedean λ. Thus each αi is an algebraic integer (in
some finite extension of L). But every archimedean absolute value of
αi is 1/

√
#E < 1. This violates the product formula, and so achieves

the desired contradiction. �

Corollary 6.3. Suppose that N in Parith is arithmetically semisimple
and pure of weight zero (i.e., ι-pure of weight zero for every ι). Suppose
further that its Tannakian determinant M := “ det ”(N) has Ggeom,M

finite. If the group Garith,N/(Garith,N ∩ scalars) is finite, then N is
punctual. Indeed, if every Frobenius conjugacy class FrobE,χ in Garith,N

has a power which has all equal eigenvalues, then N is punctual.

Proof. M := “ det ”(N) is a one-dimensional object, i.e., an object of
<N>arith with χ(Gm/k,M) = 1. One knows [Ka-ESDE, 8.5.3] that
the only such objects on G/k ∼= Gm/k are either punctual objects δa
for some a ∈ G(k), or are multiplicative translates of hypergeometric
sheaves H(ψ, χ1, ..., χn; ρ1, ..., ρm)[1], where Max(n,m) ≥ 1 and where,
for all i, j, we have χi 6= ρj. But such a hypergeometric sheaf has its
Ggeom equal to the group GL(1). Indeed, by [Ka-ESDE, 8.2.3] and
[Ka-ESDE, 8.4.2 (5)], for any integer r ≥ 1, the r-fold middle convo-
lution of H(ψ, χ1, ..., χn; ρ1, ..., ρm)[1] with itself is the hypergeometric
sheaf of type (rn, rm) given by

H(ψ, each χi repeated r times; each ρj repeated r times)[1].

Thus no Tannakian tensor power of H(ψ, χ1, ..., χn; ρ1, ..., ρm)[1] is triv-
ial, so its Ggeom must be the entire group GL(1).

Therefore M , having finite Ggeom, is geometrically some δa, for some

a ∈ G(k). But M lies in <N>arith, so we must have a ∈ G(k), and M
is arithmetically αdeg ⊗ δa, for some unitary α.

The statement to be proven, that N is punctual, is a geometric
one. And our hypotheses remain valid if we pass from k to any finite
extension field E/k. Doing so, we may reduce to the case when G/k is
split. Let us denote by d = “ dim ”N := χ(Gm/k,N) the “dimension”
of N . Choose a d’th root β of 1/α, and a d’th root b of 1/a in some
finite extension field of k. Again extending scalars, we may reduce to
the case when b ∈ k×. Now consider the object N ?mid (βdeg ⊗ δb), on
G/k. This object satisfies all our hypotheses, but now its determinant
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is arithmetically trivial. So if every FrobE,χ has a power with equal
eigenvalues, those equal eigenvalues must be d’th roots of unity, since
the determinant is 1. Hence every FrobE,χ is quasiunipotent, and we
conclude by the previous result that N ?midβ

deg⊗δb is punctual. Hence
N itself is punctual. �

Theorem 6.4. Suppose that N in Parith is arithmetically semisimple
and pure of weight zero (i.e., ι-pure of weight zero for every ι). If
Ggeom,N is finite, then N is punctual.

Proof. We argue by contradiction. If N is not punctual, it has some
arithmetically irreducible constituent M which is not punctual. Then
Ggeom,M is finite, being a quotient of Ggeom,N . So we are reduced to
the case when M is arithmetically irreducible, of the form G[1] for an
arithmetically irreducible middle extension sheaf G.

We wish to reduce further to the case in which G is geometrically
irreducible. Think of G as the extension by direct image of an arith-
metically irreducible lisse sheaf F on a dense open set U ⊂ G. If
F|πgeom1 (U) is

⊕
niFi, with the Fi inequivalent irreducible represen-

tations of πgeom1 (U), then πarith1 (U) must transitively permute the iso-
typical components niFi. Passing to a finite extension field E/k, we
reduce to the case when each isotypical component niFi is a πarith1 (U)-
representation.

Passing to one isotypical component, we reduce to the case when
N is geometrically G[1] for a middle extension sheaf G, itself the ex-
tension by direct image of a lisse sheaf F on U/k such that F = nF1

is geometrically isotypical. Because we have extended scalars, F may
not be arithmetically irreducible, but each of its arithmetically irre-
ducible constituents is itself geometrically isotypical, of the form nF1

for some possibly lower value of n. So it suffices to treat the case in
which F is both arithmetically irreducible and geometrically isotypical
(i.e., geometrically nF1 for some geometrically irreducible F1 and some
n ≥ 1). We claim that in fact n = 1, i.e., that F is geometrically irre-
ducible. To see this, we argue as follows. Consider the dense subgroup
Γ of πarith1 (U) is given by the semidirect product Γ := πgeom1 (U) o F Z,
where we take for F an element of degree one in πarith1 (U). Because
Γ is dense in πarith1 (U), F is Γ-irreducible. So the isomorphism class
of F1 must be invariant by Γ. In other words, F1 is a representation
of πgeom1 (U) whose isomorphism class is invariant by F , and hence F1

admits a structure of Γ-representation. As representations of Γ, we
have

F ∼= F1 ⊗Homgeom(F1,F).
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Here Homgeom(F1,F) is an F Z-representation. It must be irreducible,
because F is Γ-irreducible. But n = dimHomgeom(F1,F), hence n = 1
(because every irreducible representation of the abelian group F Z has
dimension one). Therefore F itself is geometrically irreducible, and so
G[1] is geometrically irreducible.

So our situation is that we have an object N = G[1] which is
both arithmetically and geometrically irreducible, pure of weight zero,
and whose Ggeom,N is finite. Therefore its Tannakian determinant
M := det(N) has Ggeom,M finite. Now Ggeom,N acts irreducibly in the
representation corresponding to N . But Ggeom,N is normal in Garith,N ,
so every element of Garith,N normalizes the finite irreducible group
Ggeom,N . But Aut(Ggeom,N) is certainly finite, so a (fixed) power of ev-
ery element in Garith,N commutes with the irreducible group Ggeom,N , so
is scalar. In particular, each FrobE,χ has a power which is scalar. The
desired contradiction then results from the previous Corollary 6.3. �

Theorem 6.5. Suppose that N in Parith is arithmetically semisimple
and pure of weight zero (i.e., ι-pure of weight zero for every ι). Then
the group Ggeom,N/G

0
geom,N of connected components of Ggeom,N is cyclic

of some prime to p order n. Its order n is the order of the group

{ζ ∈ k×|δζ ∈< N >geom}.
The irreducible punctual objects in < N >geom are precisely the objects

δζ with ζ ∈ µn(k).

Proof. Since Ggeom,N is normal in Garith,N , G0
geom,N is also normal in

Garith,N . So we may take a faithful representation of the quotient group
Garith,N/G

0
geom,N ; this is an object M in Parith which is arithmetically

semisimple and pure of weight zero, and whose Ggeom,M is given by
Ggeom,M = Ggeom,N/G

0
geom,N . Hence M is punctual, so geometrically

a direct sum of finitely many objects δai for various ai in k
×

. But
each ai lies in a finite field, hence the group generated by the ai is

a finite subgroup of k
×

, so it is the group µn(k) for some prime to
p integer n. So the objects in <M>geom are just the direct sums of

finitely many objects δζi , for various ζi ∈ µn(k), i.e., they are the
representations of Z/nZ. But this sameM is a faithful representation of
the smaller group Ggeom,N/G

0
geom,N . Hence Ggeom,N/G

0
geom,N = Z/nZ,

and the irreducible punctual objects in < N >geom are precisely the

objects δζ with ζ ∈ µn(k). �

Corollary 6.6. Suppose that N in Parith is arithmetically semisimple
and pure of weight zero (i.e., ι-pure of weight zero for every ι). Then
G0
geom,N , viewed inside Ggeom,N , is the fixer of all punctual objects in
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<N>geom. In particular, Ggeom,N is connected if and only if the only
irreducible punctual object in <N>geom is δ1.

Proof. Because G0
geom,N is normal in the reductive group Ggeom,N , it

is itself reductive, so is the fixer of its invariants in <N>geom. We
must show that its invariants there are precisely the punctual objects
in <N>geom.

Any punctual object in <N>geom is a sum of objects δζ , with ζ ∈ k×

(necessarily) a root of unity, so G0
geom,N acts trivially on any punctual

object in <N>geom. Conversely, suppose L ∈ <N>geom is an irre-
ducible object on which G0

geom,N acts trivially. We must show that L is
punctual. In any case, L, like any irreducible object of <N>geom, is ge-
ometrically a direct factor of some object of <N>arith, indeed of some
direct sum of multiple middle convolutions of N and its Tannakian dual
N∨. So L is geometrically a direct factor of some arithmetically irre-
ducible object M of <N>arith. If M is punctual, then L is punctual. If
M is not punctual, we get a contradiction as follows: if M is not punc-
tual, then it is j?F [1] for some arithmetically irreducible lisse sheaf on
some dense open set j : U ⊂ G. Exactly as in the proof of Theorem
6.4, after a finite extension of the ground field, we reduce to the case
when M is geometrically irreducible, hence geometrically isomorphic to
L. But M is not punctual, so not fixed by G0

geom,N , contradiction. �



CHAPTER 7

The Main Theorem

Lemma 7.1. Let G/k be a form of Gm, and N in Parith ι-pure of weight
zero and arithmetically semisimple. The quotient group Garith,N/Ggeom,N

is a group of multiplicative type, in which a Zariski dense subgroup is
generated by the image of any single Frobenius conjugacy class Frobk,χ.
If the quotient is finite, say of order n, then it is canonically Z/nZ, and
the image in this quotient of any Frobenius conjugacy class FrobE,χ is
deg(E/k) mod n.

Proof. Representations of the quotient Garith,N/Ggeom,N are objects in
<N>arith which are geometrically trivial, i.e., those objects V ⊗ δ1,
for V some completely reducible representation of Gal(k/k), which lie
in <N>arith. Such an object is a finite direct sum of one-dimensional
objects αdegi ⊗ δ1, for unitary scalars αi. Take such an object which is
a faithful representation Λ of the quotient Garith,N/Ggeom,N , say V =

⊕di=1α
deg
i ⊗δ1. Then the quotient Garith,N/Ggeom,N is the Zariski closure,

in GL(1)d of the subgroup generated by Λ(Frobk) = (α1, ..., αd). If this
quotient is finite of order n, it is cyclic. Concretely, this means that the
αi are each n’th roots of unity, and that they generate the group µn(Q`).
The image of a Frobenius conjugacy class FrobE,χ in this representation

is just (α
deg(E/k)
1 , ..., α

deg(E/k)
d ), which is Λ(Frobk)

deg(E/k). �

Let us now consider an object N in Parith which is ι-pure of weight
zero and arithmetically semisimple, and such that the quotient group
Garith,N/Ggeom,N is Z/nZ. Choose a maximal compact subgroup Kgeom

of the reductive Lie group Ggeom,N(C). Because Kgeom is a compact
subgroup of Garith,N(C), we may choose a maximal compact subgroup
Karith of Garith,N such that Kgeom ⊂ Karith. Notice that Kgeom is the
intersection Ggeom,N ∩Karith; indeed, this intersection is compact, lies
in Ggeom,N , and contains Kgeom, so by maximality of Kgeom it must be
Kgeom. Because Karith is Zariski dense in Garith,N , it maps onto the
finite quotient Z/nZ, and the kernel is Kgeom.

So our situation is that Kgeom is a normal subgroup of Karith, with
quotient Karith/Kgeom = Z/nZ. For each integer d mod n, we denote
by Karith,d ⊂ Karith the inverse image of d mod n. In terms of any
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element γd ∈ Karith of degree d, Karith,d is the coset γdKgeom. Because

Z/nZ is abelian, the space K#
arith of conjugacy classes in Karith maps

onto Z/nZ. For each integer d mod n, we denote by K#
arith,d ⊂ K#

arith

the inverse image of d mod n. Concretely, K#
arith,d is the quotient

set of Karith,d by the conjugation action of the ambient group Karith.
Denote by µ the Haar measure dk on Karith of total mass n, i.e., the
Haar measure which gives Kgeom total mass one, and denote by µ# its

direct image on K#
arith. For each integer d mod n, we denote by µ#

d the

restriction of µ# to K#
arith,d. We denote by i?µ

#
d the extension by zero

of µ#
d to K#

arith.

Theorem 7.2. Suppose N in Parith ι-pure of weight zero and arith-
metically semisimple, such that the quotient group Garith,N/Ggeom,N is
Z/nZ. Fix an integer d mod n. Then as E/k runs over larger and
larger extension fields whose degree is d mod n, the conjugacy classes
{θE,ρ}good ρ become equidistributed in the space K#

arith,d for the mea-

sure µ#
d of total mass one. Equivalently, as E/k runs over larger and

larger extension fields whose degree is d mod n, the conjugacy classes
{θE,ρ}good ρ become equidistributed in the space K#

arith for the measure

i?µ
#
d of total mass one.

Proof. We must show that for any continuous central function f on
Karith and for any integer d mod n, we can compute

∫
Karith,d

f(k)dk

as the limit, as E/k runs over larger and larger extension fields whose
degree is d mod n, large enough that the set Good(E,N) is nonempty,
of the sums

1/#Good(E,N)
∑

ρ∈Good(E,N)

f(θE,ρ).

[Remember that we are using the Haar measure dk on Karith of total
mass n, so that each Karith,d has measure one.] By the Peter-Weyl
theorem, any such f is a uniform limit of finite linear combinations of
traces of irreducible representations of Karith. So it suffices to check
when f is the trace of an irreducible representation ΛK of Karith. If ΛK

is the trivial representation, both the integral and each of the sums is
identically 1.

So it remains to show that for any irreducible nontrivial repre-
sentation ΛK of Karith, and for any integer d mod n, we can compute∫
Karith,d

Trace(ΛK(k))dk as the limit, as E/k runs over larger and larger

extension fields whose degree is d mod n, large enough that the set
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Good(E,N) is nonempty, of the sums

1/#Good(E,N)
∑

ρ∈Good(E,N)

Trace(ΛK(θE,ρ)).

The representation ΛK is the restriction toKarith of a unique irreducible
nontrivial representation Λ of Garith,N . Denote by M the arithmetically
irreducible nontrivial object corresponding to Λ.

BecauseGgeom,N is a normal subgroup ofGarith,N , the space ΛGgeom,N

ofGgeom,N -invariants in Λ is a subrepresentation, so byGarith,N -irreducibility
it is either Λ or 0. We now treat the two cases separately.

Suppose first that Ggeom,N acts trivially. Then Λ is a nontrivial
irreducible representation of Z/nZ, so it is αdeg⊗ δ1 for some n’th root
of unity α 6= 1. Then∫

Karith,d

Trace(Λ(k))dk = αd.

And for any E/k whose degree is d mod n and large enough that the
set Good(E,N) is nonempty, we have an identity

1/#Good(E,N)
∑

ρ∈Good(E,N)

Trace(Λ(θE,ρ)) = αd,

indeed each individual summand Trace(Λ(θE,ρ)) = αd.
Next suppose that ΛGgeom,N = 0. Then for any integer d mod n, we

claim that ∫
Karith,d

Trace(Λ(k))dk = 0.

Indeed, if we fix an element γ ∈ Karith,d, then Karith,d = γKgeom, so
this integral is∫

Kgeom

Trace(Λ(γk))dk =

∫
Kgeom

Trace(Λ(kγ))dk.

This last integral is, in turn, the trace of the integral operator on the
representation space V of Λ given by

v 7→
∫
Kgeom

Λ(k)(Λ(γ)(v))dk.

But the integral operator

w 7→
∫
Kgeom

Λ(k)(w)dk.

is just the projection onto the space V Ggeom,N = 0 of Ggeom,N -invariants
in Λ. So this operator vanishes, and so also its trace vanishes.
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We will now show that as E/k runs over larger and larger extensions
of any degree, we have

(1/#Good(E,N))
∑

ρ∈Good(E,N)

Trace(Λ(θE,ρ)) = O(1/
√

#E).

For good ρ, the term Trace(Λ(θE,ρ)) is

Trace(FrobE|H0
c (G/k,M ⊗ Lρ)).

For any ρ, the cohomology groups H i
c(G/k,M ⊗ Lρ) vanish for i 6= 0,

cf. Lemma 2.1, so the Lefschetz Trace formula [Gr-Rat] gives

Trace(FrobE|H0
c (G/k,M ⊗ Lρ)) =

∑
s∈G(E)

ρ(s)Trace(FrobE,s|M).

By the main theorem [De-Weil II, 3.3.1] of Deligne’s Weil II,H0
c (G/k,M⊗

Lρ) is ι-mixed of weight ≤ 0, so we have the estimate

|Trace(FrobE|H0
c (G/k,M ⊗ Lρ))| ≤ “ dim ”(M).

So the sum

(1/#Good(E,N))
∑

ρ∈Good(E,N)

Trace(Λ(θE,ρ))

is within O(1/#E) of the sum

(1/#G(E))
∑

ρ∈G(E)∨

Trace(FrobE|H0
c (G/k,M ⊗ Lρ)).

More precisely, we have

(1/#Good)
∑
Good

= (1/#All)
∑
All

+(1/#Good− 1/#All)
∑
All

−(1/#Good)
∑
Bad

.

Expanding each summand by the Lefschetz Trace formula [Gr-Rat],
we see that the first sum (1/#All)

∑
All is

Trace(FrobE,1|M).

The second term is

(1/#Good− 1/#All)
∑
All

= (#Bad/#Good)Trace(FrobE,1|M).
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The final term is bounded by

| − (1/#Good)
∑
Bad

| ≤ (#Bad/#Good)“ dim ”(M).

Here we must distinguish two subcases. It may be that M , the
object corresponding to Λ, is punctual. In that case, as M is not
geometrically trivial, it must be αdeg⊗δZ for Z a closed point ofG which
is not the closed point 1. Then Trace(FrobE,1|M) = 0. If M is not
punctual, then it is F [1] for an (arithmetically irreducible, but we will
not use this) middle extension sheaf which is ι-pure of weight −1. Then
Trace(FrobE,1|M) = −Trace(FrobE,1|F) has | − Trace(FrobE,1|F)| ≤
rk(F1)/

√
#E) ≤ gen.rk(F1)/

√
#E), by [De-Weil II, 1.8.1], where we

have written gen.rk(F) for the rank of the restriction of F to a dense
open set where it is lisse. �

In the special case when Ggeom,N = Garith,N , we get the following
theorem and its corollary.

Theorem 7.3. Let G/k be a form of Gm, and N in Parith ι-pure of
weight zero and arithmetically semisimple. Choose a maximal compact
subgroup K of the reductive Lie group Garith,N(C). Suppose that we
have an equality of groups

Ggeom,N = Garith,N .

Then as E/k runs over larger and larger finite extension fields, the
conjugacy classes {θE,ρ}good ρ become equidistributed in the space K#

of conjugacy classes in K, for the induced Haar measure of total mass
one.

Corollary 7.4. As E/k runs over larger and larger finite extension
fields, the sums {S(N,E, ρ)}good ρ defined by

S(N,E, ρ) :=
∑

t∈G(E)

ρ(t)Trace(FrobE,t|N),

become equidistributed in C for the probability measure which is the
direct image by the Trace map

Trace : K → C
of Haar measure of total mass one on K.

Remark 7.5. Suppose we are in the situation of Theorem 7.3. Let us
denote by Bad(N) the finite set of characters of πtame1 (Gm⊗k k) which
are bad for N . For any object M in Pgeom, let us denote by gen.rk(M)
the integer defined as follows: on an open dense set U of Gk, M is
F [1] for some lisse sheaf F on U , and we define the rank of F to be
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gen.rk(M). Suppose E is large enough that #Bad(N) ≤
√

#E − 1.
Then for an irreducible nontrivial representation Λ of Garith,N , corre-
sponding to an object M ∈ Pgeom, the proof gives the explicit estimate

|(1/#Good(E,N))
∑

ρ∈Good(E,N)

Trace(Λ(θE,ρ)|

≤ (1 + 1/
√

#E)(gen.rk(M) + “ dim ”(M))/
√

#E.



CHAPTER 8

Isogenies, Connectedness, and Lie-irreducibility

For each prime to p integer n, we have the n’th power homomor-
phism [n] : G→ G. Formation of the direct image

M 7→ [n]?M

is an exact functor from Perv to itself, which maps Neg to itself, P to
itself, and which (because a homomorphism) is compatible with middle
convolution:

[n]?(M ?mid N) ∼= ([n]?M) ?mid ([n]?N).

So for a given object N in Parith, [n]? allows us to view <N>arith as a
Tannakian subcategory of <[n]?N>arith, and <N>geom as a Tannakian
subcategory of <[n]?N>geom. For the fibre functor ω defined (after a

choice of isomorphism G/k ∼= Gm/k) by

N 7→ ω(N) := H0(A1/k, j0!N),

we have canonical functorial isomorphisms

ω(N) = ω([n]?N).

So with respect to these fibre functors we have inclusions of Tannakian
groups

Ggeom,[n]?N ⊂ Ggeom,N

and

Garith,[n]?N ⊂ Garith,N .

Theorem 8.1. Suppose that N in Pgeom is semisimple and that n is a
prime to p integer. Then Ggeom,[n]?N is a normal subgroup of Ggeom,N .
The quotient group Ggeom,N/Ggeom,[n]?N is the cyclic group Z/dZ with

d := #{ζ ∈ µn(k)| δζ ∈ <N>geom},

and Ggeom,[n]?N , seen inside Ggeom,N , is the fixer of the objects

{δζ ∈ <N>geom | ζ ∈ µn(k)}.
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Proof. As N is semisimple, [n]?N is also semisimple, hence Ggeom,[n]?N

is reductive. So Ggeom,[n]?N is the fixer of its invariants in some repre-
sentation of the ambient group Ggeom,N , say corresponding to an object
M in <N>geom. Its invariants are the δ1 subobjects of [n]?M . These

are precisely the subobjects [n]?δζ , ζ ∈ µn(k), of [n]?M , i.e., the im-

ages by [n]? of the subobjects δζ , ζ ∈ µn(k), of M . Thus its space of
invariants in M is the largest subobject of M which is punctual and
supported in µn(k). So the space of Ggeom,[n]?N -invariants is a Ggeom,N -
stable subspace. Hence the fixer of these invariants, namely Ggeom,[n]?N ,
is a normal subgroup of Ggeom,N . A representation of the quotient is an
object M in <N>geom with [n]?M geometrically trivial, i.e., a punc-

tual object in <N>geom which is supported in µn(k), i.e., a sum of the
objects

{δζ ∈ <N>geom | ζ ∈ µn(k)}.
Thus we recover the reductive normal subgroup Ggeom,[n]?N of Ggeom,N

as the fixer of these objects. �

Recall that a representation ρ of an algebraic group G is said to
be Lie-irreducible if it is both irreducible and remains irreducible when
restricted to the identity component G0 of G.

Theorem 8.2. Suppose that N in Parith is arithmetically semisimple
and pure of weight zero (i.e., ι-pure of weight zero for every ι). Then
N is geometrically Lie-irreducible (i.e., Lie-irreducible as a represen-
tation of Ggeom,N) if and only if [n]?N is geometrically irreducible for
every integer n ≥ 1 prime to p. For n0 the order of the finite group
Ggeom,N/G

0
geom,N , we have

G0
geom,N = Ggeom,[n0]?N .

Proof. If N is geometrically Lie-irreducible, then any subgroup of finite
index in Ggeom,N acts irreducibly. By the previous result, for each n ≥ 1
prime to p the group Ggeom,[n]?N is of finite index, so acts irreducibly,
i.e., [n]?N is geometrically irreducible. Conversely, by Theorem 6.5, we
know that Ggeom,N/G

0
geom,N is cyclic of some order n0 prime to p. By

Corollary 6.6, we know that G0
geom,N is the fixer of all punctual objects

in <N>geom. Moreover, by Theorem 6.5, the irreducible such punctual
objects are precisely

{δζ ∈ <N>geom | ζ ∈ k
×} = {δζ ∈ <N>geom | ζ ∈ µn0(k)}.

Their fixer, by Theorem 8.1 above, is the subgroup Ggeom,[n0]?N . Thus
we have

G0
geom,N = Ggeom,[n0]?N .
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This second group acts irreducibly if (and only if) [n0]?M is geometri-
cally irreducible. �

Corollary 8.3. Suppose that N in Parith is geometrically irreducible
and pure of weight zero (i.e., ι-pure of weight zero for every ι). Then

N is geometrically Lie-irreducible if and only if for every a 6= 1 ∈ k×

the multiplicative translate [x 7→ ax]?N is not geometrically isomorphic
to N .

Proof. Given two semisimple objects in Pgeom, say A =
⊕

i niCi and
B =

⊕
imiCi where the Ci are pairwise non-isomorphic, geometrically

irreducible objects, and the integers ni and mi are ≥ 0, define the inner
product

<A,B>geom :=
∑
i

nimi.

Thus a geometrically semisimple object N is geometrically irreducible
if and only if <N,N>geom = 1. Frobenius reciprocity gives, for each
integer n prime to p,

<[n]?N, [n]?N>geom = <N, [n]?[n]?N>geom

= <N,
⊕

ζ∈µn(k)

[x 7→ ζx]?N>geom.

By the previous theorem, N is geometrically Lie-irreducible if and only
if [n]?N is geometrically irreducible for every integer n ≥ 1 prime to
p, i.e., if and only if <[n]?N, [n]?N>geom = 1 for every integer n ≥ 1
prime to p. By Frobenius reciprocity, this holds if and only if N is not
geometrically isomorphic to any nontrivial multiplicative translate of

itself by a root of unity of order prime to p. But every element of k
×

is a root of unity of order prime to p. �





CHAPTER 9

Autodualities and Signs

Suppose that N in Parith is geometrically irreducible (so a fortiori
arithmetically irreducible) and ι-pure of weight zero. Suppose further
that N is arithmetically self-dual in Parith, i.e., that there is an arith-
metic isomorphism N ∼= [x 7→ 1/x]?DN , DN denoting the Verdier dual
of N . This arithmetic isomorphism is then unique up to a scalar fac-
tor. It induces an autoduality on ω(N) which is respected by Garith,N .
Up to a scalar factor, this is the unique autoduality on ω(N) which
is respected by Garith,N , so it is either an orthogonal or a symplectic
autoduality. We say that the duality has the sign +1 if it is orthogonal,
and the sign −1 if it is symplectic.

Theorem 9.1. Suppose that N in Parith is geometrically irreducible,
ι-pure of weight zero, and arithmetically self-dual. Denote by ε the sign
of its autoduality. For variable finite extension fields E/k, we have the
estimate for ε

|ε − (1/#G(E))
∑

ρ∈Good(E,N)

Trace((Frob2
E,ρ|ω(N))| = O(1/

√
#E).

Proof. Choose a maximal compact subgroup K of the complex reduc-
tive group Garith,N(C). For each finite extension E/k and each charac-
ter ρ of G(E) which is good for N , denote by θE,ρ the conjugacy class
in K given by FrobssE,ρ.

To explain the idea of the proof, first consider the special case in
which we have the equality Ggeom,N = Garith,N . Then by Theorem 7.3,
we know that as #E grows, the conjugacy classes θE,ρ become equidis-
tributed in the space of conjugacy classes of K. As K is Zariski dense
in Garith,N/C, ω(N) is K-irreducible, and K respects the autoduality.
So the sign ε is the Frobenius-Schur indicator

ε =

∫
K

Trace(k2)dk.

By equidistribution, this integral is the large #E limit of the sums

(1/#G(E))
∑

ρ∈Good(E,N)

Trace((Frob2
E,ρ|ω(N)),
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and the proof of the equidistribution shows that the error isO(1/
√

#E).
To treat the general case, we argue as follows. Because N is geo-

metrically irreducible and arithmetically self-dual, we have, doing linear
algebra in the (sense of the) Tannakian category <N>arith,

End(N) ∼= N ?mid N ∼= Sym2(N)⊕ Λ2(N),

where End, Sym2 and Λ2 are all taken in the Tannakian sense. Because
N is geometrically irreducible, End(N) has a one-dimensional space of
Ggeom,N -invariants, namely the scalars, and Garith,N acts trivially on
this space. So when we write N ?midN as a sum of Garith,N -irreducible
summands, there is a unique summand which is geometrically trivial,
and that summand is δ1 itself. Every other arithmetically irreducible
summand M is geometrically nontrivial. The sign ε is 1 if δ1 lies in
Sym2(N), and it is −1 if δ1 lies in Λ2(N). We have the linear algebra
identity

Trace((Frob2
E,ρ|ω(N))

= Trace((FrobE,ρ|Sym2(ω(N)))− Trace((FrobE,ρ|Λ2(ω(N)))

= Trace((FrobE,ρ|ω(Sym2(N)))− Trace((FrobE,ρ|ω(Λ2(N))).

So what we need to show is that for an arithmetically irreducible M
which is ι-pure of weight zero and geometrically nontrivial, we have the
estimate, as #E grows,

(1/#G(E))
∑
good ρ

Trace(FrobE,ρ|ω(M)) = O(1/
√

#E).

This sum is within O(1/#E) of the sum

(1/#G(E))
∑
all ρ

Trace(FrobE|H0
c (G/k,M ⊗ Lρ)) = Trace(FrobE,1|M),

the last equality by orthogonality of characters.
We now distinguish two cases. If M is of the form G[1] for an

(arithmetically irreducible, but we will not use this) middle extension
sheaf G which is ι-pure of weight −1, then

Trace(FrobE,1|M) = −Trace(FrobE,1|G).

This trace is O(1/
√

#E) precisely because G is ι-pure of weight −1, so
that its stalk at 1 (or at any other point of G(E)) is ι-mixed of weight
≤ −1.

If M is punctual, arithmetically irreducible and geometrically non-
trivial, then its support is a closed point Z which is not the point 1 (lest
M be geometrically trivial), and hence Trace(FrobE,1|M) = 0. �

Here is a variant of the above result, with the same proof.
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Theorem 9.2. Suppose that N in Parith is geometrically irreducible
(so a fortiori arithmetically irreducible) and ι-pure of weight zero.Then
we have the following results.

(1) If N is not geometrically self-dual, then we have the estimate,
for growing finite extensions E/k,

|(1/#G(E))
∑
good ρ

Trace(Frob2
E,ρ|ω(N))| = O(1/

√
#E).

(2) If N is geometrically self-dual, with sign of autoduality ε, then
N ?mid N contains exactly one arithmetically irreducible sum-
mand which is geometrically trivial, of the form αdeg ⊗ δ1 for
some unitary scalar α. Every other arithmetically irreducible
summand is geometrically nontrivial, and we have the esti-
mate, for growing finite extensions E/k,

|εαdeg(E/k) − (1/#G(E))
∑
good ρ

Trace(Frob2
E,ρ|ω(N))| = O(1/

√
#E).

(3) In the situation of (2), if α = 1, then N is arithmetically
self-dual.

Remark 9.3. In the situation (2) above, we can approximately recover
the unitary scalar α by taking the ratio of the sums

(1/#G(E))
∑
good ρ

Trace(Frob2
E,ρ|ω(N))

for two finite extensions E/k of large degrees n + 1 and n. Once we
know α approximately, we can then determine ε approximately, and
hence exactly, given that it is ±1.





CHAPTER 10

A First Construction of Autodual Objects

These constructions are based on evaluating the sum

(1/#G(E))
∑

ρ∈Good(E,N)

Trace(Frob2
E,ρ|ω(N))

= (1/#G(E))
∑

ρ∈Good(E,N)

Trace(FrobE2 |H0
c (G/k,N ⊗ Lρ))

more or less precisely. As always, this sum is within O(1/#E) of the
sum

(1/#G(E))
∑

all ρ∈G(E)∨

Trace(FrobE2|H0
c (G/k,N ⊗ Lρ)),

which is in turn equal, by the Lefschetz Trace formula [Gr-Rat], to

(1/#G(E))
∑

all ρ∈G(E)∨

∑
t∈G(E2)

ρ(NormE2/E(t))Trace(FrobE2,t|N).

This sum, by orthogonality, is∑
t∈G(E2)|NormE2/E

(t)=1

Trace(FrobE2,t|N).

We begin with a geometrically irreducible middle extension sheaf F
on G/k which is ι-pure of weight zero, and which is not geometrically
an Lχ. Thus F(1/2)[1] is a geometrically irreducible object in Parith.
Its dual in Parith is [x 7→ 1/x]?F(1/2)[1], for F the linear dual middle
extension sheaf. Via ι, F and F have complex conjugate trace func-
tions; this holds by ι-purity on the dense open set where F is lisse, and
then on all of G by a result of Gabber [Fuj-Indep, Thm. 3], cf. also
[Ka-MMP, proof of 1.8.1 (i)].

Theorem 10.1. Suppose that the tensor product sheaf

G := F ⊗ [x 7→ 1/x]?F
is itself a middle extension sheaf; this is automatic if either F is lisse
on G or if the finite set S of points of G(k) at which F is ramified
is disjoint from the set 1/S of its inverses. Suppose further that G is
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geometrically irreducible, and not geometrically isomorphic to an Lχ.
Then G(1/2)[1] is a geometrically irreducible object of Parith which is
symplectically self-dual.

Proof. It is obvious from the description of the dual of an object N of
Parith as [x 7→ 1/x]?DN that G(1/2)[1] is arithmetically self-dual. The
sign ε of the autoduality is given approximately by the sum∑

t∈G(E2)|NormE2/E
(t)=1

Trace(FrobE2,t|N).

= −
∑

t∈G(E2)|NormE2/E
(t)=1

Trace(FrobE2,t|G(1/2)).

Because we are taking Frobenii over E2, the 1/2 Tate twist pulls out a
factor 1/#E, so this last sum is

= (−1/#E)
∑

t∈G(E2)|NormE2/E
(t)=1

Trace(FrobE2,t|G)

= (−1/#E)
∑

t∈G(E2)|NormE2/E
(t)=1

Trace(FrobE2,t|F)Trace(FrobE2,1/t|F).

The key observation is that for t ∈ G(E2) with NormE2/E(t) = 1, we
have 1/t = σ(t) for σ the nontrivial element in Gal(E2/E). Thus

Trace(FrobE2,1/t|F) = Trace(FrobE2,σ(t)|F)

for such a t. On the other hand, since F starts life on G/k, we have

Trace(FrobE2,σ(t)|F) = Trace(FrobE2,t|F),

which is in turn equal to

Trace(FrobE2,t|F).

So our sum is

= (−1/#E)
∑

t∈G(E2)|NormE2/E
(t)=1

|Trace(FrobE2,t|F)|2,

which is negative or zero. But for large #E this sum is approximately
the sign ε, which is ±1, so for large #E the sum cannot vanish, so must
be strictly negative. Hence the sign ε, which is ±1, must be −1. �



CHAPTER 11

A Second Construction of Autodual Objects

In this construction, we work on the split form Gm/k, Spec(k[x, 1/x]).
We begin with a geometrically irreducible lisse sheaf F on an open
dense set U ⊂ Gm which is ι-pure of weight zero and which is self-dual:
F ∼= F .

Denote by d the rank of F . We view F|U as a d-dimensional repre-
sentation ρ of πarith1 (U), toward either the orthogonal group O(d)/Q`, if
the autoduality is orthogonal, or toward the symplectic group Sp(d)/Q`

if the autoduality is symplectic (which forces d to be even). We de-
note by Ggeom,F the Zariski closure of the image ρ(πgeom1 (U)) of the
geometric fundamental group.1

We have a finite morphism

π : Gm[1/(x2 + 1)]→ Gm, x 7→ x+ 1/x.

Then π?F is lisse and ι-pure of weight zero on some open set j : V ⊂
Gm.

Theorem 11.1. For F as above, consider the middle extension sheaf
G := j?π

?F on Gm/k. Suppose in addition the following three condi-
tions hold.

(1) If d = 1, G is not geometrically a Kummer sheaf Lχ.
(2) If the autoduality of F is orthogonal, then d 6= 2 and Ggeom,F

is either O(d) or SO(d).
(3) If the autoduality of F is symplectic, Ggeom,F is Sp(d).

Then N := G(1/2)[1] lies in Parith and is ι-pure of weight zero. It is
geometrically irreducible and arithmetically self-dual. The sign of its
autoduality is opposite to that of F .

Proof. The lisse sheaf F on U is geometrically Lie-irreducible, because
G0
geom,F , which is either SO(d), d 6= 2, or Sp(d), acts irreducibly in

its standard representation. Therefore π?F , or indeed any pullback of
F by a finite morphism, remains geometrically Lie-irreducible. Thus
N is perverse, ι-pure of weight zero., and geometrically irreducible, so

1See the notational caution at the very end of the Introduction.
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by (1) is a geometrically irreducible object of Parith. It is arithmeti-
cally self-dual, because isomorphic to both its Verdier dual (thanks to
the autoduality of F) and to its pullback by multiplicative inversion
(thanks to having been pulled back by π). It remains to determine the
sign εN of its autoduality.

The idea is quite simple. Let us denote by εF the sign of the auto-
duality of F . Then εF is the large #E limit of the sums

(1/#E)
∑

s∈U(E)

Trace(Frob2
E,s|F) = (1/#E)

∑
s∈U(E)

Trace(FrobE2,s|F),

cf. [Ka-GKM, 4.2]. On the other hand, εN is the large #E limit of
the sums

= −
∑

t∈G(E2)|NormE2/E
(t)=1

Trace(FrobE2,t|G(1/2))

= (−1/#E)
∑

t∈G(E2)|NormE2/E
(t)=1

Trace(FrobE2,t|G).

Now for any t ∈ G(E2) with t2 + 1 6= 0 and such that t+ 1/t lies in U ,
we have

Trace(FrobE2,t|G) = Trace(FrobE2,t+1/t|F).

So εN is the large #E limit of the sums

= (−1/#E)
∑

t∈G(E2)|NormE2/E
(t)=1,t2+16=0,t+1/t∈U

Trace(FrobE2,t+1/t|F).

For t ∈ G(E2) with NormE2/E(t) = 1, t + 1/t is just Trace(t).
With the exception of the points ±1, every point t ∈ G(E2) with
NormE2/E(t) = 1 has degree two over E, so is a root of a quadratic
polynomial T 2 − sT + 1 ∈ E[T ]. Here s = t + 1/t. Conversely, an
irreducible quadratic polynomial of the form T 2 − sT + 1 ∈ E[T ] has
two roots, t and 1/t in G(E2) with NormE2/E(t) = NormE2/E(1/t) =
1, t+1/t = s. In other words, the set of t ∈ G(E2) with NormE2/E(t) =
1, t 6= ±1, is a double covering, by t 7→ t+ 1/t = Trace(t), of the set of
s ∈ E such that the quadratic polynomial T 2− sT + 1 is E-irreducible.
Thus this last sum is within O(1#E) of the sum

= 2(−1/#E)
∑

s∈U(E)| T 2−sT+1 irred./E

Trace(FrobE2,s|F).

We will show that the sums whose large #E limit is εF , namely

(1/#E)
∑

s∈U(E)

Trace(FrobE2,s|F),
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are within O(1/
√

#E) of the sums

= 2(1/#E)
∑

s∈U(E)| T 2−sT+1 irred./E

Trace(FrobE2,s|F)

whose large #E limit is −εN .
We first treat the case when k has odd characteristic. Shrinking

U if necessary, we may suppose that neither 2 nor −2 lies in U . Now
T 2 − sT + 1 is E-irreducible if and only if its discriminant s2 − 4 is a
nonzero nonsquare in E. Denoting by χ2,E the quadratic character of
E×, we then have, for s ∈ U(E),

1− χ2,E(s2 − 4) = 0

if s2 − 4 is a square, and

1− χ2,E(s2 − 4) = 2

if s2 − 4 is a nonsquare.
So the sums whose large #E limit is −εN are

(1/#E)
∑

s∈U(E)

Trace(FrobE2,s|F)(1− χ2,E(s2 − 4)).

Hence we are reduced to showing that the sums

(1/#E)
∑

s∈U(E)

Trace(FrobE2,s|F)χ2,E(s2 − 4)

are O(1/
√

#E). To see this, we make use of the linear algebra identity

Trace(FrobE2,s|F) = Trace(FrobE,s|Sym2(F))−Trace(FrobE,s|Λ2(F)).

So it suffices to prove that both of the sums

(1/#E)
∑

s∈U(E)

Trace(FrobE,s|Sym2(F))χ2,E(s2 − 4)

= (1/#E)
∑

s∈U(E)

Trace(FrobE,s|Sym2(F)⊗ Lχ2(s2−4)))

and
(1/#E)

∑
s∈U(E)

Trace(FrobE,s|Λ2(F))χ2,E(s2 − 4)

= (1/#E)
∑

s∈U(E)

Trace(FrobE,s|Λ2(F)⊗ Lχ2(s2−4)))

are O(1/
√

#E).
If the arithmetic autoduality of F has Ggeom,F = Sp(d), then

Sym2(F) is (both arithmetically and) geometrically irreducible, and
it has rank > 1. Therefore its tensor product with any lisse rank one
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sheaf, here Lχ2(s2−4), remains (both arithmetically and) geometrically

irreducible. Therefore its H2
c (U/k, Sym2(F)⊗Lχ2(s2−4))) vanishes. Be-

cause F is ι-pure of weight zero, so is Sym2(F)⊗ Lχ2(s2−4), and hence
by Deligne [De-Weil II, 3.3.1] its H1

c is ι-mixed of weight ≤ 1. By the
Lefschetz Trace formula [Gr-Rat] and the vanishing of the H2

c ,

(1/#E)
∑

s∈U(E)

Trace(FrobE,s|Sym2(F))χ2,E(s2 − 4)

= −(1/#E)Trace(FrobE|H1
c (U/k, Sym2(F)⊗ Lχ2(s2−4)))

is O(1/
√

#E). And the sheaf Λ2(F) is either the constant sheaf Q` if
d = 2 or, if d ≥ 4, the direct sum

Λ2(F) = Q` ⊕H,
with H an arithmetically and geometrically irreducible lisse sheaf of
rank > 1. AgainH⊗Lχ2(s2−4) is ι-pure of weight zero and has vanishing
H2
c , and an H1

c which is ι-mixed of weight ≤ 1. So the sum

(1/#E)
∑

s∈U(E)

Trace(FrobE,s|H ⊗ Lχ2(s2−4)))

is O(1/
√

#E). The final term is

(1/#E)
∑

s∈U(E)

Trace(FrobE,s|Lχ2(s2−4)),

which again is O(1/
√

#E) because Lχ2(s2−4) is geometrically nontrivial.
If the arithmetic autoduality of F has Ggeom,F containing SO(d)

with d 6= 2, we argue as follows. We first treat separately the case d = 1.
Then F is a lisse sheaf of rank one whose trace function takes values in
±1. Therefore Λ2(F) = 0, and Sym2(F) = F⊗2 is the constant sheaf.
So the sum we must estimate is just

(1/#E)
∑

s∈U(E)

Trace(FrobE,s|Lχ2(s2−4)),

which as noted above is O(1/
√

#E).
If d ≥ 3, the argument is essentially identical to the argument in the

symplectic case, except that now it is Λ2(F) which is arithmetically and
geometrically irreducible of rank > 1, and it is Sym2(F) which admits
a direct sum decomposition

Sym2(F) = Q` ⊕H,
with H an arithmetically and geometrically irreducible lisse sheaf of
rank > 1.
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It remains to treat the case of characteristic 2, where we no longer
have the discriminant to tell us when T 2 − sT + 1 is E-irreducible.
In characteristic 2 we consider directly the finite étale covering of Gm

by Gm \ {1} given by π : t 7→ t + 1/t := s. This extends to a finite
étale covering of P1 \ {0} by P1 \ {1}. Making the change of variable
t = u/(u+ 1), we readily compute

1/s = 1/(t+ 1/t) = 1/(u/(u+ 1) + (u+ 1)/u) = u2 − u.

