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Abstract. For certain powers q of odd primes p, and certain integers n ≥ 1, we exhibit
explicit rigid local systems on the affine line in characteristic p > 0 whose geometric and
arithmetic monodromy groups are Sp(2n, q).
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1. Introduction

The solution [Ray] (see also [Pop]) of Abhyankar’s Conjecture for the affine line in finite
characteristic p tells us that any finite group G which is generated by its Sylow p-subgroups
occurs as a quotient of the geometric fundamental group π1(A1

Fp
) of the affine line A1

Fp
over

Fp. In a series of papers (see e.g. [Ab]), Abhyankar has written down explicit equations
which realize many finite groups of Lie type as such quotients.

Suppose we are given such a finite group G (i.e., one which is generated by its Sylow
p-subgroups), together with a faithful representation

ρ : G→ GL(n,C).

Because G is finite, there is always some number field K (i.e., a finite extension of Q) such
that the image of ρ lands in GL(n,K). If we now choose a prime number ` an an embedding
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of K into Q`, we can view ρ as a representation

ρ : G→ GL(n,Q`).

We now use the fact that G is a quotient of π1(A1
Fp

). When we compose

π1(A1
Fp

)� G→ GL(n,Q`),

we get a continuous `-adic representation of π1(A1
Fp

), i.e., an `-adic local system on A1
Fp

,

whose image is the finite group G.
There are a plethora of local systems on the affine line attached to families of exponential

sums. In the ideal world, we would be able, given the data (G, ρ), and any ` 6= p, to write
down a “simple to remember” family of exponential sums incarnating a local system which
gives (G, ρ). Needless to say, we are far from being in the ideal world.

In an earlier paper [KT-gpconj], we were able to do this when G was either SL(2, q) :=
SL(2,Fq) or PSL(2, q), q a power of an odd prime p, in (one of) its lowest dimensional non-
trivial irreducible representations. In that case, the families of exponential sums in question
were of the following form. We had a nontrivial additive character ψ of Fp, and the quadratic
character χ2 of F×p , which takes the value 1 on squares and −1 on nonsquares. The two
families, with parameter t, were

t 7→ −
∑
x∈Fp

ψ(x(q+1)/2 + tx),

and
t 7→ −

∑
x∈F×p

ψ(x(q+1)/2 + tx)χ2(x),

with analogous sums over finite extensions of Fp. The first family gave a representation of
dimension (q − 1)/2, the second a representation of dimension (q + 1)/2. When (q + 1)/2
was odd, the first family took care of SL(2, q) and the second took care of PSL(2, q). When
(q + 1)/2 was even, the situation was reversed.

In this paper, we are able to do a similar thing for the lowest dimension nontrivial ir-
reducible representations of the symplectic groups Sp(2n, q) and PSp(2n, q) (subject to a
technical hypothesis, that n is prime to p and that when we write q = pa, also a is prime to
p).

Let us illustrate the simplest case of this. The group SL(2, pa) = Sp(2, pa) has a nat-
ural embedding into Sp(2a, p), by thinking of F2

pa as a 2a-dimensional Fp space, and en-

dowing that second space with the TraceFpa/Fp of the Fpa-valued symplectic form on F2
pa .

In this way, we also get an embedding of PSL(2, pa) = PSp(2, pa) into PSp(2a, p). The
representation-theoretic fact which we exploit is that these lowest dimensional (nontrivial
irreducible) representations of Sp(2a, p) and of PSp(2a, p) remain irreducible when restricted
to their subgroups SL(2, pa) and PSL(2, pa), and these restrictions are the lowest dimensional
(nontrivial irreducible) representations of these smaller groups.

It turns out that we realize these Sp and PSp representations by the two parameter families,
with parameters (s, t),

(s, t) 7→ −
∑
x∈Fp

ψ(x(p
a+1)/2 + sx(p+1)/2 + tx),
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and

(s, t) 7→ −
∑
x∈F×p

ψ(x(p
a+1)/2 + sx(p+1)/2 + tx)χ2(x),

with analogous sums over finite extensions of Fp.
These two-parameter families, with the s parameter set to 0, give back the one-parameter

families which took care of SL(2, pa) and of PSL(2, pa). Thus the groups attached to the two-
parameter families, once we prove them to be finite, are finite irreducible (on Q`

n
) groups

which contain these SL and PSL groups, hence are irreducible inside the same GL(n,Q`),
with n successively (pa − 1)/2 or (pa + 1)/2.

In Section 2, we recall the representation-theoretic facts about symplectic groups that we
need. In Section 3, we give the construction of the local systems we work with. In Section
4, we show that the containment alluded to in the above paragraph is extremely restrictive.
In Section 5, we use a beautiful idea of van der Geer and van der Vlugt [vdG-vdV] to
prove that our two parameter local systems give rise to finite groups, which by Section 4
are on a short list. Using a combination of information gained in proving the finiteness with
facts about representation theory, we show in Section 6 that the monodromy groups of our
two-parameter local systems are the desired Sp and PSp groups. Section 7 is devoted to a
technical “matching” question. In Section 8, we specialize s to 1 and show that the resulting
one-parameter families still have the desired Sp and PSp groups.

2. Representation-theoretic facts about Sp(2n, q)

Let p be an odd prime, q a power of p, and n ≥ 1 an integer, with nq > 3 (to exclude the
case n = 1, q = 3 of SL(2, 3)). After the trivial representation, the next lowest dimensional
(complex, irreducible) representations of the finite group Sp(2n, q) are

(2.0.1)
two of dimension (qn − 1)/2, the “small” ones, and
two of dimension (qn + 1)/2, the “large” ones,

see e.g. [TZ1, Theorem 5.2]. These four representations are called the “individual” Weil
representations. A remarkable fact about these representations of these groups is that, if we
write q = pa, then we have inclusions of groups

SL(2, pan) = Sp(2, qn) ↪→ Sp(2n, q) ↪→ Sp(2na, p),

and the restriction of any of the individual Weil representations of the big group Sp(2na, p)
is one of the individual Weil representations of SL(2, pan) and of the intermediate group
Sp(2n, q). (Indeed, the statement holds for the inclusion SL(2, pan) ↪→ Sp(2na, p), by applying
(2.0.1) to Sp(2, pan) and taking into account the character values at its central involution,
whence it also holds for the intermediate subgroup. But see also Lemma 4.3 below for a
necessary caution.)

Next we recall some properties of the Weil representations and their characters, which are
described for instance in [Gross, §13]. If q ≡ 1(mod 4), all four individual Weil representa-
tions of Sp(2n, q) are self-dual. Each of the small ones is a faithful representation toward
Sp((qn − 1)/2,C), and each of the large ones factors through a faithful representation of the
simple group PSp(2n, q) toward SO((qn + 1)/2,C).
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If q ≡ 3(mod 4), none of the four is self-dual: the two small ones are duals of each other,
and the two large ones are duals of each other. If in addition qn ≡ 1(mod 4), then each
of the small ones is faithful toward SL((qn − 1)/2,C), and each of the large ones factors
through a faithful representation of the simple group PSp(2n, q) toward SL((qn + 1)/2,C).
If, on the other hand, qn ≡ 3(mod 4), then each of the small ones factors through a faithful
representation of the simple group PSp(2n, q) toward SL((qn−1)/2,C), and each of the large
ones is faithful toward SL((qn + 1)/2,C).

All four representations have characters which take values in the (ring of integers of) the
field Q(

√
εqq), for εq the sign defined by

εq := (−1)(q−1)/2,

so that εq = 1 when q ≡ 1(mod 4), and εq = −1 when q ≡ 3(mod 4).
Thus when q is a square, all four individual Weil representations have integer traces. When

q is not a square, the characters of the two small (respectively of the two large) individual
Weil representations are Galois conjugates, by Gal(Q(

√
εqq)/Q), of each other.

There is a unique “matching” of small and large Weil representations as follows. If we
name the two small representations Small1 and Small2, there is a unique naming of the large
ones as Large1 and Large2 so that each of the direct sums, called the total Weil representations
Weil1 and Weil2,

Weil1 := Small1 ⊕ Large1, Weil2 = Small2 ⊕ Large2,

has the property that for each element g ∈ Sp(2n, q), the square trace (Trace(Weili(g)))2

is a power of ±q. More precisely, as g runs over Sp(2n, q), we attain precisely the powers
{(εqq)i}0≤i≤2n, see e.g. [GMT, Theorem 2.1].

Another characterization of the correct matching is the property that for each element
g ∈ Sp(2n, q), the square absolute value |Trace(Weili(g))|2 is a non-negative power of p.

Yet another characterization of the correct matching is the property that for each element
g ∈ Sp(2n, q), the square absolute value |Trace(Weili(g))|2 is a non-negative power of q. As
g runs over Sp(2n, q), we attain precisely the powers {qi}0≤i≤2n. In fact, one knows that

|Trace(Weili(g))|2 = qdimFq (Ker(g−1)),

with Ker taken here in the tautological representation of Sp(2n, q) on a 2n-dimensional
symplectic space over Fq (again see [GMT, Theorem 2.1] for instance), but we will not use
this more precise information.

It will also be important to pay attention to the parity of the dimensions of the indi-
vidual Weil representations. If qn ≡ 1(mod 4), then Smalli is even-dimensional and Largei
is odd-dimensional. If qn ≡ 3(mod 4), then Smalli is odd-dimensional and Largei is even-
dimensional. So for i = 1, 2 we name them Eveni and Oddi accordingly:

(2.0.2)
If qn ≡ 1(mod 4), then Eveni := Smalli and Oddi := Largei.
If qn ≡ 3(mod 4), then Eveni := Largei and Oddi := Smalli.

The distinction is this. Each Eveni is a faithful representation of Sp(2n, q), while each Oddi
factors through a (necessarily faithful) representation of the simple group PSp(2n, q).
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3. `-adic local systems, and statement of main results

Now fix a prime ` 6= p, and embeddings

Q(ζp) ⊂ Q`(ζp) ⊂ C.

We will work with `-adic cohomology, over the coefficient field Q`(ζp).
We fix a nontrivial additive character ψ of Fp, i.e., a nontrivial character of the additive

group of Fp. Given an element a ∈ F×p , we denote by ψa the nontrivial additive character of
Fp given by

ψa(x) := ψ(ax).

We denote by χ2 the quadratic character of F×p , extended by zero across 0 ∈ Fp. On the

affine line A1/Fp, we have the Artin-Schreier sheaf Lψ, defined as follows, cf. [Ka-ESDE,
7.2.1]. We have the Fp-torsor

1− Frobp : A1 → A1; x 7→ x− xp,

on which a ∈ Fp acts by additive translation x 7→ x + a. This torsor defines a surjective
homomorphism

π1(A1/Fp)� Fp,

whose composition with ψ, followed by the inclusion of µp ⊂ Q`
×

= GL(1,Q`), is the lisse
rank one sheaf Lψ on A1/Fp. On Gm/Fp, we have the Kummer sheaf Lχ2 , and its extension
by zero to A1/Fp (which, when no confusion can arise, we will also denote Lχ2).

With an eye toward Sp(2n, q), we now introduce the (negative of) a quadratic Gauss sum,
as follows. If qn ≡ 1(mod 4), then we define

AFp,qn := −g(ψ2, χ2) := −
∑
x∈F×p

ψ(2x)χ2(x).

If qn ≡ −1(mod 4), then we define

AFp,qn := −g(ψ−2, χ2) := −
∑
x∈F×p

ψ(−2x)χ2(x).

When we are dealing with a finite extension field k/Fp, we use the nontrivial additive
character ψk := ψ ◦ Tracek/Fp of k and the quadratic character χ2,k := χ2 ◦ Normk/Fp of k×,
extended by zero across 0 ∈ k. We define

Ak,qn := A
deg(k/Fp)
Fp,qn

= −
∑
x∈k×

ψk(2xε)χ2,k(x),

with ε = ±1 chosen so that qn ≡ ε(mod 4). The last equality is by the Hasse-Davenport
relation.

When n ≥ 2, we define three lisse sheaves on A2/Fp, with coordinates (s, t). The first, lisse
of rank (qn − 1)/2, is denoted

G(ψ, n, q,1).

