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†

We construct hypergeometric sheaves whose geometric monodromy
groups are the finite symplectic groups Sp2n(q) for any odd n ≥ 3,
for q any power of an odd prime p. We construct other hypergeo-
metric sheaves whose geometric monodromy groups are the finite
unitary groups GUn(q), for any even n ≥ 2, for q any power of any
prime p. Suitable Kummer pullbacks of these sheaves yield local
systems on A1, whose geometric monodromy groups are Sp2n(q),
respectively SUn(q), in their total Weil representation of degree qn,
and whose trace functions are simple-to-remember one-parameter
families of two-variable exponential sums. The main novelty of this
paper is three-fold. First, it treats unitary groups GUn(q) with n
even via hypergeometric sheaves for the first time. Second, in both
the symplectic and the unitary cases, it uses a maximal torus which
is a product of two sub-tori to furnish a generator of local mon-
odromy at 0. Third, this is the first natural occurrence of families
of two-variable exponential sums in the context of finite classical
groups.
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1. Introduction

Throughout this paper, p is a prime, and q is a power of p. In our previous
paper [KT3], we considered the problem of realizing the finite symplectic
groups Sp2n(q) when p is odd as monodromy groups of “simple to remember”
families of exponential sums on the affine line A1 in characteristic p, with the
proviso that these families themselves be closely related to hypergeometric
sheaves, and the analogous problem for the finite unitary groups SUn(q).
In the Sp2n(q) case, we succeeded for even n with p > 2 (and Sp2(q) was
treated in [KT1]). In the SUn(q) case, we succeeded for odd n ≥ 3, again
when p was odd. For a long time, we did not believe that SUn(q) for n ≥ 2
even could be obtained from hypergeometric sheaves.

In this paper, we make use of a new approach, which allows us to treat
the Sp2n(q) case for n ≥ 3 odd, still with p odd, and the SUn(q) case for
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n ≥ 2 even and any p. This approach is based on the novel idea of construct-

ing hypergeometric sheaves whose local monodromy at 0 uses a generator

of a maximal torus in the group which is a product of two sub-tori. Pre-

viously, known hypergeometric sheaves for finite classical groups all have

local monodromy at 0 that utilizes only cyclic maximal tori of the classical

group in question. This novel approach allows us to treat unitary groups

GUn(q) with n even via hypergeometric sheaves for the first time. Another

principal novelty of this paper is the use of the operation Cancel on hyper-

geometric sheaves [K2, 9.3.1] as a way to obtain the explicit trace functions

of our candidates for total Weil representations of symplectic and unitary

groups. Note that, even though these hypergeometric sheaves have a fairly

explicit shape predicted by local monodromy considerations, they individu-

ally do not have nice trace functions. The use of Cancel allows us to show

that suitable direct sums of them do have nice trace functions. These trace

functions are then used to prove that their monodromy groups are finite,

but these trace functions alone give us no clue what the finite monodromy

groups are, and in what representations they are occurring. We then prove

group-theoretic recognition results that identify these geometric monodromy

groups as finite symplectic and unitary groups acting in their total Weil rep-

resentations. Further group-theoretic results are then established to identify

the occurring arithmetic monodromy groups.

This paper may also be viewed as a companion piece to [KT7], which

determines which almost quasisimple groups can possibly occur as mon-

odromy groups of hypergeometric sheaves. The main results, Theorems 6.6

and 7.3 of [KT7], show that if a finite classical group G in characteristic

r can be realized as the geometric monodromy group of a hypergeometric

sheaf H on Gm/Fp, then, aside from a small and explicit list of exceptions,

we necessarily have that r = p and that G is the image of a general lin-

ear group GLn(q), a general unitary group GUn(q), or a symplectic group

Sp2n(q) with q a power of p, and moreover the resulting representation of G

is an irreducible Weil representation. The converse problem of showing that

such a finite classical group G acting in a Weil representation does indeed

occur as the geometric monodromy group of a hypergeometric sheaf H is

the subject of the current paper and [KT6]. As mentioned above, a major

difference between the local systems considered in this paper and the ones

in [KT6] is the novel consideration of a product of two sub-tori as local

monodromy at 0 in this paper, which necessitates the development of new

algebro-geometric and group-theoretic tools.
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Let us briefly discuss the “numerology” of our approach here. We are
given a prime p, a strictly positive power q of p, and two positive integers

a, b.

We then define

M := gcd(qa + 1, qb + 1),

A := (qa + 1)/M,B := (qb + 1)/M.

Thus

gcd(A,B) = 1.

Grosso modo, whenM = 2, we find that we are dealing with Sp2(a+b)(q), and
that when M = q+ 1, we are dealing with SUa+b(q). A moment’s reflection
shows that M = 2 is only possible if at least one of a, b is even; a further
technical constraint requires that the other be odd and this is why we can
only attain Sp2n(q) for n ≥ 3 odd. Similarly, M = q + 1 is only possible if
both a, b are odd; this is why we can only attain SUn(q) for n even. Because
M is a divisor of each of qa+1 and qb+1, M = 2 is only possible if q is odd,
whereas M = q + 1 imposes no parity restriction on q. This is what allows
us to treat the SUn(q) case, n ≥ 2 even, in any characteristic.

It then turns out that one-parameter families of two-variable exponen-
tial sums, of the shape

t ∈ E �→
∑

x,w∈E
ψE(txw + xq

b+1 + wqa+1)

are what provide the sought after total Weil representations. This is in sharp
contrast to the case of SUn(q) with n odd or any Sp2n(q), where the total
Weil representations are incarnated by families of one-variable exponential
sums. Moreover, with n = a + b, it comes as a pleasant surprise that the
local systems with these trace functions realize total Weil representations of
Sp2n(q) and of SUn(q). In the “overlap” case of Sp2n(q) with n odd, where
we have both this two-variable exponential sum approach and the already
developed one-variable exponential sum approach to total Weil representa-
tions, it would be interesting to understand the relation between the two
approaches.

The main result for symplectic groups is Theorem 15.7, which explicitly
constructs hypergeometric sheaves whose arithmetic and geometric mon-
odromy groups realize Sp2n(q) in its irreducible Weil representations. Suit-
able Kummer pullbacks of these sheaves yield local systems over A1/Fq with
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the same monodromy groups and with trace functions being easy to remem-

ber one-parameter families of two-variable exponential sums. Similar results

for unitary groups (in any characteristic) are established in Theorems 16.11,

16.12, and 17.5.

2. A variant approach to finite monodromy, especially of
hypergeometric sheaves; the [N ]� method

We refer to [K2, 8.2.2, 8.4] or to [K5, 2.2] for the definitions and basic

properties of hypergeometric sheaves. Let Hypψ(χ1, . . . , χn; ρ1, . . . , ρm) be

a hypergeometric sheaf of type (n,m), defined over a finite field Fq in the

strong sense that ψ is a nontrivial additive character of Fq and each χi and

each ρj is a (possibly trivial) multiplicative character of F×
q . We assume that

no χi is any ρj .

If we pick an embedding of Q(μq−1) into Q�, we can view the multiplica-

tive characters χi and ρj as taking values in Q(μq−1). So viewed, it makes

sense to ask if the set (with multiplicity) consisting of the upstairs charac-

ters χi, and the set (with multiplicity) consisting of the downstairs char-

acters ρj , are each Galois stable (by the action of Gal(Q(μq−1)/Q)). [This

notion does not depend on the choice of embedding of Q(μq−1) into Q�,

since any two embeddings differ by precomposition with an element of

Gal(Q(μq−1)/Q).] If both sets are Galois stable, we say thatHypψ(χ1, . . ., χn;

ρ1, . . . , ρm) has Galois stable sets of characters.

Lemma 2.1. Let Hypψ(χ1, . . . , χn; ρ1, . . . , ρm) be a hypergeometric of type

(n,m) with Galois stable sets of characters. Then we have the following

results.

(i) For any finite extension field L/Fq, and any point t ∈ L×, the trace

Trace
(
Frobt,L|Hypψ(χ1, . . . , χn; ρ1, . . . , ρm)

)
and the determinant

det
(
Frobt,L|Hypψ(χ1, . . . , χn; ρ1, . . . , ρm)

)
both lie in Z[ζp].

(ii) When p is odd, the “Gauss-twisted” sheaf

Hypψ(χ1, . . . , χn; ρ1, . . . , ρm)
(
−Gauss(ψ, χ2)

)−(n+m−1) deg
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is pure of weight zero, for every embedding of Q� into C, and has traces

in Z[ζp][1/p]. When p is even and q is an even power of p, the same

is true with Gauss(ψ, χ2) replaced by
√
q.

Proof. The two Galois extensions Q(μp)/Q and Q(μq−1)/Q are linearly

disjoint, so we may view Gal(Q(μq−1)/Q) as Gal(Q(μq−1, μp)/Q(μp)) and
Gal(Q(μp)/Q) as Gal(Q(μq−1, μp)/Q(μq−1)).

In the formulas below, we write ψL for ψ ◦TraceL/Fq
, and we write χi,L

for χi ◦NormL/Fq
.

The assertion about the trace is obvious from the explicit formula [K2,

8.2.7] for this trace, namely

(−1)n+m−1
∑

∏
i xi=t

∏
j yj

ψL(
∑
i

xi −
∑
j

yj)
∏
i

χi,L(xi)
∏
j

ρj,L(yj).

This formula makes clear that the trace is an algebraic integer, and that the
effect of

Gal
(
Q(μq−1)/Q

) ∼= Gal
(
Q(μq−1, μp)/Q(μp)

)
is simply to permute the xi and to permute the yj . Thus the trace is an

algebraic integer in the field Q(μp), so lies in Z[ζp]. This rationality, applied
over finite extensions, gives the same rationality for the determinant (indeed

for all the coefficients of the reversed characteristic polynomial

det
(
1− TFrobt,L|Hypψ(χ1, . . . , χn; ρ1, . . . , ρm)

))
.

We know [K2, 8.4.13] that Hypψ(χ1, . . . , χn; ρ1, . . . , ρm) is pure of weight
n+m−1, so the “Gauss-twisted” sheaf is pure of weight zero. It results from

the first assertion that this variant of the Tate-twist has values in Z[ζp][1/p],
since the quadratic Gauss sum lies in Z[ζp] and divides p.

Proposition 2.2. Let F be a lisse sheaf on Gm/Fq which is pure of weight

zero and which has all traces in Z[ζp][1/p]. Suppose that F is arithmeti-

cally semisimple. Fix an integer N ≥ 1 prime to p. Then the following are

equivalent.

(a) Garith,F is finite.

(b) Ggeom,F is finite.
(c) All traces of F are algebraic integers, i.e., lie in Z[ζp].
(d) For any finite extension L/Fq, for any chosen p-adic ord of Q(μp, μ|L×|)

extending the usual p-adic ordp on Q with ordp(p
n) = n, and for every
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multiplicative character χ of L×, the sum∑
t∈L×

χ(t)Trace(Frobt,L|F)

has ordp,L ≥ 0.

(e) For every finite extension L/Fq, for any p-adic ord of Q(μp, μ|L×|),
and for every multiplicative character χ of L×, the sum∑

t∈L×

χ(t)NTrace(Frobt,L|F)

has ordp,L ≥ 0.

Proof. The equivalence of (c) and (d) results from the Mellin transform

argument, cf. [KRLT1, 2.1, 2.2, 2.7], which also explains the equivalence of

(a), (b), and (c). It is obvious that (d) implies (e). It remains to show that

(e) implies (d). We use the identity∑
t∈L×

χ(t)NTrace(Frobt,L|F) =
∑
s∈L×

χ(s)
∑

t∈L×,tN=s

Trace(Frobt,L|F)

=
∑
s∈L×

χ(s)Trace(Frobs,L|[N ]�F).

The Kummer direct image [N ]�F remains pure of weight zero and arith-

metically semisimple, with all traces in Q(μp). Therefore by the equivalence

of (a) through (b), applied to [N ]�F , we see that [N ]�F has finite Garith.

Therefore its pullback [N ]�[N ]�F has finite Garith. But F is a direct factor of

this pullback, so F itself has finite Garith. [When Fq contains the N th roots

of unity, this pullback is the direct sum of the multiplicative translates of

F by the N th roots of unity. If Fq does not contain the N th roots of unity,

we break up the sum of these translates into clumps according to the order

of the N th root of unity by which we translate. Each of these clumps lives

over Fq, and F is the clump for the trivial translate.]

3. Overall set-up

Here p is a prime, q is a power of p,

a, b
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are positive integers. We define

M := gcd(qa + 1, qb + 1),

A := (qa + 1)/M,B := (qb + 1)/M.

Thus

gcd(A,B) = 1.

We also fix integers α, β with

αA− βB = 1.

We also fix a prime number � 
= p, so as to be able to use Q�-cohomology,
and we fix a choice of nontrivial additive character ψ of Fp.

Given an integer n ≥ 1 which is prime to p, we denote by Char(n) the
group of multiplicative characters of order dividing n. Given a multiplicative
character ρ of finite order, we denote by

Char(n; ρ) := {χ|χn = ρ}.

Thus Char(n) = Char(n;1).
In the above paragraph, the characters in question are the characters of

finite order of the tame fundamental group of Gm/Fp, which is the inverse
limit of the multiplicative groups of the finite subfields of Fp, with transition
maps the norm. Thus the group of characters in question is the direct limit

of the groups Hom(k×,Q�
×
) under the inclusion maps, whenever k2/k1/Fp

are finite extensions, given by

Hom(k×1 ,Q�
×
) ⊂ Hom(k×2 ,Q�

×
), χ �→ χ ◦Normk2/k1

.

4. Kloosterman candidates

We refer to [K1, 4.1.1, with all bi there taken to be 1] and to [K2, 8.4.3]
for the definition and properties of Kloosterman sheaves. Given multiplica-
tive characters χ and ρ, each of order dividing M , such that the two sets
Char(A,χ) and Char(B, ρ) are disjoint, we may speak of the Kloosterman
sheaf

Klψ
(
Char(MAB)� (Char(A,χ) � Char(B, ρ))

)
.

Lemma 4.1. The two sets Char(A,χ) and Char(B, ρ) fail to be disjoint if
and only if ρA = χB.
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Proof. Suppose the two sets are not disjoint. Let Λ have ΛA = χ,ΛB = ρ.
Then ΛAB = χB and ΛAB = ρA. Conversely, if ρA = χB, then using the
fact that gcd(A,B) = 1 we see that there is a (necessarily unique) Λ with
ΛA = χ,ΛB = ρ. Indeed, using the integers α, β with αA−βB = 1, then we
have Λ = χα/ρβ . Notice that Λ itself has order dividing M .

Lemma 4.2. Choose integers k, l such that

kA− lB = 1.

Consider the two injective group homomorphisms

Char(M) → Char(M)× Char(M),

given by

φA,B : Λ �→ (ΛA,ΛB), φl,k : σ �→ (σl, σk),

with image groups ImA,B and Iml,k. Then the group Char(M)× Char(M) is
the product

ImA,B × Iml,k.

Proof. As we have two subgroups, each of order M in an abelian group of
orderM2, it suffices to show that the intersection ImA,B∩Iml,k consists of the
single element (1,1). To see this, note that if (χ, ρ) lies in the intersection,
then on the one hand (χ, ρ) = (ΛA,ΛB) for some Λ, hence χB/ρA = 1. On
the other hand, (χ, ρ) = (σl, σk) for some σ, so ρA/χB = σ. Thus σ = 1,
and hence (χ, ρ) = (1,1).

Given multiplicative characters χ and ρ, each of order dividing M , such
that the two sets Char(A,χ) and Char(B, ρ) are disjoint, we denote by

Kl(M,A,B, χ, ρ)

the Kloosterman sheaf

(4.2.1) Klψ
(
Char(MAB)� (Char(A,χ) � Char(B, ρ))

)
.

We have the following twisting formula:

Lemma 4.3. For Λ a character of order dividing M , we have the twisting
formula

LΛ ⊗Kl(M,A,B, χ, ρ) = Kl(M,A,B, χΛA, ρΛB).
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Remark 4.4. The rank of Kl(M,A,B, χ, ρ), namely MAB −A−B, is

(qa+b − 1)/M.

Corollary 4.5. The above M(M − 1) sheaves Kl(M,A,B, χ, ρ) with

χB 
= ρA

are precisely the LΛ twists, with Λ of order dividing M , of the M−1 sheaves
Kl(A,B, σl, σk) with σ 
= 1 of order dividing M .

Remark 4.6. We will often make constant field twists of the sheaves under
consideration to achieve weight zero. In odd characteristic, we will do this
using the correct power of a choice of the quadratic Gauss sum. In charac-
teristic p = 2, so long as our ground field k is an even degree extension of Fp,
we will use the correct power of

pdeg(k/Fp)/2.

In other words, we define

−Gauss(ψk, χ2) := pdeg(k/Fp)/2

when k/Fp has even degree and p = 2, and proceed with the usual formalism
of Gauss sums.

Theorem 4.7. Each of the above M(M − 1) sheaves Kl(M,A,B, χ, ρ) with
χB 
= ρA has finite geometric monodromy group Ggeom. Over any finite field
k/Fp containing the MAB roots of unity, the constant field twist

Kl(M,A,B, χ, ρ)⊗ (−1/Gauss(ψk, χ2))
deg×(rank(Kl)−1)

is pure of weight zero and has finite arithmetic monodromy group Garith.

Proof. The purity of weight zero is simply the fact that a Kloosterman sheaf
is pure of weight one less than its rank. It suffices to show the finiteness of
Garith, since Ggeom < Garith. For this, we use the Kubert V -function, cf. [K4,
§13] and cf. [KRL, Appendix]. The criterion is that for all x ∈ (Q/Z)not p,
and for every pair of integers n,m mod M with Bn 
= Am mod M , we have

V (MABx)− V (Ax+ n/M)− V (Bx+m/M) + 1 ≥ 0.

In fact, we will prove this for every pair of integers n,m mod M . We will
make use of the [N ]� method, explained in §2, with N := M . This amounts
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to replacing the variable x in the above inequalities by Nx = Mx, exactly

as in Proposition 2.2, which replaces χ by χN in passing from condition (d)

to condition (e). The criterion becomes that for all x ∈ (Q/Z)not p, and for

every pair of integers n,m mod M , we have

V ((qa + 1)(qb + 1)x)− V ((qa + 1)x+ n/M)− V ((qb + 1)x+m/M) + 1 ≥ 0.

We rewrite this as

1 + V ((qa + 1)(qb + 1)x) ≥ V ((qa + 1)x+ n/M) + V ((qb + 1)x+m/M).

Recall that the integrality of Jacobi sums gives

V (x) + V (y) ≥ V (x+ y),

which (replacing x, y by −x,−y) gives

1 + V (x+ y) ≥ V (x) + V (y).

Because both qa + 1 and qb + 1 are divisible by M , we have equalities in

(Q/Z)not p

(qa + 1)(qb + 1)x = (qa + 1)((qb + 1)x+m/M),

(qa + 1)(qb + 1)x = (qb + 1)((qa + 1)x+ n/M).

Using the first of these, and the inequality 1 + V (x+ y) ≥ V (x) + V (y), we

get

1 + V ((qa + 1)(qb + 1)x) = 1 + V ((qa + 1)((qb + 1)x+m/M))

≥ V (qa((qb+1)x+m/M)+V ((qb+1)x+m/M))

= 2V ((qb + 1)x+m/M).

Using the second of these, we get

1 + V ((qa + 1)(qb + 1)x) = 1 + V ((qb + 1)((qa + 1)x+ n/M))

≥ V (qb((qa + 1)x+ n/M)) + V ((qa + 1)x+ n/M)

= 2V ((qa + 1)x+ n/M).

Adding these last two inequalities, we get twice the asserted inequality.
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Lemma 4.8. If qAB is odd, then of the M(M−1) sheaves Kl(M,A,B, χ, ρ)
with χB 
= ρA, precisely two are geometrically self-dual. They are

Kl(M,A,B,1, χ2) and Kl(M,A,B, χ2,1).

Each is symplectically self-dual. If qAB is even, none of these M(M − 1)
sheaves is geometrically self-dual.

Proof. Suppose first that q is odd. Then M is even. If both A,B are odd,
then these sheaves all have even rank (namely MAB − A − B). Because
MAB is even, each has determinant χ2/(χρ). Their sets of characters are
stable by complex conjugation precise when each of χ and ρ is its own
complex conjugate, i.e., when each is either 1 or χ2. They cannot both
be 1 or both be χ2, as these cases violate the disjointness condition. Both
Kl(M,A,B,1, χ2) and Kl(M,A,B, χ2,1) are self-dual. Their determinants,
being χ2/(χρ), are then both trivial, so the asserted symplectic autoduality
follows from [K2, 8.8.1-2].

Suppose now that q is odd and precisely one of A,B is odd. [They
cannot both be even because their gcd = 1.] Then each sheaf has odd rank
MAB − A − B, and one knows [K2, 8.8.1] that in odd characteristic, no
Kloosterman sheaf of odd rank is geometrically self-dual.

Suppose now that q is even. Then autoduality [K2, 8.8.1] would force
each of χ and ρ to be its own complex conjugate, which in characteristic 2
forces them both to be trivial, and this violates disjointness.

In the rest of this section, we prove the primitivity of the Kloosterman
sheaves Kl(M,A,B, χ, ρ) with χB 
= ρA considered above (with one excep-
tion, see the statement of Corollary 4.12).

Lemma 4.9. Let N ≥ 2 be a prime to p integer, A ≥ 1 and B ≥ 1 two
divisors of N with gcd(A,B) = 1 and A 
= B. Let A1 ⊂ Char(N) be a
Char(A)-coset, and let B1 ⊂ Char(N) be a Char(B)-coset. Suppose that A1

and B1 are disjoint. Then the Kloosterman sheaf

Klψ(Char(N)� (A1 �B1))

is not Kummer induced (and hence not induced, by Pink’s lemma [K3,
Lemma 11]).

Proof. Suppose our Kloosterman sheaf Kl is Kummer induced, say is [d]�F
for some Kloosterman sheaf F and some prime to p integer d. Then every χ
of order dividing d is a ratio of characters occurring in Kl, all of which have
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order dividing N . Thus d divides N . For χ a character of order d, we thus
have

Lχ ⊗Kl ∼= Kl,

which means precisely that we have an equality of sets

χChar(N)� (χA1 � χB1) = Char(N)� (A1 �B1).

Now χChar(N) is just Char(N), so inside Char(N) we have the equality of
subsets

χA1 � χB1 = A1 �B1.

We will show that in fact χA1 = A1 and χB1 = B1. Once we know this,
then χ lies in both Char(A) and in Char(B), so must be trivial (because
gcd(A,B) = 1). This results from the following elementary lemma.

Lemma 4.10. Let N ∈ Z≥1 be prime to p and let A,B be divisors of N .
Let S ⊂ Char(N) be a subset which is the disjoint union of a Char(A)-coset
A1 and a Char(B)-coset B1. If A 
= B, then whenever S = A2 �B2 with A2

a Char(A)-coset and B2 a Char(B)-coset, we have A1 = A2 and B1 = B2.

Proof. Suppose first that the intersection A1 ∩ A2 is nonempty, say con-
tains α. Then A1 = A2 = Char(A)α. From this, we have S � A1 = S � A2,
which is to say B1 = B2.

Similarly, if B1 ∩B2 is nonempty, we again get the desired conclusion.
Suppose finally that both A1 ∩ A2 and B1 ∩ B2 are both empty. The

A1 ⊂ S � A2 = B2, and B2 ⊂ S � B1 = A1. Thus A1 ⊂ B2 ⊂ A1,
hence A1 = B2. But this is impossible, because the two sets have different
cardinalities A and B respectively.

As explained above, once we have Lemma 4.10 we have proven Lemma
4.9.

In Lemma 4.9, we omitted the case when gcd(A,B) = 1 but A = B, i.e.
the case when A = B = 1. Here the situation is as follows.

Lemma 4.11. Let N ≥ 2 be a prime to p integer, and χ 
= ρ two distinct
characters in Char(N). Then the Kloosterman sheaf

Klψ(Char(N)� {χ, ρ})

is primitive, i.e., not Kummer induced, except in the case when N is even
and χ = χ2ρ, in which case it is the Kummer induction

[2]�
(
Lρ2 ⊗Klψ(Char(N/2)� {1})

)
.
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Proof. Exactly as in the proof of Lemma 4.9, if our Kloosterman sheaf is

[d]�F for some Kloosterman sheaf F and some prime to p integer d > 1,

then d|N and for any character σ of order d, we have an equality of sets

{σχ, σρ} = {χ, ρ}.

As σχ 
= χ, we must have σχ = ρ, and similarly σρ = χ. Thus σ2 = 1,

d = 2, and χ = χ2ρ. In this case, we indeed have the asserted Kummer

induction.

