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1. Overall introduction

We first recall from [12, §1] the underlined motivation for this work. The solution 
[15] (see also [14]) of Abhyankar’s Conjecture for the affine line in characteristic p > 0
tells us that any finite group G which is generated by its Sylow p-subgroups occurs as 
a quotient of the geometric fundamental group π1(A1/Fp) of the affine line A1/Fp over 
Fp. In a series of papers (see e.g. [1]), Abhyankar has written down explicit equations 
which realize many finite groups of Lie type as such quotients.

Suppose we are given such a finite group G (i.e., one which is generated by its Sylow 
p-subgroups), together with a faithful representation ρ : G → GLn(C). Because G is 
finite, there is always some number field K such that the image of ρ lands in GLn(K). 
If we now choose a prime number � and an embedding of K into Q�, we can view ρ as a 
representation ρ : G → GLn(Q�). Since G is a quotient of π1(A1/Fp), we can compose

π1(A1/Fp) � G → GLn(Q�),

to get a continuous �-adic representation of π1(A1/Fp), i.e., an �-adic local system on 
A1/Fp, whose image is the finite group G.

There are a plethora of local systems on the affine line attached to families of expo-
nential sums. In the ideal world, we would be able, given the data (G, ρ) and any � �= p, 
to write down a “simple to remember” family of exponential sums incarnating a local 
system which gives (G, ρ). Needless to say, we are far from being in the ideal world.

In our earlier paper [12, Theorem 3.2], we gave explicit rigid local systems on the 
affine line A1 in characteristic p > 2 whose geometric monodromy groups were proved 
to be the finite symplectic groups Sp2n(q), so long as3 n ≥ 2 was itself prime to p and 
so long as q was a power pa of p such that the exponent a was prime to p.

Here we develop some new ideas which, when n ≥ 3 is odd, give us rigid local systems 
incarnating all the q+1 irreducible representations of SUn(q) of degree either q

n+1
q+1 (q of 

3 The case n = 1 of SL2(q) was done in [11].
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these) or q
n−q
q+1 (one of these). It turns out a posteriori that these rigid local systems are 

precisely those occurring in [11, Conjecture 9.2], where they were conjectured to have 
these monodromy groups for all odd n ≥ 3 but only proven [11, Theorem 19.1] to have 
them when n was 3, with the additional proviso that 3 not divide q + 1. As a result, 
we are able to determine the arithmetic and geometric monodromy groups of these local 
systems and also prove Conjecture 9.2 of [11].

These ideas also lead us to local systems on A2 whose geometric monodromy groups 
are the finite symplectic groups Sp2n(q) for every odd n ≥ 3 and every power q of the 
odd prime p. In contrast to [12], there are no “prime to p” hypotheses on either n or on 
logp(q).

Another chain of ideas leads us to local systems on A1 whose geometric monodromy 
groups are the finite symplectic groups Sp2n(q) for every even n and every power q of 
the odd prime p. Again here there are no “prime to p” hypotheses on either n or on 
logp(q).

In both of the n even and n odd cases, a key new idea is to study certain two-
parameter local systems and their monodromy groups first, and then descend to our 
target one-parameter systems by specialization.

2. Introduction to the n odd case

For an odd integer n ≥ 3, and a prime power q ≥ 2, the irreducible representations 
(over C) of lowest degree after the trivial representation of the group SUn(q) are a sym-
plectic representation of dimension q

n+1
q+1 −1 = qn−q

q+1 , and q representations of dimension 
qn+1
q+1 . When q is odd, exactly one of these q representations is orthogonal, otherwise none 

is. The direct sum of these q + 1 representations is called the big Weil representation of 
SUn(q).

In the paper [11], we wrote down q + 1 rigid local systems on the affine line A1/Fp

whose geometric monodromy groups we conjectured to be the images of SUn(q) in these 
q + 1 representations. We were able to prove this only in the case when n = 3 and 
gcd(n, q + 1) = 1 (the condition that SUn(q) = PSUn(q)), where we made use of the 
results of Dick Gross [6]. In this paper, we use a completely different method, which also 
starts4 with results of Gross, to prove these conjectures for any odd n ≥ 3 and for any 
odd prime power q, see Theorem 4.4.

The method used here, which requires that q be odd, is based on a striking group-
theoretic relation between the Weil representations of SUn(q) and Sp2n(q), and on the 
determination of those subgroups of Sp2n(q) to which the Weil representation restricts 
“as though” it were the Weil representation of SUn(q), cf. Theorem 3.4. We are able to 
apply this result to our local systems, in Section 3, by invoking results of [12], which was 
devoted to questions around Sp2n(q). Furthermore, our Theorem 4.3 also improves the 

4 The results here use the results of [12], which in turn uses the results of [11] for SL2(q), and those use 
[6] in an essential way.
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main results Theorems 3.1 and 6.8 of [12] in the case 2 � n, by removing the condition 
that p � n · logp(q) for the prime p|q.

The main results in the n odd case are Theorems 4.2, 4.3, 4.4, 5.1, and 5.2 that 
determine the arithmetic and geometric monodromy groups of the constructed local 
systems, and Theorem 5.3 that establishes Conjecture 9.2 of [11].

3. Unitary-type subgroups of finite symplectic groups

Let q = pa be any power of a prime p and n ≥ 2. It is well known, see e.g. [5, 
Theorem 4.9.2], that the function

ζn,q = ζn : g �→ (−1)n(−q)dimF
q2

Ker(g−1W )

defines a complex character, called the (reducible) Weil character, of the general unitary 
group GUn(q) = GU(W ), where W = Fn

q2 is a non-degenerate Hermitian space with 
Hermitian product ◦. Note that the Fq-bilinear form

(u|v) = TraceFq2/Fq
(θu ◦ v)

on W , for a fixed θ ∈ F×
q2 with θq−1 = −1, is non-degenerate symplectic. This leads to 

an embedding

G̃ := GUn(q) ↪→ Sp2n(q).

Similarly, the function

τn,q = τn : g �→ qdimFq Ker(g−1U )

defines a complex character, called the (reducible) Weil character, of the general linear 
group GLn(q) = GL(U), where U = Fn

q , see e.g. [5, Corollary 1.4]. Again we can embed 
GLn(q) into Sp2n(q) so that GLn(q) stabilizes a complementary pair (U, U ′) of maximal 
totally isotropic subspaces of the symplectic space F2n

q . For the reader’s convenience, we 
record the following statement, which follows from [5, Theorem 2.4(c)] in the GL-case, 
and from [5, Theorem 3.3] in the GU-case:

Theorem 3.1. Let q be an odd prime power and let n ∈ Z≥1. Then the following state-
ments hold.

(i) Let χ̃2 denote the unique complex character of degree 1 and of order 2 of GUn(q). 
Then the restriction of any of the two big Weil characters (of degree qn, and denoted 
Weil1 and Weil2 in [12, §2]) of Sp2n(q) to GUn(q) is ζ̃n := χ̃2ζn.
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(ii) Let χ2 denote the unique complex character of degree 1 and of order 2 of GLn(q). 
Then the restriction of any of the two big Weil characters Weil1, Weil2 of Sp2n(q)
to GLn(q) is χ2τn.

Fix a generator σ of F×
q2 and set ρ := σq−1. We also fix a primitive (q2 − 1)th root of 

unity σ ∈ C× and let ρ = σq−1. By Theorem 3.1(i),

(Weil1)|G̃ = ζ̃n =
q∑

i=0
ζ̃i,n (3.1.1)

decomposes as the sum of q + 1 characters of G̃, where

ζ̃i,n(g) = (−1)nχ̃2(g)
q + 1

q∑
l=0

ρil(−q)dim Ker(g−ρl·1W ); (3.1.2)

this formula is obtained by applying [17, Lemma 4.1] to the “untwisted” character ζn. 
In particular, ζ̃i,n has degree (qn − (−1)n)/(q + 1) if i > 0 and (qn + (−1)nq)/(q + 1) if 
i = 0. (Note that formula (3.1.2) also holds for 2|q, where we define ζ̃n = ζn, χ̃2 = 1G̃ in 
that case.)

We will let ζi,n denote the restriction of ζ̃i,n to G = SUn(q), for 0 ≤ i ≤ q. If 
n ≥ 3, then these q + 1 characters are all irreducible and distinct. If n = 2, then ζi,n
is irreducible, unless q is odd and i = (q + 1)/2, in which case it is a sum of two 
irreducible characters of degree (q − 1)/2, see [17, Lemma 4.7]. Formula (3.1.2) implies 
that Weil characters ζi,n enjoy the following branching rule while restricting to the 
natural subgroup H := StabG(w) ∼= SUn−1(q) (w ∈ W any anisotropic vector):

ζi,n|H =
q∑

j=0, j �=i

ζj,n−1. (3.1.3)

Furthermore, complex conjugation fixes ζ̃0,n and sends ζ̃j,n to ζ̃q+1−j,n when 1 ≤ j ≤ q. 
As n ≥ 3 is odd, it is also known that ζ̃0,n is of symplectic type; let

Ψ0 : G̃ → Sp(V )

be a complex representation affording this character. If 2 � q, then ζ̃(q+1)/2,n is of orthog-
onal type; let

Ψ(q+1)/2 : G̃ → O(V )

be a complex representation affording this character. In the remaining cases, let

Ψi : G̃ → GL(V )

be a complex representation affording the character ζ̃i,n.
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Lemma 3.2. Assume n ≥ 3 is odd and q is odd.

(i) Ψ0(GUn(q)) ∼= GUn(q)/C(q+1)/2 is contained in Sp(V ) and contains Ψ0(SUn(q)) ∼=
PSUn(q) with index 2d, where d := gcd(n, q + 1).

(ii) If 1 ≤ i ≤ q, then Ker(Ψi) is a central subgroup of order gcd(i + (q + 1)/2, q + 1), 
and Ker(Ψi|SUn(q)) is a central subgroup of order gcd(i + (q + 1)/2, n, q + 1).

(iii) PGUn(q) ∼= Ψ(q+1)/2(GUn(q)) ≤ SO(V ) contains Ψ(q+1)/2(SUn(q)) ∼= PSUn(q)
with index d.

(iv) If 1 ≤ i ≤ q and i �= (q+1)/2, then Ψi(GUn(q)) ∩SL(V ) contains Ψi(SUn(q)) with 
index gcd(i + (q + 1)/2, n, q + 1).

(v) Suppose H ≤ GUn(q). Then Ψi(H) ≤ SL(V ) for all 0 ≤ i ≤ q if and only if 
H ≤ SUn(q).

Proof. According to [17, §4], one can label Ψi in such a way that

Ψi(z) = −ρi · 1V = ρi+(q+1)/2 · 1V (3.2.1)

for the generator z = ρ · 1W of Z(G̃) ∼= Cq+1. Note that we need to add the minus-sign, 
because ζ̃n is obtained from ζn by the quadratic twist χ̃2. In particular, Ker(Ψ0) ∩Z(G̃) =
〈z2〉, and (i) follows.