The second, lisse of rank (qn + 1)/2, is denoted

G(ψ, n, q, χ2).
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The third, lisse of rank qn, is simply the direct sum

W(ψ, n, q) := G(ψ, n, q,1)⊕ G(ψ, n, q, χ2).

Their definitions are as follows. On A3/Fp with coordinates (x, s, t), we have the rank one
local systems

A := Lψ(x(qn+1)/2+sx(q+1)/2+tx) and B := Lψ(x(qn+1)/2+sx(q+1)/2+tx) ⊗ Lχ2(x).

We have the projection map

π : A3 → A2, (x, s, t) 7→ (s, t).

We first define
F(ψ, n, q,1) := R1π!A, F(ψ, n, q, χ2) := R1π!B.

[Looking fibre by fibre, we see the Riπ! vanish for i 6= 1.] That these sheaves are lisse, of the
asserted ranks, may be seen as follows. They are “sheaves of perverse origin” in the sense
of [Ka-SC]. According to [Ka-SC, Prop. 11], such a sheaf is lisse of given rank N precisely
when its stalks all have rank N . For fixed (s, t) ∈ A2(Fp), the stalk at (s, t) is the compact
cohomology group

H1
c (A1/Fp,Lψ(x(qn+1)/2+sx(q+1)/2+tx) ⊗ (either Q` or Lχ2(x))).

That these groups have the asserted dimensions, (qn−1)/2 and (qn+1)/2 respectively, follows
from the Euler-Poincaré formula, cf. [Ka-GKM, 2.3.1]. Once we have this cohomological
description of their stalks, it results from Weil [Weil] that these sheaves are each pure of
weight one.

Once we have F(ψ, n, q,1) and F(ψ, n, q, χ2), we define their ”half Tate-twists” G(ψ, n, q,1)
and G(ψ, n, q, χ2), but using the quadratic Gauss sum AFp,qn (instead of always using

√
p):

G(ψ, n, q,1) := F(ψ, n, q,1)⊗ (1/AFp,qn)deg,

G(ψ, n, q, χ2) := F(ψ, n, q, χ2)⊗ (1/AFp,qn)deg.

It results from the Lefschetz Trace Formula [Gr-Lef] that their trace functions are given
as follows. For k/Fp a finite extension field, and (s, t) ∈ A2(k), we have

Trace(Frobk,(s,t)|G(ψ, n, q,1)) = (−1/Ak,qn)
∑
x∈k

ψk(x
(qn+1)/2 + sx(q+1)/2 + tx),

Trace(Frobk,(s,t)|G(ψ, n, q, χ2)) = (−1/Ak,qn)
∑
x∈k

ψk(x
(qn+1)/2 + sx(q+1)/2 + tx)χ2,k(x),

and
Trace(Frobk,(s,t)|W(ψ, n, q)) = (−1/Ak,qn)

∑
x∈k

ψk(x
qn+1 + sxq+1 + tx2).

When there is no chance of ambiguity, we will write simply Ak for Ak,qn .
For compatibility with the Even and Odd nomenclature, we define

Godd(ψ, n, q) := whichever of G(ψ, n, q,1) or G(ψ, n, q, χ2) has odd rank

Geven(ψ, n, q) := whichever of G(ψ, n, q,1) or G(ψ, n, q, χ2) has even rank.

For compatibility with the Small-Large dichotomy, we define

Gsmall(ψ, n, q) := G(ψ, n, q,1), Glarge(ψ, n, q) := G(ψ, n, q, χ2).
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The main results of the paper are the following two theorems.

Theorem 3.1. Suppose that n ≥ 2 is prime to p, and that q = pa with p - a. Then we have
the following results.

(i) The geometric monodromy group Ggeom of Geven(ψ, n, q) is Sp(2n, q) in one of its indi-
vidual even-dimensional Weil representations Eveni. After pullback to A2/Fq, we have
Ggeom = Garith.

(ii) The geometric monodromy group Ggeom of Godd(ψ, n, q) is PSp(2n, q) in one of its in-
dividual odd-dimensional Weil representations Oddi. After pullback to A2/Fq, we have
Ggeom = Garith.

(iii) The two local systems Geven(ψ, n, q) and Godd(ψ, n, q) are correctly matched, in the sense
that the geometric monodromy group of W(ψ, n, q) is Sp(2n, q) in one of its total Weil
representations. After pullback to A2/Fq, we have Ggeom = Garith.

We next specialize s 7→ 1, to obtain lisse sheaves

G1(ψ, n, q,1), G1(ψ, n, q, χ2), and W1(ψ, n, q)

on A1/Fp, whose trace functions at t ∈ k, for k/Fp a finite extension field, are given by

Trace(Frobk,t|G1(ψ, n, q,1)) = (−1/Ak)
∑
x∈k

ψk(x
(qn+1)/2 + x(q+1)/2 + tx),

Trace(Frobk,t|G1(ψ, n, q, χ2)) = (−1/Ak)
∑
x∈k

ψk(x
(qn+1)/2 + x(q+1)/2 + tx)χ2,k(x),

and
Trace(Frobk,t|W1(ψ, n, q)) = (−1/Ak)

∑
x∈k

ψk(x
qn+1 + xq+1 + tx2).

The local systems G1(ψ, n, q,1) and G1(ψ, n, q, χ2) are the rigid local systems of the title.
They are rigid because they are, geometrically, the Fourier Transforms FTψ of the rank one
local systems

Lψ(x(qn+1)/2+x(q+1)/2) and Lψ(x(qn+1)/2+x(q+1)/2) ⊗ Lχ2(x)

respectively. It is trivial that rank one local systems are rigid, and one knows [Ka-RLS, 3.0.2]
that Fourier Transform preserves rigidity.

As above, we define G1,even(ψ, n, q,1) and G1,odd(ψ, n, q,1) by

G1,odd(ψ, n, q) := whichever of G1(ψ, n, q,1) or G1(ψ, n, q, χ2) has odd rank,

G1,even(ψ, n, q) := whichever of G1(ψ, n, q,1) or G1(ψ, n, q, χ2) has even rank.

Theorem 3.2. Suppose that n ≥ 2 is prime to p, and that q = pa with p - a. Then we have
the following results.

(i) The geometric monodromy group Ggeom of G1,even(ψ, n, q) is Sp(2n, q) in one of its even-
dimensional individual Weil representations Eveni. After pullback to A1/Fq, we have
Ggeom = Garith.

(ii) The geometric monodromy group Ggeom of G1,odd(ψ, n, q) is PSp(2n, q) in one of its odd-
dimensional individual Weil representations Oddi. After pullback to A1/Fq, we have
Ggeom = Garith.
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(iii) The two local systems G1,even(ψ, n, q) and G1,odd(ψ, n, q)are correctly matched, in the
sense that the geometric monodromy group of W1(ψ, n, q) is Sp(2n, q) in one of its total
Weil representations. After pullback to A1/Fq, we have Ggeom = Garith.

As the reader will see, we make fundamental use of the ideas and results of van der Geer
and van der Vlugt [vdG-vdV, §13, 364-367].

4. Group-theoretic information

In this section, we fix an integer N ≥ 1, a prime p, and a factorization N = AB. We have
inclusions of groups

SL(2, pN) ↪→ Sp(2A, pB) ↪→ Sp(2N, p).

Moreover, the Galois group Gal(FpB/Fp) acts by entry-wise conjugation on Sp(2A, pB). De-
noting by CB the cyclic group of order B, we thus have the semidirect product group
Sp(2A, pB) o CB, and we have inclusions

Sp(2A, pB) ↪→ Sp(2A, pB) o CB ↪→ Sp(2N, p).

To see this, start with the group SL(2, pN), thought of as the automorphism group of the
2-dimensional FpN -vector space (FpN )2, with the symplectic form

〈(a, b), (c, d)〉 := ad− bc.
Then think of this same space as a 2A-dimensional FpB -vector space, with symplectic form

〈(a, b), (c, d)〉F
pB

:= TraceF
pN

/F
pB

(ad− bc).

Its automorphism group is Sp(2A, pB). Now think of Sp(2N, p) as the automorphism group
of (FpN )2 as a 2N -dimensional vector space over Fp, with the symplectic form

〈(a, b), (c, d)〉Fp := TraceF
pN

/Fp(ad− bc).

Seen this way, the coordinate-wise action of Gal(FpN/FpB) embeds this Galois group into
Sp(2A, pB).

Similarly, if we think of Sp(2A, pB) as the automorphism group of (FpB)2A with the standard
symplectic form

〈(xi)i, (yi)i〉F
pB

:=
A∑
j=1

(xjyj+A − xj+Ayj),

and we think of Sp(2N, p) as the automorphism group of (FpB)2A as Fp-vector space, with
the symplectic form

〈(xi)i, (yi)i〉Fp := TraceF
pB
/Fp(

A∑
j=1

(xjyj+A − xj+Ayj)),

then the coordinate-wise action of Gal(FpB/Fp) embeds that Galois group into Sp(2N, p).
Given a divisor b of B, we denote by Cb the cyclic subgroup of CB of order b. Thus for

each divisor b of B, we have inclusions

(4.0.1)
SL(2, pN) ↪→ Sp(2A, pB) ↪→ Sp(2A, pB) o Cb

↪→ Sp(2A, pB) o CB ↪→ Sp(2N, p).
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Similarly, we have inclusions of the projective groups

(4.0.2)
PSL(2, pN) ↪→ PSp(2A, pB) ↪→ PSp(2A, pB) o Cb

↪→ PSp(2A, pB) o CB ↪→ PSp(2N, p).

The main results of this section are the following two theorems.

Theorem 4.1. Suppose that pN ≡ 1(mod 4) (so that the even Weil representations land in
SL((pN − 1)/2,C) and the odd ones land in SL((pN + 1)/2,C)) and that pN ≥ 9. Then we
have the following results.

(i) View SL(2, pN) as sitting inside SL((pN − 1)/2,C) by one of its even Weil representa-
tions. Let G be a finite group sitting in

SL(2, pN) ≤ G < SL((pN − 1)/2,C).

Suppose further that G, so viewed, has all its traces in Q(
√
εpp). Then for some fac-

torization N = AB and for some divisor b of B, G = Sp(2A, pB) o Cb as specified in
(4.0.1).

(ii) View PSL(2, pN) as sitting inside SL((pN + 1)/2,C) by one of its odd Weil representa-
tions. Let G be a finite group sitting in

PSL(2, pN) ≤ G < SL((pN − 1)/2,C).

Suppose further that G, so viewed, has all its traces in Q(
√
εpp). Then for some fac-

torization N = AB and for some divisor b of B, G is PSp(2A, pB) o Cb as specified in
(4.0.2).

Theorem 4.2. Suppose that pN ≡ 3(mod 4) (so that the even Weil representations land in
SL((pN + 1)/2,C) and the odd ones land in SL((pN − 1)/2,C)) and that pN ≥ 11. Then we
have the following results.

(i) View SL(2, pN) as sitting inside SL((pN + 1)/2,C) by one of its even Weil representa-
tions. Let G be a finite group sitting in

SL(2, pN) ≤ G < SL((pN − 1)/2,C).

Suppose further that G, so viewed, has all its traces in Q(
√
εpp). Then for some fac-

torization N = AB and for some divisor b of B, G is Sp(2A, pB) o Cb as specified in
(4.0.1).

(ii) View PSL(2, pN) as sitting inside SL((pN − 1)/2,C) by one of its odd Weil representa-
tions. Let G be a finite group sitting in

PSL(2, pN) ≤ G < SL((pN + 1)/2,C).

Suppose further that G, so viewed, has all its traces in Q(
√
εpp). Then for some fac-

torization N = AB and for some divisor b of B, G is PSp(2A, pB) o Cb as specified in
(4.0.2).

It is not true that given an embedding Sp(2n, qm) ↪→ Sp(2nm, q) (by base change as
above), the two distinct irreducible Weil characters of the same degree of Sp(2nm, q) would
restrict to two distinct irreducible Weil characters of Sp(2n, qm). However, the following is
true:
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Lemma 4.3. Let q be an odd prime power and let n,m ≥ 1. For a fixed degree D :=
(qnm ± 1)/2 and fixed irreducible Weil representations

Φ : Sp(2n, qm)→ SL(D,C), Λ : Sp(2nm, q)→ SL(D,C),

there exists an embedding Θ : Sp(2n, qm)→ Sp(2nm, q) such that the representations Φ and
Λ ◦Θ of Sp(2n, qm) are equivalent.