Thus in characteristic two, the role of Lχ2(s2−4) is now played by the
Artin-Schreier sheaf Lψ(1/s). With this change, we just repeat the proof
from odd characteristic. �

Here is a slight generalization of the previous result, where we relax
the hypotheses on the group Ggeom,F attached to the geometrically
irreducible lisse sheaf F on an open dense set U ⊂ Gm which is ι-pure
of weight zero and which is self-dual: F ∼= F . We make the following
two hypotheses.

(1) The identity component G0
geom,F acts irreducibly in its given

d-dimensional representation ρ.
(2) In the representation ρ⊗ρ corresponding to F⊗F , the space of

invariants under Ggeom,F is one-dimensional, and every other
irreducible constituent of ρ ⊗ ρ for the action of Ggeom,F has
dimension > 1.

These conditions are automatically satisfied in the symplectic case
when Ggeom,F = Sp(d), and in the orthogonal case when d 6= 2 and
Ggeom,F contains SO(d). But they are also satisfied if Ggeom,F receives
an SL(2) such that ρ|SL(2) is irreducible. For then ρ|SL(2) must be
Symd−1(std2) as SL(2)-representation, and one knows that

Symd−1(std2)⊗ Symd−1(std2) =
d−1⊕
r=0

Sym2d−2−2r(std2)

as SL(2)-representation. For later use, let us recall that in the world
of GL(2)-representations, we have

Symd−1(std2)⊗ Symd−1(std2) =
d−1⊕
r=0

Sym2d−2−2r(std2)⊗ det⊗r.

In fact, one has the more precise decompositions

Sym2(Symd−1(std2)) =

[(d−1)/2]⊕
r=0

Sym2d−2−4r(std2)⊗ det⊗2r
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and

Λ2(Symd−1(std2)) =

[(d−2)/2]⊕
r=0

Sym2d−4−4r(std2)⊗ det⊗2r+1.

Theorem 11.2. For F as above, satisfying the hypotheses (1) and (2),
consider the middle extension sheaf G := jV ?π

?F on Gm/k. Then N :=
G(1/2)[1] lies in Parith and is ι-pure of weight zero. It is geometrically
irreducible and arithmetically self-dual. The sign of its autoduality is
opposite to that of F .

Proof. Repeat the proof of Theorem 11.1. In the symplectic case,
Λ2(F) has an invariant corresponding to the symplectic form, so we
have a direct sum decomposition Λ2(F) = H⊕Q`. By hypothesis (2),
each Ggeom,F -irreducible constituent of H has dimension ≥ 2, and each
Ggeom,F -irreducible constituent of Sym2(F)has dimension ≥ 2. These
conditions ensure the vanishings of the various H2

c in the proof. In the
orthogonal case, reverse the roles of Sym2 and Λ2. �



CHAPTER 12

The Previous Construction in the Nonsplit Case

In this construction, we work on the nonsplit form G/k. Denot-
ing by k2/k the unique quadratic extension inside k, recall that for
any k-algebra A, G(A) is the group of elements t ∈ (A ⊗k k2)× with
NormA⊗kk2/A(t) = 1. Thus G(A) ⊂ A ⊗k k2. We have the trace map
TraceA⊗kk2/A : A ⊗k k2 → A. Restricting it to G(A), we get, for any
k-algebra A, a map Trace : G(A) → A, in other words a k-morphism
Trace : G/k → A1/k, i.e., a function Trace on G/k.

A basic observation is that the function Trace is invariant under
inversion: for t ∈ G(A), Trace(t) = Trace(1/t). Indeed for t ∈ G(A),
we claim that Trace(t) = t + 1/t when we view A ⊂ A ⊗k k2. To see
this,1 present k2 as k[u]/(u2 +au+ b) with u2 +au+ b ∈ k[u] quadratic
(and irreducible, but we will not use this, or any other property, of the
quadratic polynomial in question). Then an element t ∈ A ⊗k k2/A,
written as t = x+yu with x, y ∈ A, acts by multiplication on A⊗kk2 by
the two by two matrix, with respect to the basis 1, u, (x, y,−by, x−ay).
So we have

NormA⊗kk2/A(x+ yu) = x2 − axy + by2 = (x+ yu)((x− ay)− yu),

TraceA⊗kk2/A(x+ yu) = 2x− ay.
So if t = x + yu ∈ G(A), then 1/t = (x − ay) − yu, and so we find
Trace(t) = t+1/t ∈ A⊗kk2, as asserted. Moreover, if u2 +au+b ∈ k[u]
is reducible and has distinct roots (so that we are dealing with the
split form), say u2 + au + b = (u − α)(u − β) with α, β ∈ k, α 6= β,
then t = x + yu 7→ (X, Y ) := (x + yα, x + yβ) is an isomorphism of
G/k with Gm/k as the locus XY = 1, where the trace is the function
(X, 1/X) 7→ X + 1/X.

Observe that the trace morphism Trace : G/k → A1/k is a finite
morphism. To see this, we may extend scalars from k to k2, where G
becomes Gm and Trace becomes the map t 7→ t+ 1/t.

1Another way to see this is to use the fact that k2/k is galois of degree 2.
For σ the nontrivial element of the Galois group, we have the automorphism
σA := id ⊗ σ of A ⊗k k2, and for t ∈ A ⊗k k2, we have NormA⊗kk2/A(t) =
tσA(t),TraceA⊗kk2/A(t) = t + σA(t). Thus if t ∈ G(A), then σA(t) = 1/t, and
hence TraceA⊗kk2/A(t) = t+ 1/t.
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We now give the construction. We begin with a geometrically irre-
ducible lisse sheaf F on an open dense set U ⊂ A1 which is ι-pure of
weight zero and which is self-dual: F ∼= F . Denote by d the rank of
F . We view F|U as a representation ρ of πarith1 (U), toward either the
orthogonal group O(d)/Q`, if the autoduality is orthogonal, or toward
the symplectic group Sp(d)/Q` if the autoduality is symplectic (which
forces d to be even). We denote by Ggeom,F the Zariski closure of the
image ρ(πgeom1 (U)) of the geometric fundamental group.

As noted above, the trace gives a finite morphism

Trace : G→ A1.

Then Trace?F is lisse and ι-pure of weight zero on some open set j :
V ⊂ G.

Theorem 12.1. For F as above, consider the middle extension sheaf
G := j?Trace?F on G/k. Suppose in addition the following two condi-
tions hold.

(1) The identity component G0
geom,F acts irreducibly in its given

d-dimensional representation ρ.
(2) In the representation ρ⊗ρ corresponding to F⊗F , the space of

invariants under Ggeom,F is one-dimensional, and every other
irreducible constituent of ρ ⊗ ρ for the action of Ggeom,F has
dimension > 1.

Then N := G(1/2)[1] lies in Parith and is ι-pure of weight zero. It is
geometrically irreducible and arithmetically self-dual. The sign of its
autoduality is opposite to that of F .

Proof. That N lies in Parith, is ι-pure of weight zero, geometrically
irreducible and arithmetically self-dual is proven exactly as in the proof
of Theorem 11.1, with the π there replaced by Trace. To compute the
sign εN , we can take the large #E limit over finite extension fields E/k
of even degree. This reduces us to the split case, already treated in
Theorem 11.1. �



CHAPTER 13

Results of Goursat-Kolchin-Ribet Type

Suppose we are given some number r ≥ 2 of objects N1, N2, ..., Nr in
Parith of some common “dimension” d ≥ 1. Suppose they are all ι-pure
of weight zero, geometrically irreducible, and arithmetically self-dual,
all with the same sign of duality.

Theorem 13.1. Suppose that d ≥ 2 is even, that each Ni is sym-
plectically self-dual, and that for each i = 1, ..., r, we have Ggeom,Ni =
Garith,Ni = Sp(d). Suppose further that for i 6= j, there is no geometric
isomorphism between Ni and Nj and there is no geometric isomorphism
between Ni and [x 7→ −x]?Nj. Then the direct sum ⊕iNi has

Ggeom,⊕iNi = Garith,⊕iNi =
r∏
i=1

Sp(d).

Proof. We apply the Goursat-Kolchin-Ribet theorem [Ka-ESDE, 1.8.2]
to the group Ggeom,⊕iNi and its representations Vi corresponding to the
Ni. In order to show that Ggeom,⊕iNi =

∏
i Sp(d), it suffices to show

that for i 6= j, there is no geometric isomorphism between Ni and
Nj ?mid L, for any one-dimensional object L of <⊕iNi>geom. In fact,
we will show that, under the hypotheses of the theorem, there is none
for any one-dimensional object of Pgeom. Suppose there were. Both Nj

and Nj ?mid L ∼= Ni are symplectic representations, with image Sp(d).
But the only scalars in Sp(d) are ±1. Therefore L⊗2 in the Tannakian
sense, i.e., L ?mid L, is geometrically trivial. One knows [Ka-ESDE,
8.5.3] that the only one-dimensional objects in Pgeom are delta objects

δa for some a ∈ k
×

and multiplicative translates of hypergeometric
sheaves placed in degree −1. But such hypergeometric objects are of
infinite order, as middle self-convolution simply produces other such
objects, of larger and larger generic rank. Therefore our L must be
some δa. Because L ?mid L is geometrically trivial, we conclude that
a = ±1. But middle convolution with δa is just multiplicative trans-
lation by a. Therefore we have Ggeom,⊕iNi =

∏
i Sp(d). Since in any

case we have Ggeom,⊕iNi ⊂ Garith,⊕iNi ⊂
∏

i Sp(d), we get the asserted
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equality

Ggeom,⊕iNi = Garith,⊕iNi =
∏
i

Sp(d).

�

Theorem 13.2. Suppose that d ≥ 6 is even, d 6= 8, that each Ni is or-
thogonally self-dual, and that for each i = 1, ..., r, we have Ggeom,Ni =
SO(d). Suppose further that for i 6= j, there is no geometric iso-
morphism between Ni and Nj and there is no geometric isomorphism
between Ni and [x 7→ −x]?Nj. Then the direct sum ⊕iNi has

Ggeom,⊕iNi =
r∏
i=1

SO(d) ⊂ Garith,⊕iNi ⊂
r∏
i=1

O(d).

If in addition we have Ggeom,Ni = Garith,Ni = SO(d) for every i, then

Ggeom,⊕iNi = Garith,⊕iNi =
r∏
i=1

SO(d).

Proof. The proof, via the Goursat-Kolchin-Ribet theorem [Ka-ESDE,
1.8.2], is identical to the previous one. �

Theorem 13.3. Suppose that d ≥ 3 is odd, that each Ni is orthogonally
self-dual, and that for each i = 1, ..., r, we have Ggeom,Ni = SO(d).
Suppose further that for i 6= j, there is no geometric isomorphism
between Ni and Nj. Then the direct sum ⊕iNi has

Ggeom,⊕iNi =
r∏
i=1

SO(d) ⊂ Garith,⊕iNi ⊂
r∏
i=1

O(d).

If in addition we have Ggeom,Ni = Garith,Ni = SO(d) for every i, then

Ggeom,⊕iNi = Garith,⊕iNi =
r∏
i=1

SO(d).

Proof. The proof, again via the Goursat-Kolchin-Ribet theorem [Ka-ESDE,
1.8.2] is even simpler in this case, because for d odd, SO(d) contains
no scalars other than 1, so L can only be δ1. �

In the orthogonal case, the Goursat-Kolchin-Ribet theorem [Ka-ESDE,
1.8.2] gives the following less precise version of these last two theorems.

Theorem 13.4. Suppose that either d ≥ 6 is even, d 6= 8, or d ≥ 3 is
odd. Suppose that each Ni is orthogonally self-dual, and that for each
i = 1, ..., r, we have SO(d) ⊂ Ggeom,Ni. Suppose further that for i 6= j,
there is no geometric isomorphism between Ni and Nj and there is no
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geometric isomorphism between Ni and [x 7→ −x]?Nj. Then the direct
sum ⊕iNi has

r∏
i=1

SO(d) ⊂ Ggeom,⊕iNi ⊂ Garith,⊕iNi ⊂
r∏
i=1

O(d).

We end this chapter with the case of SL(d).

Theorem 13.5. Suppose that for each i = 1, ..., r, we have SL(d) ⊂
Ggeom,Ni. Denote by N∨i the dual in the Tannakian sense of Ni. Suppose
further that for every one-dimensional object L ∈ Pgeom, and for i 6= j,
there is no geometric isomorphism between Ni and Nj?midL nor between
Ni and N∨j ?mid L. Then the direct sum ⊕iNi has

r∏
i=1

SL(d) ⊂ Ggeom,⊕iNi ⊂ Garith,⊕iNi ⊂
r∏
i=1

GL(d).





CHAPTER 14

The Case of SL(2); the Examples of Evans and
Rudnick

In treating both of these examples, as well as all the examples to
come, we will use the Euler-Poincaré formula, cf. [Ray, Thm. 1] or
[Ka-GKM, 2.3.1] or [Ka-SE, 4.6, (v) atop p. 113] or [De-ST, 3.2.1],
to compute the “dimension” of the object N in question.

Let us briefly recall the general statement of the Euler-Poincaré
formula, and then specialize to the case at hand. Let X be a projective,
smooth, nonsingular curve over an algebraically closed field k in which
` is invertible, U ⊂ X a dense open set in X, and V ⊂ U a dense
open set in U . Let G be a constructible Q`-sheaf on U which is lisse
on V of rank r := gen.rk.(G). We view G|V as a representation of
π1(V ). For each point x ∈ (X \ V )(k), we restrict this representation
to the inertia group I(x) at x. Its Swan conductor gives a nonnegative
integer Swanx(G), cf. [Ka-GKM, 1.5-1.10], which vanishes if and
only if G|V is tamely ramified at x. For each point u ∈ (U \ V )(k),
we have the integer dropu(G) := gen.rk.(G) − dim(Gu). We denote
by χ(U) the Euler characteristic of U . Thus if X has genus g, then
χ(U) = 2− 2g−#(X \U)(k). The Euler-Poincaré formula states that
χc(U,G) = χ(U,G) is equal to

χ(U)gen.rk.(G)−
∑

x∈(X\V )(k)

Swanx(G)−
∑

u∈(U\V )(k)

dropu(G).

When U is Gm, whose χ vanishes, and we place G in degree −1, this
becomes

χc(Gm,G[1]) = Swan0(G)+Swan∞(G)+
∑

u∈(Gm\V )(k)

[dropu(G)+Swanu(G)].

The term inside the square brackets, dropu(G)+Swanu(G), is called the
“total drop” of G at u. Using this terminology, the formula becomes

χc(Gm,G[1]) = Swan0(G) + Swan∞(G) +
∑

u∈(Gm\V )(k)

TotalDropu(G).

We now turn to the key result of this chapter.
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Theorem 14.1. Suppose N in Parith is pure of weight zero, geometri-
cally irreducible, and arithmetically self-dual of “dimension” two. Then
the following conditions are equivalent.

(1) N is geometrically Lie-irreducible.
(2) N is not geometrically isomorphic to any nontrivial multiplica-

tive translate [x 7→ ax]?N , a 6= 1, of itself.
(3) N is symplectically self-dual, and we have Ggeom,N = Garith,N =

SL(2).

Proof. The equivalence of (1) and (2) was proven in Corollary 8.3. If (3)
holds, then G0

geom = SL(2) acts irreducibly in its standard representa-
tion, hence (1) holds. Conversely, suppose (1) holds. We will show that
(3) holds. The autoduality on N is either orthogonal or symplectic. We
first show it cannot be orthogonal. Indeed, if it were orthogonal, we
would have Ggeom,N ⊂ Garith,N ⊂ O(2), with Ggeom,N a Lie-irreducible
subgroup of O(2). But there are no such subgroups, because SO(2)
has index two in O(2) and is abelian. Therefore the autoduality must
be symplectic. So we have inclusions Ggeom,N ⊂ Garith,N ⊂ SL(2), and
hence it suffices to show thatGgeom,N = SL(2). But the only irreducible

(in the standard representation) subgroups of SL(2)/Q` are SL(2) it-
self, the normalizer N(T ) of a torus T , and some finite subgroups. Of
these, SL(2) is the only one that acts Lie-irreducibly. �

With this result in hand, it is a simple matter to treat the examples
of Evans and of Rudnick. We begin by treating the example of Evans.

Theorem 14.2. For ψ a nontrivial additive character of k, and N the
object Lψ(x−1/x)(1/2)[1] in Parith on Gm/k := Spec(k[x, 1/x]), we have
Ggeom,N = Garith,N = SL(2).

Proof. The lisse sheaf Lψ(x−1/x) is pure of weight zero. It is wildly rami-
fied at both 0 and∞, with Swan conductor 1 at each, so is not geometri-
cally isomorphic to an Lχ. Thus N is a geometrically irreducible object

of Parith, pure of weight zero. Its dimension “ dim ”N := χ(Gm/k,N)
is given by the Euler-Poincaré formula,

χ(Gm/k,N) = Swan0(Lψ(x−1/x)) + Swan∞(Lψ(x−1/x)) = 1 + 1 = 2.

Writing Lψ(x−1/x) = Lψ(x)⊗Lψ(−1/x), we see by Theorem 10.1 that N is

symplectically self-dual. The multiplicative translate of N by a ∈ k×

is Lψ(ax−1/ax)(1/2)[1]. This is geometrically isomorphic to N if and
only if Lψ(ax−1/ax) is geometrically isomorphic to Lψ(x−1/x), i.e., if and
only if their ratio Lψ(ax−1/ax) ⊗ (Lψ(x−1/x))

−1 = Lψ((a−1)x+(1−1/a)/x) is
geometrically trivial. But for a 6= 1, this ratio is itself wildly ramified
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at both 0 and∞. Therefore N is geometrically Lie-irreducible, and we
conclude by the previous result. �

Here is a strengthening of this result, using Theorem 12.1.

Theorem 14.3. Let c1, ..., cr be r ≥ 2 elements of k× whose squares are
distinct: for i 6= j, ci 6= ±cj. Denote by Ni the object Lψ(ci(x−1/x))(1/2)[1]
on Gm/k := Spec(k[x, 1/x]). Then we have Ggeom,⊕iNi = Garith,⊕iNi =∏r

i=1 SL(2).

Proof. We must show that for i 6= j, Lψ(ci(x−1/x)) is not geometri-
cally isomorphic to either Lψ(cj(x−1/x)) or to [x 7→ −x]?Lψ(cj(x−1/x)) =
Lψ(−cj(x−1/x)). As in the proof above, the ratio is Lψ((−ci±cj)(x−1/x)).
This is wildly ramified at both 0 and ∞, because for i 6= j, −ci ± cj 6=
0. �

Here is a further strengthening of this result, again using Theorem
12.1. Its very formulation is based on the fact that for a given object
N ∈ Parith and a given Kummer sheaf Lχ, the functor M 7→ M ⊗ Lχ
induces a Tannakian isomorphism of <N>arith with <N ⊗ Lχ>arith,
and of <N>geom with <N ⊗ Lχ>geom. In particular N and N ⊗ Lχ
have the “same” groups Ggeom and the “same” groups Garith as each
other.

Theorem 14.4. Let c1, ..., cr be r ≥ 1 elements of k× whose squares
are distinct: for i 6= j, ci 6= ±cj. Let χ1, ..., χs be s ≥ 1 distinct
characters of k×. Denote by Ni,j the object Lψ(ci(x−1/x))⊗Lχj(1/2)[1] on
Gm/k := Spec(k[x, 1/x]). Then we have Ggeom,⊕i,jNi,j = Garith,⊕i,jNi,j =∏r

i=1

∏s
j=1 SL(2).

Proof. We must show that for (i, j) 6= (a, b), Lψ(ci(x−1/x)) ⊗ Lχj is
not geometrically isomorphic to either Lψ(ca(x−1/x)) ⊗ Lχb or to [x 7→
−x]?Lψ(ca(x−1/x)) ⊗ Lχb

geom∼= Lψ(−ca(x−1/x)) ⊗ Lχb . [Recall that, geomet-
rically, Kummer sheaves Lχ are invariant under multiplicative transla-
tion.] If i 6= a, both ratios are wildly ramified at both 0 and ∞, just
as in the proof of the previous result. If i = a but j 6= b, then the ratio
is either wildly ramified at both 0 and ∞, or it is Lχj/χb, which is not
geometrically constant. �

We now turn to the example of Rudnick in the split case.

Theorem 14.5. Suppose that k has odd characteristic. We work on
Gm/k := Spec(k[x, 1/x]). For ψ a nontrivial additive character of k,
form the lisse sheaf Lψ((x+1)/(x−1)) on U := Gm \ {1}. For j : U ⊂ Gm

the inclusion, we have j!Lψ((x+1)/(x−1)) = j?Lψ((x+1)/(x−1)). Form the
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object N := j?Lψ((x+1)/(x−1))(1/2)[1] on Gm/k. Then N is a geometri-
cally irreducible two-dimensional object of Parith which is pure of weight
zero and arithmetically self-dual. It has Ggeom,N = Garith,N = SL(2).

Proof. The sheaf Lψ((x+1)/(x−1)) is wildly ramified at 1, so it is not geo-
metrically isomorphic to an Lχ. Thus N is a geometrically irreducible
object of Parith, which is pure of weight zero. It is lisse at both 0 and
∞. Its only singularity in Gm is at 1, where its Swan conductor is 1.
So the Euler-Poincaré formula, cf. [Ray] or [Ka-GKM, 2.3.1], shows
that its dimension is two. It is symplectically self-dual, by Theorem
10.1 applied to the lisse sheaf F := Lψ((1/2)(x+1)/(x−1)) on U . And N is
not geometrically isomorphic to a multiplicative translate of itself by
any a 6= 1, because 1 is the unique point of Gm(k) at which N is not
lisse. �

Here is a strengthening of this result, using Theorem 12.1.

Theorem 14.6. Let c1, ..., cr be r ≥ 2 distinct elements of k×. Form
the object Ni := j?Lψ(ci(x+1)/(x−1))(1/2)[1] on Gm/k. Then we have
Ggeom,⊕iNi = Garith,⊕iNi =

∏r
i=1 SL(2).

Proof. We must show that for i 6= j, Lψ(ci(x+1)/(x−1)) is not geometri-
cally isomorphic to either Lψ(cj(x+1)/(x−1)) or to [x 7→ −x]?Lψ(cj(x+1)/(x−1)).
The second isomorphism is impossible because the source is singular
only at 1 ∈ Gm while the target is singular only at −1 ∈ Gm. For i 6= j,
Lψ(ci(x+1)/(x−1)) is not geometrically isomorphic to Lψ(cj(x+1)/(x−1)) be-
cause their ratio, Lψ((cj−ci)(x+1)/(x−1)), is wildly ramified at 1. �

Here is a further strengthening, again using Theorem 12.1.

Theorem 14.7. Let c1, ..., cr be r ≥ 1 distinct elements of k×. Let
χ1, ..., χs be s ≥ 1 distinct characters of k×. Denote by Na,b the ob-
ject Na,b := j?Lψ(ca(x+1)/(x−1)) ⊗ Lχb(1/2)[1] on Gm/k. Then we have
Ggeom,⊕a,bNa,b = Garith,⊕a,bNa,b =

∏r
a=1

∏s
b=1 SL(2).

Proof. All the objects Na,b have the point 1 as their unique singularity,
so just as in the argument above it suffices to show that for (a, b) 6=
(c, d), Na,b is not geometrically isomorphic to Nc,d. If a 6= b, then just
as above the ratio is wildly ramified at 1. If a = b but c 6= d, the ratio
is Lχd/χc, which is not geometrically constant. �

We conclude this chapter with the example of Rudnick in the non-
split case. Here k has odd characteristic. Completing the square, we
can present k2 as k[u]/(u2 + b) with b ∈ k× and u2 + b ∈ k[u] quadratic
(and irreducible, but we will not use this). For any k-algebra A, we
write elements of A⊗k k2 as x+ yu, with x, y ∈ A.



14. THE CASE OF SL(2); THE EXAMPLES OF EVANS AND RUDNICK 71

Then G/k = Spec(k[x, y]/(x2 + by2 − 1)). The group law is

(x, y)(s, t) := (xs− byt, xt+ ys),

the identity is (1, 0), and inversion is

[inv]?(x, y) = (x,−y).

On the open set G[1/(x− 1)] where x− 1 is invertible, we have the
function −by/(x− 1), which changes sign under inversion:

[inv]?(−by/(x− 1)) = by/(x− 1).

In the split case, i.e., when −b = c2 for some c ∈ k×, then (x, y) 7→
t := x+ cy is an isomorphism G ∼= Gm. Then we readily calculate1

−by/(x− 1) = c(t+ 1)/(t− 1).

Theorem 14.8. Suppose that k has odd characteristic. For ψ a non-
trivial additive character of k, form the lisse sheaf Lψ(−by/(x−1)) on U :=
G[1/(x − 1)]. For j : U ⊂ G the inclusion, we have j!Lψ(−by/(x−1)) =
j?Lψ(−by/(x−1)). Form the object N := j?Lψ(−by/(x−1))(1/2)[1] on G/k.
Then N is a geometrically irreducible two-dimensional object of Parith
which is pure of weight zero and arithmetically self-dual. It has Ggeom,N =
Garith,N = SL(2).

Proof. That j?Lψ(−by/(x−1)) is not geometrically a Kummer sheaf Lχ is
a geometric statement, already proven in the split case, as is the fact
that N is geometrically irreducible two-dimensional object of Parith.
That it is pure of weight zero is obvious from its definition. That it
is arithmetically symplectically self-dual results from Theorem 10.1,
applied to Lψ(−by/2(x−1)). The rest of the proof is the same as in the
split case. �

For the sake of completeness, here are the strengthenings in the
nonsplit case, with the same proofs as in the split case.

Theorem 14.9. Let c1, ..., cr be r ≥ 2 distinct elements of k×. Form
the object Ni := j?Lψ(−bciy/(x−1))(1/2)[1] on G/k. Then we have Ggeom,⊕iNi =
Garith,⊕iNi =

∏r
i=1 SL(2).

Theorem 14.10. Let c1, ..., cr be r ≥ 1 distinct elements of k×. Let
χ1, ..., χs be s ≥ 1 distinct characters of G(k). Denote by Ni,j the
object Ni,j := j?Lψ(−bciy/(x−1)) ⊗ Lχj(1/2)[1] on G/k. Then we have
Ggeom,⊕i,jNi,j = Garith,⊕i,jNi,j =

∏r
i=1

∏s
j=1 SL(2).

1Indeed, t = x + cy, 1/t = x − cy, so 2cy = t − 1/t = (t + 1)(t − 1)/t,
2x− 2 = t+ 1/t− 2 = (t− 1)2/t, hence cy/(x− 1) = (t+ 1)/(t− 1).





CHAPTER 15

Further SL(2) Examples, Based on the Legendre
Family

In this chapter, we suppose that k has odd characteristic. We begin
with the Legendre family of elliptic curves over the λ line, given in
P2 × A1 by the equation

Y 2Z = X(X − Z)(X − λZ).

For π its projection onto A1, we define

Leg := R1π!Q`.

Thus Leg is lisse of rank two and pure of weight one (Hasse’s theorem
[Ha-Ell, page 205]) outside of 0 and 1. For j : A1 \ {0, 1} ⊂ A1 the
inclusion we have Leg = j?j

?Leg. One knows [De-Weil II, 3.5.5] that
the geometric monodromy group of the lisse sheaf j?Leg is SL(2). Its
local monodromy at both 0 and 1 is a single unipotent block Unip(2);
its local monodromy at ∞ is Lχ2(λ) ⊗ Unip(2), cf. [Ka-Sar, 10.1.7].

We will also make use of the quadratic twist

TwLeg := j?j
?(Lχ2(1−λ) ⊗ Leg).

Over A1 \ {0, 1}, this quadratic twist TwLeg is the R1π!Q` for the
family

Y 2Z = (1− λ)X(X − Z)(X − λZ).

When −1 is a square in k, we have an arithmetic isomorphism over
A1 \ {0, 1},

TwLeg ∼= [λ 7→ 1/λ]?TwLeg,

indeed the two families are isomorphic. The geometric monodromy
group of the lisse sheaf j?TwLeg is SL(2). The local monodromy of
TwLeg at both 0 and ∞ is a single unipotent block Unip(2), while its
local monodromy at 1 is Lχ2(1−λ) ⊗ Unip(2).

Theorem 15.1. Suppose k has odd characteristic, and −1 is a square
in k. Consider the object N := TwLeg(1)[1] ∈ Parith. This object is
a geometrically Lie-irreducible two-dimensional object of Parith which
is pure of weight zero and arithmetically self-dual. It has Ggeom,N =
Garith,N = SL(2).

73
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Proof. That N is geometrically irreducible results from the fact that
j?TwLeg has geometric monodromy group SL(2), which is connected
and acts irreducibly in its standard representation. That N is pure of
weight zero is an instance of Hasse’s theorem [Ha-Ell, page 205]. That
N is geometrically Lie-irreducible, i.e., not geometrically isomorphic to
any nontrivial multiplicative translate, results from the fact that 1 is
its only singularity in Gm. That it is two-dimensional is immediate
from the Euler-Poincaré formula (as it is tame at both 0 and ∞, and
has a drop of two at 1), cf. [Ray] or [Ka-GKM, 2.3.1]. That it is
arithmetically self-dual results from fact that TwLeg has an integer
(and hence real) valued trace function, and the isomorphism TwLeg ∼=
[λ 7→ 1/λ]?TwLeg. The result now follows from Theorem 14.1. �

We also have the following strengthening, as always using Theorem
12.1.

Theorem 15.2. Suppose k has odd characteristic, and −1 is a square
in k. Let χ1, ..., χs be s ≥ 2 distinct characters of k×. Consider
the objects Ni := TwLeg ⊗ Lχi(1)[1] ∈ Parith. Then Ggeom,⊕iNi =
Garith,⊕iNi =

∏s
i=1 SL(2).

Proof. We must show that for i 6= j, TwLeg⊗Lχi is not geometrically
isomorphic to either TwLeg ⊗ Lχj or to [λ 7→ −λ]?(TwLeg ⊗ Lχj).
The latter is impossible, because TwLeg ⊗ Lχi has its unique singu-
larity in Gm at 1. The former is impossible, because already the local
monodromies at 0, namely Lχi ⊗ Unip(2) and Lχj ⊗ Unip(2), are not
geometrically isomorphic. �

We can also work with the object Sym2(Leg), which, we remark
in passing, is the same as Sym2(TwLeg), because the quadratic twist
disappears after forming Sym2. The lisse sheaf j?Sym2(Leg) is pure of
weight two, and its geometric monodromy group is SO(3). Its local
monodromies at 0, 1, and ∞ are each Unip(3), a single unipotent
Jordan block of dimension three. We have an arithmetic isomorphism

Sym2(Leg) ∼= [λ 7→ 1/λ]?Sym2(Leg).

Theorem 15.3. Suppose k has odd characteristic. Consider the object
N := Sym2(Leg)(3/2)[1] ∈ Parith. This object is a geometrically Lie-
irreducible two-dimensional object of Parith which is pure of weight zero
and arithmetically self-dual. It has Ggeom,N = Garith,N = SL(2).

Proof. That N is geometrically irreducible results from the fact that
Sym2(Leg) = j?j

?Sym2(Leg) and that j?Sym2(Leg) has its geometric
monodromy group SO(3), which is irreducible in its standard repre-
sentation. It is pure of weight zero, by Hasse [Ha-Ell, page 205]. The
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fact that Sym2(Leg) has 1 as its unique singularity shows that it is
isomorphic to no nontrivial multiplicative translate of itself, so is a ge-
ometrically Lie-irreducible object of Parith. That N is self-dual results
from the fact that Sym2(Leg) has an integer (and hence real) valued
trace function, and the isomorphism TwLeg ∼= [λ 7→ 1/λ]−1TwLeg.
That it is two-dimensional is immediate from the Euler-Poincaré for-
mula [Ray] (as it is tame at both 0 and ∞, and has a drop of two at
1).The result now follows from Theorem 14.1. �

Exactly as in the case of TwLeg, we have the following strengthen-
ing.

Theorem 15.4. Suppose k has odd characteristic. Let χ1, ..., χs be s ≥
2 distinct characters of k×. Consider the objects Ni := Sym2(Leg) ⊗
Lχi(3/2)[1] ∈ Parith. Then Ggeom,⊕iNi = Garith,⊕iNi =

∏s
i=1 SL(2).

Proof. The proof is nearly identical to that of Theorem 15.2; one has
only to replace Unip(2) by Unip(3). �





CHAPTER 16

Frobenius Tori and Weights; Getting Elements of
Garith

In this chapter, we work on Gm/k. We consider an arithmetically
semisimple object N ∈ Parith which is pure of weight zero. We assume
it is of the form G[1], with G a middle extension sheaf. Thus for some
open set j : U ⊂ Gm, we have G = j?F , for F := j?G a lisse sheaf on U
which is pure of weight −1 and arithmetically semisimple, and having
no geometric constituent isomorphic to (the restriction to Uk of) a
Kummer sheaf. Recall that Deligne’s fibre functor is (for j0 : Gm ⊂ A1

the inclusion)

M 7→ ω(N) := H0(A1 ⊗k k, j0!N).

The action of Frobk on the restriction to <N>arith of this fibre func-
tor gives us an element Frobk,1 ∈ Garith,N . Now view Garith,N as a
subgroup of GL(ω(N)). Then Frobk,1 is the action of Frobk on the
cohomology group

ω(N) := H0(A1 ⊗k k, j0!N) = H1(A1 ⊗k k, j0!G).

We now recall the relation of the absolute values of the eigenvalues
of Frobk,1 to the local monodromies of F at the two points 0 and ∞.
To do this, we introduce some ad hoc notation. We denote by F(0) (re-
spectively by F(∞)) the I(0) (respectively the I(∞)) -representation
attached to F . We separate it as the direct sum of its tame and wild
parts. We then isolate, in the tame part, the summand which is unipo-
tent, which we denote F(0)unip (respectively by F(∞)unip). We denote
by d0 ≥ 0 (respectively by d∞ ≥ 0) the number of Jordan blocks in
F(0)unip (respectively in F(∞)unip). We write each as the sum of its
Jordan blocks.

F(0)unip = ⊕d0i=1Unip(ei),

F(∞)unip = ⊕d∞j=1Unip(fj).

The following theorem is a spelling out of some of the results of
Deligne’s Weil II [De-Weil II].

Theorem 16.1. The action of Frobk,1 on ω(N) := H0(A1⊗kk, j0!N) =

H1(A1⊗kk, j0!G) has exactly d0 eigenvalues of weight < 0; their weights

77
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are −e1, ...,−ed0. It has exactly d∞ eigenvalues of weight > 0; their
weights are f1, ..., fd∞. All other eigenvalues, if any, have weight zero.

Proof. By the main theorem of Deligne’s Weil II in the case of curves
[De-Weil II, 3.2.3], we know that H1(P1 ⊗k k, j0?j∞?G) is pure of
weight zero. Our cohomology group ω(N) = H1(A1 ⊗k k, j0!G) is the
groupH1(P1⊗kk, j0!Rj∞?G). We have a short exact sequence of sheaves
on P1, with punctual third term,

0→ j0!j∞?G → j0?j∞?G → F(0)I(0) → 0

and a short exact sequence of perverse sheaves on P1, with punctual
third term,

0→ j0!j∞?G[1]→ j0!Rj∞?G[1]→ H1(I(∞),F(∞))→ 0.

Because G := j?F has no geometrically constant constituents, the long
exact cohomology sequences give short exact sequences

0→ F(0)I(0) → H1(P1 ⊗k k, j0!j∞?G)→ H1(P1 ⊗k k, j0?j∞?G)→ 0,

and

0→ H1(P1 ⊗k k, j0!j∞?G)→ ω(N)→ H1(I(∞),F(∞))→ 0.

Thus ω(N) is a successive extension of the three groups

H1(I(∞),F(∞)), H1(P1 ⊗k k, j0?j∞?G), F(0)I(0).

That F(0)I(0) has weights −e1, ...,−ed0 is [De-Weil II, 1.6.14.2-3 and
1.8.4], cf. [Ka-GKM, 7.0.7]. That H1(I(∞),F(∞)) has weights
f1, ..., fd∞ is the dual (remember that F is pure of weight −1) state-
ment. Because H1(P1 ⊗k k, j0?j∞?G) is pure of weight zero, the impu-
rities in ω(N) are as asserted. �

The following corollary will soon play a crucial role.

Corollary 16.2. We have the following results.

(1) Suppose that F(0)unip is a single Jordan block Unip(e), some
e ≥ 1, and that F(∞)unip = 0. Then Garith,N contains, in
a suitable basis of ω(N), the torus consisting of all diagonal
elements of the form Diag(x, 1, 1, ..., 1).

(2) Suppose that F(0)unip is a single Jordan block Unip(e), some
e ≥ 1, and that F(∞)unip is a single Jordan block Unip(e) of
the same size. Then Garith,N contains, in a suitable basis of
ω(N), the torus consisting of all diagonal elements of the form
Diag(x, 1/x, 1, 1, ..., 1).
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Proof. Since Frobk,1 lies inGarith,N , so does its semisimplification in the
sense of Jordan decomposition. This semisimplification, in a suitable
basis, is the element Diag(α1, ..., αn), n = dim(ω(N)), consisting of the
eigenvalues αi of Frobk,1. The Zariski closure of the group generated
by this element, Serre’s Frobenius torus [Se-Let], is defined by all
monomial equations ∏

i

Xai
i = 1,

as (a1, ..., an) runs over all vectors in Zn such that∏
i

αaii = 1,

cf. [Chev-TGL II, Chap.2, Section &13, Prop.3]. Let us call such
vectors “equation vectors.” Taking absolute values via any ι, we see
that any equation vector (a1, ..., an) ∈ Zn satisfies∏

i

|αi|ai = 1.

In case (1), all but one of the αi has |αi| = 1, and the remaining
one, say α1, has |αi| = 1/

√
#k

e
. So we conclude that a1 = 0 in any

equation vector. Hence any element Diag(x, 1, 1, ..., 1) satisfies all the
equations.

In case (2), after renumbering we have |α1| = 1/
√

#k
e
, |α2| =√

#k
e
, and |αi| = 1 for i ≥ 3. So here we infer that any equation

vector has a1 = a2, and hence that any element Diag(x, 1/x, 1, 1, ..., 1)
satisfies all the equations. �

We end this chapter with another application of Theorem 16.1. We
have already used, in the proof of Corollary 6.3, the fact that the only

one-dimensional objects in Pgeom are the delta objects δa for a ∈ k
×

and multiplicative translates of shifted hypergeometric sheaves

H(ψ;χ1, ..., χn; ρ1, ..., ρm)[1]

of type (n,m) where Max(n,m) ≥ 1 and no χi is a ρj. We have already
characterized the delta sheaves as those of finite order, or, in the case
when our one-dimensional object lies in Parith, as those with no bad
characters. Using Theorem 16.1, we can give a recipe for the one-
dimensional objects in Parith of infinite order, in terms of weight losses
and weight gains.

Corollary 16.3. Let L in Parith be a one-dimensional object on Gm/k
which is pure of weight zero. If L has no bad characters, then L is δa
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for some a ∈ k×. If L has bad characters, then L is geometrically iso-
morphic to a multiplicative translate of a shifted hypergeometric sheaf
H(ψ;χ1, ..., χn; ρ1, ..., ρm)((n + m)/2)[1] with Max(n,m) ≥ 1 and such
that no χi is a ρj. A character χ occurs among the χi if and only if,
over some finite extension E/k where χ is defined, FrobE,χ|ω(L) has
weight −wχ < 0, and in that case χ occurs exactly wχ times among the
χi. A character ρ occurs among the ρj if and only if, over some finite
extension E/k where ρ is defined, FrobE,ρ|ω(L) has weight wρ > 0, and
in that case χ occurs exactly wρ times among the ρj.

Proof. The case of no bad characters is simply “mise pour mémoire.”
The case where there are bad characters is immediate from Theorem
16.1, given the known local monodromies at 0 and∞ of hypergeometric
sheaves, cf. [Ka-ESDE, 8.4.2, (7)-(9)]. �



CHAPTER 17

GL(n) Examples

Here we work on either the split or the nonsplit form. We begin with
a lisse sheaf F on a dense open set j : U ⊂ G which is geometrically
irreducible, pure of weight zero, and not geometrically isomorphic to
(the restriction to U of) any Kummer sheaf Lχ. We denote by G := j?F
its middle extension to G. Then the object N := G(1/2)[1] ∈ Parith is
pure of weight zero and geometrically irreducible.