Now we can assume 1 ≤ i ≤ q. By (3.2.1), zj ∈ Ker(Ψi) if and only if j is divisible 
by (q + 1)/ gcd(i + (q + 1)/2, q + 1). Furthermore, zj(q+1)/d ∈ Ker(Ψi|SUn(q)) if and only 
if j is divisible by d/ gcd(i, d) = d/ gcd(i + (q + 1)/2, n, q + 1) for d = gcd(n, q + 1), 
equivalently, if j(q + 1)/d is divisible by (q + 1)/ gcd(i + (q + 1)/2, n, q + 1). Hence (ii) 
follows.

Consider the element g := diag(ρ, 1, 1, . . . , 1) ∈ G̃; note that G̃ = 〈G, g〉 and χ̃2(g) =
−1. Then (3.1.2) implies that

ζ̃i,n(gk) = (−1)k
(
−qn−1 − (−1)n−1

q + 1 + (−1)n−1ρik

)

when 1 ≤ k ≤ q. It follows that Ψi(g) has eigenvalues −ρj , 1 ≤ j ≤ q, with multiplicity 
(qn−1 − 1)/(q + 1) if j �= i and 1 + (qn−1 − 1)/(q + 1) if j = i, and so

det(Ψi(g)) = −ρi = ρi+(q+1)/2.

In particular, Ψi(gj) ∈ SL(V ) if and only if j is divisible by (q+1)/ gcd(i +(q+1)/2, q+1). 
Since SUn(q) is perfect, (iii), (iv), and the “if” direction of (v) follow.

For the “only if” direction of (v), assume that Ψ1(H) ≤ SL(V ), and consider any 
h ∈ H. If det(h) = ρj for 0 ≤ j ≤ q, then hg−j ∈ SUn(q) and so Ψ(q+3)/2(hg−j) ∈ SL(V )
by the previous statement. It follows that
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1 = det(Ψ(q+3)/2(h)) = det(Ψ(q+3)/2(hg−j)) det(Ψ(q+3)/2(gj))

= det(Ψ(q+3)/2(gj)) = ρj ,

whence j = 0 and det(h) = 1, as stated. �
We will now show that, when n ≥ 3 is odd and q is odd, the splitting (3.1.1) of a big 

Weil character Weili of Sp2n(q) on its restriction to SUn(q) into a sum of q+1 irreducible 
constituents of prescribed degrees characterizes SUn(q) uniquely (up to conjugacy).

Recall [19] that if a ≥ 2 and n ≥ 2 are any integers with (a, n) �= (2, 6), (2k − 1, 2), 
then an − 1 has a primitive prime divisor, that is, a prime divisor � that does not divide ∏n−1

i=1 (ai − 1); write � = ppd(a, n) in this case. Furthermore, if in addition a, n ≥ 3 and 
(a, n) �= (3, 4), (3, 6), (5, 6), then an − 1 admits a large primitive prime divisor, i.e. a 
primitive prime divisor � where either � > n + 1 (whence � ≥ 2n + 1), or �2|(an − 1), see 
[4].

We will need the following recognition theorem [12, Theorem 4.6], which was obtained 
relying on [7].

Theorem 3.3. Let q = pf be a power of an odd prime p and let d ≥ 2. If d = 2, suppose 
that pdf − 1 admits a primitive prime divisor � ≥ 5 with (pdf − 1)� ≥ 7. If d ≥ 3, suppose 
in addition that (p, df) �= (3, 4), (3, 6), (5, 6), so that pdf − 1 admits a large primitive 
prime divisor �. In either case, we choose such an � to maximize the �-part of pdf − 1. 
Let W = Fd

q and let G be a subgroup of GL(W ) ∼= GLd(q) of order divisible by the �-part 
Q := (qd − 1)� of qd − 1. Also, let L := O�′(G) be the smallest among normal subgroups 
of G of index coprime to �. Then either L is a cyclic �-group of order Q, or there is a 
divisor j < d of d such that one of the following statements holds.

(i) L = SL(Wj) ∼= SLd/j(qj), d/j ≥ 3, and Wj is W viewed as a d/j-dimensional 
vector space over Fqj .

(ii) 2j|d, Wj is W viewed as a d/j-dimensional vector space over Fqj endowed with a 
non-degenerate symplectic form, and L = Sp(Wj) ∼= Spd/j(qj).

(iii) 2|jf , 2 � d/j, Wj is W viewed as a d/j-dimensional vector space over Fqj endowed 
with a non-degenerate Hermitian form, and L = SU(Wj) ∼= SUd/j(qj/2).

(iv) 2j|d, d/j ≥ 4, Wj is W viewed as a d/j-dimensional vector space over Fqj endowed 
with a non-degenerate quadratic form of type −, and L = Ω(Wj) ∼= Ω−

d/j(q
j).

(v) (p, df, L/Z(L)) = (3, 18, PSL2(37)), (17, 6, PSL2(13)).

The main result of this section is the following theorem:

Theorem 3.4. Let q = pa be a power of an odd prime p and let n ≥ 3 be an odd integer. 
Let W = F2n

q be a non-degenerate symplectic space, and H := Sp(W ) ∼= Sp2n(q), and 
let Φ be a complex Weil representation Weili of H of degree qn for some i = 1, 2 as in 
[12, §2]. Suppose that G ≤ H is a subgroup such that Φ|G = ⊕q

j=0 is a sum of q + 1
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irreducible summands, Φ0 of degree (qn− q)/(q+1) and Φj of degree (qn +1)/(q+1) for 
1 ≤ j ≤ q. Then W can be viewed as an n-dimensional vector space over Fq2 endowed 
with a G-invariant non-degenerate Hermitian form such that

SUn(q) ∼= SU(W ) � G ≤ GU(W ) ∼= GUn(q).

Proof. (a) First we assume that (n, q) �= (3, 3) and (3, 5); in particular, so that p2na − 1
admits a large primitive prime divisor �, in which case we choose such an � to maximize 
the �-part of p2na − 1. Note the assumptions imply that |G| is divisible by both (qn −
q)/(q + 1) and (qn + 1)/(q + 1). In particular, G < GL(W ) has order divisible by

qQ := q(p2na − 1)�. (3.4.1)

Let L := O�′(G) and d(L) denote the smallest degree of nontrivial complex irreducible 
characters of L. Note that

d(L) ≤ (qn + 1)/(q + 1) ≤ (qn + 1)/4. (3.4.2)

(Otherwise L ≤ Ker(Φ1), whence Φ1 could be viewed as an irreducible representation of 
G/L and so would have been of �′-degree.) Furthermore, if L is cyclic of order Q, then 
by Ito’s theorem (6.15) of [8], the degree of any irreducible character of G divides |G/L|, 
an integer coprime to �, and so again G cannot be irreducible on Φ1. Now we can apply 
Theorem 3.3 to arrive at one of the following cases.

(i) L ∼= SL2n/j(qj) for some divisor 1 ≤ j ≤ n of 2n. In this case, if j ≤ 2n/3 then by 
[16, Theorem 3.1] we have

d(L) > qj(2n/j−1) = q2n−j > qn,

contradicting (3.4.2). If j = n, then qj = qn ≥ 27 and so

d(L) ≥ (qn − 1)/2 > (qn + 1)/4,

again contradicting (3.4.2).
(ii) L ∼= Sp2n/j(qj) for some divisor 1 ≤ j < n/2 of n. Then by [16, Theorem 1.1] we 

have

d(L) ≥ (qn − 1)/2 > (qn + 1)/4,

contradicting (3.4.2).
(iii) There is some even divisor j = 2k of 2n with k|n and 2 � n/k > 1, such that W can 

be viewed as a 2n/j-dimensional vector space over Fqj endowed with a non-degenerate 
Hermitian form and L = SU(W ) ∼= SUn/k(qk). Suppose first that k > 1, and let ψ be an 
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irreducible constituent of the L-character afforded by Φ0, so that ψ(1) < (qn + 1)/4. By 
[16, Theorem 4.1],

ψ(1) ∈
{

1, q
n + 1
qk + 1 ,

qn − qk

qk + 1

}
.

The proof of (3.4.2) rules out the possibility ψ(1) = 1. Next,

ψ(1)| dim Φ0 = (qn − q)/(q + 1)

by Clifford’s theorem, implying ψ(1) �= (qn − qk)/(qk + 1) as k > 1. The remaining 
possibility ψ(1) = (qn + 1)/(qk + 1) is also ruled out since � � dim Φ0. We have shown 
that k = 1, i.e. L = SU(W ) ∼= SUn(q). This implies that

L � G ≤ NSp(W )(L) = GU(W ) � 〈σ〉 ∼= GUn(q) � C2.

Here, σ is an involutive automorphism of GU(W ) that acts as inversion on

〈z〉 = Z(GU(W )) ∼= Cq+1. (3.4.3)

Recall the decomposition

Φ|GU(W ) = ⊕q
i=0Ψi, (3.4.4)

with Ψ0 of degree (qn − q)/(q + 1) and Ψi of degree (qn + 1)/(q + 1) for 1 ≤ i ≤ q, see 
the discussion preceding Lemma 3.2. In fact, one can find a primitive (q + 1)th root of 
unity ξ ∈ C× such that Ψi(z) is the multiplication by ξi. In particular, σ fuses Ψ1 and 
Ψq. The assumption on Φ|G now implies that G ≤ GU(W ), as stated.

(iv) L ∼= Ω−
2n/j(q

j) for some divisor 1 ≤ j < n/2 of the odd integer n. If j ≤ n/5, then 
by [16, Theorem 1.1] we have

d(L) > qn + 1,

contradicting (3.4.2). If j = n/3, then L is a quasisimple quotient of PSU4(qn/3) with 
qn/3 > 5, and so by [16, Theorem 1.1] we have

d(L) = q4n/3 − 1
qn/3 + 1

> qn/2,

again contradicting (3.4.2).
(v) (p, na, L/Z(L)) = (3, 9, PSL2(37)). Note that the smallest dimension of a nontrivial 

irreducible representation of L over F3 is 18 (see e.g. [16, Table I]), so (q, n) = (3, 9) and 
L = SL2(37) acts absolutely irreducibly on W = F18

3 . This in turn implies that
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CSp(W )(L) = Z(L) = C2,

and so L � G ≤ NSp(W )(L) ≤ L · C2. But in this case, G cannot have an irreducible 
complex representation of degree

dim Φ1 = (qn + 1)/(q + 1) = (39 + 1)/4.

(vi) (p, na, L/Z(L)) = (17, 6, PSL2(13)). In this case (q, n) = (17, 3) and L = SL2(13)
acts absolutely irreducibly on W = F6

17. As in (v), this implies that

CSp(W )(L) = Z(L) = C2,

and L � G ≤ NSp(W )(L) ≤ L · C2, whence G cannot have an irreducible complex 
representation of degree

dim Φ1 = (qn + 1)/(q + 1) = (173 + 1)/18.

