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1. Introduction

For an odd integer n ≥ 3, and a prime power q ≥ 2, the irreducible representations 
(over C) of lowest degree after the trivial representation of the group SUn(q) are a sym-
plectic representation of dimension q

n+1
q+1 −1 = qn−q

q+1 , and q representations of dimension 
qn+1
q+1 . When q is odd, exactly one of these q representations is orthogonal, otherwise 

none is. The direct sum of these q + 1 representations is called the (big, or reducible) 
Weil representation of SUn(q), and the q + 1 individual representations are referred to 
as (irreducible) Weil representations, see e.g. [14, Theorem 4.1] and [15, §4].

In the paper [7], we wrote down q + 1 rigid local systems on the affine line A1/Fp

whose geometric monodromy groups we conjectured to be the images of SUn(q) in these 
q + 1 representations. We were able to prove this only in the case when n = 3 and 
gcd(n, q + 1) = 1. In the sequel [9], we used a completely different method, which starts 
with results of Gross [4] and relies on [8], to prove these conjectures for any odd n ≥ 3
and for any odd prime power q.

In the course of thinking about these questions, we stumbled upon a striking 
representation-theoretic fact about the q Weil representations of SUn(q) (n ≥ 3 odd) 
of dimension q

n+1
q+1 . For each of them, their nth moment (i.e. the dimension of the space 

of invariants in the nth tensor power of the representation in question) is exactly one. 
For the irreducible representation of dimension q

n+1
q+1 − 1, the nth moment vanishes. At 

present we do not have a conceptual explanation for this phenomenon.

Theorem 1. Let q be a prime power, n ≥ 3 any odd integer, and let G = SUn(q). Suppose 
in addition that (n, q) �= (3, 2). Let V be one of the q+1 complex irreducible Weil modules 
of G, of dimension (qn+1)/(q+1) or (qn−q)/(q+1). Then the subspace of G-invariants 
on V ⊗n has dimension 1 if dim(V ) = (qn+1)/(q+1), and 0 if dim(V ) = (qn−q)/(q+1).

As stated in Theorem 1, each of the Weil modules of SUn(q) of dimension (qn+1)/(q+
1) has a unique (up to scalar) polynomial invariant of degree n. It would be interesting 
to know what is the geometric significance of this polynomial invariant, and to find an 
explicit construction of it.

Given this result about nth moments for SUn(q) when n is odd, it is natural to wonder 
about the situation for nth moments when n is even. [For n even and q ≥ 3 a prime power, 
the irreducible representations (over C) of lowest degree after the trivial representation 
of the group SUn(q) are an orthogonal representation of dimension qn−1

q+1 + 1 = qn+q
q+1 , 

and q representations of dimension q
n−1
q+1 .] Already for n = 4, the result is not so nice, 

cf. Theorem 4.1.
For the Weil representations of finite special linear groups SLn(q) and symplectic 

groups Sp2n(q), the latter with q odd, one also does not expect any nice regularity about 
the nth moments. We record however a curious fact about the 4th moments of Weil 
representations of Sp2n(3), see Proposition 4.2.
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2. Preliminaries

Let q = pf be any prime power and n ≥ 2. It is well known, see e.g. [15, §4], that the 
function

ζn,q = ζn : g �→ (−1)n(−q)dimF
q2

Ker(g−1W )

defines a complex character, called the (reducible) Weil character, of the general unitary 
group GUn(q) = GU(W ), where W = Fn

q2 is a non-degenerate Hermitian space with 
Hermitian product ◦. Note that the Fq-bilinear form

(u|v) = TraceFq2/Fq
(θu ◦ u)

on W , for a fixed θ ∈ F×
q2 with θq−1 = −1, is non-degenerate symplectic. This leads to 

an embedding

G̃ := GUn(q) ↪→ Sp2n(q).

Moreover, if q is odd then the restriction of any of the two big Weil characters (of degree 
qn, and denoted Weil1,2 in [8]) of Sp2n(q) to GUn(q) is exactly the big Weil character ζn
multiplied by the unique linear character of order 2 of G̃, cf. [15, §4]. We will also denote 
by ζn the restriction of this character to the special unitary group G := SUn(q).

Fix a generator σ of F×
q2 and set ρ := σq−1. We also fix a primitive (q2 − 1)th root of 

unity σ ∈ C× and let ρ = σq−1. Then

ζn =
q∑

i=0
ζ̃i,n (2.0.1)

decomposes as the sum of q + 1 characters of G̃, where

ζ̃i,n(g) = (−1)n

q + 1

q∑
l=0

ρil(−q)dim Ker(g−ρl·1W ); (2.0.2)

see [15, Lemma 4.1]. In particular, ζ̃i,n has degree (qn − (−1)n)/(q + 1) if i > 0 and 
(qn + (−1)nq)/(q + 1) if i = 0.

We will let ζi,n denote the restriction of ζ̃i,n to G = SUn(q), for 0 ≤ i ≤ q. If 
n ≥ 3, then these q + 1 characters are all irreducible and distinct. If n = 2, then ζi,n
is irreducible, unless q is odd and i = (q + 1)/2, in which case it is a sum of two 
irreducible characters of degree (q − 1)/2, see [15, Lemma 4.7]. Formula (2.0.2) implies 
that Weil characters ζi,n enjoy the following branching rule while restricting to the 
natural subgroup H := StabG(w) ∼= SUn−1(q) (w ∈ W any anisotropic vector):
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ζi,n|H =
q∑

j=0, j �=i

ζj,n−1. (2.0.3)

Furthermore, the complex conjugation fixes ζ̃0,n and sends ζ̃j,n to ζ̃q+1−j,n when 1 ≤ j ≤
q. As n ≥ 3 is odd, it is also known that ζ̃0,n is of symplectic type; let Ψ0 : G̃ → Sp(V ) be 
a complex representation affording this character. If 2 � q, then ζ̃(q+1)/2,n is of orthogonal 
type; let Ψ(q+1)/2 : G̃ → O(V ) be a complex representation affording this character. In 
the remaining cases, let Ψi : G̃ → GL(V ) be a complex representation affording the 
character ζ̃i,n.