Corollary 4.12. Given multiplicative characters χ and ρ, each of order

dividing M , such that the two sets Char(A,χ) and Char(B, ρ) are disjoint,

the Kloosterman sheaf Kl(M,A,B, χ, ρ) satisfies condition (S+) of [KT7,

Definition 1.2], except in the situation

M = q + 1 is even, A = B = 1, and χ = χ2ρ.

Proof. Immediate from the primitivity lemmas 4.9 and 4.11, applied with

N taken to be MAB, thanks to [KT7, Theorem 1.7].

5. The hypergeometric candidate

In this section, we consider the hypergeometric sheaf

(5.0.1) Hypψ
(
Char(MAB) � {1}� (Char(A) � Char(B));1

)
,

which we denote

Hyp(M,A,B,1,1).

Theorem 5.1. The sheaf Hyp(M,A,B,1,1) has finite geometric mon-

odromy group Ggeom. Over any finite field k/Fp containing the AB(q + 1)

roots of unity, the constant field twist

Hyp(M,A,B,1,1)⊗ (−1/Gauss(ψk, χ2))
deg×rank(Hyp)

is pure of weight zero and has finite arithmetic monodromy group Garith.

Proof. The purity of weight zero is simply the fact that a hypergeometric

sheaf of type (n,m) with disjoint upstairs and downstairs characters is pure

of weight n + m − 1 (in our case, n = MAB − A − B + 1, and m = 1).



Hypergeometric sheaves and finite groups 591

It suffices to show the finiteness of Garith. For this, we use the Kubert V
function. The criterion is that for all x ∈ (Q/Z)not p, we have

V (MABx) + V (x)− V (Ax)− V (Bx) + V (−x) ≥ 0.

If x = 0, this trivially holds. If x 
= 0, then V (x) + V (−x) = 1, and the
inequality becomes

1 + V (MABx) ≥ V (Ax) + V (Bx).

This is the n = m = 0 case of what was proven in Theorem 4.7.

Lemma 5.2. If either qAB is odd or q is even, the sheaf Hyp(M,A,B,1,1)
is, geometrically, orthogonally self-dual. Otherwise, it is not geometrically
self-dual.

Proof. This sheaf has rank MAB + 1−A−B, and is of type

(MAB + 1−A−B, 1).

Its sets of upstairs and downstairs characters are each stable by complex

conjugation.

When q is odd, this sheaf is self-dual [K2, 8.8.1] precisely when its rank
MAB + 1 − A − B is odd. But when q is odd, M is even, so autoduality
holds when A + B is even. But as gcd(A,B) = 1, A + B is even precisely
when both A,B are odd. In this case, the rank MAB + 1 − A − B is odd,
so the duality must be orthogonal.

When q is even, this sheaf is self-dual [K2, 8.8.1]. Each of M,A,B is odd
in this q even case, so the rank n is even. By [K2, 8.8.1], no hypergeometric
sheaf of type (n, 1) with n even is symplectically self-dual. Therefore in

this case as well, the sheaf is, geometrically, orthogonally self-dual (despite
having even rank).

Lemma 5.3. We have the following results.

(i) If M = 2, the hypergeometric sheaf Hyp(M,A,B,1,1) is primitive.
(ii) If M = q + 1, then except in the case q = 3, a = b = 1, the hypergeo-

metric sheaf Hyp(M,A,B,1,1) is primitive.
(iii) If M = 1, the hypergeometric sheaf Hyp(M,A,B,1,1) is primitive.

Proof. One knows [KRLT2, Cor. 2.3] that any hypergeometric sheaf of type
(n, 1) whose rank n is not a power of p is primitive. If M = 2, the sheaf
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Hyp(M,A,B,1,1) has rank (qa+b+1)/2, which is prime to p. If M = q+1
and a+ b > 2, then Hyp(M,A,B,1,1) has rank

(qa+b + q)/(q + 1) = q(qa+b−1 + 1)/(q + 1),

which is q times a p-adic unit. Looking at the ordp, we see that the rank can
only be a power of p if the rank is q, and this happens only when a+ b = 2,
i.e., when a = b = 1.

To finish case (ii), we now treat the case when M = q+1 and a = b = 1.
Then A = B = 1, and Hyp(M,A,B,1,1) is Hyp(Char(q + 1) � {1};1), of
type (q, 1). It cannot be Kummer induced. For it to be Belyi induced, there
must exist positive integers A0, B0, both prime to p, with A0 +B0 = q, and
a nontrivial (otherwise the two sets Char(A0, χ) and Char(B0, χ) will each
contain 1) multiplicative character χ such that

Char(q + 1)� {1} = Char(A0, χ) � Char(B0, χ).

Pick a multiplicative character ρ of full order q + 1. At the expense of in-
terchanging A0 and B0, it suffices to treat the case when ρ ∈ Char(A0, χ),
i.e. when ρA0 = χ. Then χ, being a power of ρ, has order d|(q + 1), and
so ρdA0 = 1. Thus (q + 1)|dA0. On the other hand, Char(A0, χ) contains a
character Λ of full order dA0. But any such character lies in Char(q + 1),
hence dA0|(q+1). Thus dA0 = q+1. Similarly, Char(B0, χ) contains a char-
acter of full order dB0, so dB0|(q + 1). But q + 1 = dA0, so dB0|dA0, hence
B0|A0. But A0+B0 = q, and p � A0B0, so in fact gcd(A0, B0) = 1. Therefore
B0 = 1, and hence A = q − 1. But dA0 = q + 1, so d(q − 1) = q + 1. This
is only possible if q = 3 and d = 2. Indeed, in this case, we have χ = χ2,
A0 = 2, B0 = 1, and in fact we do have

Char(4)� {1} = Char(2, χ2) � {χ2}.

We now turn to the case M = 1. Then q is even, A = qa+1, B = qb+1,
and Hyp(M,A,B,1,1) is

Hyp(Char(AB) � {1}� (Char(A) � Char(B));1),

of rank qa+b. Just as above, this sheaf cannot be Kummer induced. If it is
Belyi induced, there must exist positive integers A0, B0, both prime to 2,
with A0 +B0 = qa+b, and a nontrivial multiplicative character χ such that

Char(AB) � {1}� (Char(A) � Char(B)) = Char(A0, χ) � Char(B0, χ).
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Pick a multiplicative character ρ of full order AB. At the expense of in-
terchanging A0 and B0, it suffices to treat the case when ρ ∈ Char(A0, χ),
i.e. when ρA0 = χ. Then χ, being a power of ρ, has order d|AB, and so
ρdA0 = 1. Thus AB|dA0. On the other hand, Char(A0, χ) contains a char-
acter Λ of full order dA0. But any such character lies in Char(AB), hence
dA0|AB. Thus AB = dA0. Similarly, Char(B0, χ) contains a character of full
order dB0, so dB0|AB. But AB = dA0, so dB0|dA0, and hence B0|A0. As
above, A0, B0 are both odd, but sum to a power ot 2, so gcd(A0, B0) = 1.
Therefore B0 = 1, and hence A0 = qa+b − 1. Thus

d(qa+b − 1) = AB = (qa + 1)(qb + 1).

Because χ is nontrivial, and of order prime to p = 2, we have d ≥ 3. We
cannot have a, b both odd, otherwise M is divisible by q + 1. The displayed
equality is impossible, because d ≥ 3, but

3(qa+b − 1) > (qa + 1)(qb + 1).

Indeed, this is equivalent to

2qa+b − 3 > qa + qb + 1, i.e. qa+b + qa+b − qa − qb + 1 > 5,

i.e. qa+b + (qa − 1)(qb − 1) > 5.

But a, b are not both odd, so a + b ≥ 3, and already the qa+b term forces
the asserted inequality.

Corollary 5.4. We have the following results.

(i) If M = 2, the hypergeometric sheaf Hyp(M,A,B,1,1) satisfies (S+).
(ii) If M = q + 1, then except in the case a = b = 1 and q is one

of {2, 3, 4, 8, 9} the hypergeometric sheaf Hyp(M,A,B,1,1) satisfies
(S+).

(iii) Suppose that M = 1. Then, except in the case {a, b} = {1, 2} and
q = 2, the hypergeometric sheaf Hyp(M,A,B,1,1) satisfies (S+).

Proof. IfM = 2, then q must be odd, and one of a, bmust be even (otherwise
(q + 1)|M). Thus the rank of Hyp(M,A,B,1,1) is

(qa+b + 1)/2 ≥ (33 + 1)/2 = 14,

and we apply [KT7, Theorem 1.9].
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If M = q + 1, then the rank is (qa+b + q)/(q + 1), and both of a, b are

odd (simply because qeven + 1 ≡ 2 mod q + 1). If a = b = 1, the rank is q,

so we must exclude q = 2, 3, 4, 8, 9. Otherwise a+ b ≥ 4, so either the rank

is 6 (when q = 2 and a+ b = 4) or it is ≥ 21, and we apply [KT7, Theorem

1.12].

If M = 1, then q must be even (otherwise 2|M), and one of a, b must

be even (otherwise (q + 1)|M). The rank is qa+b. So we exclude the case

q = 2, a+ b = 3 and apply [KT7, Theorem 1.9].

6. Candidate for the “total M - Weil representation”

Recall that p is a prime, q is a power of p, a and b are positive integers,

M := gcd(qa + 1, qb + 1), A := (qa + 1)/M, B := (qb + 1)/M.

Thus gcd(A,B) = 1. We also fix integers α, β with

αA− βB = 1.

We wish to study the direct sum

Total(M,A,B) := Hyp(M,A,B,1,1)
⊕

σ∈Char(M),σ �=1

Kl(M,A,B, σ−β, σ−α).

Theorem 6.1. The local system Total(M,A,B) is geometrically isomorphic

to the arithmetically semisimple local system on Gm/Fp whose trace function

at a point v ∈ E× = Gm(E), for E/Fp a finite extension, is given by

v �→ (1/#E)
∑

x,w∈E
ψE(MABxw − v−αAxq

b+1 − vβBwqa+1).

Subsequently, in §11, we will state and prove a more precise formulation,

Theorem 11.4, of this theorem.

7. First steps toward the proof of Theorem 6.1: cancelling

Recall from [K2, 9.3.1], the operation Cancel on hypergeometric sheaves

Hypψ(χ1, . . . , χn; ρ1, . . . , ρm),
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defined whenever the sets, with multiplicity, of the upstairs and downstairs
characters are not identical. Suppose that precisely r of the downstairs char-
acters also occur upstairs. Renumber so that χi = ρi for 1 ≤ i ≤ r. Then

CancelHypψ(χ1, . . . , χn; ρ1, . . . , ρm) := Hypψ(χr+1, . . . , χn; ρr+1, . . . ρm),

a hypergeometric of type (n− r,m− r) whose upstairs and downstairs char-
acters are disjoint.

The key fact about cancelling is the following theorem, which is proven
(but not stated (!)) in [K2, 8.4.7 and 8.4.13].

Theorem 7.1. Suppose that Hyp := Hypψ(χ1, . . . , χn; ρ1, . . . , ρm) is a hy-
pergeometric sheaf whose upstairs and downstairs characters are not iden-
tical, and which is defined over a finite field k/Fp (i.e., all the χi and ρj
are of finite order dividing (#k)− 1). Suppose that precisely r of the down-
stairs characters also occur upstairs. Then Hyp is lisse on Gm/k, mixed
of weight ≤ n + m − 1, and its highest weight quotient [De, 3.4.1 (ii)] is
(CancelHyp)(−r), which is pure of weight n + m − 1. More precisely, we
have a short exact sequence of lisse sheaves on Gm/k,

0 → (weight ≤ n+m− 2) → Hyp → (CancelHyp)(−r) → 0.

The virtue of Cancel is that it gives a convenient expression for each of
the summands of Total(M,A,B). We have the following two lemmas, which
are immediate from the definitions.

Lemma 7.2. Suppose that ρA 
= χB, so that Kl(M,A,B, χ, ρ) exists. Con-
sider the hypergeometric sheaf

Hypψ(Char(MAB);Char(A,χ) � Char(B, ρ))

of type (MAB,A+B). The Kl(MAB,χ, ρ) is its Cancel.

Lemma 7.3. Consider the hypergeometric sheaf

Hypψ(Char(MAB);Char(A) � Char(B))

of type (MAB,A+B). Then Hyp(M,A,B,1,1) is its Cancel.

8. Computing traces

In this section, we take as ground field

E1 := Fp(μMAB).
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For each1 divisor N of MAB, we define the following product of Gauss sums
over E1:

Gauss(N) :=
∏

χ∈Char(N)

(−Gauss(ψE1
, χ)).

We then define the twisting factor Gauss(M,A,B) as

Gauss(M,A,B) := Gauss(MAB)Gauss(A)Gauss(B).

Theorem 8.1. Let E/E1 be a finite extension. The trace function of

Hypψ(Char(MAB);Char(A,χ) � Char(B, ρ))⊗ Gauss(M,A,B)−deg(E/E1)

at a point v ∈ E×, is given by

v �→ (−1)MAB−A−B−1×
×

∑
x,w∈E×

ψE(MABx− v−αAxMB/wB − vβBwA)(χB/ρA)(w)(χα/ρβ)(v).

Proof. The idea is to exploit the fact that

Hypψ(Char(MAB);Char(A,χ) � Char(B, ρ))

is the multiple ! multiplicative convolution

Hypψ(Char(MAB); ∅) �!,× Hypψ(∅;Char(A,χ)) �!,× Hypψ(∅;Char(B, ρ)).

We now make use of the direct image formula of [K1, 5.6.2, first line of
proof] and the definition [K2, 8.2.1 (3)] to give simple formulas for the trace
functions of each of the three factors.

The trace function of Hypψ(Char(MAB); ∅)⊗Gauss(MAB)−deg(E/E1) is

s ∈ E× �→
∑

x∈E×,xMAB=s

ψE(MABx).

The trace function of Hypψ(∅;Char(A,χ))⊗ Gauss(A)−deg(E/E1) is

t ∈ E× �→
∑

y∈E×,yA=t

ψE(−A/y)χ(y).

1If we are in characteristic 2, then both qa + 1 and qb + 1 are odd, hence their
gcd = M is also odd, and hence each of M,A,B is odd. So we will not need to
“interpret” the quadratic Gauss sum here, because it will not arise.
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The trace function of Hypψ
(
∅;Char(B, ρ)

)
⊗ Gauss(B)−deg(E/E1) is

u ∈ E× �→
∑

z∈E×,zB=u

ψE(−B/z)ρ(z).

In general, the trace function of the ! multiplicative convolution of two
hypergeometrics is minus the multiplicative convolution of their trace func-
tions. So the trace function of a triple ! multiplicative convolution of two
hypergeometrics is the multiplicative convolution of their trace functions,
with no “extra” sign. In particular, the trace function of

Hypψ(Char(MAB);Char(A,χ) � Char(B, ρ))⊗ Gauss(M,A,B)−deg(E/E1)

is the multiplicative convolution of the above three trace functions. Thus it
is

v ∈ E× �→
∑

s,t,u∈E×,
stu=v

∑
x,y,z∈E×,

xMAB=s,yA=t,zB=u

ψE(MABx−A/y −B/z)χ(y)ρ(z)

=
∑

x,y,z∈E×, xMAByAzB=v

ψE(MABx−A/y −B/z)χ(y)ρ(z).

We now rewrite the range of summation as consisting of those triples
x, y, z ∈ E× satisfying

(xMBy)AzB = v.

We then make use of αA − βB = 1 to write v = vαA−βB, so the range of
summation becomes those x, y, z ∈ E× satisfying

(v−αxMBy)A = (1/(vβz))B.

Because gcd(A,B) = 1, there exists a unique w such that

v−αxMBy = wB, 1/(vβz) = wA.

Using the first equation, we solve for y in terms of x,w,

1/y = v−αxMB/wB,

and using the second equation we solve for z in terms of w,

1/z = vβwA.
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So the expression for the trace at time v ∈ E× becomes∑
x,w∈E×

ψE(MABx−Av−αxMB/wB −BvβwA)χ(vαwB/xMB)ρ(v−β/wA)

=
∑

x,w∈E×

ψE(MABx−Av−αxMB/wB −BvβwA)(χBρ−A)(w)(χαρ−β)(v),

the last equality because χ has order dividing M , thus χ(xMB) = 1.

Corollary 8.2. For σ ∈ Char(M), the trace function of

Hypψ(Char(MAB);Char(A, σ−β)�Char(B, σ−α))⊗Gauss(M,A,B)−deg(E/E1)

at a point v ∈ E×, is given by

v �→
∑

x,w∈E×

ψE(MABx− v−αAxMB/wB − vβBwA)σ(w).

Proof. In the case when (χ, ρ) = (σ−β, σ−α), we have

χB/ρA = σ−βB/σ−αA = σαA−βB = σ, χα = ρβ .

Lemma 8.3. Suppose p is odd. Denote by K/Q the unique quadratic ex-

tension of Q inside Q(ζp). If M = 2, then for each σ ∈ Char(M), the trace

function of

Hypψ(Char(MAB);Char(A,χ) � Char(B, ρ))⊗ Gauss(M,A,B)−deg(E/E1),

viewed on Gm/Fp, has values in K.

Proof. Take λ ∈ F×
p , and make the substitution (x,w) �→ (λ2x, λ2w). This

does not change the sum∑
x,w∈E×

ψE(MABx− v−αAxMB/wB − vβBwA)σ(w),

but it replaces ψ by its Gal(Q(ζp)/K) conjugate x �→ ψ(λ2x). Indeed, the

term x is multiplied by λ2, the monomial wA is multiplied by the factor

λ2A = λqa+1 = λ2, and the monomial xMB/wB is multiplied by λ4B/λ2B,

which by the previous argument is equal to λ4/λ2 = λ2.
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Lemma 8.4. If M = q + 1, or if p = 2, then for each σ ∈ Char(M), the
trace function of

Hypψ(Char(MAB);Char(A,χ) � Char(B, ρ))⊗ Gauss(M,A,B)−deg(E/E1),

viewed on Gm/Fq2 , has values in Q(σ).

Proof. If p = 2, this is obvious, because ψE takes values in ±1.

Suppose now that M = q + 1. Take λ ∈ F×
p , and make the substitution

(x,w) �→ (λx, λw). This does not change the sum∑
x,w∈E×

ψE(MABx− v−αAxMB/wB − vβBwA)σ(w),

but it replaces ψ by its Gal(Q(ζp)/K) conjugate x �→ ψ(λx). Indeed, x is
multiplied by λ, the monomial wA is multiplied by λA = λ(qa+1)/(q+1) = λ
(because the exponent (qa+1)/(q+1) ≡ 1 mod (q− 1)), and the monomial
xMB/wB is multiplied by λqb+1/λB, which by the previous argument is equal
to λ2/λ = λ. Finally, the term σ(w) is moved to σ(λw), but this is equal to
σ(w) because λ (or indeed any element of F×

q ), is the q + 1 power of some
element of Fq2 (surjectivity of the norm).

Corollary 8.5. The trace function of the direct sum
⊕

σ∈Char(M) of the
sheaves

Hypψ(Char(MAB);Char(A, σ−β)�Char(B, σ−α))⊗Gauss(M,A,B)−deg(E/E1)

at a point v ∈ E×, is given by

v �→
∑

x,w∈E×

ψE(MABxw − v−αAxq
b+1 − vβBwqa+1).

Proof. Indeed, the sum of the individual trace functions at a point v ∈ E×,
is given by

v �→
∑

x,w∈E×

ψE(MABx− v−αAxMB/wB − vβBwA)
∑

σ∈Char(M)

σ(w)

=
∑

x,w∈E×

ψE(MABx− v−αAxMB/wMB − vβBwAM ).

Now make the substitution x �→ xw,w �→ w.
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9. Descent results

A reformulation of Theorem 8.1, taking into account [K2, 8.4.6.2], is the
following.

Theorem 9.1. On (Gm)3/E, with coordinates (v, x, w), consider the lisse
sheaf

Fχ,ρ := Lψ(MABx−v−αAxMB/wB−vβBwA) ⊗ L(χB/ρA)(w) ⊗ L(χα/ρβ)(v).

For the projection

pr1 : (Gm)3/E �→ Gm/E, (v, x, w) �→ v,

we have Ri(pr1)!(Fχ,ρ) = 0 for i 
= 2, R2(pr1)!(Fχ,ρ) is lisse on Gm/E,
mixed of weight ≤ 2, and there is an arithmetic isomorphism between

R2(pr1)!(Fχ,ρ)

and

Hypψ(Char(MAB);Char(A,χ) � Char(B, ρ))⊗ Gauss(M,A,B)−deg(E/E1).

Proof. The situation is that we are given three Kloosterman sheaves KlA,
KlB, and KlC of ranks A,B,C with A + B < C, and we form the triple !
multiplicative convolution of KlC , inv

�KlA, and inv�KlB. By definition, we
first form their external tensor product

KlC � inv�KlA � inv�KlB

on (Gm)3, and then for the multiplication map

mult3 : (Gm)3 → Gm, (s, t, u) �→ stu

we form R(mult3)!(KlC � inv�KlA � inv�KlB). The key fact is that because
A + B < C, we have Ri(mult3)! = 0 for i 
= 2, and R2(mult3)! is lisse, of
rank C. To see this, we factor the multiplication map as

mult3 = mult ◦ (Id×mult2,3), (s, t, u) �→ (s, tu) �→ stu.

Then R(Id×mult2,3)!(KlC � inv�KlA� inv�KlB) is the external tensor prod-
uct on Gm × Gm of KlC with R(mult)!(inv

�KlA � inv�KlB). The second
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factor has Ri(mult)! = 0 for i 
= 1, and R(mult)!(inv
�KlA � inv�KlB) is

inv�KlA+B for a Kloosterman sheaf of rank A + B, cf. [K1, 5.1]. Thus our
triple convolution R(mult3)! is

R(mult)!(KC � inv�KlA+B).

Fibre by fibre over Gm, each stalk is the cohomology of the usual tensor
product of KlC with a multiplicative translate of KlA+B. The first factor
is totally wild of rank C and has all ∞-slopes 1/C, the second is totally
wild of rank A + B and has all ∞-slopes 1/(A + B) > 1/C. Thus the
tensor product has rank A(B + C) with all ∞-slopes 1/(A + B). So each
such tensor product has H i

c = 0 for i 
= 1, and h1c = Swan∞ = C. Thus
Ri(mult)!(KC � inv�KlA+B) = 0 for i 
= 1, and the R1(mult)! has constant
rank C, hence is lisse because it is a sheaf of perverse origin. Combining these
cohomological vanishings, we get the asserted vanishing of Ri(mult3)! = 0
for i 
= 2, and the fact that R2(mult3)! is lisse, of rank C.

In the case at hand, it is an exercise, using the explicit descriptions
given in Theorem 8.1, of the particular sheaves KlA, KlB, and KlC in play,
to rewrite the R(mult3)! as the R(pr1) of the statement of the theorem.

Corollary 9.2. Let E0 ⊂ E be any subfield over which χ and ρ are de-
fined. Then F makes sense on (Gm)3/E0, and R2(pr1)!(F) on Gm/E0 is
a lisse sheaf, mixed of weight ≤ 2, which, when pulled back to Gm/E0, is
arithmetically isomorphic to

Hypψ(Char(MAB);Char(A,χ) � Char(B, ρ))⊗ Gauss(M,A,B)−deg(E/E1).

Its trace function is that given in Theorem 8.1, now valid on Gm/E0.

Proof. The trace formula results from the Lefschetz trace formula [Gr1].

Corollary 9.3. In the situation of Corollary 8.2, we have the following
results.

(i) For σ ∈ Char(M) nontrivial, taking χ, ρ in Theorem 9.1 to be σ−β, σ−α,
the weight two quotient [De, 3.4.1 (ii)] grwt=2(R

2(pr1)!(Fχ,ρ)) on
Gm/E0 is an arithmetic descent of

Kl(M,A,B, σ−β, σ−α)(−A−B)⊗ Gauss(M,A,B)− deg(E/E1).

(ii) Taking χ, ρ in Theorem 9.1 to be 1,1, the weight two quotient [De,
3.4.1 (ii)] grwt=2(R

2(pr1)!(Fχ,ρ)) on Gm/E0 is an arithmetic descent
of

Hyp(M,A,B,1,1)(−A−B + 1)⊗ Gauss(M,A,B)− deg(E/E1).
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10. Interlude: rationality properties of highest weight
quotients

In this section, we consider the following general situation. We are given
k/Fp a finite extension, U/k smooth and geometrically connected of some
dimension d ≥ 0, and an integer w. Consider a lisse Q�-sheaf F on U which is
mixed of weight ≤ w. We know [De, 3.4.9] that F admits a unique “filtration
by the weight”. In particular, F sits in a short exact sequence of lisse sheaves
on U

0 → Fwt<w → F → Fwt=w → 0,

in which Fwt<w is mixed of weight < w and Fwt=w is pure of weight w.

Theorem 10.1. On U/k suppose that F is a lisse sheaf, mixed of weight
≤ w. Let K/Q be a finite extension. Suppose that F has all traces in K.
Then Fwt=w has all its traces in K.