(b) It remains to consider the two cases (n, q) = (3, 3) and (3, 5). Let M be a max-
imal subgroup of Sp(W ) that contains G. Then condition (3.4.1) also holds for |M |; 
furthermore, the maximal degree of complex irreducible characters of M must be at 
least (qn + 1)/(q + 1) = 7, respectively 21, since Φ1 ∈ Irr(G). First suppose that q = 5. 
Then, according to Tables 8.27 and 8.28 of [3], one of the following possibilities oc-
curs.

• M = 2J2. In this case, since |G| is divisible by 3 ·5 ·7, see (3.4.1), we see by inspect-
ing maximal subgroups of J2 [2] that G = M . But then G does not admit any complex 
irreducible representation of degree dim Φ0 = 20.

• M = SL2(125) �C3. In this case, since |G ∩ [M, M ]| is divisible by 5 · 7, see (3.4.1), 
we see by inspecting maximal subgroups of PSL2(125) [3, Table 8.1] that G � SL2(125). 
But then d(G) ≥ 62 (see e.g. [16, Table I]), violating (3.4.2).

• M = GU3(5) � C2. If G ≥ N := SU3(5), then we can argue as in (iii) above. 
Suppose G � N . Since L := G ∩ N � G has order divisible by 5 · 7, see (3.4.1), 
we see by inspecting maximal subgroups of PSL3(5) and Alt7 [2] that L = 3Alt7, 
and Z(L) = 〈z2〉 with 〈z〉 = Z(GU3(5)) as defined in (3.4.3). Using the decompo-
sition (3.4.4), we may assume that Φi = (Ψi)|G for 0 ≤ i ≤ q. As mentioned in 
(iii), the subgroup C2 fuses Ψ1 with Ψ5, hence Φ1 with Φ5. Thus G ≤ GU3(5), and 
so |G/L| and |NGU3(5)(L)/L| both divide 6. Note that NGU3(5)(L) contains the cen-
tral involution of GU3(5) which lies outside of SU3(5). It follows that G induces a 
subgroup X of outer automorphisms of L of order dividing 3, whence X = 1 as 
|Out(Alt7)| = 2 [2]. Now let g ∈ L be of order 7. Then Φ0(g) = Ψ0(g) has trace 
−1. On the other hand, as G induces only inner automorphisms on L, we see that 
(Φ0)|L must be a direct sum of two copies of a single irreducible complex representa-
tion Φ′ (of dimension 10) of L and we arrive at the contradiction that Φ′(g) has trace 
−1/2.
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(c) Finally, we consider the case q = 3. Inspecting the list of maximal sub-
groups of PSp6(3) in [2], we arrive at the following possibilities for M . By (3.4.1), 
G contains an element g ∈ G of order 7. According to [2], we may assume that 
Φ0 ⊕ Φ2 = Λ|G, where Λ is an irreducible Weil representation of degree 13 of Sp6(3)
and contains the central involution t of Sp6(3) in its kernel, and that Λ(g) has trace 
−1.

• M = SL2(13). In this case, since |G| is divisible by 3 · 7, see (3.4.1), we see by 
inspecting maximal subgroups of PSL2(13) [2] that G = M . Note that t is the central 
involution of G. Now the conditions that t ∈ Ker(Λ) and Λ(g) has trace −1 imply by [2]
that Λ|G is irreducible, a contradiction.

• M = SL2(27) · 3. In this case, since |G| is divisible by 7, we see by inspecting 
maximal subgroups of PSL2(27) [2] that either G ≥ [M, M ] = SL2(27) or G ∩ [M, M ] is 
contained in a dihedral group D28. It is easy to see that in the former case d(G) ≥ 13
contradicting (3.4.2), and in the latter case G does not admit any complex irreducible 
representation of dimension dim Φ1 = 7.

• M = GU3(3) � C2. If G ≥ N := SU3(3), then we can argue as in (iii) above. 
Suppose G � N . Since L := G ∩ N � G has order divisible by 3 · 7, see (3.4.1), 
we see by inspecting maximal subgroups of SU3(3) and PSL2(7) [2] that either L
is of order 21 or L = PSL2(7). The former case is ruled out since (Φ1)|L is irre-
ducible of dimension 7. In the latter case, fix an involution s ∈ L. We may assume 
that

(Φi)|L = (Ψi)|L

for the representations Ψi defined in (3.4.4), and furthermore Ψ2 is self-dual of di-
mension 7. Using [2] we see that Ψ1(s) has trace 3 and Ψ1(g) has trace 0, whence 
(Φ1)|L = (Ψ1)|L is the sum of two irreducible representations of dimensions 1 and 6, 
contradicting the irreducibility of Φ1 on G � L. �

In the next statement, we consider a non-degenerate symplectic space W = F2N
p , a 

(reducible) big Weil representation of degree pN of G = Sp(W ) ∼= Sp2N (p) with character 
ω as in [12]; in particular,

|ω(g)| = |CW (g)|1/2 (3.4.5)

for any g ∈ G. Let N = AB and B = bj for some positive integers A, B, b, j. We may 
then assume that W is obtained from the symplectic space W1 := F2A

pB (with a Witt 
basis (e1, . . . , eA, f1, . . . , fA)) by base change from FpB to Fp. Using this basis we can 
consider the transformation

σ :
A∑

(xiei + yifi) �→
A∑

(xr
i ei + yri fi)
i=1 i=1
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induced by the Galois automorphism x �→ xr for r := pj . Then, as in [12, §4] we can 
consider the standard subgroup

H = Sp(2A, pB) � Cb

of G, where Cb = 〈σ〉.

Theorem 3.5. Each value |ω(x)|2, x ∈ H, is a power of r = pj. Furthermore, there is 
some h ∈ H such that |ω(h)|2 = r.

Proof. Note that H embeds in Sp(2Ab, pj), and so the first statement follows by applying 
(3.4.5) to a big Weil representation of Sp(2Ab, pj). To define h, consider the Fr-linear 
map

f : FpB → FpB , x �→ x− xr.

Viewed as a vector space over Fr, Ker(f) has dimension 1. Hence f cannot be surjective, 
and so we can find

α ∈ FpB � Im(f).

Let J denote the Jordan block of size A × A with eigenvalue α−1, and let g ∈ H have 
the following matrix

(
t(αJ)−1 α2J

0 αJ

)

in the chosen basis (e1, . . . , eA, f1, . . . , fA) of W1. We will show that h = gσ satisfies 
|ω(h)|2 = r. According to (3.4.5), it suffices to show that h fixes exactly r vectors in 
W1. To this end, suppose that w =

∑A
i=1(xiei + yifi) is fixed by h, where xi, yi ∈ FpB . 

Comparing the coefficient for fA we have

yrA = yA

implying yA ∈ Fr. Next, comparing the coefficient for fA−1 we see that

yrA−1 + αyrA = yA−1,

and so αyA = f(yA−1). By the choice of α, yA = 0, whence yA−1 ∈ Fr. Continuing in 
the same fashion, we conclude that

y1 ∈ Fr, y2 = y3 = . . . = yA = 0.

Thus we have shown that v :=
∑A

i=1 yifi = y1f1. Letting u := w − v =
∑A

i=1 xiei, we 
have
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t(αJ)−1σ(u) + α2Jσ(v) = u,

i.e.

σ(u) + t(αJ)α2Jσ(v) = t(αJ)(u).

Comparing the coefficient for e1, we get

xr
1 + αy1 = x1,

and so αy1 = f(x1). Again by the choice of α, we must have that y1 = 0 and x1 ∈ Fr. 
Next, comparing the coefficient for e2, we get

xr
2 = αx1 + x2,

and so −αx1 = f(x2). By the choice of α, we must have that x1 = 0 and x2 ∈ Fr. 
Continuing in the same fashion, we conclude that

xA ∈ Fr, x1 = x2 = . . . = xA−1 = 0.

Thus w = xAeA with xA ∈ Fr, as desired. �
Lemma 3.6. Let q = pa ≥ 3 be a prime power and let A, B, b, c be positive integers, and 
let H = Sp2A(pB) � Cb as above. Then the following statements hold.

(i) If c ≥ 3, then SUAc(q) cannot embed in H.
(ii) Assume in addition that (p, A, B) �= (3, 1, 1). Then the only quotient groups of H

are H, H/Z(H) = PSp2A(pB) � Cb, and quotients of Cb.

Proof. (i) Assume the contrary. Since c, q ≥ 3, SUAc(q) is perfect, and so it embeds 
in Sp2A(pB) < Sp2A(Fp). In particular, SUAc(q) has a nontrivial absolutely irreducible 
representation in characteristic p of dimension ≤ 2A ≤ Ac − 1. But this contradicts [13, 
Proposition 5.4.11].

(ii) The assumption on (p, A, B) ensures that L := [H, H] = Sp2A(pB) is quasisimple, 
with S = L/Z(H) ∼= PSp2A(pB) being simple. Furthermore, H/Z(H) acts faithfully on 
S.

Suppose that N�H. If N ≥ L, then H/N is a quotient of H/L ∼= Cb. In the remaining 
case, we have that N ∩L is a proper normal subgroup of L, and so contained in Z(H). In 
particular, [N, L] ≤ N ∩ L centralizes L, i.e. [[N, L], L] = 1. Since L = [L, L], the Three 
Subgroups Lemma implies that [N, L] = 1, whence

N ≤ CH(L) ≤ CH(S) = Z(H).

Thus either N = 1 or N = Z(H). �
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4. Local systems for SUn(q) and Sp2n(q) with n odd

In this section, we fix an odd prime p, and a prime � �= p, so that we can avail ourselves 
of Q�-adic cohomology. We also fix a nontrivial additive character ψ of Fp. We denote 
by χ2 the quadratic character of F×

p . Given a power q = pa of p, and a power qn of q, 
we define

A := AFp,qn := −
∑
x∈F×

p

ψ((−1)(q
n−1)/22x)χ2(x). (4.0.1)

For k/Fp a finite extension, we define

Ak := Adeg(k/Fp).

We denote by ψk the additive character of k given by

ψk := ψ ◦ Tracek/Fp
.

In [12, §3], we introduced, for each integer n ≥ 2 and each power q = pa of the odd 
prime p, the 2-parameter local system

W2-param(ψ, n, q)

on A2/Fp whose trace function at a point (s, t) ∈ A2(k), k a finite extension of Fp, is the 
sum

(−1/Ak)
∑
x∈k

ψk(xqn+1 + sxq+1 + tx2).

Here the normalizing factor Ak is the one built from AFp,qn as defined in the previous 
paragraph.

We proved there [12, Theorems 3.1, 6.8] that when both n and a := logp(q) are prime 
to p, the geometric monodromy group Ggeom of W2-param(ψ, n, q) was Sp2n(q) in one 
of its big Weil representations (of degree qn), and that after extension of scalars from 
A2/Fp to A2/Fq, its arithmetic monodromy group Garith coincided with Ggeom.

Without these “prime to p” hypotheses, we have the following result.

Theorem 4.1. For n ≥ 2 and q = pa a power of the odd prime p, we have the following 
results.