3. Odd-dimensional unitary groups

In this section, we will consider special unitary groups G := SUn(q) = SU(W ) where 
q is any prime power and n ≥ 3 is odd. In fact, up until Theorem 3.11 we will assume 
that n = 2k + 1 ≥ 5, and fix a basis (e1, . . . , ek, f1, . . . , fk, w) of the Hermitian space 
W = Fn

q2 , in which the Hermitian form ◦ takes values

ei ◦ ej = fi ◦ fj = ei ◦ w = fi ◦ w = 0, ei ◦ fj = δi,j , w ◦ w = 1. (3.0.1)

We also fix the notation

P1 := StabG(〈e1〉Fq2
) = Q1L1, Pk := StabG(〈e1, . . . , ek〉Fq2

) = QkLk,

where Q1 = Op(P1), Qk = Op(Pk), Lk
∼= GLk(q2). The action of any X ∈ Lk = GLk(q2)

in the indicated basis of W is given by diag(X, tX−q, det(X)q−1), see [13, §5.1].
As shown in [5, Lemmas 12.5, 12.6], the Levi subgroup L has a unique orbit O on 

Irr(Z(Qk)) � {1Z(Qk)} of smallest length (q2k − 1)/(q + 1), which then occurs in the re-
striction of any Weil character ζi,n. Moreover, any λ ∈ O can only lie under an irreducible 
character of degree q of Qk. In particular, this shows that

Lemma 3.1. Suppose n = 2k + 1 ≥ 5. Then ζ0,n is irreducible over Pk. If 1 ≤ i ≤ q, then 
ζi,n|Pk

= νi + θi, where θi ∈ Irr(Pk) affords the orbit O, and νi is a linear character of 
Pk trivial at Z(Qk).

Lemma 3.2. In the notation of Lemma 3.1, assume that 1 ≤ i ≤ q. Then Ker(νi) ≥ Qk, 
and if X ∈ Lk has determinant σt as an element in GLk(q2) with t ∈ Z, then νi(X) =
σ(q−1)it.

Proof. As noted in Lemma 3.1, νi is trivial at Z(Qk), and it is Pk-invariant. But Lk acts 
transitively on the q2k − 1 nontrivial linear characters of Qk/Z(Qk), so Ker(νi) ≥ Qk. 
Next, [Lk, Lk] ∼= SLk(q2) is perfect, so νi is trivial at [Lk, Lk]. Thus there is some 
0 ≤ s ≤ q2 − 2 such that νi(X) = σts for the listed X ∈ Lk. To find s, it suffices to 
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evaluate νi(X) for some X0 that generates Lk modulo [Lk, Lk]. Let γ be a generator of 
F×
q2k such that γ(q2k−1)/(q2−1) = σ, and choose X0 ∈ Lk conjugate to

diag(γ, γq2
, . . . , γq2k−2

)

over Fq, so that det(X0) = σ. Since no eigenvalue of X0 belongs to Fq2 , X0 cannot fix 
any λ ∈ O, see formula (20) of [13]), and so θi(X0) = 0 and νi(X0) = ζi,n(X0). The 
absence of eigenvalues in Fq2 and the equality det(X0)q−1 = ρ imply by (2.0.2) that 
ζi,n(X0) = ρi = σ(q−1)i, i.e. s = (q − 1)i as stated. �
Proposition 3.3. Suppose n = 2k + 1 ≥ 5. Then (ζn)n−1 contains ζi,n with multiplicity 
one if i > 0, and zero if i = 0.

Proof. Note that (ζn)2 is just the permutation character of G acting on the point set 
of W . Hence (ζn)n−1 is the permutation character of G acting on the set Ω of ordered 
k-tuples ω = (v1, . . . , vk), vi ∈ W . Let πω = IndG

Gω
(1Gw

) denote the permutation char-
acter of G acting on the G-orbit of ω = (v1, . . . , vk), where Gω = StabG(ω), and suppose 
that ζi,n is an irreducible constituent of πω. Then

0 < [πω, ζi,n]G = [1Gω
, ζi,n|Gω

]Gω
; (3.3.1)

in particular, 1Gω
is an irreducible constituent of ζi,n|Gω

.
(i) First we consider the case where X := 〈v1, . . . , vk〉Fq2

is contained in a non-
degenerate subspace Y of W of codimension ≥ 2. Without loss we may assume that 
e1, f1 ∈ Y ⊥. Then Gω contains a natural subgroup M := SU(〈e1, f1〉Fq2

) ∼= SU2(q) (that 
acts trivially on Y ). The branching rule (2.0.3) then shows that ζi,n|M is a sum of Weil 
characters ζj,2 of M . As mentioned above, an irreducible constituent λ of ζj,2 can have 
degree 1 only when (q, j) = (2, �= 0) or (q, j) = (3, (q+1)/2). In the former case, one can 
check that λ is actually the sign character of M = SU2(2) ∼= Sym3. In the latter case, 
λ(z) �= 1 for some element z of M ∼= SU2(3) of order 3. Thus λ can never be equal to 
1M , contradicting (3.3.1).

