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1. Introduction

For an odd integer n ≥ 3, and a prime power q ≥ 3, the irreducible representations
(over C) of lowest degree after the trivial representation of the group SUn(q) are a
symplectic representation of dimension qn+1

q+1
− 1 = qn−q

q+1
, and q representations of

dimension qn+1
q+1

. When q is odd, exactly one of these q representations is orthogonal,

otherwise none is. The direct sum of these q+1 representations is called the big Weil
representation of SUn(q).

In the paper [KT1], we wrote down q+1 rigid local systems on the affine line A1/Fp
whose geometric monodromy groups we conjectured to be the images of SUn(q) in
these q + 1 representations. We were able to prove this only in the case when n = 3
and gcd(n, q + 1) = 1 (the condition that SUn(q) = PSUn(q)), where we made use
of the results of Dick Gross [Gross]. In this paper, we use a completely different
method, which starts1 with results of Gross, to prove these conjectures for any odd
n ≥ 3 and for any odd prime power q, see Theorem 3.4.

The second author gratefully acknowledges the support of the NSF (grants DMS-1201374 and
DMS-1665014). The paper is partially based upon work supported by the NSF under grant DMS-
1440140 while the second author was in residence at the Mathematical Sciences Research Institute
in Berkeley, California, during the Spring 2018 semester. It is a pleasure to thank the Institute for
support, hospitality, and stimulating environments.

1The results here use the results of [KT2], which in turn uses the resuts of [KT1] for SL2, and
those use [Gross] in an essential way.
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The method used here, which requires that q be odd, is based on a striking group-
theoretic relation between the Weil representations of SUn(q) and Sp2n(q), and on
the determination of those subgroups of Sp2n(q) to which the Weil representation
restricts “as though” it were the Weil representation of SUn(q), cf. Theorem 2.3. We
are able to apply this result to our local systems, in Section 3, by invoking results of
[KT2], which was devoted to questions around Sp2n(q). Furthermore, our Theorem
3.3 also improves the main results Theorems 1.1 and 4.8 of [KT2] in the case 2 - n,
by removing the condition that p - n · logp(q) for the prime p|q.

In the course of thinking about these questions, we stumbled upon a very striking
representation-theoretic fact about the q irreducible representations of SUn(q) ( n ≥ 3
odd, q odd) of dimension qn+1

q+1
. For each of them, their nth moment (i.e. the dimension

of the space of invariants in the nth tensor power of the representation in question) is
one, cf. Theorem 4.11. For the irreducible repesentation of dimension qn+1

q+1
− 1, the

nth moment vanishes. At present we do not have a conceptual explanation for this.
Given this result about nth moments for SUn(q) when n is odd, it is natural to

wonder about the situation for nth moments when n is even. [For n even and q ≥ 3 a
prime power, the irreducible representations (over C) of lowest degree after the trivial
representation of the group SUn(q) are an orthogonal representation of dimension
qn−1
q+1

+ 1 = qn+q
q+1

, and q representations of dimension qn−1
q+1

.] Already for n = 4, the

result is not so nice, cf. Theorem 5.1.

2. Unitary-type subgroups of finite symplectic groups

Let q = pf be any prime power and n ≥ 2. It is well known, see e.g. [TZ2, §4],
that the function

ζn,q = ζn : g 7→ (−1)n(−q)dimF
q2

Ker(g−1W )

defines a complex character, called the (reducible) Weil character, of the general
unitary group GUn(q) = GU(W ), where W = Fnq2 is a non-degenerate Hermitian
space with Hermitian product ◦. Note that the Fq-bilinear form

(u|v) = TraceFq2/Fq(θu ◦ u)

on W , for a fixed θ ∈ F×q2 with θq−1 = −1, is non-degenerate symplectic. This leads
to an embedding

G̃ := GUn(q) ↪→ Sp2n(q).

Moreover, if q is odd then the restriction of any of the two big Weil characters (of
degree qn, and denoted Weil1,2 in [KT2]) of Sp2n(q) to GUn(q) is exactly the big Weil
character ζn, cf. [TZ2, §4]. We will also denote by ζn the restriction of this character
to the special unitary group G := SUn(q).
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Fix a generator σ of F×q2 and set ρ := σq−1. We also fix a primitive (q2 − 1)th root

of unity σ ∈ C× and let ρ = σq−1. Then

(2.0.1) (Weil1)|G̃ = ζn =

q∑
i=0

ζ̃i,n

decomposes as the sum of q + 1 characters of G̃, where

(2.0.2) ζ̃i,n(g) =
(−1)n

q + 1

q∑
l=0

ρil(−q)dim Ker(g−ρl·1W );

see [TZ2, Lemma 4.1]. In particular, ζ̃i,n has degree (qn− (−1)n)/(q+ 1) if i > 0 and
(qn + (−1)nq)/(q + 1) if i = 0.

We will let ζi,n denote the restriction of ζ̃i,n to G = SUn(q), for 0 ≤ i ≤ q. If
n ≥ 3, then these q + 1 characters are all irreducible and distinct. If n = 2, then
ζi,n is irreducible, unless q is odd and i = (q + 1)/2, in which case it is a sum of two
irreducible characters of degree (q − 1)/2, see [TZ2, Lemma 4.7]. Formula (2.0.2)
implies that Weil characters ζi,n enjoy the following branching rule while restricting
to the natural subgroup H := StabG(w) ∼= SUn−1(q) (w ∈ W any anisotropic vector):

(2.0.3) ζi,n|H =

q∑
j=0, j 6=i

ζj,n−1.

Furthermore, the complex conjugation fixes ζ̃0,n and sends ζ̃j,n to ζ̃q+1−j,n when 1 ≤
j ≤ q. As n ≥ 3 is odd, it is also known that ζ̃0,n is of symplectic type; let Ψ0 :

G̃ → Sp(V ) be a complex representation affording this character. If 2 - q, then

ζ̃(q+1)/2,n is of orthogonal type; let Ψ(q+1)/2 : G̃→ O(V ) be a complex representation

affording this character. In the remaining cases, let Ψi : G̃ → GL(V ) be a complex

representation affording the character ζ̃i,n.

Lemma 2.1. Assume n ≥ 3 is odd and (n, q) 6= (3, 2).

(i) Ψ0(GUn(q)) ∼= PGUn(q) is contained in Sp(V ) and contains Ψ0(SUn(q)) with
index d := gcd(n, q + 1).

(ii) If 1 ≤ i ≤ q, then Ker(Ψi) is a central subgroup of order gcd(i, q + 1), and
Ker(Ψi|SUn(q)) is a central subgroup of order gcd(i, n, q + 1).

(iii) If 2 - q, then Ψ(q+1)/2(GUn(q)) ∩ SO(V ) contains Ψ(q+1)/2(SUn(q)) with index
(q + 1)/2.

(iv) If 1 ≤ i ≤ q and i 6= (q + 1)/2, then Ψi(GUn(q)) ∩ SL(V ) contains Ψi(SUn(q))
with index gcd(i, q + 1).

Proof. According to [TZ2, §4], one can label Ψi in such a way that

Ψi(z) = ρi · 1V
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for the generator z = ρ · 1W of Z(G̃) ∼= Cq+1. In particular, z ∈ Ker(Ψ0), and (i)
follows.

Now we can assume 1 ≤ i ≤ q. Then zj ∈ Ker(Ψi) if and only if j is divisible
by (q + 1)/ gcd(i, q + 1). Furthermore, zj(q+1)/d ∈ Ker(Ψi|SUn(q)) if and only if j is
divisible by d/ gcd(i, d) = d/ gcd(i, n, q + 1) for d := gcd(n, q + 1), equivalently, if
j(q + 1)/d is divisible by (q + 1)/ gcd(i, n, q + 1). Hence (ii) follows.

Consider the element g := diag(ρ, 1, 1, . . . , 1) ∈ G̃; note that G̃ = 〈G, g〉. Then
(2.0.2) implies that

ζ̃i,n(gk) = −q
n−1 − (−1)n−1

q + 1
+ (−1)n−1ρik

when 1 ≤ k ≤ q. It follows that Ψi(g) has eigenvalues ρj, 1 ≤ j ≤ q, with multiplicity
(qn−1 − 1)/(q + 1) if k 6= i and 1 + (qn−1 − 1)/(q + 1) if k = i, and so

det(Ψi(g)) = ρi.

Since SUn(q) is perfect, (ii) and (iii) follow. �

We will now show that, when n ≥ 3 is odd and q is odd, the splitting (2.0.1) of a
big Weil character Weili of Sp2n(q) on its restriction to SUn(q) into a sum of q + 1
irreducible constituents of prescribed degrees characterizes SUn(q) uniquely (up to
conjugacy).

Recall [Zs] that if a ≥ 2 and n ≥ 2 are any integers with (a, n) 6= (2, 6), (2k− 1, 2),
then an − 1 has a primitive prime divisor, that is, a prime divisor ` that does not
divide

∏n−1
i=1 (ai − 1); write ` = ppd(a, n) in this case. Furthermore, if in addition

a, n ≥ 3 and (a, n) 6= (3, 4), (3, 6), (5, 6), then an − 1 admits a large primitive prime
divisor, i.e. a primitive prime divisor ` where either ` > m+ 1 (whence ` ≥ 2m+ 1),
or `2|(am − 1), see [F2].

We will need the following recognition theorem [KT2, Theorem 2.6], which was
obtained relying on [GPPS].

Theorem 2.2. Let q = pf be a power of an odd prime p and let d ≥ 2. If d = 2,
suppose that pdf − 1 admits a primitive prime divisor ` > 5. If d ≥ 3, suppose in
addition that (p, df) 6= (3, 4), (3, 6), (5, 6), so that pdf − 1 admits a large primitive
prime divisor `, in which case we choose such an ` to maximize the `-part of pdf − 1.
Let W = Fdq and let G be a subgroup of GL(W ) ∼= GLd(q) of order divisible by the

`-part Q := (qd − 1)` of qd − 1. Then either L := O`′(G) is a cyclic `-group of order
Q, or there is a divisor j < d of d such that one of the following statements holds.