Proof. For each finite extension E/k, and each point u ∈ U(E), the reversed
characteristic polynomial

det(1− TFrobu,E |F)

lies in 1 + TK[T ]. When we factor it over Q, say

det(1− TFrobu,E |F) =

rank(F)∏
i=1

(1− αiT ).

After suitable renumbering, we have

det(1− TFrobu,E |F) =

(rank(Fwt=w)∏
i=1

(1− βiT )

)(rank(Fw<w)∏
j=1

(1− γjT )

)
,

in which each βi, together will all its Gal(Q/Q)-conjugates, has complex
absolute value (#E)w/2, while each γj together will all its Gal(Q/Q)-conju-
gates, has complex absolute value (#E)vj/2 for some vj < w.

We now exploit this Galois invariance. Because the entire polynomial
det(1−TFrobu,E |F) is (coefficient-wise) fixed by Gal(Q/K), it follows that

each factor
∏rank(Fwt=w)

i=1 (1 − βiT ) and
∏rank(Fw<w)

j=1 (1 − γjT ) separately has
coefficients in K. The first of these factors is precisely

det(1− TFrobu,E |Fwt=w).
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This being true for every E/k and every u ∈ U(E), Fwt=w has all its traces
in K.

11. End of the proof of Theorem 6.1

Each of the lisse sheaves

Hypψ(Char(MAB);Char(A, σ−β)�Char(B, σ−α))⊗Gauss(M,A,B)−deg(E/E1)

is mixed of weight ≤ 2. Their Cancel’s are, arithmetically, the lisse sheaves
on Gm/E1

Kl(M,A,B, σ−β , σ−α)(−A−B)⊗ Gauss(M,A,B)−deg(E/E1),

for σ nontrivial in Char(M), and

Hyp(M,A,B,1,1)(−A−B + 1)⊗ Gauss(M,A,B)− deg(E/E1).

Each of these is pure of weight 2.

Theorem 11.1. Consider the M − 1 lisse sheaves

Kl(M,A,B, σ−β , σ−α)(−A−B + 1)⊗ Gauss(M,A,B)− deg(E/E1),

for σ nontrivial in Char(M), and

Hyp(M,A,B,1,1)(−A−B + 2)⊗ Gauss(M,A,B)− deg(E/E1),

each viewed on Gm/Fp(μM ). Then we have the following results.

(i) If M = 2 (which forces p to be odd), each sheaf has all its traces in K,
the unique quadratic extension of Q inside Q(ζp).

(ii) If M = q + 1, each sheaf indexed by σ nontrivial in Char(M) has all
its traces in Q(σ). The remaining one has traces in Q.

(iii) Each of these M sheaves has finite arithmetic and geometric mon-
odromy groups.

(iv) In both cases, each of the above M sheaves satisfies (S+); moreover, if
n = a+ b ≥ 3 then each has an arithmetic and geometric monodromy
group which is almost quasisimple.

Proof. (i) and (ii) are immediate on combining Lemmas 8.3 and 8.4 with
Theorem 10.1, and (iii) was proven in Theorems 4.7 and 5.1.
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Next, let H be any of the above M sheaves and H be the arithmetic or

geometric monodromy group ofH. Then the first statement in (iv) is already

proved in Corollaries 4.12 and 5.4. Being geometric, it applies to Ggeom. But

as noted in [KT7, Lemma 1.3], it applies a fortiori to the larger Garith as well.

This implies by [GT, Proposition 2.8] that, if H is not almost quasisimple,

then rank(H) = rm for some prime r and H contains an extraspecial r-group

R of order r2m+1 that acts irreducibly on H. Suppose we are in the latter

case. Then a generator z of Z(R) acts on H via multiplication by ζr.

In the case M = 2, q is necessarily odd (otherwise qa+1, qb+1 are both

odd) we have rm = rank(H) = (qn ± 1)/2. As n ≥ 3 and 2 � q, (qn ± 1)/2 is

divisible by some primitive prime divisor � > 2 by [Zs], whence r = � > 2.

On the other hand, ζr ∈ Q(ζp) by (i) and so r = p, a contradiction.

Assume now that M = q+1, whence a, b are odd and n = a+b ≥ 4. If H
is the hypergeometric one, then rank(H) = q(qn−1+1)/(q+1) is the product

of two relatively prime integers, each ≥ 2, and so it cannot be equal to rm.

Hence H is Kloosterman, and rank(H) = (qn−1)/(q+1) = rm; in particular,

(n, q) 
= (6, 2). As n ≥ 4, this forces again by [Zs] that r is a primitive prime

divisor of qn − 1, in particular, r 
= 2 and r � (q + 1) (otherwise r would

divide q2 − 1). This implies ζr /∈ Q(σ), contradicting (ii).

Remark 11.2. Suppose we are in the situation p = 2,M = 1. Then there

is only the hypergeometric sheaf, and its rank is qn. So we cannot conclude

its arithmetic and geometric monodromy groups are almost quasisimple in

this case.

The direct sum of our M sheaves is the weight 2 part of the local system

whose trace function at a point v ∈ E×, is given by

v �→
∑

x,w∈E×

ψE(MABxw − v−αAxq
b+1 − vβBwqa+1).

If we replace ψ by t �→ ψ(t/MAB), this trace becomes

v �→
∑

x,w∈E×

ψE(xw − v−αxq
b+1 − vβwqa+1),

simply because MAB = A = B in Fp.

Let us admit momentarily the truth of the following theorem.

Theorem 11.3. Fix integers d ≥ 3, d ≥ 2, both of which are prime to

p. Consider the parameter space S/Fp of pairs of one-variable polynomials
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(fd, ge) of degrees d and e respectively. We may view S as the space

Gm × (A1)d × Gm × (A1)e

of coefficients of f and g. On (A2)S, with “coordinates” (x,w, f, g), we have
the Artin–Schreier sheaf

Lψ(f(x)+g(w)+xw).

Denote by π : (A2)S → S, (x,w, f, g) �→ (f, g) the projection onto S. The
higher direct images Riπ!(Lψ(f(x)+g(w)+xw)) vanish for i 
= 2, and

R2π!(Lψ(f(x)+g(w)+xw))

is lisse of rank (d− 1)(e− 1) and pure of weight 2.

We apply this with d = qb+1, e = qa+1, and with Gm embedded into S
by (−v−αxq

b+1,−vβwqa+1). Then we find that on Gm, there is a lisse local
system of rank qa+b which is pure of weight 2, whose trace function is

v �→
∑

x,w∈E
ψE(xw − v−αxq

b+1 − vβwqa+1).

This is the weight 2 part of the local system given by the same formula,
but with x,w both restricted to lying in Gm. Indeed, the difference is the
sum of the terms with x = 0, which is a one-variable sum over w which is
pure of weight 1, the sum of the terms with w = 0, which is a one-variable
sum over x which is pure of weight 1, minus the single term with x = w = 0,
which is pure of weight 0.

Here is a more geometric way of saying this. Consider the universal
situation: we have the inclusion of the open set

j : U := (Gm ×Gm)S ⊂ (A2)S ,

with complement ZS , Z being the locus xw = 0 in A2. Denoting by πU and
πZ the projections onto S, a piece of the long exact excision sequence is

R1(πZ)!(Lψ(f(x)+g(y)+xy)) → R2(πU )!(Lψ(f(x)+g(y)+xy))

→ R2(π)!(Lψ(f(x)+g(y)+xy)) → 0,

the final 0 being R2(πZ)!(Lψ(f(x)+g(y)+xy)), which vanishes fibre by fibre. By
Deligne’s main theorem [De, 3.3.1], the first term is mixed of weight ≤ 1,



606 Nicholas M. Katz and Pham Huu Tiep

and the second term is mixed of weight ≤ 2. Therefore the third term is
indeed the weight 2 quotient of the second term.

It remains only to prove Theorem 11.3.

Proof. To show that the Riπ!(Lψ(f(x)+g(w)+xw)) vanish for i 
= 2, it suffices,
thanks to proper base change, to do so point by point. To show that the
R2π!(Lψ(f(x)+g(w)+xw)) is lisse of rank (d − 1)(e − 1), we use the fact that
it is a “sheaf of perverse origin”, so it suffices to show that at each point
the stalk has constant rank (d− 1)(e− 1). Once we know the R2π! is lisse,
to show it pure of weight 2, it suffices to show punctual purity of weight 2.
So what must be shown is that for any two polynomials f, g of degrees d, e
respectively over some finite field E/Fp, the cohomology groups

H i
c(A

2/Fp,Lψ(f(x)+g(w)+xw))

vanish for i 
= 2, and the H2
c has dimension (d − 1)(e − 1) and is pure of

weight 2.
Write the sum ∑

x,w

ψ(f(x) + g(w) + xw)

as ∑
w

ψ(g(w))FTψ(Lψ(f(x))(w),

and view it as the trace of Frobenius on H1
c ((A

1/Fp,Lψ(g(w)⊗FTψ(Lψ(f(x))
to see its asserted purity.

More precisely, apply the Leray spectral sequence for pr2 : (x,w) �→ w.
Then by the projection formula we have

Ri(pr2)!(Lψ(f(x)+g(w)+xw)) = Lψ(g(w)) ⊗Ri(pr2)!(Lψ(f(x) + xw)).

The second tensor factor vanishes for i 
= 1, and for i = 1 it is the Fourier
Transform FTψ(Lψ(f(x))). Thus we have

H i
c(A

2/Fp,Lψ(f(x)+g(w)+xw)) = H i−1
c (A1/Fp,Lψ(g(w) ⊗ FTψ(Lψ(f(x))).

One knows [K3, Theorem 17] that FTψ(Lψ(f(x)) is lisse on the A1 of w,
of rank d− 1, with all its ∞-slopes d/(d− 1). Because d ≥ 3, these ∞-slopes
are < 2. But Lψ(g(w) has ∞-slope e ≥ 2, and thus Lψ(g(w) ⊗FTψ(Lψ(f(x)) is
lisse of rank d−1 with all ∞-slopes e. The total wildness gives the vanishing
of this last cohomology group except possibly in degree one. The Euler–
Poincaré formula then shows the dimension is the asserted (d − 1)(e − 1).
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The total wildness, together with Deligne’s main theorem [De, 3.2.3] gives
the purity of weight 2.

Theorem 11.4 (Theorem 6.1 made precise). Over the field E1 :=Fp(μMAB),
the direct sum

Hyp(M,A,B,1,1)(−A−B+2)
⊕

1 �=σ∈Char(M)

Kl(M,A,B, σ−β , σ−α)(−A−B+1),

when further twisted by Gauss(M,A,B)−deg(E/E1), is pure of weight zero and
its trace function at v ∈ E×, E/E1 a finite extension, is given by

v �→ (1/#E)
∑

x,w∈E
ψE(MABxw − v−αAxq

b+1 − vβBwqa+1).

Definition 11.5. Fix α, β ∈ Z such that αA− βB = 1. Let us denote by

W(M,A,B)

the arithmetically semisimple local system on Gm/Fp whose trace function
at v ∈ E×, E/Fp a finite extension, is given by

v �→ 1

#E

∑
x,w∈E

ψE

(
MABxw − v−αAxq

b+1 − vβBwqa+1
)
.

The pullback of W(M,A,B) to Gm/E1 remains arithmetically semisim-
ple (because π1(Gm/E1) is a subgroup of finite index in π1(Gm/Fp)), so this
pullback is the above direct sum (as both are arithmetically semisimple and
have the same trace functions).

Let us recall the underlying finiteness theorem, cf. [KRLT1, Proposi-
tion 2.1 and Remark 2.2].

Theorem 11.6. Let k be a finite field of characteristic p > 0, U/k a smooth,
geometrically connected k-scheme, � 
= p, and G an arithmetically semisimple
Q�-local system on U which is pure of weight 0 (for all embeddings of Q�

into C). Then Garith is finite if and only if all traces of G are algebraic
integers.

To show the integrality of traces of W(M,A,B), we can apply the van
der Geer–van der Vlugt argument, cf. [KT2, Section 5] which uses [vG-vV],
to show that W(M,A,B) has finite Garith. The key point is that for any
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finite extension E/Fp and any v ∈ E×, the Fp-valued function on E × E
given by

F (x,w) := TraceE/Fp

(
MABxw − v−αAxq

b+1 − vβBwqa+1
)

is a quadratic form on E ×E viewed as an Fp vector space, with associated
bilinear form

〈(x,w), (X,W )〉 := F (x+X,w +W )− F (x,w)− F (X,W ).

The resulting finiteness of Garith for W(M,A,B) gives another proof of
Theorems 4.7 and 5.1.

Let us prove now some basic rationality results.

Theorem 11.7. We have the following results.

(i) If p is odd, then for any finite extension E/Fp, and any v ∈ E×,
Trace(Frobv,E |W(M,A,B)) lies in the ring of integers of the subfield
of Q(ζp) fixed by the subgroup of squares in F×

p . If q is even, all these
traces lie in Z.

(i-bis) For any prime p, for any finite extension E/Fp2 , and for any v ∈ E×,
Trace(Frobv,E |W(M,A,B)) lies in Z.

(i-ter) If q is a square, then for any finite extension E/Fq and any v ∈ E×,
Trace(Frobv,E |W(M,A,B)) lies in Z.

(ii) If ab is odd, then for any finite extension E/Fq2 , and any v ∈ E×,
Trace(Frobv,E |W(M,A,B)) lies in Z.

Proof. The first assertion is that for any t ∈ F×
p , if we replace ψ by the

character ψt2 : x �→ ψ(t2x), the trace does not change. This is obvious, by
the substitution (x,w) �→ (tx, tw). If q is even, then ψ takes values in ±1,
so the traces lie in Q, and are integral, so lie in Z.

For (i-bis), notice that any t ∈ F×
p becomes a square in Fp2 , say t = s2

with s ∈ F×
p2 . Then the substitution (x,w) �→ (sx, sw) gives the invariance

of the sum under the entire group F×
p .

Statements (i-ter) and (ii) result trivially from (i-bis).

The arguments of van der Geer–van der Vlugt lead to the following
theorem.

Theorem 11.8. We have the following results.

(i) If q is odd, then for any finite extension E/Fq, and any v ∈ E×,

|Trace(Frobv,E |W(M,A,B))|2
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is a power qm of q with 0 ≤ m ≤ 2a+ 2b. If q is even, the values are
either a power qm, 0 ≤ m ≤ 2a+ 2b, or 0.

(i-bis) For any subfield k ⊆ Fq, and any v ∈ k×,

|Trace(Frobv,k|W(M,A,B))|2

is a power of #k (or possibly 0 if q is even).
(i-ter) If a, b are both odd, then for any subfield k ⊆ Fq2, and any v ∈ k×,

|Trace(Frobv,k|W(M,A,B))|2

is either 1 or #k (or possibly 0 if q is even).
(ii) If a+b is even and q is odd, then for any finite extension E/Fq2 , and

any v ∈ E×, Trace(Frobv,E |W(M,A,B)) is ±qm, with 0 ≤ m ≤ a+b.
If a+b is even and q is even, the values are either ±qm, 0 ≤ m ≤ a+b,
or 0.

Proof. (a) Let E/Fp be a finite extension. Fix v ∈ E×. Denote

F (x,w) := TraceE/Fp
(MABxw − v−αAxq

b+1 − vβBwqa+1).

Then

(11.8.1) Trace(Frobv,E |W(M,A,B)) = (1/#E)
∑

(x,w)∈E×E

ψ(F (x,w)),

hence

|Trace(Frobv,E |W(M,A,B))|2= 1

#(E × E)

∑
(x,w)∈E×E
(X,W )∈E×E

ψ(F (x,w)−F (X,W )).

With the substitution (x,w) �→ (x + X,w + W ), (X,W ) �→ (X,W ), the
above sum becomes

(1/#(E × E))
∑

(x,w)∈E×E,(X,W )∈E×E

ψ
(
〈(x,w), (X,W )〉

)
ψ(F (x,w))

=
∑

(x,w)∈E×E

(
ψ(F (x,w)) · 1

#(E × E)

∑
(X,W )∈E×E

ψ
(
〈(x,w), (X,W )〉

))
.

The inner sum

(1/#(E × E))
∑

(X,W )∈E×E

ψ
(
〈(x,w), (X,W )〉

)
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vanishes unless (x,w) is orthogonal to every element of E×E, in which case
this inner sum is 1. Let us denote by Null(E) this null space. So we have

|Trace(Frobv,E |W(M,A,B))|2 =
∑

(x,w)∈Null(E)

ψ(F (x,w)).

Note that, if q is odd then F (x,w) vanishes on the null space, simply because
F (x,w) = (1/2)〈(x,w), (x,w)〉. So we get

|Trace(Frobv,E |W(M,A,B))|2 = #Null(E), q odd.

If q is even, then F (x,w) is an additive function on the null space. If this func-
tion is identically zero on Null(E), we again get #Null(E). If it is nonzero,
then we are summing a nontrivial character over the null space, and we
get 0.

(b) Now let us write down explicitly the null space. The null space does
not change if we replace F (x,w) by a nonzero Fp-multiple. Using M as the
multiple, we deal instead with

F (x,w) := TraceE/Fp
(xw −Mv−αxq

b+1 −Mvβwqa+1).

Let us consider the slightly more general case of

(11.8.2) Fs,t(x,w) := TraceE/Fp
(xw − sxq

b+1 − twqa+1),

with both s, t ∈ E×. Then the associated bilinear form 〈(x,w), (X,W )〉 is
the TraceE/Fp

of

(x+X)(w +W )− s(x+X)q
b+1 − t(w +W )q

a+1

− (xw − sxq
b+1 − twqa+1)− (XW − sXqb+1 − tW qa+1)

= xW + wX − sxXqb − sxq
b

X − twW qa − twqaW,

which has the same TraceE/Fp
as

xW + wX − (sx)1/q
b

X − sxq
b

X − (tw)1/q
a

W − twqaW

= (x− (tw)1/q
a − twqa)W + (w − (sx)1/q

b − sxq
b

)X.

Thus (x,w) lies in the null space if and only if (x,w) satisfies the two equa-
tions

(11.8.3) x = (tw)1/q
a

+ twqa , w = (sx)1/q
b

+ sxq
b

.
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From this description of the null space, when E ⊇ Fq we see that it is
an Fq vector space, with (x,w) �→ (λx, λw) as the scalar multiplication by
λ ∈ Fq. When E ⊆ Fq, it is a vector space over E. Moreover, if ab is odd
and E ⊇ Fq2 , then it is an Fq2 vector space, with (x,w) �→ (λx, λqw) as the
scalar multiplication by λ ∈ Fq2 . If a+ b is even and both a, b are even, then
we are in the situation for (a/2, b/2) and q0 := q2, and the null space is an
Fq0-vector space, i.e., an Fq2 vector space. The cardinality of the null space,
being the square absolute value of a Frobenius trace, is at most the square of
the rank qa+b of W(M,A,B), simply because W(M,A,B) has finite Garith.
Thus the null space has Fq dimension at most 2a+ 2b.

To get statement (i-ter), notice that because a, b are odd, for any element
z ∈ E ⊂ Fq2 , we have

zq
a

= zq = z1/q = z1/q
a

and zq
b

= zq = z1/q = z1/q
b

.

Also, because z = zq
2

we have z + zq = (z + zq)q. Thus when E ⊂ Fq2 , the
equations for Null(E) are

x = (tw)q + twq, w = (sx)q + sxq, i.e., x = (t+ tq)wq, w = (s+ sq)xq.

So if (x,w) is in the Null space, then

x = (t+ tq)(s+ sq)qxq
2

= (t+ tq)(s+ sq)x,

and for such an x, the pair (x,w := (s + sq)xq) satisfies x = (t + tq)wq,
simply because wq = (s+ sq)qxq

2

= (s+ sq)x.
If (t+tq)(s+sq) = 1, then the Null space is isomorphic to E by projection

onto its x coordinate, so has cardinality #E. If (t+ tq)(s+ sq) 
= 1, then the
Null space is just the single point (0, 0) of cardinality 1.

To get statement (ii), we need only observe that when a + b is even,
then Trace(Frobv,E |W(M,A,B)) is an integer. When ab is odd, this is (ii)
of Theorem 11.7. When a and b are both even, then we are in the situation
for (a/2, b/2) and q2, and we apply (i-bis) of Theorem 11.7.

In the case 2 � ab, we can further strengthen Theorem 11.8:

Theorem 11.9. Suppose ab is odd. Then for any finite extension E of Fq2

and for any v ∈ E×, Trace
(
Frobv,E |W(M,A,B)

)
is (−q)m for some m with

0 ≤ m ≤ a+ b.

Proof. By Theorem 11.7(ii) and Theorem 11.8(ii), we have that

ϕ(v) := Trace
(
Frobv,E |W(M,A,B)

)
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is ±qm for 0 ≤ m = m(v) ≤ a + b or 0. To prove that it is actually some

(−q)m, it suffices to show that ϕ(v) ≡ 1(mod (q+1)). To do this, we use the

bijective map (x,w) �→ (�x, �−1w) on E ×E� {(0, 0)} for a fixed � ∈ F×
q2 of

order q + 1; in fact, any orbit under this map on this set has length q + 1.

Note that, because both a, b are odd, we have

F (x,w) = F (�x, �−1w), F (0, 0) = 0.

Thus with #E = q2d, (11.8.1) implies that

q2dϕ(v) = 1 + (q + 1)α

for some algebraic integer α ∈ Z[ζp]. Now α = (q2dϕ(v) − 1)/(q + 1) is

rational, whence α ∈ Z. But q2d ≡ 1(mod (q + 1)), hence

ϕ(v) ≡ q2dϕ(v) ≡ 1(mod (q + 1)),

as desired.

Whatever the parity of a, b, we have the following strengthening of The-

orem 11.8; see also Remark 15.8:

Theorem 11.10. Let q be a power of an odd prime p, E/Fq a finite exten-

sion, and f(x), g(x) ∈ E[x] polynomials of the form

f(x) =

n∑
i=0

aix
qi+1, g(x) :=

m∑
i=0

bix
qi+1,

with n,m strictly positive integers, and an, bm nonzero. Denote by GaussE
the quadratic Gauss sum

GaussE := Gauss(ψE , χ2).

Then we have the following results.

(i) The sum

Sf := (1/GaussE)
∑
x∈E

ψE(f(x))

is equal to ±(GaussFq
)d for some integer d with 0 ≤ d ≤ 2n.
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(ii) For any t ∈ E, and with

F (x, y) := txy + f(x) + g(y),

the sum

SF := (1/#E)
∑

x,y∈E
ψE(F (x, y))

is equal to ±(GaussFq
)d for some integer d with 0 ≤ d ≤ 2(n+m).

In particular, S2
f , S

2
F are each nonzero integers, which are ± powers of q.

Proof. We begin with (i). We have the Fp-valued symmetric bilinear form
(x.y)f on E × E given by

(x, y)f := f(x+ y)− f(x)− f(y).

Its null space Nullf (E), the set of x ∈ E such that (x, y)f = 0 for all y ∈ E,
is an Fq vector space of dimension ≤ 2n, defined by the equation

f(x) +

n∑
i=0

(aix)
1/qi = 0.

The van der Geer–van der Vlugt argument gives

|Sf |2 = #Nullf (E) = qdimFq (Nullf (E)).

It will be more convenient to work with the “non-normalized” sum

S0,f := GaussE × Sf =
∑
x∈E

ψE(f(x)).

Indeed, as (−GaussE) = (−GaussFq
)deg(E/Fq), it suffices to prove that S0,f is

± a power of GaussFq
.

Let us denote by S0,f (−) the complex conjugate sum

S0,f (−) :=
∑
x∈E

ψE(−f(x)).

Suppose first that q is 1 mod 4. Then i ∈ Fq, and f(ix) = −f(x). So in
this case S0,f (−) = S0,f , by the substitution x �→ ix, and hence

|S0,f |2 = S0,fS0,f (−) = S2
0,f ,

proving that S2
0,f is a nonnegative power of q, and hence a power of GaussFq

.
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Suppose next that q is 3 mod 4. Then the sum S0,f lies in the field
Q(GaussFq

) = Q(GaussFp
) = Q(

√−p) (because q is an odd power of p and
p is 3 mod 4). We claim that the ratio S0,f/S0,f (−) is a unit in the ring of
integers of Q(

√−p). From the equality

S0,fS0,f (−) = a power of q

we see that S0,f and S0,f (−) are units at all finite places of residue char-
acteristic other than p. As they are Galois conjugate in Q(

√−p) ⊂ Q(ζp),
which has a unique place over p, S0,f and S0,f (−) have the same p-adic ord
at this place. Being complex conjugates, they have the same absolute value
at the unique archimedean place. Therefore their ratio is a unit.

If p 
= 3, the only units in the ring of integers of Q(
√−p) are ±1.

If p = 3, then Q(
√−p) = Q(ζ3), and the units are now the sixth roots

of unity. However, we observe that because each exponent qi + 1 is even,
f(−x) = f(x), so we have

S0,f ∈ 1 + 2Z[ζp].