In particular, we have shown that X cannot be non-degenerate.
(ii) Suppose now that 0 �= X ∩ X⊥ has dimension j ≤ k − 1. By Witt’s lemma, we 

may then assume that X = 〈e1, . . . , ej , w1, . . . , wk−j〉Fq2
, where 〈w1, . . . , wk−j〉Fq2

is a 
non-degenerate subspace of

〈ej+1, . . . , ek, fj+1, . . . , fk〉Fq2
.

But then X is contained in the non-degenerate subspace

Y := 〈e1, . . . , ej , f1, . . . , fj , w1, . . . , wk−j〉Fq2

of codimension n − (k + j) ≥ 2, contradicting (i).
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(iii) We have shown that dim(X ∩ X⊥) = k, i.e. X is totally singular of dimension 
k. There is only one G-orbit of such ω, and we may assume that ω = (e1, . . . , ek). The 
description of Pk given in [13, §5.1] shows that Gω = Qk. Now Lemmas 3.1, 3.2, and 
(3.3.1) show that [πω, ζi,n]G = 1 − δ0,i, as stated. �

Next we define the following linear characters λi of the parabolic subgroup P1 =
StabG(〈e1〉Fq2

) for 1 ≤ i ≤ q: if g ∈ P1 sends e1 to σt for 0 ≤ t ≤ q2 − 2, then 

λi(g) = σ−(q−1)it, and set

Λi := IndG
P1

(λi).

Proposition 3.4. Suppose n = 2k + 1 ≥ 5, (n, q) �= (5, 2), and 1 ≤ i ≤ q. Then Λi enters 
the character (ζn)2, and [(ζi,n)2, Λi] ≥ 1.

Proof. (i) As discussed in [5, §11], P ′
1 := StabG(e1) = Q1 �L′

1, where L′
1 = StabG(e1) ∩

StabG(f1) ∼= SUn−2(q). Note that Λi enters the character IndP1
P ′

1
(1P ′

1
), which in turn 

enters the character (ζn)2. Furthermore, L1 acts transitively on the q−1 nontrivial linear 
characters of Z(Q1) (which has order q), and for each such character α there is a unique 
irreducible character of Q1 of degree qn−2, which then extends to a unique character Mα

of P ′
1. We fix some nontrivial α ∈ Irr(Z(Q1)) and let K := StabP1(α) = P ′

1 ·Cq+1. By its 
uniqueness, Mα extends to K. Note that

ζi,n(1) = (qn + 1)/(q + 1) < 2qn−2(q − 1) = 2(q − 1)Mα(1).

It follows by Clifford’s theorem that

ζi,n|P1 = βi + IndP1
K (Mα), (3.4.1)

for some extension to K of Mα which we also denote by Mα, and for some character βi

of P1 of degree (qn−2 +1)/(q+1), with Z(Q1) ≤ Ker(βi). Next, Mα|L′
1

= ζn−2. Applying 
(2.0.3) to the standard subgroup L′

1 and using (3.4.1), we get

βi|L′
1

= ζi,n|L′
1
− (q − 1)ζn−2 =

∑
j �=i, j′ �=j

ζn−2,j′ − (q − 1)
q∑

j′=0
ζn−2,j′ = ζn−2,i.

In particular, βi ∈ Irr(P1).
(ii) As usual, χ̄ denotes the complex conjugate of any character χ. Note that 

StabP1(ᾱ) = K. Hence, (3.4.1) implies that

ζi,n|P1 = βi + IndP1
K (Mα). (3.4.2)

Observe that Mα affords the Z(Q1)-character qn−2ᾱ and is irreducible over P ′
1. By the 

aforementioned uniqueness, Mα agrees with Mᾱ on P ′
1, where Mᾱ is the K-character 
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of the ᾱ-isotypic component in ζi,n|P1 . As K/P1 ∼= Cq+1, these two characters differ 
from each other by a linear character of K/P ′

1, which extends to a linear character δ of 
P1/P

′
1
∼= Cq2−1. We have shown that

IndP1
K (Mα) = IndP1

K (Mᾱ · δ|K) = IndP1
K (Mᾱ) · δ, (3.4.3)

and

ζi,n|P1 = βi + IndP1
K (Mᾱ). (3.4.4)

(iii) We aim to show that one can take δ = λi in (3.4.3). Let τ be an element of F×
q4k−2

of order q2k−1 + 1 chosen such that τ (q2k−1+1)/(q+1) = ρ. Then we can find an element 
h ∈ K such that h(e1) = ρe1 and h is conjugate to

diag(ρ, ρ, τ−2, τ2q, τ−2q2
, . . . , τ−2(−q)2k−2

)

over Fq2 . Since k ≥ 2 and (k, q) �= (2, 2), by [16] there is a prime divisor � of q4k−2 − 1
that does not divide 

∏4k−3
j=1 (qj−1). In particular, � divides (q2k−1 +1), and moreover the 

�-part of |P1| is equal to the �-part of βi(1), whence βi is an irreducible character of P1

of �-defect zero. On the other hand, for any 1 ≤ t ≤ q, � divides |ht|, whence βi(t) = 0, 
and so we obtain by using (2.0.2), (3.4.2), (3.4.4) that

IndP1
K (Mᾱ)(ht) = ζi,n(ht) = −(q − 1)ρit,

IndP1
K (Mα)(ht) = ζi,n(ht) = −(q − 1)ρ−it.