(i) L = SL(Wj) ∼= SLd/j(q
j), d/j ≥ 3, and Wj is W viewed as a d/j-dimensional

vector space over Fqj .
(ii) 2j|d, Wj is W viewed as a d/j-dimensional vector space over Fqj endowed with

a non-degenerate symplectic form, and L = Sp(Wj) ∼= Spd/j(q
j).
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(iii) 2|jf , 2 - d/j, Wj is W viewed as a d/j-dimensional vector space over Fqj en-

dowed with a non-degenerate Hermitian form, and L = SU(Wj) ∼= SUd/j(q
j/2).

(iv) 2j|d, d/j ≥ 4, Wj is W viewed as a d/j-dimensional vector space over Fqj
endowed with a non-degenerate quadratic form of type −, and L = Ω(Wj) ∼=
Ω−d/j(q

j).

(v) (p, df, L/Z(L)) = (3, 18,PSL2(37)), (17, 6,PSL2(13)).

The main result of this section is the following theorem:

Theorem 2.3. Let q = pf be a power of an odd prime p and let n ≥ 3 be an odd
integer. Let W = F2n

q be a non-degenerate symplectic space, and H := Sp(W ) ∼=
Sp2n(q), and let Φ be a complex Weil representation Weili of H of degree qn as in
[KT2, §1]. Suppose that G ≤ H is a subgroup such that Φ|G = ⊕qj=0 is a sum of q+ 1
irreducible summands, Φ0 of degree (qn− q)/(q+ 1) and Φj of degree (qn + 1)/(q+ 1)
for 1 ≤ j ≤ q. Then W can be viewed as an n-dimensional vector space over Fq2
endowed with a G-invariant non-degenerate Hermitian form such that

SUn(q) ∼= SU(W )CG ≤ GU(W ) ∼= GUn(q).

Proof. (a) First we assume that (n, q) 6= (3, 3) and (3, 5); in particular, so that
p2nf − 1 admits a large primitive prime divisor `, in which case we choose such an `
to maximize the `-part of p2nf − 1. Note the assumptions imply that |G| is divisible
by both (qn − q)/(q + 1) and (qn + 1)/(q + 1). In particular, G < GL(W ) has order
divisible by

(2.3.1) qQ := q(p2nf − 1)`.

Let L := O`′(G) and d(L) denote the smallest degree of nontrivial complex irreducible
characters of L. Note that

(2.3.2) d(L) ≤ (qn + 1)/(q + 1) ≤ (qn + 1)/4.

(Otherwise L ≤ Ker(Φ1), whence Φ1 could be viewed as an irreducible representation
of G/L and so would have been of `′-degree.) Furthermore, if L is cyclic of order Q,
then by Ito’s theorem, the degree of any irreducible character of G divides |G/L|, an
integer coprime to `, and so again G cannot be irreducible on Φ1. Now we can apply
Theorem 2.2 to arrive at one of the following cases.

(i) L ∼= SL2n/j(q
j) for some divisor 1 ≤ j ≤ n of 2n. In this case, if j ≤ 2n/3 then

by [TZ1, Theorem 3.1] we have

d(L) > qj(2n/j)−1 = q2n−2n/j > qn,

contradicting (2.3.2). If j = n, then qj = qn ≥ 27 and so

d(L) ≥ (qn − 1)/2 > (qn + 1)/4,

again contradicting (2.3.2).
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(ii) L ∼= Sp2n/j(q
j) for some divisor 1 ≤ j < n/2 of n. Then by [TZ1, Theorem 1.1]

we have
d(L) > (qn − 1)/2 > (qn + 1)/4,

contradicting (2.3.2).

(iii) There is some even divisor j = 2k of 2n with k|n and 2 - n/k > 1, such
that W can be viewed as a 2n/j-dimensional vector space over Fqj endowed with a
non-degenerate Hermitian form and L = SU(W ) ∼= SUn/k(q

k). Suppose first that
k > 1, and let ψ be an irreducible constituent of the L-character afforded by Φ0, so
that ψ(1) < (qn + 1)/4. By [TZ1, Theorem 4.1],

ψ(1) ∈
{

1,
qn + 1

qk + 1
,
qn − qk

qk + 1

}
.

The proof of (2.3.2) rules out the possibility ψ(1) = 1. Next,

ψ(1)| dim Φ0 = (qn − q)/(q + 1)

by Clifford’s theorem, implying ψ(1) 6= (qn− qk)/(qk + 1). The remaining possibility
ψ(1) = (qn+1)/(qk+1) is also ruled out since ` - dim Φ0. We have shown that k = 1,
i.e. L = SU(W ) ∼= SUn(q). This implies that

LCG ≤ NSp(W )(L) = GU(W ) o 〈σ〉 ∼= GUn(q) o C2.

Here, σ is an involutive automorphism of GU(W ) that acts as inversion on

(2.3.3) 〈z〉 = Z(GU(W )) ∼= Cq+1.

Recall the decomposition

(2.3.4) Φ|GU(W ) = ⊕qi=0Ψi,

with Ψ0 of degree (qn− q)/(q+ 1) and Ψi of degree (qn + 1)/(q+ 1) for 1 ≤ i ≤ q, see
the discussion preceding Lemma 2.1. In fact, one can find a primitive (q + 1)th root
of unity ξ ∈ C× such that Ψi(z) is the multiplication by ξi. In particular, σ fuses Ψ1

and Ψq. The assumption on Φ|G now implies that G ≤ GU(W ), as stated.

(iv) L ∼= Ω−2n/j(q
j) for some divisor 1 ≤ j < n/2 of the odd integer n. If j ≤ n/5,

then by [TZ1, Theorem 1.1] we have

d(L) > qn + 1,

contradicting (2.3.2). If j = n/3, then L is a quasisimple quotient of PSU4(qn/3) with
qn/3 > 5, and so by [TZ1, Theorem 1.1] we have

d(L) =
q4n/3 − 1

qn/3 + 1
> qn/2,

again contradicting (2.3.2).

(v) (p, nf, L/Z(L)) = (3, 9,PSL2(37)). Note that the smallest dimension of a
nontrivial irreducible representation of L over F3 is 18 (see e.g. [TZ1, Table I]), so
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(q, n) = (3, 9) and L = SL2(37) acts absolutely irreducibly on W = F18
3 . This in turn

implies that

CSp(W )(L) = Z(L) = C2,

and so LCG ≤ NSp(W )(L) ≤ L · C2. But in this case, G cannot have an irreducible
complex representation of degree

dim Φ1 = (qn + 1)/(q + 1) = (39 + 1)/4.

(vi) (p, nf, L/Z(L)) = (17, 6,PSL2(13)). In this case (q, n) = (17, 3) and L =
SL2(13) acts absolutely irreducibly on W = F6

17. As in (v), this implies that

CSp(W )(L) = Z(L) = C2,

and L C G ≤ NSp(W )(L) ≤ L · C2, whence G cannot have an irreducible complex
representation of degree

dim Φ1 = (qn + 1)/(q + 1) = (173 + 1)/18.

(b) It remains to consider the two cases (n, q) = (3, 3) and (3, 5). Let M be a
maximal subgroup of Sp(W ) that contains G. Then condition (2.3.1) also holds for
|M |; furthermore, the maximal degree of complex irreducible characters of M must
be at least (qn + 1)/(q + 1) = 7, respectively 21, since Φ1 ∈ Irr(G). First suppose
that q = 5. Then, according to Tables 8.27 and 8.28 of [BHR], one of the following
possibilities occurs.
• M = 2J2. In this case, since |G| is divisible by 3 · 5 · 7, see (2.3.1), we see by

inspecting maximal subgroups of J2 [Atlas] that G = M . But then G does not admit
any complex irreducible representation of degree dim Φ0 = 20.
• M = SL2(125) o C3. In this case, since |G ∩ [M,M ]| is divisible by 5 · 7, see

(2.3.1), we see by inspecting maximal subgroups of PSL2(125) [BHR, Table 8.1] that
GB SL2(125). But then d(G) ≥ 62 (see e.g. [TZ1, Table I]), violating (2.3.2).
• M = GU3(5) o C2. If G ≥ N := SU3(5), then we can argue as in (iii) above.

Suppose G 6≥ N . Since L := G∩N CG has order divisible by 5 ·7, see (2.3.1), we see
by inspecting maximal subgroups of PSL3(5) and Alt7 [Atlas] that L = 3Alt7, and
Z(L) = 〈z2〉 with 〈z〉 = Z(GU3(5)) as defined in (2.3.3). Using the decomposition
(2.3.4), we may assume that Φi = (Ψi)|G for 0 ≤ i ≤ q. As mentioned in (iii), the
subgroup C2 fuses Ψ1 with Ψ5, hence Φ1 with Φ5. Thus G ≤ GU3(5), and so |G/L|
and |NGU3(5)(L)/L| both divide 6. Note that NGU3(5)(L) contains the central involu-
tion of GU3(5) which lies outside of SU3(5). It follows that G induces a subgroup X
of outer automorphisms of L of order dividing 3, whence X = 1 as |Out(Alt7)| = 2
[Atlas]. Now let g ∈ L be of order 7. Then Φ0(g) = Ψ0(g) has trace −1. On the
other hand, as G induces only inner automorphisms on L, we see that (Φ0)|L must
be a direct sum of two copies of a single irreducible complex representation Φ′ (of
dimension 10) of L and we arrive at the contradiction that Φ′(g) has trace −1/2.
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(c) Finally, we consider the case q = 3. Inspecting the list of maximal subgroups
of PSp6(3) in [Atlas], we arrive at the following possibilities for M . By (2.3.1), G
contains an element g ∈ G of order 7. According to [Atlas], we may assume that
Φ0 ⊕ Φ2 = Λ|G, where Λ is an irreducible Weil representation of degree 13 of Sp6(3)
and contains the central involution t of Sp6(3) in its kernel, and that Λ(g) has trace
−1.
• M = SL2(13). In this case, since |G| is divisible by 3 · 7, see (2.3.1), we see by

inspecting maximal subgroups of PSL2(13) [Atlas] that G = M . Note that t is the
central involution of G. Now the conditions that t ∈ Ker(Λ) and Λ(g) has trace −1
imply by [Atlas] that Λ|G is irreducible, a contradiction.
• M = SL2(27) · 3. In this case, since |G| is divisible by 7, we see by inspecting

maximal subgroups of PSL2(27) [Atlas] that either G ≥ [M,M ] = SL2(27) or G ∩
[M,M ] is contained in a dihedral group D28. It is easy to see that in the former case
d(G) ≥ 13 contradicting (2.3.2), and in the latter case G does not admit any complex
irreducible representation of dimension dim Φ1 = 7.
• M = GU3(3) o C2. If G ≥ N := SU3(3), then we can argue as in (iii) above.