Proof. As discussed above, we can fix an embedding ι of X := Sp(2n, qm) into Y :=
Sp(2nm, q). It follows from (2.0.1) that Λ ◦ ι is an irreducible Weil representation of X
of degree D. If Λ ◦ ι ∼= Φ, then we can take Θ = ι. Otherwise, there is an outer diagonal
automorphism α of X such that Λ ◦ ι ◦ α ∼= Φ, in which case we take Θ = ι ◦ α. �

Lemma 4.4. Let G = Sp(2A, pB)oCb be as specified in (4.0.1) and consider the restriction
of an irreducible Weil representation

Λ : Sp(2N, p)→ SL(D,C),

with character λ, to G. Then G is generated by the elements g ∈ G with λ(g) 6= 0.

Proof. We need to show that
H := 〈g ∈ G | λ(g) 6= 0〉

coincides with G. By [TZ2, Lemma 2.6], λ(t) 6= 0 for any transvection t ∈ Sp(2A, pB). It
follows that H contains all transvections of N := Sp(2A, pB), and so H ≥ N . Next, since Λ
is irreducible over N C G, it follows from [Is, Lemma 8.14(c)] that

∑
y∈Nx |λ(y)|2 = |N | for

any coset Nx in G. In particular, there is some h ∈ N such that λ(σh) 6= 0, where σ is a
generator of Cb. Thus H 3 σh, and so H = G. �

Proof of Theorem 4.1 and Theorem 4.2. First we give an outline of the proof of these two key
technical results. Let D = (pN ± 1)/2 ≥ 4 denote the dimension of the Weil representation
in question, and let ρ denote the irreducible character of G acting on V = CD. In part
(a) we show that |Z(G)| ≤ 2. Then in part (b) we prove that the representation of G
on V is primitive, tensor indecomposable, and not tensor induced. Applying the version
[GT, Proposition 2.8] of Aschbacher’s theorem, we deduce that G is almost simple, that is,
SCG/Z(G) ≤ Aut(G) for some non-abelian simple group S. In the subsequent parts (c)–(g)
of the proof, we analyze all possibilities for S in accordance with the Classification of Finite
Simple Groups [GLS].

(a) First we show that Z(G) is of order 2, respectively 1, if D is even, respectively odd.
Indeed, by Schur’s lemma, any z ∈ Z(G) acts on V as a scalar γ, a primitive cth-root of unity
in C for some integer c ≥ 1. By hypothesis,

Dγ = ρ(z) ∈ Q(
√
εpp) ⊆ Q(exp(2πi/p)).

Thus γ is a root of unity of order dividing 2p. Furthermore, c is coprime to p since 1 =
det(z) = γD and hence c divides D. Hence c = 1 if 2 - D, and c ≤ 2 if 2|D. In fact, when
2|D the central involution of SL(2, pN) acts as the scalar −1 on V , whence |Z(G)| = 2 as
claimed.

Inflating the representation to SL(2, pN) in the case D is odd, we will assume that G
contains H := SL(2, q) with q := pN . In light of this inflation, we have shown that Z(G) =
Z(H) ∼= C2.
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(b) It is well known, see e.g. the first two lines of [KL, Table 5.2.A], that the smallest
index P (H) of proper subgroups of H = SL(2, q) is at least q if q 6= 9 and equals 6 if q = 9.
Since H acts irreducibly on V of dimension D = (q± 1)/2, it follows that the CH-module V
is primitive.

Next suppose that G preserves a tensor decomposition V = A⊗CB, with dimA, dimB > 1.
Then H acts projectively and irreducibly on each of A and B. Again it is well known that
the smallest dimension e(H) of nontrivial irreducible, projective representations of H over
fields of characteristic 6= p is (q − 1)/2 if q 6= 9 and 3 if q = 9. Since e(H)2 > D, it must be
the case that H acts trivially projectively on at least one of A and B, but this contradicts
the irreducibility hypothesis. Thus the CH-module V is tensor indecomposable.

Suppose that G preserves a tensor induced decomposition V = A1⊗A2⊗. . .⊗Ak ∼= A⊗k1 for
some k > 1. Clearly, k < D < P (H), whence H cannot act transitively on {A1, A2, . . . , Ak}.
But this means that H preserves a tensor decomposition of V , contradicting the previous
result. Thus the CG-module V is not tensor induced.

Now we can apply [GT, Proposition 2.8] to (the image in SL(V ) of) G to arrive at one
of the three cases (i)–(iii) listed there. As G is finite and Z(SL(V )) is finite, case (i) cannot
occur. Suppose we are in case (iii). Then D = tm for some prime t and some m ≥ 1.
In this case, t 6= p and the action of H on a finite t-group E that acts irreducibly on V
induces a homomorphism Φ : H → Sp(2m, t) with Ker(Φ) ≤ Z(H). If D ≥ 5, we see that
2m ≤ tm−2 < (q−1)/2, whereas the smallest degree of nontrivial irreducible representations
of H over a field of characteristic t is (q − 1)/2, yielding a contradiction. If D = 4, then
we have necessarily (p,N, t,m) = (3, 2, 2, 2). The proof of [GT, Proposition 2.8] shows that
GCP , where P = Z(P )E is a 2-group acting irreducibly on V = C4 and E is an extraspecial
2-group of order 25. By Schur’s lemma, Z(P ) ≤ Z(G) ∼= C2 (as shown in (a)), whence
P = E = 21+4

± . But this leads to a contradiction, since H = SL(2, 9) cannot act nontrivially
on P .

We have therefore shown that S C G/Z(G) ≤ Aut(S) for some finite non-abelian simple
group S. Furthermore, if L = G(∞) denotes the last term of the derived series of G, then
L/Z(L) ∼= S, and L acts irreducibly on V by [GT, Lemma 2.5]. In particular, the smallest
dimension eC(S) of nontrivial irreducible, projective complex representations of S satisfies

(2.5.1) eC(S) ≤ D.

Moreover, H ≤ L since H is perfect.

(c) Here we consider the possibility S = An for some n ≥ 5. Indeed, if q ≥ 11, then
n ≥ P (H) = q. It follows from [KL, Proposition 5.3.7] that

eC(S) = eC(An) ≥ n− 2 ≥ q − 2 > (q + 1)/2 > D,

contradicting (2.5.1). Suppose q = 9. Then n ≥ P (S) = 6 and n ≤ 7 as eC(A8) = 8 > D. If
n = 7, then using [Atlas] one can see that L = 2A7 and Q(ψ|L) = Q(

√
−7), contrary to the

assumptions. If n = 6, then one easily checks using [Atlas] that either D = 5 and

A6
∼= PSp(2, 9)CG ≤ PSp(2, 9) o C2,

or D = 4 and

2A6
∼= Sp(2, 9)CG ≤ Sp(2, 9) o C2.
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Furthermore, if S 6∼= An (and q = 9 still), then the condition that L acts irreducibly on
CD with D = 4, 5 implies by inspecting [TZ1, Table I] and [Atlas] that either (L,D) =
(SL(2, 7), 4), or (L,D) = (PSL(2, 11), 5), or S = PSp(4, 3). The first two possibilities are
ruled out since PSL(2, 9) cannot be embedded in S or L. In the third case, we have (G,D) =
(PSp(4, 3), 5) or (Sp(4, 3), 4), as stated. From now on we may assume that q ≥ 11 and D ≥ 5.

Next, suppose that S is a simple classical group of dimension d defined over Fs of prime
characteristic t 6= p (with d chosen minimal possible). Then d ≥ e(H) = (q − 1)/2 ≥ 5.
It follows from (2.5.1) that eC(S) ≤ d + 1 < d2/2. Hence [KL, Corollary 5.3.11] implies
that (S, d) = (SU(5, 2), 5), (Ω±(8, 2), 8), (Sp(6, 2), 6). An inspection of character tables of
universal covers of S rules out the existence of a complex irreducible character of degree D
for L in the cases S = SU(5, 2) and Ω−(8, 2). Suppose S = Sp(6, 2). Then (q− 1)/2 ≤ d = 6,
whence q ∈ {11, 13} and so H = SL(2, q) cannot embed in L, a contradiction. Likewise, if
S = Ω+(8, 2), then (q−1)/2 ≤ d = 8, whence q ∈ {11, 13, 17} and again H = SL(2, q) cannot
embed in L, a contradiction.

Suppose that S is a simple exceptional group defined over Fs of prime characteristic t 6= p.
Then the universal cover of S has a nontrivial irreducible representation of smallest possible
degree d ≤ 248 over Fs, and so (q−1)/2 = e(H) ≤ d yields q ≤ 497. But then (2.5.1) implies
that eC(S) ≤ (q + 1)/2 ≤ d + 1 ≤ 249. The Landazuri–Seitz–Zalesskii bounds [KL, Table
5.3.A] now show that (S, d) = (F4(2),≤ 26), (2F4(2)′, 26), (3D4(s ≤ 3), 8), (G2(s ≤ 5),≤ 7),
(2B2(s ≤ 32), 4). Among these groups, the only one that can have a projective irreducible
complex representation of degree D ≤ d+ 1 is S = 2F4(2)′. In this case, (q − 1)/2 ≤ d = 26,
q ≤ 53. On the other hand, (q + 1)/2 ≥ D ≥ eC(S) = 26, whence q = 53. But this is a
contradiction, as SL(2, 53) cannot embed in L.

(d) Now we consider the case S is a simple group of Lie type defined over a field Fs with
s = pf . We can find a simple algebraic group G of adjoint type, defined over Fp, and a
Frobenius endomorphism F : G → G such that S ∼= [GF ,GF ]. Recall that H/Z(H) contains
a p′-element x of order (q+ 1)/2, and that H/Z(H) ↪→ L/Z(L) ∼= S. As shown in part (i) of
the proof of [GKT, Theorem 9.10],

(2.5.2) |x| ≤ (s+ 1)r,

if r denotes the rank of G. We will show that in most of the cases (2.5.2) contradicts the
assumption

(2.5.3) eC(S) ≤ D = (q ± 1)/2 ≤ (q + 1)/2 = |x|.

We will freely use various lower bounds on eC(S) as recorded in [KL, Table 5.3.A] and [T, Ta-
ble I]. First we consider the case where V |L is a Weil module and S ∈ {PSL(n, s),PSU(n, s)}
with n ≥ 3, or S = PSp(2n, s) with n ≥ 1.

(d1) If S = PSL(n, s) then

dimV = (sn − s)/(s− 1), (sn − 1)/(s− 1)

is congruent to 0 or 1 modulo p, and so it can be equal to D only when dimV = (sn−s)/(s−1)
(and p = 3). But in this exception, V |L is an induced module, contradicting the primitivity
of the CH-module V .
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(d2) Similarly, if S = PSU(n, s), then V |L can be a Weil module of dimension D = (q±1)/2
only when D = (q + (−1)n)/2, p = 3, and dimV = (sn − (−1)n)/(s+ 1). But in this case,

q = (2D − (−1)n)3 = (2sn−1 − 2sn−2 + . . .± 2s2 ± (2s− 3))3 ≤ s

(where Xp denotes the p-part of the integer X), and so

(s+ 1)/2 ≥ D = (sn − (−1)n)/(s+ 1) ≥ s(s− 1),

a contradiction.

(d3) Suppose that S = PSp(2n, s). Then V |L can be a Weil module of dimension (q±1)/2
only when

pN = q = sn = pnf

and dimV = (sn±1)/2. Again by Schur’s lemma, CG(L) = Z(G) = Z(H), and furthermore,
the outer-diagonal automorphisms of L fuse the two Weil representations of degree D of L.
It follows that G/Z(G) can induce only field automorphisms of L, and so G/L is a cyclic
group of outer field automorphisms of order say b|f .