It now follows from (3.4.3) that

δ(ht) = ρ−2it = ρ(q−1)it = λi(ht),

whence δ(g) = λi(g) for all g ∈ K, since the choice of h ensures that h generates K
modulo P ′

1. Together with (3.4.3), we have shown that

(IndP1
K (Mᾱ) · δ)(g) = (IndP1

K (Mᾱ) · λi)(g) (3.4.5)

for all g ∈ K. If g ∈ P1 � K then IndP1
K (Mᾱ)(g) = 0 since K � P1, and so (3.4.5) holds 

for g as well. Consequently,

IndP1
K (Mα) = IndP1

K (Mᾱ) · λi.

This identity, together with (3.4.2) and (3.4.4), implies by Frobenius’ reciprocity that
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[(ζi,n)2,Λi]G = [ζi,nΛi, ζi,n]G = [ζi,n · IndG
P1

(λi), ζi,n]G
= [IndG

P1
(ζi,n|P1 · λi), ζi,n]G = [ζi,n|P1 · λi, ζi,n]P1

≥ [IndP1
K (Mᾱ) · λi, IndP1

K (Mα)]P1 = 1,

as stated. �
Proposition 3.5. Suppose n = 2k + 1 ≥ 5 and 0 < i ≤ q. Then [(Λi)k, ζi,n] = 1.

Proof. Recall G acts transitively on the set Ξ of isotropic 1-spaces in W = Fn
q2 , with 

P1 = StabG(π1), where we set πj := 〈ej〉Fq2
for 1 ≤ j ≤ k. Hence the character Λi is 

afforded by a CG-module

V = IndG
P1

(Vπ1) = ⊕gP1∈G/P1Vg(π1),

where Vπ1 = 〈vπ1〉C is a one-dimensional P1-module with character λi, and G permutes 
the summands via h(Vg(π1)) = Vhg(π1). It follows that (Λi)k is afforded by the G-module

V ⊗k = 〈vξ | ξ ∈ Ξk〉C,

where vξ = vξ1 ⊗ vξ2 ⊗ . . .⊗ vξk for ξ = (ξ1, ξ2, . . . , ξk).
Consider the G-orbit Π of the k-tuple π := (π1, π2, . . . , πk) ∈ Ξk. Then the G-

submodule

V (Π) := 〈vξ | ξ ∈ Π〉C

of V ⊗k affords the character IndG
R(μ), where R := ∩k

j=1StabG(〈ej〉Fq2
), and

μ(h) = σ−(q−1)i
∑k

j=1 tj

if h(ej) = σtj for 0 ≤ tj ≤ q2 − 2 and 1 ≤ j ≤ k.
Note that Qk � R < Pk and Qk ≤ Ker(μ). Furthermore, if h ∈ Lk belongs to R and 

h(ej) = σtj , then det(h) (as an element in GLk(q2) is σ
∑k

j=1 tj , and so

νi(h) = σ−(q−1)i
∑k

j=1 tj = μ(h)

for the character νi considered in Lemma 3.2, i.e. νi|R = μ. By Lemma 3.1, we have 
therefore shown that

0 < [μ, ζi,n|R]R = [IndG
R(μ), ζi,n]G ≤ [(Λi)k, ζi,n]G.

On the other hand, (Λi)k enters the character (ζn)n−1 by Proposition 3.4, whence the 
upper bound [(Λi)k, ζi,n] ≤ 1 follows from Proposition 3.3. �
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Next we will study some see-saw dual pairs (cf. [10]) to determine various branching 
rules. Our consideration is based on the following well-known formula [11, Lemma 5.5]:

Lemma 3.6. Let ω be a character of the direct product S × G of finite groups S and G. 
Then

ω =
∑

α∈Irr(S)

Dα ⊗ α,

where

Dα : g �→ 1
|S|

∑
x∈S

α(x)ω(xg)

is either zero, or a character of G.

We will work with a finite group Γ that contains two dual pairs S1 ×G1 and S2 ×G2, 
where G1 ≥ G2 and S2 ≥ S1.

Lemma 3.7. Let ω be a character of Γ, and decompose

ω|G1×S1 =
∑

α∈Irr(S1)

Dα ⊗ α, ω|G2×S2 =
∑

γ∈Irr(G2)

γ ⊗ Eγ

as in Lemma 3.6. Then, for any α ∈ Irr(S1) and any γ ∈ Irr(G2) we have that

[Dα|G2 , γ]G2 = [α,Eγ |S1 ]S1 ,

and hence

Dα|G2 =
∑

γ∈Irr(G2)

[Eγ |S1 , α]S1 · γ.

Proof. Write aα,γ := [Dα|G2 , γ]G2 , so that

Dα|G2 =
∑

γ∈Irr(G2)

aα,γγ.

Then

ω|G2×S1 =
∑

α∈Irr(S1), γ∈Irr(G2)

aα,γγ ⊗ α

=
∑

γ∈Irr(G2)

γ ⊗
∑

α∈Irr(S1)

aα,γα.

Thus Eγ |S1 =
∑

α∈Irr(S ) aα,γα, and the statements follow. �

1
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First we consider the dual pair

G2 × S2 (3.7.1)

inside Γ := GU2n(q), where S2 = GU2(q) and G2 = SUn(q), and ω = ζ2n = ζ2n,q. More 
precisely, we view S2 as GU(U), where U = 〈v1, v2〉Fq2

is endowed with the Hermitian 
form ◦, with an orthonormal basis (v1, v2). Next, G2 = SUn(q) is SU(W ), where W = Fn

q2

is endowed with the Hermitian form ◦ defined in (3.0.1). Now we consider V = U⊗Fq2
W

with the Hermitian form ◦ defined via

(u⊗ w) ◦ (u′ ⊗ w′) = (u ◦ u′)(w ◦ w′)

for u ∈ U and w ∈ W . The action of G2 ×S2 on V induces a homomorphism G2 ×S2 →
Γ := GU(V ).