Theorem 17.1. Suppose that N is not geometrically isomorphic to any
nontrivial multiplicative translate of itself. Suppose further that for one
of the two possible geometric isomorphisms G/k ∼= Gm/k, F(0)unip is
a single Jordan block Unip(e) for some e ≥ 1, and F(∞)unip = 0. For
n := dim(ω(N)) we have

Ggeom,N = Garith,N = GL(n).

Proof. We have a priori inclusions

Ggeom,N ⊂ Garith,N ⊂ GL(n),

so it suffices to prove that Ggeom,N = GL(n). So we may extend scalars
if necessary from k to its quadratic extension k2, and reduce to the
case where G is Gm, F(0)unip is a single Jordan block Unip(e), and
F(∞)unip = 0. Then by the previous chapter, Garith,N contains, in a
suitable basis of ω(N), the torus Diag(x, 1, 1, ....1).

The hypothesis that N is not geometrically isomorphic to any non-
trivial multiplicative translate of itself insures that N is geometrically
Lie-irreducible, i.e., that G0

geom is an irreducible subgroup of GL(n).

Hence G0
geom is the almost product of its center, which by irreducibility

consists entirely of scalars, with its derived group (:=commutator sub-
group) G0,der

geom, which is a connected semisimple group which also must
act irreducibly.

Because Ggeom,N is a normal subgroup of Garith,N , so also its in-

trinsic subgroup G0,der
geom,N is a normal subgroup of Garith,N . Therefore

the Lie algebra Lie(G0,der
geom,N) is a semisimple irreducible Lie subal-

gebra of End(ω(N)) which is normalized by Garith,N . In particular,

Lie(G0,der
geom,N) is normalized by all elements Diag(x, 1, 1, ....1). Such

81
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elements are pseudoreflections, with determinant equal to x. Take
x 6= ±1. Our semisimple irreducible Lie subalgebra of End(ω(N)) is
normalized by a pseudoreflection of determinant not ±1. The only such
Lie algebra is Lie(SL(n)), cf. [Ka-ESDE, 1.5]. [See [Se-Dri, Prop.

5] for another approach to this result.] Therefore G0,der
geom,N = SL(n),

and hence we get the inclusion SL(n) ⊂ Ggeom,N . So it suffices to show
that the determinant as a character of Ggeom,N has infinite order.

Equivalently, we must show that “ det ”(N) in the Tannakian sense
is geometrically of infinite order. The one-dimensional objects in<N>arith

are either punctual objects αdeg⊗δa for some unitary scalar α and some
a ∈ k× or they are, geometrically, multiplicative translates of hyper-
geometric sheaves H[1], cf. [Ka-ESDE, 8.5.3]. But H[1] has infinite
geometric order, because its successive middle convolutions with itself
are again of the same form H′[1].

So it suffices to show that “ det ”(N) in the Tannakian sense is
not punctual. But if it were punctual, it would have no bad charac-
ters, i.e., we would have | det(FrobE,χ)| = 1 for every finite extension
E/k and every character χ of E×. But we have seen that Frobssk,1 is

Diag(1/
√

#k
e
, 1, 1, ..., 1). Hence det(Frobk,1) = 1/

√
#k

e
is not pure

of weight zero. Therefore “ det ”(N) in the Tannakian sense is not
punctual, and hence it is geometrically of infinite order. �

Here are five explicit examples, all on Gm/k. The first is based on
the Legendre sheaf Leg introduced in chapter 15.

Theorem 17.2. Let k have odd characteristic. For any odd integer
n ≥ 1, the object N := Symn(Leg)((n + 1)/2)[1] in Parith is pure of
weight zero, has “dimension” n, and has

Ggeom,N = Garith,N = GL(n).

Proof. Symn(Leg)(n/2) is the middle extension of a geometrically irre-
ducible (because Symn(std2) is an irreducible representation of SL(2))
lisse sheaf of rank n+1 on Gm\{1} which is pure of weight zero. So N is
a geometrically irreducible object in Parith which is pure of weight zero.
Its local monodromies at 0 and 1 are both Unip(n + 1). Because n is
odd, its local monodromy at∞ is Lχ2⊗Unip(n+ 1). Because the only
singularity of N in Gm is 1, N is not geometrically isomorphic to any
nontrivial multiplicative translate of itself. The Euler-Poincaré formula
[Ray] shows that N has “dimension” n (it is tame at 0 and∞, and has
drop n at 1). The result now follows from the previous theorem. In this
example, we can compute the Tannakian determinant “ det ”(N) explic-
itly. By Theorem 16.1 and Corollary 16.3, “ det ”(N) is geometrically
isomorphic to a multiplicative translate of the shifted hypergeometric
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sheaf H[1] of type (n+ 1, n+ 1) given by H = H(ψ;1, ...,1;χ2, ..., χ2).
[By Lemma 19.3, proven later but with no circularity, there is in fact
no multiplicative translate: the unique singularity in Gm of both N
and its determinant is at 1.] �

The second example, a mild generalization of the first, is based
on hypergeometric sheaves of type (2, 2). We pick a character χ of
k× for a large enough finite field k. We assume χ2 is nontrivial. We
begin with the objects Lχ(1−x)(1/2)[1] and Lχ(x2/(1−x))(1/2)[1] on Gm/k.
Their middle convolution is H(2)[1], for H := H(!, ψ;1, χ2;χ, χ) the
hypergeometric sheaf of type (2, 2) on Gm/k as defined in [Ka-ESDE,
8.2]. This sheaf H is the middle extension of its restriction to Gm \{1},
where it is lisse, and pure of weight 3. Its local monodromy at 0 is
1⊕χ2. Its local monodromy at 1 is Unip(2), and its local monodromy
at ∞ is Lχ ⊗ Unip(2).

Theorem 17.3. Let n ≥ 2 be an integer, H := H(!, ψ;1, χ2;χ, χ). If
χ2 has order > n, the object N := Symn(H)((3n+ 1)/2)[1] in Parith is
pure of weight zero, has “dimension” n, and has

Ggeom,N = Garith,N = GL(n).

Proof. Because we assume that χ2 has order > n, the local mon-
odromy of Symn(H) at 0, which is the direct sum 1 ⊕

⊕n
r=1 χ

2r, has
Symn(H)(0)unip = Unip(1). The local monodromy of Symn(H) at 1 is
Unip(n + 1), and its local monodromy at ∞ is Lχn ⊗ Unip(n + 1).
Notice that χn is nontrivial (otherwise (χ2)n is trivial). Therefore
Symn(H)(∞)unip = 0. The rest of the proof is identical to that in
the Legendre case above. Just as in that case, we see that here the
Tannakian determinant is geometrically isomorphic to H[1] for H the
hypergeometric sheaf of type (n, n) H(ψ;χ2, ..., χ2n;1, ...,1). �

Our third example works on Gm/Fp, any prime p. For any integer
n ≥ 1, we will construct a lisse rank one sheaf F on A1/Fp which is pure
of weight zero and whose Swan conductor at ∞ is the integer n. We
will do this in such a way that F|Gm is not geometrically isomorphic to
any nontrivial multiplicative translate of itself. Then it is immediate
from Theorem 17.1 that the object N := (F|Gm)(1/2)[1] in Parith is
pure of weight zero, has “dimension” n, and has

Ggeom,N = Garith,N = GL(n).

Here is one such construction. Let us write n = prd with r ≥ 0 and
with d ≥ 1 prime to p. Suppose first that r = 0, i.e., n = d is prime to
p. Pick a nontrivial additive character ψ of Fp. Choose a polynomial
fd(x) ∈ k[x] which is Artin-Schreier reduced, i.e., no monomial xe
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appearing in fd has p|e, and such that the set of e’s such that xe occurs
in fd generates the unit ideal in Z. For instance we could take f1(x) = x
and fd(x) = xd − x for d ≥ 2. Then the Artin-Schreier sheaf Lψ(fd(x))

has Swan conductor d at∞ [De-ST, 3.5.4]. Its multiplicative translate

by an a 6= 1 in k
×

is Lψ(fd(ax)), which is not geometrically isomorphic
to Lψ(fd(x)) because their ratio is Lψ(fd(ax)−fd(x)). Indeed, the difference
fd(ax)−fd(x) is Artin-Schreier reduced, and has strictly positive degree
so long as a 6= 1; this degree is the Swan conductor at ∞ of the ratio.

Suppose next that n = prd with r ≥ 1 and d ≥ 1 prime to p.
Then we pick a character ψr+1 of Z/pr+1Z = Wr+1(Fp) which has or-
der pr+1. We consider the Witt vector of length r + 1 given by v :=
(fd(x), 0, 0, .., 0) ∈ Wr+1(Fp[x]). We form the Z/pr+1Z covering of A1

defined by the Witt vector equation z−F (z) = v in Wr+1; its pushout
by ψr+1 gives us the Artin-Schreier-Witt sheaf Lψr+1((fd(x),0,0,0,..,0)), whose
Swan conductor at ∞ is prd = n, cf. [Bry, Prop. 1 and Cor. of Thm.
1]. It is not geometrically isomorphic to any nontrivial multiplicative
translate of itself. Indeed, its pr’th tensor power is just Lψ(fd(x)) for
ψ the additive character of Fp, viewed as prZ/pr+1Z, obtained by re-
stricting ψr+1.

In summary, then, we have the following theorem.

Theorem 17.4. For n = prd with r ≥ 0 and d ≥ 1 prime to p, form
the Artin-Schreier-Witt sheaf F := Lψr+1((fd(x),0,0,..,0)). Then the object
N := (F|Gm)(1/2)[1] in Parith is pure of weight zero, has “dimension”
n, and has

Ggeom,N = Garith,N = GL(n).

In this example, the Tannakian determinant is geometrically iso-
morphic to a multiplicative translate of H[1] for H = Lψ(x), the hyper-
geometric H(ψ;1; ∅) of type (1, 0).

Our fourth example is this.

Theorem 17.5. Take a polynomial f [x] =
∑n

i=0 Aix
i in k[x] of degree

n ≥ 2 with all distinct roots in k. Suppose that f(0) 6= 0, and that
gcd{i|Ai 6= 0} = 1. Then for any character χ of k× such that χn is
nontrivial, the object N := Lχ(f)(1/2)[1] in Parith is pure of weight zero,
has “dimension” n, and has

Ggeom,N = Garith,N = GL(n).

Proof. Here the local monodromy at 0 is Unip(1), and the local mon-
odromy at ∞ is Lχn . So the assertion is an immediate application of
Theorem 17.1, once we show that N is isomorphic to no nontrivial mul-
tiplicative translate of itself. To see this, we argue as follows. The set
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S of zeroes of f is the set of finite singularities of N , so is an intrinsic
invariant of the geometric isomorphism class of N . So it suffices to

show that if α ∈ k× satisfies αS = S, then α = 1. The condition that
αS = S is the condition that f(αx) = αnf(x). Equating coefficients,
we get the equations

αiAi = αnAi

for every i. Taking i = 0, and remembering that A0 6= 0 by hypothesis,
we find that αn = 1. Then our equations read

αiAi = Ai

for every i. Using the fact that gcd{i|Ai 6= 0} = 1, we infer that
α = 1. �

In this example, the Tannakian determinant is geometrically iso-
morphic to H[1] for H = H(ψ;1;χn) ∼= Lχn(1−x).

To end this chapter, we give a fifth example, valid in any odd char-
acteristic p.

Theorem 17.6. Let k be a finite field of odd characteristic p. Take a
polynomial f(x) =

∑n
i=0Aix

i in k[x] of prime-to-p degree n ≥ 2 with all

distinct roots in k. Suppose that f is “weakly supermorse” [Ka-ACT,
5.5.2], i.e., its derivative f ′(x) has n − 1 distinct zeroes (the critical
points) αi in k, and the n − 1 values f(αi) (the critical values) are
all distinct. Denote by S the set of critical values. Suppose that S is
not equal to any nontrivial multiplicative translate of itself. Form the
middle extension sheaf

F := f?Q`/Q` | Gm.

Then the object N := F(1/2)[1] ∈ Parith is pure of weight zero, has
“dimension” n− 1, and has

Ggeom,N = Garith,N = GL(n− 1).

Proof. Because f is weakly supermorse, F is irreducible, of generic
rank n − 1, with geometric monodromy group the symmetric group
Sn in its deleted permutation representation, cf. [Ka-ESDE, 7.10.2.3
and its proof]. Because f has n distinct zeroes, 0 is not a critical
value. So S ⊂ Gm, and at each point of S the local monodromy is a
reflection, necessarily tame, as p 6= 2. At ∞, the local monodromy is
tame, the direct sum ⊕χ|χn=1,χ 6=1Lχ. Thus F is tame at ∞. Therefore
the “dimension” of N is the sum of the drops of F , each one, at the
n− 1 points of S. As F is not lisse at n− 1 ≥ 1 points of Gm, F is not
geometrically isomorphic to any Kummer sheaf Lρ. Thus N ∈ Parith.
It is pure of weight zero because F is a middle extension which on a
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dense open set is pure of weight zero. From the hypothesis that the
set S of singularities of N is not equal to any nontrivial multiplicative
translate of itself, it follows that N is not geometrically isomorphic to
any nontrivial multiplicative translate of itself. Thus N is geometrically
Lie-irreducible.

It remains to show that N has Ggeom = GL(n − 1). For this, it is
equivalent to show that for some ρ, N ⊗ Lρ has Ggeom = GL(n − 1)
(simply because M 7→M⊗Lρ is a Tannakian automorphism of Pgeom).

We choose for ρ any nontrivial character of order dividing n. For
such a choice of ρ, the sheaf Fρ := F ⊗ Lρ has Fρ(0)unip = 0 (because
F was lisse at 0), and Fρ(∞)unip = Unip(1) (because the local mon-
odromy of F at ∞ was ⊕χ|χn=1,χ 6=1Lχ). The result now follows from
Theorem 17.1, using the “other” geometric isomorphism of Gm with
itself (which interchanges 0 and ∞). �

In this case, the Tannakian determinant of the original N is geo-
metrically isomorphic to some multiplicative translate ofH[1] forH the
hypergeometric sheaf of type (n−1, n−1) H(ψ;1, ...,1;χ, χ2, ..., χn−1)
for any character χ of full order n.

Remark 17.7. For any polynomial f , the trace function of the sheaf
F := f?Q`/Q` is the counting function given, for any finite extension
E/k and any a ∈ E×, by

Trace(FrobE,a|F) = #{x ∈ E|f(x) = a} − 1.

So for any nontrivial character χ of E×, we have

Trace(FrobE,χ|ω(N)) = (−1/
√

#E)
∑
x∈E

χ(f(x)).

Thus for f satisfying the hypotheses of Theorem 17.6, we are saying, in
particular, that these sums, as χ varies over characters of E× with χn 6=
1, are approximately distributed like the traces of random elements of
the unitary group U(n−1), the approximation getting better and better
as #E grows.

How restrictive are the hypotheses imposed on the polynomial f?
One knows that given any polyonomial f(x) ∈ k[x] of prime-to-p de-
gree n ≥ 2 such that f ′′(x) is nonzero, then for all but finitely many
values of a ∈ k, the polynomial f(x) + ax is weakly supermorse, cf.
[Ka-ACT, 5.15]. For example, if n(n− 1) is prime to p, then xn − nx
is weakly supermorse, with µn−1 as the critical points, and (1−n)µn−1

as the set S of critical values. In this example, the set S is equal to its
multiplicative translate by any element of µn−1. Nonetheless, we have
the following lemma, which shows that by adding nearly any constant
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to a weakly supermorse f , the set of its critical values will then be
equal to no nontrivial multiplicative translate of itself.

Lemma 17.8. Let k be a field of characteristic p. Take a weakly super-
morse polynomial f [x] =

∑n
i=0Aix

i in k[x] of prime-to-p degree n ≥ 2,

with set S of critical values. For each λ ∈ k, consider the weakly super-
morse polynomial fλ(x) := f(x)− λ, with set Sλ := −λ+ S of critical
values. Denote by FS(x) :=

∏
s∈S(x− s) the polynomial of degree n− 1

whose roots are the critical values of f . For any λ ∈ k such that both
FS(λ) and its derivative F ′S(λ) are nonzero, the set Sλ is equal to no
nontrivial multiplicative translate of itself. In particular, there are at
most (n − 1)(n − 2) values of λ ∈ k for which Sλ is equal to some
nontrivial multiplicative translate of itself.

This results from the following elementary lemma.

Lemma 17.9. Let k be a field, S ⊂ k a finite subset consisting of d ≥ 1
elements. Denote by FS(x) :=

∏
s∈S(x− s) the polynomial of degree d

whose roots are the points of S. For any λ ∈ k such that both FS(λ)
and its derivative F ′S(λ) are nonzero, the set Sλ := −λ+ S is equal to
no nontrivial multiplicative translate of itself.

Proof. The polynomial FSλ(x) is just FS(x + λ), hence we have the
Taylor expansion

FSλ(x) = FS(λ) + F ′S(λ)x mod x2.

Suppose FS(λ)F ′S(λ) 6= 0. If Sλ is equal to its multiplicative trans-
late by some nonzero α, then FSλ(αx) has the same roots as FSλ(x).
Comparing highest degree terms, we get

FSλ(αx) = αdFSλ(x).

Comparing the nonzero (by our choice of λ) constant and linear terms
of their Taylor expansions, we get αd = 1 and αd−1 = 1, and hence
α = 1.

�

Corollary 17.10. Let k be a finite field of odd characteristic p. Let
n ≥ 2, and assume that n(n−1) is prime to p. Consider the polynomial

f(x) =
(xn − nx)

(1− n)
.

Then for any a ∈ k× with an−1 6= 1, the polynomial f(x) − a satisfies
all the hypotheses of Theorem 17.6.

Proof. Here the set S of critical values of f(x) is µn−1,so FS(x) =
xn−1 − 1, and F ′S(x) = (n− 1)xn−2. �
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There are some special cases where no adjustment of the constant
term is necessary. Here is one such.

Lemma 17.11. Let k = Fq be a finite field of odd characteristic. For
any a ∈ F×q , the polynomial f(x) = xq+1 − x2/2 + ax satisfies all the
hypotheses of Theorem 17.6.

Proof. We have f ′(x) = xq−x+a, so the critical values are the elements
α ∈ k with αq = α− a. No such α lies in Fq, since a 6= 0. The value of
f at such an α is

f(α) = α(αq)− α2/2 + aα = α(α− a)− α2/2 + aα = α2/2.

If we fix one critical point α, any other is α+b, for some b ∈ Fq. If their
critical values coincide, i.e., if (α + b)2/2 = α2/2, then αb + b2/2 = 0;
if b 6= 0, this implies that α = −b/2, contradicting the fact that α
does not lie in Fq. So the set S of critical values consists of q distinct,
nonzero elements. So the polynomial FS(x) has degree q, and a nonzero

constant term. If S is a multiplicative translate of itself, say by γ ∈ k×,
then we get FS(γx) = γqFS(x), and comparing the nonzero constant
terms we get γq = 1, and hence γ = 1. �



CHAPTER 18

Symplectic Examples

We work on either the split or the nonsplit form. We begin with
a lisse sheaf F on a dense open set j : U ⊂ G which is geometrically
irreducible, pure of weight zero, and not geometrically isomorphic to
(the restriction to U of) any Kummer sheaf Lχ. We denote by G := j?F
its middle extension to G. Then the object N := G(1/2)[1] ∈ Parith is
pure of weight zero and geometrically irreducible.

Theorem 18.1. Suppose that N is not geometrically isomorphic to any
nontrivial multiplicative translate of itself, and that N is symplectically
self-dual. Suppose further that for either of the two possible geometric
isomorphisms G/k ∼= Gm/k, both F(0)unip and F(∞)unip are a single
Jordan block Unip(e) of the same size e ≥ 1. For n := dim(ω(N)) we
have

Ggeom,N = Garith,N = Sp(n).

Proof. We have a priori inclusions

Ggeom,N ⊂ Garith,N ⊂ Sp(n),

so it suffices to prove that Ggeom,N = Sp(n). So we may extend scalars
if necessary from k to its quadratic extension k2, and reduce to the
case where G is Gm. The hypothesis that N is not geometrically iso-
morphic to any nontrivial multiplicative translate of itself insures that
N is geometrically Lie-irreducible, i.e., that G0

geom is a connected irre-

ducible subgroup of Sp(n). Thus G0
geom is semisimple: any connected

irreducible subgroup of Sp(n) (indeed of SL(n)) is semisimple (it is
reductive, because irreducible, and its center, necessarily consisting
entirely of scalars by irreducibility, is finite).

The local monodromy of N at both 0 and∞ is Unip(e). Therefore
the semisimplification of Frobk,1 gives us a Frobenius torus [Se-Let]
Diag(x, 1/x, 1, ..., 1) in Garith,N . This torus normalizes the connected
semisimple group G0

geom,N , and this group is an irreducible (in the
given n-dimensional representation) subgroup of Sp(n). Take an el-

ement x0 ∈ Q`
×

which is not a root of unity. Then the element
diag(x0, 1/x0, 1, ..., 1) normalizes G0

geom,N . But a fixed power of any
automorphism of a connected semisimple group is inner. So for some

89
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integer d ≥ 1, the element diag(xd0, 1/x
d
0, 1, ..., 1) induces an inner auto-

morphism of G0
geom,N , conjugation by some element γ ∈ G0

geom,N . Then

γ−1diag(xd0, 1/x
d
0, 1, ..., 1) commutes with every element of G0

geom,N , so

is a scalar, say t ∈ Q`
×

. Thus we find

diag(xd0, 1/x
d
0, 1, ..., 1) = tγ,

equality inside GmG
0
geom,N ⊂ GL(n). Both diag(xd0, 1/x

d
0, 1, ..., 1) and

γ have determinant one, so comparing determinants we see that tn = 1,
and hence

diag(xnd0 , 1/x
nd
0 , 1, ..., 1) = γn

lies inG0
geom,N . As x0 is not a root of unity, the entire torusDiag(x, 1/x, 1, ..., 1)

lies inG0
geom,N . By a beautiful result of Kostant and Zarhin [Ka-ESDE,

1.2], the only irreducible connected semisimple subgroups of SL(n)
which contain the torus Diag(x, 1/x, 1, ..., 1) are SL(n), SO(n), and,
when n is even, Sp(n). Since we have an a priori inclusion G0

geom,N ⊂
Sp(n), we must have G0

geom,N = Sp(n). From the a priori inclusions

G0
geom,N ⊂ Ggeom,N ⊂ Garith,N ⊂ Sp(n), we get the asserted conclu-

sion. �

Here is a generalization of this last result.

Theorem 18.2. Suppose N satisfies all the hypotheses of the theorem
above. Suppose further that

At either 0 or at ∞ or at both, the entire tame part of the
local monodromy is Unip(e), i.e., local monodromy there is
the direct sum of Unip(e) and of something totally wild.

Then for any s ≥ 2 distinct characters χ1, ..., χs of G(k), the objects
Ni := N ⊗ Lχi have

Ggeom,⊕si=1Ni
= Garith,⊕si=1Ni

=
s∏
i=1

Sp(n).

Proof. This is an immediate application of Theorem 13.1. As already
noted, the operation M 7→M ⊗Lχi is a Tannakian isomorphism from
<N>arith to <N ⊗ Lχi>arith, so each Ni has Ggeom,Ni = Garith,Ni =
Sp(n). For i 6= j, Ni and Nj have nonisomorphic tame parts of local
monodromy at either 0 or at ∞ or at both, so they cannot be geo-
metrically isomorphic. For the same reason, Ni is not geometrically
isomorphic to [x 7→ −x]?Nj; indeed Nj and [x 7→ −x]?Nj have isomor-
phic tame parts of local monodromy at both 0 and∞. [More generally,
tame representations of either I(0) or of I(∞) are geometrically iso-
morphic to all their multiplicative translates.] �
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We now give some concrete examples. The first example is based
on the Legendre sheaf Leg introduced in Chapter 15.

Theorem 18.3. Let k have odd characteristic. For any even integer
n ≥ 2, the object N := Symn(Leg)((n + 1)/2)[1] in Parith is pure of
weight zero, of “dimension” n, and has

Ggeom,N = Garith,N = Sp(n).

Proof. The lisse sheaf Leg(1/2)|A1 \ {0, 1} has SL(2) as its geomet-
ric (and its arithmetic) monodromy group, so every symmetric power
Symn of it is geometrically irreducible and self-dual, orthogonally if n
is even and symplectically if n is odd. Under multiplicative inversion,
we have

[λ 7→ 1/λ]?Leg ∼= Leg ⊗ Lχ2(λ).

Thus each even symmetric power of Leg(1/2)|A1 \ {0, 1} is both or-
thogonally self-dual and invariant under multiplicative inversion. So
the object N in Parith is pure of weight zero, geometrically irreducible,
and self-dual. Moreover it is geometrically Lie-irreducible, because the
point 1 ∈ Gm(k) is its unique singularity. Its “dimension” is n; indeed
it is everywhere tame, and at its unique singularity 1 ∈ Gm(k) its lo-
cal monodromy is Unip(n + 1), so its drop is n. Let us admit for the
moment that the autoduality of N is symplectic. Then we argue as
follows. The local monodromy of N at both 0 and ∞ is Unip(n + 1).
Theorem 18.1 then gives the asserted conclusion.

It remains to show that N is symplectically self-dual. Because
we know already that N is either symplectically or orthogonally self-
dual, we may make a finite extension of the ground field to determine
which. So replacing k by k2 if necessary, we reduce to the case when
k contains the fourth roots of unity. We will apply Theorem 11.2.
Write the even integer n as n = 2d. We will show that the lisse sheaf
Sym2d(Leg)(d)|A1 \ {0, 1} is the pullback, by λ 7→ λ + 1/λ, of a lisse
sheaf F2d+1 on A1 \ {2,−2} which is orthogonally self-dual, and whose
Ggeom,F2d+1

is the image of µ4SL(2) in Sym2d(std2). [In this represen-
tation, SL(2) has image an irreducible subgroup of SO(2d + 1), while
µ4 acts trivially if d is even, and with scalar image ±1 if d is odd.]
Then by Theorem 11.2 the autoduality on N is symplectic.

For the group SL(2), we recover Sym2d(std2) as the highest dimen-
sional constituent of Symd(Sym2(std2)). Indeed, by Hermite’s identity,
we have Symd(Sym2(std2)) ∼= Sym2(Symd(std2)), and as already noted
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(in the paragraph preceding Theorem 11.2), we have

Sym2(Symd(std2)) =

[d/2]⊕
r=0

Sym2d−4r(std2)⊗ det⊗2r.

Now think of Sym2(std2) as std3 for SO(3). This group SO(3) has a
unique irreducible representation V2r+1 of each odd dimension 2r + 1,
namely Sym2r(std2), when we think of SO(3) as SL(2)/±1. The above
identity then is the statement that as representations of SO(3), we have

Symd(std3) ∼=
[d/2]⊕
r=0

V2d+1−4r.

Consequently, we have

V2d+1
∼= Symd(std3)/Symd−2(std3).

[In other words, V2d+1 as representation of SO(3) is the space of spher-
ical harmonics of degree d on S2.] Applying this to Leg(1/2) on
A1 \ {0, 1}, we get

Sym2d(Leg)(d) ∼= Symd(Sym2(Leg)(1))/Symd−2(Sym2(Leg)(1)).

This reduces us to the case n = 2, i.e., to the problem of showing
that Sym2(Leg)(1)|A1 \ {0, 1} is arithmetically isomorphic to the pull-
back, by λ 7→ λ+1/λ, of a lisse rank three sheaf F3 on A1\{2,−2} which
is orthogonally self-dual, with Ggeom,F3 the group O(3) = ±SO(3),
viewed as the image of µ4SL(2) in Sym2(std2). To do this, we may
replace Leg by its quadratic twist TwLeg := Leg ⊗ Lχ2(1−λ), because
for even n, Leg and TwLeg have the same Symn.

To construct F3, we will first exhibit a lisse, rank two sheaf H on
A1 \ {2,−2} such that TwLeg is geometrically the pullback of H by
λ 7→ λ + 1/λ. This sheaf H is not self-dual, but we will show that
Sym2(H) is self-dual, with Ggeom,Sym2(H) the group O(3). Then we will

take F3 to be Sym2(H), or possibly its constant field quadratic twist
(−1)deg ⊗ Sym2(H).

ForH, we start with the hypergeometric sheafH(ψ;χ4, χ4;1,1)(3/2)
of type (2, 2), with χ4 a character of k× of order 4. This sheaf is pure
of weight zero, its local monodromy at 0 is Lχ4 ⊗ Unip(2), its local
monodromy at 1 is 1⊕Lχ2 , and its local monodromy at∞ is Unip(2).
Then [x 7→ (2−x)/4]?H(ψ;χ4, χ4;1,1)(3/2) is the desired H. Its local
monodromy at∞ is Unip(2), its local monodromy at 2 is Lχ4⊗Unip(2),
and its local monodromy at −2 is 1⊕ Lχ2 .

The pullback of this H by λ 7→ λ + 1/λ has the same local mon-
odromies as TwLeg, namely Unip(2) at 0 and ∞, and Lχ2 ⊗ Unip(2)
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at 1. The pullback is lisse at −1. By rigidity, the pullback is geometri-
cally isomorphic to TwLeg. Therefore Sym2(TwLeg)(1)|A1 \ {0, 1} is
geometrically isomorphic to the pullback by λ 7→ λ+ 1/λ of

F3 := Sym2(H) = [x 7→ (2− x)/4]?Sym2(H(ψ;χ4, χ4;1,1))(3).

Again by rigidity, Sym2(H(ψ;χ4, χ4;1,1))(3) is geometrically isomor-
phic to the hypergeometric sheafH(χ2, χ2, χ2;1,1,1)(5/2) of type (3, 3).
This sheaf is orthogonally self-dual. We claim that its Ggeom is O(3).
Its local monodromy at ∞ is Unip(3), so I(∞), and a fortiori G0

geom,

act indecomposably. Therefore G0
geom acts irreducibly (because by

purity it acts semisimply). So G0
geom is a connected irreducible sub-

group of SO(3), and the only such is SO(3) itself. On the other hand,
det(H(χ2, χ2, χ2;1,1,1)(5/2)) is geometrically Lχ2(x(1−x)), so we have
Ggeom = O(3), as asserted.

So our situation is this. We have a lisse sheaf F3 which is pure of
weight zero, lisse of rank three, orthogonally self-dual with Ggeom,F3 =
O(3). Its pullback by λ 7→ λ+1/λ, call itK, is geometrically isomorphic
to Sym2(TwLeg)(1). Since both Sym2(TwLeg)(1) and the pullback K
are geometrically irreducible and arithmetically orthogonal, the space

Homgeom(K, Sym2(TwLeg)(1))

is a one-dimensional orthogonal Gal(k/k)-representation, some αdeg,
with α = ±1. We have an arithmetic isomorphism

K ⊗Homgeom(K, Sym2(TwLeg)(1)) ∼= Sym2(TwLeg)(1),

i.e., an arithmetic isomorphism K ⊗ αdeg ∼= Sym2(TwLeg)(1). Replac-
ing F3 by αdeg ⊗ F3 if necessary, i.e., if α = −1, we get the required
F3. �

Applying Theorem 18.2 to this N , we get the following result.

Theorem 18.4. For n ≥ 2 even, N := Symn(Leg)((n + 1)/2)[1],
and for any s ≥ 2 distinct characters χ1, ..., χs of G(k), the objects
Ni := N ⊗ Lχi have

Ggeom,⊕si=1Ni
= Garith,⊕si=1Ni

=
s∏
i=1

Sp(n).

We now analyze the odd symmetric powers of the twisted Legendre
sheaf TwLeg.

Theorem 18.5. Let k have odd characteristic and contain the fourth
roots of unity. For any odd integer n ≥ 1, the object

N := Symn(TwLeg)((n+ 1)/2)[1]
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in Parith is pure of weight zero, of “dimension” n+ 1, and has

Ggeom,N = Garith,N = Sp(n+ 1).

Proof. Because k contains the fourth roots of unity, the sheaf TwLeg
and hence the object N is isomorphic to its pullback by multiplicative
inversion. Just as in the start of the proof of Theorem 18.3, we see that
N is pure of weight zero, geometrically Lie-irreducible, and self-dual.
Its local monodromy at both 0 and ∞ is Unip(n + 1). Its local mon-
odromy at 1 is Lχ2 ⊗Unip(n+ 1), so its “dimension” is drop1 = n+ 1.
Exactly as in Theorem 18.3, it suffices to show that N is symplectically
self-dual.

As already shown in the proof of Theorem 18.3, TwLeg is geomet-
rically the pullback by π : λ 7→ λ+ 1/λ of the sheaf

H := [x 7→ (2− x)/4]?H(ψ;χ4, χ4;1,1)(3/2).

From the known local monodromies of H(ψ;χ4, χ4;1,1), we see that
det(H(ψ;χ4, χ4;1,1)) is geometrically isomorphic to Lχ2(x(1−x)). Hence
det(H) is geometrically isomorphic to [x 7→ (2 − x)/4]?Lχ2(x(1−x))

∼=
Lχ2(x2−4). Thus for some unitary scalar α, det(H) is arithmetically
isomorphic to αdeg ⊗ Lχ2(x2−4).

Choose a square root β of 1/α, and putH1 := βdeg⊗H. This object
H1 has determinant Lχ2(x2−4) arithmetically, its pullback by π : λ 7→
λ + 1/λ is geometrically isomorphic to TwLeg, and its determinant is
arithmetically trivial:

det(π?H1) = π? det(H1) = π?Lχ2(x2−4)

= Lχ2((λ+1/λ)2−4) = Lχ2((λ−1/λ)2)
∼= Q`.

Thus both π?H1 and TwLeg(1/2) are arithmetically symplectically
self-dual (being of rank two and trivial determinant), geometrically
irreducible, and geometrically isomorphic. So for some choice of γ =
±1, we have an arithmetic isomorphism

π?(γdegH1) ∼= TwLeg(1/2).

Replacing H1 by γdegH1 if needed, we have an H1 with arithmetic de-
terminant Lχ2(x2−4), geometric monodromy µ4SL(2), and an arithmetic
isomorphism π?H1

∼= TwLeg(1/2).
Now fix an odd integer n = 2d− 1 ≥ 1. Define the lisse sheaf F on

Gm \ {±2} by

F := Sym2d−1(H1),

and the object N ∈ Parith by

N := j?π
?F(1/2)[1].
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This N is just Symn(TwLeg)((n + 1)/2)[1]. The situation is reminis-
cent of that considered in Theorems 11.1 and 11.2, except that F is
not geometrically self-dual. Indeed, the geometric monodromy group
of F is µ4SL(2), viewed in the representation Sym2d−1(std2), a sub-
group of GL(2d) which contains the scalars µ4, hence lies in neither
the orthogonal nor the symplectic group. Nonetheless, we will use the
calculational method of the proof of Theorem 11.1 to determine the
sign εN of the autoduality of N . In the notations of that theorem,
where the “x” above becomes “s,” the sums whose large #E limit is
−εN are

(1/#E)
∑

s∈U(E)

Trace(FrobE2,s|F)(1− χ2,E(s2 − 4)).

We next observe that because F is pure of weight zero, geometri-
cally irreducible and not geometrically self-dual, we have the estimate

(1/#E)
∑

s∈U(E)

Trace(FrobE2,s|F) = O(1/
√

#E),

cf. [Ka-MMP, 1.9.6, assertion 1)]. Indeed, both the sheaves Sym2(F)
and Λ2(F) have vanishing H2

c on U ⊗k k, and their H1
c ’s are mixed of

weight ≤ 1, so the estimate follows from the Lefschetz Trace formula
[Gr-Rat] and the linear algebra identity

Trace(FrobE2,s|F) = Trace(FrobE,s|Sym2(F))−Trace(FrobE,s|Λ2(F)).

So we are reduced to showing that the sums

(1/#E)
∑

s∈U(E)

Trace(FrobE2,s|F)χ2,E(s2 − 4)

are approximately −1. To see this, we make use of the linear algebra
identity above. So it suffices to prove that the Sym2 term

(1/#E)
∑

s∈U(E)

Trace(FrobE,s|Sym2(F))χ2,E(s2 − 4)

= (1/#E)
∑

s∈U(E)

Trace(FrobE,s|Sym2(F)⊗ Lχ2(s2−4)) = O(1/
√

#E)

and that the Λ2 term

(1/#E)
∑

s∈U(E)

Trace(FrobE,s|Λ2(F))χ2,E(s2 − 4)

= (1/#E)
∑

s∈U(E)

Trace(FrobE,s|Λ2(F)⊗ Lχ2(s2−4))

is approximately 1.
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We now use the fact that F = Sym2d−1(H1), withH1 pure of weight
zero, with geometric monodromy group µ4SL(2) and with arithmetic
determinant Lχ2(s2−4). Recall the identities for GL(2)-representations

Sym2(Sym2d−1(std2)) =

[(2d−1)/2]⊕
r=0

Sym4d−2−4r(std2)⊗ det⊗2r

and

Λ2(Sym2d−1(std2)) =

[(2d−2)/2]⊕
r=0

Sym4d−4−4r(std2)⊗ det⊗2r+1.

Applying these toH1, we see every geometrically irreducible constituent
of Sym2(F) has rank ≥ 3, which gives the asserted O(1/

√
#E) esti-

mate for the Sym2 sum. We also see that Λ2(F) is the direct sum of
Lχ2(s2−4) with a complement, each of whose geometrically irreducible
constituents has dimension ≥ 5. So this complement gives a sum which
is O(1/

√
#E). The remaining term, the Lχ2(s2−4) sum, is

= (1/#E)
∑

s∈E×\{±2}

Trace(FrobE,s|Lχ2(s2−4)⊗Lχ2(s2−4)) = (#E−3)/#E,

as required. �

Exactly as for even symmetric powers, we can apply Theorem 18.2
to this N .

Theorem 18.6. For n ≥ 1 odd, N := Symn(TwLeg)((n + 1)/2)[1],
and for any s ≥ 2 distinct characters χ1, ..., χs of G(k), the objects
Ni := N ⊗ Lχi have

Ggeom,⊕si=1Ni
= Garith,⊕si=1Ni

=
s∏
i=1

Sp(n+ 1).

For the next example, we continue to work on Gm/k with k of odd
characteristic. Recall that a polynomial f(x) =

∑2g
i=0 aix

i ∈ k[x] of
even degree 2g is said to be palindromic if ag+i = ag−i for 0 ≤ i ≤ g.

Theorem 18.7. Let 2g ≥ 2 be an even integer, and f(x) ∈ k[x] a
palindromic polynomial of degree 2g. Suppose that f has 2g distinct
roots in k, and that f is not a polynomial in xd for any prime to p
integer d ≥ 2. Denote by j : Gm[1/f ] ⊂ Gm the inclusion. Then both
of the objects

N := j?Lχ2(f(x))(1/2)[1]
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and

M := j?Lχ2(xf(x))(1/2)[1]

in Parith are geometrically irreducible, pure of weight zero, symplecti-
cally self-dual of “dimension” 2g, and have Ggeom = Garith = Sp(2g).

Proof. Since f is palindromic of degree 2g its constant term is nonzero.
So all its 2g distinct zeroes lie in Gm(k). So both j?Lχ2(f(x)) and
j?Lχ2(xf(x)) are irreducible middle extension sheaves on Gm, pure of
weight zero and not geometrically isomorphic to any Kummer sheaf
Lχ. So both M and N are geometrically irreducible objects of Parith,
pure of weight zero and of “dimension” 2g. We have

M = N ⊗ Lχ2 .

So K 7→ K ⊗ Lχ2 is a Tannakian isomorphism from <N>arith to
<M>arith. So N and M have the same groups Ggeom as each other,
and the same groups Garith as each other.

Let us first show that N is geometrically Lie-irreducible, i.e., not
geometrically isomorphic to any nontrivial multiplicative translate of
itself. This amounts to the statement that j?Lχ2(f(x)) = j!Lχ2(f(x)) is

not geometrically isomorphic to j!Lχ2(f(ax)) for any a 6= 1 in k
×

. We
argue by contradiction. Now j!Lχ2(f(x)) has singularities precisely at the
2g zeroes of f(x), while j!Lχ2(f(ax)) has singularities precisely at the 2g
zeroes of f(ax). So if the two are geometrically isomorphic for some

a 6= 1 in k
×

, then f(x) and f(ax) have the same zeroes. Therefore for

some constant b ∈ k×, we have f(ax) = bf(x). Comparing the nonzero
constant terms, we see that b = 1, i.e., f(x) = f(ax). But for d > 1

the multiplicative order of a ∈ k×, the equality f(x) = f(ax) implies
that f(x) is a polynomial in xd.

To see that N , or equivalently M , is symplectically self-dual, we
remark that for any palindromic f(x) of degree 2g in k[x], f(x)/xg

is a palindromic Laurent polynomial of bidegree (−g, g) in k[x, 1/x],
so there is a unique polynomial hg(x) ∈ k[x] of degree g such that
f(x)/xg = hg(x+1/x). Because f has 2g distinct zeroes, hg must have
g distinct zeroes, none of which is ±2. If g is even, then

j?Lχ2(f(x)) = j?Lχ2(f(x)/xg) = j?Lχ2(hg(x+1/x)),

and we apply Theorem 11.1, with the orthogonally self-dual F =
Lχ2(hg(x)), to conclude that N is symplectically self-dual . [This sheaf
F = Lχ2(hg(x))has g distinct singularities in A1, so at least g− 1 in Gm,
so is not geometrically isomorphic to any Kummer sheaf Lχ.] If g is
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odd, then

j?Lχ2(xf(x)) = j?Lχ2(f(x)/xg) = j?Lχ2(hg(x+1/x)),

and we conclude now by Theorem 11.1 that M is symplectically self-
dual. [If g = 1, then the unique zero of hg lies in Gm(k), for otherwise
f(x) would be a constant multiple of 1 + x2. So again in this case
F = Lχ2(hg(x)) is not geometrically isomorphic to any Kummer sheaf
Lχ.]

The local monodromies of N at 0 and at ∞ are both Unip(1) (be-
cause f is invertible at 0 and has even degree), so exactly as in the
proof of the previous theorem, Frobk,1 gives rise to a Frobenius torus
Diag(x, 1/x, 1, ..., 1) in G0

geom,N , which is an irreducible subgroup of
Sp(2g). So again by the theorem of Kostant and Zarhin [Ka-ESDE,
1.2], we conclude that G0

geom,N = Sp(2g), which then forces G0
geom,N =

Ggeom,N = Garith,N = Sp(2g).
�

Again here we can apply Theorem 18.2.