Suppose G 6≥ N . Since L := G ∩ N C G has order divisible by 3 · 7, see (2.3.1), we
see by inspecting maximal subgroups of SU3(3) and PSL2(7) [Atlas] that either L is
of order 21 or L = PSL2(7). The former case is ruled out since (Φ1)|L is irreducible
of dimension 7. In the latter case, fix an involution s ∈ L. We may assume that

(Φi)|L = (Ψi)|L

for the representations Ψi defined in (2.3.4), and furthermore Ψ2 is self-dual of di-
mension 7. Using [Atlas] we see that Ψ1(s) has trace 3 and Ψ1(g) has trace 0, whence
(Φ1)|L = (Ψ1)|L is the sum of two irreducible representations of dimensions 1 and 6,
contradicting the irreducibility of Φ1 on GB L. �

In the next statement, we consider a non-degenerate symplectic space W = F2N
p ,

a (reducible) big Weil representation of degree qN of G = Sp(W ) ∼= Sp2N(p) with
character ω as in [KT2]; in particular,

(2.3.5) |ω(g)| = |CW (g)|1/2

for any g ∈ G. Let N = AB and B = bj for some positive integers A,B, b, j. We
may then assume that W is obtained from the symplectic space W1 := F2A

pB (with a

Witt basis (e1, . . . , eA, f1, . . . , fA)) by base change from FpB to Fp. Using this basis
we can consider the transformation

σ :
A∑
i=1

(xiei + yifi) 7→
A∑
i=1

(xri ei + yri fi)
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induced by the Galois automorphism x 7→ xr for r := pj. Then, as in [KT2, §2] we
can consider the standard subgroup

H = Sp(2A, pB) o Cb

of G, where Cb = 〈σ〉.

Theorem 2.4. Each value |ω(x)|2, x ∈ H, is a power of r = pj. Furthermore, there
is some h ∈ H such that |ω(h)|2 = r.

Proof. Note that H embeds in Sp(2Ab, pj), and so the first statement follows by
applying (2.3.5) to a big Weil representation of Sp(2Ab, pj). To define h, consider the
Fr-linear map

f : FpB → FpB , x 7→ x− xr.
Viewed as a vector space over Fr, Ker(f) has dimension 1. Hence f cannot be
surjective, and so we can find

α ∈ FpB r Im(f).

Let J denote the Jordan block of size A×A with eigenvalue α−1, and let g ∈ H have
the following matrix (

t(αJ)−1 α2J
0 αJ

)
in the chosen basis (e1, . . . , eA, f1, . . . , fA) of W1. We will show that h = gσ satisfies
|ω(h)|2 = r. According to (2.3.5), it suffices to show that h fixes exactly r vectors in

W1. To this end, suppose that w =
∑A

i=1(xiei+yifi) is fixed by h, where xi, yi ∈ FpB .
Comparing the coefficient for fA we have

yrA = yA

implying yA ∈ Fr. Next, comparing the coefficient for fA−1 we see that

yrA−1 + αyrA = yA−1,

and so αyA = f(yA−1). Continuing in the same fashion, we conclude that

y1 ∈ Fr, y2 = y3 = . . . = yA.

Thus we have shown that v :=
∑A

i=1 yifi = y1f1. Letting u := w− v =
∑A

i=1 xiei, we
have

t(αJ)−1σ(u) + α2Jσ(v) = u,

i.e.

σ(u) + t(αJ)α2Jσ(v) = t(αJ)(u).

Comparing the coefficient for e1, we get

xr1 + αy1 = x1,
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and so αy1 = f(x1). Again by the choice of α, we must have that y1 = 0 and x1 ∈ Fr.
Next, comparing the coefficient for e2, we get

xr2 = αx1 + x2,

and so −αx1 = f(x2). By the choice of α, we must have that x1 = 0 and x2 ∈ Fr.
Continuing in the same fashion, we conclude that

xA ∈ Fr, x1 = x2 = . . . = xA−1.

Thus w = xAeA with xA ∈ Fr. �

Lemma 2.5. Let q = pf ≥ 3 be a prime power and let A,B, b, c be positive integers,
and let H = Sp2A(pB) o Cb as above. Then the following statements hold.

(i) If c ≥ 3, then SUAc(q) cannot embed in H.
(ii) Assume in addition that (p,A,B) 6= (3, 1, 1). Then the only quotient groups of

H are H, H/Z(H) = PSp2A(pB) o Cb, and quotients of Cb.

Proof. (i) Assume the contrary. Since c, q ≥ 3, SUAc(q) is perfect, and so it embeds in
Sp2A(pB) < Sp2A(Fp). In particular, SUAc(q) has a nontrivial absolutely irreducible
representation in characteristic p of dimension ≤ 2A ≤ Ac− 1. But this contradicts
[KlL, Proposition 5.4.11].

(ii) The assumption on (p,A,B) ensures that L := [H,H] = Sp2A(pB) is qua-
sisimple, with S = L/Z(H) ∼= PSp2A(pB) being simple. Furthermore, H/Z(H) acts
faithfully on S.

Suppose that N C H. If N ≥ L, then H/N is a quotient of H/L ∼= Cb. In
the remaining case, we have that N ∩ L is a proper normal subgroup of L, and so
contained in Z(H). In particular, [N,L] ≤ N ∩ L centralizes L, i.e. [[N,L], L] = 1.
Since L = [L,L], the Three Subgroups Lemma implies that [N,L] = 1, whence

N ≤ CH(L) ≤ CH(S) = Z(H).

Thus either N = 1 or N = Z(H). �

3. Local systems and Weil representations

In this section, we fix an odd prime p, and a prime ` 6= p, so that we can avail
ourselves of Q`-adic cohomology. We also fix a nontrivial additive character ψ of Fp.
We denote by χ2 the quadratic character of F×p , and we define

A := AFp := −
∑
x∈F×p

ψ(−2x)χ2(x).

For k/Fp a finite extension, we define

Ak := Adeg(k/Fp).
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We denote by ψk the additive character of k given by

ψk := ψ ◦ Tracek/Fp .

In [KT2, Section 1], we introduced, for each integer n ≥ 2 and each power q = pa

of the odd prime p, the local system

W(ψ, n, q)

on A2/Fp whose trace function at a point (s, t) ∈ A2(k), k a finite extension of Fp, is
the sum

(−1/Ak)
∑
x∈k

ψk(x
qn+1 + sxq+1 + tx2).

We proved there [KT2, Theorem 1.1, 4.8] that when both n and a := logp(q) are
prime to p, the geometric monodromy group Ggeom of W(ψ, n, q) was Sp2n(q) in one
of its big Weil representations (of degree qn), and that after extension of scalars from
A2/Fp to A2/Fq, its arithmetic monodromy group Garith coincided with Ggeom.

Without these “prime to p” hypotheses, we have the following result.

Theorem 3.1. For n ≥ 2 and q = pa a power of the odd prime p, we have the
following results.

(i) There exists a factorization na = AB and a factorization B = bj such that the
group Ggeom ofW(ψ, n, q) is Sp2A(pB)oCb in one of its big Weil representations.

(ii) Moreover, pj is a power of q, say pj = qr (so that j = ar,B = arb), and hence
we have inclusions of groups

Sp2A(pB) o Cb = Sp2A(qrb) o Cb ↪→ Sp2Ab(q
r) ↪→ Sp2Abr(q) = Sp2n(q).

Proof. To prove (i), we argue as follows. From [KT2, Theorems 2.1, 2.2, and the
argument of Proposition 4.6], we see that there exist factorizations na = AB,B = bj
and na = CD,D = dk such that Ggeom is a subgroup of the product group

(Sp2A(pB) o Cb)× (PSp2C(pD) o Cd)

which maps onto each factor.
We apply Goursat’s lemma. Note that AB = na ≥ 2, so by Lemma 2.5(ii), the

only quotient groups of Sp2A(pB) o Cb are

Sp2A(pB) o Cb,PSp2A(pB) o Cb, and quotients of Cb.

Their commutator subgroups are

Sp2A(pB),PSp2A(pB), {1}
respectively. Similarly, the only quotient groups of PSp2C(pD) o Cd are

PSp2C(pD) o Cd, and quotients of Cd,

and their commutator subgroups are

PSp2C(pD), {1}
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respectively.
We first rule out the case when Ggeom is the graph of an isomorphism between a

quotient of Cb with a quotient of Cd. In this case, Ggeom would contain the product
group Sp2A(pB) × PSp2C(pD). This group contains elements of trace zero in the
representation at hand, whereas every element of Garith, and a fortiori every element
of Ggeom has nonzero trace, cf. [KT2, Proposition 4.6] and its proof.

The only remaining possibility is thatGgeom is the graph of an isomorphism between
PSp2A(pB)oCb and PSp2C(pD)oCd. Such an isomorphism induces an isomorphism
of commutator subgroups. Hence (A,B) = (C,D). Comparing cardinalities, we then
infer that b = d. Thus Ggeom is as asserted.