(i) There exists a factorization na = AB and a factorization B = bj such that the 
geometric monodromy group Ggeom,2-param of W2-param(ψ, n, q) is Sp2A(pB) �Cb in 
one of its big Weil representations.
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(ii) Moreover, pj is a power of q, say pj = qr (so that j = ar, B = arb), and hence we 
have inclusions of groups

Sp2A(pB) � Cb = Sp2A(qrb) � Cb ↪→ Sp2Ab(qr) ↪→ Sp2Abr(q) = Sp2n(q).

Proof. To prove (i), we argue as follows. From [12, Theorems 4.1, 4.2, and the proof 
of Proposition 6.6], we see that there exist factorizations na = AB, B = bj and na =
CD, D = dk such that Ggeom,2-param is a subgroup of the product group

(Sp2A(pB) � Cb) × (PSp2C(pD) � Cd)

which maps onto each factor.
We apply Goursat’s lemma. Note that AB = na ≥ 2, so by Lemma 3.6(ii), the only 

quotient groups of Sp2A(pB) � Cb are

Sp2A(pB) � Cb,PSp2A(pB) � Cb, and quotients of Cb.

Their commutator subgroups are

Sp2A(pB),PSp2A(pB), {1}

respectively. Similarly, the only quotient groups of PSp2C(pD) � Cd are

PSp2C(pD) � Cd, and quotients of Cd,

and their commutator subgroups are

PSp2C(pD), {1}

respectively.
We first rule out the case when Ggeom,2-param is the pullback by the quotient maps 

of the graph of an isomorphism between a quotient of Cb with a quotient of Cd. In 
this case, Ggeom,2-param would contain the product group Sp2A(pB) × PSp2C(pD). This 
group contains elements of trace zero in the representation at hand, whereas every ele-
ment of the arithmetic monodromy group Garith,2-param, and a fortiori every element of 
Ggeom,2-param has nonzero trace, cf. [12, Proposition 6.6] and its proof.

The only remaining possibility is that Ggeom,2-param is the graph of an isomorphism 
between PSp2A(pB) �Cb and PSp2C(pD) �Cd. Such an isomorphism induces an isomor-
phism of commutator subgroups. Hence (A, B) = (C, D). Comparing cardinalities, we 
then infer that b = d. Thus Ggeom,2-param is as asserted.

To prove (ii), we use Theorem 3.5, according to which pj = pB/b is the lowest value 
attained as the square absolute value of the trace of an element of Sp2A(pB) � Cb in 
either big Weil representation. On the other hand, from [12, Theorem 5.5], the group 
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Garith,2-param is also finite. The quotient Garith,2-param/Ggeom,2-param is then a finite 
quotient of Gal(Fp/Fp). Hence over some FQ/Fq, we have Ggeom,2-param = Garith,2-param. 
From [12, Lemma 5.2], exploiting an idea of van der Geer and van der Flugt, we see that 
for any finite extension k0/FQ, all square absolute values of traces are powers of q, and 
that for any point (s, t) ∈ A2(k0), there is a finite extension k1/k0 for which the same 
point, now viewed in A2(k1) has trace of square absolute value q2n. In particular, the 
least square absolute value attained is some strictly positive power qr, r ≥ 1 of q. �

We now introduce a new local system W(ψ, n, q) when n ≥ 3 is odd, which we get 
by setting t = 0 in W2-param(ψ, n, q). Thus the trace function of W(ψ, n, q) at a point 
s ∈ A1(k), k/Fp a finite extension, is

(−1/Ak)
∑
x∈k

ψk(xqn+1 + sxq+1).

On A1/Fq2 , we can break up this local system as the direct sum of q+1 local systems, 
by making use of the q + 1 multiplicative characters, including the trivial one, of order 
dividing q + 1. We have

W(ψ, n, q) =
⊕

χ with χq+1=1

G(ψ, n, q, χ).

The trace function of G(ψ, n, q, χ) at a point s ∈ A1(k), k/Fq2 a finite extension, is

(−1/Ak)
∑
x∈k

ψk(x
qn+1
q+1 + sx)χk(x).

Here we write χk for χ ◦Normk/Fq2
, and adopt the usual convention that for χ nontrivial, 

we have χk(0) = 0, but 1(0) = 1.
These G(ψ, n, q, χ) are pairwise non-isomorphic, geometrically irreducible local sys-

tems on A1/Fq2 (thanks to their descriptions as Fourier Transforms, cf. [11, Section 2]). 
The ranks of these local systems are

rank(G(ψ, n, q,1)) = qn + 1
q + 1 − 1,

rank(G(ψ, n, q, χ)) = qn + 1
q + 1 , χ �= 1.

Recall that for any n, and q any power of the odd prime p, there are inclusions

SUn(q) � GUn(q) ↪→ Sp2n(q),

Theorem 4.2. For n ≥ 3 odd, and q = pa a power of the odd prime p, the geometric 
monodromy group Ggeom,W for W(ψ, n, q) is SUn(q) in its big Weil representation (of 
degree qn).
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Proof. Because W(ψ, n, q) is the pullback (by (s, t) �→ (s, 0)) of the local system 
W2-param(ψ, n, q), its Ggeom,W is a subgroup of Ggeom,2-param. By Theorem 4.1, we have

Ggeom,2-param ↪→ Sp2n(q).

Thus Ggeom,W is a subgroup of Sp2n(q) under which a big Weil representation of Sp2n(q)
breaks up into q + 1 pieces, one of rank q

n−q
q+1 and q of rank q

n+1
q+1 . By Theorem 3.4, we 

have inclusions

SUn(q) ≤ Ggeom,W ≤ GUn(q).

The group GUn(q) has a quotient, via the determinant, of order q + 1, which is prime 
to p. Because Ggeom,W is the monodromy group of a local system on A1/Fp, it has no 
nontrivial prime to p quotients. Thus we have Ggeom,W = SUn(q). �
Theorem 4.3. For n ≥ 3 odd and q an odd prime power, the geometric monodromy 
group Ggeom,2-param of W2-param(ψ, n, q) is Sp2n(q) in one of its big Weil representations 
(of degree qn). Moreover, after extension of scalars to A2/Fq, we have Ggeom,2-param =
Garith,2-param.

Proof. Recall the inclusion

SUn(q) = Ggeom,W ≤ Ggeom,2-param = Sp2A(pB) � Cb

and the relation n = Abr of Theorem 4.1. By Lemma 3.6(i), br ≤ 2, but 2 � n, hence 
br = 1 and (A, pB, b) = (n, q, 1), yielding the first assertion.

Since Ggeom,2-param = Sp2n(q) = Sp2n(pa), Garith,2-param is contained in Sp2n(pa) �
Ca, cf. [12, proof of Lemma 6.7]. Thus the quotient Garith,2-param/Ggeom,2-param has 
order dividing a, so after extension of scalars from A2/Fp to A2/Fpa = A2/Fq we have 
Ggeom,2-param = Garith,2-param. �
Theorem 4.4. For n ≥ 3 odd and q a power of the odd prime p, the geometric mon-
odromy group of the local system G(ψ, n, q, 1) is PSUn(q), the image of SUn(q) in its 
unique irreducible representation of dimension q

n−q
q+1 , with character ζ0,n. The geometric 

monodromy group of G(ψ, n, q, χ2) (where χ2 is the quadratic character) is PSUn(q), the 
image of SUn(q) in its unique orthogonal representation of dimension q

n+1
q+1 , with char-

acter ζ(q+1)/2,n. For the remaining q − 1 local systems G(ψ, n, q, χ) with χ2 nontrivial, 
χq+1 = 1, their geometric monodromy groups are the images of SUn(q) in its q − 1
non-selfdual irreducible representations of dimension q

n+1
q+1 .

Proof. Because Ggeom,W is SUn(q), the geometric monodromy groups in question are the 
images of SUn(q) in various of its irreducible representations. Recall the fact [16, Theorem 
4.1] that SUn(q) has, up to equivalence, one irreducible representation of dimension q

n−q

q+1
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(with character ζ0,n) and q irreducible representations of dimension q
n+1
q+1 (with character 

ζj,n, 1 ≤ j ≤ q), with exactly one of the q latter representations being self-dual (and 
necessarily orthogonal, as it has odd dimension). Using this fact and looking at the 
dimensions, we get the asserted matching. �
5. Arithmetic monodromy groups of local systems for SUn(q) with n odd

Theorem 5.1. Let n ≥ 3 be odd and q be a power of the odd prime p. After extension 
of scalars to A1/Fq4 , the arithmetic monodromy group Garith,W is equal to Ggeom,W =
SUn(q). Furthermore, the arithmetic monodromy group Garith,χ of each of the q+1 local 
systems G(ψ, n, q, χ) is equal to its geometric monodromy group Ggeom,χ, as described in 
Theorem 4.4.

Proof. For k/Fq2 , let Hk denote the arithmetic monodromy group Garith,W of the local 
system W(ψ, n, q) after extension of scalars to A1/k. By Theorem 4.3, Hk ≤ Sp2n(q), 
and by Theorem 4.4, Hk � SUn(q). As in the proof of Theorem 4.2, Hk is a subgroup 
of Sp2n(q) under which a big Weil representation of Sp2n(q) breaks up into q + 1 pieces 
Ψi, 0 ≤ i ≤ q, with Ψ0 of rank q

n−q
q+1 and Ψ1, . . . , Ψq of rank q

n+1
q+1 . By Theorem 3.4, we 

have Hk ≤ GUn(q).
Now we pay particular attention to the situation over Fq4 . The normalizing factor 

A := AFp,qn used for W is minus a choice of quadratic Gauss sum over Fp, so its square 
is either p, if p is 1 mod 4, or it is −p. Taken over Fq4 , the normalizing factor AFq4

is 
thus q2. On the other hand, according to [11, Lemma 8.3], this same normalizing factor 
q2 insures that each of the q + 1 local systems G(ψ, n, q, χ) on A1/Fq4 has its Garith,χ

contained in SLrank G(ψ,n,q,χ)(C). Applying Lemma 3.2(v) to HFq4
, we conclude that 

HFq4
= SUn(q).

Once we have Garith,W = SUn(q), it follows that each Garith,χ is the image of 
SUn(q). �
Theorem 5.2. Let n ≥ 3 be odd and q be a power of the odd prime p. Denote by 
Garith,W/Fq2

the arithmetic monodromy group of the local system W(ψ, n, q) after ex-
tension of scalars to A1/Fq2 . We have

Garith,W/Fq2
= SU±

n (q) := {X ∈ GU(W ) | det(X) = ±1}
= SU(W ) × 〈−1W 〉 ∼= SUn(q) × C2.

Furthermore, the arithmetic monodromy groups Garith,χ of the local system G(ψ, n, q, χ)
with χq+1 = 1 are described as follows.