To see this, choose a subset V ⊂ E× of representatives of the quotient group
E×/(±1) and writing

S0,f (x) = 1 +
∑
x∈V

(ψE(f(x)) + ψE(f(−x))) = 1 + 2
∑
x∈V

ψ(f(x)).

Similarly, S0,f (−) ∈ 1 + 2Z[ζp]. Thus for some unit u in the ring of integers
of Q(

√−p), we have S0,f = uS0,f (−). Reducing mod the ideal (2) in Z[ζp],
we see that the unit u must lie in 1+2Z[ζp]. Among the sixth roots of unity,
only ±1 lie in 1 + 2Z[ζ3]. Indeed, if u has order 3, then (u− 1)/2 would lie
in Z[ζ3], which is nonsense because its norm down to Q is 3/4. And if u6
has order 6, then u6 = −u for some u of order 3, so (−u− 1)/2 would lie in
Z[ζ3], again nonsense because its norm down to Q is 1/4.

So in all cases when q is 3 mod 4, we have S0,f = ±S0,f (−). If we have
S0,f = S0,f (−), then just as in the case when q is 1 mod 4, we have

|S0,f |2 = S0,fS0,f (−) = S2
0,f ,

proving that S2
0,f is a nonnegative power of q, and hence ±S0,f is a power of

GaussFq
. Suppose now that S0,f = −S0,f (−) is purely imaginary. Then if we

write S0,f = A+B(1+
√−p)/2 with A,B ∈ Z, we have A+B/2 = 0. Thus

B = −2A, and S0,f = A+B(1+
√−p)/2 = A−A(1+

√−p) = −A
√−p. This
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already shows that the square of S0,f is an integer, namely −pA2. But this
square has absolute value a power of q, so A2 is itself a nonnegative power
of p, hence A is a nonnegative power of p, so ±A is a power of GaussFp

, and
hence ±S0,f is a power of GaussFp

, say ±S0,f = (GaussFp
)d. Then we recover

d as the log to the base
√
p of |S0,f |. But in absolute value, |S0,f |2 is a power

of q, so ±|S0,f | is a power of GaussFq
= ±(GaussFp

)deg(Fq/Fp). Comparing
absolute values, we see that d is a multiple of deg(Fq/Fp). Thus ±S0,f is a
power of GaussFq

, as asserted.

For (ii), we argue as follows. Suppose first that t = 0, so that

F (x, y) = f(x) + g(y).

Then SF = χ2,E(−1)SfSg, and the assertion is immediate from (i), applied
to f and to g. If t 
= 0, the change of variable (x, y) �→ (x/t, y) reduces us
to the case when t = 1 (with f replaced by f(x/t)). We have the Fp-valued
symmetric bilinear form ((x.y), (X,Y ))F on E2 × E2 given by

((x, y), (X,Y ))F := F ((x, y) + (X,Y ))− F (x, y)− f(X,Y ).

Its null space NullF (E
2), the set of (x, y) ∈ E2 with ((x, y), (X,Y ))F = 0

for all (X,Y ) ∈ E2, is an Fq vector space of dimension ≤ 2n+ 2m, defined
by the two equations

y +

n∑
i=0

(aix)
1/qi = 0, x+

m∑
i=0

(biy)
1/qi = 0.

The van der Geer–van der Vlugt argument gives

|SF |2 = #NullF (E
2) = qdimFq (NullF (E2)).

We now proceed exactly as in the proof of (i). We consider instead the
“non-normalized” sum

S0,F := (#E)× SF =
∑

x,y∈E
ψE(F (x, y)),

and its complex conjugate

S0,F (−) := (#E)× SF =
∑

x,y∈E
ψE(−F (x, y)).
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When q is 1 mod 4, the substitution (x, y) �→ (ix, iy) carries F (x, y) to

−F (x, y), and so S0,F (−) = S0,F . Hence S2
0,F = |S0,F |2 is a power of q, and

so ±S0,F is a power of GaussFq
.

When q is 3 mod 4, we use the same arguments as in (i). We take care

of the extra possible units in Z[ζ3] by observing that

S0,F ∈ 1 + 2Z[ζp]

to rule out units other than ±1. We see this by observing that the sum is

invariant under (x, y) �→ (−x,−y), an action which fixes the origin (0, 0),

but which on E2 � {(0, 0)} has all orbits of size 2. We then treat the two

cases S0,F = ±S0,F (−) exactly as in the proof of (i).

Corollary 11.11. Let q be a power of an odd prime p, and E a subfield

of Fq. Let

f(x) =

n∑
i=0

aix
qi+1 ∈ E[x], g(x) :=

m∑
i=0

bix
qi+1 ∈ E[x]

with n,m ∈ Z>0, and an, bm nonzero. Let t ∈ E, and let

F (x, y) := txy + f(x) + g(y).

Then the sums Sf , SF formed over E as in Theorem 11.10 are each ± a

power of GaussE.

Proof. Apply Theorem 11.10 over the ground field E = Fq0 , remembering

that q is a power of q0.

Remark 11.12. In characteristic p = 2, the sums Sf and SF of Theo-

rem 11.10 can both vanish. For example, over F4, Sf = 0 for f(x) = x3+x5,

with the convention that GaussF4
= 2. And over F16, we have SF = 0 for

F (x, y) = xy+v13x5+vy3, for v any generator of the cyclic group F×
16. This

phenomenon will be studied in [KT8] in more detail.

12. A pullback result for W(M,A,B)

The main result of this section is the following theorem about a well chosen

Kummer pullback of the local system W(M,A,B) introduced in Defini-

tion 11.5.
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Theorem 12.1. The Kummer pullback [MAB]�W(M,A,B) of W(M,A,B)
by v �→ vMAB (or more precisely, its extension across 0 by j�, for the inclu-
sion j : Gm → A1) is lisse on A1 and pure of weight 0.

Proof. Recall that the trace function of W(M,A,B) at v ∈ E×, E/Fp a
finite extension, is given by

v �→ (1/#E)
∑

x,w∈E
ψE(MABxw − v−αAxq

b+1 − vβBwqa+1).

If we replace ψ by the nontrivial additive character t �→ ψ(t/MAB), this
formula becomes

v �→ (1/#E)
∑

x,w∈E
ψE(xw − v−αxq

b+1 − vβwqa+1),

simply because both MA,MB are 1 mod p. After the pullback by the map
v �→ vMAB, the trace function becomes

v �→ (1/#E)
∑

x,w∈E
ψE(xw − v−αMABxq

b+1 − vβMABwqa+1)

= (1/#E)
∑

x,w∈E
ψE(xw − v−αA(qb+1)xq

b+1 − vβB(qa+1)wqa+1).

After the change of variable x �→ vαAx,w �→ v−βBw, this becomes

v �→ (1/#E)
∑

x,w∈E
ψE(v

αA−βBxw − xq
b+1 − wqa+1)

= (1/#E)
∑

x,w∈E
ψE(vxw − xq

b+1 − wqa+1),

simply because αA− βB = 1.

We will show in Theorem 12.2 below that this trace function, stripped
of the 1/#E factor, is the trace function of a sheaf on A1 which is lisse and
pure of weight 2. All such sheaves are geometrically semisimple (by purity)
and have isomorphic semisimplifications (by Chebotarev), hence are all geo-
metrically isomorphic. Any such is geometrically isomorphic to W(M,A,B)
on Gm, so must agree geometrically with j�W(M,A,B) on A1.

To show this, let us consider the following slightly more general situation,
similar to that of Theorem 11.3.
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Theorem 12.2. Fix integers d ≥ 3, e ≥ 2, both of which are prime to p. Fix
one-variable polynomials f(x) ∈ Fp[x] and g(w) ∈ Fp[w] of respective degrees
d and e. On A3/Fp, with coordinates (v, x, w), form the Artin–Schreier sheaf

Lψ(f(x)+g(w)+vxw).

Denote by

pr1 : A
3 �→ A1

the first projection (v, x, w) �→ v. Then

Riπ! := Riπ!(Lψ(f(x)+g(w)+vxw))

vanishes for i 
= 2, and R2π! is lisse on A1 of rank (d− 1)(e− 1) and pure
of weight two, with trace function given at v ∈ E for E a finite extension of
Fp by

v �→
∑

x,w∈E
ψE(vxw + f(x) + g(w)).

Proof. For i 
= 2, the asserted vanishing can be checked fibre by fibre.
Over Gm, the substitution x �→ x/v, w �→ w reduces us to a particular
case of the vanishing established in Theorem 11.3. Over 0, we have

Riπ!|v=0 = H i
c(A

2/Fp,Lψ(f(x)+g(w))))

= ⊕j+k=iH
j
c (A

1/Fp,Lψ(f))⊗Hk
c (A

1/Fp,Lψ(g)).

The asserted vanishing for i 
= 2 results from the (standard) fact that the
Hj and Hj here each vanish unless j = k = 1. Because the R2π! is a sheaf
of perverse origin, it is lisse on A1 of rank (d − 1)(e − 1) if and only each
stalk has dimension (d−1)(e−1). Over Gm, this results from Theorem 11.3
(after the same change of variable x �→ x/v, w �→ w). Over 0, it results
from the (standard) fact that H1

c (A
1/Fp,Lψ(f)) has dimension d − 1, and

Hk
c (A

1/Fp,Lψ(g)) has dimension e − 1. Once we know that R2π! is pure of
weight 2 on Gm and lisse at 0, it is automatically pure of weight 2 on A1,
cf. [De, 1.8.10]. The formula for the trace is immediate from the Lefschetz
trace formula, and the vanishing of the Riπ! for i 
= 2.

13. Determinants

We now return to the consideration of the M lisse sheaves discussed in
Theorem 11.1, except that we do an additional Tate twist to be in weight 0.
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Thus

Kl(M,A,B, σ−β , σ−α)(−A−B + 1)⊗ Gauss(M,A,B)− deg(E/E1),

for σ nontrivial in Char(M), and

Hyp(M,A,B,1,1)(−A−B + 2)⊗ Gauss(M,A,B)− deg(E/E1).

Each of them, by Theorems 4.7 and 5.1, has finite Garith. We viewed them
as lisse sheaves on Gm/E1, for E1 the field Fp(μMAB). However, each has
a descent to Gm/Fp(μM ), as follows. Each of them is the highest weight
quotient (now weight zero) of the lisse sheaf on Gm/E1 whose trace function
is ∑

x,w∈E×

(1/#E)ψE(MABx− v−αAxMB/wB − vβBwA)σ(w).

This sheaf has an obvious descent to Gm/Fp(μM ) (just so the characters σ
of order dividing M are defined). Its highest weight quotient is the desired
descent. [Unfortunately, we do not know an explicit formula for its trace
function.] Let us call these descended sheaves

Gσ.

Strictly speaking, we should remember that their definition made use of
chosen (α, β) with αA− βB = 1, and denote them

Gσ,α,β.

If (α, β) is one such, then so is (α+B, β +A).

Lemma 13.1. If the integers α,A, β,B satisfy αA− βB = 1, then we have
gcd(α+ β,A+B) = 1.

Proof. If not, there exists a prime r which divides both α + β and A + B.
So modulo r,

αA− βB ≡ αA− (−α)(−A) = 0,

a contradiction.

Corollary 13.2. Given relatively prime integers A,B and a real constant
X > 0, there exist integers α, β with αA−βB = 1 such that either α+β = ±1
or α + β is a prime P with P > X. In particular, given an integer D > 1,
there exist such α, β with gcd(α+ β,D) = 1.
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Proof. Because gcd(A,B) = 1, there are integers α0, β0 with α0A−β0B = 1.
If A+B = 0, then (A,B) = ±(1,−1), and then α+β = ±1. If A+B 
= 0, we
argue as follows. For every integer n, the pair (αn, βn) := (α0+nB, β0+nA)
is another such pair. Then

αn + βn = (α0 + β0) + n(A+B).

By the previous Lemma 13.1, gcd(α0+β0, A+B) = 1. Now apply Dirichlet’s
theorem to the sequence αn+βn for positive n if A+B > 0, or to the sequence
of negative n if A+B < 0.

Theorem 13.3. For σ of order dividing M , the geometric determinant of
Gσ,α,β is

Lχ
MAB−1−(A−1)−(B−1)
2

Lσα+β ,

with the understanding that if p = 2, then χ2 := 1.

Proof. By [K2, 8.11.6], the geometric determinant in each case is the product
of the “upstairs” characters. One has the general formula∏

χ∈Char(A,ρ)

Lχ = LχA−1
2

⊗ Lρ.

Therefore the geometric determinant of Gσ is LχMAB−1−(A−1)−(B−1)
2

Lσα+β . [If
we are in characteristic 2, then each of M,A,B is odd, and the determinant
is just Lσα+β .]

Corollary 13.4. Choose α, β with αA − βB = 1 and gcd(α + β,M) = 1
(possible by Corollary 13.2). Then there exists characters σ of order dividing
M such that the geometric determinant of Gσ,α,β has order M .

Proof. If p is odd, then M is even, and σ �→ χ2σ is a bijection of Char(M).
On the other hand, σ �→ σα+β is another such bijection. If p = 2 or if the
exponent of χ2 in the geometric determinant of Gσ,α,β is even, simply take
Gσ,α,β with σ of full order M . If p is odd and the geometric determinant of
Gσ,α,β is χ2σ

α+β , use the fact that the composite map

σ �→ σα+β �→ χ2σ
α+β

is a bijection of Char(M), and take Gσ1,α,β, for any σ1 whose image under
this map is a character of full order M .

From Theorem 13.3, we get the following corollary.
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Corollary 13.5. For any α, β with αA − βB = 1, and any σ of order
dividing M , the Kummer pullback [M ]�Gσ,α,β has geometrically trivial de-
terminant.

From Lemma 4.3, we see that we have

Lemma 13.6. For σ of order dividing M , we have

Lσ ⊗ Gσ,α,β
∼= Gσ,α−B,β−A.

This “indeterminacy” in the “definition” of Gσ can be “corrected” by
considering the Kummer pullback

[M ]�Gσ,

since [M ]� kills the Lσ factor.

Theorem 13.7. Each sheaf [M ]�Gσ has geometrically trivial determinant.

Proof. From the explicit formulas for the geometric determinants in The-
orem 13.3, it is clear that they become trivial after [M ]�. Indeed, in odd
characteristic, M is even (since both qa+1, qb+1 are even), and hence [M ]�

kills both Lχ2
and any power of Lσ. In any characteristic, [M ]� kills any

power of Lσ.

Remark 13.8. Presumably (?) we should hope that each [M ]�Gσ already
has arithmetically trivial determinant over the small field Fp or Fq2 , without
any extension of scalars being needed.

14. Some general results on Ggeom and Garith

First we recall the following result concerning the image of the wild inertia
group P (∞) in Ggeom:

Proposition 14.1 ([KT7, Proposition 4.8]). Let H be an (irreducible) hy-
pergeometric sheaf of type (D,m) in characteristic p, with D > m and with
finite geometric monodromy group G = Ggeom. Then the following state-
ments hold for the image Q of P (∞) in G:

(i) If H is not Kloosterman, i.e. if m > 0, then Q ∩ Z(G) = 1.
(ii) Suppose H is Kloosterman and D > 1. Then Q 
≤ Z(G). If p � D, then

Q ∩ Z(G) = 1. If p|D then either Q ∩ Z(G) = 1 or Q ∩ Z(G) ∼= Cp.
(iii) If D > 1, then 1 
= Q/(Q∩Z(G)) ↪→ G/Z(G) and p divides |G/Z(G)|.
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(iv) If D −m ≥ 2, the determinant of G is a p′-group. If moreover p � D,

then Z(G) is a p′-group.
(v) Suppose p = 2. Then the trace of any element g ∈ G on the sheaf H is

2-rational (i.e. lies in a cyclotomic field Q(ζN ) for some odd integer N);

in particular, the 2-part of |Z(G)| is at most 2.

Lemma 14.2. Let X/Fq be smooth and geometrically connected, k a topolog-

ical field, and V a finite dimensional continuous k-representation of π1(X).

Denote by Garith ≤ GL(V ) the image of πarith
1 (X) := π1(X), and by

Ggeom � Garith

the image of πgeom
1 (X) := π1(X/Fq). Let E/Fq be a finite extension. Then

for any points v1, v2 ∈ X(E), the Garith-conjugacy classes of Frobv1,E and

Frobv2,E lie the same Ggeom-coset in Garith,k.

Proof. Let us explain this in the universal case. The key point is that we have

the short exact sequence of fundamental groups [Gr2, Exp. IX, Thm. 6.1]

1 → πgeom
1 (X) → πarith

1 (X)
deg−−→ Gal(Fq/Fq) → 1.

When we identify Gal(Fq/Fq) with the profinite completion of Z by decree-

ing that x �→ xq has degree −1, then each Frobvi,E has degree deg(E/Fq) in

Gal(Fq/Fq). Hence for any elements gi ∈ πarith
1 (X) which lie in the conjugacy

classes of Frobvi,E , the “ratio” g−1
1 g2 has degree 0, i.e., lies in πgeom

1 (X),

which is precisely the subgroup of πarith
1 (X) consisting of elements of de-

gree 0.

Next we prove some general facts concerning pullbacks of local systems.

Lemma 14.3. Given a local system F on X/Fq, and an Fq-morphism f :

Y → X of Fq-schemes. Then for any finite extension k/Fq, and any point

v ∈ Y (k), we have

Frobv,k|f�F = Frobf(v),k|F .

Proof. Let us explain this in terms of representations of fundamental groups.

When X,Y are each connected, and we pick appropriate base points, f

induces a homomorphism of fundamental groups f� : π1(Y/Fq) → π1(X/Fq)

which maps the conjugacy class of Frobv,k in π1(Y/Fq) to the conjugacy

class of Frobf(v),k in π1(X/Fq). The local system F is a representation ρF of

π1(X/Fq), and its pullback f�F is the representation ρF ◦f� of π1(Y/Fq).
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Theorem 14.4. Let N ∈ Z≥1 and let G be a finite group with a nor-
mal subgroup S such that G/S ∼= CN . Let k be a finite field in which N
is invertible and which contains the N th roots of unity. Let W be a local
system on Gm/k which has geometric monodromy group Ggeom and arith-
metic monodromy group Garith,k, with Ggeom = Garith,k

∼= G. Then the [N ]�

Kummer pullback WN of W has geometric and arithmetic monodromy group
Ggeom,WN

= Garith,k,WN
= S.

Proof. From the point of view of Galois theory, the fact that the system
W has Garith,k = Ggeom = G means that we have a finite Galois extension
L/k(t) with Gal(L/k(t)) = G, which is linearly disjoint from the extension
k/k, i.e., Lk/k(t) continues to have Gal(Lk/k(t)) = G.

When we form the [N ] pullback, we replace the Galois extension L/k(t)
by its compositum with the finite Galois extension k(t1/N )/k(t). [It is Galois
because k contains the N th roots of unity.] This new extension has Galois
group Garith,k,WN

. Similarly, when we replace the Galois extension Lk/k(t)
by its compositum with the finite Galois extension k(t1/N )/k(t), this new
extension has Galois group Ggeom,WN

.
Consider a homomorphism

θ : G � μN (k)

with Ker(θ) = S. This surjective homomorphism means that there is a
subfield

k(t) ⊂ K ⊂ Lk,

with K/k(t) Galois, with Gal(K/k(t)) ∼= μN (Fq). But this extension K/k(t)
is the function field of a μN (Fq)-covering of Gm/k. The only such covering
is the [N ] Kummer covering. Thus the intermediate field K must be K =
k(t1/N ); we have

k(t) ⊂ k(t1/N ) ⊂ Lk.

This in turn means that the compositum of the extension Lk/k(t) with
k(t1/N )/k(t) is just the extension Lk/k(t

1/N ). Its Galois group is the index
N normal subgroup of G on which θ is trivial, i.e. its Galois group is S.

Now let us consider the interaction of the homomorphism θ with the
extension L/k(t). Its existence means that there is a subfield

k(t) ⊂ K0 ⊂ L,

with K0/k(t) Galois, with group μN (Fq). This extension K0/k(t) is the
function field of a μN (k)-covering of Gm/k, which when we extend scalars
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to k becomes the [N ] Kummer covering. In general, for any field k in whichN

is invertible and which contains the N th roots of unity, the μN (k)-coverings

of Gm/k are classified by the cokernel k[t, 1/t]× modulo the subgroup of

N th powers, cf. [Gr2, Cor. 6.5, Exp. XI]. The group of units k[t, 1/t]× is

k×tZ. Since geometrically our covering is adjoining t1/N , our covering must

be k((αt)1/N ), for some α ∈ k×. This means that if we take αt instead of t

as the parameter of Gm/k, then K0/k(t) is the extension k(t1/N )/k(t). Thus

the compositum of L/k(t) with k(t1/N )/k(t) is just the extension L/k(t1/N ).

Its Galois group is the index N subgroup of G on which θ is trivial, i.e., its

Galois group is S.

For possible later reference, we state the following corollary, which is

immediate from the proof of Theorem 14.4.

Corollary 14.5. With G,S,N as in Theorem 14.4, let k be an algebraically

closed field in which N is invertible and which contains the N th roots of

unity. Let W be a local system on Gm/k which has geometric monodromy

group Ggeom
∼= G. Then WN := [N ]�W has geometric monodromy group

Ggeom,WN
= S.

Here is another version, which deals with Kummer pullbacks in fair

generality. Let k be an algebraically closed field of characteristic p > 0,

and let G be a finite group which is a quotient of π1(Gm/k). One knows

by [Abh, Proposition 6(III)] that the quotient of G by the subgroup Op′
(G)

generated by its Sylow p-subgroups is a cyclic group of order prime to p;

this is simply the statement that the prime to p quotient of π1(Gm/k) is

pro-cyclic, in fact non-canonically isomorphic to
∏

��=p Z�. Let us denote by

n(G) this order:

n(G) := |G/Op′
(G)|.

Then the normal subgroups H � G such that G/H has order prime to p

are precisely those containing Op′
(G). Because G/Op′

(G) is cyclic of order

n(G), such a subgroup H � G with G/H of order d has d � n(G), and H is

thus the unique normal subgroup Gd � G such that G/Gd = d is cyclic of

order d, and we have

n(Gd) = n(G)/d.

Theorem 14.6. Let G be a finite group. Let k be a finite field of character-

istic p, and W a local system on Gm/k with

Garith,k = Ggeom = G.
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Let N be a prime to p integer, and let

N0 := gcd(N,n(G)).

Suppose that k contains the N th
0 roots of unity, i.e. N0|(#k − 1). Then for

WN := [N ]�W, we have

Garith,k,WN
= Ggeom,WN

= GN0
.

Proof. Write N =N0N1, with gcd(N1, n(G)/N0)= 1. Then WN = [N1]
�WN0

.
By Theorem 14.4 applied to WN0

, we have

Garith,k,WN0
= Ggeom,WN0

= GN0
,

and n(GN0
) = n(G)/N0. So we are reduced to treating universally the case

when gcd(N,n(G)) = 1. Then Ggeom,WN
�G is a normal subgroup of index

dividing N . But there are none other than G itself. Therefore Ggeom,WN
= G.

As Garith,k,WN
≤ Garith,k,W = G but Garith,k,WN

≥ Ggeom,WN
= G, we have

Garith,k,WN
= G as well.

We now discuss Garith for a geometrically irreducible Q�-adic hypergeo-
metric sheafH on Gm/Fq whoseGgeom is finite. To make clear the underlying
structure, we will consider the more general case of a smooth, geometrically
connected variety X/Fq, and a geometrically irreducible Q�-adic sheaf F on
X/Fq whose Ggeom is finite. One knows that det(F) is geometrically of finite
order (e.g., because its Ggeom is a semisimple group inside GL1, cf. [De,
1.3.9]).

Lemma 14.7. There exists an �-adic unit C ∈ Q�
×

such that the sheaf
det(F)⊗C− deg /k is arithmetically of finite order. Moreover, any such C is
determined up to multiplication by a root of unity.

Proof. To see this, choose an integer M ≥ 1 such that det(F)⊗M is geomet-
rically trivial. This means precisely that arithmetically

det(F)⊗M ∼= Ddeg /k

for some �-adic unit D ∈ Q�
×
. Then for any C with CM = D, the sheaf

det(F)⊗ C−deg /k has arithmetic order dividing M .
It is obvious that if C works, then so does ζC for any root of unity ζ.

Conversely, if C ′ works, then both det(F)⊗C− deg /k and det(F)⊗(C ′)−deg /k

are arithmetically of finite order, so their ratio (C/C ′)deg /k is arithmetically
of finite order, i.e., C/C ′ is a root of unity.
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Corollary 14.8. There exists an �-adic unit G ∈ Q�
×
such that F⊗G−deg /k

has finite arithmetic determinant, and this condition determines G up to

multiplication by a root of unity.

Proof. For F of rank D, any Dth root of the C of Lemma 14.7 does the job,

and G does the job if and only if GD is some root of unity times C.