To prove (ii), we use Theorem 2.4, according to which pj = pB/b is the lowest value
attained as the square absolute value of the trace of an element of Sp2A(pB) o Cb
in either big Weil representation. On the other hand, from [KT2, Theorem 3.5],
the group Garith is also finite. The quotient Garith/Ggeom is then a finite quotient of

Gal(Fp/Fp). Hence over some FQ/Fq, we have Ggeom = Garith. From [KT2, Lemma
3.2], exploiting an idea of van der Geer and van der Flugt, we see that for any finite
extension k0/FQ, all square absolute values of traces are powers of q, and that for
any point (s, t) ∈ A2(k0), there is a finite extension k1/k0 for which the same point,
now viewed in A2(k1) has trace of square absolute value q2n. In particular, the least
square absolute value attained is some strictly positive power qr, r ≥ 1 of q. �

We now introduce a new local system W(ψ, n, q) when n ≥ 3 is odd, which we
get by setting t = 0 in W(ψ, n, q). Thus the trace function of W(ψ, n, q) at a point
s ∈ A1(k), k/Fp a finite extension, is

(−1/Ak)
∑
x∈k

ψk(x
qn+1 + sxq+1).

On A1/Fq2 , we can break up this local system as the direct sum of q + 1 local
systems, by making use of the q + 1 multiplicative characters, including the trivial
one, of order dividing q + 1. We have

W(ψ, n, q) =
⊕

χ with χq+1=1

G(ψ, n, q, χ).

The trace function of G(ψ, n, q, χ) at a point s ∈ A1(k), k/Fq2 a finite extension, is

(−1/Ak)
∑
x∈k

ψk(x
qn+1
q+1 + sx)χk(x).

Here we write χk for χ ◦ Normk/Fq2
, and adopt the usual convention that for χ

nontrivial, we have χk(0) = 0, but 1(0) = 1.
These G(ψ, n, q, χ) are pairwise non-isomorphic, geometrically irreducible local sys-

tems on A1/Fq2 (thanks to their descriptions as Fourier Transforms, cf. [KT1, Section
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2]). The ranks of these local systems are

rank(G(ψ, n, q,1)) =
qn + 1

q + 1
− 1,

rank(G(ψ, n, q, χ)) =
qn + 1

q + 1
, χ 6= 1.

Recall that for any n, and q any power of the odd prime p, there are inclusions

SUn(q)CGUn(q) ↪→ Sp2n(q),

Theorem 3.2. For n ≥ 3 odd, and q = pa a power of the odd prime p, the group
Ggeom for W(ψ, n, q) is SUn(q) in its big Weil representation (of degree qn).

Proof. Because W(ψ, n, q) is the pullback (by (s, t) 7→ (s, 0)) of the local system
W(ψ, n, q), its Ggeom,W is a subgroup of Ggeom,W . By Theorem 3.1, we have

Ggeom,W ↪→ Sp2n(q).

Thus Ggeom,W is a subgroup of Sp2n(q) under which a big Weil representation of

Sp2n(q) breaks up into q+1 pieces, one of rank qn−q
q+1

and q of rank qn+1
q+1

. By Theorem

2.3, we have inclusions
SUn(q) ≤ Ggeom,W ≤ GUn(q).

The group GUn(q) has a quotient, via the determinant, of order q+1, which is prime
to p. Because Ggeom,W is the monodromy group of a local system on A1/Fp, it has no
nontrivial prime to p quotients. Thus we have Ggeom,W = SUn(q). �

Theorem 3.3. For n ≥ 3 odd and q an odd prime power, the geometric monodromy
group Ggeom,W of W(ψ, n, q) is Sp2n(q) in one of its big Weil representations Weil1,2
(of degree qn). Moreover, after extension of scalars to A2/Fq, we have Ggeom = Garith.

Proof. Recall the inclusion

SUn(q) = Ggeom,W ≤ Ggeom,W = Sp2A(pB) o Cb

and the relation n = Abr of Theorem 3.1. By Lemma 2.5(i), br ≤ 2, but 2 - n, hence
ar = 1 and (A, pB, b) = (n, q, 1), yielding the first assertion.

Once Ggeom,W = Sp2n(q) = Sp2n(pa), Garith,W is contained in Sp2n(pa) o Ca, cf.
[KT2, proof of Lemma 4.7]. Thus the quotient Garith,W/Ggeom,W has order dividing a,
so after extension of scalars to A2/Fp to A2/Fpa = A2/Fq we have Ggeom = Garith. �

Theorem 3.4. For n ≥ 3 odd and q a power of the odd prime p, the geometric
monodromy group of the local system G(ψ, n, q,1) is PSUn(q), the image of SUn(q)
in its unique irreducible representation of dimension qn−q

q+1
, with character ζ0,n. The

geometric monodromy group of G(ψ, n, q, χ2) (where χ2 is the quadratic character)
is the image of SUn(q) in its unique orthogonal representation of dimension qn+1

q+1
,

with character ζ(q+1)/2,n. For the remaining q − 1 local systems G(ψ, n, q, χ) with χ2
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nontrivial, χq+1 = 1, their geometric monodromy groups are the images of SUn(q) in
its q − 1 non-selfdual irreducible representations of dimension qn+1

q+1
.

Proof. Because Ggeom,W is SUn(q), the geometric monodromy groups in question are
quotients of SUn(q) in various of its irreducible representations. Recall the fact [TZ1,
Theorem 4.1] that SUn(q) has, up to equivalence, one irreducible representation of
dimension qn−q

q+1
(with character ζ0,n) and q irreducible representations of dimension

qn+1
q+1

(with character ζj,n, 1 ≤ j ≤ q), with exactly one of the q latter representations

being self-dual (and necessarily orthogonal, as it has odd dimension). Using this fact
and looking at the dimensions, we get the asserted matching. �

Corollary 3.5. After extension of scalars to A1/Fq2(q+1), we have

Ggeom,W = Garith,W

for W(ψ, n, q). The same is true for each of the q + 1 local systems G(ψ, n, q, χ).

Proof. After extension of scalars to A1/Fq, we have Garith,W = Sp2n(q), and hence

Garith,W ≤ Sp2n(q).

By Theorem 2.3, which we may apply after further extension of scalars to A1/Fq2 ,
we have

SUn(q) ≤ Garith,W ≤ GUn(q).

As we have Ggeom,W = SUn(q), we see that the quotient Garith,W/Ggeom,W has order
dividing q + 1. Thus after extension of scalars to A1/Fq2(q+1) , we have Ggeom,W =
Garith,W. Each of the irreducible constituents then has Ggeom = Garith as well. �

Remark 3.6. Theorem 3.3 is an improvement, in the n odd case, of Theorem 1.1 of
[KT2, Theorem 1.1, 4.8], which required that both n and a := logp(q) be prime to p.
Theorem 3.4 verifies the Ggeom conjectures of [KT1, Conjecture 9.2] in the case that
q is odd. Corollary 3.5 establishes a weak version of the Garith conjectures of [KT1,
Conjecture 9.2], again in the case when q is odd. We should also point out that the
normalizing factor Ak used here to define the local systems G(ψ, n, q, χ) here can differ
by a sign from the normalizing factors β used to define these local systems in [KT1,
Lemma 8.3]. Over Fq2 , each normalizing factor is either q or −q, so over extensions of
Fq4 there is no conflict. But we cannot hope to have the conjectural equality of Ggeom

with Garith over Fq2 for both G(ψ, n, q, χ) as normalized here and for G(ψ, n, q, χ) as
normalized in [KT1, Lemma 8.3] in any situation where the normalizing factors do
in fact differ by a sign.

The virtue of the normalizing factors β is that with them, when we work over Fq2 ,
the group Garith for the renormalized G(ψ, n, q, χ) lands in Sp( q

n−q
q+1

,Q`) for χ = 1, it

lands in SO( q
n+1
q+1

,Q`) for χ = χ2 the quadratic character, and it lands in SL( q
n+1
q+1

,Q`)

for the χ with χ2 6= 1. So with the exception of the χ = 1 case, where a sign change of
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normalizing factor won’t alter landing in Sp( q
n−q
q+1

,Q`), any sign change of normalizing

factor in the other cases will destroy landing in SL (simply because qn+1
q+1

is odd).

In the case of the quadratic character χ2, there is no sign change: the β over Fq2
is equal to AFq2

. Indeed, that β is, cf. [KT1, Lemma 8.3 (3)],

β := −(−1)(q+1)/2q = (−1)(q−1)/2q = (A2
Fp

)deg(Fq/Fp) = AFq2
.

[The normalizing factor β for the renormalized G(ψ, n, q, χ) is −(−1)(q+1)/mq for m
the order of χ. This will be equal to AFq2

precisely when (q + 1)/2 and (q + 1)/m

have the same parity.]
For G(ψ, n, q,1), we have

Ggeom = Ψ0(SUn(q)), Ggeom ≤ Garith ≤ Ψ0(GUn(q)).

So we see from Lemma 2.1(i) that it suffices to extend scalars from Fq2 to Fq2·gcd(n,q+1)

(instead of to Fq2(q+1)) to achieve Ggeom = Garith for G(ψ, n, q,1).
For G(ψ, n, q, χ2), we have

Ggeom = Ψ(q+1)/2(SUn(q)), Ggeom ≤ Garith ≤ Ψ(q+1)/2(GUn(q)) ∩ SO(qn+1)/(q+1)(Q`).

So we see from Lemma 2.1(iii) that for G(ψ, n, q, χ2), it suffices to extend scalars from
Fq2 to Fqq+1 (instead of to Fq2(q+1)) to achieve Ggeom = Garith. Both these statements
are far from the conjectured equality Ggeom = Garith over Fq2 (except, of course, in
the special case when gcd(n, q + 1) = 1).

4. Moments of Weil representations of odd-dimensional unitary
groups

In this section, we will consider special unitary groups G := SUn(q) = SU(W )
where q is any prime power. The main result is Theorem 4.11 showing that when
n ≥ 3 is odd, the Weil representations of G have nth moment 1 or 0.