(a) If q ≡ 3( mod 4), Garith,1 is PSUn(q), the image of SUn(q) in its unique irreducible 
representation of dimension q

n−q
q+1 , with character ζ0,n. If q ≡ 1( mod 4), Garith,1 is 

PSUn(q) ×C2, the image of SUn(q) ×C2 in its irreducible representation of dimension 
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qn−q
q+1 , with character ζ0,n ⊗ ν, where ν is the unique nontrivial irreducible character 

of C2.
(b) Garith,χ2 (where χ2 is the quadratic character) is the image of SUn(q) in its unique 

orthogonal representation of dimension q
n+1
q+1 , with character ζ(q+1)/2,n.

(c) For the remaining q−1 characters χ with χ2 nontrivial, χq+1 = 1, the groups Garith,χ

are the images of SU±
n (q) × C2 in its q − 1 non-selfdual irreducible representations 

of dimension qn+1
q+1 , obtained by restricting down Ψi, 1 ≤ i ≤ q and i �= (q + 1)/2, 

from GUn(q).

Proof. The key point here is that the normalizing factor for W over Fq2 , being a power 
of a quadratic Gauss sum over the prime field, is q when q ≡ 1( mod 4) and −q when 
q ≡ 3( mod 4). But according to [11, Lemma 8.3], the normalizing factors for the various 
G(ψ, n, q, χ) on A1/Fq2 which force their Garith,χ to lie in SL are not all the same: some 
are q and some are −q. [The exact recipe is that for χ of order m dividing q + 1, one 
should use −(−1)(q+1)/mq as the normalizing factor.]

Since SUn(q) is perfect, this implies that Garith,W/Fq2
contains SUn(q) strictly. On 

the other hand, SUn(q) is Garith,W/Fq4
, as proven above, hence SUn(q) has index at most 

2 in Garith,W/Fq2
≤ GUn(q). As n is odd, we also observe that det(z(q+1)/2) = −1, where 

z is the generator of Z(GUn(q)) introduced in the proof of Lemma 3.2; in particular, 
z(q+1)/2 = −1W . Hence

Garith,W/Fq2
= SU±

n (q) = {X ∈ GUn(q) | det(X) = ±1}

= SUn(q) × 〈z(q+1)/2〉 ∼= SUn(q) × C2,

and Garith,χ is the image of SU±
n (q) under some Ψi. If χ = χ2, we know that Ψi is of 

dimension (qn + 1)/(q + 1) and self-dual, whence i = (q + 1)/2 and Ψi(z(q+1)/2) = 1V
by (3.2.1), yielding (b). Suppose χ = 1. Then i = 0 by dimension comparison, and 
Ψ0(z(q+1)/2) = (−1)(q+1)/2 · 1V by (3.2.1), leading to (a). For the remaining q = 1
characters χ with χ2 �= 1, we arrive at (c). �

With this information in hand, we can prove Conjecture 9.2 of [11].

Theorem 5.3. Let n ≥ 3 be odd and q be a power of the odd prime p. For each multiplica-
tive character χ of F×

q2 of order denoted mχ dividing q + 1, define

Bχ := −(−1)(q+1)/mχq.

Denote by Hχ the local system on A1/Fq2 whose trace function at a point s ∈ K, K/Fq2

a finite extension, is

s �→
(
−1/(Bχ)deg(K/Fq2 )) ∑

ψK(x(qn+1)/(q+1) + sx)χ(x).

x∈K
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[Thus Hχ is the constant field twist of G(ψ, n, q, χ) by the unique choice of sign ±1 for 
which Garith,Hχ

< SLrankHχ
(C), cf. [11, Lemma 8.3].] Then Garith,Hχ

= Ggeom,Hχ
is the 

image of SUn(q) in the given representation.

Proof. Pick a faithful character Λ : μq+1(F×
q2) ∼= μq+1(C×). The indexing of the small 

Weil representations Ψi of GUn(q) is by the powers of Λ. For each power Λi of Λ, the 
multiplicative character χi of F×

q2 given by

χi : x �→ Λi(xq−1)

has order dividing q + 1, and we get all the q + 1 such characters this way. In view of 
the previous result, what we must show is that the scalar −1W ∈ SU±

n (q) acts trivially 
on each Hχ. We know this element acts trivially after quadratic extension of the ground 
field from Fq2 to Fq4 , so it must be attained by a Frobenius in a odd degree extension 
of Fq2 . In the representation G(ψ, n, q, χ), we have

Ψi(−1W ) = εq(−1)i · 1Vi
,

where Ψi : SU±
n (q) → GL(Vi), and

εq := (−1)q+1)/2,

the sign εq being 1 or −1 depending on whether −1 is a square or not in the group 
μq+1(Fq2), cf. (3.2.1).

Thus εq = 1 if q ≡ 3( mod 4), and εq = −1 if q ≡ 1( mod 4). Now the clearing factor 
used for W, and hence also for G(ψ, n, q, χ), was −εqq, whereas the clearing factor for 
Hχ is −(−1)(q+1)/mχq. So the change of clearing factor for Hχ is εq(−1)(q+1)/mχ .

Consider the case χ = 1, i.e. mχ = 1. By dimension comparison, we see that the repre-
sentation on G(ψ, n, q, 1) is Ψ0, i.e. i = 0. Hence the action of −1W in the representation 
H1 is

(εq)2(−1)q+1 · 1V0 = 1V0 .

Now assume that χ �= 1. Then i �= 0, and dimVi = (qn + 1)/(q + 1) is odd. As we 
mentioned above, the action of −1W on Hχ has determinant 1. As the central involution 
−1W of SU±

n (q) acts as γ ·1Vi
for some γ = ±1, the oddness of dimVi implies that γ = 1.

Thus in either case, −1W acts trivially on Hχ, as stated. �
6. Introduction to the n even case

The key insight in the n odd case was to start with the 2-parameter local system

W2-param(ψ, n, q)
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on A2/Fp whose trace function at a point (s, t) ∈ A2(k), k a finite extension of Fp, was 
the sum

(−1/Ak)
∑
x∈k

ψk(xqn+1 + sxq+1 + tx2),

and then study the one-parameter local system obtained by setting t = 0.
In the n even case, it is precisely the “same” one parameter local system, the one 

obtained by setting t = 0 in W2-param(ψ, n, q), that is the key object of study. Because 
n is even, the gcd of q+ 1 and qn + 1 is just 2, so this one parameter system only breaks 
up into two visible pieces. Each of these two pieces itself turns out to be a suitable 
Kummer pullback to A1 of a particular hypergeometric sheaf on Gm. It is this fact, and 
the group-theoretic analysis it makes possible, that leads to our results in this n even 
case.

The main results about monodromy groups in the n even case are Theorems 10.3, 
10.4, 10.6, and 10.7.

7. A special class of hypergeometric sheaves

We fix an odd prime p, a prime � �= p, and two integers A > B > 0 with gcd(A, B) = 1
and AB prime to p. We also fix a nontrivial additive character ψ : Fp → Q�

×. For 
K/Fp a finite extension, we denote by ψK the additive character of K given by x �→
ψ(TraceK/Fp

(x)).
We denote by H(ψ, Antriv, Bntriv) the hypergeometric sheaf

H(ψ,Antriv,Bntriv) :=

Hyp(ψ, all nontrivial characters of order dividing A,

all nontrivial characters of order dividing B).

Lemma 7.1. Up to a constant field twist, H(ψ, Antriv, Bntriv) is the lisse sheaf on Gm/Fp

whose trace function at u ∈ Gm(K), K a finite extension of Fp, is

u �→ −
∑

x,y∈K with yB=xA/u

ψK(Ax− By).

Proof. By definition, H(ψ, Antriv, Bntriv) is the multiplicative ! convolution of

Kl(ψ,Antriv) = H(ψ,Antriv, 1ntriv)

with the pullback by multiplicative inversion of

Kl(ψ,Bntriv) = H(ψ,Bntriv, 1ntriv).
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As explained in [10, Lemma 1.2], up to a constant field twist, Kl(ψ, Antriv) has a descent 
to Gm/Fp whose trace function is given at s ∈ Gm(K), K a finite extension of Fp by

s �→ −
∑
x∈K

ψK(−xA/s + Ax).

If B = 1, there is nothing more to prove. Suppose now B > 1.
Then the pullback by multiplicative inversion of Kl(ψ, Bntriv) has, up to a constant 

field twist, a descent to Gm/Fp whose trace function is given at t ∈ Gm(K), K a finite 
extension of Fp by

t �→ −
∑
y∈K

ψK(tyB − By).

Their multiplicative convolution then has trace function at u ∈ Gm(K) given by

−
∑

s, t ∈ K×

st = u

∑
x∈K

ψK(−xA/s + Ax)
∑
y∈K

ψK(tyB − By) =

(solving for 1/s = t/u)

= −
∑

x,y∈K

ψK(Ax− By)
∑

t∈K×

ψK(t(yB − xA/u)) =

(the inner sum may as well be over all t ∈ K, since for t = 0 the sum 
∑

x,y∈K ψK(Ax −By)
vanishes)

= −(#K)
∑

x,y∈K with yB=xA/u

ψK(Ax− By),

as asserted. �
Corollary 7.2. The pullback [A]�H(ψ, Antriv, Bntriv) of H(ψ, Antriv, Bntriv) by x �→ xA

has, up to a constant field twist, a descent to (the restriction to Gm/Fp of) the lisse 
sheaf

G(A,B)

on A1/Fp whose trace function at t ∈ K is given by

t �→ −
∑
z∈K

ψK(−BzA + tAzB).

Proof. After pullback, write u = tA. Then the summation range yB = xA/u becomes 
yB = (x/t)A. As A, B are relatively prime, yB = (x/t)A means precisely that y = zA, 
x/t = zB for a unique z ∈ K. �
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Lemma 7.3. The lisse sheaf G(A, B) is geometrically isomorphic to a multiplicative trans-
late of the lisse sheaf

G0(A,B)

on A1/Fp whose trace function at t ∈ K is given by

t �→ −
∑
z∈K

ψK(zA + tzB).

Proof. Geometrically, take the Ath root of −B, say βA = −B, and make the substitution 
z �→ z/β. The trace sum becomes

−
∑
z∈K

ψK(zA + (tA/βB)zB). �

Lemma 7.4. The lisse sheaves G(A, B) and G0(A, B) on A1/Fp are geometrically irre-
ducible.

Proof. Since multiplicative translation does not affect geometric irreducibility, it suffices 
to treat G0(A, B). Its trace function is

−
∑
z∈K

ψK(zA + tzB) = −
∑
u∈K

ψK(tu)
∑

z∈K,zB=u

ψK(zA),

which is to say that G0(A, B) is the Fourier transform FTψ of [B]�Lψ(zA). This FT

is geometrically irreducible, because the input [B]�Lψ(zA) is geometrically irreducible, 
indeed I(∞)-irreducible, because at ∞ it is totally wild with all of its B slopes equal to 
A/B, a fraction with exact denominator B, cf. [9, 1.14, 1.14.1].

Here is another proof of this result. It is equivalent to prove that [A]�H(ψ, Antriv,

Bntriv) is geometrically irreducible. By Frobenius reciprocity, we have

〈[A]�H(ψ,Antriv,Bntriv), [A]�H(ψ,Antriv,Bntriv)〉 =

= 〈H(ψ,Antriv,Bntriv), [A]�[A]�H(ψ,Antriv,Bntriv)〉.