Assume that 2 - D. Then (after modding out by Z(H) that acts trivially on V ) G embeds
in Aut1(S) ∼= S o Cf , where Cf is the group of (outer) field automorphisms of S. It follows
that G ∼= S o Cb. By Lemma 4.3, we can embed S = PSp(2n, s) in PSp(2N, p) in such a
way that ψ|S extends to a (fixed) Weil character of PSp(2N, p). Moreover, the normalizer
of S in PSp(2N, p) induces Aut1(S). Thus there is a subgroup G1 ≤ PSp(2N, p) < SL(V ),
isomorphic to G and inducing the same automorphisms on S as G does. Note that all
elements of G1 have traces in Q(

√
εpp) while acting on V as so does PSp(2N, p). Suppose

that g ∈ G and g1 ∈ G1 induce the same automorphism on S. Then by Schur’s lemma,
g = λg1 for some λ ∈ C×. Furthermore, λD = 1 and λ ∈ Q(

√
εpp), if we assume in addition

that ψ(g1) 6= 0. As p - D and D is odd, we conclude as in (a) that λ = 1. Note by Lemma
4.4 that we can generate G1 by elements g1 with ψ(g1) 6= 0. It follows that G = G1, that is,
G is a subgroup S o Cb of PSp(2N, p) (as specified in (4.0.2)).

Assume now that 2|D. Then we have shown that G ∼= L · Cb with L ∼= Sp(2n, s). Again
by Lemma 4.3, we can embed L in Sp(2N, p) in such a way that ψ|L extends to a (fixed)
Weil character of Sp(2N, p). Moreover, the normalizer of L in Sp(2N, p) induces Aut1(S).
Furthermore, there is a subgroup G1 ≤ Sp(2N, p) < SL(V ), with G1 = Sp(2n, s) o Cb
as specified in (4.0.1) inducing the same automorphisms on S as G does. Note that all
elements of G1 have traces in Q(

√
εpp) while acting on V as so does Sp(2N, p). Suppose

that g ∈ G and g1 ∈ G1 induce the same automorphism on S. Then h := g−1g1 centralizes
S = L/Z(L), and so [h, L] ≤ Z(L) centralizes L. Now the Three Subgroups Lemma implies
that [h, L] = [h, [L,L]] is contained in [[h, L], L] = 1, i.e. h centralizes L. It then follows from
Schur’s lemma that g = λg1 for some λ ∈ C×. We again have λD = 1 and λ ∈ Q(

√
εpp), if

we assume in addition that ψ(g1) 6= 0. As p - D, we conclude as in (a) that λ = ±1. Note
by Lemma 4.4 that we can generate G1 by elements g1 with ψ(g1) 6= 0, and furthermore the
central involution of L acts as −1 on V . It follows that G = G1, and so G is a subgroup
Lo Cb of Sp(2N, p) (as specified in (4.0.1)).

(e) We continue to assume that S is a simple classical group defined over a field Fs with
s = pf , and moreover, in view of (d), that V |L is not a Weil module if

S ∼= PSL(n, s), PSU(n, s), PSp(2n, s).
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Suppose S = PSL(2, s); in particular, s 6= 9 as PSL(2, 9) ∼= A6. In view of (d), we may
assume that D = dimV = s ± 1. On the other hand, D = (q ± 1)/2, so p = 3 = s = q,
contrary to the assumption that q ≥ 11.

Next we consider the case S = PSL(3, s) or PSU(3, s). By Theorems 3.1 and 4.2 of [TZ1],
we have

(s− 1)(s2 − s+ 1)/3 ≤ D ≤ (s+ 1)2,

yielding s ∈ {3, 5}. Now, any nontrivial χ ∈ Irr(L) of degree (q±1)/2 and at most ≤ (s+1)2

is a Weil character, which has been ruled out in (ii), unless L = SU(3, 3) and D = 14, forcing
q = 27. But this is a contradiction, since 13 divides |PSL(2, 27)| but not |SU(3, 3)|.

Suppose now that S = PSL(4, s) or PSU(4, s). For s ≥ 5 we have

(s− 1)(s3 − 1)/2 ≤ D ≤ (s+ 1)3,

which is impossible only when s ≤ 11. If s = 3, then instead of (2.5.2) we have |x| ≤ 13,
ruling out all characters of 3′-degree of L.

To finish off type A, assume now that S = PSL(n, s) or PSU(n, s) with n ≥ 5. Then
(2.5.2)–(2.5.3) imply

(sn + 1)(sn−1 − s2)
(s+ 1)(s2 − 1)

≤ D ≤ (s+ 1)n−1,

whence
s2n−3 < (s+ 1)n < s51n/40

(because (s+ 1)/s ≤ 4/3 < 311/40), a contradiction as n ≥ 5.
Suppose S = PΩ±(2n, s) with n ≥ 4. For n ≥ 5 we get that

(sn − 1)(sn−1 − s)
s2 − 1

≤ eC(S) ≤ D ≤ (s+ 1)n,

whence
s2n−3.1 < (s+ 1)n < s51n/40,

a contradiction. If n = 4, then, since D is coprime to s, [Lu] implies that

D ≥ (s2 + s+ 1)(s2 + 1)(s− 1)2 > (s+ 1)4,

contradicting (2.5.2)–(2.5.3).
Suppose S = PSp(2n, s) with n ≥ 2 or Ω(2n+ 1, s) with n ≥ 3. For n ≥ 3 we have that

(sn − 1)(sn − s)
s2 − 1

≤ D ≤ (s+ 1)n,

whence
s2n−2.1 < (s+ 1)n < s51n/40,

a contradiction. If n = 2, then S = PSp(4, s), and we have

s(s− 1)2 ≤ D ≤ (s+ 1)2,

forcing s = 3. In this case, instead of (2.5.2) we have |x| ≤ 5, and L has no nontrivial
non-Weil character of degree ≤ 5.

(f) Here we handle the cases where S is an exceptional group of Lie type over Fs with
s = pf . If S is of type E6,

2E6, E7, or E8, then

(s5 + s)(s6 − s3 + 1) ≤ eC(S) ≤ D ≤ (s+ 1)8,
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a contradiction. Similarly, if S = F4(s), then

s8 − s4 + 1 = eC(S) ≤ D ≤ (s+ 1)4,

which is impossible. Likewise, if S = G2(s) with s ≥ 5, then

s3 − 1 ≤ eC(S) ≤ D ≤ (s+ 1)2,

again a contradiction. Next, if S = G2(3), then instead of (2.5.2) we have |x| ≤ 13, and
eC(S) = 14, a contradiction. If S = 2G2(s), then

s2 − s+ 1 = eC(S) ≤ D ≤ (s0.5 + 1)2,

again a contradiction. Finally, if S = 3D4(s), then since D = dimV is coprime to s, we see
by [Lu] that

D ≥ s8 + s4 + 1 > (s+ 1)4,

contradicting (2.5.2).

(g) It remains to consider the case S is one of 26 sporadic simple groups. We will search
for χ ∈ Irr(L) where χ(1) = (q ± 1)/2 with q||S|, and, moreover, S has an element of order
(q + 1)/2. Possible cases are for (L, q, χ(1)) are:
• (J2, 27, 14), but then 13 divides |PSL(2, 27)| but not |J2|;
• (6Suz, 12, 25). Here, PSL(2, 25) ↪→ S, but |Z(L)| = 6 is too big;
• (2Co1, 24, 49), but S does not have any element of order 25.

Thus none of the above cases can occur, and this concludes the proofs of Theorems 4.1 and
4.2. �

Recall [Zs] that if a ≥ 2 and n ≥ 2 are any integers with (a, n) 6= (2, 6), (2k − 1, 2), then
an−1 has a primitive prime divisor, that is, a prime divisor ` that does not divide

∏n−1
i=1 (ai−1);

write ` = ppd(a, n) in this case. Furthermore, if in addition a, n ≥ 3 and (a, n) 6= (3, 4),
(3, 6), (5, 6), then an−1 admits a large primitive prime divisor, i.e. a primitive prime divisor
` where either ` > n+ 1 (whence ` ≥ 2n+ 1), or `2|(an− 1), see [F2]. Next, for a finite group
X and a prime r, Or(X) denotes the smallest normal subgroup with r-power index in X,
and Or′(X) denotes the smallest normal subgroup with coprime to r index in X.

We will also need the following two group-theoretic results, the first one of which will be
useful in other applications as well.

Theorem 4.6. Let q = pf be a power of an odd prime p and let d ≥ 2. If d = 2, suppose
that pdf − 1 admits a primitive prime divisor ` ≥ 5 with (pdf − 1)` ≥ 7. If d ≥ 3, suppose
in addition that (p, df) 6= (3, 4), (3, 6), (5, 6), so that pdf − 1 admits a large primitive prime
divisor `. In either case, we choose such an ` to maximize the `-part of pdf − 1. Let W = Fdq
and let G be a subgroup of GL(W ) ∼= GL(d, q) of order divisible by the `-part Q := (qd − 1)`
of qd− 1. Then either L := O`′(G) is a cyclic `-group of order Q, or there is a divisor j < d
of d such that one of the following statements holds.

(i) L = SL(Wj) ∼= SL(d/j, qj), d/j ≥ 3, and Wj is W viewed as a d/j-dimensional vector
space over Fqj .

(ii) 2j|d, Wj is W viewed as a d/j-dimensional vector space over Fqj endowed with a non-
degenerate symplectic form, and L = Sp(Wj) ∼= Sp(d/j, qj).

(iii) 2|jf , 2 - d/j, Wj is W viewed as a d/j-dimensional vector space over Fqj endowed with

a non-degenerate Hermitian form, and L = SU(Wj) ∼= SU(d/j, qj/2).
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(iv) 2j|d, d/j ≥ 4, Wj is W viewed as a d/j-dimensional vector space over Fqj endowed with
a non-degenerate quadratic form of type −, and L = Ω(Wj) ∼= Ω−(d/j, qj).

(v) (p, df, L/Z(L)) = (3, 18,PSL(2, 37)), (17, 6,PSL(2, 13)).

Proof. (a) We proceed by induction on d ≥ 2. For the induction base d = 2, note that
L ≤ G ∩ SL(2, q). The list of maximal subgroups of SL(2, q) is well known. Using this list
and the information that |G| is divisible by Q = (q + 1)` ≥ 7 with ` ≥ 5, one easily checks
that either L ∼= CQ, or (i) holds with j = 1.

(b) For the induction step d ≥ 3, we will assume that L 6∼= CQ, and apply the main result
of [GPPS] to see that G is one of the groups described in Examples 2.1–2.9 of [GPPS].

If G is described in Example 2.1 of [GPPS], then a0 = 1 since ` = ppd(p, df). Furthermore,
one of (i)–(iv) holds, with j = 1.

Next, as ` does not divide the order of any (maximal) parabolic subgroup of GL(W ) ∼=
GL(d, q), G must act irreducibly on W , and so cannot be any of the groups in Example 2.2 of
[GPPS]. Likewise, the condition `||G| rules out all the groups listed in Example 2.3 of [GPPS].
Suppose G is one of the groups described in Example 2.5 of [GPPS]. Then d = 2m = ` − 1
(and ` is a Fermat prime). Since ` is a large primitive prime divisor, `2|(qd − 1) and so `2

divides |G|. On the other hand, |G| divides (q−1)21+2m · |Sp(2m, 2)| and so it is not divisible
by `2 = (2m + 1)2, a contradiction.

(c) Suppose G is among the groups described in Example 2.4 of [GPPS]. Again, as ` =
ppd(p, df), G can appear only in Example 2.4(b) of [GPPS]. Thus there is a divisor 1 < j|d
and W is endowed with the structure of a d/j-dimensional vector space Wj over Fqj , and
G ≤ GL(Wj) o Cj, where Cj is the group of field automorphisms of Fqj over Fq. Note that

j ≤ d ≤ df < `, so L ≤ GL(Wj) ∼= GLd/j(q
j) has order divisible by Q = ((qj)d/j − 1)` = Q.

If j = d, then L ∼= CQ, contrary to our assumption. Suppose d/j = 2. If df ≥ 6, then
pdf − 1 admits a primitive prime divisor, and any such primitive prime divisor is at least 7,
and so ` ≥ 7. As 2|d > 2, the only remaining case is (d, f) = (4, 1), in which case ` ≥ 5
and, furthermore, since (q, d) 6= (3, 4), we now have ` as a large primitive prime divisor by
[F2] and so Q ≥ 9. Hence we can apply the induction base to obtain that (i) holds with
j = d/2. If d/j ≥ 3, then we still have (p, (d/j)jf) = (p, df) 6= (3, 4), (3, 6), (5, 6), and
moreover d/j < d. The induction hypothesis then implies that one of (i)–(iv) holds.