Lemma 14.9. Suppose F has finite Ggeom. Then F ⊗ G−deg /k has finite

Garith if and only if its arithmetic determinant is finite.

Proof. Garith cannot be finite if its determinant fails to be finite. To see

that Garith is finite if its determinant is finite and Ggeom is finite, use the

fact that Garith normalizes Ggeom. Denote by N the order of the finite group

Aut(Ggeom). Then for γ ∈ Garith, γ
N commutes with every element of Ggeom.

As Ggeom is an irreducible subgroup of GLD with D := rank(F), each γN is

a scalar. But as Garith has a determinant of finite order, say M , each γN is

a root of unity of order dividing MD. Thus Lie(Garith) is killed by NMD,

so Lie(Garith) = 0 and hence Garith is finite.

Let us recall the following criterion for finite arithmetic and geometric

monodromy, cf. [KRLT1, 2.1, 2.2].

Proposition 14.10. Suppose we have (Fq, �,X) as above, with G a lisse Q�

sheaf on X. Suppose further that G is pure of weight zero (for all embeddings

of Q� into C). Consider the following four conditions.

(a) Garith is finite.

(b) All traces of G are algebraic integers. More precisely, for every finite

extension L/Fq, and for every point x ∈ X(L), Trace(FrobL,x|G) is an

algebraic integer.

(c) Ggeom is finite.

(d) det(G) is arithmetically of finite order.

Then we have the implications

(a) =⇒ (b) =⇒ (c), (b) =⇒ (d).

If F is geometrically irreducible, we have (a) ⇐⇒ (b) ⇐⇒ (c). If F is

arithmetically semisimple, we have (a) ⇐⇒ (b).

Proposition 14.11. Suppose we have (Fq, �,X) as above, with G a lisse Q�

sheaf on X which is geometrically irreducible, and pure of integer weight w.
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Suppose that for some monomial in Gauss sums over Fq, i.e., an expression

of the form

A = ±
∏

χ∈Char(q−1)

(
−Gauss(ψFq

, χ)
)nχ ,

with exponents nχ ∈ Z, the constant field twist G ⊗ A−deg /Fq has algebraic

integer traces, and hence has finite arithmetic monodromy group, denoted

Garith,A. Suppose further that p is odd. Then the p-primary part of the finite

cyclic group Z(Garith,A) is independent of the choice of monomial A in Gauss

sums over Fq for which G ⊗A−deg /Fq has algebraic integer traces.

Proof. By Chebotarev, every element in Garith,A is the image of some Frobe-

nius FrobL,x. The given representation of Garith,A is irreducible (because it

is already irreducible on the subgroup Ggeom). So the Frobenii which land in

Z(Garith,A) are precisely those for which FrobL,x|G is a scalar, call it α(L, x).

Then in Garith,A, this Frobenius gives the central scalar α(L, x)/Adeg(L/Fq).

If we use a different monomial in Gauss sums, say A1 for which G⊗A
−deg /Fq

1

has algebraic integer traces, then this same Frobenius gives the central scalar

α(L, x)/A
deg(L/Fq)
1 . So what must be shown is that the ratio A/A1 is a root

of unity of order prime to p.

Since both G⊗A−deg /Fq and G⊗A
−deg /Fq

1 have arithmetic determinants

of finite order, it results from Corollary 14.8 that the ratio A/A1 is a root of

unity. Now A/A1 is itself a monomial in Gauss sums, so the assertion results

from the following lemma.

Lemma 14.12. Suppose p is odd, Fq/Fp a finite extension, and A a mono-

mial in Gauss sums over Fq which is a root of unity. Then A has order

prime to p.

Proof. Each Gauss sum over Fq lies in Q(ζp, ζq−1). Thus A is a root of unity

in this field. We will show that in fact it lies in the subfield Q(ζq−1), whose

only roots of unity are μq−1 (remember q − 1 is even). For this, it suffices

to show that A is invariant under Gal(Q(ζp, ζq−1)/Q(ζq−1)). This is the

group F×
p , with σa, a ∈ F×

p , mapping ζp to ζap and fixing ζq−1. The claimed

invariance holds for A if and only if it holds for −A, so we may assume

A =
∏

χ∈Char(q−1)

(
−Gauss(ψFq

, χ)
)nχ .
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When we apply σa to A, we get

σa(A) =
∏

χ∈Char(q−1)

(
−Gauss(ψa,Fq

, χ)
)nχ

=
∏

χ∈Char(q−1)

(
−χ(a)Gauss(ψa,Fq

, χ)
)nχ = Λ(a)A

for Λ the character
∏

χ∈Char(q−1) χ
nχ . Suppose now that the order of A is

not prime to p. The roots of unity in Q(ζp, ζq−1) form the group

μp(q−1) = μp × μq−1.

Then Aq−1 would be a pth root of unity, and a prime to p power of Aq−1

would be ζp. Such a power is itself a monomial in Gauss sums, so we would

have

A = ζp.

Then σa(A) = ζap = ζa−1A, but also σa(A) = Λ(a)A. Thus ζa−1
p = Λ(a). The

left side lies in μp, the right side lies in μq−1. Thus both are 1. In particular,

Λ(a) = 1, and A lies in Q(ζq−1).

We now turn to the special case of geometrically irreducible hyperge-

ometric sheaves H of type (D,m) with D > m ≥ 0 on Gm/Fq. Thus we
have

H = Hyp(χ1, . . . , χD; ρ1, . . . , ρm)

with each χi and each ρj a (possibly trivial) character of F×
q , such that for

all i, j, χi 
= ρj .

Proposition 14.13. Suppose D −m ≥ 2. Define

A := det(Frob1,Fq
|H).

Then we have the following results.

(i) A is a monomial in Gauss sums.
(ii) For any B with BD = A, the constant field twist H ⊗ B−deg /Fq has

finite arithmetic determinant LΛ, for Λ :=
∏

i χi, of order dividing
q − 1.

(iii) Suppose p � D, and that H⊗B− deg /Fq on Gm/Fq, has finite arithmetic
monodromy group Garith. Then Z(Garith) has order prime to p.
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(iv) Suppose that H has a descent H0 to Gm/k, for some subfield k of Fq, in
the sense that for some monomial J in Gauss sums over Fq, the pull-
back of H0 to Gm/Fq is arithmetically isomorphic to H⊗Jdeg /Fq . Sup-
pose further that for some monomial G in Gauss sums, H0⊗G−deg /k

has finite Garith,H0
. If p � D and p � deg(Fq/k), then Z(Garith,H0

) has
order prime to p.

Proof. When D −m ≥ 2, one has the arithmetic determinant formula [K2,
8.12.2]

det(H) ∼= LΛ ⊗Adeg /Fq ,

with Λ :=
∏

i χi and with

A = Λ((−1)D−1)qD(D−1)/2
∏
i,j

(
−Gauss(ψFq

, χi/ρj)
)
.

Recall that q is, up to sign, itself the square of the quadratic Gauss sum,
to see that A is indeed a monomial in Gauss sums. This formula makes (ii)
obvious. To show (iii), let γ be a scalar in Garith. As det(Garith) lies in μq−1,
we see that γD = det(γ) has order dividing q − 1, so γ has order dividing
D(q − 1), which is prime to p.

To show (iv), we argue as follows. Let us write

d := deg(Fq/k).

Because H0⊗G− deg /k on Gm/k has finite Garith,H0,G, so does its pullback to
Gm/Fq. This pullback is H⊗Jdeg /Fq ⊗(Gd)−deg /Fq , which is a constant field
twist of H by a monomial in Gauss sums, namely by Gd/J . Let us denote
its Garith as Garith,H,Gd/J . Thus Garith,H,Gd/J is a subgroup of Garith,H0,G

of index dividing d := deg(Fq/k), which is prime to p. So if Garith,H0,G

contained a scalar of nontrivial p power order, then γd would be a scalar
of nontrivial p power order in Garith,H,Gd/J . So it suffices to show that the
center of Garith,H,Gd/J is prime to p. We know this to be true for Garith,H,B

by part (iii). So it suffices to show that the ratio B/(Gd/J), a priori a root
of unity by Lemma 14.8, has order prime to p. Since p � D, it suffices to show
that the Dth power of this ratio has order prime to p. But this Dth power
is a monomial in Gauss sums, namely AJD/GdD, hence has order prime to
p by Lemma 14.12.

Theorem 14.14. Suppose H is a geometrically irreducible hypergeometric
sheaf H of type (D,m) with D > m ≥ 0 on Gm/Fq. Suppose Ggeom is finite.
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Then for Gauss(ψFq
, χ2) the quadratic Gauss sum, with the convention that

when q is even, we “define” −Gauss(ψFq
, χ2) :=

√
q,

G :=
(
−Gauss(ψFq

, χ2)
)D+m−1

, and C := GD,

det(H) ⊗ C− deg /Fq is arithmetically of finite order, and H ⊗ G−deg /Fq has
finite Garith.

Proof. In view of Lemma 14.9, the two assertions are equivalent. Let us
write simply ψ for ψFq

. Define

A = Λ((−1)D−1)qD(D−1)/2
∏
i,j

(−Gauss(ψ, χi/ρj)).

By [K2, 8.12.2], det(H) ⊗ A−deg /Fq is arithmetically of finite order. The
weight of A is

D(D − 1) +mD = D(D +m− 1).

We must show that A is (some root of unity)×GD. For this, it suffices to show
that for every p-adic ordq on Q(ζp, ζq−1) (normalized to have ordq(q) = 1),
we have

ordq(A) ≥ ordq(G
D) = D(D +m− 1)/2.

For then A/GD is an algebraic integer in Q(ζp, ζq−1) (since G2D divides
qD(D+m−1)), all of whose complex absolute values are 1, and hence A/GD is
a root of unity.

For a character τ of F×
q , and a chosen ordq, let us write

V (τ) := ordq(Gauss(ψ, τ)).

Then

ordq(A) = D(D − 1)/2 +
∑
i,j

V (χi/ρj)

and the asserted inequality becomes∑
i,j

V (χi/ρj) ≥ mD/2.

Let B have BD = A. Because Ggeom is finite, H ⊗ B− deg /Fq has finite
Garith. Therefore for each t ∈ Gm(Fq) = F×

q , if we denote

H(t) := Trace(Frobt,Fq
|H),
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we have

ordq(H(t)) ≥ (1/D)ordq(A), ordq(σ(t)H(t)) ≥ (1/D)ordq(A)

for every character σ of F×
q . Thus for every such σ, we have

ordq

(∑
t∈F×

q

σ(t)H(t)

)
≥ (1/D)ordq(A).

But one knows [K2, 8.2.8] that
∑

t∈F×
q
σ(t)H(t) is equal to

(∏
i

(−Gauss(ψ, χiσ))
)(∏

j

(−Gauss(ψ, ρiσ))
)
.

Hence we have the inequality∑
i

V (χiσ) +
∑
j

(V (ρjσ) ≥ (1/D)[D(D − 1)/2 +
∑
i,j

V (χi/ρj)]

for every σ.
Apply this with σ successively taken to be 1/ρj , and add the resulting

m inequalities. We get∑
i,j

V (χi/ρj) +
∑
j,k

V (ρj/ρk) ≥ (m/D)[D(D − 1)/2 +
∑
i,j

V (χi/ρj)].

For each τ 
= 1, we have

V (τ) + V (τ) = 1,

since the product of the corresponding Gauss sums is ±q. Therefore∑
j,k

V (ρj/ρk) = m(m− 1)/2.

Writing Σ for
∑

i,j V (χi/ρj), we have

Σ +m(m− 1)/2 ≥ m(D − 1)/2 + (m/D)Σ,

i.e.,

(1−m/D)Σ ≥ m(D −m)

2
, i.e.

D −m

D
Σ ≥ m(D −m)

2
, i.e. Σ ≥ mD

2
,
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as asserted. [It is only at this very last step that we use the hypothesis that

D −m > 0.]

Corollary 14.15. Suppose H is a geometrically irreducible hypergeometric

sheaf H of type (D,m) with D > m ≥ 0 on Gm/Fq. Then Ggeom is finite if

and only if for

G :=
(
−Gauss(ψFq

, χ2)
)D+m−1

,

again with the convention that when 2|q we “define” −Gauss(ψFq
, χ2) :=

√
q,

the constant field twist H⊗ G−deg /Fq has finite Garith.

15. Determination of monodromy groups: the case M = 2

In this section we assume that

(15.0.1) 2|ab, gcd(a, b) = 1, n = a+ b, p > 2, q = pf .

In particular, M = 2, A = (qa + 1)/2, B = (qb + 1)/2, gcd(A,B) = 1. Fix

α, β ∈ Z such that αA − βB = 1 and 2 � (α + β) using Corollary 13.2.

With this choice of parameters, the principal objects of this section are

the following local systems on Gm/Fp and A1/Fp, cf. Definition 11.5 and

Theorem 12.1.

Definition 15.1. Let us denote by

W(a, b)

the arithmetically semisimple local system on Gm/Fp whose trace function

at v ∈ E×, E/Fp a finite extension, is given by

v �→ 1

#E

∑
x,w∈E

ψE

(
xw − v−αxq

b+1 − vβwqa+1
)
.

This is W(M,A,B) introduced in Definition 11.5, but with ψ replaced by

t �→ ψ(t/MAB) = ψ(2t).

It results from Corollaries 9.2 and 9.3 that W(M,A,B) is the direct sum

W(M,A,B) = Kl0 ⊕H0
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of descents (in the sense of the beginning of §13), from Gm/Fp(μMAB) to

Gm/Fp, of the Kloosterman sheaf

Kl(2, A,B, χβ
2 , χ

α
2 )(−A−B + 1)

= Klψ
(
Char(2AB)� (Char(A,χβ

2 ) � Char(B,χα
2 )
)
(−A−B + 1),

see (4.2.1), and the hypergeometric sheaf

Hyp(2, A,B,1,1)(−A−B + 2)

= Hypψ
(
Char(2AB) � {1}� (Char(A) � Char(B));1

)
(−A−B + 2),

see (5.0.1) which went into the definition of W(M,A,B), the descents being

the relevant systems
(
grwt=2(R

2(pr1)(Fχ,ρ))
)
(1).

Definition 15.2. The Kummer pullback

W�(a, b) := [MAB]�W(a, b)

is a lisse sheaf on A1/Fp, with trace function at v ∈ E, E/Fp a finite exten-

sion, given by

v �→ 1

#E

∑
x,w∈E

ψE

(
vxw − xq

b+1 − wqa+1
)
.

In general, the local system W�(a, b) on A1/Fp makes sense for q any

power of any prime p, and any positive integers a, b. By Theorem 12.2,

W�(a, b) is lisse of rank qa+b and pure of weight zero. In this section, our

interest is in the case when hypothesis (15.0.1) holds. In the next section,

our interest will be in the case when hypothesis (16.0.1) holds.

The explicit trace formulas allow us to prove:

Lemma 15.3. Given the hypothesis (15.0.1), the following statements hold.

(i) Let E be any subfield of Fq. Then the squared absolute value of the

trace at v = 2 of W�(a, b) is #E. Furthermore, the squared absolute

value of the trace at v = 4 of W(a, b) is #E.

(ii) If p = 3 and E = Fq, the square of the trace at v = 1 of W(a, b) is

(−1)(q−1)/2q.
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Proof. (i) By Definition 15.2, the trace at v = 2 on W�(a, b) is

1

#E

∑
x,w∈E

ψE(2xw − x2 − w2) =
1

#E

∑
x,w∈E

ψE

(
−(x− w)2

)
=

∑
y∈E

ψE(−y2)

=
∑
y∈E

ψ−1,E(y
2),

a Gauss sum over E. Hence its squared absolute value is #E. For the state-
ment in W(a, b) form, just recall W�(a, b) = [MAB]�W(a, b), and note that
MAB ≡ 2(mod (q− 1)), whence 2MAB = 4 in E, and we are done by using
Lemma 14.3.

(ii) By Definition 15.1, the trace at v = 1 is

1

#E

∑
x,w∈E

ψE(xw − x2 − w2) =
1

#E

∑
x,w∈E

ψE

(
−(x+ w)2

)
=

∑
y∈E

ψE(−y2)

=
∑
y∈E

ψ−1,E(y
2),

a Gauss sum over E = Fq. Hence its square is (−1)(q−1)/2q.

Proposition 15.4. Given the hypothesis (15.0.1), suppose that for each
ε = ±, there is a hypergeometric sheaf Hε of rank (qn−ε)/2 in characteristic
p with finite geometric monodromy group Gε, which is almost quasisimple.

Assume furthermore that G
(∞)
ε is irreducible on Hε and that qn > 49. Then,

for some γ = ±, either G
(∞)
γ is a cover of some AN , or G

(∞)
γ is a quotient

of Sp2m(pa) for some integers m, a ≥ 1 such that pma = qn.

Proof. Let Sε denote the (unique) non-abelian composition factor of Gε, so
that Sε �Gε/Z(Gε) ≤ Aut(Sε). As Gε is almost quasisimple, its layer E(Gε)

(i.e. the largest semisimple normal subgroup) is equal to the last term G
(∞)
ε

in its derived series. Next, since Hε is hypergeometric, a generator of I(0)
has a simple spectrum on Hε, whence Gε satisfies the condition (�) of [KT7,
§6]. Also, the condition qn > 49 implies that Dε := rank(Hε) > 24. Note
that, since 2Dε + ε is a prime power (namely qn), Dε 
= 28. Hence, by
[KT7, Theorem 6.4], Sε is not any of 26 sporadic simple groups. We will
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now assume that neither G
(∞)
+ nor G

(∞)
− is a cover of an alternating group,

whence both S+ and S− are simple groups of Lie type in characteristic r+
and r−, respectively. Now we can apply [KT7, Theorem 6.6] to conclude
that there is some power sε of rε such that either Sε = PSL2(sε), or E(Gε)
is a quotient of SLmε

(sε), SUmε
(sε), or Sp2mε

(sε), and it acts on Hε via one
of its Weil representations. As Dε > 24, we have r+ = p = r− by [KT7,
Theorem 7.4]. If furthermore Sε = PSp2mε

(sε) with sεmε = qn then the
statement follows with γ = ε.

Consider the case Sε = PSUmε
(sε) with mε ≥ 2, where we have

Dε = (smε
ε + (−1)mεsε)/(sε + 1) or (smε

ε − (−1)mε)/(sε + 1).

As p = rε � Dε, we must have that Dε = (smε
ε − (−1)mε)/(sε + 1). Now, if

ε = (−1)mε , then p divides

qn = 2Dε + ε = 2
smε
ε − (−1)mε

sε + 1
+ (−1)mε =

2smε
ε + (−1)mεsε − (−1)mε

sε + 1
,

a contradiction as p|sε. Recall that n ≥ 3. Hence, if ε = −(−1)mε , then p3

divides

qn = 2Dε + ε = 2
smε
ε − (−1)mε

sε + 1
− (−1)mε =

2smε
ε − (−1)mε(sε + 3)

sε + 1
,

again a contradiction.
It remains to consider the case Sε = PSLmε

(sε) with mε ≥ 2, and

Dε = (smε
ε − sε)/(sε − 1) or (smε

ε − 1)/(sε − 1)

for both ε = ±. As p = rε � Dε, we must have that Dε = (smε
ε − 1)/(sε − 1).

Now, if ε = −, then p divides

qn = 2Dε + ε = 2
smε
ε − 1

sε − 1
− 1 =

2smε
ε − sε − 1

sε − 1
,

a contradiction as p|sε. Thus the statement follows with γ = −.

Remark 15.5. Note that in the case q = 3 of Proposition 15.4, the main
result of [KT5] produces a hypergeometric sheaf in characteristic p = 3 of
rank (3n − 1)/2 and with the geometric monodromy group being a quotient
of GLn(3).

Next we prove a variation of [KT6, Theorem 6.4]:
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Theorem 15.6. Let q = pf be a power of a prime p > 2, n ∈ Z≥1, and

let L := Sp2n(q) with (n, q) 
= (1, 3). Suppose that Φ : G → GLqn(C) is a

faithful representation of a finite group G� L with the following properties:

(a) Φ is a sum of two representations, Φ+ of degree (qn − 1)/2 and Φ− of

degree (qn + 1)/2;

(b) For all g ∈ G, Tr(Φ(g)) ∈ K := Q(
√

(−1)(p−1)/2p);

(c) Φ|L is a total Weil representation; and

(d) For all g ∈ G, |Tr(Φ(g))|2 is always a power of p.

Then the following statements hold.

(i) CG(L) = Z(G) = C × Z(L), where Z(L) = 〈j〉 ∼= C2, and either

(α) |C| ≤ 2, or

(β) p = 3 divides | det(Φε(G))| for each ε = ±, 2 � f , and furthermore

C ∈ {C3, C6}.
In all cases, C can be chosen to act via scalars in Φ.

(ii) Embed L in Γ := Sp2nf (p) and extend Φ|L to a total Weil representa-

tion Γ → GLqn(C) (which we also denote by Φ) using [KT6, Lemma

6.1]. Then there exist a divisor e|f and a standard subgroup H := L�Ce

of Γ such that

Z(GLqn(C))Φ(G) = Z(GLqn(C))Φ(H).

Proof. (a) Since Φ|L is a total Weil representation, the central involution j

of L satisfies Φ(j) = κ · diag(Id,−Id) for some κ = ±. Hence, for any g ∈ G

we have by (b) that

Tr(Φ(g))+κTr(Φ(jg)) = 2Tr(Φ+(g)), Tr(Φ(g))−κTr(Φ(jg)) = 2Tr(Φ−(g))

both belong to K. Thus Tr(Φε(g)) ∈ K for each ε = ±. Now statement (i)

follows from [KT6, Lemma 6.3].

(b) Note that any element in NΓ(L) preserves the equivalence class of

each of the Weil representations Φε|L, hence it can only induce a field au-

tomorphism of L (modulo Inn(L)). The subgroup of all the field automor-

phisms of L is cyclic of order f , see [GLS, Theorem 2.5.12]. Thus we may

assume that there is some e|f such that G induces a cyclic subgroup of

field automorphisms of L of order e. Thus the action of G via conjugation

on L induces the same automorphism subgroup as of a standard subgroup
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H := L � 〈σ〉 ∼= Sp2n(q) � Ce of Γ. As CG(L) = Z(G) = CZ(L), we can
write

(15.6.1) G = 〈CL, g〉,

where g ∈ G induce (via conjugation) the same automorphism of L as of σ.
It follows that Φε(g)Φε(σ)−1 centralizes Φε(L), and so by Schur’s lemma we
have

(15.6.2) Φ+(g) = αΦ+(σ), Φ−(g) = βΦ−(σ)

for some α, β ∈ C×. As σ has order e, we obtain that

(15.6.3) Z(G) � Φ(ge) = diag(αe · Id, βe · Id).

On the other hand, Z(G) has exponent 2d, where d := gcd(p, 3). It follows
that

(15.6.4) α2de = β2de = 1.

Recall that Φε is irreducible over both L and H = L�Ce. Hence by [Is,
Lemma (8.14)(c)], for each ε = ± and for the coset σL we can find hε ∈ L
such that

(15.6.5) Tr(Φε(σhε)) 
= 0.

Now using (15.6.2) we have

Tr(Φ+(gh+)) = Tr(αΦ+(σ)Φ+(h+)) = Tr(αΦ+(σh+)) = αTr(Φ+(σh+)).

But Tr(Φ+(σh+)) ∈ K by [Gro, Lemma 13.5], and Tr(Φ+(gh+)) ∈ K as
shown in (i). Together with (15.6.5), this shows that α ∈ K. The same
argument applied to h− shows that β ∈ K. On the other hand, the only
roots of unity in K are ±1 if p > 3, and ±ζi3, 0 ≤ i ≤ 2; in particular, they
are (2d)th roots of unity. Hence, (15.6.4) now implies that |α| and |β| both
divide gcd(2de, 2d) = 2d.

We have shown that (β/α)2d = 1. As 2 � d = gcd(p, 3), replacing g
by gj if necessary, we obtain that in fact (β/α)d = 1. Consider the case
α = β. Then Φ(g) = αΦ(σ) by (15.6.2). Recalling that Φ(C) consists of
scalar matrices, we see from (15.6.1) that

Z(GLqn(C))Φ(G) = Φ(Z(GLqn(C)))Φ(H),

as stated.
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(c) It remains to consider the case α 
= β, whence p = 3 and γ := β/α is a

primitive cubic root of unity. First we consider the case 3 � e. Hence (15.6.3)

implies that Z(G) = Z(L)C contains αe ·diag(Id, γe · Id). This is impossible,

since Φ(C) consists of scalar matrices and Φ(Z(L)) = 〈κ · diag(Id,−Id)〉.
Next we consider the case 2 � e. In this case, we can use the same

arguments given in parts (i) and (ii) of the proof of [KT6, Theorem 6.4] to

show that we can choose g so that α = β, and the statement follows again.