First we assume that n = 2k+1 ≥ 5 is odd, and fix a basis (e1, . . . , ek, f1, . . . , fk, w)
of the Hermitian space W = Fnq2 , in which the Hermitian form ◦ takes values

(4.0.1) ei ◦ ej = fi ◦ fj = ei ◦ w = fi ◦ w = 0, ei ◦ fj = δi,j, w ◦ w = 1.

We also fix the notation

P1 := StabG(〈e1〉Fq2
) = Q1L1, Pk := StabG(〈e1, . . . , ek〉Fq2

) = QkLk,

where Q1 = Op(P1), Qk = Op(Pk), Lk ∼= GLk(q
2). The action of any X ∈ Lk =

GLk(q
2) in the indicated basis of W is given by diag(X, tX−q, det(X)q−1), see [ST,

§5.1].
As shown in [GMST, Lemmas 12.5, 12.6], the Levi subgroup L has a unique orbit
O on Irr(Z(Qk))r {1Z(Qk)} of smallest length (q2k− 1)/(q+ 1), which then occurs in
the restriction of any Weil character ζi,n. Moreover, any λ ∈ O can only lie under an
irreducible character of degree q of Qk. In particular, this shows that
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Lemma 4.1. Suppose n = 2k+ 1 ≥ 5. Then ζ0,n is irreducible over Pk. If 1 ≤ i ≤ q,
then ζi,n|Pk

= νi + θi, where θi ∈ Irr(Pk) affords the orbit O, and νi is a linear
character of Pk trivial at Z(Qk).

Lemma 4.2. In the notation of Lemma 4.1, assume that 1 ≤ i ≤ q. Then Ker(νi) ≥
Qk, and if X ∈ Lk has determinant σt as an element in GLk(q

2) with t ∈ Z, then
νi(X) = σ(q−1)it.

Proof. As noted in Lemma 4.1, νi is trivial at Z(Qk), and it is Pk-invariant. But Lk
acts transitively on the q2k−1 nontrivial linear characters of Qk/Z(Qk), so Ker(νi) ≥
Qk. Next, [Lk, Lk] ∼= SLk(q

2) is perfect, so νi is trivial at [Lk, Lk]. Thus there is some
0 ≤ s ≤ q2 − 2 such that νi(X) = σts for the listed X ∈ Lk. To find s, it suffices to
evaluate νi(X) for some X0 that generates Lk modulo [Lk, Lk]. Let γ be a generator

of F×
q2k

such that γ(q2k−1)/(q2−1) = σ, and choose X0 ∈ Lk conjugate to

diag(γ, γq
2

, . . . , γq
2k−2

)

over Fq, so that det(X0) = σ. Since no eigenvalue of X0 belongs to Fq2 , X0 cannot
fix any λ ∈ O, see formula (20) of [ST]), and so θi(X0) = 0 and νi(X0) = ζi,n(X0).
The absence of eigenvalues in Fq2 and the equality det(X0)q−1 = ρ imply by (2.0.2)
that ζi,n(X0) = ρi = σ(q−1)i, i.e. s = (q − 1)i as stated. �

Proposition 4.3. Suppose n = 2k + 1 ≥ 5. Then (ζn)n−1 contains ζi,n with multi-
plicity one if i > 0, and zero if i = 0.

Proof. Note that (ζn)2 is just the permutation character of G acting on the point set
of W . Hence (ζn)n−1 is the permutation character of G acting on the set Ω of ordered
k-tuples ω = (v1, . . . , vk), vi ∈ W . Let πω = IndGGω

(1Gw) denote the permutation
character of G acting on the G-orbit of ω = (v1, . . . , vk), where Gω = StabG(ω), and
suppose that ζi,n is an irreducible constituent of πω. Then

(4.3.1) 0 < [πω, ζi,n]G = [1Gω , ζi,n|Gω ]Gω ;

in particular, 1Gω is an irreducible constituent of ζi,n|Gω .

(i) First we consider the case where X := 〈v1, . . . , vk〉Fq2
is contained in a non-

degenerate subspace Y of W of codimension ≥ 2. Without loss we may assume that
e1, f1 ∈ Y ⊥. Then Gω contains a natural subgroup M := SU(〈e1, f1〉Fq2

) ∼= SU2(q)

(that acts trivially on Y ). The branching rule (2.0.3) then shows that ζi,n|M is a sum
of Weil characters ζj,2 of M . As mentioned above, an irreducible constituent λ of ζj,2
can have degree 1 only when (q, j) = (2, 6= 0) or (q, j) = (3, (q+ 1)/2). In the former
case, one can check that λ is actually the sign character of M = SU2(2) ∼= Sym3. In
the latter case, λ(z) 6= 1 for some element z of M ∼= SU2(3) of order 3. Thus λ can
never be equal to 1M , contradicting (4.3.1).

In particular, we have shown that X cannot be non-degenerate.
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(ii) Suppose now that 0 6= X ∩X⊥ has dimension j ≤ k− 1. By Witt’s lemma, we
may then assume that X = 〈e1, . . . , ej, w1, . . . , wk−j〉Fq2

, where 〈w1, . . . , wk−j〉Fq2
is a

non-degenerate subspace of

〈ej+1, . . . , ek, fj+1, . . . , fk〉Fq2
.

But then X is contained in the non-degenerate subspace

Y := 〈e1, . . . , ej, f1, . . . , fj, w1, . . . , wk−j〉Fq2

of codimension n− (k + j) ≥ 2, contradicting (i).

(iii) We have shown that dim(X ∩X⊥) = k, i.e. X is totally singular of dimension
k. There is only one G-orbit of such ω, and we may assume that ω = (e1, . . . , ek).
The description of Pk given in [ST, §5.1] shows that Gω = Qk. Now Lemmas 4.1, 4.2,
and (4.3.1) show that [πω, ζi,n]G = 1− δ0,i, as stated. �

Next we define the following linear characters λi of the parabolic subgroup P1 =
StabG(〈e1〉Fq2

) for 1 ≤ i ≤ q: if g ∈ P1 sends e1 to σt for 0 ≤ t ≤ q2 − 2, then

λi(g) = σ−(q−1)it, and set

Λi := IndGP1
(λi).

Proposition 4.4. Suppose n = 2k + 1 ≥ 5, (n, q) 6= (5, 2), and 1 ≤ i ≤ q. Then Λi

enters the character (ζn)2, and [(ζi,n)2,Λi] ≥ 1.

Proof. (i) As discussed in [GMST, §11], P ′1 := StabG(e1) = Q1 o L′1, where L′1 =
StabG(e1) ∩ StabG(f1) ∼= SUn−2(q). Note that Λi enters the character IndP1

P ′1
(1P ′1),

which in turn enters the character (ζn)2. Furthermore, L1 acts transitively on the
q − 1 nontrivial linear characters of Z(Q1) (which has order q), and for each such
character α there is a unique irreducible character of Q1 of degree qn−2, which then
extends to a unique character Mα of P ′1. We fix some nontrivial α ∈ Irr(Z(Q1)) and
let K := StabP1(α) = P ′1 · Cq+1. By its uniqueness, Mα extends to K. Note that

ζi,n(1) = (qn + 1)/(q + 1) < 2qn−2(q − 1) = 2(q − 1)Mα(1).

It follows by Clifford’s theorem that

(4.4.1) ζi,n|P1 = βi + IndP1
K (Mα),

for some extension to K of Mα which we also denote by Mα, and for some character
βi of P1 of degree (qn−2 + 1)/(q + 1), with Z(Q1) ≤ Ker(βi). Next, Mα|L′1 = ζn−2.
Applying (2.0.3) to the standard subgroup L′1 and using (4.4.1), we get

βi|L′1 = ζi,n|L′1 − (q − 1)ζn−2 =
∑

j 6=i, j′ 6=j

ζn−2,j′ − (q − 1)

q∑
j′=0

ζn−2,j′ = ζn−2,i.

In particular, βi ∈ Irr(P1).
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(ii) As usual, χ̄ denotes the complex conjugate of any character χ. Note that
StabP1(ᾱ) = K. Hence, (4.4.1) implies that

(4.4.2) ζ i,n|P1 = βi + IndP1
K (Mα).

Observe that Mα affords the Z(Q1)-character qn−2ᾱ and is irreducible over P ′1. By the
aforementioned uniqueness, Mα agrees with Mᾱ on P ′1, where Mᾱ is the K-character
of the ᾱ-isotypic component in ζi,n|P1 . As K/P1

∼= Cq+1, these two characters differ
from each other by a linear character of K/P ′1, which extends to a linear character δ
of P1/P

′
1
∼= Cq2−1. We have shown that

(4.4.3) IndP1
K (Mα) = IndP1

K (Mᾱ · δ|K) = IndP1
K (Mᾱ) · δ.

and

(4.4.4) ζi,n|P1 = βi + IndP1
K (Mᾱ),

(iii) We aim to show that we one can take δ = λi in (4.4.3). Let τ be an element

of F×
q4k−2 of order q2k−1 + 1 chosen such that τ (q2k−1+1)/(q+1) = ρ. Then we can find

an element h ∈ K such that h(e1) = ρe1 and h is conjugate to

diag(ρ, ρ, τ−2, τ 2q, τ−2q2 , . . . , τ−2(−q)2k−2

)

over Fq2 . Since k ≥ 2 and (k, q) 6= (2, 2), by [Zs] there is a prime divisor ` of q4k−2−1

that does not divide
∏4k−3

j=1 (qj−1). In particular, ` divides (q2k−1 + 1), and moreover

the `-part of |P1| is equal to the `-part of βi(1), whence βi is an irreducible character
of P1 of `-defect zero. On the other hand, for any 1 ≤ t ≤ q, ` divides |ht|, whence
βi(t) = 0, and so we obtain by using (2.0.2), (4.4.2), (4.4.4) that

IndP1
K (Mᾱ)(ht) = ζi,n(ht) = −(q − 1)ρit,

IndP1
K (Mα)(ht) = ζ i,n(ht) = −(q − 1)ρ−it.