Theorem 18.8. For N := j?Lχ2(f(x))(1/2)[1] satisfying all the hypothe-
ses of Theorem 18.7, and for any s ≥ 2 distinct characters χ1, ..., χs of
G(k), the objects Ni := N ⊗ Lχi have

Ggeom,⊕si=1Ni
= Garith,⊕si=1Ni

=
s∏
i=1

Sp(n).

For the next example, we will apply Theorem 10.1. We continue to
work on Gm/k.

Theorem 18.9. Choose a nontrivial character ρ of k×, of order r > 2.
Let f(x) ∈ k[x] be a polynomial whose degree rn is a multiple of r, such
that

(1) f(x) has rn distinct zeroes in k
×

.
(2) f(x) and f(1/x) have no common zeroes.
(3) f(x) is not a polynomial in xd for any prime to p integer d > 1.

For j : Gm[1/f(x)f(1/x)] ⊂ Gm, the object N := j?Lρ(f(x)/f(1/x))(1/2)[1]
in Parith is geometrically irreducible, pure of weight zero, symplectically
self-dual of “dimension” 2rn, and has Ggeom = Garith = Sp(2rn).

Proof. The object N in Parith is geometrically irreducible, pure of
weight zero, and of “dimension” 2rn. We next show that it is ge-
ometrically Lie-irreducible, i.e., not geometrically isomorphic to any
nontrivial multiplicative translate of itself. We argue by contradiction.
The object N has singularities precisely at the zeroes of f(x), where
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its local monodromy is Lρ, and at the zeroes of f(1/x), where its local
monodromy is Lρ. Because ρ has order r ≥ 3, we recover the zeroes of
f(x) as being the singularities where the local monodromy is Lρ. So if

multiplicative translation by some a 6= 1 in k
×

preserves the geometric
isomorphism class of N , then f(x) and f(ax) have the same zeroes,
so are proportional. Because f has a nonzero constant term, we must
have f(ax) = f(x). Thus if a has multiplicative order d ≥ 2, then f(x)
is a polynomial in xd, contradiction.

To apply Theorem 10.1, take for F there the middle extension of
Lρ(f(x)). This shows that N is symplectically self-dual. By the geomet-
ric Lie-irreducibility ofN , G0

geom,N ⊂ Sp(2rn) is a connected irreducible
subgroup, so an irreducible connected semisimple subgroup. Because
f has degree multiple of r, the order of ρ, the local monodromy of
Lρ(f(x)/f(1/x)) at both 0 and ∞ is Unip(1), so exactly as in the proof of
Theorem 18.1 we get a Frobenius torus Diag(x, 1/x, 1, ..., 1) in G0

geom,N .
Exactly as in the proof of Theorem 18.2, the theorem of Kostant and
Zarhin [Ka-ESDE, 1.2] shows that G0

geom,N = Sp(2rn), which then

forces G0
geom,N = Ggeom,N = Garith,N = Sp(2rn). �

Remark 18.10. What becomes of the theorem above if we try to take
for ρ the quadratic character χ2? Thus f(x) has even degree 2d, and
we are looking at Lχ2(f(x)/f(1/x)) = Lχ2(f(x)f(1/x)) = Lχ2(f(x)x2df(1/x)) =
Lχ2(f(x)fpal(x)). This is a situation to which Theorem 18.2 would apply,

to the palindromic polynomial f(x)fpal(x) of degree 4d, provided that
f(x)fpal(x) is not a polynomial in xe for any integer e > 1 prime to p.
This condition is strictly stronger than the hypothesis that f(x) not
be a polynomial in xe for any integer e > 1 prime to p. For a simple
example, take an f for which fpal(x) = ±f(−x), e.g., f(x) = x2+bx−1
with b 6= 0, b2 + 4 6= 0.

We can apply Theorem 18.2.

Theorem 18.11. For N := j?Lρ(f(x)/f(1/x))(1/2)[1] satisfying all the
hypotheses of Theorem 18.9, and for any s ≥ 2 distinct characters
χ1, ..., χs of G(k), the objects Ni := N ⊗ Lχi have

Ggeom,⊕si=1Ni
= Garith,⊕si=1Ni

=
s∏
i=1

Sp(2rn).

We next give an example based on hypergeometric sheaves. We
work on Gm/k, with k of odd characteristic. We fix an odd integer
2k+1 ≥ 3, and we consider the hypergeometric sheaf of type (1, 2k+1)

H := H(ψ;χ2;1, ....,1)((2k + 1)/2).
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This H is lisse on Gm, pure of weight zero and orthogonally self-dual.
Its local monodromy at ∞ is Unip(2k + 1). Its local monodromy at 0
is the direct sum

H(0) ∼= Lχ2 ⊕Wild2k,

with Wild2k totally wild of rank 2k and Swan conductor 1. This object
is Lie-irreducible, and in fact one knows that both its Ggeom and its
Garith are the full orthogonal group O(2k + 1). We next form the
pullback π?H of H by the finite map of degree 2

π : Gm \ {1} → Gm, x 7→ x+ 1/x− 2.

This covering (extended to a finite flat cover of P1) is finite étale over∞,
with 0 and ∞ the two points in the source lying over it. The covering
is doubly ramified over 0, with 1 the unique point in the source lying
over it. It is also doubly ramified over −4, with −1 the unique point
lying over. For j1 : Gm \ {1} ⊂ Gm the inclusion, we form the object
N ∈ Parith given by

N := j1?π
?H(1/2)[1].

This object is pure of weight zero and geometrically irreducible. It is
symplectically self-dual, by Theorem 11.1. [View π?H as the pullback
by x 7→ x + 1/x of the sheaf [x 7→ x − 2]?H, and take the sheaf F of
Theorem 11.1 to be the sheaf [x 7→ x− 2]?H.]

Theorem 18.12. The object N ∈ Parith is pure of weight zero, and
has G0

geom,N = Ggeom,N = Garith,N = Sp(2k + 2).

Proof. Because 1 is the unique singularity of N in Gm(k), N is not
geometrically isomorphic to any nontrivial multiplicative translate of
itself. Its local monodromy at both 0 and ∞ is Unip(2k+ 1). Because
1 maps doubly to 0, its local monodromy at 1 is the direct sum of
Unip(1) and of a totally wild part of rank 2k and Swan conductor 2.
So its “dimension” is drop1 + Swan1 = 2k + 2. The result now follows
from Theorem 18.1. �

Applying Theorem 18.2 to N , we get the following.

Theorem 18.13. For any s ≥ 2 distinct characters χ1, ..., χs of G(k),
the objects Ni := N ⊗ Lχi have

Ggeom,⊕si=1Ni
= Garith,⊕si=1Ni

=
s∏
i=1

Sp(2k + 2).

Remark 18.14. Here is a nagging open problem. Suppose we are
given f(x) =

∑d
i=0Aix

i ∈ k[x] a polynomial of degree d prime to
p, which is Artin-Schreier reduced, i.e., Ai vanishes if p|i, and such
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that gcd{i|Ai 6= 0} = 1. According to Theorem 10.1, the object
N := Lψ(f(x)−f(1/x))(1/2)[1] is symplectically self-dual. The gcd = 1
hypothesis, together with Artin-Schreier reducedness, insures that N
is not geometrically isomorphic to any nontrivial multiplicative trans-
late of itself, so N is Lie-irreducible. Because N is totally wildly ram-
ified at both 0 and ∞, it has no bad characters χ. We believe that
Ggeom,N = Sp(2d), but in the absence of any bad characters χ, we are
unable to prove it (except in the case d = 1, the Evans example, where
there is a dearth of Lie-irreducible subgroups of SL(2), cf. Theorem
14.2).

This can be viewed as a special case of the following problem. Take
for F a geometrically irreducible lisse sheaf F on Gm/k of rank n ≥ 1
which is pure of weight zero, whose I(0)-representation is Unip(n),
and whose I(∞)-representation is totally wild, say of Swan conductor
k ≥ 1, and both irreducible and not geometrically isomorphic to any
nontrivial multiplicative translate of itself. Denote by F its “complex
conjugate,” i.e., its linear dual, and form the lisse sheaf

G := F ⊗ ([x 7→ 1/x]?F).

Then the local monodromy of G at both 0 and ∞ is of the form
Unip(n) ⊗Wildn,k, where Wildn,k is irreducible of rank n and Swan
conductor k, and not isomorphic to any nontrivial multiplicative trans-
late of itself. It follows [Ka-RLS, 3.1.7] that each of these local mon-
odromies is indecomposable. From this indecomposability, it follows
that G is indecomposable. But F is itself geometrically irreducible and
hence geometrically semisimple, so G, as the tensor product of two ge-
ometrically semisimple lisse sheaves, is itself geometrically semisimple.
[Alternatively, G is geometrically semisimple because it is pure of weight
zero.] Being indecomposable as well, G is geometrically irreducible.
Looking at its I(∞)-representation, we see that G is not geometrically
isomorphic to any nontrivial multiplicative translate of itself. Thanks
to Theorem 10.1, we know that the object N := G(1/2)[1] is symplec-
tically self-dual. Its “dimension” is 2nk. Is it always the case that
Ggeom,N = Sp(2nk), or does one need to impose additional conditions
on F?

Let us consider the special case when F is a Kloosterman sheaf
Kln := Kln(ψ;1, ...,1)((n − 1)/2). One knows [Ka-GKM, 4.1.1 (3)]
that the I(∞)-representation of Kln is totally wild, of Swan conductor
one, and (consequently, cf. [Ka-GKM, 4.1.6 (3)]) is not geometrically
isomorphic to any nontrivial multiplicative translate of itself. Its I(0)-
representation is Unip(n). Is it true that for the associated N , we have
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Ggeom,N = Sp(2n)? This seems to be an open question, except for the
case n = 1, where we once again find the Evans example.

We end this chapter with an example inspired by that of Rudnick,
cf. Theorem 14.5.

Theorem 18.15. Let k be a finite field of odd characteristic, f(x) ∈
k[x] an odd polynomial (i.e., f(−x) = −f(x)) of prime-to-p degree
2n− 1. Denote by j1 : Gm \ {1} → Gm the inclusion. Then the object
N := j1?Lψ(f((x+1)/(x−1)))(1/2)[1] ∈ Parith is pure of weight zero and has
Ggeom,N = Garith,N = Sp(2n).

Proof. The lisse sheaf Lψ(f((x+1)/(x−1))) on Gm \ {1} is wildly ramified
at the point 1, with Swan conductor 2n − 1, so is not geometrically
isomorphic to any Lχ. Thus N is geometrically irreducible, being a
middle extension of generic rank one. Because g(x) := f((x+1)/(x−1))
satisfies g(1/x) = −g(x), we can write g(x) = (1/2)g(x)− (1/2)g(1/x),
and then apply Theorem 10.1 to see that N is symplectically self-dual.
As the unique singularity of N is at the point 1, N is not geometrically
isomorphic to any nontrivial multiplicative translate of itself. As N is
lisse at both 0 and ∞, and of generic rank one, the result now follows
from Theorem 18.1. �

Applying Theorem 18.2, we get the following generalization of this
last result.

Theorem 18.16. For the object N of the previous theorem, and any
r ≥ 1 distinct multiplicative characters χ1, ..., χr of k×, define Ni :=
N⊗Lχi. Then the object ⊕iNi has Ggeom,⊕iNi = Garith,⊕iNi =

∏
i Sp(2n).



CHAPTER 19

Orthogonal Examples, Especially SO(n) Examples

The orthogonal case is more difficult than the symplectic one be-
cause of the need to distinguish between SO(n) and O(n), which we
do not in general know how to do. We work on either the split or
the nonsplit form. We begin with a lisse sheaf F on a dense open set
j : U ⊂ G which is geometrically irreducible, pure of weight zero, and
not geometrically isomorphic to (the restriction to U of) any Kummer
sheaf Lχ. We denote by G := j?F its middle extension to G. Then the
object N := G(1/2)[1] ∈ Parith is pure of weight zero and geometrically
irreducible. The following result is the orthogonal version of Theorem
18.1.

Theorem 19.1. Suppose that N is not geometrically isomorphic to any
nontrivial multiplicative translate of itself, and that N is orthogonally
self-dual. Suppose further that for either of the two possible geometric
isomorphisms G/k ∼= Gm/k, both F(0)unip and F(∞)unip are single
Jordan blocks Unip(e) of the same size e ≥ 1. For n := dim(ω(N)) we
have

SO(n) ⊂ Ggeom,N ⊂ Garith,N ⊂ O(n).

Proof. The proof is nearly identical to that of Theorem 18.1. We have
a priori inclusions

Ggeom,N ⊂ Garith,N ⊂ O(n),

so it suffices to prove that G0
geom,N = SO(n). We may extend scalars if

necessary from k to its quadratic extension k2, and reduce to the case
where G is Gm. The hypothesis that N is not geometrically isomor-
phic to any nontrivial multiplicative translate of itself insures that N
is geometrically Lie-irreducible, i.e., that G0

geom is an irreducible con-

nected subgroup of SO(n). Thus G0
geom is semisimple, cf. the proof of

Theorem 18.1.
The local monodromy of N at both 0 and∞ is Unip(e). Therefore

the semisimplification of Frobk,1 gives us a Frobenius torusDiag(x, 1/x, 1, ..., 1)
in Garith,N . This torus normalizes the connected semisimple group
G0
geom,N . Exactly as in the symplectic case, it follows that G0

geom,N

contains the torus Diag(x, 1/x, 1, ..., 1). By the result of Kostant and

103
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Zarhin [Ka-ESDE, 1.2], the only irreducible connected semisimple
subgroups of SL(n) which containDiag(x, 1/x, 1, ..., 1) are SL(n), SO(n),
and, when n is even, Sp(n). Since we have an a priori inclusion
G0
geom,N ⊂ SO(n), we must have G0

geom,N = SO(n). �

Here is the orthogonal analogue of Theorem 18.2. Its proof, via
Goursat-Kolchin-Ribet [Ka-ESDE, 1.8.2] and Theorems 13.2, 13.3
and 13.4, is entirely analogous.

Theorem 19.2. Suppose N satisfies all the hypotheses of the theorem
above. Suppose further that

(a) Either n ≥ 3 is odd, or n ≥ 6, n 6= 8, is even.
(b) At either 0 or at ∞ or at both, the entire tame part of the

local monodromy is Unip(e), i.e., local monodromy there is
the direct sum of Unip(e) and of something totally wild.

Given s ≥ 2 distinct characters χ1, ..., χs of G(k), form Ni := N ⊗Lχi.
Denote by (

∏s
i=1O(n))=det′ s the subgroup of

∏s
i=1 O(n) consisting of

those elements whose determinants are either all 1 or all −1. We have
the following conclusions.

(1) If Ggeom,N = Garith,N = SO(n), then

Ggeom,⊕si=1Ni
= Garith,⊕si=1Ni

=
s∏
i=1

SO(n).

(2) If Ggeom,N = SO(n) and Garith,N = O(n), then

Ggeom,⊕si=1Ni
=

s∏
i=1

SO(n)

and

Garith,⊕si=1Ni
= (

s∏
i=1

O(n))=det′ s.

(3) If Ggeom,N = Garith,N = O(n), and if χi(−1) = 1 for all i, then

Ggeom,⊕si=1Ni
= Ggeom,⊕si=1Ni

= (
s∏
i=1

O(n))=det′ s.

Proof. As already noted, M 7→ M ⊗ Lχi is a Tannakian isomorphism
of <N>arith with <N ⊗ Lχi>arith. In particular, the determinants in
the Tannakian sense are related by “ det ”(N⊗Lχi) = “ det ”(N)⊗Lχi .
But “ det ”(N) is either δ1 (case (1)) or (−1)deg ⊗ δ1 (case (2)) or δ−1

or (−1)deg⊗ δ−1 (case (3)), each of which is unchanged when we tensor
it with any Lχi, so long as, in case (3), χi(−1) = 1. Case (1) is im-
mediate from the previous result. In case (2), the previous result gives



19. ORTHOGONAL EXAMPLES, ESPECIALLY SO(n) EXAMPLES 105

Ggeom,⊕si=1Ni
=

∏s
i=1 SO(n). We get the asserted value for Garith,⊕si=1Ni

by observing that it must strictly contain
∏s

i=1 SO(n), but lies in
(
∏s

i=1O(n))=det′ s. In case (3), we get the asserted value forGgeom,⊕si=1Ni

by observing that by the previous result it contains
∏s

i=1 SO(n), then
that it must strictly contain

∏s
i=1 SO(n), and finally that it lies in

(
∏s

i=1O(n))=det′ s. Then Garith,⊕si=1Ni
contains (

∏s
i=1O(n))=det′ s, but

also is contained in it. �

We now turn to the construction of examples in which Ggeom,N =
SO(n). Let us first explain the method we will use to show that Ggeom,N

is SO(n) rather than O(n). Given a finite subgroup Γ ⊂ G(k), we say
that an object N ∈ Pgeom is adapted to Γ if its restriction to the
complement of Γ is lisse, i.e., if N |(G \ Γ) is a lisse sheaf placed in
degree −1. In general it is not true that the middle convolution of
two objects adapted to Γ is again adapted to Γ. Here is a simple
example. Whatever the choice of Γ, any N ∈ Pgeom which is lisse on
G is adapted to Γ. For example, take Γ = {1}, and the Artin-Schreier
objects Lψ(x)(1/2)[1] and Lψ(−a/x)(1/2)[1]. Their middle convolution is
δa, which is not adapted to this Γ unless a = 1. We do, however, have
the following lemma.

Lemma 19.3. Suppose Γ ⊂ G(k) is a finite subgroup, and N ∈ Pgeom
is adapted to Γ and geometrically semisimple. Suppose further that the
local monodromy of N at both 0 and ∞ is tame. Then every object in
<N>geom is adapted to Γ.

Proof. Every object in <N>geom is a direct summand of a multiple
middle convolution of N and its dual [x 7→ 1/x]?DN , both of which
are adapted to Γ and tame at both 0 and ∞. Proceeding by induction
on the number of multiple convolutions, we reduce to the following
lemma. �

Lemma 19.4. Suppose Γ ⊂ G(k) is a finite subgroup, and N and M in
Pgeom are adapted to Γ and geometrically semisimple. Suppose further
that the local monodromy of N at both 0 and ∞ is tame. Then the
middle convolution N ?midM is adapted to Γ.

Proof. We reduce immediately to the case when by N and M are ge-
ometrically irreducible. If either is punctual, it is δγ for some element
γ ∈ Γ. Then middle convolution with it is multiplicative translation
by γ, which preserves being adapted to Γ. So it suffices to treat the
case where N = F [1] and M = G[1] are each middle extension sheaves
placed in degree −1, both adapted to Γ, and where F is tame at both
0 and ∞. The conditions of being lisse outside Γ, and of being tame
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at both 0 and ∞, are each stable by Verdier duality. So it suffices to
show that the ! convolution N ?! M is lisse outside Γ. For if this is
so, then the same statement applied to their Verdier duals DN and
DM , shows that DN ?! DM is lisse outside Γ, and so its Verdier dual
D(DN ?! DM) ∼= N ??M is also adapted to Γ. As the middle convolu-
tion N ?midM is the image of N ?! M in N ??M , it too is lisse outside
of Γ.

In order to show that N?!M is lisse outside of Γ, we apply Deligne’s
semicontinuity theorem [Lau-SCCS, 2.1.2]. For a ∈ G \ Γ, the sheaf

H := F ⊗ [x 7→ a/x]?G
is lisse outside the 2#Γ points of Γ ∪ aΓ−1. By Deligne’s theorem, it
suffices to show that in the formula for its Euler characteristic,

−χ(H) = Swan0(H) + Swan∞(H) +
∑

b∈Γ∪aΓ−1

(dropb(H) + Swanb(H)),

each term is independent of the choice of a, so long as a is not in
Γ. Because F is tame at 0, we have Swan0(H) = rank(F)Swan∞(G).
Because F is tame at∞, we have Swan∞(H) = rank(F)Swan0(G). At
a point γ ∈ Γ, we have dropγ(H) = dropγ(F)rank(G) and Swanγ(H) =
Swanγ(F)rank(G). At a point a/γ ∈ aΓ−1, we have dropa/γ(H) =
rank(F)dropγ(G) and Swana/γ(H) = rank(F)Swanγ(G). �

Here is a variant, with the same proof.

Lemma 19.5. Suppose S, T ⊂ G(k) are finite nonempty subsets, and
N ∈ Pgeom is lisse outside S and geometrically semisimple. Suppose
further that the local monodromy of N at both 0 and ∞ is tame. Sup-
pose M ∈ Pgeom is lisse outside T , and geometrically semisimple. Then
their middle convolution N?midM is lisse outside ST := {st, s ∈ S, t ∈
T}.

Here is yet another variant, with the same proof.

Lemma 19.6. Suppose S ⊂ G(k) is a finite nonempty subset, and N ∈
Pgeom is lisse outside S and geometrically semisimple. Suppose further
that the local monodromy of N at both 0 and ∞ is tame. Suppose
M ∈ Pgeom is lisse on Gm (so M is F [1] for a lisse sheaf F on Gm).
Then their middle convolution N ?midM is lisse on Gm.

We can apply these results as follows.

Theorem 19.7. Let Γ ⊂ G(k) be a finite subgroup. Suppose that 1 is
the only element of order dividing 2 in Γ. This condition is automatic
in characteristic 2; in odd characteristic it is the condition that −1 not
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be in Γ. Let F be a lisse sheaf on G \ Γ which is geometrically irre-
ducible, pure of weight zero, and not geometrically isomorphic to (the
restriction to G\Γ of) any Kummer sheaf Lχ. We denote by G := j?F
its middle extension to G, and by N the object N := G(1/2)[1] ∈ Parith,
which is pure of weight zero and geometrically irreducible. Suppose N is
orthogonally self-dual. Suppose that N is not geometrically isomorphic
to any nontrivial multiplicative translate of itself. Suppose further that
for either of the two possible geometric isomorphisms G/k ∼= Gm/k, F
is tame at both 0 and ∞, and both F(0)unip and F(∞)unip are single
Jordan blocks Unip(e) of the same size e ≥ 1. For n := dim(ω(N)) we
have

Ggeom,N = SO(n).

Moreover, either Garith,N = SO(n), or “ det ”(N) in the Tannakian
sense is arithmetically (−1)deg ⊗ δ1, i.e., for any finite extension field
E/k and any character ρ of G(E), det(FrobE,ρ) = (−1)deg(E/k).

Proof. By Theorem 19.1, we know that Ggeom,N is either SO(n) or
O(n). So it suffices to show that “ det ”(N) in the Tannakian sense
is geometrically trivial. It is a one-dimensional object of <N>geom

which has order two, so in odd characteristic it is either δ1 or δ−1. [In
characteristic 2 it can only be δ1, and we are done.] By Lemma 19.3,
“ det ”(N) is adapted to Γ. If −1 is not in Γ, “ det ”(N) cannot be δ−1,
so geometrically it must be δ1. So arithmetically it must be αdeg ⊗ δ1,
with α = ±1. �

Here is a variant.

Theorem 19.8. Let S ⊂ G(k) be a finite nonempty subset. For each
integer d ≥ 1, denote by Sd ⊂ G(k) the set of all d-fold products of
elements of S. Let F be a lisse sheaf on G\S which is geometrically ir-
reducible, pure of weight zero, and not geometrically isomorphic to (the
restriction to G\Γ of) any Kummer sheaf Lχ. We denote by G := j?F
its middle extension to G, and by N the object N := G(1/2)[1] ∈ Parith,
which is pure of weight zero and geometrically irreducible. Suppose N is
orthogonally self-dual. Suppose that N is not geometrically isomorphic
to any nontrivial multiplicative translate of itself. Suppose further that
for either of the two possible geometric isomorphisms G/k ∼= Gm/k, F
is tame at both 0 and ∞, and both F(0)unip and F(∞)unip are single
Jordan blocks Unip(e) of the same size e ≥ 1. Suppose further that for
n := dim(ω(N)) the “dimension” of N , the set Sn does not contain
−1. Then

Ggeom,N = SO(n).



108 19. ORTHOGONAL EXAMPLES, ESPECIALLY SO(n) EXAMPLES

Moreover, either Garith,N = SO(n), or “ det ”(N) in the Tannakian
sense is arithmetically (−1)deg ⊗ δ1, i.e., for any finite extension field
E/k and any character ρ of G(E), det(FrobE,ρ) = (−1)deg(E/k).

Proof. The determinant, in the Tannakian sense, of N is a summand
of the n-fold middle convolution of N with itself, so by Lemma 19.5 it
is lisse outside Sn. Therefore it cannot be δ−1, and we conclude as in
the proof of the previous theorem. �

We now give some examples. For the first example, we work in odd
characteristic. We begin with an irreducible hypergeometric sheaf H
of type (2m, 2n) with 2m < 2n, of the form

H(ψ;χ1, ..., χ2m;1,1, ....,1)((2m+ 2n− 1)/2)

which is symplectically self-dual. Its local monodromy at∞ is Unip(2n),
cf. [Ka-ESDE, 8.4.11]. Given that all the characters at∞ are imposed
to be trivial, the geometric irreducibility means that no χi is trivial,
and the symplectic autoduality then means that an even number 2r ≥ 0
of them are the quadratic character, and that the remaining ones, if
any, occur in complex conjugate pairs, cf. [Ka-ESDE, 8.8.1, 8.8.2].
One knows its geometric monodromy group is Sp(2n), cf. [Ka-GKM,
11.6].

Theorem 19.9. Starting with H as above, in which 2r quadratic char-
acters occur, form the lisse sheaf G := [x 7→ x−2+1/x]?H on Gm\{1},
then form the object N := j1?G(1/2)[1] ∈ Parith, which is pure of weight
zero. Then N is orthogonally self-dual, and we have the following re-
sults.

(1) If 2r = 0, then “ dim ”(N) = 2n+ 2, and Ggeom,N = SO(2n+
2).

(2) If 2r > 0, then “ dim ”(N) = 2n+ 1, and Ggeom,N = SO(2n+
1).

Proof. The pullback G has local monodromy Unip(2n) at both 0 and
∞. To analyze its local monodromy at 1, observe that the map x 7→
x+ 1/x− 2 is doubly ramified over 0, with 1 as the unique point lying
over. So the local monodromy of G at 1 is the direct sum of three
pieces: Unip(2r), a tame part of rank 2m−2r with no nonzero inertial
invariants, and a totally wild part of rank 2n−2m and Swan conductor
2. So the “dimension” of N is drop1 + Swan1.

If 2r = 0, then drop1 = 2n, otherwise drop1 = 2n − 1. Thus
the “dimension” is as asserted. By Theorem 11.1, N is orthogonally
self-dual. Because 1 is the only singularity of N in Gm, N is not
geometrically isomorphic to any nontrivial multiplicative translate of
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itself. The result now follows from the Γ = {1} case of Theorem
19.7. �

In the next example, in odd characteristic p 6= 5, we begin with
an odd symmetric power of TwLeg, say F := Sym2d−1(TwLeg)(d).
This is a lisse sheaf on Gm \ {1} which is pure of weight zero, sym-
plectically self-dual, and has geometric monodromy SL(2), acting in
Sym2d−1(std2). Its local monodromies at 0 and ∞ are both Unip(2d).
Its local monodromy at 1 is Lχ2 ⊗ Unip(2d). We form its pullback
G := [x 7→ x + 1/x − 2]?F , which is lisse on the open set j : Gm \
{1, (3±

√
5)/2} ⊂ Gm. Its local monodromy at 1 is Unip(2d). Its local

monodromy at each of the points (3 ±
√

5)/2 is Lχ2 ⊗ Unip(2d). We
then form

N := j?G(1/2)[1],

which is pure of weight zero and of “dimension” drop1 +drop(3+
√

5)/2 +
drop(3−

√
5)/2 = 2d−1+2d+2d = 6d−1. By Theorem 11.1, N is orthog-

onally self-dual. Because 1 is the unique singularity in Gm at which
the local monodromy is unipotent, N is not geometrically isomorphic
to any nontrivial multiplicative translate of itself. By Theorem 19.1,
we have SO(6d− 1) ⊂ Ggeom,N .

We wish to apply Theorem 19.8. Here the set S in Fp
×

(remember

p 6= 2, 5) is the three element set {1, (3 +
√

5)/2, (3 −
√

5)/2}. Notice
that (3 +

√
5)/2 is a totally positive unit in the ring of integers of

Q(
√

5), whose inverse is the totally positive unit (3−
√

5)/2. This total
positivity shows that in Q(

√
5)×, the multiplicative subgroup generated

by (3+
√

5)/2 does not contain−1. It follows that in large characteristic
p, the set S6d−1 does not contain −1.

To make this precise, let us fix a totally positive unit u 6= 1 in the
ring of integers OK of a real quadratic field K. We define a sequence
of strictly positive integers1 N(u, n), n ≥ 1, by

N(u, n) := (1 + 1)
n∏
i=1

((ui + 1)(u−i + 1)) = 2
n∏
i=1

(Trace(ui) + 2).

Notice that N(u, n+ 1) = (Trace(un+1) + 2)N(u, n), so the N(u, n)
successively divide each other. For our S = {1, (3+

√
5)/2, (3−

√
5)/2},

1The interest of these integers N(u, n) is this. If a prime p does not divide
N(u, n), then for any field k of characteristic p, and for any ring homomorphism
φ : OK → k, none of the elements φ(ui), for −n ≤ i ≤ n, is equal to −1 in
k: if p divides N(u, n), then for every such φ at least one of the elements φ(ui),
−n ≤ i ≤ n, is equal to −1 in k.
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Sn is the set {ui,−n ≤ i ≤ n} for u = (3 +
√

5)/2. So we get the
following theorem.

Theorem 19.10. Let p be a prime which does not divide the integer
N((3 +

√
5)/2, 6d− 1). Then N as above, formed out of the pullback of

Sym2d−1(TwLeg)(d) by x 7→ x+ 1/x− 2, has Ggeom,N = SO(6d− 1).

Remark 19.11. We do not know if the restriction on p in the above
theorem is in fact necessary. For example, starting with Sym1(TwLeg),
i.e., d = 1, we are omitting primes dividing N((3 +

√
5)/2, 5) =

11025000 = 22325572. Are the omissions of 3 and 7 needed? We also
do not know whether or not we also have Garith,N = SO(6d−1) for the
“good” primes p. These same problems persist for the next example as
well.

Here is another example, still in odd characteristic, this time based
on pulling back a hypergeometric sheaf H of type (2n, 2n) which is
symplectically self-dual. We assume H is of the form

H(ψ;χ1, ..., χ2n;1,1, ..,1)((4n− 1)/2),

with no χi trivial, with an even number 2r of the χi the quadratic
character, and with the remaining ones, if any, occurring in complex
conjugate pairs.

Theorem 19.12. Starting with H as above, in which 2r quadratic
characters occur, form the lisse sheaf G := [x 7→ x + 1/x − 2]?H on
Gm \ {1, (3 ±

√
5)/2}, then form the object N := j?G(1/2)[1] ∈ Parith,

which is pure of weight zero. Then N is orthogonally self-dual, and we
have the following results.

(1) If 2r = 0, then “ dim ”(N) = 2n + 2, and SO(2n + 2) ⊂
Ggeom,N . If p := char(k) does not divide N((3+

√
5)/2, 2n+2),

then Ggeom,N = SO(2n+ 2).
(2) If 2r > 0, then “ dim ”(N) = 2n + 1, and SO(2n + 1) ⊂

Ggeom,N . If p := char(k) does not divide N((3+
√

5)/2, 2n+1),
then Ggeom,N = SO(2n+ 1).

Proof. The pullback G has local monodromy Unip(2n) at both 0 and
∞. To analyze its local monodromy at 1, observe that the map x 7→
x+ 1/x− 2 is doubly ramified over 0, with 1 as the unique point lying
over. So the local monodromy of G at 1 is the direct sum of two (or
one, if 2r = 0) pieces: Unip(2r), and a tame part of rank 2n− 2r with
no nonzero inertial invariants. At each of the two points (3 ±

√
5)/2,

which map to 1, the local monodromy is a unipotent pseudoreflection.
So the “dimension” of N is drop1 + drop(3+

√
5)/2 + drop(3−

√
5)/2. The
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first term, drop1, is 2n if 2r = 0, otherwise it is 2n − 1. At each
of the two points (3 ±

√
5)/2, the drop is 1. So the dimension is

as asserted. By Theorem 11.1, N is orthogonally self-dual. Because
1 is the unique singularity in Gm at which the local monodromy is
not a unipotent pseudoreflection, N is not geometrically isomorphic to
any nontrivial multiplicative translate of itself. So by Theorem 19.1,
Ggeom,N contains the group SO(2n + 1) when 2r > 0, respectively the
group SO(2n + 2) when 2r = 0. To get the more precise statement,
we apply Theorem 19.8. Here the set S is again the three element set
{1, (3 +

√
5)/2, (3−

√
5)/2}. If the characteristic p does not divide the

integer N((3 +
√

5)/2, 2n + 1) when 2r > 0, respectively the integer
N((3 +

√
5)/2, 2n + 2) when 2r > 0, then S2n+1, respectively S2n+2

does not contain −1. �

Remark 19.13. Whenever we have an N for which we know that
Ggeom,N = SO(n) and we know that Garith,N ⊂ O(n), then either
Garith,N = SO(n), or Garith,N = O(n). In the latter case, “ det ”(N)
is geometrically trivial, and of order two, so necessarily (−1)deg. [So
this latter case cannot arise in characteristic two.] The problem is
that in general we don’t know which situation we are in. But in both
cases, if we extend scalars from the given ground field k to its quadratic
extension, we achieve a situation in which Ggeom = Garith = SO(n).





CHAPTER 20

GL(n)×GL(n)× ...×GL(n) Examples

In this chapter, we investigate the following question. Suppose we
have a geometrically irreducible middle extension sheaf G on Gm/k
which is pure of weight zero, such that the object N := G(1/2)[1] ∈
Parith has “dimension” n and has Ggeom,N = Garith,N = GL(n). Sup-
pose in addition we are given s ≥ 2 distinct characters χi of k×. We
want criteria which insure that for the objects

Ni := N ⊗ Lχi ,
the direct sum ⊕iNi has Ggeom,⊕iNi = Garith,⊕iNi =

∏
iGL(n). Because

we have a priori inclusions Ggeom,⊕iNi ⊂ Garith,⊕iNi ⊂
∏

iGL(n), it
suffices to prove that Ggeom,⊕iNi =

∏
iGL(n). To show this, it suffices

to show both of the following two statements.

(1) The determinants in the Tannakian sense “ det ”(N ⊗Lχi) :=
“ det ”(Ni) have Ggeom,⊕i“ det ”(Ni) =

∏
iGL(1).

(2) (Ggeom,⊕iNi)
0,der =

∏
i SL(n).

We first deal with the Tannakian determinants. As already noted,
M 7→ M ⊗ Lχ is a Tannakian isomorphism from <N>geom to <N ⊗
Lχ>geom. In particular, the Tannakian determinants satisfy

“ det ”(N ⊗ Lχ) = “ det ”(N)⊗ Lχ.
Now “ det ”(N) is a nonpunctual (because it is of infinite order) one-
dimensional object of <N>geom, so it is a multiplicative translate of
an irreducible hypergeometric H(ψ; ρa

′s; Λb
′s)[1] of some type (n,m),

n,m ≥ 0, n + m > 0, cf. [Ka-ESDE, 8.5.3]. The irreducibility is
equivalent to the condition that, if both n and m are ≥ 1, no ρa is
any Λb, cf. [Ka-ESDE, 8.4.2, 8.4.10.1]. We have the following lemma,
which we will apply with its M taken to be “ det ”(N).

Lemma 20.1. Suppose M ∈ Pgeom is a multipliplicative translate of
an irreducible hypergeometric H(ψ; ρa

′s; Λb
′s)[1] of some type (n,m),

n,m ≥ 0, n + m > 0. [Thus if both n and m are ≥ 1, no ρa is any
Λb.] Suppose given s ≥ 2 distinct characters χi of k×, which satisfy the
following three conditions.

(1) If both n and m are ≥ 1, then for i 6= j, no χiρa is any χjΛb.

113
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(2) If n > 0, then for i 6= j, no χiρa is any χjρa′.
(3) If m > 0, then for i 6= j, no χiΛb is any χjΛb′.

Then with Mi := M ⊗ Lχi, we have Ggeom,⊕iMi
=

∏
iGL(1).

Proof. We must show that for any nonzero vector v = (v1, ..., vs) ∈ Zs,
the tensor product in the Tannakian sense M⊗v1

1 ⊗ M⊗v2
2 ... ⊗ M⊗vs

s

is not geometrically trivial. Omitting terms which don’t occur, and
renumbering, we must show the following two statements.

(1) If v1, v2, ..., vr are ≥ 1, then the tensor product in the Tan-
nakian sense M⊗v1

1 ...⊗M⊗vr
r is not geometrically trivial.

(2) If v1, v2, ..., vr are ≥ 1 and vr+1, ..., vr+t are ≤ −1, say vi =
−wi for r + 1 ≤ i ≤ r + t, then then the tensor product in
the Tannakian sense M⊗v1

1 ⊗M⊗v2
2 ...⊗M⊗vr

r is not geometri-
cally isomorphic to the tensor product in the Tannakian sense
M
⊗wr+1

r+1 ⊗ ...⊗M⊗wr+t
r+t .

To see the truth of these statements, recall from [Ka-ESDE, 8.3.3 and
8.4.13.1] that given two irreducible hypergeometrics H(ψ; ρa

′s; Λb
′s)[1]

and H(ψ;µc
′s; νd

′s)[1] of types (n,m) and (e, f) respectively, so long
as no ρa is a νd and no Λb is a µc, then their ! convolution maps
isomorphically to their ? convolution. This common convolution is
their middle convolution, which is the irreducible hypergeometric of
type (n+ e,m+ f) given up to geometric isomorphism by

H(ψ; ρa
′s; Λb

′s)[1] ?mid H(ψ;µc
′s; νd

′s)[1]

∼= H(ψ; ρa
′s ∪ µc

′s; Λb
′s ∪ νd

′s)[1].

Recall also [Ka-ESDE, 8.2.5] that for any χ we have

H(ψ; ρa
′s; Λb

′s)[1]⊗ Lχ ∼= H(ψ;χρa
′s;χΛb

′s)[1].

In case (1), hypothesis (1), if relevant, allows us to compute the ten-
sor product in the Tannakian sense M⊗v1

1 ...⊗M⊗vr
r . It is a multiplica-

tive translate of the irreducible hypergeometric of type (n
∑

i vi,m
∑

i vi)
whose “upstairs” parameters (the tame part of local monodromy at 0)
if any are the χiρa with various repetitions, and whose “downstairs”
parameters (the tame part of local monodromy at ∞) if any are the
χjΛb with various repetitions, with i, j in [1, r].

In case (2), M⊗v1
1 ...⊗M⊗vr

r is a multiplicative translate of the hy-
pergeometric of type (n

∑
i vi,m

∑
i vi) whose “upstairs” parameters

are the χiρa with various repetitions, and whose “downstairs” param-
eters are the χjΛb with various repetitions, with i, j in [1, r]. And

M
⊗wr+1

r+1 ⊗ ...⊗M⊗wr+t
r+t is a multiplicative translate of the hypergeomet-

ric of type (n
∑

j wr+j,m
∑

j wr+j) whose “upstairs” parameters are
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the χr+jρa with various repetitions, and whose “downstairs” parame-
ters are the χr+jΛb with various repetitions, with i, j in [1, t]. If n > 0
(resp. if m > 0), then the tame parts of local monodromy at 0 (resp.
at∞) of both sides are nonzero, but by the disjointness hypotheses (2)
(resp. (3)), they have completely disjoint characters at 0 (resp. at∞).
So they are not geometrically isomorphic. �

Here is a simple but striking case, which gives a more compact pack-
aging of the proof in [Ka-GKM, 9.3, 9.5] of a result on equidistribution
in (S1)r of r-tuples of angles of Gauss sums.

Corollary 20.2. Fix a nontrivial additive character ψ of k, Lψ the
corresponding Artin-Schreier sheaf, and put N := Lψ(1/2)[1] ∈ Parith.
For any r ≥ 1 distinct characters χi of k×, put Ni := N ⊗ Lχi. The
object ⊕iNi has

Ggeom,⊕iNi = Garith,⊕iNi =
∏
i

GL(1).

Proof. Lψ is H(ψ;1, ∅), a hypergeometric of type (1, 0), with the only
ρ of the previous lemma the trivial character 1. �

Another simple case is this, which, with a = 1, gives an equidistri-
bution result in (S1)r for r-tuples of angles of Jacobi sums.

Corollary 20.3. Fix a nontrivial multiplicative character Λ of k×, and
an element a ∈ k×. Put N := LΛ(a−x)(1/2)[1] ∈ Parith. Choose r ≥ 1
distinct characters χi of k×, put Ni := N ⊗ Lχi. Suppose that for all
i 6= j, χi 6= Λχj. Then the object ⊕iNi has

Ggeom,⊕iNi = Garith,⊕iNi =
∏
i

GL(1).

Proof. Indeed, LΛ(a−x) is a multiplicative translate of the hypergeomet-
ric H(1,Λ) of type (1, 1). Here the only ρ of Lemma 20.1 is 1, and the
fixed Λ is the only Λ. �

We now turn to the problem of showing that for a given N with
Ggeom,N = Garith,N = GL(n), we have (Ggeom,⊕iN⊗Lχi )

0,der =
∏

i SL(n).
Put Ni := N ⊗ Lχi . By Theorem 13.5 (Goursat-Kolchin-Ribet), it
suffices to show that for every one-dimensional object L ∈ Pgeom, and
for i 6= j, there is no geometric isomorphism between Ni and Nj ?mid L
nor between Ni and N∨j ?mid L.