But

[A]�[A]�H(ψ,Antriv,Bntriv) ∼=
⊕

χ;χA=1

H(ψ,Antriv,Bntriv) ⊗ Lχ.

Of these summands, only the χ = 1 summand is isomorphic to H(ψ, Antriv, Bntriv), 
all the others have the wrong “downstairs” characters (precisely because B is relatively 
prime to A). �
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Lemma 7.5. The wild part of the I(∞)-representation of G(A, B) (or of G0(A, B)) is 
I(∞)-irreducible, of dimension A − B, with all slopes A

A−B .

Proof. This wild part is the pullback by [A] of the wild part of H(ψ, Antriv, Bntriv), which 
has rank A − B and all slopes 1

A−B . Because gcd(A, A − B) = 1, its [A] pullback, which 
has dimension A − B, with all slopes A

A−B , is itself I(∞)-irreducible. �
8. A second special class of hypergeometric sheaves

In this section, we continue with p, ψ, A, B as in the previous section; A > B > 0 are 
integers with gcd(A, B) = 1 and AB prime to p, but now assume in addition that A is 
odd. We denote by

H(Aall,B�χ2)

the hypergeometric sheaf

Hyp(ψ, all χ with χA = 1, all ρ with ρB = χ2).

Lemma 8.1. Up to a constant field twist, H(Aall, B�χ2) is the lisse sheaf on Gm/Fp whose 
trace function at u ∈ Gm(K), K a finite extension of Fp, is

u �→ −
∑

x,y∈K,xA=uyB

ψK(Ax− By)χ2(y).

Proof. By definition, H(ψ, Aall, B�χ2) is the multiplicative ! convolution of

Kl(ψ,Aall)

with the pullback by multiplicative inversion of

Kl(ψ,B�χ2).

We have geometric isomorphisms

Kl(ψ,Aall) ∼= [A]�Lψ(Ax),

Kl(ψ,B�χ2) ∼= [B]�(Lψ(−Bx) ⊗ Lχ2(x)).

The multiplicative convolution of [A]�Lψ(Ax) with the pullback by multiplicative in-
version of [B]�(Lψ(−Bx) ⊗ Lχ2(x)) thus has trace function at u ∈ Gm(K) given by

−
∑

s,t∈K×,st=u

∑
x∈K,xA=s

ψK(Ax)
∑

y∈K,yB=1/t

ψK(−By)χ2(y) =

= −
∑

A B

ψK(Ax− By)χ2(y).

x,y∈K,x =uy
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[We do not need to specify that x, y are nonzero, since χ2(y) vanishes unless y �= 0, and 
once y �= 0, the equation xA = uyB forces x �= 0 as well.] �

Exactly as in the previous section, we get the following results.

Corollary 8.2. The pullback [A]�H(Aall, B�χ2) of H(Aall, B�χ2) by x �→ xA has, up to a 
constant field twist, a descent to (the restriction to Gm/Fp of) the lisse sheaf

G(Aall,B�χ2)

on A1/Fp whose trace function at t ∈ K is given by

t �→ −
∑
z∈K

ψK(−BzA + tAzB)χ2(z).

Lemma 8.3. The lisse sheaf G(Aall, B�χ2) is geometrically isomorphic to a multiplicative 
translate of the lisse sheaf

G0(Aall,B�χ2)

on A1/Fp whose trace function at t ∈ K is given by

t �→ −
∑
z∈K

ψK(zA + tzB)χ2(z).

Lemma 8.4. The lisse sheaves G(Aall, B�χ2) and G0(Aall, B�χ2) on A1/Fp are geometri-
cally irreducible.

Lemma 8.5. The wild part of the I(∞)-representation of G(Aall, B�χ2) (or of G0(Aall,

B�χ2)) is I(∞)-irreducible, of dimension A − B, with all slopes A
A−B .

9. Local systems for Sp4n(q)

In this section, with the odd prime p and its ψ fixed, we denote by α := αFp
the 

negative of the Gauss sum

α := AFp,q2n = −
∑
x∈F×

p

ψ(2x)χ2(x),

cf. (4.0.1). For K/Fp a finite extension, we define

αK := −
∑

ψK(2x)χ2,K(x).

x∈K×
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One knows (Hasse-Davenport relation) that

αK = (αFp
)deg(K/Fp).

We fix also an even integer 2n ≥ 2 and

q := a power of p, A := q2n + 1
2 , B := q + 1

2 .

We now work with the two local systems on A1/Fp,

Geven(ψ, 2n, q) := G0(A,B) ⊗ α− deg, Godd(ψ, 2n, q) := G0(Aall,B�χ2) ⊗ α− deg,

and their direct sum

W(ψ, 2n, q) := Geven(ψ, 2n, q) ⊕ Godd(ψ, 2n, q),

whose trace function at s ∈ A1(K), K/Fp a finite extension, is given by

s �→ (−1/αK)
∑
x∈K

ψK(xq2n+1 + sxq+1).

These local systems are the pullbacks to the line t = 0 on the local systems of the same 
name in [12, §3] on A2/Fp with coordinates (s, t). To avoid confusion, we will denote by

Geven,2-param(ψ, 2n, q), Godd,2-param(ψ, 2n, q), W2-param(ψ, 2n, q)

the two-parameter local systems. Thus the trace function of W2-param(ψ, 2n, q) at a point 
(s, t) ∈ A2(K), K/Fp a finite extension, is given by

(s, t) �→ (−1/αK)
∑
x∈K

ψK(xq2n+1 + sxq+1 + tx2).

This pullback relation gives us the following inclusions.

Lemma 9.1. We have the following inclusions.

(i) For the local systems Geven(ψ, 2n, q) and Geven,2-param(ψ, 2n, q), their geometric and 
arithmetic monodromy groups satisfy the inclusions

Ggeom,even ≤ Ggeom,even,2-param, Garith,even ≤ Garith,even,2-param.

(ii) For the local systems Godd(ψ, 2n, q) and Godd,2-param(ψ, 2n, q), their geometric and 
arithmetic monodromy groups satisfy the inclusions

Ggeom,odd ≤ Ggeom,odd,2-param, Garith,odd ≤ Garith,odd,2-param.
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(iii) For the local systems W(ψ, 2n, q) and W2-param(ψ, 2n, q), their geometric and arith-
metic monodromy groups satisfy the inclusions

Ggeom,sum ≤ Ggeom,sum,2-param, Garith,sum ≤ Garith,sum,2-param.

Lemma 9.2. For εp := (−1)(p−1)/2, the local systems Geven(ψ, 2n, q), and Godd(ψ, 2n, q)
have all their Frobenius traces in the quadratic field Q(√εpp).

Proof. This is proved in [12, Lemma 6.1] for the two parameter versions. �
Lemma 9.3. Suppose q ≡ 1( mod 4). Then we have the following results about our local 
systems on A1/Fp.

(i) Let k/Fp be a finite extension in which −1 is a square. After pullback to A1/k, the 
arithmetic monodromy group Garith,even for Geven(ψ, 2n, q) lies in Sp(q2n−1)/2(C).

(ii) The arithmetic monodromy group Garith,odd for Godd(ψ, 2n, q) lies in SO(q2n+1)/2(C).

Proof. This is proved in [12, Lemma 6.2] for the two parameter versions. �
Lemma 9.4. We have the following results about our local systems on A1/Fp.

(i) The arithmetic monodromy group Garith,even for Geven(ψ, 2n, q) lies in SL(q2n−1)/2(C).
(ii) The arithmetic monodromy group Garith,odd for Godd(ψ, 2n, q) lies in SL(q2n+1)/2(C).
(iii) The arithmetic monodromy group Garith,sum for W(ψ, 2n, q) lies in SLq2n(C).

Proof. This is proved in [12, Lemma 6.3] for the two parameter versions. �
Corollary 9.5. The geometric and arithmetic monodromy groups of the local systems 
Geven(ψ, 2n, q) on A1 and Geven,2-param(ψ, 2n, q) on A2/Fp are irreducible subgroups of 
SL(q2n−1)/2(C). The geometric and arithmetic monodromy groups of the local systems 
Godd(ψ, 2n, q) on A1 and Godd,2-param(ψ, 2n, q) on A2/Fp are irreducible subgroups of 
SL(q2n+1)/2(C).

Proof. Because we have the inclusion Ggeom < Garith, it suffices to prove the irreducibil-
ity for the geometric monodromy groups. For the local systems on A1, this was proven 
in Lemmas 7.4 and 8.4. Because these local systems on A1/Fp are pullbacks, by t �→ 0, 
of the local systems on A2, these latter local systems on A2 are a fortiori geometrically 
irreducible. �

From van der Geer-van der Vlugt [18], we get
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Theorem 9.6. The groups Ggeom and Garith for W(ψ, 2n, q) on A1/Fp are finite, as 
are the groups Ggeom and Garith for each of its direct summands Godd(ψ, 2n, q) and 
Geven(ψ, 2n, q).

Proof. This is proved in [12, Theorem 5.5] for the two parameter versions. �
Lemma 9.7. The order of Ggeom for Geven(ψ, 2n, q) is divisible by both (q2n − 1)/2 and 
(q2n − q)/2. The order of Ggeom for Godd(ψ, 2n, q) is divisible by both (q2n + 1)/2 and 
(q2n − q)/2.

Proof. The divisibilities are instances of the fact that for a finite group, the degree of an 
irreducible representation divides the order of the group, applied first to Ggeom and its 
given representation, and second to the image in Ggeom of I(∞) acting on the wild part 
of the I(∞) representation. �
Lemma 9.8. The image of the wild inertia group P (∞) in the geometric monodromy 
group Ggeom of each of Geven(ψ, 2n, q) and Godd(ψ, 2n, q) is a p-group, whose action on 
the wild part of the given representation is the direct sum of (q2n−1 − 1)/2 pairwise 
inequivalent irreducible representations of dimension q.

Proof. In each case, the wild part of the I(∞)-representation is irreducible (by 
Lemma 7.5 and Lemma 8.5), of dimension (q2n − q)/2. So the assertion results from 
[9, 1.14 (3) and 1.14.1]. �
Corollary 9.9. The geometric monodromy group Ggeom,sum of the local system W(ψ, 2n, q)
contains a p-group that admits a representation which is the direct sum of (q2n−1 − 1)/2
pairwise inequivalent irreducible representations of dimension q.