(d) In Examples 2.6–2.9 of [GPPS], SCG/(G∩Z) ≤ Aut(S) for some non-abelian simple
group S, where Z := Z(GL(d, q)) ∼= Cq−1 and the full inverse image N of S in G acts
absolutely irreducibly on W .

In Example 2.6 of [GPPS] we have S = An; in particular, ` ≤ n. First, in Example 2.6(a)
of [GPPS] we have n− 2 ≤ d ≤ n− 1, and so ` ≥ d+ 1 ≥ n− 1 > n/2, whence `2 - |G|. As `
is a large primitive prime divisor, we then have ` ≥ 2d+1 > n and so ` - |G|, a contradiction.
In Examples 2.6(b), (c) of [GPPS], we must have that ` = d + 1 ∈ {5, 7} and n ≤ 7. It
follows that `2 - |G|, contradicting the choice of ` to be a large primitive prime divisor.

In Example 2.7 of [GPPS], S is a sporadic simple group. Furthermore, we have that
` = d+ 1 and `2 - |G|, contradicting the largeness of `.

In Example 2.8 of [GPPS], S is a simple group of Lie type in the same characteristic p.
But then the condition ` = ppd(p, df) with p > 2 rules out this case.



RIGID LOCAL SYSTEMS AND FINITE SYMPLECTIC GROUPS 17

In Example 2.9 of [GPPS], S is a simple group of Lie type in characteristic 6= p. If
S appears in Table 7 of [GPPS], then ` = d + 1 and `2 - |G|, again contradicting the
largeness of `. Finally, assume that S appears in Table 8 of [GPPS]. Using the fact that
` is a large prime divisor of pdf − 1, we can again rule out all cases except for the case
(d, `, S) = ((`−1)/2, `,PSL2(`)). In this case, |G|` = ` = 2d+ 1. To handle this last case, we
use a strengthening [Tr, Theorem 3.2.2] of the main result of [F2], proved by A. MacLaughlin
and S. Trefethen. This result asserts that ` can be chosen so that (pdf − 1)` > 2df + 1, unless
(p, df) = (3, 18), respectively (17, 6), where ` = 37, 13, respectively. This leads to the two
exceptions listed in (v) (as it is easy to see that L/Z(L) ∼= S in these situations). �

Theorem 4.7. Suppose G is a finite irreducible subgroup of SL((pN + 1)/2,C), and suppose
that, so viewed, G has all its traces in Q(

√
εpp). Suppose in addition that p ≥ 13 if N = 1

and that (p,N) 6= (3, 2), (3, 3), (5, 3). Then we have the following results.

(i) Suppose that (pN + 1)/2 is even and G lies in the image, under an even Weil repre-
sentation, of Sp(2N, p) in SL((pN + 1)/2,C). Then one of the following statements
holds.
(a) G contains SL(2, pN) in one of its even Weil representations, and hence for some

factorization N = AB and for some divisor b of B, G is Sp(2A, pB) o Cb.
(b) p = 3, N is odd, G contains L = SU(N, 3) = O2(G) < G as a normal subgroup

(and induces a graph automorphism on L).
(ii) If (pN + 1)/2 is odd, suppose G lies in the image, under an odd Weil representation, of

PSp(2N, p) in SL((pN + 1)/2,C). Then G contains PSL(2, pN) in one of its odd Weil
representations, and hence for some factorization N = AB and for some divisor b of
B, G is PSp(2A, pB) o Cb.

Proof. (a) First we consider the case N = 1. Then (pN + 1)/2 ≥ 7 according to our as-
sumption. The maximal subgroups of SL(2, p) are well known, and none of them can have
a complex irreducible representation of degree (p + 1)/2. Hence G = SL(2, p) in (i) and
G = PSL(2, p) in (ii).

(b) From now on we assume N > 1 and let W = F2N
p denote the natural module for

Sp(2N, p). By [F2] there is a large primitive prime divisor ` = ppd(p, 2N), and we choose
such an ` to maximize (p2N − 1)`. Note that |G| is divisible by D := (pN + 1)/2. Inflating
the representation of PSp(2N, p) in (ii) to Sp(2N, p), we may assume that G is a subgroup of
Sp(2N, p), of order divisible by (p2N−1)`. Now we can apply Theorem 4.6 to G < GL(2N, p)
to determine the structure of L = O`′(G). First note that if L is cyclic, then by Ito’s theorem
[Is, (6.15)], any irreducible complex character of G has degree coprime to `, and so G cannot
act irreducibly on V := CD. The same argument shows that L cannot act trivially on V .
Let d(L) denote the smallest degree of nontrivial complex irreducible representations of L.

(c) Suppose we are in case (v) of Theorem 4.6. Then S C G/Z(G) ≤ Aut(S) ∼= S · C2,
S = PSL(2, `) with ` = 37, respectively 13. It is easy to see that G cannot have a complex
irreducible representation of degree (39 + 1)/2, (173 + 1)/2, respectively.

Next suppose that we are in case (i), so that L ∼= SL(2N/j, pj). Then 2N/j ≥ 3, and,
according to [TZ1, Theorem 1.1], d(L) > pj(2N/j−1) = p2N−j > D, and so L acts trivially on
V , a contradiction.
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Assume now that we are in case (iv), so that L ∼= Ω−(2N/j, pj). If 2N/j ≥ 8, then by [TZ1,
Theorem 1.1], d(L) > pj(2N/j−3) > pN > D. If 2N/j = 6, then L is a cover of PSU(6, pj), and
so d(L) ≥ (q4 − 1)/(q + 1) > (q3 + 1)/2 = D for q := pj. If 2N/j = 4, then L ∼= PSL(2, q2)
for q := pj = pN/2, and so d(L) = (q2 + 1)/2 = (pN + 1)/2 = D. In all cases, L cannot embed
in Sp(2N, p), since Sp(2N, p) has an irreducible complex representation of degree D− 1 with
kernel of order ≤ 2.

(d) Suppose we are in case (ii) of Theorem 4.6. Note that the central involution z of
L = Sp(Wj) acts as the scalar −1 and so coincides with the central involution of Sp(2N, p).
Hence, if D is even, then z acts as −1 on V , and if 2 - D then z acts trivially on V . The
complex irreducible representations of degree ≤ D are classified in [TZ1, Theorem 5.2], and
together with the described action of z on V , it implies that L acts irreducibly on V , via
one of its two Weil representations of degree D. By Schur’s lemma, CG(L) acts via scalars
on V , and so it is contained in Z(Sp(2N, p)) = 〈z〉. It follows that CG(L) = Z(G) = 〈z〉
and so G/Z(G) ≤ Aut(L). Note that the outer diagonal automorphism of L fuses the two
Weil representations of degree D of L, whereas all field automorphisms stabilize each of these
Weil representations. Thus G = 〈L, σ〉, where σ is a field automorphism of order say b|j, as
stated.

(e) Finally, suppose we are in case (iii) of Theorem 4.6, so that L = SU(Wj) ∼= SU(m, q)
with q := pj/2 and 2 - m := 2N/j ≥ 3. Recall [TZ2, §4] that L has q + 1 complex irreducible
Weil characters ζ im,q, 0 ≤ i ≤ q, of degree (qm − q)/(q + 1) for i = 0 and (qm + 1)/(q + 1) =
2D/(q+ 1) for i > 0. As LCG, all irreducible summands of the CL-module V have common
dimension e|D. If m ≥ 5, then any nontrivial non-Weil irreducible character of L has degree
> (qm + 1) = 2D, see [TZ1, Theorem 4.1]. If m = 3, then q 6= 3 as (p,N) 6= (3, 3), and one
can check using [Geck] that any nontrivial non-Weil irreducible character of L has degree
not dividing D. Furthermore, (qm − q)/(q + 1) does not divide D either. We have therefore
shown that e = (qm + 1)/(q + 1) and furthermore

(4.7.1) ψ|L =

(q+1)/2∑
j=1

ζ ijm,q

with q ≥ i1, . . . , i(q+1)/2 > 0 (not necessarily distinct), if ψ denotes the character of Sp(2N, p)
afforded by V .

Recall that LCG ≤ GL(W ) and L acts irreducibly (although not necessarily absolutely) on
W , since `||L|. Hence CEnd(W )(L) is a finite division ring; in fact it is Fq2 . Let H < GL(W )
be the central product of U(Wj) and Z(GL(Wj)) ∼= Cq2−1, whose intersection is precisely
Z(U(Wj)). Then H induces all inner-diagonal automorphisms of L, and H o Cj < GL(W )
induces all automorphisms of L. Since CEnd(W )(L) = {0} ∪Z(GL(Wj)), we have shown that
G ≤ NGL(W )(L) = H o Cj.

Next we observe that each ζ im,q extends to U(Wj) and then to H, and furthermore H/L is

abelian (as [H,H] = L). In particular, ζ
ij
m,q extends to G∩H, and furthermore any irreducible

character of G ∩H lying above ζ
ij
m,q is in fact an extension of it by Gallagher’s theorem [Is,

(6.17)]. Since ψ|G is irreducible, it follows by Clifford’s theorem that

(pj/2 + 1)/2 = (q + 1)/2 = ψ(1)/ζ i,jm,q(1) ≤ [G : G ∩H] ≤ j.
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This is possible only when (p, j) = (3, 2), N = m, L = SU(N, 3). In this case, the above
analysis shows that [G : G ∩ H] = 2 and so G induces an outer graph automorphism of L,
as well as L = O2(G) < G. One can check that V is indeed irreducible over the subgroup
U(N, 3) · 2 of Sp(2N, 3) when N ≥ 3 is odd. �

Remark 4.8. (i) Note that the cases (p,N) = (3, 2), (3, 3), and (5, 3) are real exceptions to
Theorem 4.7. Indeed, PSp(4, 3) contains a subgroup G = 24 o A5 that acts irreducibly on
C5, see [Atlas].

Next, we show that Sp(6, 3) < SL(14,C) contains a subgroup G ∼= SL(2, 13) that acts
irreducibly on C14. First, according to [Atlas], PSp(6, 3) contains a maximal subgroup Ḡ ∼=
PSL(2, 13). As PSL(2, 13) does not admit any nontrivial representation of degree 6 over a
field of characteristic 3, the full inverse image G of Ḡ in Sp(6, 3) is isomorphic to SL(2, 13),
with the central involution equal to the central involution j of Sp(6, 3). In particular, j acts
as the scalar −1 on C14. Inspecting the complex representations of SL(2, 13) with j acting
as −1 in [Atlas], we see that SL(2, 13) acts irreducibly on C14, as stated.

Likewise, we claim that PSp(6, 5) < SL(63,C) contains a subgroup G ∼= J2 that acts
irreducibly on C63. Indeed, according to [JLPW], 2J2 has a faithful irreducible representation
of degree 6 over F5 of symplectic type, yielding an embedding 2J2 ↪→ Sp(6, 5), with an
involution a having trace 4 and an element b of order 3 having trace 0. This leads to an
embedding G ∼= J2 into PSp(6, 5). Observe that a is conjugate to the element h−1 in [TZ2,
Lemma 2.6], and so a has trace 15 on C63. Next, W = [b,W ] ⊕ CW (b), where CW (b) is of
dimension 2, and b has no nonzero fixed point on the non-degenerate space [b,W ] ∼= F4

5. Using
[JLPW] one can check that Sp([b,W ]) ∼= Sp(4, 5) has one conjugacy class of such elements of
order 3. Hence Sp(W ) ∼= Sp(6, 5) has exactly one conjugacy class of elements of order 0 with
trace 0. Thus we may assume that b belongs to a Levi subgroup GL(3, 5) of the stabilizer
of a totally isotropic subspace W1

∼= F3
5 of W in Sp(W ), and that b acts on W1 with trace

0 and determinant 1. Arguing as in the proof of [TZ2, Lemma 2.6] we see that b has trace
0 on C63. The determined traces of a and b on C63 allow one to prove using the character
table of J2 that J2 is irreducible on C63.

(ii) We also note Case (i)(b) does not arise in Theorem 4.7 if we require in addition that
G has no nontrivial p′-quotient.

5. Finiteness of the arithmetic monodromy group of W(ψ, n, q), d’après van
der Geer and van der Vlugt

The local system W(ψ, n, q) is pure of weight zero and lisse of rank qn on A2/Fp. Its trace
function, at (s, t) ∈ A2(k), for k/Fp a finite extension field, is the exponential sum

(−1/Ak)
∑
x∈k

ψk(x
qn+1 + sxq+1 + tx2).