To deal with an L which is punctual, we must show that for i 6= j,
there is no geometric isomorphism between Ni and any multiplicative
translate of either Nj or of N∨j .
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To deal with an L which is nonpunctual, we consider the generic
rank gen.rk(M) of objectsM ∈ Pgeom. On a dense open set U ⊂ Gm/k,
M |U is F [1] for a lisse sheaf F on U . The rank of F on U is by
definition gen.rk(M). Clearly two objects of different generic rank
cannot be geometrically isomorphic.

Theorem 20.4. Suppose N = G[1] ∈ Pgeom, with G an irreducible

middle extension sheaf on Gm/k. Suppose that either of the following
two conditions is satisfied.

(1) “ dim ”(N) ≥ 3, G is tame at 0 and ∞, and its local mon-
odromies at 0 and ∞ both satisfy the following condition: if a
character χ occurs, it occurs in a single Jordan block.

(2) G is the restriction to Gm of a sheaf which is lisse on A1/k,
totally wild at ∞, with all of its ∞-slopes > 2.

Then for any nonpunctual one-dimensional object L ∈ Pgeom, we have

gen.rk(N ?mid L) > gen.rk(N)

and

gen.rk(N∨ ?mid L) > gen.rk(N).

Proof. An object and its dual have the same generic rank. The dual of
N∨ ?midL is N ?midL

∨, and L∨ is again a nonpunctual one-dimensional
object. So it suffices to prove the first inequality, gen.rk(N ?mid L) >
gen.rk(N).

We next explain how to calculate the generic rank of our middle
convolution N ?mid L. The nonpunctual one-dimensional object L is
H[1], for H a multiplicative translate of an irreducible hypergeometric
sheaf, cf. [Ka-ESDE, 8.5.3]. Over a dense open set U ⊂ Gm/k,
both N ?! L and N ?? L are lisse sheaves placed in degree −1, and
of formation compatible with arbitrary change of base on U . So the
middle convolution

N ?mid L := Image(N ?! L→ N ?? L)

is, on U , itself a lisse sheaf placed in degree −1, and of formation
compatible with arbitrary change of base on U .

Denote by S and T respectively the singularities of G and H in Gm.
Fix a point a ∈ U(k) which, if both S and T are nonempty, does not
lie in the set ST of products. Form the sheaf K on Gm defined by

K := G ⊗ [x 7→ a/x]?H.

Notice that K is itself a middle extension sheaf on Gm (because a
does not lie in ST ), and denote by j : Gm ⊂ P1 the inclusion. Then
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the stalks at a of N ?! L, N ?? L, and N ?mid L respectively are the
cohomology groups

H1(P1/k, j!K), H1(P1/k,Rj?K), H1(P1/k, j?K)

respectively. We have a short exact sequence of sheaves on P1,

0→ j!K → j?K → (K(0)I(0))pct. at 0 ⊕ (K(∞)I(∞))pct. at ∞ → 0.

We first observe that in the long exact cohomology sequence, for i 6=
1, both H i(P1/k, j!K)(= H i

c(Gm/k,K)) and H i(P1/k, j?K) vanish. The
H0
c vanishes because K has no nonzero punctual sections. The H2

c and
the H0 vanish because N = G[1] and hence N∨ both have “ dim ”(N) >
2, so N∨ is geometrically isomorphic to no multiplicative translate of
[x 7→ 1/x]?L, which has “dimension” one. The H2(P1/k, j?K) vanishes
because it is a quotient of H2

c (P1/k, j!K).
So the long exact cohomology sequence gives a short exact sequence

0→ K(0)I(0) ⊕K(∞)I(∞) → H1(P1/k, j!K)→ H1(P1/k, j?K)→ 0.

Thus we obtain the formula

gen.rk(N ?mid L) = gen.rk(N ?! L)− dimK(0)I(0) − dimK(∞)I(∞).

We will now calculate each of the three terms on the right-hand
side. The sheaf K is lisse outside the disjoint union S ∪ a/T .

gen.rk(N ?! L) = dimH1(P1/k, j!K) = −χc(Gm/k,K)

= Swan0(K) + Swan∞(K) +
∑
s∈S

(drops(K) + Swans(K))

+
∑
b∈a/T

(dropb(K) + Swanb(K)).

For s ∈ S, H is lisse at a/s, so we have

drops(K) + Swans(K) = (drops(G) + Swans(G))gen.rk(H).

For b = a/t ∈ a/T , G is lisse at b, so we have

dropb(K) + Swanb(K) = gen.rk(G)(dropt(H) + Swant(H)).

We first treat case (1). Thus G is tame at both 0 and ∞. Here we
have

Swan0(K) = gen.rk(G)Swan∞(H),

Swan∞(K) = gen.rk(G)Swan0(H).

In this case, the above plethora of formulas gives the relation

gen.rk(N ?! L) = gen.rk(N)“ dim ”(L) + “ dim ”(N)gen.rk(L).
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We next derive, in this case, upper bounds for dimK(0)I(0) and for
dimK(∞)I(∞). To do this, write

H(0) = H(0)tame ⊕H(0)tot. wild,

H(∞) = H(∞)tame ⊕H(∞)tot. wild.

The isomorphism classes of both H(∞)tame and H(0)tame are invariant
under multiplicative translation. Define

invH := [x 7→ 1/x]?H.
Then we have

K(0)I(0) ∼= (G(0)⊗ invH(0)tame)I(0),

K(∞)I(∞) ∼= (G(∞)⊗ invH(∞)tame)I(∞).

Now we make use of the hypothesis on G that its local monodromies
at both 0 and ∞ satisfy the condition that any character that occurs
does so in a single Jordan block. One knows [Ka-ESDE, 8.4.2 (6-8)]
that the tame parts of the local monodromies of H and hence of invH
at both 0 and ∞ also satisfy this condition. We claim that

dimK(0)I(0) ≤Min(gen.rk(G), rk(invH(0)tame)),

dimK(∞)I(∞) ≤Min(gen.rk(G), rk(invH(∞)tame)).

Granting these claims, we can conclude as follows. It suffices to show
that

gen.rk(N)“ dim ”(L)+“ dim ”(N)gen.rk(L)−2Min(gen.rk(G), gen.rk(H))

> gen.rk(N).

Now “ dim ”(L) = 1, so this is equivalent to showing that

“ dim ”(N)gen.rk(L) > 2Min(gen.rk(G), gen.rk(H)).

But gen.rk(L) := gen.rk(H), we may rewrite this as

“ dim ”(N)gen.rk(H) > 2Min(gen.rk(G), gen.rk(H)).

But we have the trivial inequality gen.rk(H) ≥Min(gen.rk(G), gen.rk(H)),
so it suffices that

“ dim ”(N)gen.rk(H) > 2gen.rk(H),

which is obvious from the assumption that “ dim ”(N) ≥ 3.
It remains to show that

dimK(0)I(0) ≤Min(gen.rk(G), rk(invH(0)tame)),

dimK(∞)I(∞) ≤Min(gen.rk(G), rk(invH(∞)tame)).

Recall that
K(0)I(0) ∼= (G(0)⊗ invH(0)tame)I(0),



20. GL(n)×GL(n)× ...×GL(n) EXAMPLES 119

K(∞)I(∞) ∼= (G(∞)⊗ invH(∞)tame)I(∞).

So we must show that

dim(G(0)⊗ invH(0)tame)I(0) ≤Min(gen.rk(G), rk(invH(0)tame)),

dim(G(∞)⊗ invH(∞)tame)I(∞) ≤Min(gen.rk(G), rk(invH(∞)tame)).

It suffices to prove the (universal truth of the) first. Thus we have a
tame representation V of I(0)

V :=
⊕
i

Lχi ⊗ Unip(ni)

of rank n =
∑

i ni, in which the χi are all distinct. And we have a
second tame representation W of I(0),

W :=
⊕
j

Lρj ⊗ Unip(mj)

of rank m =
∑

jmj, in which all the ρj are distinct. We must show
that

dim((V ⊗W )I(0)) ≤Min(n,m).

Now

V ⊗W =
⊕
i,j

Lχi/ρj ⊗ (Unip(ni)⊗ Unip(mj)).

The only terms with nonzero I(0)-invariants are those for which χi =
ρj. If there are no such pairs, there is nothing to prove. If there
are such pairs, we may renumber so that χi = ρi for i = 1, ..., r,
and χi 6= ρj unless i = j and 1 ≤ i, j ≤ r. So we may replace V
by its subspace

⊕r
i=1 Lχi ⊗ Unip(ni) and replace W by its subspace⊕r

i=1 Lχi ⊗ Unip(mi). So we are reduced to showing that

r∑
i=1

dim((Unip(ni)⊗ Unip(mi))
I(0)) ≤Min(

r∑
i=1

ni,

r∑
i=1

mi).

We have the trivial inequality
r∑
i=1

Min(ni,mi) ≤Min(
r∑
i=1

ni,
r∑
i=1

mi).

So it suffices to observe that for two integers n,m ≥ 1, we have

dim((Unip(n)⊗ Unip(m))I(0)) = Min(n,m).

To fix ideas, say m ≤ n. One knows that

Unip(n)⊗ Unip(m) = Symn−1(Unip(2))⊗ Symm−1(Unip(2))
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∼=
m−1⊕
i=0

Symn−1+m−1−2i(Unip(2)) =
m−1⊕
i=0

Unip(n+m− 1− 2i),

and each of them unipotent Jordan block summands has a one-dimension
space of I(0)-invariants. This concludes the proof in case (1).

We now treat case (2). Thus G is the restriction to Gm of a sheaf
which is lisse on A1/k, totally wild at ∞, with all of its ∞-slopes > 2.
Recall that

gen.rk(N ?! L) = dimH1(P1/k, j!K) = −χc(Gm/k,K)

= Swan0(K) + Swan∞(K) +
∑
s∈S

(drops(K) + Swans(K))

+
∑

b∈S∈a/T

(dropb(K) + Swanb(K)).

Here S is empty. For b = a/t ∈ a/T , G is lisse at b, so we have

dropb(K) + Swanb(K) = gen.rk(G)(dropt(H) + Swant(H)).

Because G is lisse at 0, we have

Swan0(K) = gen.rk(G)Swan∞(H).

Because G has all its∞-slopes > 2, while every∞-slope of [x 7→ a/x]?H
is ≤ 1, we have

Swan∞(K) = gen.rk(H)Swan∞(G).

Putting all these together, we get the formula

gen.rk(N?!L) = gen.rk(G)(“ dim ”(L)−Swan0(H))+“ dim ”(N)gen.rk(L).

Meanwhile K is totally wild at∞, so K(∞)I(∞) = 0. As G is lisse at 0,

dim(KI(0)) = gen.rk.(G) dim(invH(0)I(0)).

Now “ dim ”(L) = 1, and both Swan0(H) and dim(invH(0)I(0)) are
≤ 1. So we have the inequality

gen.rk(N ?! L) ≥ “ dim ”(N)gen.rk(L)− gen.rk.(G).

We will show that

“ dim ”(N)gen.rk(L)− gen.rk.(G) > gen.rk.(G),

i.e., that
“ dim ”(N)gen.rk(L) > 2gen.rk.(G).

As gen.rk(L) ≥ 1, it suffices to show that

“ dim ”(N) > 2gen.rk.(G).

But “ dim ”(N) = Swan∞(G) is the sum of the gen.rk(G) ∞-slopes of
G, each of which is > 2, so this last inequality is obvious. �
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With these results in hand, it is a simple matter to apply them to
the GL(n) examples we have found in Chapter 17.

Theorem 20.5. Fix any integer n ≥ 3, and a lisse rank one sheaf F
on A1/Fp which is pure of weight zero and whose Swan conductor at
∞ is the integer n, such that F|Gm is not geometrically isomorphic to
any nontrivial multiplicative translate of itself. Thus the object N :=
F(1/2)[1] ∈ Parith has “ dim ”(N) = n, and Ggeom,N = Garith,N =
GL(n). For any r ≥ 2 distinct characters χi of k×, put Ni := N ⊗Lχi.
Then the object ⊕iNi has

Ggeom,⊕iNi = Garith,⊕iNi =
∏
i

GL(n).

Proof. We first show that for i 6= j, there is no geometric isomorphism
between Ni and any multiplicative translate of either Nj or N∨j . Any
multiplicative translate of N∨j is totally wild at 0, while Ni is tame at
0. And Ni and any multiplicative translate of Nj have nonisomorphic
local monodromies at 0, namely Lχi and Lχj .

To show that for a nonpunctual L ∈ Pgeom of “dimension” one there
is no geometric isomorphism of Ni with either Nj ?mid L or N∨j ?mid L,
we “pull out” the Lχj :

Nj ?mid L = (N ⊗ Lχj) ?mid L ∼= (N ?mid (L⊗ Lχj))⊗ Lχj .
Now N and each Nj have the same generic rank as each other, so by
the previous result we get

gen.rk(Nj ?mid L) > gen.rk(Ni).

Writing

N∨j ?mid L = (N∨ ⊗ Lχj) ?mid L ∼= (N∨ ?mid (L⊗ Lχj))⊗ Lχj ,
and putting L1 := L ⊗ Lχj , we observe that N∨ ?mid L1 has the same
generic rank as its Tannakian dual N ?mid L

∨
1 , so we get

gen.rk(N∨j ?mid L) > gen.rk(Ni).

To show that the Tannakian determinants “ det ”(Ni) = (detN)⊗
Lχi are independent, it suffices, by Corollary 20.2, to show that “ det ”(N)
is geometrically isomorphic to a multiplicative translate of the Artin
Schreier sheaf Lψ(1/2)[1], ψ some fixed nontrivial additive character of
k. For this we argue as follows. One knows that the collection of all
objects in Pgeom which are lisse on Gm, unipotent at 0, and totally wild
at∞ is stable by ! convolution, which coincides, on this collection, with
middle convolution, cf. [Ka-GKM, 5.1 (2)]. So “ det ”(N), a direct
factor of the n-fold convolution of N with itself, is lisse on Gm, totally
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wild at 0, and unipotent at 0. The only such objects of “dimension” one
are (shifts by [1] of) multiplicative translates of Kloosterman sheaves
Kln := Kl(ψ;1, ...,1)(n/2) of some rank n ≥ 1, cf. [Ka-ESDE, 8.5.3].
Because “ det ”(N) ∈ Parith, the multiplicative translation must be by
an a ∈ k×. It remains to see that n = 1. For this we consider the weight
drop of Frobk,1 acting on “ det ”(N). Acting on N , it has n− 1 eigen-
values of absolute value 1, and one eigenvalue of absolute value 1/

√
#k.

So acting on “ det ”(N), its weight drop is one. In general, the weight
drop of Frobk,1 acting on ω(Kln(n/2)[1]) ∼= H1

c (Gm/k,Kln(n/2)) is n,
cf. [Ka-GKM, 7.3.1]. �

Theorem 20.6. Let k have odd characteristic. Fix an odd integer
n ≥ 3, and define N := Symn(Leg)((n + 1)/2)[1] in Parith, which we
have seen (Theorem 17.2) is pure of weight zero, has “dimension” n,
and has

Ggeom,N = Garith,N = GL(n).

Let χ1, ..., χr be characters of k× whose squares are all distinct, i.e.,
for i 6= j, χi/χj is neither trivial nor is it the quadratic character. Put
Ni := N ⊗ Lχi. Then the object ⊕iNi has

Ggeom,⊕iNi = Garith,⊕iNi =
∏
i

GL(n).

Proof. The objects Ni and their Tannakian duals N∨i all have the point
1 as their unique singularity in Gm, and all are tame at 0 and ∞. So
none is geometrically isomorphic to a nontrivial multiplicative translate
of another. The local monodromy of N at 0 is Unip(n + 1), and that
of N∨ at 0 is Lχquad ⊗Unip(n+ 1), so for i 6= j, Ni is not geometrically
isomorphic to either Nj or N∨j . We may apply Theorem 20.4 to show
that no Ni is isomorphic to any Nj ?mid L or to any N∨j ?mid L for
any nonpunctual one-dimensional object L. The generic rank method
applies, because all the Ni and N∨i have the same generic rank n + 1,
and are tame at 0 and ∞, with local monodromy at each a single
Jordan block of size n+ 1.

It remains to show how to apply Lemma 20.1 to “ det ”(N). As
explained in the proof of Theorem 17.2, the only bad characters for N
are the trivial character 1 and the quadratic character χ2. For 1, n−1
of the Frobenius eigenvalues have absolute value 1, and the remaining
eigenvalue has absolute value (1/

√
#k)n+1. For χ2, n− 1 of the Frobe-

nius eigenvalues have absolute value 1, and the remaining eigenvalue
has absolute value (

√
#k)n+1. So “ det ”(N) is geometrically isomor-

phic to a multiplicative translate of H[1] for H the hypergeometric of
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type (n + 1, n + 1) given by H(ψ;1, ...,1;χ2, ..., χ2). And by Lemma
19.3, there is in fact no multiplicative translate. �

We also have the following generalization.

Theorem 20.7. Let n ≥ 3 be an integer, and χ a character of k×

such that χ2 has order > n. Form the hypergeometric sheaf H :=
H(!, ψ; 1, χ2;χ, χ), and the object N := Symn(H)((3n + 1)/2)[1] in
Parith, which (by Theorem 17.3) is pure of weight zero, has “dimen-
sion” n, and has

Ggeom,N = Garith,N = GL(n).

Let ρ1, ..., ρr be r ≥ 2 characters of k×, such that for i 6= j, ρi/ρj is not
on either of the following two lists:

{χ2n−2j}j=0,...,2n, {χn−2j}j=0,...,n.

Put Ni := N ⊗ Lχi. Then the object ⊕iNi has

Ggeom,⊕iNi = Garith,⊕iNi =
∏
i

GL(n).

Proof. The objects Ni and their Tannakian duals N∨i all have the point
1 as their unique singularity in Gm, and all are tame at 0 and ∞. So
none is geometrically isomorphic to a nontrivial multiplicative translate
of another. The local monodromy of N at 0 is ⊕nj=0Lχ2j , and that of
N∨ at 0 is Lχn ⊗ Unip(n + 1). In view of the hypotheses made on
the ratios of the ρi, we see from the local monodromies at 0 that for
i 6= j, Ni is not geometrically isomorphic to either Nj or N∨j . We use
Theorem 20.4 to show that no Ni is isomorphic to any Nj ?mid L or to
any N∨j ?mid L for any nonpunctual one-dimensional object L.

To apply Lemma 20.1 to “ det ”(N), recall from the proof of The-
orem 17.3 that this Tannakian determinant is geometrically isomor-
phic to H[1] for H the hypergeometric sheaf of type (n, n) given by
H(ψ;χ2, ..., χ2n;1, ...,1). �

To conclude this chapter, we consider our fourth example of aGL(n)
object. Recall that in Theorem 17.5 we took a polynomial f [x] =∑n

i=0 Aix
i in k[x] of degree n ≥ 2 with all distinct roots in k. We

supposed that f(0) 6= 0, and that gcd{i|Ai 6= 0} = 1, and we took a
character χ of k× such that χn is nontrivial. We then formed the object
N := Lχ(f)(1/2)[1] in Parith, which we showed was pure of weight zero,
had “dimension” n, and had

Ggeom,N = Garith,N = GL(n).
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In order to apply Theorem 20.4, we need to assume n ≥ 3 in the
following theorem.

Theorem 20.8. Suppose n ≥ 3, and consider the object N := Lχ(f)(1/2)[1]
of the previous paragraph. Let ρ1, ..., ρr be r ≥ 2 characters of k×, such
that for i 6= j, χi/χj is neither the trivial character 1 nor the character
χn. Put Ni := N ⊗ Lχi. Then the object ⊕iNi has

Ggeom,⊕iNi = Garith,⊕iNi =
∏
i

GL(n).

Proof. Recall from the proof of Theorem 17.5 that in this case the
Tannakian determinant “ det ”(N) is geometrically isomorphic to H[1]
for H = H(ψ;1;χn) ∼= Lχn(1−x). So by Lemma 20.1 the determinants
of the Ni are independent.

Because we assume n ≥ 3, we may apply Theorem 20.4 to show
that no Ni is isomorphic to any Nj ?mid L or to any N∨j ?mid L for any
nonpunctual one-dimensional object L. It remains to show that for
i 6= j, Ni is not geometrically isomorphic to any multiplicative trans-
late of either Nj or of N∨j . To see this, we compare local monodromies
at ∞. For Ni it is Lχnρi . For Nj it is Lχnρj , and for N∨j it is Lρj , all
of whose geometric isomorphism classes are invariant under multiplica-
tive translation. By the hypothesis on the characters ρk, these local
monodromies are in three distinct isomorphism classes. �



CHAPTER 21

SL(n) Examples, for n an Odd Prime

In this chapter, we will construct, for every n ≥ 3, n-dimensional
objects with Ggeom ⊂ Garith ⊂ SL(n), but only when n is prime will
we be able to prove that Ggeom = Garith = SL(n).

Theorem 21.1. Let k be a finite field of characteristic p, ψ a nontrivial
additive character of k. Let f(x) =

∑a
i=−bAix

i ∈ k[x, 1/x] be a Laurent
polynomial of “bidegree” (a, b), with a, b both ≥ 1 and both prime to p.
Assume further that f(x) is Artin-Schreier reduced. Thus AaA−b 6= 0,
and Ai 6= 0 implies that i is prime to p. We have the following results.

(1) The object N := Lψ(f(x))(1/2)[1] ∈ Parith is pure of weight
zero, geometrically irreducible, and of “dimension” a+ b.

(2) If (−1)aaAa = (−1)b+1bA−b, then Ggeom,N ⊂ SL(a + b). In
general, the Tannakian determinant “ det ”(N) is geometri-
cally isomorphic to δα, for α = (−1)b+1bA−b/(−1)aaAa. And
setting

β := det(Frobk,1|ω(N)),

we have the arithmetic determinant formula

“ det ”(N) = βdeg ⊗ δα.
(3) If a 6= b, then N is not Lie-self-dual, i.e., G0

geom,N lies in no
orthogonal group SO(a+ b), and, if a+ b is even, it lies in no
symplectic group Sp(a+ b).

(4) Suppose in addition that gcd{i|Ai 6= 0} = 1. Then N is geo-
metrically Lie-irreducible, i.e., G0

geom,N is an irreducible sub-
group of SL(a + b) (in the given a + b-dimensional represen-
tation).

Proof. The sheaf Lψ(f(x)) is lisse of rank one (and a fortiori geometri-
cally irreducible) and pure of weight zero on Gm, with Euler charac-
teristic −Swan0 − Swan∞ = −a − b, so (1) is obvious. Let us admit
the truth of (2) for the moment. To show that N is not Lie-self-dual
when a 6= b, it suffices to show that for any integer d ≥ 1 prime to
p, the d’th power direct image [d]?N is not geometrically isomorphic
to its Tannakian dual. But this object has different Swan conduc-
tors at 0 and∞, namely a and b respectively, while its Tannakian dual

125
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[x 7→ 1/x]?D([d]?N) has Swan conductors b and a respectively at 0 and
∞. If in addition gcd{i|Ai 6= 0} = 1, the geometric Lie-irreducibility
of N follows from Corollary 8.3. Indeed, this gcd = 1 hypothesis and
the fact that f is Artin-Schreier reduced together insure that for any

a 6= 1 in k
×

, N is not geometrically isomorphic to [x 7→ ax]?N , cf. the
proof of Theorem 14.2.

We now turn to the calculation of the Tannakian determinant “ det ”(N).
We will compute, for every finite extension field E/k, and every char-
acter χ of E×,

det(FrobE,χ|ω(N)) = det(FrobE|H0(A1 ⊗k k, j0!(N ⊗ Lχ))).

Because N is totally wild at both 0 and ∞, this is

= det(FrobE|H0
c (Gm ⊗k k,N ⊗ Lχ))

= det(FrobE|H1
c (Gm ⊗k k,Lψ(f(x)) ⊗ Lχ)(1/2))

=
√

#E
−a−b

det(FrobE|H1
c (Gm ⊗k k,Lψ(f(x)) ⊗ Lχ)).

We follow the method of Hasse-Davenport [D-H]. The L-function on
Gm/E with coefficients in Lψ(f(x)) ⊗ Lχ has the additive expression

L(Gm/E, T,Lψ(f(x)) ⊗ Lχ) = 1 +
∑
d≥1

T d
∑

D∈EffDivd(Gm/E)

ψ(D)χ(D),

where the inner sum is over the space of effective divisors of degree d
on Gm/E. Concretely, the effective divisors D of given degree d are the
monic polynomials of degree d in E[x] of the form fD := xd− s1x

d−1 +
...+(−1)dsd, with sd invertible. The term χ(D) for this divisor is χ(sd).
The term ψ(D) for this divisor is ψ(

∑a
i=−bAiNi), for Ni the sum of the

i’th powers of the roots of the corresponding polynomial fD. [N.B.
Because fD has an invertible constant term, all its roots are invertible,
so Ni makes sense for negative i as well.] Comparing the additive
expression for the L-function with its cohomological expression

L(Gm/E, T,Lψ(f(x))⊗Lχ) = det(1−TFrobE|H1
c (Gm⊗kk,Lψ(f(x))⊗Lχ)),

which shows the L function to be a polynomial in T of degree a + b,
and equating coefficients of T a+b, we get the identity

det(−FrobE|H1
c (Gm ⊗k k,Lψ(f(x)) ⊗ Lχ)) =

∑
D∈EffDiva+b

ψ(D)χ(D)

=
∑

s1,...,sa+b∈E,sa+b 6=0

χ(sa+b)ψ(
a∑

i=−b

AiNi).
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With the convention that for i > 0, s−i is the i’th elementary symmetric
function of the inverses of the roots, we have

s−i = sa+b−i/sa+b.

And by the relation between Newton symmetric functions and elemen-
tary symmetric functions, we have

Na = (−1)a+1asa + pa(s1, ..., sa−1),

where pa(s1, ..., sa−1) is isobaric of weight a and does not involve sa.
Similarly,

N−b = (−1)b+1bs−b + pb(s−1, ..., s−(b−1)),

where pb(s−1, ..., s−(b−1)) is isobaric of weight b and does not involve s−b.
The terms Ni with 0 ≤ i < a are polynomials in the variables s1, ..., si,
and the terms N−j with 0 < j < b are polynomials in s−1, ..., s−j. Thus
we get an expression for

det(−FrobE|H1
c (Gm ⊗k k,Lψ(f(x)) ⊗ Lχ)

of the form∑
s1,...,sa+b∈E,sa+b 6=0

χ(sa+b)ψ(Aa(−1)a+1asa + A−b(−1)b+1bs−b +R)

with

R := P (s1, ..., sa−1) +Q(s−1, ..., s−(b−1)).

Making use of the relations s−i = sa+b−i/sa+b, we see that the term
Q(s−1, ..., s−(b−1)) is itelf a polynomial in sa+b−1, sa+b−2, ...., sa+1 and
1/sa+b. Thus R does not involve the variable sa. Using the relation
s−b = sa/sa+b, we see that the only occurrence of the variable sa is in
the two terms

Aa(−1)a+1asa + A−b(−1)b+1bsa/sa+b.

So we can factor out the sum over sa, and get an expression of det(−FrobE)
as the product of∑
s1,..,sa−1,sa+1,...,sa+b∈E,sa+b 6=0

χ(sa+b)ψ(P (s1, ..., sa−1)+Q(sa+1, ..., sa+b−1, 1/sa+b))

times ∑
sa

ψ(sa(Aa(−1)a+1a+ A−b(−1)b+1b/sa+b)).

This last sum vanishes unless

sa+b = A−b(−1)b+1b/Aa(−1)aa,
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in which case this sum is equal to #E. Defining α = A−b(−1)b+1b/Aa(−1)aa,
we get an expression for det(−FrobE) as

χ(α)× (an expression independent ofχ).

Putting this all together, we get

det(−FrobE,χ|ω(N)) = χ(α)S(E,N)

with S(E,N) the exponential sum in a+b−2 variables s1, ..., sa−1, sa+1, ..., sa+b−1

given by

#E1−(a+b)/2
∑

s1,...,sa−1,sa+1,...,sa+b−1∈E

ψ(P (s1, ..., sa−1)+Q(sa+1, ..., sa+b−1, 1/α)).

Taking χ = 1, we see that

S(E,N) = det(−FrobE,1|ω(N)).

Thus we find

det(FrobE,χ|ω(N)) = χ(α) det(FrobE,1|ω(N)),

so defining

β := det(Frobk,1|ω(N)),

we get the arithmetic determinant formula

“ det ”(N) = βdeg ⊗ δα.

�

The following lemma gives us some control over the quantity β :=
det(Frobk,1|ω(N)).

Lemma 21.2. Let k be a finite field of characteristic p, ψ a nontrivial
additive character of k. Let f(x) =

∑a
i=−bAix

i ∈ k[x, 1/x] be a Laurent
polynomial of “bidegree” (a, b), with a, b both ≥ 1 and both prime to p.
The ratio

det(Frobk|H1
c (Gm/k,Lψ(f(x))))

2/(#k)a+b

is a root of unity of order dividing 2p if p is odd, and the ratio is ±1 if
p = 2. If a+ b is even, the same is true for the ratio

det(Frobk|H1
c (Gm/k,Lψ(f(x))))/(#k)(a+b)/2.

If a+ b is odd, the same is true of the ratio

det(Frobk|H1
c (Gm/k,Lψ(f(x))))/(G(ψ, χ2)(#k)(a+b−1)/2),

with G(ψ, χ2) the quadratic Gauss sum.
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Proof. The exponential sum expression for det(Frobk|H1
c (Gm/k,Lψ(f(x))))

derived in the proof of the previous theorem shows that this determi-
nant lies in the ring Z[ζp] of integers in the cyclotomic field Q(ζp).
Hence the ratios in question all lie in Q(ζp) as well. We are assert-
ing that the ratios in question are each roots of unity in Q(ζp). For
this, it suffices to see that each ratio has absolute value one at every
place, finite or infinite, of Q(ζp). At archimedean places, this is the

fact that H1
c (Gm/k,Lψ(f(x))) is pure of weight one, and of dimension

a + b. At `-adic places, ` 6= p, both the determinant, calculated now
via `-adic cohomology, and the quantities #k and G(ψ, χ2), are `-adic
units. At the unique place lying over p, both this determinant and its
complex conjugate have the same p-adic absolute value as each other,
as the two quantities are Galois conjugate in Qp(ζp). But the two

groups H1
c (Gm/k,Lψ(f(x))) and H1

c (Gm/k,Lψ(f(x))) are dually paired to

Q`(−1), so the product of the determinant with its complex conju-
gate is (#k)a+b. Therefore the square of the determinant, divided by
(#k)a+b, is a p-adic unit as well. The square of either of the second
two ratios is ±1 times the first ratio, so it too is a p-adic unit. �

Theorem 21.3. We have the following results concerning the object
N of Theorem 21.1.

(1) The quantity

β := det(Frobk,1|ω(N))

is a root of unity of order dividing 2p, if either a + b is even
or if p is odd and −1 is a square in k. If p and a+ b are both
odd and −1 is a nonsquare in k, then β is a root of unity of
order dividing 4p.

(2) If (−1)aaAa = (−1)b+1bA−b, then for any a + b’th root γ of
1/β, the object γdeg ⊗N has Ggeom ⊂ Garith ⊂ SL(a+ b).

(3) If in addition a 6= b and gcd{i|Ai 6= 0} = 1 and a+b is a prime
number ≥ 3, then the object γdeg ⊗ N has Ggeom = Garith =
SL(a+ b).

(4) If the object γdeg ⊗N has Ggeom = Garith = SL(a+ b) (e.g., if
a+b is prime), then for any r ≥ 2 distinct characters χ1, ..., χr
of k×, the object ⊕ri=1γ

deg ⊗N ⊗ Lχi has

Ggeom = Garith =
r∏
i=1

SL(a+ b).

Proof. Assertion (1) is immediate from the corollary, becauseG(ψ, χ2)2 =
χ2(−1)#k. Assertion (2) is immediate from assertion (2) of Theorem
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21.1. To prove (3), we argue as follows. By parts (3) and (4) of The-
orem 21.1, G0

geom is an irreducible subgroup of SL(a+ b) which lies in
no orthogonal subgroup SO(a + b). By Gabber’s theorem on prime-
dimensional representations [Ka-ESDE, 1.6], the only connected irre-
ducible subgroups of SL(a+b), for a+b prime, are SL(a+b), SO(a+b),
the image of SL(2) in Syma+b−1(std2), and, if a+b = 7, the group G2 in
its seven-dimensional representation. All of these except for SL(a+ b)
itself lie in an orthogonal subgroup SO(a+ b).

Assertion (4) results from the Goursat-Kolchin-Ribet Theorem 13.5.
We have a priori inclusions for this object

Ggeom ⊂ Garith ⊂
r∏
i=1

SL(a+ b),

so it suffices to show that Ggeom =
∏r

i=1 SL(a+ b). We must show that
for i 6= j, and for any one-dimensional object L ∈ Pgeom, there is no
geometric isomorphism between N ⊗Lχi and either N ⊗Lχj ?mid L or
its Tannakian dual. To see this, we argue as follows. The fact that N⊗
Lχi and N ⊗ Lχj and its Tannakian dual all have trivial determinants

forces L⊗(a+b) to be geometrically trivial, which in turn implies that

L is punctual, so some δε with ε ∈ k
×

. Thus we must show that
Lψ(f(x)) ⊗ Lχi is not geometrically isomorphic to either Lψ(f(εx)) ⊗ Lχj
or to Lψ(−f(ε/x)) ⊗ Lχj , for any ε. The second is impossible, because
of the asymmetry of the Swan conductors. For the first, their ratio is
Lψ(f(εx)−f(x)) ⊗ Lχj/χi . If ε 6= 1, this ratio is wildly ramified at either 0
or∞ or both, thanks to the hypothesis that f is Artin-Schreier reduced
and has gcd{i|Ai 6= 0} = 1. So their ratio is not geometrically trivial.
If ε = 1, their ratio is Lχj/χi , which is nontrivially ramified at both 0
and ∞, so again is not geometrically trivial. �

To end this chapter, we give another family of examples where, for
every n ≥ 3 we have Ggeom ⊂ Garith ⊂ SL(n), but where, once again,
only when n is prime can we prove that Ggeom = Garith = SL(n). We
work over a finite field k, with ψ a nontrivial additive character of k.
For each integer m ≥ 1, we denote by Klm the Kloosterman sheaf of
rank m Klm(ψ;1,1, ...,1). Recall that its complex conjugate Klm is
given by Klm = [x 7→ (−1)mx]?Klm.

Theorem 21.4. Fix strictly positive integers a 6= b. Denote by F the
lisse sheaf on Gm given by

F := Kla ⊗ [x 7→ 1/x]?Klb = Kla ⊗ [x 7→ (−1)b/x]?Klb.

Denote by N ∈ Parith the object F((a+ b− 1)/2)[1]. Then we have the
following results.
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(1) The object N ∈ Parith is pure of weight zero, geometrically
irreducible, and of “dimension” a+ b.

(2) For a multiplicative character χ of k×, consider the Klooster-
man sheaf Kla+b(ψ;χ, .., χ,1, ...,1) of rank a+ b with charac-
ters χ repeated a times, and 1 repeated b times. Then we have
the identity

det(1− TFrobk,χ|ω(N))

= det(1− TFrobk,(−1)b |Kla+b(ψ;χ, .., χ,1, ...,1)((a+ b− 1)/2)).

(3) We have Ggeom,N ⊂ Garith,N ⊂ SL(a+ b).
(4) The object N ∈ Parith is geometrically Lie-irreducible, i.e.,

G0
geom,N is an irreducible subgroup of SL(a+ b).

(5) The object N ∈ Parith is not geometrically Lie-self-dual, i.e.,
G0
geom,N lies in no orthogonal group SO(a+ b) and, if a+ b is

even, it lies in no symplectic group Sp(a+ b).
(6) If a+ b is a prime number, then Ggeom = Garith = SL(a+ b).
(7) Suppose that Ggeom = Garith = SL(a+ b), and that gcd(a, b) =

1 (e.g., both hold if a + b is prime). For any r ≥ 2 distinct
characters χ1, ..., χr of k×, put Ni := N⊗Lχi. Then the object
⊕ri=1Ni has

Ggeom,⊕ri=1Ni
= Garith,⊕ri=1Ni

=
r∏
i=1

SL(a+ b).

Proof. (1) One knows that Klm is pure of weight m−1, so F is pure of
weight a+ b− 2, and hence N is pure of weight zero. To show that N ,
or equivalently F , is geometrically irreducible, we repeat the argument
given in Remark 18.14. By purity, F is geometrically semisimple, so
it suffices to observe that its local monodromy at 0 (or at ∞, either
one will do) is indecomposable. Its local monodromy at 0 is Unip(a)⊗
Wildb,1, where Wildb,1 is totally wild of rank b and Swan conductor
one, and the indecomposability follows from [Ka-RLS, 3.1.7]. Its local
monodromy at ∞ is Wilda,1 ⊗ Unip(b). Thus the dimension of N is
Swan0 + Swan∞ = a+ b.

To prove (2), it suffices to prove, over all finite extensions of k, the
identity of traces

Trace(Frobk,χ|ω(N)) = Trace(Frobk,(−1)b|Kla+b(ψ;χ, .., χ,1, ...,1)((a+b−1)/2)).

Because F is totally wild at both 0 and∞, there are no bad characters,
so we have

Trace(Frobk,χ|ω(N)) := Trace(Frobk|H0
c (Gm ⊗ k,N ⊗ Lχ))
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= Trace(Frobk|H1
c (Gm ⊗ k,F ⊗ Lχ)((a+ b− 1)/2)).

So what we must show is the identity

Trace(Frobk|H1
c (Gm ⊗ k,F ⊗ Lχ))

= Trace(Frobk,(−1)b|Kla+b(ψ;χ, .., χ,1, ...,1)).

On the left-hand side, the H1
c is the only nonvanishing cohomology

group, so by the Lefschetz trace formula [Gr-Rat] the left-hand side
is

−
∑
x∈k×

χ(x)Trace(Frobk,x|Kla)Trace(Frobk,(−1)b/x|Klb).

This in turn is

−
∑
x∈k×

Trace(Frobk,x|Kla(ψ;χ, ..., χ))Trace(Frobk,(−1)b/x|Klb),

which is precisely the trace of Frobk,(−1)b on the convolution ofKla(ψ;χ, ..., χ)
with Klb, and that convolution is precisely the Kloosterman sheaf
|Kla+b(ψ;χ, .., χ,1, ...,1), cf. [Ka-GKM, 5.5].

To prove (3), it suffices to prove, thanks to (2), that for every χ we
have the identity

det(Frobk,(−1)b|Kla+b(ψ;χ, .., χ,1, ...,1)) = (#k)(a+b)(a+b−1)/2.

This identity is a special case of the arithmetic determinant formula for
Kloosterman sheaves given in [Ka-GKM, 7.4.1.3 and 7.4.1.4]. [There
the formula comes out as(#k)(a+b)(a+b−1)/2 times the additional factor
χa((−1)a+b−1)χa((−1)b), but this factor is 1.]

To prove (4), we must show that N is not geometrically isomorphic
to any nontrivial multiplicative translate of itself. But already this is
true for its local monodromy at 0, Unip(a)⊗Wildb,1, indeed it is true
for Wildb,1 itself, cf. [Ka-GKM, 4.1.6 (3)].

We prove (5) exactly as in Theorem 21.1. We simply observe that
N has different Swan conductors a and b at 0 and ∞ respectively, as
do all its direct images by Kummer maps.

We then get (6) by Gabber’s classification of prime-dimensional
representations [Ka-ESDE, 1.6], exactly as in the proof of Theorem
21.3.

To prove (7), we use Goursat-Kolchin-Ribet. We have a priori in-
clusions for the object ⊕ri=1Ni,

Ggeom,⊕ri=1Ni
⊂ Garith,⊕ri=1Ni

⊂
r∏
i=1

SL(a+ b),

so it suffices to show that Ggeom,⊕ri=1Ni
=

∏r
i=1 SL(a + b). We must

show that for i 6= j, and for any one-dimensional object L ∈ Pgeom,



21. SL(n) EXAMPLES, FOR n AN ODD PRIME 133

there is no geometric isomorphism between N ⊗ Lχi and either (N ⊗
Lχj) ?mid L or its Tannakian dual. To see this, we argue as follows.
The fact that N ⊗ Lχi and N ⊗ Lχj and its Tannakian dual all have

trivial determinants forces the Tannakian tensor power L⊗(a+b) to be
geometrically trivial, which in turn implies that L is punctual, so some

δε with ε ∈ k
×

. Thus we must show that for i 6= j, N ⊗ Lχi is not
geomerically isomorphic to any multiplicative translate of either N ⊗
Lχj or of its Tannakian dual. The second is impossible, because of
the asymmetry of Swan conductors. To rule out the first, we argue as
follows. If N ⊗ Lχi is geometrically isomorphic to some multiplicative
translate [x 7→ εx]?(N ⊗Lχj), then comparing local monodromies at 0
and ∞ respectively we find geometric isomorphisms

Wildb,1 ⊗ Lχi ∼= [x 7→ εx]?(Wildb,1 ⊗ Lχj)
and

Wilda,1 ⊗ Lχi ∼= [x 7→ εx]?(Wilda,1 ⊗ Lχj).
Suppose first that a = 1. Then Wilda,1 ∼= Lψ(x) as I(∞) representa-

tion, so the second isomorphism asserts that Lψ(x)⊗Lχi ∼= Lψ(εx)⊗Lχj
as I(∞) representation, i.e., that Lψ((1−ε)x) ⊗Lχi/χj is the trivial char-
acter of I(∞). This is nonsense: if ε 6= 1, this character has Swan
conductor one, and if ε = 1, it is the nontrivial character Lχi/χj . Simi-
larly, we deal with the case b = 1.

If both a, b ≥ 2, then both Wilda,1 and Wildb,1 have trivial de-
terminants. Equating determinants in the two isomorphisms, we find
equalities χbi = χbj and χai = χaj . As gcd(a, b) = 1, we infer that χi = χj,
contradiction. �





CHAPTER 22

SL(n) Examples with Slightly Composite n

In this chapter, we continue to study the object N of Theorem
21.1. Thus k is a finite field of characteristic p, ψ a nontrivial additive
character of k, f(x) =

∑a
i=−bAix

i ∈ k[x, 1/x] is a Laurent polynomial
of “bidegree” (a, b), with a, b both ≥ 1 and both prime to p. We
assume that f(x) is Artin-Schreier reduced. We take for N the object
N := Lψ(f(x))(1/2)[1] ∈ Parith.
Theorem 22.1. The object N , viewed in <N>geom, is not geometri-
cally isomorphic to the middle convolution of any two objects K and
L in <N>geom each of which has dimension ≥ 2. Equivalently, the
representation of Ggeom,N corresponding to N is not the tensor product
of two other representations of Ggeom,N , each of which has dimension
≥ 2.