In the general case, write e = e1e2 with e1 being the 3-part of e, and so

2 � e1 and 3 � e2. Correspondingly, we can also write g = g1g2 and σ = σ1σ2,

with σ1 being the 3-part of σ, and gi inducing the same automorphism of L

as of σi. Note that G = 〈G1, G2〉 and H = 〈H1, H2〉, where Gi := 〈CL, gi〉
and Hi = L� 〈σi〉 for i = 1, 2. The above two cases then yield

Z(GLqn(C))Φ(Gi) = Φ(Z(GLqn(C)))Φ(Hi)

for i = 1, 2, whence the statement follows for G.

Now we can prove the main result concerning the symplectic groups:

Theorem 15.7. Let q = pf be a power of a prime p > 2, and let n = a+ b

with a, b ∈ Z≥1, 2|ab, and gcd(a, b) = 1. Then the following statements hold.

(a) Over any finite extension k of Fq, the local system W(a, b) introduced in

Definition 15.1 has geometric and arithmetic monodromy groups

Ggeom = Garith,k = 〈t〉 × Sp2n(q),

where Sp2n(q) acts on W(a, b) via one of its total Weil representations

and t acts as the scalar −1 on W(a, b).

(b) Let Heven(a, b) and Hodd(a, b) denote the two irreducible subsheaves of

even, respectively odd, rank of W(a, b). Then their geometric and arith-

metic monodromy groups are Sp2n(q) in an even-dimensional irreducible

Weil representation, respectively C2 × PSp2n(q) in an odd-dimensional

irreducible Weil representation.

(c) Over any subfield k = Fq1/d of Fq, the arithmetic monodromy group

Garith,k of W(a, b) over k satisfies Garith,k = (〈t〉×Sp2n(q)) ·Cd, and in-

duces a subgroup Cd of outer field automorphisms of Sp2n(q). Moreover,

Z(Garith,k) = Z(Ggeom) = 〈t〉 × Z(Sp2n(q))
∼= C2

2 , and

Garith,k/Z(Garith,k) ∼= PSp2n(q)� Cd
∼= PSp2n(q)�Gal(Fq/k).
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(d) Over any finite extension k of Fq, the local system

W̃(a, b) := W(a, b)⊗ Lχ2

has geometric and arithmetic monodromy groups

G̃geom = G̃arith,k = Sp2n(q).

(e) Over any finite extension k of Fq, the local system W�(a, b) introduced
in Definition 15.2 has geometric and arithmetic monodromy groups

G�
geom = G�

arith,k = (Ggeom)
(∞) = Sp2n(q).

(f) Over any subfield k = Fq1/d of Fq, the arithmetic monodromy groups of

W̃(a, b) and of W�(a, b) are isomorphic to Sp2n(q) · Cd, both inducing
a subgroup Cd of outer field automorphisms of Sp2n(q). Moreover, each
group X of these two has Z(X) = Z(Sp2n(q))

∼= C2, and

X/Z(X) ∼= PSp2n(q)� Cd
∼= PSp2n(q)�Gal(Fq/k).

Proof. (i) Let Φ : Garith,k → GLqn(C) denote the corresponding representa-
tion of Garith,k on W := W(a, b). By Theorem 11.1, Φ ∼= Φ+ ⊕ Φ−, where
deg(Φε) = (qn−ε)/2 and each of Φε(Garith,k) and Φε(Ggeom) is an irreducible
almost quasisimple group for ε = ±. As Garith,k/Ggeom is cyclic, it follows
from [GT, Lemma 2.5] that

L := (Garith,k)
(∞) = (Ggeom)

(∞)

and Φε(L) is irreducible, quasisimple.
By Theorem 11.8(i), Tr(Φ(g)) 
= 0 for all g ∈ Garith,k. Applying [KT6,

Proposition 6.7], we conclude that L is quasisimple. Now, as the two irre-
ducible summands of W are hypergeometric in characteristic p with finite
monodromy, we see that Ggeom contains a p′-element g with simple spectrum
of order divisible by MAB.

Assume in addition that qn > 49. Then we can apply Proposition 15.4
to Φε(Ggeom). If L is a cover of AN , then, since deg(Φε) > 24, we see by
Theorem 6.2 and Lemma 9.1 of [KT7] that N − 1 = deg(Φ+) = deg(Φ−),
which is impossible. Hence Φε(L) is a quotient of some Sp2mε

(paε) with
mεaε = nf . Now, using Theorem 11.8(i) and [KT6, Theorem 6.5], we have
that

(15.7.1)
L ∼= Sp2n/d(q

d) for some divisor d|n,
and Φ|L is a total Weil representation.
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Now we consider the remaining case (n, q) = (3, 3), where we have
{deg(Φ+), deg(Φ−)} = {13, 14}. Using [HM], we see that the quasisimple
group L that is irreducible in both Φ+ and Φ− either satisfies (15.7.1), or
L ∼= SL2(13). We also note by [KRLT2, Lemma 3.1] that P (∞) acts on Kl0
as an elementary abelian of order 33 and its image intersects Z(Φ+(G)) triv-
ially by Proposition 14.1(ii). It follows that the image Q of P (∞) in G has
order divisible by 33 and in fact 33 divides |G/Z(G)| which is a divisor of
|Aut(L/Z(L))|. This rules out the latter possibility L ∼= SL2(13), and thus
(15.7.1) always hold.

Now, using Theorem 11.1(i) and [KT6, Lemma 6.3], and taking G to be
either Ggeom or Garith,k, we have that

(15.7.2) CG(L) = Z(G) = C × Z(L),

for a cyclic scalar subgroup C, where |C| ≤ 2 or p = 3 and |C| = 3, 6.

(ii) Recall that G contains an element g of order divisible by

MAB = (qa + 1)(qb + 1)/2.

Without loss of generality, we may assume that a > b, whence a ≥ 2.
It follows from [Zs] that |G| is divisible by a primitive prime divisor � of
p2af − 1; in particular,

(15.7.3) � ≥ 2af + 1 > max(4, nf) ≥ df,

and so � is coprime to |CG(L)| because of (15.7.2). As L � G, it follows
that � divides |Aut(L)| = |L| · df . Together with (15.7.3), this implies that
� divides |L|. Hence we can find some 1 ≤ i ≤ n/d such that � divides
q2di − 1 = p2dif − 1. The choice of � now yields that 2af divides 2dif , i.e.
a|di. But a > n/2 and di ≤ n, so we must have that a = di, and so d|a.
As d|n = a + b by (15.7.1), we also have that d|b. Since gcd(a, b) = 1 by
(15.0.1), we conclude that d = 1. Thus G � L ∼= Sp2n(q).

In the case G = Ggeom, any central element acts on the two indi-
vidual subsheaves of rank (qn ± 1)/2 as an element of p′-order by [KT7,
Proposition 7.1], whence |C| ≤ 2. On the other hand, by Corollary 13.4,
some hypergeometric summand of W(a, b) has nontrivial geometric deter-
minant Lχ2

, hence Ggeom cannot be perfect. It follows that Ggeom = 〈t〉 ×L
with C = 〈t〉 ∼= C2.

(iii) Applying Theorem 11.7(i), (i-bis), and Theorem 11.8(i), and us-
ing the results of (ii), we can now deduce from [KT6, Theorem 6.4] that
Garith,k = Carith,k × L, where either
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(α) Carith,k = 〈t〉 ∼= C2, or
(β) Carith,k = 〈t〉 × 〈z〉 ∼= C6, p = 3, and 2 � f .

Suppose we are in the case of (β). As Garith,Fq
≥ Garith,k, it follows that

Carith,Fq
∼= C6, and that Garith,Fq

/Ggeom
∼= C3, where C3 = 〈z〉 with z acting

via as the scalar ζ3. Thus, modulo Ggeom, any element Frobv,k of Garith,Fq

is zdeg(k/Fq); in particular, the element g := Frob1,Fq
over Fq in Garith,Fq

is
zh for some h ∈ Ggeom. Recall from (ii) that Ggeom = 〈t〉 × Sp2n(q), with
t acting as −1 and Sp2n(q) acting via one of its total Weil representations.

Hence, by [GMT, Lemma 2.3], we have thatm :=
(
Tr(Φ(h))

)2 ∈ Z �=0, and so(
Tr(Φ(g))

)2
= mζ23 /∈ Z. On the other hand, by Lemma 15.3(ii), the square

of the trace at v = 1 over Fq is ±q, a nonzero integer, a contradiction.
Thus (α) must hold for all k ⊇ Fq, and statement (a) is proved com-

pletely.
Statement (b) now follows, by inspecting the image of C2 × Sp2n(q) in

individual irreducible Weil representations.

(iv) To prove (c), we apply Theorem 15.6 to G̃ := Garith,k to obtain a
divisor e|f and a standard subgroup

(15.7.4) H ∼= Sp2n(q)� Ce ≤ Sp2ne(q
1/e) ≤ Sp2nf (p)

such that

(15.7.5) Z(GLqn(C))Φ(G̃) = Z(GLqn(C))Φ(H).

By [KT3, Theorem 3.5], there exists h ∈ H such that |Tr(Φ(h))|2 = q1/e.
Using (15.7.5), we can write Φ(h) = γΦ(g) for some g ∈ G̃ and γ ∈ C×.
As g and h both have finite order, γ is a root of unity and so |γ| = 1. It
follows that |Tr(Φ(g))|2 = |Tr(Φ(h)|2 = q1/e. Theorem 11.8(i-bis) applied to
W(a, b) over Fq1/d implies that q1/e is a power of q1/d, i.e. e|d.

On the other hand, by Lemma 15.3(i), there exists g′ ∈ G̃ such that
|Tr(Φ(g′))|2 = q1/d. Using (15.7.5), we can again write

Φ(g′) = γ′Φ(h′)

for some h′ ∈ H and γ′ ∈ C× with |γ′| = 1. It follows that

|Tr(Φ(h′))|2 = |Tr(Φ(g′)|2 = q1/d.

Note that H embeds in Sp2ne(q
1/e) ≤ Γ (as a standard subgroup), see

(15.7.4). Hence [GMT, Lemma 2.3] applied to Sp2ne(q
1/e) implies that q1/d

is a power of q1/e, i.e. d|e.
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We have shown that d = e. This implies that Garith,k induces the sub-
group Cd of outer field automorphisms of Garith,Fq

/Carith,Fq
∼= L. On the

other hand, the index of Garith,Fq
in Garith,k = Garith,F

q1/d
divides d. This

can happen only when Garith,k = Garith,Fq
· Cd, and that

CGarith,k
(L) = Z(Garith,k) = Z(Garith,Fq

) = 〈t〉 × Z(L) ∼= C2
2 .

Hence we can identify the quotient Garith,k/Z(Garith,k) with the subgroup
PSp2n(q)�Gal(Fq/k) inside Aut(L), proving (c).

(v) Now we prove (d). Recall that Z(L) = 〈j〉, where j acts as −1 on
the even-rank summand Heven of W(a, b) and trivially on the odd-rank sum-
mandHodd ofW(a, b). On the other hand, Φ(t) = −Id, hence tj acts trivially
on Heven and as −1 on Hodd. Since Garith,k = 〈tj〉 × Sp2n(q) and Sp2n(q)
is perfect, it follows that Hodd has arithmetic determinant Lχ2

and Heven

has trivial arithmetic determinant. Hence, both Hodd⊗Lχ2
and Heven⊗Lχ2

have trivial arithmetic determinants.
Next, tensoring with Lχ2

changes the trace at v ∈ E× by a factor of
χ2(v) = ±1. In particular, it does not change the absolute value of the trace
at any v ∈ E×. Furthermore, the [2]� Kummer pullbacks of W(a, b) and

W̃(a, b) are isomorphic, and so G̃geom has a normal subgroup X of index
at most 2, which is also a normal subgroup of Ggeom of index at most 2.
Furthermore, as usual G̃arith,k/G̃geom is cyclic. It follows that

(G̃arith,k)
(∞) = (G̃geom)

(∞) = X(∞) = L ∼= Sp2n(q).

Applying [KT6, Theorem 6.4] to G̃arith,k and arguing as in (ii), we conclude
that G̃arith,k = C̃ × L, where C̃ = 〈c̃〉 and either c̃ ∈ 〈t〉, or p = 3 and
moreover c̃ ∈ 〈t, z〉. [Note that condition (b) of [KT6, Theorem 6.4] is seen
to be satisfied by applying Galois automorphisms to the two irreducible con-
stituents of different dimensions.] As shown above, c̃ has trivial determinant
acting on the two subsheaves of rank (qn ± 1)/2, and this rules out the case
where p = 3 but c̃ /∈ 〈t〉. As t has determinant −1 on the odd-rank subsheaf,
the case c̃ = t is also impossible. Thus c̃ = 1 and G̃arith,k = G̃geom = L.

(vi) For (e), we note that W�(a, b) is also arithmetically isomorphic to

the [MAB]� Kummer pullback of W̃(a, b). HenceG�
geom is a normal subgroup

of G̃geom = Sp2n(q), with cyclic quotient, and that G�
arith,k is a subgroup of

G̃arith,k = G̃geom. It follows that G
�
geom = G�

arith,k = Sp2n(q).

For (f), recall that G̃arith,Fp
contains G̃geom = G̃arith,Fq

= Sp2n(q) as a
normal subgroup with cyclic quotient of order e that divides f := deg(Fq/Fp).
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We now look at the element g := Frob4,Fp
∈ G̃arith,Fp

. For any divisor c of f ,
by Lemma 15.3 the squared absolute value of the trace of gc = Frob4,Fpc

on W(a, b), and so on W̃(a, b) as well, is pc. On the other hand, by (d) and
[GMT, Lemma 2.3], the squared absolute value of the trace of any element in
G�

geom ≤ Ggeom on W�(a, b) is a power of q = pf . It follows that gc /∈ G̃geom

whenever c is a proper divisor of f . Hence we conclude that e = f . Next,
suppose that G̃arith,Fp

induces a group of order e′ of outer (field) automor-

phisms of G̃geom = Sp2n(q); in particular, e′|f . Using Theorem 15.6 and
[GMT, Lemma 2.3] (applied to Sp2ne′(q

1/e′) ≥ Sp2n(q) � Ce′), we get that

the squared absolute value p of the trace of g = Frob4,Fp
on W̃(a, b) is a

power of q1/e
′
= pf/e

′
. It follows that e′ = f .

Now, if Fq1/d is a subfield of Fq, then G̃arith,F
q1/d

/G̃geom is cyclic of order

dividing d and G̃arith,F
q1/d

has index at most f/d in G̃arith,Fp
= G̃geom · Cf ,

whence G̃arith,F
q1/d

= G̃geom · Cd, inducing the subgroup Cd of outer field

automorphisms of G̃geom. It follows that

CG̃arith,F
q1/d

(G̃geom) = Z(G̃arith,F
q1/d

) = Z(G̃geom) ∼= C2,

and we can identify the quotient G̃arith,F
q1/d

/Z(G̃geom) with the subgroup

PSp2n(q)�Gal(Fq/Fq1/d) of Aut(G̃geom).
The arithmetic monodromy group of W�(a, b) over Fq1/d can be deter-

mined entirely similarly, utilizing Lemma 15.3 for Frob2,Fp
.

Remark 15.8. As mentioned above, [GMT, Lemma 2.3] shows that the
square of a total Weil character of Sp2n(q), q any odd prime power, takes
values ± powers of q. This phenomenon is explained in full generality by
Theorem 11.10.

16. Determination of monodromy groups: the case
M = q + 1 and n ≥ 4

In this section we assume that

(16.0.1) 2 � ab, gcd(a, b) = 1, n = a+ b ≥ 4, p any prime, q = pf ,

in particular, M = q + 1, A = (qa + 1)/(q + 1), B = (qb + 1)/(q + 1),
gcd(A,B) = 1. Fix α, β ∈ Z such that

(16.0.2) αA− βB = 1 and α+ β coprime to M
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using Corollary 13.2. With this choice of parameters, the principal objects
of this section are the following local systems on Gm/Fp and A1/Fp, cf.
Definition 11.5 and Theorem 12.1.

Definition 16.1. Let us denote by

Wα(a, b) = W(a, b) := W(M,A,B)

the arithmetically semisimple local system on Gm/Fp whose trace function
at v ∈ E×, E/Fp a finite extension, is given by

v �→ 1

#E

∑
x,w∈E

ψE

(
xw − v−αxq

b+1 − vβwqa+1
)
.

This system W(M,A,B) is the descent (cf. the beginning of §13) from
Gm/Fp(μMAB) to Gm/Fp of the direct sum of the Kloosterman sheaves

Kl(M,A,B, σ−β , σ−α)(−A−B + 1)

= Klψ
(
Char(MAB)� (Char(A, σ−β) � Char(B, σ−α)

)
(−A−B + 1)

with 1 
= σ ∈ Char(q + 1), see (4.2.1), and the hypergeometric sheaf

Hyp(M,A,B,1,1)(−A−B + 2)

= Hypψ
(
Char(MAB) � {1}� (Char(A) � Char(B));1

)
(−A−B + 2),

each summand being the relevant (grwt=2(R
2(pr1)(Fχ,ρ)))(1), see (5.0.1). Its

Kummer pullback

W�(a, b) := [MAB]�W(M,A,B)

is a lisse sheaf on A1, with trace function at v ∈ E, E/Fp a finite extension,
given by

(16.1.1) v �→ 1

#E

∑
x,w∈E

ψE

(
vxw − xq

b+1 − wqa+1
)
.

Definition 16.2. When 2 � q, we also consider the local system

W̃(a, b) := W(a, b)⊗ Lχ2
,

where χ2 is the quadratic character. By Theorem 13.3, the geometric de-
terminant of W(a, b) is Lχ2

and the geometric determinant of W̃(a, b) is
trivial.
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First we prove an analogue of Lemma 15.3:

Lemma 16.3. Given any odd integers a, b ≥ 1, the following statements
hold.

(i) Suppose p > 2. Then for any subfield E of Fq2 , the squared absolute
value of the trace of Frobv,E at v = 2 on W�(a, b) as defined in (16.1.1)
is #E. If in addition gcd(a, b) = 1, then W�(a, b) = [MAB]�W(a, b),
and hence the squared absolute value of the trace of Frobv,E at v = 4
on W(a, b) is #E.

(ii) Suppose p = 2. Then for any subfield E = Fq2/c of Fq2 , the trace of
Frobv,E at v = 0 on W�(a, b) as defined in (16.1.1) is #E if 2 � c and
0 if 2|c.

Proof. (i) First we prove the statement in its W�(a, b) form. By Defini-
tion 16.1, the trace at v = 2 is

1

#E

∑
x,w∈E

ψE

(
2xw − xq

b+1 − wqa+1)
=

1

#E

∑
x,w∈E

ψE

(
2xw − xq+1 − wq+1

)
.

Following part (b) of the proof of Theorem 11.8 and taking s = t := 1/2, we
see that the squared absolute value of this trace is #Null(E), where

Null(E) =
{
(x,w) ∈ E2 | x = (w/2)1/q + (w/2)q, w = (x/2)1/q + (x/2)q

}
,

cf. (11.8.3). We must show that the pair (x,w := (x/2)1/q + (x/2)q) lies in
Null(E) for any x ∈ E. Assuming x ∈ E ⊆ Fq2 and w = (x/2)1/q + (x/2)q,
we have that

(w/2)1/q + (w/2)q =
(
(x/2)1/q

2

+ (x/2) + (x/2) + (x/2)q
2)
/2 = 2x/2 = x.

Thus #Null(E) = #E, and the claim follows for W�(a, b). For W(a, b), note
that MAB ≡ 2(mod (p − 1)) and so 2MAB = 4 in E, whence we are done
by Lemma 14.3.

(ii) First we show that

(16.3.1)
∑
x∈E

ψE(x
qa+1) =

{
#E, if 2 � c,

0, if 2|c.

Write q = pf with p = 2. To say that E is a subfield of Fq2 is to say that
c|2f . If c is odd then c|f . Putting r := pf/c, we have E = Fr2 . In this case,
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as both a, c are odd, we have qa + 1 = rac + 1 ≡ r + 1(mod (r2 − 1)). Then
for x ∈ E = Fr2 , x

qa+1 = xr+1 ∈ Fr2 , and hence

TrFr2/Fr
(xr+1) = xr+1 + xr

2+r = 2xr+1 = 0.

Thus for x ∈ E = Fr2 ,

ψE(x
qa+1) = ψ

(
TrFs/F2

(
xq

a+1
))

= ψ

(
TrFr/F2

(
TrFr2/Fr

(xr+1)
))

= ψ
(
TrFr/F2

(0)
)
= ψ(0) = 1.

Hence
∑

x∈E ψE(x
qa+1) = #E as claimed.

If c is even, then 2f/c divides f , so that E is a subfield of Fq. Therefore,
xq

a+1 = x2 for any x ∈ E, and so∑
x∈E

ψE(x
qa+1) =

∑
x∈E

ψE(x
2) =

∑
x∈E

ψE(x) = 0.

Now, the trace at v = 0 in question is

1

#E

∑
x,w∈E

ψE

(
xq

b+1 + wqa+1)
=

1

#E

∑
x∈E

ψE(x
qb+1)

∑
w∈E

ψE(w
qa+1),

and the statement follows from (16.3.1).

Lemma 16.4. Let Z be a finite abelian group, q = pf a prime power, and
let λ0, λ1, . . . , λq ∈ Irr(Z).

(i) Suppose Λ :=
∑q

i=0 λi vanishes on Z � {1}. Then |Z| divides q + 1.
(ii) Suppose there is some element z ∈ Z such that Λ =

∑q
i=0 λi vanishes

on Z � {1, z} and Λ(z) = −(q + 1). Then |Z| divides 2(q + 1).
(iii) Suppose 2|n ≥ 4, λ2

0 = 1Z , (n, q) 
= (4, 2), and that

Σ := λ0 +D

q∑
i=0

λi,

with D := (qn − 1)/(q + 1), takes values only in{
−qn, 0,±pi | 0 ≤ i ≤ nf − 1

}
on Z � {1}. Then either |Z| divides q + 1, or Z contains an element
z with λi(z) = −1 for all 0 ≤ i ≤ q. In the latter case, |Z| divides
2(q + 1).
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(iv) Suppose (n, q) = (4, 2), λ2
0 = 1Z , and that

Σ := λ0 +D

q∑
i=0

λi,

with D := (qn − 1)/(q + 1) = 5, takes values only in{
0,±qi | 0 ≤ i ≤ n− 1

}
on Z � {1}. Then either |Z| divides q + 1, or Z = {1, z} ∼= C2 with
λ1(z) = λ2(z) = −λ0(z).

Proof. (i) Note that

[Λ, 1Z ]Z =
1

|Z|
∑
x∈Z

Λ(x) =
q + 1

|Z|

is an integer, whence the statement follows.

(ii) Let α be the linear character of the cyclic subgroup 〈z〉 sending z to
−1. Since Z is abelian, we can find a linear extension β of α to Z. Now

[β,Λ]Z =
1

|Z|
∑
x∈Z

β(x)Λ(x) =
(q + 1)β(1)− (q + 1)β(z)

|Z| =
2(q + 1)

|Z|

is an integer, whence the statement follows.

(iii) Consider any 1 
= x ∈ Z. By the assumption, λ0(x) = ±1, and
Σ(x) = 0, −qn, or ±pj for some 0 ≤ j ≤ nf − 1. Now

Z � Σ(x)− λ0(x) = D · Λ(x),

and so Λ(x) = (Σ(x) − λ0(x))/D is both rational and an algebraic integer,
whence

(16.4.1) D divides Σ(x)− λ0(x).

We will now show that

(16.4.2) Either Σ(x) = λ0(x) or Σ(x) = −qn.

Indeed, if (n, q) 
= (6, 2), then pnf − 1 admits a primitive prime divisor �
by [Zs]; if (n, q) = (6, 2), we take � := D = 21. In either case, �|D and so
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� divides Σ(x) − λ0(x) by (16.4.1); furthermore, � ≥ 5. Now if Σ(x) = 0
or −λ0(x), then |Σ(x) − λ0(x)| ≤ 2 < �, a contradiction. Next, suppose
that Σ(x) = ±λ0(x)p

j with 1 ≤ j ≤ nf − 1. Then � divides pj ∓ 1. If in
addition (n, q) = (6, 2), then 0 ≤ j ≤ 5, so � = 21 cannot divide pj − 1,
again a contradiction. Consider now the case (n, q) 
= (6, 2). Then �|(p2j−1)
implies by the choice of � that nf |2j. However, 1 ≤ j < nf , so we must have
j = nf/2. In this case,

1 ≤ |Σ(x)− λ0(x)| ≤ pj + 1 = pnf/2 + 1 = qn/2 + 1 < (qn − 1)/(q + 1) = D

(using (n, q) 
= (4, 2)), and this contradicts (16.4.1).
Now, if Σ(x) 
= −qn for all 1 
= x ∈ Z, then by (16.4.2) we have that

Σ(x) = λ0(x) and Λ(x) = 0 for all 1 
= x ∈ Z, whence the statement follows
from (i).