Think of (s, t) as fixed in A2(k). Write this sum as

(−1/Ak)
∑
x∈k

ψk(xR(x)),

with R(x) the additive, Fq-linear polynomial

R(x) = R(s,t)(x) := xq
n

+ sxq + tx.
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We can write this sum as

(−1/Ak)
∑
x∈k

ψ(Tracek/Fp(xR(x))).

The insight of van der Geer and van der Vlugt [vdG-vdV, §13] is to then view

Tracek/Fp(xR(x))

as a quadratic form on k, viewed as an Fp vector space; it is the quadratic form attached to
the symmetric bilinear form

(x, y)R := Tracek/Fp(xR(y) + yR(x)).

As they explain [vdG-vdV, 13.1], the Fp vector space

WR := {x ∈ k|(x, y)R = 0 for all y ∈ k}
is precisely the set of zeroes in k of the polynomial

ER(x) := xq
2n

+ sq
n

xq
n+1

+ 2tq
n

xq
n

+ sq
n−1

xq
n−1

+ x.

When k is a finite extension of Fq, this set of zeroes is an Fq-vector space (under addition
and scalar multiplication by Fq), whose Fq dimension is ≤ 2n.

At this point, we invoke the following lemma.

Lemma 5.1. Let p be an odd prime, α an element of Z[ζp][1/p] and α its complex conjugate
(i.e., the image of α under the Galois automorphism ζp 7→ ζ−1p ). Then α lies in Z[ζp] if and
only if αα lies in Z[ζp].

Proof. If α lies in Z[ζp], then so does α. For the converse, use the fact that in the field Q(ζp),
there is a unique place over p whose normalized valuation ordp has ordp(ζp − 1) = 1/(p− 1).
By uniqueness, we have

ordp(α) = ordp(α),

and hence
ordp(αα) = 2ordp(α).

But for α ∈ Z[ζp][1/p], α lies in Z[ζp] if and only if ordp(α) ≥ 0. �

The sum
(−1/Ak)

∑
x∈k

ψFq(Tracek/Fq(R(x)x))

visibly lies in Z[ζp][1/p] (the only possible nonintegrality is from the 1/Ak factor, whose
square is ±1/#k).

The key calculation is due to [vdG-vdV].

Lemma 5.2. For k/Fp a finite extension field, (s, t) ∈ A2(k), and R := R(s,t), the square
absolute value of our exponential sum is given by

|(−1/Ak)
∑
x∈k

ψ(Tracek/Fp(R(x)x))|2 = #WR.

When k is a finite extension of Fq, WR is an Fq-vector space, and (hence)

#WR = qdimFq (WR).
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Proof. We have

|(−1/Ak)
∑
x∈k

ψ(Tracek/Fp(R(x)x))|2 =

= (1/#k)
∑
x,y∈k

ψ(Tracek/Fp(xR(x)− yR(y))) =

(make the substitution (x, y) 7→ (x+ y, y))

= (1/#k)
∑
x∈k

ψ(Tracek/Fp(xR(x)))
∑
y∈k

ψ(Tracek/Fp(xR(y) + yR(x))).

The inner sum is #k if x lies in WR, and vanishes if x does not lie in WR (for in that case

y 7→ (x, y)R := ψ(Tracek/Fp(xR(y) + yR(x)))

is a nontrivial additive character of k). Therefore our square absolute value is∑
x∈WR

ψ(Tracek/Fp(xR(x))).

But for x ∈ WR, the quadratic form Tracek/Fp(xR(x)) vanishes identically (as it is one half
of Tracek/Fp(xR(y) + yR(x))|y=x). �

Proposition 5.3. Given the data (ψ, n, q), there exists an integer D such that for any finite
extension field k/Fp, and for any (s, t) ∈ A2(k), all eigenvalues of the Frobenius automor-
phism

Frobk,(s,t)|W(ψ, n, q)

are roots of unity of order dividing D.

Proof. We have shown that the traces of the lisse sheafW(ψ, n, q) at all points (s, t) ∈ A2(k),
for all finite extensions k/Fp, are algebraic integers, in fact lie in Z[ζp]. For an arbitrary ex-
tension k/Fp, and fixed (s, t) ∈ A2(k), denote by A the endomorphism Frobk,(s,t)|W(ψ, n, q).
Some finite extension L/k contains Fq. Fix one such L. Then for r := deg(L/k), Ar =
FrobL,(s,t)|W(ψ, n, q). As L is a finite extension of Fq, all powers of Ad have traces in Z[ζp].
By the usual “consider the poles of d/dT (log(det(1− TAd))” argument, cf. [Ax, top of page
256], all the eigenvalues of Ad are algebraic integers, and hence all the eigenvalues of A are
algebraic integers.

These algebraic integers are pure of weight zero, hence are roots of unity. The characteristic
polynomial of A has coefficients in Q(ζp), hence in Q`(ζp) for any pre-chosen ` 6= p. So each
of these roots of unity lies in an extension field of Q`(ζp) of degree at most qn. As Q`(ζp)

has only finitely many extensions of each degree inside Q`, it follows that all these roots of
unity lie in a single finite extension Eλ of Q`(ζp). In such an Eλ, the group of roots of unity
is finite. The order of this group serves as the D of the corollary. �

Corollary 5.4. Given the data (ψ, n, q), there exists an integer D such that for any finite
extension field k/Fp, and for any (s, t) ∈ A2(k), the Frobenius automorphism

Frobk,(s,t)|W(ψ, n, q)

has Dth power being the identity.
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Proof. Indeed, the lisse sheafW(ψ, n, q) is the (1/AFp,qn twist of the) ψ-component of the H1

of the family of Artin-Schreier curves

yp − y = xq
n+1 + sxq+1 + tx2,

so by Weil [Weil, middle paragraph on p. 72, and last complete sentence on p. 80] each
Frobk,(s,t)|W(ψ, n, q) is diagonalizable over Q` . �

Putting this all together, we get the following theorem.

Theorem 5.5. The groups Ggeom and Garith for W(ψ, n, q) on A2/Fp are finite, as are the
groups Ggeom and Garith for each of its direct summands Godd(ψ, n, q) and Geven(ψ, n, q).

Proof. It suffices to prove the statement for W(ψ, n, q), since the groups for its direct sum-
mands are quotients of those for W(ψ, n, q). Since we have the inclusion Ggeom ⊂ Garith, it

suffices to prove that Garith is finite. The group Garith ⊂ GL(qn,Q`) is an algebraic group in
which, by Chebotarev, every element has order dividing D. Therefore D kills the Lie algebra
Lie(Garith), and hence Garith is finite. �

6. Determining the monodromy groups of W(ψ, n, q), of Geven(ψ, n, q), and of
Godd(ψ, n, q)

We first establish a fundamental rationality property of our local systems.

Lemma 6.1. The local systems Geven(ψ, n, q), and Godd(ψ, n, q) have all their Frobenius traces
in the quadratic field Q(

√
εpp).

Proof. We must show that for any square a ∈ F×p , replacing ψ by ψa : x 7→ ψ(ax) does
not change the traces. [The normalizing factor AFp := −g(ψε2, χ2) is equal to −g(ψε2a, χ2),
precisely because a is a square.] These traces are

(−1/Ak)
∑
x∈k

ψk(x
(qn+1)/2 + sx(q+1)/2 + tx)

and

(−1/Ak)
∑
x∈k

ψk(x
(qn+1)/2 + sx(q+1)/2 + tx)χ2,k(x).

Using ψa instead, these traces become

(−1/Ak)
∑
x∈k

ψk(ax
(qn+1)/2 + sax(q+1)/2 + tax)

and

(−1/Ak)
∑
x∈k

ψk(ax
(qn+1)/2 + sax(q+1)/2 + tax)χ2,k(ax).

The key point is that, because a is a square a ∈ F×p , we have

a(q
n+1)/2 = aa(q

n−1)/2 = a, and a(q+1)/2 = aa(q−1)/2 = a.

So these ψa sums are obtained from the original ones by the change of variable x 7→ ax. �

We next check the determinants of our local systems.
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Lemma 6.2. Suppose q ≡ 1(mod 4). We have the following results for our local systems on
A2/Fp.

(i) For any extension field k of Fp in which −1 is a square, after pullback to A2/k, the
arithmetic monodromy group Garith for Geven(ψ, n, q) lies in Sp((qn − 1)/2,C).

(ii) The arithmetic monodromy group Garith for Godd(ψ, n, q) lies in SO((qn + 1)/2,C).

Proof. The first statement is proven in [Ka-MMP, 3.10.2 and 3.10.3]. [We need to be over a
ground field k in which −1 is a square so that the asserted (and indeed any) quadratic Gauss
sum over k is a square root of #k, and hence works as the required “half Tate twist” (1/2)
in [Ka-MMP, 3.10.2].] The second statement is proven in [Ka-NG2, 1.7]. In that second
reference, one is to use ψa for

a = (−1)(q
n−1)/4((qn + 1)/2).

If p ≡ 1(mod 4) for the underlying characteristic p, this a is 2 modulo squares in Fp, simply
because −1 is itself a square in Fp. If p ≡ 3(mod 4), then q, and hence also qn, is an even
power of p, in which case qn is 1(mod 8), so here a = (−1)(q

n−1)/4((qn + 1)/2) = 1/2 is 2
modulo squares. �

Lemma 6.3. Fix n ≥ 2. Denote by reven (respectively rodd) whichever of (qn ± 1)/2 is even
(respectively odd). Thus reven is the rank of Geven(ψ, n, q) and rodd is the rank of Godd(ψ, n, q).
Then we have the following results for our local systems on A2/Fp.

(i) The arithmetic monodromy group Garith for Geven(ψ, n, q) lies in SL(reven,C).
(ii) The arithmetic monodromy group Garith for Godd(ψ, n, q) lies in SL(rodd,C).

(iii) The arithmetic monodromy group Garith for W(ψ, n, q) lies in SL(qn,C).

Proof. Let us denote the determinants in question by

Deven := det(Geven(ψ, n, q)), Dodd := det(Geven(ψ, n, q)), DW := det(W(ψ, n, q)).

These are each lisse of rank one and pure of weight zero on A2/Fp. Because W is the direct
sum, we have

DW ∼= Deven ⊗Dodd.

So it suffices to show any two of the three assertions of the lemma.
Suppose first we are in characteristic p ≥ 5. The only roots of unity in Q(

√
εpp) are

±1. Because both Geven(ψ, n, q) and Godd(ψ, n, q) have all their Frobenius traces in Q(
√
εpp),

so also do their determinants. On the other hand, these determinants are, point by point,
roots of unity (being, in fact, Dth roots of unity for some fixed D). Therefore the Frobe-
nius determinants all lie in ±1, and hence each of Deven := det(Geven(ψ, n, q)) and Dodd :=
det(Geven(ψ, n, q)) is lisse of rank one on A2/Fp with D⊗2even and D⊗2odd arithmetically, and hence

geometrically trivial. But π1(A2/Fp) has no nontrivial prime to p quotients. Therefore both
Deven and Dodd are geometrically trivial. So to check that they are arithmetically trivial as
well, it suffices to check at a single Fp point of A2. We check at the origin. The result is
then, with some tedium, checked to be a special case of [KT-gpconj, 2.3], applied with q
there taken to be p, and D there taken to be (qn + 1)/2. Thus if D = (qn + 1)/2 is odd, we
use cases (3) and (4) of [KT-gpconj, 2.3], while if D = (qn + 1)/2 is even we use cases (1)
and (2).
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It remains to treat the case of characteristic p = 3. We will do this by giving a proof
of the lemma which is valid in all odd characteristics. First, it suffices to prove that two
of the three DW , Deven, Dodd are geometrically constant. Then both Deven and Dodd are
geometrically constant, and we then verify their arithmetic triviality by checking at a single
point, just as in the paragraph above.

We will use the Hasse-Davenport argument, cf. [D-H, §3, II, pp. 162-165] or [Ka-MG,
pp. 53-54], and apply it to W(ψ, n, q) and to whichever of the G is G(ψ, n, q,1). Their trace
functions, at a point (s, t) ∈ A2(k), are given by the expressions

(−1/Ak)
∑
x∈k

ψk(x
(qn+1)/2 + sx(q+1)/2 + tx)

and

(−1/Ak)
∑
x∈k

ψk(x
qn+1 + sxq+1 + tx2).