Now V is the orthogonal sum V1 ⊕ V2, where Vi := vi ⊗W . This gives us a subgroup

G1 := SU(V1) × SU(V2) ∼= SUn(q) × SUn(q)

of Γ that contains (the image of) G2. In fact, G2 embeds diagonally in G1: g �→ diag(g, g). 
Next,

S1 := GU(〈v1〉Fq2
) × GU(〈v2〉Fq2

) ∼= GU1(q) × GU1(q)

is just the non-split diagonal torus of S2.
In the above basis (v1, v2) of U and for 0 ≤ i, j ≤ q, we consider the character

λi,j : diag(ρa, ρb) �→ ρia+jb

of S1. Then, as explained in [15, §4], ζi,n corresponds to the ρi-eigenspace of the generator 
ρ · 1W of Z(GUn(q)), so that

Dλij
= ζi,n ⊗ ζj,n (3.7.2)

for the dual pair G1 × S1.
We use the notation of [1] for the irreducible characters of S2 = GU2(q) (with the 

parameter q + 1 in the superscripts of characters changed to 0). For instance

χ
(t)
1 |S1 = λt,t.

The decomposition

ω|S2×G2 =
∑

α⊗ Cα (3.7.3)

α∈Irr(S2)
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Table I
Degrees of C◦

α for G2 = SUn(q).

α α(1) C◦
α(1) kα

χ
(0)
1 1 (qn − (−1)n)(qn−1 + (−1)nq2)/(q + 1)(q2 − 1) 1

χ
(t)
1 , t �= 0 1 (qn − (−1)n)(qn−1 + (−1)n)/(q + 1)(q2 − 1) 0

χ(0)
q q (qn + (−1)nq)(qn − (−1)nq2)/(q + 1)(q2 − 1) 1

χ(t)
q , t �= 0 q (qn − (−1)n)(qn + (−1)nq)/(q + 1)(q2 − 1) 0

χ
(0,u)
q−1 , u �= 0 q − 1 (qn − (−1)n)(qn−1 − (−1)nq)/(q + 1)2 0

χ
(t,u)
q−1 , t, u �= 0 q − 1 (qn − (−1)n)(qn−1 + (−1)n)/(q + 1)2 0

χ
(t)
q+1 q + 1 (qn − (−1)n)(qn−1 + (−1)n)/(q2 − 1) 0

was described in [11, Proposition 6.3]. In particular, the G2-characters

C◦
α := Cα − kα · 1G2 , (3.7.4)

where α ∈ Irr(S2), are irreducible and pairwise distinct, and kα ∈ {0, 1} is listed in 
Table I.

This implies

Corollary 3.8. For the decomposition

ω|G2×S2 =
∑

γ∈Irr(G2)

γ ⊗Eγ ,

we have that

Eγ =

⎧⎪⎪⎨
⎪⎪⎩

α, γ = C◦
α for some α ∈ Irr(S2),

χ
(0)
1 + χ

(0)
q , γ = 1G2 ,

0, otherwise.

Proposition 3.9. Suppose n = 2k + 1 ≥ 5 and (n, q) �= (5, 2). For 0 < i ≤ q, and in the 
notation of (3.7.3)–(3.7.4) we have

Λi = C
χ

(i)
1

+ C
χ

(i)
q
.

Among these two irreducible constituents, only C
χ

(i)
1

enters (ζi,n)2.

Proof. (i) First, an application of Mackey’s formula reveals that Λi is the sum of two 
distinct irreducible characters of G2 = SUn(q). Clearly, [Λi, 1G2 ] = 0. By Proposition 3.5, 
Λi enters (ζn)2 = ω|G2 , so

Λi = C◦
β1

+ C◦
β2

for some β1 �= β2 ∈ Irr(S2). Next,
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Λi(1) = (qn − (−1)n)(qn−1 + (−1)n)/(q2 − 1),

so β1, β2 �= χ
(t)
q+1, see Table I.

By Proposition 3.4, at least one of γj := C◦
βj

, j = 1, 2, is an irreducible constituent of

(ζi,n)2 = Dλi,i
|G2 ,

see (3.7.2). As γj �= 1G2 , by Lemma 3.6 and Corollary 3.8 we have

[Dλi,i
|G2 , γj ]G2 = [λi,i, Eγj

|S1 ]S1 = [λi,i, βj |S1 ]S1 .

We have shown that C◦
βj

, is an irreducible constituent of (ζi,n)2 precisely when λi,i is an 
irreducible constituent of βj |S1 .

(ii) As in the proof of Proposition 3.4, let τ be an element of F×
q4k−2 of order q2k−1 +1

chosen such that τ (q2k−1+1)/(q+1) = ρ. Then we fix an element g ∈ L1 such that g(e1) =
σe1, g(f1) = σ−qf1, and g is conjugate to

diag(σ, σ−q, τ, τ−q, τ q
2
, . . . , τ (−q)2k−2

)

over Fq2 . By [16] there is a prime divisor � of q4k−2−1 that does not divide 
∏4k−3

j=1 (qj−1). 
In particular, � divides |τ |. It follows that σ and σ−q are the only eigenvalues of g that 
belong to Fq2 .