It now follows from (4.4.3) that

δ(ht) = ρ−2it = ρ(q−1)it = λi(h
t),

whence δ(g) = λi(g) for all g ∈ K, since the choice of h ensures that h generates K
modulo P ′1. Together with (4.4.3), we have shown that

(4.4.5) (IndP1
K (Mᾱ) · δ)(g) = (IndP1

K (Mᾱ) · λi)(g)

for all g ∈ K. If g ∈ P1 r K then IndP1
K (Mᾱ)(g) = 0 since K C P1, and so (4.4.5)

holds for g as well. Consequently,

IndP1
K (Mα) = IndP1

K (Mᾱ) · λi.
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This identity, together with (4.4.2) and (4.4.4), implies by Frobenius’ reciprocity that

[(ζi,n)2,Λi]G = [ζi,nΛi, ζ i,n]G = [ζi,n · IndGP1
(λi), ζ i,n]G

= [IndGP1
(ζi,n|P1 · λi), ζ i,n]G = [ζi,n|P1 · λi, ζ i,n]P1

≥ [IndP1
K (Mᾱ) · λi, IndP1

K (Mα)]P1 = 1,

as stated. �

Proposition 4.5. Suppose n = 2k + 1 ≥ 5 and 0 < i ≤ q. Then [(Λi)
k, ζ i,n] = 1.

Proof. Recall G acts transitively on the set Ξ of isotropic 1-spaces in W = Fnq2 , with

P1 = StabG(π1), where we set πj := 〈ej〉Fq2
for 1 ≤ j ≤ k. Hence the character Λi is

afforded by a CG-module

V = IndGP1
(Vπ1) = ⊕gP1∈G/P1Vg(π1),

where Vπ1 = 〈vπ1〉C is a one-dimensional P1-module with character λi, andG permutes
the summands via h(Vg(π1)) = Vhg(π1). It follows that (Λi)

k is afforded by the G-
module

V ⊗k = 〈vξ | ξ ∈ Ξk〉C,
where vξ = vξ1 ⊗ vξ2 ⊗ . . .⊗ vξk for ξ = (ξ1, ξ2, . . . , ξk).

Consider the G-orbit Π of the k-tuple π := (π1, π2, . . . , πk) ∈ Ξk. Then the G-
submodule

V (Π) := 〈vξ | ξ ∈ Π〉C
of V ⊗k affords the character IndGR(µ), where R := ∩kj=1StabG(〈ej〉Fq2

), and

µ(h) = σ−(q−1)i
∑k

j=1 tj

if h(ej) = σtj for 0 ≤ tj ≤ q2 − 2 and 1 ≤ j ≤ k.
Note that Qk C R < Pk and Qk ≤ Ker(µ). Furthermore, if h ∈ Lk belongs to R

and h(ej) = σtj , then det(h) (as an element in GLk(q
2) is σ

∑k
j=1 tj , and so

νi(h) = σ−(q−1)i
∑k

j=1 tj = µ(h)

for the character νi considered in Lemma 4.2, i.e. νi|R = µ. By Lemma 4.1, we have
therefore shown that

0 < [µ, ζ i,n|R]R = [IndGR(µ), ζ i,n]G ≤ [(Λi)
k, ζ i,n]G.

On the other hand, (Λi)
k enters the character (ζn)n−1 by Proposition 4.4, whence the

upper bound [(Λi)
k, ζ i,n] ≤ 1 follows from Proposition 4.3. �

Next we will study some see-saw dual pairs (cf. [Ku]) to determine various branch-
ing rules. Our consideration is based on the following well-known formula [LBST,
Lemma 5.5]:
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Lemma 4.6. Let ω be a character of the direct product S×G of finite groups S and
G. Then

ω =
∑

α∈Irr(S)

Dα ⊗ α,

where

Dα : g 7→ 1

|S|
∑
x∈S

α(x)ω(xg)

is either zero, or a character of G.

We will work with a finite group Γ that contains two dual pairs S1×G1 and S2×G2,
where G1 ≥ G2 and S2 ≥ S1.

Lemma 4.7. Let ω be a character of Γ, and decompose

ω|G1×S1 =
∑

α∈Irr(S1)

Dα ⊗ α, ω|G2×S2 =
∑

γ∈Irr(G2)

γ ⊗ Eγ

as in Lemma 4.6. Then, for any α ∈ Irr(S1) and any γ ∈ Irr(G2) we have that

[Dα|G2 , γ]G2 = [α,Eγ|S1 ]S1 ,

and hence

Dα|G2 =
∑

γ∈Irr(G2)

[Eγ|S1 , α]S1 · γ.

Proof. Write aα,γ := [Dα|G2 , γ]G2 , so that

Dα|G2 =
∑

γ∈Irr(G2)

aα,γγ.

Then

ω|G2×S1 =
∑

α∈Irr(S1), γ∈Irr(G2)

aα,γγ ⊗ α

=
∑

γ∈Irr(G2)

γ ⊗
∑

α∈Irr(S1)

aα,γα.

Thus Eγ|S1 =
∑

α∈Irr(S1) aα,γα, and the statements follow. �

First we consider the dual pair

(4.7.1) G2 × S2

inside Γ := GU2n(q), where S2 = GU2(q) and G2 = SUn(q), and ω = ζ2n = ζ2n,q.
More precisely, we view S2 as GU(U), where U = 〈v1, v2〉Fq2

is endowed with the

Hermitian form ◦, with an orthonormal basis (v1, v2). Next, G2 = SUn(q) is SU(W ),
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where W = Fnq2 is endowed with the Hermitian form ◦ defined in (4.0.1). Now we
consider V = U ⊗Fq2

W with the Hermitian form ◦ defined via

(u⊗ w) ◦ (u′ ⊗ w′) = (u ◦ u′)(w ◦ w′)

for u ∈ U and w ∈ W . The action of G2 × S2 on V induces a homomorphism
G2 × S2 → Γ := GU(V ).

Now V is the orthogonal sum V1⊕V2, where Vi := vi⊗W . This gives us a subgroup

G1 := SU(V1)× SU(V2) ∼= SUn(q)× SUn(q)

of Γ that contains (the image of) G2. In fact, G2 embeds diagonally in G1: g 7→
diag(g, g). Next,

S1 := GU(〈v1〉Fq2
)×GU(〈v2〉Fq2

) ∼= GU1(q)×GU1(q)

is just the non-split diagonal torus of S2.
In the above basis (v1, v2) of U and for 0 ≤ i, j ≤ q, we consider the character

λi,j : diag(ρa, ρb) 7→ ρia+jb

of S1. Then, as explained in [TZ2, §4], ζi,n corresponds to the ρi-eigenspace of the
generator ρ · 1W of Z(GUn(q)), so that

(4.7.2) Dλij = ζi,n ⊗ ζj,n
for the dual pair G1 × S1.

We use the notation of [E] for the irreducible characters of S2 = GU2(q) (with the
parameter q + 1 in the superscripts of characters changed to 0). For instance

χ
(t)
1 |S1 = λt,t.

The decomposition

(4.7.3) ω|S2×G2 =
∑

α∈Irr(S2)

α⊗ Cα

was described in [LBST, Proposition 6.3]. In particular, the G2-characters

(4.7.4) C◦α := Cα − kα · 1G2 ,

where α ∈ Irr(S2), are irreducible and pairwise distinct, and kα ∈ {0, 1} is listed in
Table I.

This implies

Corollary 4.8. For the decomposition

ω|G2×S2 =
∑

γ∈Irr(G2)

γ ⊗ Eγ,
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Table I. Degrees of C◦α for G2 = SUn(q)

α α(1) C◦α(1) kα

χ
(0)
1 1 (qn − (−1)n)(qn−1 + (−1)nq2)/(q + 1)(q2 − 1) 1

χ
(t)
1 , t 6= 0 1 (qn − (−1)n)(qn−1 + (−1)n)/(q + 1)(q2 − 1) 0

χ
(0)
q q (qn + (−1)nq)(qn − (−1)nq2)/(q + 1)(q2 − 1) 1

χ
(t)
q , t 6= 0 q (qn − (−1)n)(qn + (−1)nq)/(q + 1)(q2 − 1) 0

χ
(0,u)
q−1 , u 6= 0 q − 1 (qn − (−1)n)(qn−1 − (−1)nq)/(q + 1)2 0

χ
(t,u)
q−1 , t, u 6= 0 q − 1 (qn − (−1)n)(qn−1 + (−1)n)/(q + 1)2 0

χ
(t)
q+1 q + 1 (qn − (−1)n)(qn−1 + (−1)n)/(q2 − 1) 0

we have that

Eγ =


α, γ = C◦α for some α ∈ Irr(S2),

χ
(0)
1 + χ

(0)
q , γ = 1G2 ,

0, otherwise.

Proposition 4.9. Suppose n = 2k + 1 ≥ 5 and (n, q) 6= (5, 2). For 0 < i ≤ q, and
in the notation of (4.7.3)–(4.7.4) we have

Λi = C
χ
(i)
1

+ C
χ
(i)
q
.

Among these two irreducible constituents, only C
χ
(i)
1

enters (ζi,n)2.

Proof. (i) First, an application of Mackey’s formula reveals that Λi is the sum of two
distinct irreducible characters of G2 = SUn(q). Clearly, [Λi, 1G2 ] = 0. By Proposition
4.5, Λi enters (ζn)2 = ω|G2 , so

Λi = C◦β1 + C◦β2

for some β1 6= β2 ∈ Irr(S2). Next,

Λi(1) = (qn − (−1)n)(qn−1 + (−1)n)/(q2 − 1),

so β1, β2 6= χ
(t)
q+1, see Table I.

By Proposition 4.4, at least one of γj := C◦βj , j = 1, 2, is an irreducible constituent
of

(ζi,n)2 = Dλi,i |G2 ,

see (4.7.2). As γj 6= 1G2 , by Lemma 4.6 and Corollary 4.8 we have

[Dλi,i |G2 , γj]G2 = [λi,i, Eγj |S1 ]S1 = [λi,i, βj|S1 ]S1 .