In both cases, the fact that n ≥ 2 insures that the polynomial f(x) being summed inside the
ψ is of the form

f(x) := xm +
d∑
i=1

aix
i

with m ≥ 5 prime to p and with d < m/2.
In terms of the L-function for Lψk(f(x)), the determinant of −Frob on H1

c (A1/k,Lψk(f(x)))
is the coefficient of Tm−1. Using the additive expression of the L-series, we see that this
coefficient is expressed in terms of the Newton symmetric functions N1, . . . , Nm of the first
m− 1 elementary symmetric functions s1, . . . , sm−1, as∑

s1,...,sm−1∈k

ψk(Nm(s1, . . . , sm−1) +
d∑
i=1

aiNi(s1, . . . , si)).

[We have used the fact thatNi is a polynomial in s1, . . . , si.] Thus the variables sm−1, sm−2, . . . , sd+1

occur only in the Nm term. In the polynomial Nm, these variables occur in the form

(−1)mmsm−isi + sm−i(a polynomial in variables sj with j < i),

for m− j > m/2. When m is even, the variable sm/2 occurs as

(−1)m(m/2)s2m/2 + sm/2(a polynomial in variables sj with j < m/2).

Summing over sm−1, we get #k times the sum of the terms with s1 = 0, and this sum is
independent of the value of sm−1, so it is

(#k)
∑

s2...,sm−2∈k

ψk(Nm(0, s2, . . . , sm−2, 0) +
d∑
i=1

aiNi(0, s2, . . . , si)).

Summing then over sm−2, we get #k times the sum of these terms with s2 = 0 as well, thus

(#k)2
∑

s3...,sm−3∈k

ψk(Nm(0, 0, s3, . . . , sm−3, 0, 0) +
d∑
i=1

aiNi(0, 0, s3, . . . , si)).
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Continuing in this way, we get

(#k)(m−1)/2 if m is odd, (#k)(m−2)/2
∑

sm/2∈k

ψk((m/2)s2m/2) if m is even.

As for the determinant of Frob itself on H1
c (A1/k,Lψk(f(x))), it is therefore

(#k)(m−1)/2 if m is odd, (#k)(m−2)/2(−
∑

sm/2∈k

ψk((m/2)s2m/2)) if m is even.

This expression, independent of choices of the coefficients a1, . . . , ad of the polynomial f(x),
establishes the asserted geometric constance. �

At this point, we recall a key result from [KT-gpconj, 17.2] about the local systems
G0,even(ψ, n, q) and G0,odd(ψ, n, q) obtained by specializing s 7→ 0 in Geven(ψ, n, q) and Godd(ψ, n, q).

Theorem 6.4. Suppose q = pa, p an odd prime, n ≥ 1, and qn > 3. We have the following
results.

(i) The group Ggeom for G0,even(ψ, n, q) is SL(2, qn) in one of its even Weil representations.
(ii) The group Ggeom for G0,odd(ψ, n, q) is PSL(2, qn) in one of its odd Weil representations.

We now combine this result with Theorems 4.1 and 4.2, to obtain the following corollary.

Corollary 6.5. Suppose q = pa, p an odd prime, and na is prime to p. Suppose also that
n ≥ 2. We have the following results.

(i) The group Ggeom for Geven(ψ, n, q) is one of the groups Sp(2A, pB) in one of its even
Weil representations, for some factorization of na as na = AB.

(ii) The group Ggeom for Godd(ψ, n, q) is one of the groups PSp(2C, pD) in one of its odd
Weil representations, for some factorization of na as na = CD.

Proof. To prove (i), we argue as follows. By the determinant lemma above, the group Ggeom

for Geven(ψ, n, q) lies in the relevant SL-group SL(reven,C), and it contains SL(2, qn), the
geometric monodromy group of the pullback local system G0,even(ψ, n, q). By Theorems 4.1
and 4.2, Ggeom is one of the groups Sp(2A, pB) o Cb for some divisor b of B. By hypothesis,
na is prime to p, and hence b, a divisor of na = AB, is prime to p. Because Geven(ψ, n, q) is
lisse on A2/Fp, its Ggeom has no nontrivial prime to p quotient, and hence b = 1.

Repeat essentially the same argument to prove (ii). �

Proposition 6.6. In the above corollary, we have (A,B) = (C,D), and Ggeom forW(ψ, n, q)
is the diagonal image of Sp(2A, pB) in the product group Sp(2A, pB)× PSp(2A, pB).

Proof. The group Ggeom,W is a subgroup of the product Sp(2A, pB) × PSp(2C, pD) which
maps onto each factor. The group PSp(2C, pD) is simple, and the only quotient groups of
Sp(2A, pB) are itself, the simple group PSp(2A, pB), and the trivial group. If (A,B) 6= (C,D),
we argue by contradiction. By Goursat’s lemma [La, p. 75, Exercise 5], Ggeom,W would be the
product group Sp(2A, pB) × PSp(2C, pD). From the known character table of SL(2, qn), for
any of its individual Weil representations there are elements of trace zero. So in the product
group Sp(2A, pB) × PSp(2C, pD) (indeed already in the subgroup SL(2, qn) × PSL(2, qn)),
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there are elements whose traces are zero in both summands of any given representation of
Sp(2A, pB)× PSp(2C, pD) of the form

an even Weil rep. of Sp(2A, pB)⊕ an odd Weil rep. of PSp(2C, pD).

On the other hand, we have shown that over all extension fields k/Fq, all Frobenius traces
have square absolute value in the set {qd}d=0,...,2n. In other words, if we compute Garith,W
after extending scalars to A1/Fq, all of its traces have square absolute value in this set.
Therefore all elements in the subgroup Ggeom,W have traces whose square absolute value lies
in this set. In particular, Ggeom,W contains no elements of trace zero. This contradiction
shows that (A,B) = (C,D).

Now Ggeom,W is a subgroup of Sp(2A, pB)×PSp(2A, pB) which maps onto each factor. So
again by Goursat’s lemma, either Ggeom,W is the diagonal image of Sp(2A, pB) in Sp(2A, pB)×
PSp(2A, pB), or it is the full product group. The above “trace zero” argument shows that
the product group is not possible. �

Lemma 6.7. Suppose q = pa, p an odd prime, and na is prime to p. Suppose also that
n ≥ 2. After extension of scalars to A2/Fqn, we have Garith = Ggeom for each of Geven(ψ, n, q),
Godd(ψ, n, q), and W(ψ, n, q).

Proof. Apply Theorems 4.1 and 4.2 to the relevantGarith groups. The normalizer of Sp(2A, pB)
in Sp(2AB, p) is Sp(2A, pB) o CB, and the normalizer of PSp(2A, pB) in PSp(2AB, p) is
PSp(2A, pB) o CB. Thus for Geven(ψ, n, q) we have

Ggeom = Sp(2A, pB) ↪→ Garith ↪→ Sp(2A, pB) o CB,

and for Godd(ψ, n, q) we have

Ggeom = PSp(2A, pB) ↪→ Garith ↪→ PSp(2A, pB) o CB.

Thus in both cases Ggeom has index dividing B, and hence dividing an = AB in Garith. So in
both cases we attain Garith = Ggeom after extension of scalars to FpB , and hence to the larger
field Fpan = Fqn . Then Garith,W is a subgroup of Sp(2A, pB)× PSp(2A, pB) which maps onto
each factor. Now repeat the “trace zero” argument, to show that Garith,W is the diagonal
image of Sp(2A, pB) in this product. In particular, Garith,W is equal to Ggeom,W . �

Theorem 6.8. Suppose q = pa, p an odd prime, and na is prime to p. Suppose also that
n ≥ 2. After extension of scalars to A2/Fqn, the local systems Geven(ψ, n, q) and Godd(ψ, n, q)
are correctly matched in the sense that W(ψ, n, q) is a total Weil representation, and the
respective geometric (and arithmetic) monodromy groups of these three systems are Sp(2n, q),
PSp(2n, q), and Sp(2n, q).

Proof. From Lemma 5.2, the square absolute values of the traces of elements of Ggeom,W
are powers of q, hence powers of p, hence W(ψ, n, q) does indeed incarnate a total Weil
representation. These square absolute values will then be all the powers {pBd}d=0,...,2A of pB.
Therefore pB, being the trace of some element of Ggeom,W , is itself a power of q. Therefore
pB is qf for the least f ≥ 1 such that qf is the square absolute value of the trace of some
element of Ggeom,W = Garith,W .

So it suffices to exhibit a point (s, t) ∈ A2(Fqn) at which

|Trace(FrobFqn ,(s,t)|W(ψ, n, q))|2 = q.
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We will show that (1,−2) is such a point.
Recall that for (s, t) ∈ A2(Fqn), this square absolute value is the cardinality of the set of

zeroes in Fqn of the polynomial

xq
2n

+ sq
n

xq
n+1

+ 2tq
n

xq
n

+ sq
n−1

xq
n−1

+ x.

If we choose s, t both to lie in Fq, the Fqn zeroes are the zeroes x ∈ Fqn of

x+ sxq + 2tx+ sxq
−1

+ x,

or, raising to the qth power, the zeroes x ∈ Fqn of

2xq + sxq
2

+ 2txq + sx.

Let us denote by F the operator
F (x) := xq,

the qth power arithmetic Frobenius. Then our equation becomes

(sF 2 + (2 + 2t)F + s)(x) = 0.

Take s = 1, t = −2. The equation becomes

(F − 1)2(x) = 0.

We will show that the only Fqn solutions are x ∈ Fq. To see this, put y := (F − 1)(x). Then
(F − 1)(y) = 0, i.e., y lies in Fq. Then we seek x ∈ Fqn such that (F − 1)(x) = y For y = 0,
the solutions of (F − 1)(x) = y are all x ∈ Fq. For any fixed y 6= 0 in Fq, any solution x of
(F − 1)(x) = y, i.e., any solution of

xq − x = y,

lies in a degree p extension of Fq. By hypothesis n is prime to p, so for y 6= 0 in Fq, the
equation (F − 1)(x) = y has no solutions in Fqn . �

Corollary 6.9. Hypotheses as in Theorem 6.8, each of the local systems Geven(ψ, n, q),
Godd(ψ, n, q), and W(ψ, n, q) has Ggeom = Garith after extension of scalars to A2/Fq.

Proof. In the proof of Lemma 6.7 we proved that these equalities of Ggeom with Garith take
place after extension of scalars to A2/FpB , and in the proof of Theorem 6.8 we proved that
pB = q. �

7. Changing the choice of ψ to ψ2; which Weil representation?

Recall that Sp(2n, q) has two “small” Weil representations, of dimension (qn − 1)/2, and
two “large” ones, of dimension (qn+1)/2, with a matching of small and large imposed by the
total Weil representation. We have shown that for any choice of nontrivial additive character
of Fp, the local systems Geven(ψ, n, q) and Godd(ψ, n, q) incarnate a correctly matched pair,
with geometric monodromy groups respectively Sp(2n, q) and PSp(2n, q).

Theorem 7.1. We have the following results.

(i) Suppose 2 is a square in Fq (i.e., suppose q is ±1 mod 8). Then pulled back to A2/Fq,
there exist arithmetic isomorphisms of local systems

Geven(ψ, n, q) ∼= Geven(ψ2, n, q), Godd(ψ, n, q) ∼= Godd(ψ2, n, q).



28 NICHOLAS M. KATZ AND PHAM HUU TIEP

(ii) Suppose 2 is not a square in Fq. Then Geven(ψ2, n, q) and Godd(ψ2, n, q) incarnate the
other correctly matched pair.