Consider the case Σ(x) = −qn for some 1 
= x ∈ Z. Then by (16.4.1) we
must have that λ0(x) = −1, and so

q∑
i=0

(−λi(x)) = −Λ(x) = (λ0(x)− Σ(x))/D = q + 1,

implying that all roots of unity −λi(x) must be 1. Note that Σ is faithful by
assumption, and fix an element z ∈ Z with Σ(z) = −qn, which implies that
λi(z) = −1 for all i. In this case, λi(xz

−1) = 1 for all i, and so Σ(xz−1) = qn

and x = z by faithfulness of Σ. We have shown that Λ(x) = −(q + 1) for
x = z, and Λ(x) = 0 for all x ∈ Z � {1, z}, and so the statement follows
from (ii).

(iv) We continue to argue as in (iii) and note that (16.4.1) still holds.
In particular, this rules out the possibilities Σ(x) = −λ0(x), 0, ±2, −λ0(x),
and ±8 for 1 
= x ∈ Z. Thus Σ(x) ∈ {λ0(x),−4λ0(x)} when 1 
= x ∈ Z.
Now if Σ(x) 
= −4λ0(x) for all 1 
= x ∈ Z, then Σ(x) = λ0(x) and Λ(x) = 0,
whence |Z| divides q + 1 by (i).

Suppose that Σ(x) = −4λ0(x) for some 1 
= x ∈ Z. Then

2∑
i=0

λi(x) = Λ(x) = (Σ(x)− λ0(x))/D = −λ0(x),

and so (λ1(x)/λ0(x)) + (λ2(x)/λ0(x)) = −2. As λi(x)’s are roots of unity,
we must have that

λ1(x) = λ2(x) = −λ0(x).
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Now, fix an element z ∈ Z with Σ(z) = −4λ0(z), for which we then have
λ1(z) = λ2(z) = −λ0(z). Then,

λ0(xz
−1) = λ1(xz

−1) = λ2(xz
−1),

and so Σ(xz−1) = 16λ0(xz
−1) ∈ {±16}, whence x = z by the assumption.

Thus, when y ∈ Z we have that Λ(y) is equal to 3 if y = 1, −λ0(z) if
y = z, and 0 otherwise. As in (ii), let α be the linear character of the cyclic
subgroup 〈z〉 sending z to λ0(z), and consider a linear extension β of α to Z.
Now

[β,Λ]Z =
1

|Z|
∑
y∈Z

β(y)Λ(y) =
β(1)Λ(1) + β(z)Λ(z)

|Z| =
2

|Z|

is an integer, and so |Z| divides 2. Since z 
= 1, we have Z = {1, z} ∼= C2, as
stated.

For any prime power q and any n ≥ 2, recall that the finite unitary group
GU(W ) = GUn(q), with W := Fn

q2 , admits a total Weil representation of
degree qn over C, with character

(16.4.3) ζn,q(g) = (−1)n(−q)
dimF

q2
Ker(g−1W )

for any g ∈ GUn(q), see e.g. [TZ2, (9)]. Fix primitive (q+1)th roots of unity
� ∈ C× and � ∈ F×

q2 . Then ζn,q =
∑q

i=0 ζ
i
n,q is the sum of q + 1 irreducible

Weil characters of GUn(q), with

(16.4.4) ζin,q(g) =
(−1)n

q + 1

q∑
l=0

�il(−q)
dimF

q2
Ker(g−�l·1W )

being the character of the irreducible summand of the total Weil represen-
tation of GUn(q), on which the generator z := � · Id acts as the scalar �i,
see [TZ2, Lemma 4.1]. More intrinsically, μq+1(Fq2) acts on GUn(q) by
(ξ, g) �→ ξg. For each C-valued character χ of μq+1(Fq2), the correspond-
ing Weil character ζχ,n is the χ-isotypical component of ζn,q:

ζχ,n(g) =
(−1)n

q + 1

∑
ξ∈μq+1(Fq2 )

χ(ζ)(−q)
dimF

q2
Ker(gξ−1W )

.

If 2|q or if n ≥ 3, then the restrictions ζin of ζin,q to SUn(q), 0 ≤ i ≤ q, are pair-
wise distinct irreducible Weil characters of SUn(q), see [TZ2, Lemma 4.7].
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Formula (16.4.4) also makes sense for n = 1, except that ζ01,q becomes the

zero class function on GU1(q). With this convention, we note the following

branching formulas, which generalize [KT4, (2.0.3)]:

Lemma 16.5. (i) Let n = m+ l with m, l ∈ Z≥1. Then the restriction of

ζin,q to the natural subgroup GUm(q)×GUl(q) of GUn(q) is∑
0≤r,s≤q,

(q+1)|(r+s−i)

ζrm,q � ζsl,q.

(ii) Let T = 〈t〉 be a cyclic maximal torus of order qn − (−1)n of GUn(q),

and let β be a generator of the character group Irr(T ). Then the re-

striction of ζin,q to T is ∑
0≤r<qn−(−1)n,

(q+1)|(r−i)

βr + (−1)nδi,01T .

Proof. (i) Formula (16.4.3) shows that the restriction of ζn,q to the subgroup

GUm(q)×GUl(q) is ζm,q � ζl,q. Now write

z = diag(zm, zl)

with zm = � · Id ∈ Z(GUm(q)) and zl = � · Id ∈ Z(GUl(q)). The desired

formula then follows by looking up the �i-eigenspace of z in Vm�Vl, with Vm

affording the GUm(q)-character ζm,q and Vl affording the GUl(q)-character

ζl,q.

(ii) Note that no nontrivial power ti has eigenvalue 1 on Fn
q2 , hence

ζn,q(t
i) = (−1)n for 1 
= ti ∈ T by (16.4.3), and thus

ζn,q|T =

qn−(−1)n−1∑
j=0

βj + (−1)n1T .

We can choose t in such a way that z = t(q
n−(−1)n)/(q+1), and then deduce

the stated formula by looking up the �i-eigenspace for z in ζn,q|T .

The total Weil character
∑q

i=0 ζ
i
n of SUn(q) can be characterized as

follows:
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Theorem 16.6. Let p be any prime and q be any power of p. Let L = SUn(q)
with n ≥ 3 and (n, q) 
= (3, 2). Suppose ψ is a (not necessarily irreducible)
complex character of L such that

(a) ψ(1) = qn;
(b) ψ(g) ∈ {0,±qi | 0 ≤ i ≤ n} for all g ∈ L; and
(c) every irreducible constituent of ψ is among the q + 1 irreducible Weil

characters ζun , 0 ≤ u ≤ q, of L.

Then ψ is the total Weil character, that is, ψ =
∑q

u=0 ζ
u
n .

Proof. (i) By assumption (c),

ψ =

q∑
u=0

auζ
u
n ,

where au ∈ Z≥0. Setting κ := (−1)n and comparing the degrees, we obtain

(a0 − 1)κ =
qn − κ

q + 1

(
q + 1−

q∑
u=0

au

)
;

in particular, a0 − 1 is divisible by (qn − κ)/(q + 1). On the other hand,

−1 ≤ a0 − 1 ≤ ψ(1)

ζ0n(1)
− 1 =

qn

(qn + qκ)/(q + 1)
− 1

≤ q3

q2 − q
− 1 =

q2 − q + 1

q − 1
<

q3 − 1

q + 1
≤ qn − κ

q + 1
,

since n ≥ 3 and (n, q) 
= (3, 2). It follows that

(16.6.1) a0 = 1,

q∑
u=1

au = q.

(ii) Now, view L as SU(W ), where the space W = Fn
q2 is endowed with

an L-invariant non-degenerate Hermitian form, and consider the subgroup
H ∼= SU3(q) of L that acts trivially on a non-degenerate (n−3)-dimensional
subspace ofW . An easy induction on n ≥ 3 using Lemma 16.5(i) and (16.6.1)
shows that

(16.6.2) ψH =

q∑
u=0

buζ
u
3 , where bu := qn−3 + κ(1− au),
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in particular,

(16.6.3) b0 = qn−3,

q∑
u=1

bu = qn−2.

Also, let d := gcd(2, q + 1), ε = ζq+1 be a primitive (q + 1)th root of unity,
and set

Σk :=

q∑
u=1

buε
uk

for any k ∈ Z, which in fact depends only on k(mod (q + 1)). Then (16.6.3)
implies that

(16.6.4) Σ0 = qn−2, |Σk| ≤ qn−2.

(iii) Here we consider the case q ≥ 4. This ensures that q − 1 does not
divide q + 1. We will use the character table (and the notation for various
conjugacy classes) of H as displayed in [Geck, Table 3.1]. Consider any k ∈ Z
with (q+1)/2 � k. Evaluating ψ at an element of the class C

(k,−k,0)
6 , we have

by (b) that

(16.6.5) Σ′
k := 2b0 +Σ0 +Σk +Σ−k = qn−2 + 2qn−3 +Σk +Σk

belongs to

V := {0,±qi | 0 ≤ i ≤ n}.
Next, as q ≥ 4, by adding q+1 to k if necessary, which does not change Σk,

we may assume that (q−1) � k. Evaluating ψ at an element of the class C
(k)
7

and using (b) again, we have that Σk ∈ V.
Now, if |Σk| ≤ qn−4, then

qn−1 > qn−2 + 2qn−3 + 2qn−4 ≥ |Σ′
k| ≥ qn−2 + 2qn−3 − 2qn−4 > qn−2,

contradicting (16.6.5). On the other hand, if Σk = qn−2, respectively, −qn−2,
qn−3, then Σ′

k = qn−3(3q + 2), qn−3(2− q), qn−3(q + 4), respectively, which
again contradicts (16.6.5). Together with (16.6.4), this leaves only one pos-
sibility that Σk = −qn−3. Now using (16.6.2), we deduce that

q∑
k=0

auε
uk = 0



Hypergeometric sheaves and finite groups 653

if 1 ≤ k ≤ q and k 
= (q + 1)/2. Thus the polynomial

f(t) :=

q∑
u=0

aut
u ∈ Z[t]

has εk with 1 ≤ k ≤ q, k 
= (q+1)/2 as roots. Also, f(1) =
∑q

u=0 au = q+1
by (16.6.1). If 2|q, it follows that f(t) is divisible by (tq+1−1)/(t−1), and so
f(t) =

∑q
u=0 t

u. If 2 � q, we have that f(t) is divisible by (tq+1− 1)/(t2− 1),
whence f(t) = (at+ b)(tq−1 + tq−3 + . . .+ t2 + 1) with a, b ∈ Q. Evaluating
at t = 1 we obtain a+ b = 2. Next, b = f(0) = a0 = 1, and so a = 1, whence
f(t) =

∑q
u=0 t

u again. In other words, au = 1 for all u, as stated.

(iv) Assume now that q = 2. Note that condition (b) implies that ψ is
real-valued. However, ζ1n = ζ2n. It follows from (16.6.1) that a1 = a2 = 1, as
stated.

Finally, we consider the case q = 3. Then ζin is real-valued when i = 0, 2
and ζ1n = ζ3n. Again using (16.6.1) and assuming that ψ is not the total Weil
character, we must then have that ψ = ζ0n + 3ζ2n, i.e.

(a0, a1, a2, a3) = (1, 0, 3, 0).

Now using (16.6.2) and evaluating ψ at an involution g ∈ H, we obtain

ψ(g) = 3n−2 − 8(−1)n−3,

which does not belong to V, a contradiction.

Remark 16.7. The total Weil character
∑q

i=0 ζ
i
n of SUn(q) is characterized

in Theorem 16.6 as the unique character, whose irreducible constituents are
among the q+1 Weil characters ζun , 0 ≤ u ≤ q, and which takes values only
among 0,±ql, 0 ≤ l ≤ n. One may wonder if an analogous characterization
can be found for the total Weil character ζn,q =

∑q
i=0 ζ

i
n,q of GUn(q):

Is ζn,q the only character of GUn(q), whose irreducible constituents are
among the (q + 1)2 Weil characters ζin,qλ

j, 0 ≤ i, j ≤ q (where λ is a fixed
linear character of order q + 1 of GUn(q), see [TZ2, (10)]), and which takes
values only among 0,±ql, 0 ≤ l ≤ n?

Suppose 2 � q and let χ̃2 = λ(q+1)/2 denote the unique quadratic charac-
ter of GUn(q). Then certainly χ̃2ζn,q also satisfies the same properties, and
in fact, this is the character obtained when we embed GUn(q) in Sp2n(q)
and restrict a total Weil character of Sp2n(q) to GUn(q), see e.g. [KT3,
Theorem 3.1].
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However, there are other sums of irreducible Weil characters of GUn(q)
that also share the same properties. For instance, consider any 1 ≤ e ≤ q
and the character

∑q
i=0 ζ

i
n,qλ

ei. We may assume that λ(g) = �d whenever

det(g) = �d, 0 ≤ d ≤ q. For such an element g ∈ GUn(q), by (16.4.4) we
have

q∑
i=0

ζin,qλ
ei(g) =

(−1)n

q + 1

q∑
i=0

�edi
q∑

l=0

�il(−q)
dimF

q2
Ker(g−�l·1W )

=
(−1)n

q + 1

q∑
l=0

(−q)
dimF

q2
Ker(g−�l·1W ) ·

q∑
i=0

�i(l+de)

=
(−1)n

q + 1

q∑
l=0

(−q)
dimF

q2
Ker(g−�l·1W ) · (q + 1)δl,−de

= (−1)n(−q)
dimF

q2
Ker(g−�−de·1W )

;

in particular,
∑q

i=0 ζ
i
n,qλ

ei takes values only among (−1)n(−q)l, 0 ≤ l ≤ q,
as ζn,q does.

Another way of describing the character
∑q

i=0 ζ
i
n,qλ

ei is this. For each
a ∈ Z/(q + 1)Z, the map of GUn(q) to itself given by

(16.7.1) γe : g �→ g · det(g)e

is an endomorphism of GUn(q); furthermore, if det(g) = �d then

Ker(g − �−de · 1W ) = Ker(γe(g)− 1W ).

For any representation Φ of GUn(q),

g �→ Φ(γe(g)) = Φ(g · det(g)e))

is another representation of GUn(q). Applying this construction to the total
Weil representation with character ζn,q, we get a new representation whose
character is

∑q
i=0 ζ

i
n,qλ

ei. We also note that, for e ∈ Z/(q + 1)Z, γe is an
automorphism of GUn(q) precisely when ne+ 1 is invertible in Z/(q + 1)Z.

It has recently been proved in [Lee] that the two aforementioned kinds
of characters are the only characters that can share these properties.

Fix a primitive MABth roots of unity ε ∈ Fq
×
and ε ∈ C×, and set

ξ := εB, ν := εA, ξ := εB, ν := εB,
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so that � = ξA = νB and � = ξA = νB. With this, we can prove the following

characterization of the total Weil character ζn,q of GUn(q), cf. (16.4.3).

Theorem 16.8. Given the hypothesis (16.0.1), and let

Φ : G := GUn(q) → GLqn(C)

be a faithful complex representation that satisfies the following conditions:

(a) Φ = ⊕q
j=0Φj, where Φj is irreducible of degree (qn − 1)/(q + 1) + δj,0,

and Φ0 is self-dual if 1 ∈ {a, b};
(b) There is an element g ∈ G such that Φj(g) has spectrum{

εi | 0 ≤ i ≤ MAB − 1, (εi)A 
= �βj , (εi)B 
= �αj
}

for 0 ≤ j ≤ q, and that G = 〈[G,G], g〉.

Then there exists an automorphism γ of G such that Tr
(
Φ(γ(h))

)
= ζn,q(h)

for all h ∈ G.

Proof. (i) By hypothesis, g has both order and central order equal to

MAB = (qa + 1)(qb + 1)/(q + 1),

and Φj(g) has simple spectrum for 0 ≤ j ≤ q. Applying [KT7, Theorem 8.3],

we see that gZ(G) generates a cyclic maximal torus in G/Z(G), and, after

a suitable conjugation, we may assume that

g = diag
(
ξc, ξ−qc, ξq

2c, . . . , ξ(−q)a−1c, νd, ν−qd, νq
2d, . . . , ν(−q)b−1d

)
with c ∈ Z/(qa + 1)Z and d ∈ Z/(qb + 1)Z. Since g generates G modulo

[G,G], det(g) = �c+d has order q + 1. Replacing ε by another generator

of μMAB to change � to another element of order q + 1, we may therefore

assume that c+ d ≡ 1(mod (q + 1)). Now, the condition that g has central

order qn−1 + 1 is equivalent to that 1 = ξic/νid = εi(cB−dA) if and only if

MAB|i, i.e.

(16.8.1) gcd(c, A) = gcd(d,B) = gcd(cB − dA, q + 1) = 1.

(ii) The element g belongs to the standard subgroup GUa(q) × GUb(q)

of G. Hence we can apply Lemma 16.5(i) to GUa(q) × GUb(q), and then
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apply Lemma 16.5(ii) to

x := diag
(
ξ, ξ−q, ξq

2

, . . . , ξ(−q)a−1) ∈ GUa(q),

y := diag
(
ν, ν−q, νq

2

, . . . , ν(−q)b−1) ∈ GUb(q),

to find that the spectrum of g = diag(x, y) in a Weil representation with
character ζjn,q is the left-hand-side of

(16.8.2)

⎧⎨⎩ξrcνsd

∣∣∣∣ 0 < r ≤ qa,
0 < s ≤ qb,
r + s ≡ j(mod M)

⎫⎬⎭ = [
MAB

√
1]�

(
[ A
√

�cj ] ∪ [ B
√

�dj ]
)
,

where we denote [ N
√
t] := {z ∈ C | zN = t} for any t ∈ C. To show that the

left-hand-side and the right-hand-side of (16.8.2) are equal, suppose that
ξrcνsd = ξr

′cνs′d with

(16.8.3) 0 ≤ r, r′ ≤ qa, 0 ≤ s, s′ ≤ qb, r + s ≡ r′ + s′ ≡ j(mod M).

Then

(16.8.4) ξ(r−r′)c = ν(s′−s)d,

and so B(q + 1)(r − r′)c divides A(q + 1) = ord(ξ). Since

gcd(A,B) = gcd(c, A) = 1

(see (16.0.1) and (16.8.2)), we can write r−r′ = Au for some u ∈ Z. Likewise,
we have s− s′ = Bv for some v ∈ Z, and now, from (16.8.3) and (16.8.4) we
obtain

cu+ dv = 0, Au+Bv = 0

in Z/(q + 1)Z. The determinant cB − dA of this system is invertible in
Z/(q+1)Z by (16.8.1), hence u, v ∈ (q+1)Z, i.e. r = r′ and s = s′. Now we
can readily check that, when (r, s) satisfies (16.8.3) with s = 0, ξrcνsd runs
over [ A

√
�cj ], and when (r, s) satisfies (16.8.3) with r = 0, ξrcνsd runs over

[ B
√

�dj ], and this establishes the equality in (16.8.2).

(iii) Noting A ≡ a and B ≡ b modulo q + 1 and using (16.0.1), we have
that αn− (α + β)b = 1 and so (α + β)b = αn− 1 in Z/(q + 1)Z. Recalling
c+ d = 1 in Z/(q + 1)Z and using (16.0.2) and (16.8.1), we then see that

(α+ β)(cb− da) = (α+ β)
(
b(1− d)− ad

)
= (α+ β)(b− nd)

= αn− 1− (α+ β)nd = n
(
α− (α+ β)d

)
− 1
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is coprime to q + 1. Thus

(16.8.5) gcd(1 + ne, q + 1) = 1

for e := (α+ β)d−α = βd−αc. This implies by Remark 16.7 that the map
γe of (16.7.1) is an automorphism of G. Hence we can replace g by

γe(g) = zeg

= diag
(
ξc

′
, ξ−qc′ , ξq

2c′ , . . . , ξ(−q)a−1c′ , νd
′
, ν−qd′

, νq
2d′

, . . . , ν(−q)b−1d′)
,

where

c′ := c+Ae = c+A(βd−αc) = c(1−αA)+dβA = −cβB+dβA = β(dA−cB)

and

d′ := d+Be = d+B(βd−αc) = d(1+βB)−cαB = dαA−cαB = α(dA−cB).

Setting t := dA− cB, we have that

(16.8.6) gcd(t, q + 1) = 1

by (16.8.1). Now, (16.8.2) applied to c′ and d′ shows that the spectrum of g
in a Weil representation with character ζjn,q becomes

(16.8.7) [
MAB

√
1]�

(
[ A
√

�tβj ] ∪ [ B
√

�tαj ]
)
.

(iv) Now we will determine the character ϕj of Φj . Any irreducible con-
stituent of the restriction (Φj)|L to L := [G,G] ∼= SUn(q) has degree dividing
deg(Φj), hence, by [TZ1, Theorem 4.1], it must be equal to deg(Φj) and in
fact (Φj)|L is an irreducible Weil character of L. Thus (ϕj)|L = (ζ

rj
n,q)|L for

some 0 ≤ rj ≤ q; in fact, rj = 0 if and only if j = 0 (by degree comparison).
Now, applying [TZ2, Lemma 4.7], we see that

ϕj = ζrjn,qλ
sj

with 0 ≤ sj ≤ q, where λ ∈ Irr(GUn(q)) sends x ∈ GUn(q) to �d whenever
det(x) = �d. Since g now has det(g) = �1+ne, it follows from (16.8.7) that
Φj(g) has spectrum

[
MAB

√
1]�

(
�(1+ne)sj · [ A

√
�tβrj ] ∪ �(1+ne)sj · [ B

√
�tαrj ]

)
.
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But, according to (b) the spectrum of Φj(g) is [
MAB

√
1]�

(
[ A
√

�βj ]∪ [ B
√

�αj ]
)
.

It follows that

(16.8.8) �(1+ne)sj · [ A
√

�tβrj ] ∪ �(1+ne)sj · [ B
√

�tαrj ] = [ A
√

�βj [∪[ B
√

�αj ].

Since n ≥ 4, we may assume that a > b and hence A > B. In this case, the set
�(1+ne)sj ·[ A

√
�tβrj ] of size A cannot be contained in the set [ B

√
�αj ] of size B.

Therefore, there exists some θ that belongs to both �(1+ne)sj · [ A
√

�tβrj ] and

[ A
√

�βj ]. Now, both these two sets become θ · [ A
√
1], and so they are equal:

(16.8.9) �(1+ne)sj · [ A
√

�tβrj [= [ A
√

�βj ].

Equating the products of all elements in each set (and using 2 � A), we get

(16.8.10) �A(1+ne)sj�tβrj = �βj , i.e. A(1+ne)sj+tβrj = βj in Z/(q+1)Z.

Assume in addition that 1 ≤ j ≤ q. Then (16.8.8) is an equality of two
disjoint unions of two subsets, so (16.8.9) implies

(16.8.11) �(1+ne)sj · [ B
√

�tαrj ] = [ B
√

�αj ].

Again equating products over all elements in each set, we obtain

(16.8.12) B(1 + ne)sj + tαrj = αj in Z/(q + 1)Z.

The system of linear equations (16.8.10) and (16.8.12), in two variables sj
and rj , has determinant (1+ne)t(αA−βB) = (1+ne)t, an invertible element
in Z/(q+1)Z by (16.8.5) and (16.8.6). Hence it has a unique solution sj = 0,
rj = j/t.

Assume now that j = 0. Then r0 = 0 as noted above. If b > 1, then we
have B > 1, and (16.8.8) and (16.8.9) imply that

�(1+ne)sj ·
(
[

B
√
1]� {1}

)
= [

B
√
1]� {1}.

In particular, for some 1 
= θ ∈ [ B
√
1] we have �(1+ne)sjθ ∈ [ B

√
1], whence

(16.8.12) also holds, and we can conclude as above that s0 = 0. Suppose
b = 1. Then (16.8.10) implies that A(1 + ne)s0 = 0 and so (n− 1)s0 = 0 in
Z/(q + 1)Z. We also have in this case that the character ζ0n,jλ

s0 of the self-
dual representation Φ0 is real, whence λs0 is real, i.e. 2s0 = 0 in Z/(q+1)Z.
As 2|n, we conclude that s0 = 0.
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Thus we have shown that ϕj = ζ
j/t
n,q for 0 ≤ j ≤ q. Hence the character

of Φ is
q∑

j=0

ζj/tn,q =

q∑
j=0

ζjn,q = ζn,q,

as stated.

Proposition 16.9. Given the hypothesis (16.0.1), suppose that for some
δ = 0 or 1, there is a hypergeometric sheaf H of rank D = (qn−1)/(q+1)+δ
in characteristic p with finite geometric monodromy group G, which is almost
quasisimple. Assume furthermore that G(∞) is irreducible on H and that the
following conditions hold.

(α) If (n, q) = (4, 2), then G/Z(G) contains an element g of order 9, and
furthermore G(∞) admits only real-valued traces on H.

(β) If (n, q) = (4, 3), then G/Z(G) contains an element g of order 28 and
an elementary abelian subgroup Q ∼= C4

3 .
(γ) If (n, q) = (6, 2), then G/Z(G) contains an element g of order 33 and

an elementary abelian subgroup Q ∼= C6
2 .