We have shown that C◦βj , is an irreducible constituent of (ζi,n)2 precisely when λi,i is

an irreducible constituent of βj|S1 .
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(ii) As in the proof of Proposition 4.4, let τ be an element of F×
q4k−2 of order

q2k−1 + 1 chosen such that τ (q2k−1+1)/(q+1) = ρ. Then we fix an element g ∈ L1 such
that g(e1) = σe1, g(f1) = σ−qf1, and g is conjugate to

diag(σ, σ−q, τ, τ−q, τ q
2

, . . . , τ (−q)2k−2

)

over Fq2 . By [Zs] there is a prime divisor ` of q4k−2−1 that does not divide
∏4k−3

j=1 (qj−
1). In particular, ` divides |τ |. It follows that σ and σ−q are the only eigenvalues of
g that belong to Fq2 .

Assume in addition that q > 2; in particular, σ 6= σ−q. Then, 〈e1〉Fq2
and 〈f1〉Fq2

are the only two g-invariant isotropic 1-spaces in W , and so

(4.9.1) Λi(g) = 2ρ−i.

Next, for any x ∈ S2 = GU2(q), ω(gx) = 1, unless x has, at least one, and therefore
both, of σ−1 and σq as its eigenvalues. In this exceptional case, x belongs to class

C
(−1)
4 in the notation of [E], and ω(gx) = q2. It follows from Lemma 4.6 that

C◦α(g) =



ρ−t, α = χ
(t)
1 , 0 < t ≤ q,

2, α = χ
(0)
1 ,

ρ−t, α = χ
(t)
q , 0 < t ≤ q,

0, α = χ
(0)
q ,

0, α = χ
(t,u)
q−1 , 0 ≤ t, u ≤ q.

Together with (4.9.1), this readily implies that {β1, β2} = {χ(i)
1 , χ

(i)
q }. Note that

χ
(i)
1 |S1 = λi,i, but χ

(i)
q |S1 does not contain λi,i, so we are done.

(iii) Now we consider the case q = 2. As shown in (i), we may assume that β1|S1

contains λi,i. It follows that β1 ∈ {χ(i)
1 , χ

(2i,0)
q−1 }. However degree consideration using

Table I rules out χ
(2i,0)
q−1 and shows that β1 = χ

(i)
1 . Again by degree consideration we

now see that β2 = χ
(t)
q for some t ∈ {1, 2}. Furthermore, g fixes exactly three isotropic

1-spaces in W (namely, the ones spanned by e1, f1, and e1 + f1), so Λi(g) = 3ρ−i.
Arguing as in (ii), we see that

C◦α(g) =


ρ−t, α = χ

(t)
1 , 0 < t ≤ q,

2, α = χ
(0)
1 ,

2ρ−t, α = χ
(t)
q , 0 < t ≤ q,

0, α = χ
(0)
q .

Hence β2 = χ
(i)
q , and we are done since χ

(i)
q |S1 does not contain λi,i. �

We will now work with three new dual pairs. First, we consider the dual pairG3×S3

inside Γ := GU2kn(q), where S3 = GU2k(q) and G3 = SUn(q), and ω = ζ2nk = ζ2nk,q.
More precisely, we view S3 as GU(U), where U = 〈v1, . . . , v2k〉Fq2

is endowed with
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the Hermitian form ◦, with an orthonormal basis (v1, . . . , v2k). Next, G3 = SUn(q)
is SU(W ), where W = Fnq2 is endowed with the Hermitian form ◦ defined in (4.0.1).
Now we consider V = U ⊗Fq2

W with the Hermitian form · defined via

(u⊗ w) ◦ (u′ ⊗ w′) = (u ◦ u′)(w ◦ w′)
for u ∈ U and w ∈ W . The action of G3 × S3 on V induces a homomorphism
G3 × S3 → Γ := GU(V ).

Now V is the orthogonal sum ⊕2k
i=1Vi, where Vi := vi⊗W . This gives us a subgroup

G1 := SU(V1)× SU(V2)× . . .× SU(V2k) ∼= SUn(q)2k

of Γ that contains (the image of) G3. In fact, G3 embeds diagonally in G1: g 7→
diag(g, g, . . . , g). Next,

S1 := GU(〈v1〉Fq2
)×GU(〈v2〉Fq2

)× . . .×GU(〈v2k〉Fq2
) ∼= GU1(q)2k

is just the non-split diagonal torus of S3. In the above basis (v1, v2, . . . , v2k) of U and
for 1 ≤ i ≤ q, we consider the character

(4.9.2) µi : diag(ρa1 , ρa2 , . . . , ρa2k) 7→ ρi(
∑2k

j=1 aj)

of S1.
Next, for each 1 ≤ j ≤ k we embed one copy of SU(W ) in

SU(〈v2j−1, v2j〉Fq2
⊗W )

(by letting it act only on W ). This gives an embedding of G2 := SUn(q)k in G1 via

diag(g1, g2, . . . , gk) 7→ diag(g1, g1, g2, g2, . . . , gk, gk).

At the same times, G3 embeds diagonally in G2 via g 7→ diag(g, g, . . . , g). The action
of G2 is centralized by

S2 := GU(〈v1, v2〉Fq2
)×GU(〈v3, v4〉Fq2

)× . . .×GU(〈v2k−1, v2k〉Fq2
) ∼= GU2(q)k.

Recall the characters Cα of SUn(q) introduced in (4.7.3).

Proposition 4.10. Suppose n = 2k + 1 ≥ 5, (n, q) 6= (5, 2), and 0 < i ≤ q. Then
both (C

χ
(i)
1

)k and (ζi,n)n−1 contain ζ i,n.

Proof. (i) First we decompose

ω|G3×S3 =
∑

γ∈Irr(G3)

γ ⊗ Eγ

for the dual pair G3 × S3. By Proposition 4.3, ω|G3 = (ζn)n−1 contains ζ i,n with
multiplicity one. It follows that the G3-character Eζi,n has degree 1, so there is some

0 ≤ m = mi ≤ q such that
Eζi,n(X) = ρmt
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whenever X ∈ GU2k(q) has determinant equal to ρt.

(ii) Next we decompose

ω|S2×G2 =
∑

β∈Irr(S2)

β ⊗ Fβ

for the dual pair S2 ×G2. Note by (4.7.3) that if

β = β1 ⊗ β2 ⊗ . . .⊗ βk,
then

(4.10.1) Fβ = Cβ1 ⊗ Cβ2 ⊗ . . .⊗ Cβk .
By Lemma 4.7,

[Fβ|G3 , ζ i,n]G3 = [β,Eζi,n|S2 ]S2 .

Since Eζi,n has degree 1, we see that ζ i,n is an irreducible constituent of Fβ|G3 precisely

when β = Eζi,n|S2 , that is when

β(X1, X2, . . . , Xk) = ρm
∑k

j=1 tj

whenever Xj ∈ GU2(q) has determinant equal to ρtj for 1 ≤ j ≤ k. In the notation
of [E] we then have

(4.10.2) β = χ
(m)
1 ⊗ χ(m)

1 ⊗ . . .⊗ χ(m)
1︸ ︷︷ ︸

k

.

(iii) Recall by Proposition 4.4 that Λi enters (ζn)2. It follows that Λ⊗ki = Λi ⊗ Λi ⊗ . . .⊗ Λi︸ ︷︷ ︸
k

enters ω|G2 . Next, by Proposition 4.5, ζ i,n is an irreducible constituent of (Λi)
k =

Λ⊗ki |G3 . Furthermore, by Proposition 4.9, Λi = C
χ
(i)
1

+ C
χ
(i)
q

. Hence, using (4.10.1)

we see that
Λ⊗ki =

∑
1≤j≤k, βj∈{χ

(i)
1 ,χ

(i)
q }

Cβ1 ⊗ Cβ2 ⊗ . . .⊗ Cβk

=
∑

1≤j≤k, βj∈{χ
(i)
1 ,χ

(i)
q }

Fβ1⊗β2⊗...⊗βk .

Applying the result (4.10.2) of (ii), we conclude that m = i and ζ i,n is an irreducible
constituent of

F
χ
(m)
1 ⊗χ(m)

1 ⊗...⊗χ(m)
1
|G3 = (C

χ
(i)
1

)k.

(iv) The same argument as in (ii), but applied to the decomposition

ω|S1×G1 =
∑

α∈Irr(S1)

α⊗Dα
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for the dual pair S1 × G1 implies that ζ i,n is an irreducible constituent of Dα|G3

precisely when α = Eζi,n|S1 , that is when α = µm as introduced in (4.9.2). As m was

shown to be equal to i in (iii), we now have that ζ i,n is an irreducible constituent of

Dα|G3 = Dµi |G3 = (ζi,n)n−1.

�

We can now prove the main result of this section:

Theorem 4.11. Let q be a prime power and let G = SUn(q) with n = 2k + 1 ≥ 3.
Suppose in addition that (n, q) 6= (3, 2). Then (ζi,n)n contains 1G with multiplicity
exactly one if 1 ≤ i ≤ q and zero if i = 0.

Proof. For n = 3, the statement was checked by A. Schaeffer Fry using the package
Chevie. Likewise, the case (n, q) = (5, 2) was checked using the package GAP. So we
may assume that n ≥ 5 and (n, q) 6= (5, 2). Now for i = 0 the statement follows from
Proposition 4.3. For 1 ≤ i ≤ q we have

[(ζi,n)n−1, ζ i,n]G = [(ζi,n)n, 1G]

is at most 1 by Proposition 4.3 and at least 1 by Proposition 4.10. �

Theorem 4.11 means that the Weil representation of SUn(q) affording the character
ζi,n with 1 ≤ i ≤ q has a unique (up to scalar) polynomial invariant of degree n. It
would be interesting to know what is the geometric significance of this polynomial
invariant, and to find an explicit construction of it.