Assume in addition that q > 2; in particular, σ �= σ−q. Then, 〈e1〉Fq2
and 〈f1〉Fq2

are 
the only two g-invariant isotropic 1-spaces in W , and so

Λi(g) = 2ρ−i. (3.9.1)

Next, for any x ∈ S2 = GU2(q), ω(gx) = 1, unless x has, at least one, and therefore 
both, of σ−1 and σq as its eigenvalues. In this exceptional case, x belongs to class C(−1)

4
in the notation of [1], and ω(gx) = q2. It follows from Lemma 3.6 that

C◦
α(g) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ−t, α = χ
(t)
1 , 0 < t ≤ q,

2, α = χ
(0)
1 ,

ρ−t, α = χ
(t)
q , 0 < t ≤ q,

0, α = χ
(0)
q ,

0, α = χ
(t,u)
q−1 , 0 ≤ t, u ≤ q.

Together with (3.9.1), this readily implies that {β1, β2} = {χ(i)
1 , χ(i)

q }. Note that χ(i)
1 |S1 =

λi,i, but χ(i)
q |S1 does not contain λi,i, so we are done.

(iii) Now we consider the case q = 2. As shown in (i), we may assume that β1|S1

contains λi,i. It follows that β1 ∈ {χ(i)
1 , χ(2i,0)

q−1 }. However degree consideration using 
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Table I rules out χ(2i,0)
q−1 and shows that β1 = χ

(i)
1 . Again by degree consideration we 

now see that β2 = χ
(t)
q for some t ∈ {1, 2}. Furthermore, g fixes exactly three isotropic 

1-spaces in W (namely, the ones spanned by e1, f1, and e1 + f1), so Λi(g) = 3ρ−i. 
Arguing as in (ii), we see that

C◦
α(g) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ−t, α = χ
(t)
1 , 0 < t ≤ q,

2, α = χ
(0)
1 ,

2ρ−t, α = χ
(t)
q , 0 < t ≤ q,

0, α = χ
(0)
q .

Hence β2 = χ
(i)
q , and we are done since χ(i)

q |S1 does not contain λi,i. �
We will now work with three new dual pairs. First, we consider the dual pair G3 ×S3

inside Γ := GU2kn(q), where S3 = GU2k(q) and G3 = SUn(q), and ω = ζ2nk = ζ2nk,q. 
More precisely, we view S3 as GU(U), where U = 〈v1, . . . , v2k〉Fq2

is endowed with the 
Hermitian form ◦, with an orthonormal basis (v1, . . . , v2k). Next, G3 = SUn(q) is SU(W ), 
where W = Fn

q2 is endowed with the Hermitian form ◦ defined in (3.0.1). Now we consider 
V = U ⊗Fq2

W with the Hermitian form · defined via

(u⊗ w) ◦ (u′ ⊗ w′) = (u ◦ u′)(w ◦ w′)

for u ∈ U and w ∈ W . The action of G3 ×S3 on V induces a homomorphism G3 ×S3 →
Γ := GU(V ).

Now V is the orthogonal sum ⊕2k
i=1Vi, where Vi := vi ⊗W . This gives us a subgroup

G1 := SU(V1) × SU(V2) × . . .× SU(V2k) ∼= SUn(q)2k

of Γ that contains (the image of) G3. In fact, G3 embeds diagonally in G1: g �→
diag(g, g, . . . , g). Next,

S1 := GU(〈v1〉Fq2
) × GU(〈v2〉Fq2

) × . . .× GU(〈v2k〉Fq2
) ∼= GU1(q)2k

is just the non-split diagonal torus of S3. In the above basis (v1, v2, . . . , v2k) of U and 
for 1 ≤ i ≤ q, we consider the character

μi : diag(ρa1 , ρa2 , . . . , ρa2k) �→ ρi(
∑2k

j=1 aj) (3.9.2)

of S1.
Next, for each 1 ≤ j ≤ k we embed one copy of SU(W ) in

SU(〈v2j−1, v2j〉F 2 ⊗W )

q
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(by letting it act only on W ). This gives an embedding of G2 := SUn(q)k in G1 via

diag(g1, g2, . . . , gk) �→ diag(g1, g1, g2, g2, . . . , gk, gk).

At the same times, G3 embeds diagonally in G2 via g �→ diag(g, g, . . . , g). The action of 
G2 is centralized by

S2 := GU(〈v1, v2〉Fq2
) × GU(〈v3, v4〉Fq2

) × . . .× GU(〈v2k−1, v2k〉Fq2
) ∼= GU2(q)k.

Recall the characters Cα of SUn(q) introduced in (3.7.3).

Proposition 3.10. Suppose n = 2k + 1 ≥ 5, (n, q) �= (5, 2), and 0 < i ≤ q. Then both 
(C

χ
(i)
1

)k and (ζi,n)n−1 contain ζi,n.