Proof. We will show that the image P (∞)sum of P (∞) in Ggeom,sum is such a group. 
The group Ggeom,sum is a subgroup of the product Ggeom,even × Ggeom,odd which maps 
onto each factor. Viewing all these groups as quotients of π1(A1

Fp
), we see that P (∞)sum

maps onto the image of P (∞) in, say, the first factor Ggeom,even. Via this quotient, we 
see from Lemma 9.8 that P (∞)sum admits a representation which is the direct sum of 
(q2n−1 − 1)/2 pairwise inequivalent irreducible representations of dimension q. �
Corollary 9.10. Each of the arithmetic and geometric monodromy groups for each of the 
six local systems

Godd(ψ, 2n, q), Geven(ψ, 2n, q), W(ψ, 2n, q),

Godd,2-param(ψ, 2n, q), Geven,2-param(ψ, 2n, q), W2-param(ψ, 2n, q)

contain a p-group that admits an irreducible representation of dimension q.
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Proof. By Lemma 9.8 and Corollary 9.9, the assertion holds for the one-parameter 
local systems. The assertion for the two-parameter local systems results from the one-
parameter case and the inclusions of Lemma 9.1. �
Corollary 9.11. The geometric monodromy group Ggeom,even,2-param for Geven,2-param(ψ,
2n, q) has order divisible by both (q2n− 1)/2 and (q2n− q)/2. The geometric monodromy 
group Ggeom,odd,2-param for Godd,2-param(ψ, 2n, q) has order divisible by both (q2n + 1)/2
and (q2n − q)/2.

Proof. Immediate from Lemma 9.7 and the inclusions of Lemma 9.1. �
Theorem 9.12. Write q = pa. Then we have the following results.

(i) The arithmetic monodromy group Garith,even for Geven(ψ, 2n, q) lies in Sp4an(p), the 
latter group viewed inside SL(q2n−1)/2(C) by one of its even Weil representations.

(ii) The arithmetic monodromy group Garith,odd for Godd(ψ, 2n, q) lies in PSp4an(p), the 
latter group viewed inside SL(q2n+1)/2(C) by one of its odd Weil representations.

Proof. In the two parameter versions, the named groups contain SL2(p2an) (respectively 
PSL2(p2an)), so the asserted inclusions for them result from [12, Theorem 4.1]. Our local 
systems are pullbacks of these by t �→ 0. �
Theorem 9.13. Suppose that (q, 2n) �= (3, 2). Then each of the arithmetic Garith,odd and 
geometric Ggeom,odd monodromy groups for Godd(ψ, 2n, q) is (separately) of the form 
PSp2A(pB) � Cb for some factorization 2an = AB and some divisor b of B.

Proof. This is part (ii) of [12, Theorem 4.7]. �
Theorem 9.14. Write q = pa. We have the following results.

(i) For the local system Geven,2-param(ψ, 2n, q), each of its geometric Ggeom,even,2-param
and arithmetic Garith,even,2-param monodromy groups is (separately) of the form 
Sp2A(pB) � Cb for some factorization 2an = AB and some p-power divisor b of 
B.

(ii) For the local system Godd,2-param(ψ, 2n, q), each of its geometric Ggeom,odd,2-param
and arithmetic Garith,odd,2-param monodromy groups is (separately) of the form 
PSp2A(pB) � Cb for some factorization 2an = AB and some p-power divisor b
of B.

Proof. This is proved inside the proof of [12, Corollary 6.5]. �
Theorem 9.15. Write q = pa. For the local system W2-param(ψ, 2n, q), we have the fol-
lowing results.
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(i) Its geometric monodromy group Ggeom,sum,2-param is isomorphic to the diagonal im-
age of Sp2A(pB) � Cb in Sp4an(p) × PSp4an(p) for some factorization 2an = AB

and some p-power divisor b of B.
(ii) Its arithmetic monodromy group Garith,sum,2-param is isomorphic to the diagonal 

image of Sp2A(pB) �Cb in Sp4an(p) ×PSp4an(p) for some factorization 2an = AB

and some p-power divisor b of B.

Proof. Let us begin with the geometric group. From Theorem 9.14, we get that 
Ggeom,sum,2-param is a subgroup of a product group

(
Sp2A(pB) � Cb

)
×
(
PSp2C(pD) � Cd

)
,

for some factorizations 2an = AB, 2an = CD, with b some p-power divisor of B
and d some p-power divisor of D, which maps onto each factor. By Goursat’s lemma, 
Ggeom,sum,2-param is the inverse image of the graph of an isomorphism of some quotient 
of the first factor with some quotient of the second factor. The only quotients of the 
first factor are itself, PSp2A(pB) �Cb and the quotients of Cb. The only quotients of the 
second factor are itself and quotients of Cd.

There are no isomorphisms between any Sp2A(pB) � Cb and any PSp2C(pD) � Cd, 
because their derived groups, namely Sp2A(pB) and PSp2C(pD), are not isomorphic.

There is an isomorphism between PSp2A(pB) �Cb and PSp2C(pD) �Cd precisely when 
(A, B) = (C, D) and b = d.

The are no isomorphisms of any nonabelian quotient of one factor with an abelian 
quotient of the other.

The only remaining possibilities are isomorphisms between quotients of Cb with quo-
tients of Cd. But in this case, the group Ggeom,sum,2-param would contain the entire 
product

Sp2A(pB) × PSp2C(pD),

and this is ruled out by the trace zero argument of [12, Proposition 6.6].
Repeat the same argument for the arithmetic group Garith,sum,2-param. �

Lemma 9.16. At the point s = −1 ∈ A1(Fq), we have

|Trace(Frob−1,Fq
|W(ψ, 2n, q))|2 = q.

Moreover, for any finite extension K/Fq, and any s ∈ A1(K), we have

|Trace(Frobs,K |W(ψ, 2n, q))|2 ∈ {1, q, q2, . . . , q4n}.

Proof. From [12, §5], with t set to 0, we see that, for K/Fp a finite extension, and 
s ∈ A1(K), this square absolute value



N.M. Katz, P.H. Tiep / Advances in Mathematics 358 (2019) 106859 31
|Trace(Frobs,K |W(ψ, 2n, q))|2

is the number of zeroes in K of the polynomial

xq4n
+ sq

2n
xq2n+1

+ sq
2n−1

xq2n−1
+ x.

When K is a finite extension of Fq, the set of its zeroes in K is an Fq vector space (under 
addition and scalar multiplication by Fq) of dimension ≤ 4n. With s = −1, this becomes 
the polynomial

xq4n − xq2n+1 − xq2n−1
+ x.

Every x ∈ Fq is a zero of this polynomial. �
In fact, we have the following result.

Lemma 9.17. Let K ⊂ Fq be a subfield. At the point s = −1 ∈ A1(K), we have

|Trace(Frob−1,K |W(ψ, 2n, q))|2 = #K.

In particular,

|Trace(Frob−1,Fp
|W(ψ, 2n, q))|2 = p.

Proof. As noted at the beginning of this section, the local system W(ψ, 2n, q) on A1/Fp

has trace function at s ∈ A1(K), K/Fp a finite extension, given by

s �→ (−1/αK)
∑
x∈K

ψK(xq2n+1 + sxq+1).

Taking s = −1, we get

Trace(Frob−1,K |W(ψ, 2n, q)) = (−1/αK)
∑
x∈K

ψK(xq2n+1 − xq+1).

When K is a subfield of Fq, for each x ∈ K we have

xq2n+1 = xq+1 = x2,

so that the sum

∑
ψK(xq2n+1 − xq+1) =

∑
ψK(0) = #K.
x∈K x∈K
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Thus for K a subfield of Fq,

Trace(Frob−1,K |W(ψ, 2n, q)) = (−1/αK)#K,

whose square absolute value is indeed #K. �
Corollary 9.18. For the 2-parameter local system W2-param(ψ, 2n, q), we have the follow-
ing results.

(i) At the point (s, t) = (−1, 0) ∈ A2(Fq), we have

|Trace(Frob(−1,0),Fq
|W2-param(ψ, 2n, q))|2 = q.

Moreover, for any finite extension K/Fq, and any (s, t) ∈ A2(K), we have

|Trace(Frob(s,t),K |W2-param(ψ, 2n, q))|2 ∈ {1, q, q2, . . . , q4n}.

(ii) Let K ⊂ Fq be a subfield. At the point (s, t) = (−1, 0) ∈ A2(K), we have

|Trace(Frob(−1,0),K |W2-param(ψ, 2n, q))|2 = #K.

In particular,

|Trace(Frob(−1,0),Fp
|W2-param(ψ, 2n, q))|2 = p.

Proof. The statements about the point (−1, 0) are the statements about the point s = −1
in Lemmas 9.16 and 9.17. The second assertion of (i) is the fact [12, §5] that the square 
absolute value in question is the number of zeroes in K of the polynomial

xq4n
+ sq

2n
xq2n+1

+ 2tq
2n
xq2n

+ sq
2n−1

xq2n−1
+ x. �

10. Identifications of monodromy groups with Sp4n(q)

Recall, see [19], that if a > 2 and m ≥ 3, then am−1 admits a primitive prime divisor
ppd(a, m), that is, a prime divisor that does not divide 

∏m−1
i=1 (ai − 1).

Theorem 10.1. Let A, B, a, n, b ≥ 1 be some integers with b|B and AB = 2an. Suppose 
that H ∼= Sp2A(pB) �Cb ≤ Sp4an(p) as in §3 and that H satisfies the following conditions:

(i) If n ≥ 2 then |H| is divisible by a primitive prime divisor �2 = ppd(p, (2n − 1)a).
(ii) If n = 1, then a p-subgroup of H is acting irreducibly on a complex space of dimen-

sion q := pa.
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(iii) If ω denotes one of the two big Weil characters (of degree p2an) of Sp4an(p), then 
|ω(h)|2 is a power of q for any h ∈ H.

Then (A, B, b) = (2n, a, 1), that is, H ∼= Sp4n(pa).

Proof. First we note by Theorem 3.5 that pB/b = |ω(g)|2 for some g ∈ H. Hence condi-
tion (iii) implies that

B = bas (10.1.1)

for some integer s ≥ 1.
(a) Consider the case n ≥ 2. Note that �2 ≥ (2n − 1)a + 1 by the choice of �2. On the 

other hand, any odd prime divisor of b divides AB = 2an and so is at most an < (2n −1)a. 
Hence �2 � b, whence �2 divides |Sp2A(pB)|. Thus there is some 1 ≤ j ≤ A such that �2
divides p2Bj − 1, whence

(2n− 1)a divides 2Bj (10.1.2)

again by the choice of �2.
Suppose 1 ≤ j ≤ A/2. Then 2Bj ≤ AB = 2an. As 2(2n − 1)a > 2an, (10.1.2) implies 

that 2Bj = (2n − 1)a = AB − a, and so a = B(A − 2j) is divisible by B.
Suppose A/2 < j ≤ A. Then

(2n− 1)a < 2an = AB < 2Bj ≤ 2AB = 4an < 3(2n− 1)a.

Now (10.1.2) implies that 2Bj = 2(2n − 1)a = 2AB − 2a, and so a = B(A − j) is 
again divisible by B. Thus we have shown that B|a in either case. Now using (10.1.1)
we conclude that b = s = 1, B = a, and A = 2n as stated.