Proof. The key point is that the object N has no bad characters (be-
cause it is totally wildly ramified at both 0 and ∞, a property equiva-
lent to having no bad characters). Therefore every object in <N>arith

shares this property of having no bad characters, cf. Theorem 4.1.
In other words, every object M ∈< N >arith is (strictly speaking, its
H−1(M) is) totally wildly ramified at both 0 and ∞. But every ob-
ject in <N>geom is, geometrically, a direct summand of some object
of <N>arith (indeed, of some multiple middle convolution of N and of
its Tannakian dual N∨), so itself is totally wildly ramified at both 0
and ∞. But N has generic rank one, so the theorem results from the
following theorem. �

Theorem 22.2. Let K and M be two irreducible objects of Pgeom, each
of which is nonpunctual and totally wildly ramified at both 0 and ∞.
Then their middle convolution K ?midM has generic rank ≥ 2.

Proof. We have K = K[1] and M =M[1] for irreducible middle exten-
sion sheaves K andM on Gm/k, each of which is totally wildly ramified
at both 0 and ∞. Over a dense open set U , their middle convolution
is of the form Q[1], for Q a lisse sheaf on U whose stalk at a point
a ∈ U(k) is the image of the “forget supports” map

H1
c (Gm/k,K ⊗ [x 7→ a/x]?M)→ H1(Gm/k,K ⊗ [x 7→ a/x]?M).
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We claim that, because K and M are totally wildly ramified at
both 0 and ∞, the tensor product sheaf K ⊗ [x 7→ a/x]?M is, for all
but at most finitely many a, itself totally wildly ramified at both 0 and
∞. Let us temporarily grant this claim. Then for good a, the forget
supports map is an isomorphism, and hence the generic rank of Q is

−χc(Gm/k,K ⊗ [x 7→ a/x]?M)

= Swan0 + Swan∞ +
∑

b∈Gm(k)

(dropb + Swanb)

≥ Swan0 + Swan∞ ≥ 1 + 1,

the last inequality because K⊗ [x 7→ a/x]?M is totally wildly ramified
at both 0 and∞. Thus we are reduced to the following lemma, applied
to the I(0) (resp. the I(∞)) representations of K and of [x 7→ 1/x]?M.

�

Lemma 22.3. Let R and S be `-adic representations of I(0) (resp. of
I(∞)) which are both totally wildly ramified. Then for all but finitely
many a ∈ Gm(k), R ⊗ [x 7→ ax]?S is a totally wild ramified represen-
tation of I(0) (resp. of I(∞)).

Proof. We treat the I(0) case; the I(∞) case is identical. The wildness
of an `-adic representation of I = I(0) depends only on its restriction
to the wild inertia group P = P (0). This restriction is semisimple with
finite image, simply because P is a pro-p group, and ` 6= p. So we may
replace R and S by their semisimplifications as I-representations, then
reduce to the case where R and S are each I-irreducible.

The next step is to reduce further to the case in which R and S
are both P -irreducible. We claim that after some Kummer pullback
by an n’th power map, for some n prime to p, both R and S are
P -isomorphic to direct sums of irreducible P -representations, each of
which extends to an I-representation. [Such a Kummer pullback is
harmless for questions of total wildness, as P is unchanged.] Recall
that once we pick an element γ ∈ I whose pro-order is prime to p and
which mod P is a topological generator of the tame quotient I tame ∼=
∧
Znot p (1), we have a semidirect product expression

I ∼= Po < γ > .

Since R (resp. S) is I-irreducible, conjugation by γ must permute
the finitely many isomorphism classes of irreducible P -representations
which occur in it. So replacing γ by a prime to p power of itself, which
amounts to passing to a Kummer pullback, we get a situation where
each P -irreducible in R (resp. in S) is isomorphic to its γ-conjugate,
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hence extends to a representation of I (and the extended representation
of I is unique up to tensoring with a Kummer sheaf Lχ, i.e., with a
character of I/P = I tame).

So we are reduced to the case where R and S remain irreducible
when restricted to P . IfR∨ and S are inequivalent as P -representations,
then (R ⊗ S)P = HomP (R∨, S) = 0, i.e., R ⊗ S is totally wild. So if
no multiplicative translate of S is P -isomorphic to R∨, we are done.

If some multiplicative translate of S is P -isomorphic to R∨, say S
itself, then (R ⊗ S)P = HomP (R∨, S) is one-dimensional, with trivial
P action, so is some Kummer sheaf Lχ. In this latter case, we have an
I-isomorphism

HomP (R∨, S)⊗R∨ ∼= S,

i.e.,

S ∼= R∨ ⊗ Lχ.
Replacing R by R⊗Lχ, which is harmless for questions of total wild-
ness, we must treat the case in which S ∼= R∨ as I-representation. In
view of the previous paragraph, it suffices to show that there are at most
finitely many a ∈ Gm(k) such that S is P -isomorphic to [x 7→ ax]?S. In
fact, we will show that there are at most Max(Swan(S), Swan(det(S)))
such translates.

We first recall [Ka-GKM, 4.1.6 (2)] that there are at most Swan(S)
a ∈ Gm(k) such that S is I-isomorphic to [x 7→ ax]−1S. To see this,
we consider the canonical extension, say S, of S to a lisse sheaf on
Gm which is tame at ∞ and whose I(0)-representation is isomorphic
to S. Because S is I-irreducible, S is irreducible as lisse sheaf on
Gm/k. If the I-isomorphism class of S is invariant under multiplica-
tive translation by some a 6= 1 in Gm(k), say by a of multiplicative
order n > 1 prime to p, then the isomorphism class of S is invariant
under multiplicative translation by µn, and hence S descends through
the n’th power map, i.e., S ∼= [n]?T for some lisse sheaf T on Gm,
in which case Swan0(S) = n × Swan0(T ). In particular, n divides
Swan0(S) = Swan(S). So there are at most Swan(S) multiplicative
translates of S which are I-isomorphic to S.

We next infer from this that there are at most

Max(Swan(S), Swan(det(S)))

a ∈ Gm(k) such that S is P -isomorphic to [x 7→ ax]?S. Consider
first the case in which det(S) is itself wildly ramified. Then applying
the above result to det(S), there are at most Swan(det(S)) values
a ∈ Gm(k) such that det(S) is I-isomorphic to [x 7→ ax]? det(S). But
taking a Kummer sheaf Lχ which has the same value on γ as det(S),
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the ratio det(S)/Lχ is a wild character which takes only p-power roots
of unity as values. Indeed, as S has p-power rank (being P -irreducible),
we may replace S by its twist by the unique rank(S)’th root of Lχ, and
reduce to the case where det(S) has p-power order. In this case, det(S)
is a character of I ∼= Po < γ > which is trivial on γ, so is completely
determined by its restriction to P . So in this case, the P -isomorphism
class of det(S) is preserved by at most Swan(det(S)) multiplicative
translations.

Now consider the case in which det(S) is tame. Here the I-isomorphism
class of det(S) is invariant by multiplicative translation. But one knows
that for an irreducible representation S of I which is P -irreducible, its
I-isomorphism class is determined by the two data consisting of the
P -isomorphism class of S and the I-isomorphism class of det(S), cf.
[Ka-ClausCar, 2.5.1]. [Indeed, as noted earlier, if S1 and S2 are P -
irreducible and P -isomorphic, then for some χ, S1

∼= S2 ⊗ Lχ. Taking
determinants, we get det(S1) ∼= det(S2)⊗ Lχq , for q the common rank
of the Si. But q is some power q of p, by P -irreducibility, so if the de-
terminants are isomorphic then χ is trivial.] Since the I-isomorphism
class of S is preserved by at most Swan(S) translations, the same is
true for its P -isomorphism class. �

Theorem 22.4. We have the following result concerning the object N
of Theorem 21.1. Suppose that a 6= b, that gcd{i|Ai 6= 0} = 1, and that
(−1)aaAa = (−1)b+1bA−b. Suppose further that a + b is the product
`1`2 of two distinct primes. Then G0

geom ⊂ SL(`1`2), already shown to
be a connected irreducible subgroup which is not self-dual, has a simple
Lie algebra.

Proof. We argue by contradiction. If Lie(G0
geom) is not simple, then

G0
geom is the image in SL(`1`2) of a product group G1×G2, with G1 ⊂

SL(`1) and G2 ⊂ SL(`2) connected irreducible subgroups, at least
one of which is not self-dual, under the tensor product of the given
representations.

Suppose first that 2 = `1. Then for lack of choice G1 = SL(2),
and hence by Gabber’s theorem on prime-dimensional representations
[Ka-ESDE, 1.6], G2 must be SL(`2), the only non-self-dual choice.
The image of this G1 × G2 in SL(`1`2) is this product group, and it
is its own normalizer in SL(`1`2). Therefore Ggeom = G1 × G2. This
contradicts Theorem 22.1.

Suppose now that both `1 and `2 are odd primes. Then at least one
of the factors, say G1, is not self-dual, so must be SL(`1). The second
factor G2 is either SL(`2) or SO(`2) or SO(3), viewed as the image of
SL(2) in Sym`2−1(std2), or, if `2 = 7, possibly the exceptional group
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G2 in its seven-dimensional representation. In this case as well, the
image of G1×G2 in SL(`1`2) is this product group, and its normalizer
in SL(`1`2) is itself, augmented by the scalars µ`1`2 in SL(`1`2). In
the case when G2 is SL(`2), these scalars are already in G1 × G2, so
G1×G2 is its own normalizer in SL(`1`2). So in this case Ggeom is the
product group G1 ×G2, and we contradict Theorem 22.1.

If G2 is SO(`2) or one of its listed subgroups, G2 contains no non-
trivial scalars, so the normalizer of G1×G2 in SL(`1`2) is the product
group

G1 × (µ`2 ×G2).

Thus we have

G1 ××G2 ⊂ Ggeom ⊂ G1 × (µ`2 ×G2).

So Ggeom is either G1 × ×G2 or it is G1 × (µ`2 × G2), in either case
contradicting Theorem 22.1. �

Remark 22.5. In view of this result, it is natural to ask the following
question: for which pairs of distinct primes `1 < `2 is it the case that the
only connected irreducible subgroup of SL(`1`2) which is not self-dual,
and whose Lie algebra is simple, is the entire group SL(`1`2) itself?
Such a subgroup is the image of an irreducible, non-self-dual, `1`2-
dimensional representation of a simply connected group with simple
Lie algebra. We wish to know the cases in which the only such are
the standard representation std`1`2 of SL(`1`2) and its contragredient.
One knows that only the types An, n ≥ 2, D2k+1, k ≥ 2, and E6 have
irreducible representations which are not self-dual. According to a
recent result of Goldstein, Guralnick and Stong [GGS, Cor. 1.5], only
the An, n ≥ 2, have irreducible representations which are non-self-
dual and of dimension equal to the product `1`2 of two distinct primes
`1 < `2. Moreover, the only dimensions `1`2 so attained are of the
following three types.

(1) Twin primes: `2 = `1 +2. In general, n(n+2) is the dimension
of the representation ω1 + (n− 1)ω2 of A2.

(2) Sophie Germain primes: `2 = 2`1 + 1. In general, n(2n+ 1) is
the dimension of the representation Sym2(std2n) of SL(2n), or
the dimension of the representation Λ2(std2n+1) of SL(2n+1),
or the dimension of the representation Sym2n+1(std3) of SL(3).

(3) Variant Sophie Germain primes: `2 = 2`1 − 1. In general,
n(2n−1) is the dimension of the representation Sym2(std2n−1)
of SL(2n−1), or the dimension of the representation Λ2(std2n)
of SL(2n), or the dimension of the representation Sym2n(std3)
of SL(3).
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Thus we obtain the following theorem.

Theorem 22.6. We have the following result concerning the object N
of Theorem 21.1. Suppose that a 6= b, that gcd{i|Ai 6= 0} = 1, and that
(−1)aaAa = (−1)b+1bA−b. Suppose further that a + b is the product
`1`2 of two distinct primes `1 < `2. Suppose that these are neither twin
primes, Sophie Germain primes, or variant Sophie Germain primes.
Then Ggeom = SL(`1`2).

Remark 22.7. Thus for example if `1`2 < 400 and (`1, `2) is not any
of

(2, 3), (2, 5), (3, 5), (3, 7), (5, 7), (5, 11), (7, 13), (11, 13), (11, 23), (17, 19),

then we have Ggeom = SL(`1`2) in the theorem above. This can be
seen directly, i.e., without invoking [GGS, Cor. 1.5], from the tables
of Lübeck [Lu]. In these tables, the dimensions listed as valid for
all large p are also the dimensions of the same representations of the
complex group.



CHAPTER 23

Other SL(n) Examples

In this chapter, we fix an integer n ≥ 3 which is not a power of
the characteristic p, and a monic polynomial f(x) ∈ k[x] of degree n,
f(x) =

∑n
i=0 Aix

i, An = 1.

Lemma 23.1. Suppose that f has n distinct roots in k, all of which
are nonzero (i.e., A0 6= 0). Let χ be a nontrivial character of k× with
χn = 1. Form the object N := Lχ(f)(1/2)[1] ∈ Parith. ItsTannakian
determinant “ det ”(N) is geometrically of finite order. It is geometri-
cally isomorphic to δa for a = (−1)nA0 = (−1)nf(0) = the product of
all the zeroes of f.

Proof. Let ρ be a nontrivial character of k×. Then ρ is good for N ,
and

det(Frobk,ρ|ω(N)) = (−1)n det(−Frobk|H1
c (Gm/k,Lχ(f(x))⊗Lρ(x))/(#k)n/2

= (−1)nε(Lχ(f(x)) ⊗ Lρ(x))/(#k)n/2,

with ε the global ε constant. The rank one sheaves Lχ(f(x)) and Lρ(x)

have disjoint ramification on P1, so their ε constants are related by

ε(Lχ(f(x)) ⊗ Lρ(x))ε(Q`)ε(Lχ(f(x)))
−1ε(Lρ(x))

−1

= (
∏

zeroes αi of f

ρ(αi))× (χ(f(0))χn(1)) = ρ((−1)nf(0))χ(f(0)),

cf. [De-Const, Cor. 9.5]. On the other hand, ε(Lρ(x)) = 1, because
all its cohomology vanishes. So we get a formula of the form

det(Frobk,ρ|ω(N)) = (−1)nε(Lχ(f(x)) ⊗ Lρ(x))/(#k)n/2

= ρ((−1)nf(0))× (a factor independent of ρ).

This formula, applied to all finite extensions E/k and to all nontrivial
characters ρ of E×, proves the assertion. �

For the rest of this chapter, we make the following three assump-
tions about f .

(1) f has n distinct roots in k, all of which are nonzero (i.e., A0 6=
0).

(2) gcd{i|Ai 6= 0} = 1.

141
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(3) No multiplicative translate f(λx), λ ∈ k
×

, of f(x) is a k
×

-
multiple of the palindrome fpal(x) := xnf(1/x) =

∑
iAn−ix

i

of f(x).

Theorem 23.2. Let χ be a nontrivial character of k× with χn = 1.
Form the object N := Lχ(f)(1/2)[1] ∈ Parith. We have the following
results.

(1) The Tannakian determinant “ det ”(N) is geometrically of fi-
nite order. It is geometrically isomorphic to δa for a = (−1)nA0 =
(−1)nf(0) = the product of all the zeroes of f.

(2) We have G0
geom,N = SL(n).

(3) If (−1)nf(0) = 1, then Ggeom,N = SL(n).

Proof. Assertion (3) is immediate from (1) and (2). Assertion (1) was
proven in Lemma 23.1.

It results from (1) that we have an a priori inclusion G0
geom,N ⊂

SL(n). From the hypotheses that gcd{i|Ai 6= 0} = 1 and that A0 6= 0,
it follows that N is not geometrically isomorphic to any nontrivial
multiplicative translate of itself, and hence that N is geometrically Lie-
irreducible. In other words, G0

geom,N is a connected irreducible subgroup
of SL(n).

From the hypothesis that no multiplicative translate f(λx), λ ∈ k×,

is a k
×

-multiple of the palindrome fpal(x) := xnf(1/x) of f(x), it fol-
lows that no multiplicative translate ofN is geometrically isomorphic to
its Tannakian dual N∨ = Lχ(f(1/x))(1/2)[1]. Indeed, their sets of finite
singularites are always different: the singularities of a multiplicative
translate of N are the zeros of a multiplicative translate of f , while the
singularities of N∨ are the zeroes of fpal(x) =

∑
iAn−ix

i. This implies
that N is geometrically Lie-non-self-dual, i.e., that G0

geom,N is a con-
nected irreducible subgroup of SL(n) which is not self-dual. [Indeed,
if N were geometrically Lie-self-dual, then for some prime-to-p integer
d ≥ 1, [d]?(N) would be geometrically isomorphic to its dual, namely
[d]?(N

∨). Pulling back by [d], we would get a geometric isomorphism
[d]?[d]?(N) ∼= [d]?[d]?(N

∨). But

[d]?[d]?(N) ∼=
⊕
ζ∈µd

[x 7→ ζx]?(N), [d]?[d]?(N
∨) ∼=

⊕
ζ∈µd

[x 7→ ζx]?(N∨).

Matching irreducible constituents, the term N∨ on the right must be
geometrically isomorphic to one of the terms [x 7→ ζx]?(N) on the left.]

Finally we use the fact that Lχ(f(x)) is lisse at both 0 and ∞, and
of generic rank one. So the Frobenius torus atttached to Frobssk,1 gives

us a torus Diag(x, 1, ..., 1, 1/x) in G0
geom,N . We then apply once again
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the theorem of Kostant and Zarhin [Ka-ESDE, 1.2] that the only
connected irreducible subgroups of SL(n) containing such a torus are
SO(n), Sp(n) if n is even, and SL(n). Since our G0

geom,N is not self-
dual, it must be SL(n). �

Theorem 23.3. Form the object N := Lχ(f)(1/2)[1] ∈ Parith of the pre-
vious theorem. Suppose further that (−1)nf(0) = 1, so that Ggeom,N =

SL(n), and hence for some β ∈ Q`
×

, the object N0 := N ⊗ βdeg has
Ggeom,N0 = Garith,N0 = SL(n). Suppose given r ≥ 2 distinct characters
ρi of k×. Denote by Ni the object N0 ⊗ Lρi. Then the object ⊕iNi has

Ggeom,⊕iNi = Garith,⊕iNi =
∏
i

SL(n).

Proof. In view of the a priori inclusions

Ggeom,⊕iNi ⊂ Garith,⊕iNi ⊂
∏
i

SL(n),

it suffices to show that Ggeom,⊕iNi =
∏

i SL(n). By Goursat-Kolchin-
Ribet, we must show that for i 6= j, Ni is not geometrically isomorphic
to either Nj ?mid L or to N∨j ?mid L for any one-dimensional object L.
For such an isomorphism to exist, L must be of finite order dividing
n, because both Ni and Nj have trivial determinant. Hence L must
be punctual, some δa. So we must show that Ni is not geometrically
isomorphic to any multiplicative translate of either Nj or N∨j . But the
local monodromy at 0 of Ni is Lρi , while the local monodromy at 0 of
any multiplicative translate of either Nj or N∨j is Lρj . �

Remark 23.4. Given a monic polynomial f(x) =
∑
Aix

i ∈ k[x] of
degree n ≥ 3 with f(0) 6= 0, which is not a polynomial in xd for any
divisor d ≥ 2 of n, how can we decide if no multiplicative translate of

f(x) is a k
×

-multiple of its palindrome fpal(x)? [We must exclude n =
2, because for f(x) = x2 +ax+b with b 6= 0, we have f(bx) = bfpal(x).]
For n ≥ 3, an obvious sufficient condition is that f be “monomially
nonpalindromic,” i.e., there exists some index i with 0 < i < n such
that Ai 6= 0 but An−i = 0, for then different monomials occur in fpal

than in any multiplicative translate of f . For n ≥ 3, such monomially
nonpalindromic f exist, e.g., xn+x+1. In general, we have the following
generic result, whose statement is due to Antonio Rojas-León.

Lemma 23.5. In the space An−1 × Gm × Gm of polynomials of de-
gree n ≥ 3 with A0An invertible, the condition that no multiplicative
translate of f(x) be proportional to fpal(x) defines an open dense set.
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Proof. We have already seen that this set is nonempty, as it contains
xn+x+1. So it suffices to see that its complement is closed. The idea is
simple. If the zeroes of f are α1, ..., αn, then the zeroes of fpal are their
inverses 1/α1, ..., 1/αn. Suppose there is some λ such that f(λx) has
zeroes 1/α1, ..., 1/αn. The zeroes of f(λx) are the αi/λ, so these are a
permutation of the 1/αi. In particular, α1/λ = 1/αj for some j. Thus
λ is among the roots of the degree n2 polynomial

∏
i,j=1...,n(x− αiαj).

Now in general, given two polynomials f(x) =
∑n

i=0 Aix
i and g(x) =∑n

i=0Bix
i with AnBn invertible, having roots αi’s and βj’s respectively,

the degree n2 polynomial

{f, g} :=
∏

i,j=1...,n

(x− αiβj)

has coefficients which are universal polynomials in the Ai/An and the
Bj/Bn. This is most easily seen by thinking of the tensor product of
the corresponding “companion matrices.” In other words, view (1/An)f
(resp. (1/Bn)g) as the characteristic polynomial of multiplication by x
on Vf := k[x]/(f(x)) (resp. of multiplication by y on Vg := k[y]/(g(y))).
Then {f, g} is the characteristic polynomial of their tensor product,
multiplication by xy on Vf ⊗k Vg ∼= k[x, y]/(f(x), g(y)).

If some multiplicative translate of f(x) is proportional to fpal(x),
the factor of proportionality must be A0/An, as one sees by comparing
constant terms, and the translate must be by a zero of {f, f}. So the
condition that some multiplicative translate of f(x) be proportional to
fpal(x) is that the polynomial∏

roots λ of {f,f}

(f(λx)− (A0/An)fpal(x))

vanish identically. As {f, f} is monic, with coefficients which are poly-
nomials in the Ai/An, this displayed product polynomial itself has co-
efficients in this same ring, so its vanishing identically is defined by the
vanishing of its n2 coefficients, which are each regular functions on our
space An−1 ×Gm ×Gm. �

Corollary 23.6. In the space An−1 × Gm of monic polynomials of
degree n ≥ 3 with A0 invertible and An = 1, the condition that no
multiplicative translate of f(x) be proportional to fpal(x) defines an
open dense set.

Proof. Just as in the proof of Lemma 23.5, the set is nonempty, because
it contains xn + x+ 1. Its complement is closed, being the intersection
with An = 1 of the closed complement in the proof of Lemma 23.5. �



CHAPTER 24

An O(2n) Example

In this chapter, we work over a finite field k of odd characteristic.
Fix an even integer 2n ≥ 4 and a monic polynomial f(x) ∈ k[x] of
degree 2n, f(x) =

∑2n
i=0 Aix

i, A2n = 1. We make the following three
assumptions about f .

(1) f has 2n distinct roots in k, and A0 = −1.
(2) gcd{i|Ai 6= 0} = 1.
(3) f is antipalindromic, i.e., for fpal(x) := x2nf(1/x), we have

fpal(x) = −f(x).

Theorem 24.1. For χ2 the quadratic character of k×, form the object
N := Lχ2(f)(1/2)[1] ∈ Parith. We have the following results.

(1) Ggeom,N = O(2n).
(2) Choose a nontrivial additive character ψ of k, and define

α := (−1/
√

#k)
∑
x∈k×

ψ(x)χ2(x),

the normalized Gauss sum. Then for the constant-field twisted
object Nα := αdeg ⊗N we have

Ggeom,Nα = Garith,Nα = O(2n).

(3) If −1 is a square in k, then Ggeom,N = Garith,N = O(2n).

Proof. (3) is a special case of (2), simply because α = ±1 when −1 is a
square in k. And (1) results from (2), since N and Nα are geometrically
isomorphic. To prove (2), we argue as follows. The complex conjugate
of α is χ2(−1)α. This, together with the fact that f is antipalindromic,
shows that Nα is arithmetically self-dual. As Nα is irreducible, the
duality is either symplectic or orthogonal. So either we have

Ggeom,Nα ⊂ Garith,Nα ⊂ O(2n)

or we have

Ggeom,Nα ⊂ Garith,Nα ⊂ Sp(2n).

The second case is impossible, because by Lemma 23.1, the deter-
minant of N (and so also the determinant of Nα) is geometrically δ−1,
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so we cannot have Ggeom,Nα ⊂ Sp(2n). Therefore the duality is orthog-
onal. Just as in the proof of Theorem 23.2, hypothesis (2) on f implies
that Nα is geometrically Lie-irreducible. The Frobenius torus argument
of Theorem 23.2 then shows that G0

geom,Nα
must be SO(2n). But the

determinant of Nα is geometrically nontrivial, so from the inclusions

SO(2n) = G0
geom,Nα ⊂ Ggeom,Nα ⊂ Garith,Nα ⊂ O(2n)

we infer (2). �

Remark 24.2. A monic antipalindromic polynomial of degree 2n over
a field k of odd characteristic can be written uniquely as xn(P (x) −
P (1/x)) with P (x) a monic polynomial of degree n with vanishing
constant term. In this way, the space MonicAntipal2n of monic an-
tipalindromic polynomials of degree 2n becomes the affine space An−1.
In MonicAntipal2n, the condition of having 2n distinct roots, i.e., of
having an invertible discriminant, defines an open dense set. Indeed,
the set is obviously open, so it suffices to observe that it is nonempty.
If 2n− 1 is invertible in k, then the polynomial x2n +x2n−1−x− 1 has
all distinct roots (as it is (x+ 1)(x2n−1− 1)). If If 2n is invertible in k,
then x2n − 1 has all distinct roots.



CHAPTER 25

G2 Examples: the Overall Strategy

In this and the next two chapters, we fix, for each prime p, a prime

` 6= p and a choice of nontrivial Q`
×

-valued additive character ψ of
the prime field Fp. Given a finite extension field k/Fp, we take as
nontrivial additive character of k the composition ψk := ψ ◦ Trk/Fp ,
whenever a nontrivial additive character of k is (implicitly or explicitly)
called for (for instance in the definition of a Kloosterman sheaf, or of a
hypergeometric sheaf, on Gm/k). Given a finite field k of characteristic
p, and a (possibly trivial) multiplicative character χ of k× which, if p
is odd, is not the quadratic character χ2, we form the following lisse
sheaf F(χ, k) on Gm/k. If p = 2, we take the Tate-twisted Kloosterman
sheaf of rank seven

F(χ, k) := Kl(1,1,1, χ, χ, χ, χ)(3).

If p is odd, we take the “Gauss sum twisted” hypergeometric sheaf of
type (7, 1)

F(χ, k) := (A−7)deg ⊗H(1,1,1, χ, χ, χ, χ;χ2),

with A the negative of the quadratic Gauss sum:

A := −
∑
x∈k×

χ2(x)ψk(x).

It is proven in [Ka-G2Hyper, 9.1] that each of these lisse sheaves
is pure of weight zero, orthogonally self-dual, and has Ggeom = Garith =
G2 (with G2 seen as a subgroup of SO(7) via G2’s irreducible seven-
dimensional representation).

We think of this result in the following way: for #k large, and χ
fixed, the semisimplifications of the #k× Frobenius conjugacy classes
{Froba,k|F(χ, k)}a∈k× attached to the lisse sheaf F(χ, k) at the points
a ∈ k× are approximately equidistributed in the space of conjugacy
classes of the compact group UG2, the compact form of G2. What we
would like to prove (but cannot, at present) is that, for #k large, if
we fix a point a ∈ k×, the semisimplifications of the ( #k×, if p = 2,
#k× − 1 if p is odd) Frobenius conjugacy classes {Froba,k|F(χ, k)}χ
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indexed by the characters χ of k× (with χ 6= χ2 when p is odd) are
approximately equidistributed in the space of conjugacy classes of UG2.

Recall that in UG2, conjugacy classes are determined by their char-
acteristic polynomials in the irreducible seven-dimensional representa-
tion. This holds because the two fundamental representations of G2

are Vω1 = std7, the irreducible seven-dimensional representation, and
Vω2 = Lie(G2), the adjoint representation. One knows that

Λ2(std7) = std7 ⊕ Lie(G2),

and hence knowing the characteristic polyomial of an element of UG2

determines its trace in both Vω1 = std7 and Vω2 = Λ2(std7)− std7, and
hence in every irreducible representation of UG2. By Peter-Weyl, these
traces determine the conjugacy class of the element.

Our main work will be to construct, for each finite field k and each
element a ∈ k×, an object N(a, k) ∈ Parith on Gm/k with the following
properties.

(1) (extension of scalars): Given a ∈ k×, and a finite extension
field E/k, the pullback of N(a, k) from Gm/k to Gm/E is the
object N(a,E) on Gm/E constructed by viewing a as lying in
E.

(2) N(a, k) is geometrically Lie-irreducible of “dimension” seven,
pure of weight zero, and orthogonally self-dual. It has no bad
characters.

(3) For any character χ of k× (with χ 6= χ2 if p is odd), form the
lisse sheaf F(χ, k) on Gm/k. Then we have the equality of
characteristic polynomials

det(1− TFrobk,χ|ω(N(a, k))) = det(1− TFroba,k|F(χ, k)).

If we grant the existence of such objects N(a, k), we get the follow-
ing theorem.

Theorem 25.1. Suppose we have objects N(a, k) as above. Then “with
probability one,” N(a, k) has Ggeom = Garith = G2. More precisely, in
any sequence of finite fields ki (possibly of different characteristics) with
#ki →∞, the fractions

#{ai ∈ k×i |N(ai, ki) has Ggeom = Garith = G2}
#k×i

tend archimedeanly to 1.

Proof. We will prove this in a series of lemmas.
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Lemma 25.2. Fix a finite field k of characteristic denoted p, and an
element a ∈ k×. We have the following results concerning the groups
Ggeom and Garith for N(a, k) on Gm/k.

(1) We have Ggeom = Garith ⊂ SO(7).
(2) Either Garith = G2, or Garith is the image of SL(2) in its irre-

ducible representation V7 := Sym6(std2) of dimension seven.

Proof. Because N(a, k) is orthogonally self-dual, we have Ggeom ⊂
Garith ⊂ O(7). Thus “ det ”(N(a, k)) has order dividing 2, so is ei-
ther δ1 or (−1)deg ⊗ δ1, or, if p is odd, possibly δ−1 or (−1)deg ⊗ δ−1.

We first show that “ det ”(N(a, k)) is δ1. This will result from the
identity

det(1− TFrobE,ρ|ω(N(a, k))) = det(1− TFroba,E|F(ρ, E)),

valid for every finite extension E/k and every character ρ of E× (except
χ2, if p is odd), together with the fact that each such Froba,E|F(ρ, E)
lies in G2 ⊂ SO(7), so has determinant 1. Thus each such

det(FrobE,ρ|ω(N(a, k))) = 1.

If p = 2, and more generally if “ det ”(N(a, k)) is geometrically triv-
ial, take E = k and ρ = 1 to eliminate the (−1)deg ⊗ δ1 possi-
bility. If p is odd, then over any sufficiently large extension field
E of k (#E > 4 is big enough) there is a character ρ 6= χ2 with
ρ(−1) = −1. Taking deg(E/k) to be of variable parity, the fact that
det(FrobE,ρ|ω(N(a, k))) = 1 eliminates both the δ−1 and (−1)deg⊗ δ−1

possibilities. Thus we have Ggeom ⊂ Garith ⊂ SO(7).
Because N(a, k) is geometrically Lie-irreducible, the identity com-

ponent G0
geom is an irreducible subgroup of SO(7). By Gabber’s the-

orem on prime-dimensional representations [Ka-ESDE, 1.6], the only
irreducible connected subgroups of SO(7) are SO(7) itself, or G2 in its
seven-dimensional irreducible representation, or the image SL(2)/± 1
of SL(2) in V7 := Sym6(std2). Each of these groups is its own normal-
izer in SO(7) (because for each of these groups, every automorphism
is inner, and the ambient group SO(7) contains no nontrivial scalars).
Therefore Garith, which lies in SO(7) and normalizes Ggeom and conse-
quently normalizes G0

geom, must be this same group. Thus we have

G0
geom = Ggeom = Garith,

and Garith is either SO(7) or G2 or the image SL(2)/± 1 of SL(2) in
V7 := Sym6(std2).

Because N(a, k) in Parith is geometrically (and hence arithmeti-
cally) irreducible, and pure of weight zero, the equality Ggeom = Garith

implies (Theorem 1.1) the equidistribution of the Frobenius conjugacy
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classes in the space of conjugacy classes of a compact form K of Garith.
We now show that Garith is not SO(7). We argue by contradiction. If
Garith were SO(7), then K would be SO(7,R) for the Euclidean inner
product, its traces would fill the interval [−5, 7], and the set

{g ∈ K|Tr(g) < −4}
would be an open set of positive measure. Therefore for large exten-
sion fields E/k, there would exist, by equidistribution, characters ρ of
E× (with ρ 6= χ2 if p is odd) with Trace(FrobE,ρ|ω(N(a, k))) < −4.
But we have Trace(FrobE,ρ|ω(N(a, k))) = Trace(Froba,E|F(ρ, E)). As
noted above, Froba,E|F(ρ, E) has its semisimplification in UG2, and
one knows [Ka-NotesG2, 5.5] that the traces of elements of UG2 in its
seven-dimensional irreducible representation lie in the interval [−2, 7].

So the only two possibilities for Garith are G2 or the image of SL(2)
in V7 := Sym6(std2). In the second case, K is the image of SU(2) in
V7 := Sym6(std2). �

We next give a property of the elements in the image of SL(2) in
V7 := Sym6(std2) which can be used to show that certain elements of
G2 (acting in std7) do not lie in this image.

Lemma 25.3. Given an element g ∈ GL(7), denote by (ug, vg) ∈ A2

the point
(ug, vg) := (Trace(g),Trace(g2)).

Denote by R[U, V ] ∈ Z[U, V ] the two-variable polynomial

R[U, V ] := 8U3−4U4−4U5 +U6 +4U2V −3U4V −4UV 2 +3U2V 2−V 3.

We have the following results.

(1) For any γ ∈ SL(2,C), with image g := Sym6(γ) ∈ SO(V7),
we have

R[ug, vg] = 0.

(2) There exist elements g in G2(C) ⊂ SO(7) for which

R[ug, vg] 6= 0.

(3) In the space UG#
2 of conjugacy classes of UG2, the set of points

{g ∈ UG#
2 |R[ug, vg] = 0} is a closed set of (Haar) measure

zero.

Proof. (1) Given γ ∈ SL(2,C), denote by x and 1/x its eigenvalues,
and by t := x2 + 1/x2 the trace of its square. The eigenvalues of g :=
Sym6(γ) are x6, x4, x2, 1, 1/x2, 1/x4, 1/x6. In terms of t = x2 + 1/x2,
we have

Trace(g) = 1 + t+ (t2 − 2) + (t3 − 3t) = −1− 2t+ t2 + t3 := f(t).
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The trace of (γ2)2 is t2 − 2, so we have

Trace(g2) = f(t2 − 2) = −1 + 6t2 − 5t4 + t6.

The resultant of the two polynomials in t given by

f(t)− U, f(t2 − 2)− V,

is, according to Mathematica, R[U, V ]. Or one verifies by direct sub-
stitution that R[f(t), f(t2 − 2)] = 0.

(2) Denote by ζ3 ∈ C a primitive cube root of unity.There is an
element g of G2 with eigenvalues 1, ζ3, ζ3, ζ3, ζ3, ζ3, ζ3. For this element,
we have Trace(g) = Trace(g2) = −2, and one checks that R[−2,−2] =
216.

(3) It suffices to show that in the maximal torus UT of UG2, the
locus R[ug, vg] = 0 has measure zero for Haar measure on UT , since the
Herman Weyl measure on UT (i.e., the Weyl group-invariant measure

on UT which induces (the direct image of) Haar measure on UG#
2
∼=

UT/W ) is absolutely continuous with respect to Haar measure. The
function R[ug, vg] on UT ∼= S1 × S1 is a trigonometric polynomial, so
it is either identically zero or its zero locus has measure zero. By part
(2), it is not identically zero. �

Lemma 25.4. Let k be a finite field of characteristic denoted p, a ∈
k× an element. Suppose there exists a character χ of k×, χ 6= χ2 if
p 6= 2, such that the element θa,k := (Froba,k|F(χ, k))ss ∈ UG#

2 has
R[uθa,k , vθa,k ] 6= 0. Then N(a, k) has Ggeom = Garith = G2.

Proof. In view of the identity

det(1− TFrobk,χ|ω(N(a, k))) = det(1− TFroba,k|F(χ, k)),

we see that θa,k is equal to (Frobk,χ|ω(N(a, k))ss. In view of Lemma

25.3, this element in UG#
2 is not of the form Sym6(γ) for any element

γ ∈ SU(2)#. This rules out the possibility that Ggeom = Garith is the
image of SL(2) in Sym6(stdd), and the result now follows from Lemma
25.2. �

Lemma 25.5. Let k be a finite field, F a lisse sheaf of rank seven
on Gm/k which is pure of weight zero, orthogonally self-dual, and with
Ggeom = Garith = G2. Denote by α ∈ R≥0 (resp. β ∈ R≥0) the
largest slope of F at 0 (resp. ∞). Then for any irreducible nontrivial
representation Λ of G2, we have the estimate

|
∑
a∈k×

Trace(Λ(Froba,k))| ≤ (α + β) dim(Λ)
√

#k.
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Proof. Consider the lisse sheaf Λ(F) of rank dim(Λ) obtained by “push-
ing out” F by Λ. By the Lefschetz Trace formula [Gr-Rat] and the
vanishing of H2

c (Gm/k,Λ(F)), we have∑
a∈k×

Trace(Λ(Froba,k)) = −Trace(Frobk|H1
c (Gm/k,Λ(F))).

By the Euler-Poincaré formula, we have

dimH1
c (Gm/k,Λ(F)) = Swan0(Λ(F)) + Swan∞(Λ(F)).

By assumption, the upper numbering groups I(0)α+ and I(∞)β+ act
trivially on F , so also on Λ(F), and so α (resp. β ) are upper bounds
for the slopes of F at 0 (resp. ∞). Thus we have

Swan0(Λ(F)) ≤ α dim(Λ), Swan∞(Λ(F)) ≤ β dim(Λ).

By Deligne’s main theorem [De-Weil II, 3.3.1], applied to the pure of
weight zero lisse sheaf Λ(F), its H1

c is mixed of weight ≤ 1, and the
result follows. �

Lemma 25.6. Let ki be a sequence of finite fields whose cardinalities
qi tend to ∞. Suppose for each i we have a lisse sheaf Fi of rank
seven on Gm/ki which is pure of weight zero, orthogonally self-dual,
and with Ggeom = Garith = G2. Suppose there exist real numbers α ≥ 0
(resp. β ≥ 0) which are upper bounds for the slopes of every Fi at

0 (resp. at ∞). Let Z ⊂ UG#
2 be a closed set of measure zero (for

the induced Haar measure µ) in the space UG#
2 of conjugacy classes

of UG2. For ai ∈ k×i , denote by θai,ki ∈ UG
#
2 the Frobenius conjugacy

class (Frobai,ki |Fi)ss. Then the fractions

#{ai ∈ k×i |θai,ki ∈ Z}
#k×i

tend to 0 as #ki →∞.

Proof. Denote by χZ the characteristic function of Z. For each i, denote
by µi the probability measure on UG#

2 given by

µi := (1/(qi − 1))
∑
ai∈k×i

δθai,ki .

Then our ratios are the integrals
∫
χZdµi . Pick a real number ε > 0.

We will show that for #ki sufficiently large, we have |
∫
χZdµi| ≤ ε.

Because Z has µ measure zero, we can find an open set V with
Z ⊂ V ⊂ UG#

2 and µ(V ) ≤ ε/4. By Urysohn’s Lemma [Ru, 2.12], we
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can find a continuous R-valued function f on UG#
2 with 0 ≤ f ≤ 1,

with support in V and which is 1 on Z. Notice that

0 =

∫
χZdµ ≤

∫
fdµ ≤

∫
χV dµ ≤ ε/4.

For each i we have

0 ≤
∫
χZdµi ≤

∫
fdµi.

So it suffices to show

|
∫
fdµi| ≤ ε

for #ki sufficiently large.
By Peter-Weyl, we can find a finite linear combination of traces of

irreducible representations Λ0 = 1,Λ1, ...,Λn which is uniformly within
ε/4 of f , say

Supθ|f(θ)− a0 −
n∑
j=1

ajTrace(Λj(θ))| ≤ ε/4.

Then for every i we have

|
∫
fdµi −

∫
(a0 +

n∑
j=1

ajTrace(Λj(θ)))dµi| ≤ ε/4.

This same estimate holds for µ as well. We have seen that 0 ≤
∫
fdµ ≤

ε/4, and hence we have

|
∫

(a0 +
n∑
j=1

ajTrace(Λj(θ)))dµ| ≤ ε/2.

But in this integral, only the constant term survives, so we get

|a0| ≤ ε/2.

Now let A := Supj|aj|. It follows from the previous lemma, applied
separately to each of the finitely many Λj, that for qi := #ki sufficiently
large,1 we will have ∫

Trace(Λj(θ))dµi ≤ ε/(4An).

Then we get

|
∫ n∑

j=1

ajTrace(Λj(θ))dµ| ≤ ε/4.

1The exact condition is that qi be large enough that we have the inequalities
(α+ β) dim(Λj)

√
qi/(qi − 1) ≤ ε/(4An) for j = 1, ..., n.
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Thus from the above inequality

|
∫
fdµi −

∫
(a0 +

n∑
j=1

ajTrace(Λj(θ)))dµi| ≤ ε/4

we see that

|
∫
fdµi| ≤ ε

for #ki sufficiently large. �

Lemma 25.7. Let ki be a sequence of finite fields whose cardinalities
qi tend to ∞. For each i take Fi := F(1, ki) in the previous lemma.