Proof. (i) First we decompose

ω|G3×S3 =
∑

γ∈Irr(G3)

γ ⊗ Eγ

for the dual pair G3 × S3. By Proposition 3.3, ω|G3 = (ζn)n−1 contains ζi,n with 
multiplicity one. It follows that the G3-character Eζi,n

has degree 1, so there is some 
0 ≤ m = mi ≤ q such that

Eζi,n
(X) = ρmt

whenever X ∈ GU2k(q) has determinant equal to ρt.
(ii) Next we decompose

ω|S2×G2 =
∑

β∈Irr(S2)

β ⊗ Fβ

for the dual pair S2 ×G2. Note by (3.7.3) that if

β = β1 ⊗ β2 ⊗ . . .⊗ βk,

then

Fβ = Cβ1 ⊗ Cβ2 ⊗ . . .⊗ Cβk
. (3.10.1)

By Lemma 3.7,

[Fβ |G3 , ζi,n]G3 = [β,Eζ |S2 ]S2 .
i,n
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Since Eζi,n
has degree 1, we see that ζi,n is an irreducible constituent of Fβ|G3 precisely 

when β = Eζi,n
|S2 , that is when

β(X1, X2, . . . , Xk) = ρm
∑k

j=1 tj

whenever Xj ∈ GU2(q) has determinant equal to ρtj for 1 ≤ j ≤ k. In the notation of 
[1] we then have

β = χ
(m)
1 ⊗ χ

(m)
1 ⊗ . . .⊗ χ

(m)
1︸ ︷︷ ︸

k

. (3.10.2)

(iii) Recall by Proposition 3.4 that Λi enters (ζn)2. It follows that Λ⊗k
i =

Λi ⊗ Λi ⊗ . . .⊗ Λi︸ ︷︷ ︸
k

enters ω|G2 . Next, by Proposition 3.5, ζi,n is an irreducible con-

stituent of (Λi)k = Λ⊗k
i |G3 . Furthermore, by Proposition 3.9, Λi = C

χ
(i)
1

+ C
χ

(i)
q

. Hence, 
using (3.10.1) we see that

Λ⊗k
i =

∑
1≤j≤k, βj∈{χ(i)

1 ,χ
(i)
q }

Cβ1 ⊗ Cβ2 ⊗ . . .⊗ Cβk

=
∑

1≤j≤k, βj∈{χ(i)
1 ,χ

(i)
q }

Fβ1⊗β2⊗...⊗βk
.

Applying the result (3.10.2) of (ii), we conclude that m = i and ζi,n is an irreducible 
constituent of

F
χ

(m)
1 ⊗χ

(m)
1 ⊗...⊗χ

(m)
1

|G3 = (C
χ

(i)
1

)k.

(iv) The same argument as in (ii), but applied to the decomposition

ω|S1×G1 =
∑

α∈Irr(S1)

α⊗Dα

for the dual pair S1×G1 implies that ζi,n is an irreducible constituent of Dα|G3 precisely 
when α = Eζi,n

|S1 , that is when α = μm as introduced in (3.9.2). As m was shown to 

be equal to i in (iii), we now have that ζi,n is an irreducible constituent of

Dα|G3 = Dμi
|G3 = (ζi,n)n−1. �

We can now prove Theorem 1, which we restate:

Theorem 3.11. Let q be a prime power and let G = SUn(q) with n = 2k+1 ≥ 3. Suppose 
in addition that (n, q) �= (3, 2). Then (ζi,n)n contains 1G with multiplicity exactly one if 
1 ≤ i ≤ q and zero if i = 0.
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Proof. For n = 3, the statement was checked by A. Schaeffer Fry using the package
Chevie [3]. Likewise, the case (n, q) = (5, 2) was checked using the package GAP [2]. So 
we may assume that n ≥ 5 and (n, q) �= (5, 2). Now for i = 0 the statement follows from 
Proposition 3.3. For 1 ≤ i ≤ q we have

[(ζi,n)n−1, ζi,n]G = [(ζi,n)n, 1G]

is at most 1 by Proposition 3.3 and at least 1 by Proposition 3.10. �
4. Moments of Weil representations of SU4(q)

Theorem 1 naturally brings up the question: what are the nth moments of Weil repre-
sentations of SUn(q) when 2|n? Preliminary analysis indicates that the even-dimensional 
case does not behave as nicely as in the odd-dimensional case (particularly because real-
valued characters usually have large even moments). We restrict ourselves to record the 
following result:

Theorem 4.1. Consider the irreducible Weil characters ζi,n, 0 ≤ i ≤ q, of G := SUn(q)
as given in (2.0.2), and suppose n = 4. Then

[(ζi,4)4, 1G] =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q + 1, i = 0,
q + 2, 2 � q, i = (q + 1)/2,
q − 1, 4|(q + 1), i = (q + 1)/4, 3(q + 1)/4,
1, otherwise.

Proof. (i) We will use the dual pairs G1 × S1 = SUn(q)2 × GU1(q)2 and G2 × S2 =
SUn(q) × GU2(q) as in (3.7.1). By [11, Proposition 6.3],

ω|G2×S2 =
∑

α∈Irr(S2)

Cα ⊗ α =
∑

γ∈Irr(G2)

γ ⊗Eγ

=
∑

α∈Irr(S2)

C◦
α ⊗ α + 1G2 ⊗ (χ(0)

1 + χ(0)
q ),

where C◦
α(1) are listed in Table I. The only new feature that arises in the case n = 4 is 

that, according to [11, Proposition 6.5],

(a) if α �= β, then C◦
α = C◦

β precisely when {α, β} = {χ(t)
1 , χ(q+1−t)

1 } for some t ∈
{1, 2, . . . , q} � {(q + 1)/2}; and

(b) all C◦
α are irreducible, except when 2 � q and α = χ

(q+1)/2
1 , in which case C◦

α is a 
sum of two distinct irreducible characters (of degree (q2 + 1)(q2 − q + 1)/2).
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Hence, instead of Corollary 3.8 now we have

Eγ =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

α, if γ is an irreducible constituent
of C◦

α for some α ∈ Irr(GU2(q)),

χ
(0)
1 + χ

(0)
q , if γ = 1G2 ,

0, otherwise.