(b) Now assume that n = 1. Then (10.1.1) implies that Abs = 2. If furthermore A = 2, 
then again b = s = 1 and we are done. So assume that A = 1, i.e. H ∼= Sp2(p2a) � Cb, 
with bs = 2. In this case, Sylow p-subgroups of H are abelian, contradicting (ii). �
Lemma 10.2. Let q = pa, and let G̃ be such that G := Sp4n(q) � G̃ ≤ Sp4an(p) and 
|ω(g)|2 = p for some g ∈ G̃, where ω is one of the big Weil representation of degree p2an

of Sp4an(p). Then G̃ = NSp4an(p)(G) = Sp4n(q) � Ca.

Proof. Note that NSp4an(p)(G) = 〈G, σ〉, where σ is the automorphism of G induced by 
the map x �→ xp, of order a. It follows that G̃ = 〈G, σj〉 for some j|a. By Theorem 3.5, 
|ω(h)|2 is always a power of pj for any h ∈ G̃. Hence we conclude that j = 1. �
Theorem 10.3. Let q = pa. For the local system W2-param(ψ, 2n, q), we have the following 
results.
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(i) The geometric monodromy group Ggeom,sum,2-param is isomorphic to Sp4n(q).
(ii) For any finite extension K/Fq, the arithmetic monodromy group Garith,sum,2-param

is isomorphic to Sp4n(q).
(iii) If K = Fp, then the arithmetic monodromy group Garith,sum,2-param is isomorphic 

to Sp4n(q) � Ca.

Proof. (a) First we consider H = Ggeom,sum,2-param. By Theorem 9.15, H has the 
shape specified in Theorem 10.1. Note that H projects onto (in fact, isomorphic to) 
Ggeom,even,2-param. Therefore, by Corollaries 9.10 and 9.11, H satisfies conditions (i) and 
(ii) of Theorem 10.1. Condition 10.1(iii) is fulfilled by Corollary 9.18. Hence, we conclude 
by Theorem 10.1 that Ggeom,sum,2-param ∼= Sp4n(q).

(b) If K is any finite extension of Fq, then the same arguments as in (a), but applied 
to Garith,sum,2-param, show that Garith,sum,2-param ∼= Sp4n(q).

Finally, let K = Fp and H̃ = Garith,sum,2-param. By Theorem 9.15 and by (i) we know 
that

Sp4n(q) ∼= Ggeom,sum,2-param � H̃ ≤ Sp4an(p).

Applying Corollaries 9.18 and Lemma 10.2, we conclude that H̃ ∼= Sp4n(q) � Ca. �
Theorem 10.4. Let q = pa. For the local system Geven,2-param(ψ, 2n, q), we have the fol-
lowing results.

(i) The geometric monodromy group Ggeom,even,2-param is isomorphic to Sp4n(q).
(ii) For any finite extension K/Fq, the arithmetic monodromy group Garith,even,2-param

is isomorphic to Sp4n(q).
(iii) If K = Fp, then the arithmetic monodromy group Garith,even,2-param is isomorphic 

to Sp4n(q) � Ca.

For the local system Godd,2-param(ψ, 2n, q), we have the following results.

(i) The geometric monodromy group Ggeom,odd,2-param is isomorphic to PSp4n(q).
(ii) For any finite extension K/Fq, the arithmetic monodromy group Garith,odd,2-param

is isomorphic to PSp4n(q).
(iii) If K = Fp, then the arithmetic monodromy group Garith,odd,2-param is isomorphic 

to PSp4n(q) � Ca.

Proof. Note that each of the arithmetic and geometric monodromy groups of each of 
the two local systems Geven,2-param(ψ, 2n, q) and Godd,2-param(ψ, 2n, q) is a quotient of the 
corresponding group for the local system W2-param(ψ, 2n, q). Also, observe that Sp4n(q)
acts faithfully on the even-dimensional Weil representations of degree (q2n − 1)/2, and 
acts with kernel C2 on the odd-dimensional Weil representations of degree (q2n + 1)/2. 
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Now using Corollary 7.4 and Theorem 10.3(i), we conclude that Ggeom,even,2-param ∼=
Sp4n(q) and Ggeom,odd,2-param ∼= PSp4n(q).

The same arguments, but now using Theorem 10.3(ii) show that Garith,even,2-param ∼=
Sp4n(q) and Garith,odd,2-param ∼= PSp4n(q) for any finite extension K/Fq.

In the case K = Fp, we use in addition the fact that the arithmetic group con-
tains the geometric group as a normal subgroup and Theorem 10.3(iii) to see that 
Garith,even,2-param ∼= Sp4n(q) � Ca and Garith,odd,2-param ∼= PSp4n(q) � Ca. �
Theorem 10.5. Suppose that q = pa as before and that a subgroup G of H = Sp4n(q)
satisfies the following conditions:

(i) G is irreducible on a Weil module V of dimension (q2n + 1)/2 of H.
(ii) If n ≥ 2 then |G| is divisible by a primitive prime divisor �2 = ppd(p, (2n − 1)a).
(iii) If n = 1, then a p-subgroup of G is acting irreducibly on a complex space of dimen-

sion pa.

Then G = H = Sp4n(q).

Proof. (a) First we consider the case (n, q) = (1, 3). Then (i) implies that 5 divides |G|. 
Furthermore, Sylow 3-subgroups of G are non-abelian by (iii), whence 33 divides |G|. 
Since no maximal subgroup of H = Sp4(3) can have order divisible by 33 · 5, see [2], we 
conclude that G = H.

From now on, we may assume that (n, q) �= (1, 3). Hence, p4an − 1 admits a large 
primitive prime divisor � = ppd(p, 4an) by [4], and we choose such an � to maximize 
the �-part Q of p4an − 1 = q4n − 1. By (i), |G| is divisible by Q, and we can apply [12, 
Theorem 4.6] (with d = 4n and f = a) to G. Let L := O�′(G). Note that L � CQ, as 
otherwise by Ito’s theorem [8, (6.15)] any irreducible complex character of G has degree 
coprime to �, violating (i). In what follows we will consider the possibilities for L as 
listed in [12, Theorem 4.6]. We also denote by dC(L) the smallest degree > 1 of complex 
irreducible representations of L, and freely use lower bounds for dC(L) as listed in [16].

(b) L ∼= SL4n/j(qj) for some j|4n with 4n/j ≥ 3. Then

dC(L) ≥ qj(4n/j−1) = q4n−j > (q2n + 1)/2 = dim(V ).

It follows that the quasisimple group L acts trivially on V . But in this case G cannot be 
irreducible on V as G/L is an �′-group.

(c) L ∼= SU4n/j(qj) for some j|4n with 4n/j ≥ 3 being odd; in particular, 4|j and 
n ≥ 3. Recall that L � G ≤ GL4n(q). Now part (e) of the proof of [12, Theorem 4.7]
(with N = 2an ≥ 6) shows that no such subgroup G can be irreducible on V .

(d) L ∼= Ω−
4n/j(q

j) with j|2n and j ≤ n. If, moreover, j ≤ n/2, then

dC(L) ≥ qj(4n/j−3) = q4n−3j > q2n > dim(V ),
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whence L acts trivially on V and we arrive at a contradiction as in (b). If j = 2n/3 (and 
so 3|n), then L is a cover of PSU4(q2n/3), and so

dC(L) = q8n/3 − 1
q2n/3 + 1

>
q2n + 1

2 = dim(V ),

and we again arrive at a contradiction. In the remaining case we have j = n, L ∼=
PSL2(q2n), and dC(L) = (q2n + 1)/2. This possibility cannot however occur, since L ≤
H = Sp4n(q) has a faithful representation of degree (q2n − 1)/2.

(e) L = Sp(Wj) ∼= Sp4n/j(qj) for some j|2n (and the natural module Wj = F4n/j
qj for 

L is obtained from the natural module F4n
q of H by base change). Arguing as in part (d) 

of the proof of [12, Theorem 4.7], we see that G = 〈L, σ〉, where σ is a field automorphism 
of L order say b|j. If furthermore j = 1, then we obtain G = L = Sp4n(q), as stated.

Assume furthermore that n ≥ 2. Note any odd prime divisor of b is ≤ n < (2n −1)a <
�2, hence �2 divides |L| = |Sp4n/j(qj)| by (ii). It follows that �2 divides q2ij − 1 for some 
integer 1 ≤ i ≤ 2n/j, whence 2n − 1 divides 2ij. This is possible only when ij = 2n − 1
as n ≥ 2. But j|2n, so we conclude j = 1, as desired.

Finally, we consider the case n = 1, but j > 1. Then Sp2(q2) = L �G ≤ Sp2(q2) �C2. 
In particular, the Sylow p-subgroups of G are abelian, contradicting (iii). �
Theorem 10.6. Let q = pa. For the local system W(ψ, 2n, q), we have the following results.

(i) The geometric monodromy group Ggeom,sum is isomorphic to Sp4n(q).
(ii) For any finite extension K/Fq, the arithmetic monodromy group Garith,sum is iso-

morphic to Sp4n(q).
(iii) If K = Fp, then the arithmetic monodromy group Garith,sum is isomorphic to 

Sp4n(q) � Ca.

Proof. (a) First we consider G = Ggeom,sum. By Theorem 10.3(i) and Lemma 9.1,

G ≤ H := Ggeom,sum,2-param ∼= Sp4n(q).

Next, by Corollary 7.4 we have that G acts irreducibly on a Weil module of dimension 
(q2n + 1)/2 of H and thus fulfills condition 10.5(i). Furthermore, Lemma 9.7 and Corol-
lary 9.10 show that G satisfies conditions (ii) and (iii) of Theorem 10.5. Hence, applying 
Theorem 10.5 to G, we obtain that Ggeom,sum = H ∼= Sp4n(q).

(b) If K is any finite extension of Fq, then the same arguments as in (a), but applied 
to Garith,sum, show that Garith,sum ∼= Sp4n(q).

Finally, let K = Fp and G̃ = Garith,sum. By Theorem 9.15, Lemma 9.15 and by (i) we 
know that

Sp4n(q) ∼= Ggeom,sum � G̃ ≤ Garith,sum,2-param ≤ Sp4an(p).

Applying Lemmas 9.17 and 10.2, we conclude that G̃ ∼= Sp4n(q) � Ca. �
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Theorem 10.7. Let q = pa. For the local system Geven(ψ, 2n, q), we have the following 
results.

(i) The geometric monodromy group Ggeom,even is isomorphic to Sp4n(q).
(ii) For any finite extension K/Fq, the arithmetic monodromy group Garith,even is iso-

morphic to Sp4n(q).
(iii) If K = Fp, then the arithmetic monodromy group Garith,even is isomorphic to 

Sp4n(q) � Ca.

For the local system Godd(ψ, 2n, q), we have the following results.

(i) The geometric monodromy group Ggeom,odd is isomorphic to PSp4n(q).
(ii) For any finite extension K/Fq, the arithmetic monodromy group Garith,odd is iso-

morphic to PSp4n(q).
(iii) If K = Fp, then the arithmetic monodromy group Garith,odd is isomorphic to 

PSp4n(q) � Ca.

Proof. Argue similarly to the proof of Theorem 10.4, but using Theorem 10.6 instead of 
Theorem 10.3. �
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