Take for Z the closed set {g ∈ UG#
2 |R[ug, vg] = 0}. Then the fractions

#{ai ∈ k×i |θai,ki ∈ Z}
#k×i

tend to 0 as #ki →∞. Equivalently, the fractions

#{ai ∈ k×i |R[uθai,ki .vθai,ki ] 6= 0}
#k×i

tend to 1 as #ki →∞.

Proof. Indeed the sheaves Fi are all tame at 0, and their ∞-slopes are
either all 1/7, in characteristic 2, or they are 0 and six repetitions of
1/6. So we may take α = 0 and β = 1/6 in the previous lemma. �

Combining this last lemma with Lemma 25.4, we see that Theorem
25.1 holds. �

Remark 25.8. It seems plausible that every N(a, k) has Ggeom =
Garith = G2. Computer calculations show that this is the case if k = Fp
with p ≤ 100, for every a ∈ F×p . Indeed, for these pairs (a, k), the

element θa,k := (Froba,k|F(1, k))ss ∈ UG#
2 has R[uθa,k , vθa,k ] 6= 0. [The

skeptical reader will correctly object that we are merely avoiding a set
of measure zero, namely R[ug, vg] = 0, hence these calculations are no
evidence at all that every N(a, k) has Ggeom = Garith = G2.]



CHAPTER 26

G2 Examples: Construction in Characteristic Two

We treat the case of characteristic two separately because it is some-
what simpler than the case of odd characteristic. Recall from the first
paragraph of the previous chapter that for k a finite field of character-
istic 2, and any character χ of k×, the Tate-twisted Kloosterman sheaf
of rank seven

F(χ, k) := Kl(1,1,1, χ, χ, χ, χ)(3)

has Ggeom = Garith = G2. Our first task is to express its stalk at a fixed
point a ∈ k× as the finite field Mellin transform of the desired object
N(a, k).

We abbreviate

Kl2 := Kl(1,1), Kl3 = Kl(1,1,1).

Lemma 26.1. For a finite extension k/F2, and for a ∈ k×, consider
the lisse perverse sheaf on Gm × Gm/k, with coordinates (z, t), given
by

M =M(z, t) := Kl3(a/(z2t))⊗Kl2(z)⊗Kl2(zt)(3)[2].

Then we have the following results.

(1) The object N(a, k) := R(pr2)!M on Gm/k is perverse, of the
form Na[1] for a sheaf Na.

(2) Denote by π : (Gm)3 → Gm the multiplication map (x, y, z) 7→
xyz. Given a character χ of k×, consider the lisse perverse
sheaf on (Gm)3 with coordinates x, y, z given by

Kχ := Kl3(x)⊗Kl2(y)⊗ Lχ(y) ⊗Kl2(z)⊗ Lχ(z)(3)[3].

We have an isomorphism of perverse sheaves on Gm/k,

F(χ, k)[1] ∼= Rπ!Kχ.

(3) For any character χ of k×, we have H0
c (Gm/k,N(a, k)⊗Lχ) ∼=

F(χ, k)a as Frobk-module, and H i
c(Gm/k,N(a, k) ⊗ Lχ) = 0

for i 6= 0.
(4) The object N(a, k) on Gm/k is pure of weight zero, lies in
Parith, has no bad characters, and is totally wild at both 0 and
∞.
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Proof. (1) The Verdier dual of M is

M := Kl3(−a/(z2t))⊗Kl2(z)⊗Kl2(zt)(3)[2].

But in characteristic 2, this is just M. So the Verdier dual of N(a, k)
is R(pr2)?M. Because pr2 is an affine morphism, and M is perverse,
R(pr2)?M is semiperverse. So to show that N(a, k) is perverse, it
suffices to show that it is semiperverse, i.e., that for all but at most

finitely many values of t0 ∈ k
×

, we have

H2
c (Gm/k,Kl3(a/(z2t0))⊗Kl2(z)⊗Kl2(zt0)) = 0.

In fact, this H2
c vanishes for all to, because for each t0 6= 0, the coef-

ficient sheaf is totally wildly ramified at z = 0 (from the Kl3(a/(z2t0)
factor, the other two factors being tame at z = 0). Thus N(a, k)[−1]
is a single sheaf, which we name Na.

(2) This is simply the expression of the Kloosterman sheaf F(χ, k)
as an iterated ! multiplicative convolution [Ka-GKM, 5.4,5.5], taking
into account the isomorphisms Kl2(χ, χ) ∼= Kl2 ⊗Lχ and Kl2(χ, χ) ∼=
Kl2 ⊗ Lχ [Ka-ESDE, 8.2.5].

(3) If we make the substitutions x = w/(z2t), y = zt, z = z, then,
using the identity χ(zt)χ(z) = χ(t), Kχ becomes

Kχ = Kl3(w/(z2t))⊗Kl2(y)⊗ Lχ(t) ⊗Kl2(z)(3)[3].

The restriction of Kχ[−1] to the locus w = a, which we view as being
Gm × Gm with coordinates z, t, is just M ⊗ pr?2(Lχ). So from the
isomorphism F(χ, k)[1] ∼= Rπ!Kχ of part (2), and proper base change,
we get

F(χ, k)a = RΓc(G2
m/k,M⊗ pr?2(Lχ)).

This last term is just RΓc(Gm/k,N(a, k)⊗Lχ), by Leray and the pro-
jection formula.

(4) For E/k a finite field extension, and t0 ∈ E×, the stalk of Na
at t0 is (by proper base change)

H1
c (Gm/k,Kl3(a/(z2t0))⊗Kl2(z)⊗Kl2(zt0)(3)).

As already noted, the coefficient sheaf is totally wildly ramified at
z = 0.

We first claim that for t0 6= 1, the coefficient sheaf is also totally
wildly ramified at z =∞. As the first factor Kl3(a/(z2t0)) is tame, in
fact unipotent, at z =∞, we must show thatKl2(z)⊗Kl2(zt0) is totally
wild at z =∞, so long as t0 6= 1. As I(∞)-representations, Kl2(z) and
its translate Kl2(zt0) are both irreducible, so their tensor product is
I(∞)-semisimple. In addition, both are I(∞)-self-dual and of trivial
determinant. We argue by contradiction. If Kl2(z) ⊗ Kl2(zt0) is not
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totally wild, then it contains some tame character Lχ as a summand,
and hence we have an I(∞)-isomorphism

Kl2(zt0) ∼= Kl2(z)⊗ Lχ.

Taking determinants, we infer that χ2 = 1. As p = 2, this forces
χ = 1. But the isomorphism class of Kl2(z) as I(∞)-representation
detects nontrivial translations, hence t0 = 1, contradiction.

For any t0 6= 0, Kl3(a/(z2t0)) has Swan0 = 1 (because p = 2).
Hence the coefficient sheafKl3(a/(z2t0))⊗Kl2(z)⊗Kl2(zt0) has Swan0 =
4.

We next show that the Swan conductor at ∞ of Kl2(z)⊗Kl2(zt0),
for t0 6= 1, is 2. To see this, we argue as follows. Both Kl2(z) and
its translate Kl2(zt0) have both ∞-slopes 1/2, so the four ∞-slopes of
Kl2(z)⊗Kl2(zt0) are each ≤ 1/2, and each > 0 (by the total wildness).
Taking into account the Hasse-Arf theorem, that the multiplicity of
any slope is a multiple of its denominator, the only possible slopes
are 1/2 or 1/3 or 1/4. No slope can be 1/3, for then there would
be 3 slopes 1/3, and the remaining slope would be an integer. So
either we have all slopes 1/2, or we have all slopes 1/4. We argue
by contradiction. If we had all slopes 1/4, then Kl2(z) ⊗ Kl2(zt0)
would be a lisse sheaf on Gm which is tame at 0, and totally wild at
∞ with Swan∞ = 1. Any such sheaf is a multiplicative translate of a
Kloosterman sheaf, cf. [Ka-GKM, 8.7.1]. The local monodromy at 0
is Unip(2)⊗Unip(2) ∼= Unip(3)⊕Unip(1), but the only Kloosterman
sheaves which are unipotent at 0 have their local monodromy at 0 a
single Jordan block.

Hence the coefficient sheaf Kl3(a/(z2t0)) ⊗ Kl2(z) ⊗ Kl2(zt0) has
Swan∞ = 6, for t0 6= 1.ThusNa|Gm\{1} is lisse of rank 10 (by Deligne’s
semicontinuity theorem [Lau-SCCS, 2.1.2]) and pure of weight −1.

We next claim that Na on Gm is a middle extension, i.e., that for
j1 : Gm \ {1} ⊂ Gm the inclusion, we have Na ∼= j1?j

?
1Na. To see

this, recall that N(a, k) = Na[1] is perverse, so the adjunction map is
injective: Na ⊂ j1?j

?
1Na as sheaves. So we have a short exact sequence

of sheaves with a punctual third term supported at 1, say

0→ Na → j1?j
?
1Na → δ1 ⊗ V → 0,

with V a Gal(k/k)-module. Because Na|Gm \ {1} is lisse and pure
of weight −1 (in fact, we only “need” that it is lisse and mixed of
weight ≤ −1), V is mixed of weight ≤ −1, cf. [De-Weil II, 1.8.1]. In
the long exact cohomology sequence with compact supports, the group
H0
c (Gm/k, j1?j

?
1Na) = 0 (as the sheaf j1?j

?
1Na has no nonzero punctual

sections), so we get an injection V ⊂ H1
c (Gm/k,Na). By part (3), this
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last group is the stalk F(1, k)a, which is pure of weight 0. Therefore
V = 0.

Therefore N(a, k) = Na[1] is the middle extension from Gm \ {1}
of a (lisse) perverse sheaf which is pure of weight 0, hence is itself
pure of weight 0. The isomorphism of part (3), applied also to all
extensions of scalars N(a,E), shows that for any finite extension field
E/k, and for any character χ of E×, the group H1

c (Gm/k,Na ⊗Lχ) ∼=
F(χ,E)a is pure of weight 0, and the H2

c vanishes. Therefore N(a, k)
has, geometrically, no quotient which is a Kummer sheaf Lχ[1]. But as
N(a, k) is pure, it is geometrically semisimple, so it has, geometrically,
no Kummer subsheaf either. Hence N(a, k) lies in Parith. By Theorem
4.1, the purity of H1

c (Gm/k,Na ⊗Lχ) for every χ implies that N(a, k)
has no bad characters, which, as already noted, is equivalent to the
fact that Na is totally wild at both 0 and ∞. �

It remains to show that the object N(a, k) we have constructed
in characteristic 2 is orthogonally self-dual, of “dimension” seven, and
geometrically Lie-irreducible. That it is of “dimension” seven is obvious
from part (3) of the previous lemma, applied with any one choice of χ.
We next show that N(a, k) is self-dual as an object of Parith.

Lemma 26.2. We have the following results.

(1) The object N(a, k) is isomorphic to its pullback by multiplica-
tive inversion t 7→ 1/t on Gm.

(2) The object N(a, k) is isomorphic to its Verdier dual D(N(a, k)).
(3) As an object in the Tannakian category Parith, N(a, k) is self-

dual.

Proof. Assertion (3) is immediate from (1) and (2), since N(a, k)∨ ∼=
[t 7→ 1/t]?D(N(a, k)).

Assertion (1) is obvious from the definition of N(a, k) given in part
(1) of the previous lemma, by the change of variable z 7→ z/t, t 7→ t in
the sheafM := Kl3(a/(z2t))⊗Kl2(z)⊗Kl2(zt)(3)[2] on Gm×Gm. It
remains to show (2), that N(a, k) is its own Verdier dual. It suffices to
show that this holds over the open set Gm \{1}, since middle extension
of perverse sheaves from Gm\{1} to Gm commutes with Verdier duality.
On Gm×Gm, the coefficient sheafM is self-dual (remember we are in
characteristic 2, soKl3(1) is self-dual), so the Verdier dual ofN(a, k) :=
R(pr2)!M is R(pr2)?M. It suffices to show that the canonical “forget
supports” map

R(pr2)!M→ R(pr2)?M
is an isomorphism over Gm \ {1}. As we have seen in the proof of
the previous lemma, R(pr2)!M is lisse over Gm \ {1}. Therefore its
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Verdier dual, R(pr2)?M, is also lisse over Gm \ {1}, and its formation
is compatible with arbitrary change of base on Gm\{1}. So to show that
the “forget supports” map is an isomorphism over Gm \ {1}, it suffices
to check point by point in Gm\{1}. We have already observed that over
any point t0 ∈ Gm \ {1}, the restriction of M(−3)[−2] to that fibre,
namely the lisse sheaf Kl3(a/(z2t0))⊗Kl2(z)⊗Kl2(zt0), is totally wild
at both 0 and ∞, and hence we have the desired isomorphism Hc

∼= H
of its cohomology groups. �

Although the “dimension” of N(a, k) is odd, namely seven, we do
not yet know that N(a, k) is irreducible, much less that it is geometri-
cally Lie-irreducible. So we cannot assert that the autoduality we have
shown N(a, k) to admit is necessarily orthogonal (or indeed that it has
a sign at all). To clarify this question, we need information on the local
monodromy of the sheaf Na = N(a, k)[−1] at the point 1.

Lemma 26.3. We have the following results.

(1) The stalk

(Na(−3))1 = H1
c (Gm/k,Kl3(a/z2)⊗Kl2(z)⊗Kl2(z))

has rank seven. It has six Frobenius eigenvalues of weight 5,
and one Frobenius eigenvalue of weight 2.

(2) As I(1)-representation, Na is Unip(1)6 ⊕ Unip(4).
(3) The sheaf Na is totally wild at both 0 and ∞, with Swan0 =

Swan∞ = 2.

Proof. (1) Because we are in characteristic 2, we have the Carlitz iso-
morphism

Kl2(z)⊗Kl2(z) ∼= Q`(−1)⊕Kl3(z),

cf. [Ka-ClausCar, 3.1]. So our coefficient sheaf is

Kl3(a/z2)(−1)
⊕

Kl3(a/z2)⊗Kl3(z).

Because we are in characteristic two, the map z 7→ a/z2 is radicial and
bijective, so we have

H1
c (Gm/k,Kl3(a/z2)(−1)) ∼= H1

c (Gm/k,Kl3(z)(−1)) = Q`(−1),

the last equality by Mellin inversion, cf. [Ka-GKM, 4.0]. This is the
eigenvalue of weight 2. The sheaf Kl3(a/z2) ⊗ Kl3(z) is lisse on Gm,
pure of weight 4, totally wild at both 0 and ∞ with all slopes 1/3
(remember we are in characteristic 2, so Kl3(a/z2) still has its I(0)-
representation totally wild with Swan conductor 1, rather than the 2
it would be in odd characteristic). So Swan0 = Swan∞ = 3, and the
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cohomology group H1
c (Gm/k,Kl3(a/z2) ⊗ KL3(z)) has dimension six

and is pure of weight 5.
(2) Since Na(−3) is the middle extension across 1 of a lisse sheaf

on Gm \ {1} which is pure of weight 5, the weights of the Frobenius
eigenvalues on the space of I(1)-invariants tell us that the unipotent
part of the I(1)-representation is precisely Unip(1)6 ⊕ Unip(4), cf.
[De-Weil II, 1.8.4 and 1.7.14.2-3] or [Ka-GKM, 7.0.7]. As this lisse
sheaf Na|Gm \ {1} has rank 10, there is room for nothing more in its
I(1)-representation.

(3) From the fact that N(a, k) has no bad chararcters, we know
that Na is totally wild at both 0 and ∞. From its invariance under
t 7→ 1/t, we know that Swan0 = Swan∞. Because Na is lisse outside
1 and unipotent (hence tame) there, we have the equation

Swan0(Na) + Swan∞(Na) + drop1(Na) = “ dim ”(N(a, k)) = 7.

But drop1 = 3, so Swan0 + Swan∞ = 4. As Swan0 = Swan∞, we are
done. �

Lemma 26.4. The object N(a, k) is geometrically Lie-irreducible, and
orthogonally self-dual.

Proof. It suffices to prove the first statement, since N(a, k) is self-dual
and of “dimension” seven. It suffices to show that N(a, k) is geomet-
rically irreducible, since it has a unique singularity, namely 1, in Gm,
so cannot be geometrically isomorphic to any nontrivial multiplicative
translate of itself.

We argue by contradiction. Suppose we have, geometrically, a direct
sum decomposition

N(a, k) ∼= A[1]⊕ B[1].

Then both A and B must be totally wild at both 0 and ∞, so each of
the four Swan conductors (of A and B at 0 and ∞) is ≥ 1. As their
direct sum A⊕ B = Na has Swan0 = Swan∞ = 2, we must have

Swan0(A) = Swan∞(A) = 1, Swan0(B) = Swan∞(B) = 1.

Furthermore, both A and B are lisse on Gm \ {1}, and middle ex-
tensions across 1. So both A[1] an B[1] are geometrically irreducible.
Their local monodromies at 0 are both totally wild of Swan conductor
1, so detect nontrivial multiplicative translations. So each of A[1] and
B[1] is geometrically Lie-irreducible. The local monodromy at 1 of Na
is Unip(1)6 ⊕ Unip(4), so one of our summands is lisse at 1, say A at
1 is Unip(1)a, and the other is B = Unip(1)b ⊕ Unip(4). Thus A[1]
has “dimension” 2, and B[1] has “dimension” 5. As they have differ-
ent “dimensions” and are geometrically irreducible, any autoduality of
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N(a, k) must make each of the summands self-dual. For B[1], the auto-
duality must be orthogonal, since its “dimension” is odd. For A[1], the
autoduality must be symplectic, for otherwise its Ggeom lies in O(2),
which contradicts its Lie-irreducibility.

Since Ggeom is a normal subgroup of Garith, Garith must permute
the Ggeom-irreducible constituents of ω(N(a, k)). As these two con-
stituents have different dimensions, each must be Garith-stable. Thus
N(a, k) = A[1] ⊕ B[1] is an arithmetic direct sum decomposition into
irreducibles of “dimensions” 2 and 5. As N(a, k) admits an arithmetic
autoduality, this autoduality must make each summand self-dual, in
a way compatible with its geometric autoduality. Thus A[1] is sym-
plectically self-dual, and B[1] is orthogonally self-dual. So Garith,A[1] ⊂
SL(2), and Garith,B[1] ⊂ O(5). In fact, Garith,B[1] ⊂ SO(5), because
“ det ”(N(a, k)) is trivial. Indeed, by Lemma 26.1, part (3), every
Frobenius FrobE,χ of N(a, k) lies inside a G2 inside an SO(7). But
“ det ”(N(a, k)) ∼= “ det ”(A[1]) ?mid “ det ”(B[1]) ∼= “ det ”(B[1]) (this
last because “ det ”(A[1]) is trivial, as Garith,A[1] ⊂ SL(2)).

As A[1] is geometrically Lie-irreducible with its Garith,A[1] ⊂ SL(2),
G0
geom,A[1] is an irreducible connected subgroup of SL(2), so must be

SL(2), so we have

Ggeom,A[1] = Garith,A[1] = SL(2).

As B[1] is geometrically Lie-irreducible with its Garith,B[1] ⊂ SO(5),
G0
geom,B[1] is an irreducible connected subgroup of SO(5). By Gab-

ber’s theorem on prime-dimensional representations, either G0
geom,B[1] is

SO(5) or it is the image SL(2)/±1 of SL(2) in SO(5) via Sym4(std2).
Both of these groups are their own normalizers in the ambient SO(5),
so

Ggeom,B[1] = Garith,B[1] = SO(5) or Ggeom,B[1] = Garith,B[1] = SL(2)/± 1.

Now we apply Goursat’s lemma to conclude that we have one of
three possibilities. Either

Ggeom,N(a,k) = Garith,N(a,k) = SL(2)× SO(5),

or

Ggeom,N(a,k) = Garith,N(a,k) = SL(2)× SL(2)/± 1,

or

Ggeom,N(a,k) = Garith,N(a,k) = SL(2).

In this last case, SL(2) acts by the representation std2 ⊕ Sym4(std2),
i.e., this SL(2) is the subgroup of SL(2) × SL(2)/ ± 1 which is the
graph of the projection of the first factor onto the second.
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Even for this smallest group, its compact form contains elements
Diag(eiθ, e−iθ) with, e.g., θ = 3π/4, whose trace in std2 ⊕ Sym4(std2),
namely

2 cos(θ) + 1 + 2 cos(2θ) + 2 cos(4θ),

is −1 −
√

2 = −2.414... < −2.4. So in the compact form K of any
of the three possible groups Garith,N(a,k), the set “Trace < −2.4” is a
nonempty open set in the compact space K#. So by equidistribution
we will find Frobenius elements FrobE,χ for N(a, k) whose traces are
< −2.4. But each such Frobenius is, by Lemma 26.1, part (3), an
element of UG2, and so its trace lies in [−2, 7]. This contradiction
completes the proof thatN(a, k) is in fact geometrically irreducible. �

This concludes the construction of the objects N(a, k) in character-
istic 2.



CHAPTER 27

G2 Examples: Construction in Odd Characteristic

The situation in odd characteristic is complicated by the quadratic
character χ2: the ! hypergeometric sheaf of type (7, 1)

F(χ2, k) := (A−7)deg ⊗H(1,1,1, χ2, χ2, χ2, χ2;χ2),

though lisse on Gm, is not pure of weight zero, nor is its Ggeom the
group G2. One knows [Ka-ESDE, 8.4.7] that this sheaf sits in a short
exact sequence

0→ V ⊗Lχ2 → F(χ2, k)→ (A−7)deg⊗Kl(1,1,1, χ2, χ2, χ2)(−1)→ 0,

with

V := (A−7)deg ⊗H1
c (Gm/k,Kl(1,1,1, χ2, χ2, χ2)).

The rank 6 quotient (A−7)deg ⊗ Kl(1,1,1, χ2, χ2, χ2)(−1) is pure of
weight 0, and the rank one subobject V ⊗Lχ2 is pure of weight −4; in
fact Frobk|V = A−4, cf. [Ka-GKM, 4.0].

In order to construct the objects N(a, k), in odd characteristic we
will first construct an “approximation” N0(a, k) to it, then “refine” this
approximation. We abbreviate

Kl2 = Kl(1,1), H3,1 = H(1,1,1;χ2).

We have the following version of Lemma 26.1.

Lemma 27.1. For a finite extension k/Fp, p odd, and for a ∈ k×,
consider the lisse perverse sheaf on Gm×Gm/k, with coordinates (z, t),
given by

M =M(z, t) := (A−7)deg ⊗H3,1(a/(z2t))⊗Kl2(z)⊗Kl2(zt)[2].

Then we have the following results.

(1) The object N0(a, k) := R(pr2)!M on Gm/k is perverse, of the
form Ga[1] for a sheaf Ga.

(2) Denote by π : (Gm)3 → Gm the multiplication map (x, y, z) 7→
xyz. Given a character χ of k×, consider the lisse perverse
sheaf on (Gm)3 with coordinates x, y, z given by

Kχ := (A−7)deg ⊗H3,1(x)⊗Kl2(y)⊗ Lχ(y) ⊗Kl2(z)⊗ Lχ(z)[3].

163
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We have an isomorphism of perverse sheaves on Gm/k,

F(χ, k)[1] ∼= Rπ!Kχ.
(3) For any character χ of k×, we have H0

c (Gm/k,N0(a, k)⊗Lχ) ∼=
F(χ, k)a as Frobk-module, and H i

c(Gm/k,N0(a, k) ⊗ Lχ) = 0
for i 6= 0.

Proof. (1) The object M is its own Verdier dual, so exactly as in the
proof of Lemma 26.1 it suffices to show that R(pr2)!M is semiperverse,

i.e., that for all but at most finitely many values of t0 ∈ k
×

, we have

H2
c (Gm/k,H3,1(a/(z2t0))⊗Kl2(z)⊗Kl2(zt0)) = 0.

In fact, this H2
c vanishes for all t0. For t0 6= 1, the H2

c vanishes because
the coefficient sheaf is totally wild at ∞ with all slopes 1/2, from the
Kl2(z) ⊗Kl2(zt0) factor, the H3,1 factor being tame (Unip(3)) at ∞.
At t0 = 1, the coefficient sheaf is

H3,1(a/z2)⊗Kl2(z)⊗Kl2(z).

For the last two factors, we have [Ka-ClausCar, 3.5]

Kl2(z)⊗Kl2(z)(−1) ∼= Q`(−2)
⊕

Adeg ⊗H3,1(4z).

So we must show the vanishing of the H2
c with coefficients in H3,1(a/z2)

and in H3,1(a/z2)⊗H3,1(4z). The first vanishes because H3,1(a/z2) is
geometrically irreducible of rank 3. The second vanishes because both
H3,1(a/z2) andH3,1(4z) are geometrically irreducible and geometrically
self-dual, but they are not isomorphic to each other : e.g., H3,1(a/z2) is
tame at ∞, while H3,1(4z) is not (being the direct sum, geometrically,
of Lχ2 and a wild part of rank 2 with both slopes 1/2, cf. [Ka-ESDE,
8.4.11]). Thus N0(a, k)[−1] is a single sheaf, which we name Ga.

(2) Exactly as in the proof of Lemma 26.1, this is the expression
of the hypergeometric sheaf F(χ, k) as the iterated ! multiplicative
convolution (up to a shift and a twist) of Kl2(χ, χ) ∼= Kl2 ⊗ Lχ,
Kl2(χ, χ) ∼= Kl2 ⊗ Lχ, and H3,1, cf. [Ka-ESDE, 8.2].

(3) The proof is identical to that of part (3) of Lemma 26.1 if we
replace Kl3 there by H3,1, and replace the Tate twist (3) there by the
(A−7)deg twist. �

Lemma 27.2. We have the following results concerning the perverse
sheaf N0(a, k) = Ga[1].

(1) The restriction to Gm \ {1} of N0(a, k) is lisse of rank 14, and
mixed of weight ≤ 0. Its associated graded pieces for the weight
filtration have ranks

rk(gr0
WN0(a, k)) = 12, rk(gr−1

W N0(a, k)) = 1, rk(gr−3
W N0(a, k)) = 1.
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(2) The restriction to Gm\{1} of Ga is lisse of rank 14, and mixed
of weight ≤ −1. Its associated graded pieces for the weight
filtration have ranks

rk(gr−1
W Ga) = 12, rk(gr−2

W Ga) = 1, rk(gr−4
W Ga) = 1.

(3) For j1 : Gm \ {1} ⊂ Gm the inclusion, the adjunction map is
an isomorphism

Ga ∼= j1?j
?
1Ga.

Proof. (1) and (2) are equivalent. For t0 6= 1, the stalk at t0 of
(A−7)deg ⊗ Ga is the group

H1
c (Gm/k,H3,1(a/(z2t0))⊗Kl2(z)⊗Kl2(zt0)) = 0.

As already noted in the proof of the previous lemma, the coefficient
sheaf is totally wild at ∞, with all slopes 1/2 (from the Kl2(z) ⊗
Kl2(zt0) factor), so with Swan∞ = 6. At 0, the local monodromy is

(Unip(1)⊕ (tot. wild, rk = 2, slopes both 1))⊗ Unip(2)⊗ Unip(2).

We have Unip(2) ⊗ Unip(2) ∼= Unip(1) ⊕ Unip(3), so the local mon-
odromy at 0 is

= Unip(1)⊕ Unip(3)⊕ (tot. wild, rk = 8, slopes all 1).

Thus Swan0 = 8. So each stalk of Ga|Gm\{1} has rank 14, and its lisse-
ness there results from Deligne’s semicontinuity theorem [Lau-SCCS,
2.1.2].

The weight filtration of a lisse mixed sheaf on a smooth scheme, here
Gm \{1}, is a filtration by lisse subsheaves, so we can read the ranks of
the associated graded pieces at any chosen point t0 6= 1. Over such a
point, the coefficient sheaf (A−7)deg⊗H3,1(a/(z2t0))⊗Kl2(z)⊗Kl2(zt0)
on Gm is lisse, pure of weight −2, totally wild at ∞, and with the
unipotent part of its local monodromy at 0 given by Unip(1)⊕Unip(3).
So we have one weight drop of 1 and one weight drop of 3, from the
“expected” weight of −1, cf. Theorem 16.1.

(3) The proof is identical to the proof of this same statement in
characteristic 2, where it was proved in the course of proving part (4)
of Lemma 26.1. �

We can now define the desired object N(a, k) in the odd character-
istic case:

N(a, k) := gr0
WN0(a, k).

Thus we have a short exact sequence of perverse sheaves on Gm

0→ gr<0
W N0(a, k)→ N0(a, k)→ N(a, k)→ 0.
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Lemma 27.3. The perverse sheaf gr<0
W N0(a, k) is negligible, i.e., its

Euler characteristic on Gm/k vanishes.

Proof. For any perverse sheaf M on Gm/k, there are only finitely many
Kummer sheaves Lχ for which H1

c (Gm/k,M⊗Lχ) is nonzero. One sees
this by reduction to the case when M is irreducible. Then unless M
is an Lχ[1] itself, there are no such. So for general χ, we have a short
exact sequence

0→ H0
c (Gm/k, gr

<0
W N0(a, k)⊗ Lχ)→

→ H0
c (Gm/k,N0(a, k)⊗ Lχ)→ H0

c (Gm/k,N(a, k)⊗ Lχ)→ 0.

The middle H0
c is pure of weight 0 for any χ 6= χ2, whereas the first

H0
c is mixed of lower weight, so it must vanish. But for general χ all

the H1
c vanish, and in any case only H0

c and H1
c are possibly nonzero,

cf. Lemma 3.5. Hence for general χ the object gr<0
W N0(a, k) ⊗ Lχ

has vanishing cohomology on Gm/k, so in particular vanishing Euler
characteristic. But Euler characteristic on Gm/k is invariant under
tensoring with a Kummer sheaf, so gr<0

W N0(a, k) itself has vanishing
Euler characteristic. �

Lemma 27.4. For any finite extension field E/k, and any character
χ of E× with χ 6= χ2, we have the following results.

(1) The groups H i
c(Gm/k, gr

<0
W N0(a, k)⊗ Lχ) vanish for all i.

(2) The group H0
c (Gm/k,N(a, k)⊗ Lχ) has rank 7 and is pure of

weight zero, and the other H i
c(Gm/k,N(a, k)⊗ Lχ) vanish.

(3) The canonical map

H0
c (Gm/k,N0(a, k)⊗ Lχ))→ H0

c (Gm/k,N(a, k)⊗ Lχ)

is an isomorphism.
(4) There is a FrobE-isomorphism

H0
c (Gm/k,N(a, k)⊗ Lχ) ∼= F(χ,E)a.

Proof. In view of Lemma 3.5, we have, for any χ, including χ2, a six
term exact sequence

0→ H0
c (Gm/k, gr

<0
W N0(a, k)⊗ Lχ)→ H0

c (Gm/k,N0(a, k)⊗ Lχ)

→ H0
c (Gm/k,N(a, k)⊗ Lχ)→ H1

c (Gm/k, gr
<0
W N0(a, k)⊗ Lχ)

→ H1
c (Gm/k,N0(a, k)⊗ Lχ)→ H1

c (Gm/k,N(a, k)⊗ Lχ)→ 0.

By part (3) of Lemma 27.1, the fifth term vanishes, hence also the sixth
term, which (together with Lemma 3.5) gives the vanishing asserted in
part (2) for any χ. For χ 6= χ2, the second term is pure of weight
0, while the first term is mixed of lower weight, so must vanish. As



27. G2 EXAMPLES: CONSTRUCTION IN ODD CHARACTERISTIC 167

gr<0
W N0(a, k) is negligible, the fourth term consequently vanishes as

well. Parts (1), (2), and (3) are now obvious, and we get (4) from (3)
and from part (4) of Lemma 27.1. �

Lemma 27.5. The object N(a, k) lies in Parith, and has “dimension”
7. It has no bad characters.

Proof. By construction, N(a, k) is pure of weight 0, hence geometrically
semisimple. So if it were not in P , it would have, geometrically, a direct
summand Lχ[1], and hence would have a nonzero H1

c (Gm/k,N(a, k)⊗
Lχ). But as noted in the proof of the previous lemma, this H1

c vanishes
for every χ. That N(a, k) has “dimension” 7 follows from part (2) of
the previous lemma.

It remains to prove that N(a, k) has no bad characters. In view
of the previous lemma, the only possibly bad character is χ2. The six
term exact sequence of the previous lemma becomes a four term exact
sequence

0→ H0
c (Gm/k, gr

<0
W N0(a, k)⊗ Lχ2)→ H0

c (Gm/k,N0(a, k)⊗ Lχ2)

→ H0
c (Gm/k,N(a, k)⊗ Lχ2)→ H1

c (Gm/k, gr
<0
W N0(a, k)⊗ Lχ2)→ 0.

By part (3) of Lemma 27.1 and the analysis of the sheaf F(χ2, k) given
at the beginning of this chapter, the group H0

c (Gm/k,N0(a, k) ⊗ Lχ2)
has six eigenvalues of weight 0 and one eigenvalue of weight −4.

We first show that the groupH0
c (Gm/k, gr

<0
W N0(a, k)⊗Lχ2) is nonzero.

We know that gr<0
W N0(a, k) is negligible, and that its restriction to

Gm \ {1} is lisse of rank 2, mixed of weights −1 and −3. Being neg-
ligible, it is, geometrically, a successive extension of Kummer objects
Lχ[1], so geometrically a direct sum of objects of the form Lχ[1] ⊗
Unip(n), each of which geometrically admits a quotient Lχ[1]. Thus

H0
c (Gm/k, gr

<0
W N0(a, k)⊗Lχ) is nonzero for each of the distinct χ which

occur. In view of part (1) of the previous lemma, the only possi-
bly nonvanishing H0

c (Gm/k, gr
<0
W N0(a, k) ⊗ Lχ) has χ = χ2. And as

gr<0
W N0(a, k) is nonzero, being lisse of rank 2, there exist characters χ

for which this group is nonzero. Thus H0
c (Gm/k, gr

<0
W N0(a, k) ⊗ Lχ2)

is nonzero, and χ2 is the only character occurring in gr<0
W N0(a, k).

From the exact sequence, we get an inclusion

H0
c (Gm/k, gr

<0
W N0(a, k)⊗ Lχ2) ⊂ H0

c (Gm/k,N0(a, k)⊗ Lχ2).

The first group is nonzero and mixed of weight < 0, while in the second,
the space “weight < 0” is one-dimensional, and pure of weight −4.
Therefore H0

c (Gm/k, gr
<0
W N0(a, k)⊗Lχ2) is one-dimensional, and pure

of weight −4, and the quotient

H0
c (Gm/k,N0(a, k)⊗ Lχ2)/H

0
c (Gm/k, gr

<0
W N0(a, k)⊗ Lχ2)
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has rank 6 and is pure of weight 0.
We next claim thatH1

c (Gm/k, gr
<0
W N0(a, k)⊗Lχ2) is one-dimensional,

and pure of weight 0. To see this, we consider the weight filtration on
gr<0

W N0(a, k)⊗Lχ2 . The weights are −1 and −3, each of rank one. So
we have a short exact sequence

0→ V−4[1]→ gr<0
W N0(a, k)⊗ Lχ2 → V−2[1]→ 0,

where V−4 (resp. V−2) is a geometrically constant sheaf of rank one
which is pure of weight −4 (resp. −2). Take cohomology on Gm/k.
Remember that H1

c (Gm/k,Q`) = Q` and H2
c (Gm/k,Q`) = Q`(−1). So

we get a six term exact sequence

0→ V−4 → H0
c (Gm/k, gr

<0
W N0(a, k)⊗ Lχ2)→ V−2 → V−4(−1)

→ H1
c (Gm/k, gr

<0
W N0(a, k)⊗ Lχ2)→ V−2(−1)→ 0.

The coboundary map V−2 → V−4(−1) is a map between one-dimensional
spaces, so it is either zero or an isomorphism. It cannot be zero, other-
wise the groupH0

c (Gm/k, gr
<0
W N0(a, k)⊗Lχ2) would be two-dimensional.

So it is an isomorphism, and hence we get isomorphisms

V−4
∼= H0

c (Gm/k, gr
<0
W N0(a, k)⊗ Lχ2),

H1
c (Gm/k, gr

<0
W N0(a, k)⊗ Lχ2)

∼= V−2(−1).

Therefore the group H0
c (Gm/k,N(a, k)⊗Lχ2) is of dimension 7 and

pure of weight 0, being an extension of V−2(−1) (rank 1, pure of weight
0) by

H0
c (Gm/k,N0(a, k)⊗ Lχ2)/H

0
c (Gm/k, gr

<0
W N0(a, k)⊗ Lχ2),

(rank 6, pure of weight 0). �

Lemma 27.6. The object N(a, k) is of the form Na[1] for a sheaf Na.
This sheaf Na is lisse of rank 12 and pure of weight −1 on Gm \ {1},
and for j1 : Gm \ {1} ⊂ Gm the inclusion, the adjunction map is an
isomorphism

Na ∼= j1?j
?
1Na.

The sheaf Na is totally wild at both 0 and ∞.

Proof. The short exact sequence defining N(a, k), namely

0→ gr<0
W (N0(a, k))→ N0(a, k)→ N(a, k)→ 0,

gives a six term exact sequence of ordinary cohomology sheaves

0→ H−1(gr<0
W (N0(a, k)))→ H−1(N0(a, k))→ H−1(N(a, k))

→ H0(gr<0
W (N0(a, k)))→ H0(N0(a, k))→ H0(N(a, k))→ 0.
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The fourth and fifth terms, H0(gr<0
W (N0(a, k))) and H0(N0(a, k)), both

vanish (the fourth because gr<0
W (N0(a, k)) is negligible, the fifth by part

(1) of Lemma 27.1). Therefore the sixth term, H0(N(a, k)), vanishes.
Thus N(a, k) = Na[1] for Na := H−1(N(a, k)), and we have a short
exact sequence of sheaves on Gm

0→ H−1(gr<0
W (N0(a, k)))→ Ga → Na → 0.

By Lemma 27.2, Na|Gm \{1} is lisse of rank 12 and pure of weight −1.
By Lemma 27.4, applied with any single character χ 6= χ2, say with
χ = 1, the group H1

c (Gm/k,Na) is pure of weight 0, and all other H i
c

vanish. Exactly as in the proof of part (4) of Lemma 26.1, this purity
implies that Na is a middle extension. That Na is totally wild at both
0 and ∞ is a restatement of the fact (Lemma 27.5) that Na[1] has no
bad characters. �

Lemma 27.7. The object N(a, k) is its own Verdier dual, and it is
isomorphic to its pullback by multiplicative inversion t 7→ 1/t on Gm.
As an object of Parith, N(a,k) is self-dual.

Proof. The third statement results from the first two. The invariance
under t 7→ 1/t holds for the object N0(a, k) (by the same change of
variable z 7→ z/t, t 7→ t) in the perverse sheaf

M =M(z, t) := (A−7)deg ⊗H3,1(a/(z2t))⊗Kl2(z)⊗Kl2(zt)[2].

By the functoriality of the weight filtration, this invariance passes to
N(a, k) = gr0

W (N(a, k)). The perverse sheaf M is self-dual, so we get
a cup product pairing

N0(a, k)×N0(a, k)→ Q`(1)[2].

Restricting to Gm \ {1}, this is a pairing of lisse sheaves

Ga × Ga → Q`(1).

By looking at the weights, we see that this pairing must annihilate
gr<−1

W (Ga) on either side, so it induces a pairing

Na ×Na → Q`(1).

Since this is a pairing of lisse sheaves on Gm \ {1}, to check that it
is a perfect pairing, it suffices to look at the stalk at a single point
t0 6= 1. But at any such point, the stalk of Na is the “pure of weight
−1 part” of the stalk of Ga. So this stalk is the image of H1

c in H1 for
the self-dual lisse sheaf

(A−7)deg ⊗H3,1(a/(z2t0))⊗Kl2(z)⊗Kl2(zt0)[2],
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on which the cup product pairing is known to be perfect. This shows
that N(a, k)|Gm \ {1} is its own Verdier dual. By the previous lemma,
N(a, k) is the middle extension of its restriction to Gm \ {1}, and one
knows that middle extension commutes with formation of the Verdier
dual. �

Lemma 27.8. We have the following results about the stalks Ga1 and
Na1 of Ga and Na at the point 1.

(1) The stalk Ga1 has rank 11. It has 8 Frobenius eigenvalues of
weight −1, one Frobenius eigenvalue of weight −2, and two
Frobenius eigenvalues of weight −4.

(2) The stalk Na1 has rank 9. It has 8 Frobenius eigenvalues of
weight −1, and one Frobenius eigenvalue of weight −4.

Proof. Denote by j : Gm ⊂ P1 the inclusion. For the coefficient sheaf

K := H3,1(a/(z2))⊗Kl2(z)⊗Kl2(z),

which is lisse on Gm and pure of weight 5, we have the short exact
sequence with punctual quotient at 0 and ∞,

0→ j!K → j?K → KI(0) ⊕KI(∞) → 0.

We have already proven in Lemma 27.1 that H2
c (Gm/k,K) vanishes.

From the long exact cohomology we infer that H2(P1/k, j?K) vanishes,
then by duality that H0(P1/k, j?K) vanishes. So we have a short exact
sequence

0→ KI(0) ⊕KI(∞) → H1
c (Gm/k,K)→ H1(P1/k, j?K)→ 0.

The third term is pure of weight 6 by Deligne’s main theorem in Weil
II [De-Weil II, 3.2.3]. So the drops in weight of the stalk Ga1 =
(A−7)deg ⊗H1

c (Gm/k,K) come from KI(0) ⊕KI(∞).
As we saw in the proof of Lemma 27.1, the isomorphism [Ka-ClausCar,

3.5]
Kl2(z)⊗Kl2(z) ∼= Q`(−1)⊕H3,1(4z)⊗ (A−1)deg

gives a direct sum decomposition

K ∼= H3,1(a/(z2))(−1)
⊕
H3,1(a/(z2))⊗H3,1(4z)⊗ (A−1)deg.