(4.1.1)

On the other hand,

ω|G1×S1 =
∑

α∈Irr(S1)

Dα ⊗ α,

where Dα is given in (3.7.2) for α = λi,j ∈ Irr(GU1(q)2). Applying Lemma 3.7 we then 
get

(ζi,4)2|SU4(q) = Dλi,i
|G2 =

∑
γ∈Irr(G2

[Eγ |GU1(q)2 , λi,i]GU1(q)2 · γ. (4.1.2)

Direct computations show for α ∈ Irr(GU2(q)) that

[α|GU1(q)2 , λi,i]GU1(q)2 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

δt,i, α = χ
(t)
1 ,

δt,2i, α = χ
(t)
q+1,

δt+u,2i, α = χ
(t,u)
q−1 ,

δt,i+(q+1)/2, α = χ
(t)
q , 2 � q,

0, α = χ
(t)
q , 2|q,

(4.1.3)

and δi,j is defined to be 1 if i ≡ j( modq + 1) and 0 otherwise. Recall that in the 
notation for α ∈ Irr(GU2(q)), the superscripts are viewed as elements of Z/(q + 1)Z if 
α(1) ≤ q, and as elements of Z/(q2 − 1)Z if α(1) = q + 1. Moreover, χ(t,u)

q−1 = χ
(u,t)
q−1 and 

χ
(t)
q+1 = χ

(−tq)
q+1 .

(ii) Consider the case 2|q. Then (4.1.1)–(4.1.3) imply that

(ζ0,4)2 = 1G + C◦
χ

(0)
1

+
∑

1≤t≤q/2

C◦
χ

(t,−t)
q−1

+
∑

1≤s≤(q−2)/2

C◦
χ

(s(q+1))
q+1

.

As ζ0,4 is real-valued, it follows that [(ζ0,4)4, 1G]G = q + 1.
Likewise, if i �= 0, then the irreducible summands of (ζi,4)2 are C◦

χ
(i)
1

, C◦
χ

(t,2i−t)
q−1

with t �=
i, and C◦

χ
(s)
q+1

with s ≡ 2i( mod q+1) (and s �≡ 0( mod q−1)); all with multiplicity one. It 

follows that the only common irreducible constituent of (ζi,4)2 and (ζi,4)2 = (ζq+1−i,4)2
is C◦

(i) = C◦
(q+1−i) , cf. (a) above. Thus [(ζi,4)4, 1G]G = 1. In fact, this argument also 
χ1 χ1
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applies to the case where 2 � q and (q + 1) � 4i, where there is an extra irreducible 
summand C◦

χ
(i+(q+1)/2)
q

(also with multiplicity 1) in (ζi,4)2.

(iii) Assume now that 2 � q. Then (4.1.1)–(4.1.3) imply that

(ζ0,4)2 = 1G + C◦
χ

(0)
1

+
∑

1≤t≤ q−1
2

C◦
χ

(t,−t)
q−1

+ C◦
χ

( q+1
2 )

q

+
∑

1≤s≤ q−3
2

C◦
χ

(s(q+1))
q+1

,

yielding [(ζ0,4)4, 1G]G = q + 1. Likewise,

(ζ q+1
2 ,4)

2 = 1G + C◦
χ

( q+1
2 )

1

+
∑

1≤t≤ q−1
2

C◦
χ

(t,−t)
q−1

+ C◦
χ

(0)
q

+
∑

1≤s≤ q−3
2

C◦
χ

(s(q+1))
q+1

.

Since ζ q+1
2 ,4 is real-valued and C◦

χ
( q+1

2 )
1

is the sum of two distinct irreducible summands, 

[(ζ q+1
2 ,4)4, 1G]G = q + 2.

Finally, the irreducible summands of (ζ q+1
4 ,4)2 are C◦

χ
(− q+1

4 )
q

, C◦
χ

( q+1
4 )

1

, C◦
χ

(t, q+1
2 −t)

q−1

with 

t �= ±(q + 1)/4, and C◦
χ

(2s+1)(q+1)/2
q+1

; all with multiplicity one. As mentioned in (a), 
C◦

χ
( q+1

4 )
1

= C◦
χ

−( q+1
4 )

1

. Thus all of these characters, except for the first one, are com-

mon irreducible summands between (ζ q+1
4 ,4)2 and (ζ q+1

4 ,4)2 = (ζ 3(q+1)
4 ,4)

2. It follows that 
[(ζ q+1

4 ,4)4, 1G]G = q − 1. �
We also record a curious fact about 4th moments of Weil representations of Sp2n(q), 

which holds specifically in the case q = 3.

Proposition 4.2. Let n ≥ 2 and let ξ, η denote an irreducible Weil character of G =
Sp2n(3) of degree (3n + 1)/2 and (3n − 1)/2, respectively. Then

[ξ4, 1G]G = 1 = [η4, 1G]G.

Proof. It was shown in [12, Proposition 5.4] that if χ ∈ {ξ, η} then Sym2(χ) and ∧2(χ)
are irreducible, of distinct degrees. Furthermore, Lemma 3.3(ii) and formula (3.5) of [6]
show that

Sym2(ξ) = Sym2(ξ̄), Sym2(η) �= Sym2(η̄), ∧2 (ξ) �= ∧2(ξ̄), ∧2 (η) = ∧2(η̄).

Since χ2 = Sym2(χ) + ∧2(χ), the statement follows. �
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