5. Moments of Weil representations of SU4(q)

Theorem 4.11 naturally brings up the question: what are the n-moments of Weil
representations of SUn(q) when 2|n? Preliminary analysis indicates that the even-
dimensional case does not behave as nicely as in the odd-dimensional case (particu-
larly because real-valued characters usually have large even moments). We restrict
ourselves to record the following result:

Theorem 5.1. Consider the irreducible Weil characters ζi,n, 0 ≤ i ≤ q, of G :=
SUn(q) as given in (2.0.2), and suppose n = 4. Then

[(ζi,4)4, 1G] =


q + 1, i = 0,
q + 2, 2 - q, i = (q + 1)/2,
q − 1, 4|(q + 1), i = (q + 1)/4, 3(q + 1)/4,
1, otherwise.
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Proof. (i) We will use the dual pairs G1 × S1 = SUn(q)2 × GU1(q)2 and G2 × S2 =
SUn(q)×GU2(q) as in (4.7.1). By [LBST, Proposition 6.3],

ω|G2×S2 =
∑

α∈Irr(S2)

Cα ⊗ α =
∑

γ∈Irr(G2)

γ ⊗ Eγ

=
∑

α∈Irr(S2)

C◦α ⊗ α + 1G2 ⊗ (χ
(0)
1 + χ(0)

q )
,

where C◦α(1) are listed in Table I. The only new feature that arises in the case n = 4
is that, according to [LBST, Proposition 6.5],

(a) If α 6= β, then C◦α = C◦β precisely when {α, β} = {χ(t)
1 , χ

(q+1−t)
1 } for some

t ∈ {1, 2, . . . , q}r {(q + 1)/2}; and

(b) All C◦α are irreducible, except when 2 - q and α = χ
(q+1)/2
1 , in which case C◦α is

a sum of two distinct irreducible characters (of degree (q2 + 1)(q2 − q + 1)/2).
Hence, instead of Corollary 4.8 now we have

(5.1.1) Eγ =


α, if γ is an irreducible constituent

of C◦α for some α ∈ Irr(GU2(q)),

χ
(0)
1 + χ

(0)
q , if γ = 1G2 ,

0, otherwise.

On the other hand,

ω|G1×S1 =
∑

α∈Irr(S1)

Dα ⊗ α,

where Dα is given in (4.7.2) for α = λi,j ∈ Irr(GU1(q)2). Applying Lemma 4.7 we
then get

(5.1.2) (ζi,4)2|SU4(q) = Dλi,i |G2 =
∑

γ∈Irr(G2

[Eγ|GU1(q)2 , λi,i]GU1(q)2 · γ.

Direct computations show for α ∈ Irr(GU2(q)) that

(5.1.3) [α|GU1(q)2 , λi,i]GU1(q)2 =



δt,i, α = χ
(t)
1 ,

δt,2i, α = χ
(t)
q+1,

δt+u,2i, α = χ
(t,u)
q−1 ,

δt,i+(q+1)/2, α = χ
(t)
q , 2 - q,

0, α = χ
(t)
q , 2|q,

and δi,j is defined to be 1 if i ≡ j(mod q + 1) and 0 otherwise. Recall that in the
notation for α ∈ Irr(GU2(q)), the superscripts are viewed as elements of Z/(q + 1)Z
if α(1) ≤ q, and as elements of Z/(q2 − 1)Z if α(1) = q + 1. Moreover, χ

(t,u)
q−1 = χ

(u,t)
q−1

and χ
(t)
q+1 = χ

(−tq)
q+1 .
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(ii) Consider the case 2|q. Then (5.1.1)–(5.1.3) imply that

(ζ0,4)2 = 1G + C◦
χ
(0)
1

+
∑

1≤t≤q/2

C◦
χ
(t,−t)
q−1

+
∑

1≤s≤(q−2)/2

C◦
χ
(s(q+1))
q+1

.

As ζ0,4 is real-valued, it follows that [(ζ0,4)4, 1G]G = q + 1.
Likewise, if i 6= 0, then the irreducible summands of (ζi,4)2 are C◦

χ
(i)
1

, C◦
χ
(t,2i−t)
q−1

with t 6= i, and C◦
χ
(s)
q+1

with s ≡ 2i(mod q + 1) (and s 6≡ 0(mod q − 1)); all with

multiplicity one. It follows that the only common irreducible constituent of (ζi,4)2

and (ζ i,4)2 = (ζq+1−i,4)2 is C◦
χ
(i)
1

= C◦
χ
(q+1−i)
1

, cf. (a) above. Thus [(ζi,4)4, 1G]G = 1. In

fact, this argument also applies to the case where 2 - q and (q + 1) - 4i, where there
is an extra irreducible summand C◦

χ
(i+(q+1)/2)
q

(also with multiplicity 1) in (ζi,4)2.

(iii) Assume now that 2 - q. Then (5.1.1)–(5.1.3) imply that

(ζ0,4)2 = 1G + C◦
χ
(0)
1

+
∑

1≤t≤ q−1
2

C◦
χ
(t,−t)
q−1

+ C◦
χ
(
q+1
2 )

q

+
∑

1≤s≤ q−3
2

C◦
χ
(s(q+1))
q+1

,

yielding [(ζ0,4)4, 1G]G = q + 1. Likewise,

(ζ q+1
2
,4)2 = 1G + C◦

χ
(
q+1
2 )

1

+
∑

1≤t≤ q−1
2

C◦
χ
(t,−t)
q−1

+ C◦
χ
(0)
q

+
∑

1≤s≤ q−3
2

C◦
χ
(s(q+1))
q+1

.

Since ζ q+1
2
,4 is real-valued and C◦

χ
(
q+1
2 )

1

is the sum of two distinct irreducible summands,

[(ζ q+1
2
,4)4, 1G]G = q + 2.

Finally, the irreducible summands of (ζ q+1
4
,4)2 are C◦

χ
(− q+1

4 )
q

, C◦
χ
(
q+1
4 )

1

, C◦
χ
(t,

q+1
2 −t)

q−1

with

t 6= ±(q + 1)/4, and C◦
χ
(2s+1)(q+1)/2
q+1

; all with multiplicity one. As mentioned in (a),

C◦
χ
(
q+1
4 )

1

= C◦
χ
−(

q+1
4 )

1

. Thus all of these characters, except for the first one, are common

irreducible summands between (ζ q+1
4
,4)2 and (ζ q+1

4
,4)2 = (ζ 3(q+1)

4
,4

)2. It follows that

[(ζ q+1
4
,4)4, 1G]G = q − 1. �
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Holland, 1968.

[GKT] Guralnick, R. M., Katz, N., and Tiep, P. H., Rigid local systems and alternating groups,
(submitted).

[GMST] Guralnick, R. M., Magaard, K., Saxl, J., and Tiep, P. H., Cross characteristic representa-
tions of symplectic groups and unitary groups, J. Algebra 257 (2002), 291–347.

[GPPS] Guralnick, R. M., Penttila, T., Praeger, C., Saxl, J., Linear groups with orders having
certain large prime divisors, Proc. London Math. Soc. 78 (1999), 167–214.

[GT] Guranick, R. M. and Tiep, P. H., Symmetric powers and a conjecture of Kollar and Larsen,
Invent. Math. 174 (2008), 505–554.

[Ho] Howe, R., Another look at the local θ-correspondence for an unramified dual pair.
Festschrift in honor of I. I. Piatetski-Shapiro on the occasion of his sixtieth birthday,
Part I (Ramat Aviv, 1989), 93–124, Israel Math. Conf. Proc., 2, Weizmann, Jerusalem,
1990.

[Ka-ESDE] Katz, N., Exponential sums and differential equations. Annals of Mathematics Studies,
124. Princeton Univ. Press, Princeton, NJ, 1990. xii+430 pp.

[Ka-GKM] Katz, N., Gauss Sums, Kloosterman Sums, and Monodromy Groups, Annals of Mathe-
matics Studies, 116. Princeton Univ. Press, Princeton, NJ, 1988. ix+246 pp.

[Ka-MMP] Katz, N.,Moments, Monodromy, and Perversity. Annals of Mathematics Studies, 159.
Princeton University Press, Princeton, NJ, 2005. viii+475 pp.



30 NICHOLAS M. KATZ AND PHAM HUU TIEP

[Ka-NG2] Katz, N., Notes on G2, determinants, and equidistribution, Finite Felds and their Appli-
cations 10 (2004), 221-269.

[Ka-PES] Katz, N., Perversity and Exponential Sums,in Algebraic Number Theory - in honor of K.
Iwasawa, Advanced Studies in Pure Mathematics 17, 1989, 209-259.

[Ka-RLS] Katz, N., Rigid Local Systems. Annals of Mathematics Studies, 139. Princeton University
Press, Princeton, NJ, 1996. viii+223 pp.

[Ka-RLSFM] Katz, N., Rigid local systems on A1 with finite monodromy. preprint available at
www.math.princeton.edu/~nmk/gpconj87.pdf.

[Ka-Sar] Katz, N., and Sarnak, P., Random matrices, Frobenius eigenvalues, and monodromy.
American Mathematical Society Colloquium Publications, 45. American Mathematical So-
ciety, Providence, RI, 1999. xii+419 pp.

[KT1] Katz, N., with an Appendix by Tiep, P.H., Rigid local systems on A1 with finite mon-
odromy, (submitted).

[KT2] Katz, N., and Tiep, P.H., Rigid local systems and finite symplectic groups, (submitted).

[KlL] Kleidman, P. B., and Liebeck, M. W., ‘The Subgroup Structure of the Finite Classical
Groups’, London Math. Soc. Lecture Note Ser. no. 129, Cambridge University Press, 1990.

[Ku] S. Kudla, Seesaw dual reductive pairs, in: ‘Automorphic Forms of Several Variables’,
Taniguchi Symposium, Katata, 1983, Birkhäuser, Boston, 1983, pp. 244–268.
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