The local monodromy of H3,1(z) at 0 is Unip(3), and at ∞ is

Lχ2 ⊕ (tot. wild, rank 2, both slopes 1/2),

cf. [Ka-ESDE, 8.4.2]. So the local monodromy of H3,1(a/(z2)) at 0
is Unip(1) ⊕ (tot. wild, rank 2, both slopes 1), and at ∞ is Unip(3).
Hence the local monodromy of K at 0 is the direct sum of

Unip(1)⊕ (tot. wild, rank 2, both slopes 1)
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and

(Unip(1)⊕ (tot. wild, rank 2, both slopes 1))⊗ Unip(3).

The local monodromy at ∞ of K is the direct sum of Unip(3) and

Unip(3)⊗ (Lχ2 ⊕ (tot. wild, rank 2, both slopes 1/2)).

Thus we have Swan0(K) = 2 + 6 = 8, Swan∞(K) = 3, and hence Ga1

has the asserted rank 11. The unipotent part of the local monodromy
of K at 0 is Unip(1) ⊕ Unip(3), and the unipotent part of its local
monodromy at ∞ is Unip(3). These unipotent parts give the asserted
weight drops of 1, 3, 3 in Ga1, cf. [De-Weil II, 1.6.14.2-3 and 1.8.4],
[Ka-GKM, 7.0.7], thus proving the first assertion. The second asser-
tion is immediate from the first, given that the kernel of the surjection
of Ga onto Na is lisse of rank 2, with weights −2 and −4. �

Lemma 27.9. The local monodromy of Na at 1 is Unip(1)8⊕Unip(4).

Proof. From the weight drops given by part (2) of the previous lemma,
we have a summand Unip(1)8 ⊕ Unip(4). As the stalk has rank 12,
there is room for no more. �

Lemma 27.10. The sheaf Na has Swan0(Na) = Swan∞(Na) = 2.

Proof. Identical to the proof of part (3) of Lemma 26.3. �

Lemma 27.11. The object N(a, k) is geometrically Lie-irreducible,
and orthogonally self-dual.

Proof. The proof is essentially identical to the proof of Lemma 26.4.
One need only use the description of the local monodromy at 1 of Na,
namely Unip(1)8 ⊕ Unip(4), whereas Lemma 26.4 used that the local
monodromy at 1 of Ga there was Unip(1)6 ⊕ Unip(4). �

This concludes the construction of the objects N(a, k) in odd char-
acteristic.





CHAPTER 28

The Situation over Z: Results

Suppose we are given an integer monic polynomial f(x) ∈ Z[x] of
degree n ≥ 2 which, over C, is “weakly supermorse,” meaning that it
has n distinct roots in C, its derivative f ′(x) has n − 1 distinct roots
(the critical points) αi ∈ C, and the n − 1 values f(αi) (the critical
values) are all distinct in C. Denote by S the set of critical values.
Suppose that S is not equal to any nontrivial multiplicative translate
aS, for any a 6= 1 in C×. It is standard that for all but finitely many
primes p, the reduction mod p of f will satisfy all the hypotheses of
Theorem 17.6. Let us say such a prime p is good for f .

Choose a prime `, and a field isomorphism ι : Q`
∼= C. For each

p 6= ` which is good for f , form the sheaf

Fp := f?Q`/Q`|Gm/Fp,
and the corresponding object Np := Fp(1/2)[1] ∈ Parith on Gm/Fp,
which is pure of weight zero, geometrically irreducible, and has

Ggeom,Np = Garith,Np = GL(n− 1).

We take the unitary group U(n−1) as the compact form of GL(n−1).
For good p, the set of bad characters in this mod p situation is the set
of characters of order dividing n. So for each good prime p 6= `, and
for each character χ of F×p with χn 6= 1, we have the conjugacy class

θFp,χ ∈ U(n− 1)#.
Emanuel Kowalski asked if, as p grew, the sets of conjugacy classes

{θFp,χ}χ char of F×p , χn 6=1

became equidistributed in the space U(n− 1)# of conjugacy classes of
U(n− 1). We will show that this, and more general things of the same
flavor, are true.

Here is the general setup. We fix a prime `, a field isomorphism
ι : Q`

∼= C, a reductive group G over Q`, an integer n ≥ 1, and a faithful
n-dimensional representation of G, i.e., an inclusion G ⊂ GL(n). We
also fix a compact form K of G(C).

We also fix a sequence of finite fields ki, each of characteristic 6= `,
whose cardinalities are nondecreasing and tend archimedeanly to ∞.

173
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Thus for example the ki could be successively higher degree extensions
of a given prime field Fp with p 6= `, or the ki could be a sequence of
prime fields Fpi with some increasing sequence of primes pi > `, or it
could be the sequence of residue fields of the closed points of some flat
scheme of finite type over Z[1/`], e.g., the spectrum of some OK [1/n`]
for some number field K and some integer n 6= 1, or the sequence of
finite fields ki could be any amalgam of these example situations.

Theorem 28.1. Suppose we are given, for each i, a form Gi/ki of
Gm/ki, and an arithmetically semisimple object Ni in Parith on Gi/ki
which is ι-pure of weight zero, and of “dimension” n. Suppose that for
every i we have

Ggeom,Ni = Garith,Ni = G,

in such a way that the given n-dimensional representation of G, viewed
as an n-dimensional representation of Garith,Ni, corresponds to the ob-
ject Ni. Suppose further that there exists a real number C ≥ n such
that, for all i, we have both

gen.rk(Ni) ≤ C,

and

#Bad(Ni) ≤ C.

Then the sets Θi of conjugacy classes in K#

Θi := {θki,χ}χ char of Gi(ki), χ∈Good(ki,Ni)

become equidistributed in K# as #ki →∞.

Proof. Fix an irreducible nontrivial representation Λ of G. For each i,
Λ corresponds to an object Mi in <Ni>arith. We must show the large
i limit of the averages

1/#Θi

∑
θki,χ∈Θi

Trace(Λ(θki,χ))

is zero.
Because G ⊂ GL(V ) is reductive, the irreducible nontrivial repre-

sentation Λ occurs in some tensor space V ⊗a ⊗ (V ∨)⊗b, for some pair
(a, b) of nonnegative integers. Of course the pair (a, b) is not unique.
Nonetheless, let us fix one such pair, say with a + b minimal, for our
given Λ. We will show that as soon as #ki ≥ (1 + C)2, we have the
explicit bound

|1/#Θi

∑
θki,χ∈Θi

Trace(Λ(θki,χ))| ≤ 2(a+ b+ 1)Ca+b/
√

#ki.
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Recall from Remark 7.5 the explicit estimate (applied here with
N = Ni and E = ki, and valid as soon as C ≤

√
#ki − 1)

|(1/#Good(ki, Ni))
∑

ρ∈Good(ki,Ni)

Trace(Λ(θki,ρ)|

≤ 2(gen.rk(Mi) + “ dim ”(Mi))/
√

#ki.

Since Mi is a direct summand of the tensor product in the Tannakian
sense N⊗ai ⊗ (N∨i )⊗b, we certainly have

“ dim ”(Mi) ≤ “ dim ”(N⊗ai ⊗ (N∨i )⊗b) = na+b ≤ Ca+b

and

gen.rk(Mi) ≤ gen.rk(N⊗ai ⊗ (N∨i )⊗b).

So it is sufficient to establish the inequality

gen.rk(N⊗ai ⊗ (N∨i )⊗b) ≤ (a+ b)Ca+b.

This in turn is a consequence of the inequality

gen.rk(N⊗ai ⊗ (N∨i )⊗b) ≤ (a+ b)(“ dim ”(Ni))
a+b−1gen.rk(Ni).

This inequality results, by induction on a+b, from the following general
inequality, which will be proven below. Over any algebraically closed
field of characterstic p 6= `, given two geometrically semisimple objects
N and M in Pgeom, we claim that we have the inequality

gen.rk(N ?midM) ≤ “ dim ”(N)gen.rk(M) + gen.rk(N)“ dim ”(M).

Indeed, if we grant this general inequality, then if a ≥ 1 we get

gen.rk(N⊗ai ⊗ (N∨i )⊗b)

= gen.rk(N ?mid (N⊗a−1
i ⊗ (N∨i )⊗b))

≤ “ dim ”(Ni)gen.rk(N⊗a−1
i ⊗(N∨i )⊗b)+gen.rk(Ni)“ dim ”(N⊗a−1

i ⊗(N∨i )⊗b).

By induction on a+ b, we have

gen.rk(N⊗a−1
i ⊗ (N∨i )⊗b) ≤ (a+ b− 1)“ dim ”(Ni))

a+b−2gen.rk(Ni),

so we get the inequality

gen.rk(N⊗ai ⊗ (N∨i )⊗b) ≤ (a+ b)“ dim ”(Ni))
a+b−1gen.rk(Ni)

as asserted. If a = 0, we repeat this argument, “factoring out” one N∨i
and doing induction on b. �
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We now establish the inequality used in the proof of Theorem
28.1. Because the function N 7→ “ dim ”(N) is multiplicative, i.e.,
“ dim ”(N ?mid M) = “ dim ”(N)“ dim ”(M), it is as though the in-
equality asserts a (sub)product formula for “differentiation,” where the
function N 7→ gen.rk(N) plays the role of the “derivative” of the “dim”
function.

Theorem 28.2. Over an algebraically closed field k of characterstic
p 6= `, given two objects geometrically semisimple N and M in Pgeom,
we have the inequality

gen.rk(N ?midM) ≤ “ dim ”(N)gen.rk(M) + gen.rk(N)“ dim ”(M).

Proof. Since all the terms in the asserted inequality are bilinear in the
arguments N and M , we reduce immediately to the case where N and
M are both geometrically irreducible.

If either N or M is punctual, say N = δa, then N ?midM is just the
multiplicative translate [x 7→ ax]?M = [x 7→ x/a]?M of M by a, so has
the same generic rank as M . But “ dim ”(N) = 1, and gen.rk(N) = 0,
so in this case we have equality.

Suppose now that our two objects in Pgeom are each (geometrically
irreducible, but we will not use this) middle extension sheaves placed
in degree −1, say N = F [1] and M = G[1]. In this case, we first use
the fact that N ?midM is a quotient of N ?! M , so we have the trivial
inequality

gen.rk(N ?midM) ≤ gen.rk(N ?! M).

So it suffices to show the inequality

gen.rk(N ?! M) ≤ “ dim ”(N)gen.rk(M) + gen.rk(N)“ dim ”(M).

Over a dense open set U ⊂ Gm/k, N ?!M |U is of the form H[1] for the
lisse sheaf on U whose stalk at a point a ∈ U is the cohomology group
H1
c (Gm/k,F ⊗ [x 7→ a/x]?G), and this H1

c is the only nonvanishing
cohomology group. So for any a ∈ U(k), we have

gen.rk(N ?! M) = −χ(Gm/k,F ⊗ [x 7→ a/x]?G).

Shrinking U if necessary, we may further assume that for any point
a ∈ U(k), the two middle extension sheaves F and [x 7→ a/x]?G on Gm

have disjoint sets of ramification in Gm. Choose one point a ∈ U(k),
and define

K := [x 7→ a/x]?G.
Then

“ dim ”(N) = −χ(Gm/k,F),

“ dim ”(M) = “ dim ”([x 7→ a/x]?M) = −χ(Gm/k,K),
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and
gen.rk(N ?! M) = −χ(Gm/k,F ⊗K).

So it suffices to prove that for two middle extension sheaves F and K
on Gm/k with disjoint ramification, we have

−χ(Gm/k,F⊗K) ≤ −gen.rk(F)χ(Gm/k,K)−gen.rk(K)χ(Gm/k,F).

Now for any sheafA on Gm/k, with ramification setRam(A) ⊂ Gm,
the Euler-Poincaré formula [Ray] gives

−χ(Gm/k,A) = Swan0(A)+Swan∞(A)+
∑

r∈Ram(A)

(dropr(A)+Swanr(A)).

Taking A to be F ⊗ K, and denoting by S and T the disjoint
ramification sets of F and of K, so that S ∪ T is the ramification set
of A, we have (precisely because the ramification is disjoint)

gen.rk(N ?! M) = Swan0(F ⊗K) + Swan∞(F ⊗K)

+
∑
s∈S

(drops(F) + Swans(F))gen.rk(K)

+
∑
t∈T

(dropt(K) + Swant(K))gen.rk(F).

Let us admit for a moment the following two inequalities.

Swan0(F ⊗K) ≤ Swan0(F)gen.rk(K) + Swan0(K)gen.rk(F)

and

Swan∞(F ⊗K) ≤ Swan∞(F)gen.rk(K) + Swan∞(K)gen.rk(F).

Then we have the inequality

gen.rk(N ?! M) ≤ Swan0(F)gen.rk(K) + Swan0(K)gen.rk(F)

+Swan∞(F)gen.rk(K) + Swan∞(K)gen.rk(F)

+
∑
s∈S

(drops(F) + Swans(F))gen.rk(K)

+
∑
t∈T

(dropt(K) + Swant(K))gen.rk(F).

Factoring out the gen.rk(F) and gen.rk(K) terms, we see that this is
precisely the inequality

gen.rk(N ?! M) ≤ “ dim ”(M)gen.rk(N) + “ dim ”(N)gen.rk(M).

So it remains to show that for two Q`-representations A and B of
I(0), we have

Swan0(A⊗B) ≤ Swan0(A)rk(B) + Swan0(B)rk(A),
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(and similarly for two Q`-representations of I(∞)).
Again by bilinearity, we may use the slope decomposition [Ka-GKM,

Chapter 1] to reduce to the case where A and B each have only a single
slope, say λ is the unique slope of A and µ is the unique slope of B,
with say λ ≤ µ. Then I(0)µ+ acts trivially on both A and B, so also
trivially on A⊗B. Therefore all slopes of A⊗B are at most µ, so we
have

Swan0(A⊗B) ≤ µrk(A⊗B) = rk(A)µrk(B)

= Swan0(B)rk(A) ≤ Swan0(B)rk(A) + Swan0(A)rk(B).

�

Remark 28.3. How can one apply Theorem 28.1? Take for G one
of the groups SL(n), GL(n), Sp(n), or a self-product of one of these
groups, or O(2n). In Chapters 14, 15, 17, 18, 20, 21, 22, 23 and 24
we give various theorems which assert that a specific1 Ni over a finite
field ki has Ggeom,Ni = Garith,Ni = G. Fix one such G, and choose one
of the theorems in the relevant chapter. In all of these theorems, it
happens that both the generic rank and the number of bad characters
of the example object are bounded in terms of the “dimension” of that
object. Given a sequence of finite fields ki, each of characteristic 6= `,
whose cardinalities are nondecreasing and tend archimedeanly to ∞,
we have only to pick, for each i, an instance Ni over ki of the chosen
theorem, to have data to which Theorem 28.1 applies. Thus for example
if we invoke Corollary 20.2 for some given value of r ≥ 1, we must first
“throw way” those ki of cardinality ≤ r, and for each of the remaining
ones choose both a nontrivial additive character ψi of ki and r distinct
multiplicative characters of k×i . But there is no “compatiblity” of any
kind required in these choices as ki varies. Similarly, one way to invoke
Theorem 17.6 is to start, as we did this chapter, with an integer monic
polynomial f(x) ∈ Z[x] of degree n ≥ 2 which, over C, is “weakly
supermorse,” and whose set S of critical values is not equal to any
nontrivial multiplicative translate aS, for any a 6= 1 in C×. Then
modulo sufficiently large primes p, the reduction mod p of f will satisfy
all the hypotheses of Theorem 17.6. However, we could equally well
invoke Theorem 17.6 by choosing separately for each (large) prime p a
degree n monic polynomial fp(x) ∈ Fp[x] to which the theorem applies.

Remark 28.4. In Chapter 19, which treats the orthogonal group, we
only give situations where Ggeom,Ni = SO(n) and Garith,Ni ⊂ O(n),
but no specific situations where we know that Ggeom,Ni = Garith,Ni =
SO(n). But as we observed in Remark 19.13, in any such situation we

1The results of Chapters 25-27, devoted to G2, fail to provide specific examples.
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will always achieve Ggeom,Ni = Garith,Ni = SO(n) after a quadratic
extension of the ground field. So here we have the somewhat less
optimal situation that if we pick one of the explicit example theorems
of Chapter 19, then given our sequence of finite fields ki, we pick for
each an instance of that theorem, but only over the sequence of the
quadratic extensions of the given ki will we have data to which we can
apply Theorem 28.1 with G taken to be SO(n).





CHAPTER 29

The Situation over Z: Questions

There is another sense in which we might ask about “situations
over Z,” namely we might try to mimic the setting of a theorem of
Pink [Ka-ESDE, 8.18.2] about how “usual” (geometric) monodromy
groups vary in a family. There the situation is that we are given a nor-
mal noetherian connected scheme S, a smooth X/S with geometrically
connected fibres, and a lisse Q`-sheaf F on X of rank n ≥ 1. For each
geometric point s in S, we have the restriction Fs of F to the fibre
Xs. Pick a geometric point xs in Xs. Then for each s in S we have
the closed subgroup Γ(s) ⊂ GL(n,Q`) which is the image of π1(Xs, xs)
in the representation corresponding to Fs. The assertion is that these
groups Γ(s) are, up to GL(n)-conjugacy, constant on a dense open set
of S, and that they decrease under specialization.

This result leads naturally to the following question. Suppose we
are given a normal noetherian connected scheme S which is of finite
type over Z[1/`], an object N in the derived category Db

c((Gm)S,Q`),
and an integer n ≥ 1. We make the following assumptions on this data.

(1) For every geometric point s of S, the restriction, Ns, of N to
the fibre over s is perverse and lies in P .

(2) The formation of the Verdier dual, D(Gm)S/S(N), commutes
with arbitrary change of base on S to a good scheme S ′ (a
condition which is always satisfied after we shrink S to a dense
open set of itself [Ka-Lau, 1.1.7]).

(3) For every finite field k and for every k-valued point s ∈ S(k),
the restriction Nk,s of N to the Gm/k which is the fibre of
(Gm)S over s is perverse, lies in Parith, has “dimension” n,
and is geometrically semisimple. [This last condition holds if,
for example, each Nk,s is pure of some integer weight w.]

The first two conditions say that N is “perverse relative to S” in the
sense of [Ka-Lau, 1.2.1], and in addition satisfies P on each geometric
fibre. For η the generic point of S, and η a geometric point lying over
it, we have the perverse object Nη on Gm over an algebraically closed
field κ(η), which lies in P . The results of Gabber-Loeser developed in
their seminal paper, especially [Ga-Loe, 3.7.2,3.7.5], are stated when
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the ground field has strictly positive characteristic, but remain valid in
the case of characteristic zero, cf. [Ga-Loe, lines 22-25 on page 505].
So whatever the characteristic of κ(η), we may speak of the Tannakian
group Ggeom,Nη . Using the construcibility of the Euler characteristic on
fibres, the third condition implies that Nη has “dimension” n. Hence
we have an inclusion Ggeom,Nη ⊂ GL(n), well-defined up to GL(n)-
conjugacy.

On the other hand, for every finite field k and for every k-valued
point s ∈ S(k), we have the Tannakian group Ggeom,Nk,s ⊂ GL(n).
The first natural question is whether this group is always conjugate,
in GL(n), to a subgroup of Ggeom,Nη . We cannot expect equality of
these groups, even if we are willing to shrink S to an open dense subset
of itself, as the following example shows. [See [Ka-ESDE, 2.4.1, 2.4.4]
for a discussion of the analogous phenomenon for differential galois
groups.]

Take for S the spectrum of Z[1/`]. Then ` is a global section of
(Gm)S, so we can speak of the delta sheaf δ`. The finite fields k for
which S(k) is nonempty are precisely those of characteristic p 6= `, and
for each such k there is a unique point s in S(k). For each such point
s, the Tannakian group Ggeom,(δ`)k,s is the finite group µN(`,p) ⊂ GL(1)
of roots of unity of order N(`, p) := the multiplicative order of ` mod
p. As this order, for fixed ` and variable p, is unbounded (otherwise `
would itself be a root of unity in Q), these Tannakian groups do not
become constant, no matter how large the finite set of primes p we
invert. Nor do they ever become the entire group GL(1), which is the
value of Ggeom,Nη (exactly because ` has infinite multiplicative order in
Z[1/`]×).

So two plausible questions in this context are the following.

(Q1) Is it true that for every finite field k and for every k-valued
point s ∈ S(k), the Tannakian group Ggeom,Nk,s is conjugate
in GL(n) to a subgroup of Ggeom,Nη?

(Q2) After possibly shrinking S to an open dense subset U ⊂ S, is
it true that for every finite field k and for every k-valued point
u ∈ U(k), the derived group (commutator subgroup) of the
identity component of Ggeom,Nk,u , ((Ggeom,Nk,u)0)der, is conju-
gate in GL(n) to the derived group of the identity component
of Ggeom,Nη , ((Ggeom,Nη)

0)der?

Another natural question, involving only finite field fibres, is this.

(Q3) Suppose given an object N as above, and a reductive group
G ⊂ GL(n). Suppose there is a dense open set U ⊂ S such
that for every finite field k and every k-valued point u ∈ U(k),
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Ggeom,Nk,u is conjugate in GL(n) to the given group G. Is it
then true that for every finite field k and for every k-valued
point s ∈ (S \ U)(k), Ggeom,Nk,s is conjugate in GL(n) to a
subgroup of the given group G?

Here is an example, based on Theorem 18.7, where this last question
has an affirmative answer.

Example 29.1. Fix an even integer 2g ≥ 4, and consider the one
parameter (“a”) family of palindromic polynomials

fa(x) := x2g + ax2g−1 + ax+ 1.

Denote by ∆(a) ∈ Z[a] the discriminant of fa. Its constant term is
invertible in Z[1/2g] (because f0(x) = x2g + 1 has 2g distinct roots in
any field in which 2g in invertible). Take for S the spectrum of the
ring Z[1/2g`][a][1/∆(a)]. On (Gm)S, we have the polynomial function
fa(x), and the dense open set j : (Gm)S[1/fa(x)] ⊂ (Gm)S. We take
for N the object

N := j!Lχ2(fa(x))[1].

Then on each geometric fibre of (Gm)S/S, the object N(1/2) is per-
verse, has P , is pure of weight zero and is symplectically self-dual of
“dimension” 2g (“dimension” 2g because we inverted ∆). On any fi-
bre over the open set S[1/a] where a is invertible, fa has an x-term,
so is not a polynomial in xd for any d ≥ 2. So by Theorem 18.7,
over U := S[1/a], we are in the situation of this last question, with
G = Sp(2g).

For points in S \ U = Spec(Z[1/2g`]), i.e., points where a = 0, we
are looking at

N0 := j!Lχ2(x2g+1)[1].

Over any field in which 2g` is invertible, N0(1/2) remains symplectic,
but it is no longer Lie-irreducible, cf. Corollary 8.3. So its Ggeom is a
subgroup of Sp(2g), but it is no longer the entire symplectic group.

We can be more precise about what its Ggeom is. The key ob-
servation is that Lχ2(x2g+1) is the Kummer pullback [2g]?(Lχ2(x+1)) of
Lχ2(x+1). Its direct image by [2g] is the direct sum

[2g]?(Lχ2(x2g+1)) = [2g]?[2g]?(Lχ2(x+1)) = ⊕iLχ2(x+1) ⊗ Lρi
over the 2g multiplicative characters ρi of order dividing 2g. The dual of
j!Lχ2(x+1)[1](1/2) is j!Lχ2((1/x)+1)[1](1/2) = j!Lχ2(x+1)⊗Lχ2 [1](1/2). So
for each ρi, the dual of j!Lχ2(x+1)⊗Lρi [1](1/2) is j!Lχ2(x+1)⊗Lρiχ2 [1](1/2).
Now apply Corollary 20.3, with a := −1, Λ := χ2, and a choice of g
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among the ρi which picks one out of each pair (ρi, χ2ρi). Then the
partial direct sum

⊕chosen ρi j!Lχ2(x+1) ⊗ Lρi [1](1/2)

has its Ggeom a g-dimensional torus, with the unchosen ρi terms being
the inverse characters. In other words, the Ggeom of the entire direct
sum

[2g]?N0(1/2) = ⊕all ρi j!Lχ2(x+1) ⊗ Lρi [1](1/2)

is the maximal torus of Sp(2g). So by Theorems 8.1 and 8.2, we see
that for N0 := j!Lχ2(x2g+1)[1] itself, the identity component of its Ggeom

is the maximal torus of Sp(2g).
Here is another example, exhibiting more extensive and interesting

specialization behavior.

Example 29.2. Again fix an even integer 2g ≥ 4, and consider now
the two parameter family of polynomials

fa,b(x) = x2g + ax2g−1 + bx+ 1.

We denote by ∆(a, b) ∈ Z[a, b] its discriminant. Just as in the previous
example, its constant term is invertible in Z[1/2g]. We now take for S
the spectrum of the ring Z[1/2g`][a, b][1/∆(a, b)], and for N the object

N := j!Lχ2(fa,b(x))[1].

Using now Theorem 23.2, elementary computation shows that over the
locus where a2g − b2g is invertible, we have Ggeom = SL(2g).

The locus where ab is invertible and a2g−b2g is not invertible is, set
theoretically, the disjoint union over divisors d of 2g, of the sets where
ζ := a/b is a primitive d’th root of unity. As we will see below, the
question of whether or not d divides g, i.e., whether ζg = 1 or ζg = −1,
has a huge effect on what Ggeom turns out to be.

Suppose first that ζg = 1, i.e., that d|g. We claim that on the
locus a = ζb, b invertible, Ggeom is the group GSpd(2g) := µ2dSp(2g) of
symplectic similitudes with multiplicator of order dividing d. Indeed,
if we choose a square root η of ζ of order 2d (both choices have order 2d
if d is even, just one choice does if d is odd), then fa,b(ηx) is palindromic,
and we are dealing with its multiplicative translate by η. Then δ1/η “is”
a character of order 2d. By Theorem 18.7, the direct sum

j!Lχ2(fa,b(ηx))[1]⊕ δη
has its Ggeom a subgroup of the product group Sp(2g)×µ2d, which maps
onto each factor. As Sp(2g) has no nontrivial quotients, Goursat’s
lemma shows that this direct sum has its Ggeom the product group,
and hence our N has its Ggeom equal to µ2dSp(2g). [If d is odd and we
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chose η of order d, we would find that Ggeom is µdSp(2g), which for d
odd is also group µ2dSp(2g).]

Suppose next that ζg = −1, i.e., that d does not divide g. We claim
that on the locus a = ζb, b invertible, Ggeom is SL(2g) ∩ (µ2dO(2g)),
the group of orthogonal similitudes with multiplicator of order d and
determinant 1. Indeed, for either choice of η with η2 = ζ (here d is even,
and so both choices of η have order 2d), fa,b(ηx) is antipalindromic,
and we are again dealing with its multiplicative translate by η. Here,
however, there is an additional subtlety. By Theorem 24.1, the direct
sum

j!Lχ2(fa,b(ηx))[1]⊕ δη
has its Ggeom a subgroup of the product group O(2g) × µ2d, which
maps onto each factor. By Goursat’s lemma, this Ggeom is the (inverse
image in the product of the) graph of an isomorphism of a quotient of
O(2g) with a quotient of µ2d. The only nontrivial abelian quotient of
O(2g) is ±1, via the determinant, since SO(2g) is, for 2g ≥ 4, its own
commutator subgroup. The only ±1 quotient of µ2d is given by the
d’th power map. Because d divides 2g but does not divide g, the ratio
2g/d is odd. So we may also describe the only ±1 quotient of µ2d as
given by the 2g’th power map. So for the direct sum above, its Ggeom

is either the full product µ2d × O(2g) or it is the subgroup consisting
of those elements (γ ∈ µ2d, A ∈ O(2g)) satisfying det(A) = γ2g. So for
the object N , its Ggeom is either µ2dO(2g) or it is the intersection of
that group with SL(2g). From Theorem 23.2, we know that Ggeom,N

lies in SL(2g), and this rules out the µ2dO(2g) possibility.
On the locus a = b = 0, the identity component of Ggeom is, as we

have seen in Example 29.1, the maximal torus of Sp(2g).





CHAPTER 30

Appendix: Deligne’s Fibre Functor

In this appendix, we prove Theorem 3.1, i.e., we show that N 7→
ω(N) := H0(A1/k, j0!N) is a fibre functor on the Tannakian category
Pgeom of those perverse sheaves on Gm/k satisfying P , under middle

convolution. Throughout this appendix, we work entirely over k, ex-
plicit mention of which we will omit. Thus we will write ω(N) simply as
H0(A1, j0!N). And when we wish to emphasize the roles of both 0 and
∞ in its definition, we will write it as ω(N) := H0(P1, Rj∞?j0!N) =
H0(P1, j0!Rj∞?N).

It will be convenient to define, for any object M ∈ Db
c(Gm,Q`),

ω(M) := H?(P1, j0!Rj∞?M) := ⊕i∈ZH
i(P1, j0!Rj∞?M).

Lemma 30.1. If M is perverse, then H i(P1, j0!Rj∞?M) = 0 for i 6= 0,
and dimH0(P1, j0!Rj∞?M) = χ(Gm,M)(= χc(Gm,M)). The functor
M 7→ ω(M) is an exact, faithful functor from the category Perv/Neg
to the category of finite dimensional Q`-vector spaces.

Proof. We can also write H?(P1, j0!Rj∞?M) as H?(A1, j0!M). Thus
the first assertion was proven in Lemma 3.4. The dimension formula
shows that ω(M) = 0 if and only if M is negligible. The (not very)
long exact cohomology sequence shows that ω is exact on Perv/Neg,
and kills precisely the negligible objects. �

Suppose now that K and N are both in Pgeom. Then both K ?! N
and K ?? N lie are perverse, and K?mid is, by definition, the image
of the “forget supports” map K ?! N → K ?? N . By Gabber-Loeser
[Ga-Loe, 3.6.4], both the kernel and cokernel of this map are negligible
perverse sheaves, i.e., with χ = 0. Hence we get

Lemma 30.2. For K and N in Pgeom, under the natural maps

K ?! N � K ?mid N ↪→ K ?? N,

the induced maps on ω’s are isomorphisms

ω(K ?! N) ∼= ω(K ?mid N) ∼= ω(K ?? N).

Lemma 30.3. For M perverse, with M∨ := [x 7→ 1/x]?DM , ω(M∨)
is the linear dual of ω(M).

187
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Proof. Indeed,

ω(M∨) := H0(P1, j0!Rj∞?[x 7→ 1/x]?DM) = H0(P1, [x 7→ 1/x]?j∞!Rj0?DM)

= H0(P1, [x 7→ 1/x]?D(Rj∞?j0!M))
[x 7→1/x]?∼= H0(P1, D(Rj∞?j0!M)).

�

Lemma 30.4. Given two objects K and N in Pgeom, we have the
formula

dim(ω(K)⊗ ω(N)) = dimω(K ?! N),

i.e., we have

χ(Gm, K)× χ(Gm, N) = χ(Gm, K ?! N).

Proof. Indeed, for mult : Gm ×Gm → Gm the multiplication map, we
have K ?! N = R(mult)!(K �N). Thus

χ(Gm, K ?! N) = χ(Gm, R(mult)!(K �N))

Leray
= χ(Gm ×Gm, K �N)

Kunneth
= χ(Gm, K)× χ(Gm, N).

�

We now turn to the proof of Theorem 3.1. Given two objects K
and N in Pgeom, we will define bifunctorial maps

ω(K)⊗ω(N)→ ω(K?!N) ∼= ω(K?midN) ∼= ω(K??N)→ ω(K)⊗ω(N),

and show that their composite is the identity on ω(K)⊗ω(N). This is
all we need: each of the five terms has dimension χ(Gm, K)×χ(Gm, N),
so once the composite map is the identity, then the first map is injective
and hence, for dimension reasons, an isomorphism. This isomorphism
gives the required bifunctorial isomorphism

ω(K)⊗ ω(N) ∼= ω(K ?mid N).

We begin with the construction of the map

ω(K)⊗ ω(N)→ ω(K ?! N).

Let us define

K := j0!Rj∞?K, N := j0!Rj∞?K.

Then we have

ω(K) = H?(P1,K), ω(N) = H?(P1,N ),

and hence we have

ω(K)⊗ ω(N) = H?(P1 × P1,K �N ).
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We would like to extend the multiplication map Gm×Gm → Gm to
a map P1 × P1 → P1. We cannot do this, but if we omit from P1 × P1

the two points (0,∞) and (∞, 0), then we can define a map

π : P1 × P1 \ {(0,∞), (∞, 0)} → P1,

given in homogeneous coordinates (A,B), (X, Y ) on P1 × P1 by

((A,B), (X, Y )) 7→ (AX,BY ).

Over the open set Gm in the target, we have the multiplication map
Gm×Gm → Gm. Over the point 0 in the target, the fibre π−1(0) is the
union of 0×A1 with A1×0. Notice that because both K and N vanish
at 0, the restriction of K�N to π−1(0) vanishes. [The fibre π−1(∞) is
the union of ∞× (P1 \ 0) with (P1 \ 0)×∞, a fact we will use later.]

Because K �N vanishes at both the points (0,∞) and (∞, 0), we
have an isomorphism

H?
c (P1 × P1 \ {(0,∞), (∞, 0)},K �N ) ∼= H?(P1 × P1,K �N ).

Slightly less obvious is the following lemma.

Lemma 30.5. The restriction map in ordinary cohomology gives an
isomorphism

H?(P1 × P1,K �N ) ∼= H?(P1 × P1 \ {(0,∞), (∞, 0)},K �N ).

Proof. It suffices to show that, denoting by i(0,∞) and i(∞,0) the inclu-
sions, we have

Ri!(0,∞)(K �N ) = 0, Ri!(∞,0)(K �N ) = 0.

By duality, this is equivalent to

i?(0,∞)(DK �DN ) = 0, i?(∞,0)(DK �DN ) = 0.

But both DK = Rj0?j∞!DK and DN = Rj0?j∞!DN vanish at ∞, so
their external product DK � DN vanishes at both the points (0,∞)
and (∞, 0). �

So our situation now is that we have isomorphisms

H?
c (P1×P1\{(0,∞), (∞, 0)},K�N ) ∼= H?(P1×P1,K�N ) = ω(K)⊗ω(N)

= H?(P1 × P1,K �N ) ∼= H?(P1 × P1 \ {(0,∞), (∞, 0)},K �N ),

in which the composite isomorphism is the “forget supports” map.
By the Leray spectral sequence for π in compact cohomology, we

have

H?
c (P1 × P1 \ {(0,∞), (∞, 0)},K �N ) = H?(P1, Rπ!(K �N )).
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And by the Leray spectral sequence in ordinary cohomology, we have

H?(P1 × P1 \ {(0,∞), (∞, 0)},K �N ) ∼= H?(P1, Rπ?(K �N )).

So we have isomorphisms

H?(P1, Rπ!(K �N )) ∼= ω(K)⊗ ω(N) ∼= H?(P1, Rπ?(K �N )),

in which the composite map is induced by the “forget supports” map
Rπ!(K �N )→ Rπ?(K �N ).

There are two further isomorphisms we now take into account. As
already observed above, K � N vanishes on the fibre π−1(0), so by
proper base change Rπ!(K�N ) vanishes at 0, and hence the adjunction
map j0!j0

? → id induces an isomorphism

j0!j0
?Rπ!(K �N ) ∼= Rπ!(K �N ).

We claim that, dually, the adjunction map id → Rj∞?j∞
? induces an

isomorphism

Rπ?(K �N ) ∼= Rj∞?j∞
?Rπ?(K �N ).

Indeed, this is equivalent, by duality, to the statement that the adjunc-
tion map j∞!j∞

? → id induces an isomorphism

j∞!j∞
?Rπ!(DK �DN ) ∼= Rπ!(DK �DN ).

This holds, because both DK and DN vanish at ∞, so their external
product DK �DN vanishes on π−1(∞) (which we noted above is the
union of ∞× (P1 \ 0) with (P1 \ 0)×∞), and we get the assertion by
proper base change.

Applying the adjunction map id→ Rj∞?j∞
?, we get a map

j0!j0
?Rπ!(K �N )→ Rj∞?j∞

?j0!j0
?Rπ!(K �N ).

Here the cohomology of the target is ω(K ?! N).
Applying the adjunction map j0!j0

? → id, we get a map

j0!j0
?j∞!j∞

?Rπ?(DK �DN )→ j∞!j∞
?Rπ?(DK �DN ).

Here the cohomology of the target is ω(K ?? N).
So the situation now is that we have a diagram of horizontal “forget

supports” maps and vertical adjunction maps as follows. To make
the diagram fit horizontally on the page, we write S for the subset
{(0,∞), (∞, 0)} of P1 × P1. Thus

P1 × P1 \ S := P1 × P1 \ {(0,∞), (∞, 0)},

and our diagram is this.
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ω(K)⊗ ω(N)
=

//

=

��

ω(K)⊗ ω(N)

=

��

H?(P1 × P1,K �N )
=

// H?(P1 × P1,K �N )

∼=
��

H?
c (P1 × P1 \ S,K �N )

∼=

OO

∼=
//

∼=, Leray
��

H?(P1 × P1 \ S,K �N )

∼=, Leray
��

H?(P1, Rπ!(K �N ))
∼=

// H?(P1, Rπ?(K �N ))

∼=
��

H?(P1, j0!j
?
0Rπ!(K �N ))

∼=

OO

��

H?(P1, Rj∞?j
?
∞Rπ?(K �N ))

H?(P1, j0!j0
?Rj∞?j

?
∞Rπ!(K �N )) //

:=

��

H?(P1, j0!j0
?Rj∞?j

?
∞Rπ?(K �N ))

OO

ω(K ?! N)
∼=

// ω(K ?? N)

:=

OO

So what must be shown is the commutativity of the following dia-
gram.

H?(P1, Rπ!(K �N ))
∼=

// H?(P1, Rπ?(K �N ))

∼=
��

H?(P1, j0!j
?
0Rπ!(K �N ))

∼=

OO

��

H?(P1, Rj∞?j
?
∞Rπ?(K �N ))

H?(P1, j0!j0
?Rj∞?j

?
∞Rπ!(K �N )) // H?(P1, j0!j0

?Rj∞?j
?
∞Rπ?(K �N ))

OO

To see what is going on, let us define

A := Rπ!(K �N ), B := Rπ?(K �N ),

and denote by f : A → B the “forget supports” map. Then the
diagram in question is gotten by applying the functor C 7→ H?(P1, C)
to the following diagram.
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A
f

// B

��

j0!j
?
0A

OO

��

Rj∞?j
?
∞B

j0!j0
?Rj∞?j

?
∞A

f
// j0!j0

?Rj∞?j
?
∞B

OO

It suffices to show this this last diagram is commutative. To see
this, we embed into the larger diagram, in which all the vertical and
inward facing arrows are adjunctions, and all the horizontal arrows are
induced by f .

A
f

//

��

B

��

j0!j
?
0A

66mmmmmmmmmmmmmmm f
//

��

--ZZZZZZZZZZZZZZZZZZZZZZZZ j0!j
?
0B

66mmmmmmmmmmmmmmm

��

Rj∞?j
?
∞A f

// Rj∞?j
?
∞B

j0!j
?
0Rj∞?j

?
∞A

66mmmmmmmmmmmm
f

// j0!j
?
0Rj∞?j

?
∞B

66nnnnnnnnnnnn

A diagram chase shows that it suffices to show that the top face,
the right side face, and the front face are each commutative. The
top face is obtained by applying the adjunction j0!j

?
0 → id to the

morphism f ; it is commutative by the functoriality of adjunction. The
right side face is obtained by applying the adjunction id → Rj∞?j

?
∞

to the (adjunction) morphism j0!j
?
0B → B, so is commutative by the

functoriality of adjunction. And the front face is obtained by applying
the same adjunction to the morphism j0!j

?
0(f), so is again commutative.

[In fact, all six faces are commutative, always by the functoriality of
adjunction.] This concludes the proof of Theorem 3.1.
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Algêbriques. Actualitês Sci. Ind. no. 1152. Hermann & Cie., Paris, 1951.
vii+189 pp.

[Dav] Davenport, H., On the distribution of quadratic residues (mod p). J. London
Math. Soc. 6 (1931), 49-54, reprinted in The Collected Works of Harold Dav-
enport (ed. Birch, Halberstam, Rogers), Academic Press, London, New York
and San Francisco, 1977, Vol. IV, 1451-1456.

[D-H] Davenport, H., and Hasse, H., Die Nullstellen der Kongruenz-zetafunktionen
in gewissen zkylishen Fallen. J. Reine Angew. Math. 172 (1934), 152-182,
reprinted in The Collected Works of Harold Davenport (cf. [Dav]), Vol. IV,
188-1519.

[De-Const] Deligne, P., Les constantes des quations fonctionnelles des fonctions
L. Modular functions of one variable, II (Proc. Internat. Summer School,
Univ. Antwerp, Antwerp, 1972), pp. 501-597. Lecture Notes in Math., Vol.
349, Springer, Berlin, 1973.

[De-ST] Deligne, P., Applications de la formule des traces aux sommes
trigonométriques. pp. 168-232 in SGA 4 1/2, cited below.

[De-Weil II] Deligne, P., La conjecture de Weil II. Publ. Math. IHES 52 (1981),
313-428.

[Fuj-Indep] Fujiwara, K., Independence of ` for intersection cohomology (after Gab-
ber). Algebraic Geometry 2000, Azumino (Hotaka), 141-151, Adv. Stud. Pure
Math., 36, Math. Soc. Japan, Tokyo, 2002.

[Ga-Loe] Gabber, O, and Loeser, F., Faisceaux pervers l-adiques sur un tore. Duke
Math. J. 83 (1996), no. 3, 501-606.

[GGS] Goldstein, D., Guralnick, R., and Strong, R., A lower bound for the dimen-
sion of a highest weight module, to appear.

[Gr-Rat] Grothendieck, A., Formule de Lefschetz et rationalité des fonctions L.
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mologie l-adique. C. R. Acad. Sci. Paris Sér. I Math. 292 (1981), no. 3, 209-212.



BIBLIOGRAPHY 195

[Lau-SCCS] Laumon, G., Semi-continuité du conducteur de Swan (d’après P.
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