Proof. Suppose first that 2 is a square in Fq. Then over extensions k/Fq, the normalizing
factors Aψ2,k and Aψ,k are equal. Inside the exponential sum, the substitution x 7→ 2x turns
the ψ sum into the ψ2 sum, simply because

2(qn+1)/2 = 2(qn−1)/22 = 2χ2,Fqn
(2) = 2,

2(q+1)/2 = 2(q−1)/22 = 2χ2,Fq(2) = 2,

and over extensions k/Fq, we have χ2,k(2x) = χ2,k(x).
Suppose now that 2 is not a square in Fq. It suffices to show that Gsmall(ψ, n, q) is not

geometrically isomorphic to Gsmall(ψ2, n, q). In fact, we will show that even after specializing
s 7→ 1, the resulting local systems G1,small(ψ, n, q) and G1,small(ψ2, n, q) are not geometrically
isomorphic. Geometrically, we can ignore the normalizing factors. Then G1,small(ψ, n, q) is
the Fourier transform FTψ of Lψ(x(qn+1)/2+x(q+1)/2).

We now express G1,small(ψ2, n, q) as an FTψ. Its trace function (again ignoring the normal-
izing factor) at t ∈ A1(k) is

−
∑
x∈k

ψ(2x(q
n+1)/2 + 2x(q+1)/2 + 2tx) =

(remembering that 2(q+1)/2 = −2, and that 2(qn+1)/2 = 2(−1)n)

= −
∑
x∈k

ψ((−1)n(2x)(q
n+1)/2 − (2x)(q+1)/2 + t(2x)) =

= −
∑
x∈k

ψ((−1)nx(q
n+1)/2 − x(q+1)/2 + tx).

Thus G1,small(ψ2, n, q) is the Fourier transform FTψ of Lψ((−1)nx(qn+1)/2−x(q+1)/2). As the two
inputs

Lψ(x(qn+1)/2+x(q+1)/2) and Lψ((−1)nx(qn+1)/2−x(q+1)/2)

are visibly not geometrically isomorphic, neither are their FTψ outputs. �

We now invoke a fundamental result of Guralnick, Magaard, and Tiep [GMT, Theorem
1.1, (ii) and (iii)]. Recall that 2 is a square in Fq if and only if q is ±1(mod 8). So their
result gives

Theorem 7.2. Suppose q = pa, p an odd prime, and na is prime to p. Suppose also that
n ≥ 2. On A2/Fp, there exist geometric isomorphisms of local systems

Sym2(Gsmall(ψ, n, q)) ∼= ∧2(Glarge(ψ2, n, q)),

Sym2(Gsmall(ψ2, n, q)) ∼= ∧2(Glarge(ψ, n, q)).
Pulled back to A2/Fqn, these exist as arithmetic isomorphisms.

Proof. For the geometric isomorphisms, this is immediate from Theorem 6.8 and [GMT, 1.1,
(ii) and (iii)], because in view of Theorem 6.8 it is a statement about the representation theory
of Ggeom. Pulled back to A2/Fqn , we know that Ggeom = Garith, so we have an equality of all
Frobenius traces over extension fields of Fqn , as every such Frobenius lies in Ggeom. �
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8. Specializing s 7→ 1

Specializing s 7→ 1, we get the following corollary of Theorem 7.2.

Corollary 8.1. Suppose q = pa, p an odd prime, and na is prime to p. Suppose also that
n ≥ 2. On A1/Fp, there exist geometric isomorphisms of local systems

Sym2(G1,small(ψ, n, q)) ∼= ∧2(G1,large(ψ2, n, q)),

Sym2(G1,small(ψ2, n, q)) ∼= ∧2(G1,large(ψ, n, q)).
Pulled back to A2/Fqn, these exist as arithmetic isomorphisms.

When we specialize s 7→ 1, the groups Ggeom and Garith can only shrink. Each of the local
systems

G1,small := G1,small(ψ, n, q)

and

G1,large := G1,large(ψ, n, q)
is geometrically irreducible (thanks to the Fourier Transform description). In view of Theo-
rem 6.8, we get

Proposition 8.2. Suppose q = pa, p an odd prime, and na is prime to p. Suppose also that
n ≥ 2. We have the following results, which we now express in terms of G1,even and G1,odd.

(i) After extension of scalars to A1/Fqn, we have inclusions of geometric and arithmetic
monodromy groups

Ggeom,G1,even ≤ Garith,G1,even ≤ Garith,Geven = Sp(2n, q).

(ii) The restriction to Ggeom,G1,even of the even Weil representation of Sp(2n, q) is irreducible
(this being the tautological representation of the geometrically irreducible local system
G1,even).

(iii) After extension of scalars to A1/Fqn, we have inclusions of geometric and arithmetic
monodromy groups

Ggeom,G1,odd ⊂ Garith,G1,odd ⊂ Garith,Godd = PSp(2n, q).

(iv) The restriction to Ggeom,G1,odd of the odd Weil representation of PSp(2n, q) is irreducible
(this being the tautological representation of the geometrically irreducible local system
G1,odd).

We now combine this result with Theorem 4.7.

Theorem 8.3. Suppose q = pa, p an odd prime, and na is prime to p. Suppose also that
n ≥ 2. We have the following results.

(i) Suppose (qn + 1)/2 is even. Then G1,large = G1,even(ψ, n, q) has

SL(2, qn) ≤ Ggeom,G1,even ≤ Garith,G1,even ≤ Sp(2n, q).

For some factorization na = AB, we have Ggeom,G1,even = Sp(2A, pB), and after extension
of scalars to A1/Fqn, we have

Ggeom,G1,even = Garith,G1,even .
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(ii) Suppose (qn + 1)/2 is odd, and that qn 6= 32, 53. Then G1,large = G1,odd(ψ, n, q) has

PSL(2, qn) ≤ Ggeom,G1,odd ≤ Garith,G1,odd ≤ PSp(2n, q).

For some factorization na = CD, we have Ggeom,G1,odd = Sp(2C, pD), and after extension
of scalars to A1/Fqn, we have

Ggeom,G1,odd = Garith,G1,even .

(iii) Suppose qn = 32 or 53. The above statement (ii) remains true.

Proof. The first assertion of (i) and (ii) is immediate from Theorem 4.7, remembering that
the Ggeom groups have no nontrivial prime to p quotients, cf. the proof of Corollary 6.5. The
second statement is proven as in the proof of Lemma 6.7.

It remains to prove (iii).
We first consider the case qn = 32. Here we look at maximal subgroups G < PSp(4, 3)

on which an odd Weil representation, toward SL(5,C), remains irreducible. If G contains
PSL(2, 9), we are done. The other possibility is G = 24 o A5. This group is best seen using
the isomorphism A5

∼= SL(2, 4) as the affine special linear group F2
4 o SL(2, 4). In this case,

Ggeom for G1,odd(ψ, 2, 3) is either this G or it is PSp(4, 3). In the latter case, we are done. If
Ggeom is G, then also Garith is G (because G is its own normalizer in SL(5,C)). A computer
calculation shows that over F9, the traces of G1,odd(ψ, 2, 3) lie in Z[ζ3] but do not lie in Z.
On the other hand, all traces of G in its unique five-dimensional irreducible representation
lie in Z.

We now turn to the case qn = 53. Here we look at maximal subgroups G < PSp(6, 5) on
which an odd Weil representation, toward SL(63,C), remains irreducible. When G contains
PSL(2, 53), we are done. The other possibility is that G = J2. In this case, Ggeom for
G1,odd(ψ, 3, 5) is either J2 or it is PSp(6, 5). In the latter case, we are done. If Ggeom is J2,
then also Garith is J2 (because J2 is its own normalizer in SL(63,C)). A computer calculation
shows that over F25, the traces of G1,odd(ψ, 3, 5) lie in Z[ζ5]

+ but do not lie in Z. On the other
hand, all traces of J2 in its unique 63-dimensional irreducible representation lie in Z. �

We now make use of Corollary 8.1, applied to our local systems using ψ2.

Theorem 8.4. Suppose q = pa, p an odd prime, and na is prime to p. Suppose also that
n ≥ 2. We have the following results.

(i) Suppose (qn + 1)/2 is even. For some factorization na = AB, G1,small = G1,odd(ψ, n, q)
has

Ggeom,G1,odd = PSp(2A, pB).

After extension of scalars to A1/Fqn, we have

Ggeom,G1,odd = Garith,G1,odd .

(ii) Suppose (qn + 1)/2 is odd. For some factorization na = CD, G1,large = G1,even(ψ, n, q)
has

Ggeom,G1,even = Sp(2C, pD).

After extension of scalars to A1/Fqn, we have

Ggeom,G1,even = Garith,G1,even .
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Proof. Suppose first (qn + 1)/2 is even. Then

G1,large(ψ2, n, q) = G1,even(ψ2, n, q),

and by Corollary 8.1, we have

∧2(G1,even(ψ2, n, q)) ∼= Sym2(G1,odd(ψ, n, q)).

Therefore Sym2(G1,odd(ψ, n, q)) has its Ggeom (and its Garith, after extension of scalars to
A1/Fqn) equal to PSp(2A, pB) for some factorization na = AB. The Ggeom for G1,odd(ψ, n, q)
itself is therefore either PSp(2A, pB) or a double covering of PSp(2A, pB), so either the
product PSp(2A, pB)×{±1} or Sp(2A, pB). It cannot be Sp(2A, pB), because Sp(2A, pB) has
no faithful irreducible representation of odd dimension (qn − 1)/2. It cannot be the product
PSp(2A, pB)× {±1} because Ggeom has no nontrivial prime to p quotient.

Suppose now that (qn + 1)/2 is odd. Then

G1,large(ψ2, n, q) = G1,odd(ψ2, n, q),

and by Corollary 8.1, we have

∧2(G1,odd(ψ2, n, q)) ∼= Sym2(G1,even(ψ, n, q)).

Therefore Sym2(G1,even(ψ, n, q)) has its Ggeom (and its Garith, after extension of scalars to
A1/Fqn) equal to PSp(2C, pD) for some factorization na = CD. The Ggeom for G1,even(ψ, n, q)
itself is therefore either PSp(2C, pD) or a double covering of PSp(2C, pD), so either the
product PSp(2C, pD)×{±1} or Sp(2C, pD). It cannot be PSp(2C, pD), because PSp(2C, pD)
has no irreducible representation of even dimension (qn − 1)/2. It cannot be the product
PSp(2C, pD)× {±1} because Ggeom has no nontrivial prime to p quotient. �

Proposition 8.5. In the above theorem, we have (A,B) = (C,D), and Ggeom forW1(ψ, n, q)
is the diagonal image of Sp(2A, pB) in the product group Sp(2A, pB)× PSp(2A, pB).

Proof. Repeat the proof of Proposition 6.6. �

Lemma 8.6. Suppose q = pa, p an odd prime, and na is prime to p. Suppose also that n ≥ 2.
After extension of scalars to A1/Fqn, we have Garith = Ggeom for each of G1,even(ψ, n, q),
G1,odd(ψ, n, q), and W1(ψ, n, q).

Proof. Repeat the proof of Lemma 6.7. �

Theorem 8.7. Suppose q = pa, p an odd prime, and na is prime to p. Suppose also that n ≥
2. After extension of scalars to A1/Fqn, the local systems G1,even(ψ, n, q) and G1,odd(ψ, n, q)
are correctly matched in the sense that W1(ψ, n, q) is a total Weil representation, and the
respective geometric (and arithmetic) monodromy groups of these three systems are Sp(2n, q),
PSp(2n, q), and Sp(2n, q).

Proof. Repeat the proof of Theorem 6.8 (with the point (1,−2) replaced by the point t =
−2). �

Corollary 8.8. With hypotheses as in Theorem 8.7, each of the local systems G1,even(ψ, n, q),
G1,odd(ψ, n, q), and W1(ψ, n, q) has Ggeom = Garith after extension of scalars to A1/Fq.

Proof. The argument of Lemma 6.7 gives this equality after extension of scalars to A1/FpB ,
and Theorem 8.7 shows that q = pB. �



32 NICHOLAS M. KATZ AND PHAM HUU TIEP

Remark 8.9. It is plausible that Theorems 3.1 and 3.2 in fact remain valid for n ≥ 2 and
q = pa without the hypotheses that both n and a be prime to p. Using the character tables
in Magma, and the calculation of the traces over a few small finite fields of our local systems
G1,odd(ψ, n, q) and Godd(ψ, n, q), we have checked that part (ii) of each of the Theorems 3.1
and 3.2 remains valid in each of the three special cases (p = n = 3, a = 1), (p = n = 3, a = 2),
and (p = n = 5, a = 1). But even to do the cases (p = n, a = 1) or (p = n, a = 2) for higher
p, much less the general case, would seem to require new ideas.
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