Then one of the following statements holds.

(i) G(∞) is a cover of some AN with N ≥ 8.
(ii) G(∞) is a quotient of SUn(q).
(iii) q = 2, γ = 0, and G(∞) is a quotient of SLn/2(4).

Proof. Let S denote the (unique) non-abelian composition factor of G, so
that S � G/Z(G) ≤ Aut(S). As G is almost quasisimple, E(G) = G(∞).
Next, since H is hypergeometric, a generator of I(0) has a simple spectrum
on H, whence G satisfies the condition (�) of [KT7, §6].

(A) First we consider the generic case, that is, where D ≥ 23. Note that
the given rank D cannot be equal to 23, 24, or 28, since n ≥ 4. As D ≥ 23,
it follows from [KT7, Theorem 6.4] that S is not any of 26 sporadic simple
groups. We will now assume that G(∞) is not a cover of an alternating group,
whence S is a simple groups of Lie type in some characteristic r. Now we
can apply [KT7, Theorem 6.6] to conclude that there is some power s of r
such that either S = PSL2(s), or E(G) is a quotient of SLm(s), SUm(s), or
Sp2m(s), and it acts on H via one of its Weil representations. Furthermore,
as D ≥ 23, we have r = p by [KT7, Theorem 7.3].

(a) Consider the case S = PSLm(s) with m ≥ 2, and

D = (sm − s)/(s− 1) or (sm − 1)/(s− 1).
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If D = (qn+q)/(q+1), then p|D, whence (qn+q)/(q+1) = (sm−s)/(s−1).
Comparing the p-part, we obtain s = q and

sn−2 − . . .+ s2 − s+ 1 =
sn−1 + 1

s+ 1
=

sm−1 − 1

s− 1
= sm−1 + . . .+ s2 + s+ 1.

Since n ≥ 4, it follows that m ≥ 3, and −s + 1 ≡ s + 1(mod s3), which is
impossible.

Suppose D = (qn − 1)/(q + 1), i.e. γ = 0. Then p|(D + 1), whence
D = (sm − 1)/(s − 1) ≡ 1(mod p) and so p = 2. If moreover s = 2, then
2m = D + 1 = (qn + q)/(q + 1), and so, by comparing the 2-part, we
obtain q = 2m = D, which is impossible since n ≥ 4. Thus s ≥ 4. If
q ≥ 4, then D = (qn − 1)/(q + 1) ≡ q − 1 ≡ −1(mod 4) and, at the same
time, D = (sm − 1)/(s − 1) ≡ s + 1 ≡ 1(mod 4), a contradiction. If q = 2
and s ≥ 8, then D = (qn − 1)/(q + 1) ≡ −q2 + q − 1 ≡ −3(mod8) and
D = (sm − 1)/(s − 1) ≡ s + 1 ≡ 1(mod8), again a contradiction. Thus
(q, s) = (2, 4) and n = 2m, leading to (iii).

(b) Next we consider the case S = PSp2m(s) with m ≥ 1 and 2 � s, and
D = (sm ± 1)/2. In particular, p � D, hence

D = (qn − 1)/(q + 1) ≡ −1(mod p).

Now 2D ≡ −2(mod p), so we must have D = (sm + 1)/2 and p = 3. Com-
paring the p-part of (qn + q)/(q + 1) = (sm + 3)/2, we get q = 3 and
3n − 2sm = 3, a contradiction, as s > 3 is a 3-power.

(c) It remains to consider the case S = PSUm(s) with m ≥ 2, and

D = (sm + (−1)ms)/(s+ 1) or (sm − (−1)m)/(s+ 1).

If D = (qn + q)/(q + 1), then p|D, whence

(qn + q)/(q + 1) = (sm + (−1)ms)/(s+ 1).

Comparing the p-part, we obtain s = q and m = n, as stated in (ii).
Suppose D = (qn − 1)/(q + 1). Then p � D, whence

(16.9.1) D = (sm − (−1)m)/(s+ 1) ≡ (−1)m−1(mod p).

If moreover 2|m, then we get (qn+q)/(q+1) = D+1 = (sm+s)/(s+1), and
so q = s by comparing the p-part, whence we also get m = n, again leading
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to (ii). Assume 2 � m. Then using (16.9.1) and p|(qn + q)/(q + 1) = D + 1,
we see that p = 2. Now, if q, s ≥ 4, then

D = (qn − 1)/(q + 1) ≡ q − 1 ≡ −1(mod 4)

and

D = (sm + 1)/(s+ 1) ≡ −s+ 1 ≡ 1(mod 4),

a contradiction. Thus either q or s equals to 2. Since

(qn − 1)/(q + 1) = (sm − 1)/(s+ 1),

we also get

s+ q + 2 = qn(s+ 1)− sm(q + 1)

is divisible by 8, whence {s, q} = {2, 4}. Now, if (q, s) = (2, 4), then we have
(2n − 1)/3 = (4m + 1)/5 and 5 · 2n − 3 · 4m = 8 with n ≥ 4 and m ≥ 3,
a contradiction. Finally, if (q, s) = (4, 2), then (4n − 1)/5 = (2m + 1)/3 and
3 · 4n − 5 · 2m = 8 with n ≥ 4 and m ≥ 5, again a contradiction.

(B) Now we consider the remaining cases where D ≤ 22, that is, where
either (n, q) = (4, 2) and D = 5, 6, or (n, q) = (4, 3) and D = 20, 21, or
(n, q) = (6, 2) and D = 21, 22.

In the first case, by assumption (α), G/Z(G) ≤ Aut(S) contains an
element g of order 9. This rules out all possible covers G(∞) of S that
can have irreducible representations of degree 5 or 6 by [HM]: S = A5,6,7,
PSL2(5, 7, 9, 11, 13), PSL3(4), SU3(3), and J2, leaving out only the possibil-
ities that G(∞) = SU4(2) or 61 · PSU4(3). The latter case is also ruled out
for the reason that G(∞) would then admit traces 6ζ3.

Next suppose that D = 20. By assumption (β), G/Z(G) ≤ Aut(S)
contains an element g of order 28 and a subgroup Q ∼= C4

3 . This rules out
all possible covers G(∞) of S that can have irreducible representations of
degree 20 by [HM]: S = A7,8, PSL2(19, 41), PSL3(4), PSU3(5), and SU4(2),
leaving out only the possibility that G(∞) is a quotient of SU4(3).

Suppose now that D = 21. By assumptions (β) and (γ), either the
group G/Z(G) ≤ Aut(S) contains an element g of order 28 and a subgroup
Q ∼= C4

3 , or G/Z(G) ≤ Aut(S) contains an element g of order 33 and a
subgroup Q ∼= C6

2 . This rules out all possible covers G(∞) of S that can
have irreducible representations of degree 21 by [HM]: S = A7,8,9, PSL2(41),
PSL2(43), PSL3(4), SU3(3), PSU3(5), Sp6(2), M22, and J2, leaving out only
the possibilities that G(∞) = PSU4(3) when q = 3 and G(∞) = SU6(2) when
q = 2.
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Finally, let D = 22. By assumption (γ), G/Z(G) ≤ Aut(S) contains
an element g of order 33. This rules out all possible covers G(∞) of S that
can have irreducible representations of degree 22 by [HM]: S = PSL2(23),
PSL2(43), M22, HS, and McL, leaving out only the case G(∞) = PSU6(2).

Proposition 16.10. Let q be a prime power, 2|n ∈ Z≥4, and let L be a
perfect finite group with a faithful representation Φ : L → GLqn(C) that
satisfies the following conditions:

(a) Φ = ⊕q
i=0Φi is a sum of q + 1 irreducible constituents, of degree

deg(Φi) = (qn − 1)/(q + 1) + δi,0;

(b) Each Li := Φi(L) is quasisimple, with simple quotient Si = Li/Z(Li)
being either PSUn(q) or an alternating group ANi

with Ni ≥ 8; and
(c) |Tr(Φ(g))| is always a q-power for all g ∈ L.

Then L ∼= SUn(q), and Φ is the total Weil representation.

Proof. (i) First we will construct certain elements in SUn(q) and AN with
N ≥ 8.

Let ρ denote the smallest irreducible character of AN of degree N − 1
and labeled by the partition (N − 1, 1), and choose g1 ∈ AN to be a single
(N − 2)-cycle if 2 � N and a disjoint product of two (N − 2)/2-cycles if
2|N ; this ensures that ρ(g1) = 1. Similarly, choose g2 ∈ AN to be a single
(N − 3)-cycle if 2|N and a disjoint product of two (N − 3)/2-cycles if 2 � N ;
this ensures that ρ(g2) = 2.

Next, if (n, q) 
= (6, 2), by [Zs] there exists a primitive prime divisor �
of pnf − 1 = qn − 1 (which will then be coprime to q + 1) and an element
h ∈ SUn(q) of order �. Then the character formula [TZ2, Lemma 4.1] for
the irreducible Weil characters ζin of SUn(q), of degree (q

n+ q)/(q+1) when
i = 0 and (qn − 1)/(q + 1) when 0 < i ≤ q, shows that

ζin(h) = δi,0.

The same conclusion holds in the case (n, q) = (6, 2), by taking � = 7, see
the character table of SU6(2) [GAP].

(ii) Now we will use [KT6, Proposition 6.7] and modify its proof to our
case. First, conditions (a) and (b) imply by [KT6, Proposition 6.7] that

(16.10.1) L = R1 ∗R2 ∗ . . . ∗Rm
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is a central product of quasisimple groups, each being a cover of some ANi

or PSUn(q).
We aim to show that m = 1, that is, L is quasisimple. Assume the

contrary: m > 1. In accordance with (16.10.1) we can express

Φi = Ψi,1 � Ψi,2 � . . . � Ψi,m

as an outer tensor product of Ψi,k ∈ Irr(Rk), 1 ≤ k ≤ m. It follows that
Li = Φi(L) is a central product Ψi,1(R1)∗Ψi,2(R2)∗. . .∗Ψi,m(Rm) of (normal)
subgroups. Since Li is quasisimple and since each Rk is also quasisimple, we
conclude that all but one Ψi,k are trivial, say for all k 
= ki. This implies
that

Li = Φi(L) = Ψi,ki
(Rki

) = Φi(Rki
).

On the other hand, the faithfulness of Φ implies that each Rj with 1 ≤ j ≤ m
must be acting nontrivially in some Φi. So we can partition {Φ0,Φ1, . . . ,Φq}
into a disjoint union X1 � X2 � . . . � Xm of non-empty subsets such that for
each 1 ≤ t ≤ m and for all Φi ∈ Xt we have

(16.10.2) Li = Φi(L) = Φi(Rt)

but Φi(Rj′) is trivial for all j′ ∈ {1, 2, . . . ,m} � {t}. Relabeling the Rj ’s
(and interchanging their order in (16.10.1)) if necessary, we may assume that
Φ0 ∈ X1. Furthermore, since deg(Φi) 
= 8, 14, Theorem 6.2 and Lemma 9.1
of [KT7] imply that if Rt is a cover of ANt

with Nt ≥ 8 in (16.10.2), then
Li

∼= ANt
and (Φi)|ANt

is the smallest representation of degree Nt − 1. Like-
wise, [KT7, Theorem 6.6] implies that if Rt is a cover of PSUn(q) in (16.10.2),
then Li is a quotient of SUn(q) and the SUn(q)-character afforded by Φi is
one of the q + 1 irreducible Weil characters ζ ln, 0 ≤ l ≤ q.

Following the proof of [KT6, Proposition 6.7], first we consider the case
where

(16.10.3)
for each 1 ≤ t ≤ m, there exists xt ∈ Rt

such that Tr(Φi(xt)) = 0 for all Φi ∈ Xt.

Setting y := x1x2 . . . xt, we see that

Tr(Φi(y)) = Tr(Φi(xt)) = 0

for all Φi ∈ Xt. It follows that Tr(Φ(y)) =
∑q

i=0Tr(Φi(y)) = 0, contradicting
(c).
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Next we consider the case R1 is a cover of some AN1
. Since Φ0 ∈ X1, we

must have

N1 − 1 = deg(Φ0) = (qn + q)/(q + 1).

It follows that R1 cannot have an irreducible character of degree

N1 − 2 = (qn − 1)/(q + 1),

and so X1 = {Φ0}. It also follows that, for each t ≥ 2, Xt consists only
of some of the Φi of the same degree (qn − 1)/(q + 1). Now the elements
constructed in (i) guarantee that (16.10.3) holds, and so we are done as
above.

We have shown that R1 is a cover of PSUn(q). If, moreover, X1 = {Φ0},
then we again see that, for each t ≥ 2, Xt consists only of some of the Φi of
the same degree (qn − 1)/(q + 1), whence (16.10.3) holds, and we are done
as above. So we may assume that

(16.10.4) X1 � {Φ0}.

Now we consider the case where some Rj is a cover of some ANj
. As

mentioned above, this can happen only when

Nj − 1 = deg(Φi) = (qn − 1)/(q + 1)

(for some i > 0). Thus we may assume that there is some

1 ≤ s ≤ q

such that exactly s representations Φi with i > 0 occur in (16.10.2) with
Rt a cover of ANt

. For any such (quasisimple) Rt, and for any Φi ∈ Xt,
Φi(Rt) ∼= ANt

. As Φ = ⊕q
i=0Φi is faithful and Φi′ is trivial on Rt for all

i′ /∈ Xt, we conclude that Rt
∼= ANt

. For any such Rt, we fix an element
gt,1 ∈ Rt of type g1 and an element gt,2 ∈ Rt of type g2 exhibited in (i).

Each of the remaining Rt is a cover of PSUn(q). As mentioned above,
the restriction of each Φi ∈ Xt is obtained from an irreducible Weil represen-
tation of SUn(q). Using the faithfulness of Φ, we can view Rt as a quotient
of SUn(q). For such an Rt, fix an element gt,1 = gt,2 ∈ Rt of order � as in (i).

Now, in accordance with (16.10.1) we consider the elements

g = g1,1g2,1 . . . gm,1, g′ = g1,2g2,2 . . . gm,2
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in L. Their construction and the considerations in (i) imply that

Tr(Φ(g)) = 1 + s, Tr(Φ(g′)) = 1 + 2s.

By (c), both 1+s and 1+2s are p-powers, and this is impossible since s ≥ 1.

We have shown that each Rt, 1 ≤ t ≤ m, is a cover of PSUn(q), hence

a quotient of SUn(q). Now, in accordance with (16.10.1) we consider the

element

g′′ = h2h3 . . . hm,

where hi ∈ Ri has order � as in (ii) – note that the R1-component is trivial.

Now the considerations in (i) together with (16.10.4) show that

qn > Tr(Φ(g′′)) =
∑

Φi∈X1

deg(Φi) > 2(qn − 1)/(q + 1) > qn−1,

again contradicting (c).

(iii) We have shown that L is quasisimple. If L is a cover of AN , then we

see that

N − 1 = deg(Φ0) = deg(Φ1),

which is impossible. Hence each Φi(L) is a quotient of SUn(q), and so we can

view L as a quotient of SUn(q) by a central subgroup, by the faithfulness

of Φ. Applying Theorem 16.6 and using the faithfulness of the total Weil

character, we conclude that L = SUn(q), and it acts in Φ via its total Weil

representation.

Now we can prove the main result concerning unitary groups:

Theorem 16.11. Let q = pf be a power of a prime p, and let n = a+ b ≥ 4

with a, b ∈ Z≥1, 2 � ab, and gcd(a, b) = 1. Then the following statements

hold for the arithmetic monodromy groups Garith,k, respectively G̃arith,k, and

geometric monodromy groups Ggeom, respectively G̃geom, of the local systems

W(a, b) and W̃(a, b), introduced in Definitions 16.1 and 16.2, respectively,

over any finite extension k of Fq2 .

(a) Garith,k = Ggeom
∼= GUn(q), and (Ggeom)

(∞) ∼= SUn(q) acts on W(a, b)

via its total Weil representation. Furthermore, we can identify Ggeom

with GUn(q) in such a way that the action of GUn(q) on W(a, b) affords

the total Weil character ζn,q.
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(b) Let Hi be any of the q+1 hypergeometric constituents of W(a, b). Then
Hi has arithmetic and geometric monodromy groups Gi

arith,k = Gi
geom,

Gi
geom/Z(G

i
geom)

∼= PGUn(q), and Z(Gi
geom) is cyclic of order dividing

q + 1.
(c) G̃arith,k = G̃geom

∼= GUn(q), and (G̃geom)
(∞) ∼= SUn(q) acts on W̃(a, b)

via its total Weil representation. Furthermore, we can identify G̃geom

with GUn(q) in such a way that the action of GUn(q) on W̃(a, b) affords
the total Weil character ζn,qχ2, with χ2 denoting the linear character of
order 2 of GUn(q).

(d) The local system W�(a, b) introduced in Definition 16.1 has geometric
monodromy group and arithmetic monodromy group

G�
arith,k = G�

geom = SUn(q).

Proof. (i) Let Φ : G := Garith,k → GLqn(C) denote the corresponding repre-
sentation of Garith,k on W := W(a, b). By Theorem 11.1, Φ ∼= ⊕q

i=0Φi, where
deg(Φi) = (qn − 1)/(q + 1) + δi,0, and each of Φi(Garith,k) and Φi(Ggeom) is
an irreducible almost quasisimple group for 0 ≤ i ≤ q. As Garith,k/Ggeom is
cyclic, it follows from [GT, Lemma 2.5] that

L := (Garith,k)
(∞) = (Ggeom)

(∞)

and Φi(L) is irreducible, quasisimple. Also, by Theorem 11.9, we have that

(16.11.1) Tr(Φ(x)) is a power of (−q) for all x ∈ Garith,k.

Next, the q+1 irreducible summands Hi of W are hypergeometric in charac-
teristic p with finite monodromy. Recalling the construction of these sheaves,
we see that Ggeom�G contains a p′-element g (namely, a generator of the im-
age of I(0)), of order MAB = (qa+1)(qb+1)/(q+1), with simple spectrum
consisting of at least MAB−A−B = (qa+b−1)/(q+1) < MAB/2 eigenval-
ues. Let N0 denote the order of gZ(G) in G/Z(G). Then we have N0|MAB
(as gMAB = 1) and N0 > MAB/2 (since the spectrum of g consists of all
N th

0 roots of some fixed root of unity, but g has more than MAB/2 distinct
eigenvalues). It follows that N0 = MAB.

We can also check that the assumptions (α)–(γ) of Proposition 16.9 hold
in the cases where (qn−1)/(q+1) ≤ 23, that is, where (n, q) = (4, 2), (4, 3),
and (6, 2). Indeed, we can see by Proposition 14.1 that the image Q of P (∞)
acting on anyHi intersects Z(G

i
geom) trivially, and so Q ↪→ Gi

geom/Z(G
i
geom);

furthermore, Q is elementary abelian of order 24, 34, and 26 in these cases
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by [KRLT2, Lemma 3.1]. Finally, the sheaf H0 of rank (qn + q)/(q + 1) is
self-dual.

Now we can apply Proposition 16.9. In the case of 16.9(iii), we have that
q = 2, G(∞) is a quotient of SLn/2(4), and

N = (2a + 1)(2b + 1)/3 > (4n/2 − 1)/3,

contradicting [KT7, Theorem 6.6(ii)]. Hence, we conclude that each Φi(L)
is either a cover of some AN or a quotient of SUn(q). Now using (16.11.1)
and applying Proposition 16.10, we obtain that L = SUn(q), and it acts on
W via its total Weil representation.

(ii) In this part of the proof, let H denote either Garith,k or Ggeom. Since
each of (Φi)|L extends to H �L, but only inner-diagonal automorphisms of
SUn(q) can fix each of the q + 1 Weil characters ζin, we see that H can only
induce inner-diagonal automorphisms of L. As CH(L) = Z(H), it follows
that PSUn(q) ≤ H/Z(H) ≤ PGUn(q), and the same holds for the, arith-
metic or geometric, monodromy group Ki of each of the q + 1 individual
hypergeometric sheaves Hi (as Ki is just the image of H acting on Hi).
Since Ki has its I(0) being cyclic of order MAB = (qa + 1)(qb + 1)/(q+ 1),
by [KT7, Theorem 8.3] we must have that Ki/Z(Ki) ∼= PGUn(q), and so

(16.11.2) H/Z(H) ∼= PGUn(q).

Now let λi be the central character of Z(H) acting on Hi, 0 ≤ i ≤ q.
Recall that Φ has integer traces by Theorem 11.9, and so it is self-dual.
But Φ0 is the unique irreducible constituent of Φ of degree D + 1, hence
Φ0 is self-dual; in particular, λ2

0 is trivial. Now, Theorem 11.9 implies that
Σ := λ0 +D

∑q
i=0 λi satisfies all the hypotheses of Lemma 16.4; moreover,

(16.11.1) rules out the existence of the trace −qn. Hence, by Lemma 16.4,
either Z(Ggeom) ≤ Z(Garith,k) has order dividing q + 1, or (n, q) = (4, 2)
and Z(Ggeom) ≤ Z(Garith,k) ≤ C2. Suppose we are in the latter case; in
particular, Z(Ggeom) ≤ C2. By (16.11.2), Ggeom/Z(Ggeom) ∼= SU4(2) is sim-
ple, and so Ggeom ∈ {SU4(2), Sp4(3), C2 × SU4(2)}. On the other hand, by
Corollary 13.4, at least one of the sheaves Hi has geometric determinant of
order M = 3 and so Ggeom projects onto C3, a contradiction. Therefore, we
have shown that

(16.11.3) Z(Ggeom) ≤ Z(Garith,k) has order dividing q + 1;

in particular, Z(Gi
arith,k) is cyclic of order dividing q + 1.
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(iii) Recall that W�(a, b) is the [MAB]� Kummer pullback of W(a, b).
Hence Ggeom/G

�
geom is a cyclic group of order dividingMAB; also, G�

geom has
no nontrivial p′-quotient. On the other hand, as shown above, the subgroup
L = (Ggeom)

(∞) = SUn(q) is a quasisimple normal subgroup of Ggeom, and
furthermore, by (16.11.2), |Ggeom/L| = |Ggeom|/|PGUn(q)| = |Z(Ggeom)|
divides q + 1, which is coprime to p. It follows that

(16.11.4) G�
geom = L = SUn(q).

(iv) We now have that d := |Ggeom/G
�
geom| = |Ggeom/L| = |Z(Ggeom)|

divides q + 1. Furthermore, by Corollary 13.4, some hypergeometric sum-
mand of W(a, b), of rank (qn − 1)/(q + 1), has geometric determinant Lν

with ν of order exactly M = q + 1. [We note that when 2 � q, the respec-

tive summand of W̃(a, b) will have the same geometric determinant Lν , since

χ
(qn−1)/(q+1)
2 = 1.] This implies that the order d of the quotient Ggeom/G

�
geom

is divisible by q + 1. We conclude that d = q + 1, and

(16.11.5) Ggeom/G
�
geom

∼= Cq+1, |Z(Ggeom)| = q + 1.

To determine Garith,k, we note by (16.11.2) that

|Garith,k/L| = |Garith,k|/|PGUn(q)| = |Z(Garith,k)|

which divides q + 1 by (16.11.3). On the other hand, Garith,k contains the
normal subgroup Ggeom of order (q+1) · |L|. It follows that Garith,k = Ggeom.

(v) In this part of the proof, we establish the abstract group isomorphism
H := Ggeom

∼= GU(W ) ∼= GUn(q) with W := Fn
q2 . First, using (16.11.5) and

L = G�
geom

∼= SUn(q), we can write

(16.11.6) H = 〈L, g〉

for some element g ∈ H. We can view L as the commutator subgroup of
GU(W ) ∼= GUn(q), and then fix some extension of (Φj)|L to GUn(q), with
character ζ̃j,n specified in [KT3, (3.1.2)], which we also denote by Φj . As
mentioned in (iv), CH(L) = Z(H), and H induces the full group of inner-
diagonal automorphisms of L, which is the one induced by elements by
GUn(q) acting on L via conjugation. It follows that we can find an element
h ∈ GUn(q) such that

(16.11.7) g and h induce the same automorphism of L = SUn(q);
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furthermore, changing g to another representative in its coset gG if necessary,

we can make sure that

(16.11.8) h = diag(�, 1, 1, . . . , 1)

for some � ∈ F×
q2 of order q + 1, and so

(16.11.9) ord(h) = q + 1, L ∩ 〈h〉 = 1.

The choice (16.11.7) of h ensures that Φj(g)Φj(h)
−1 centralizes Φj(L),

whence

(16.11.10) Φj(g) = αjΦj(h)

for some αj ∈ C×. In fact, αj is a root of unity because both g and h have

finite order.

Recall by [KT3, (3.1.2)] (evaluated at h) that 0 
= Tr(Φj(h)) ∈ Q(ζq+1).
On the other hand, since σ is chosen to have order q + 1, we have that

Tr(Φj(g)) ∈ Q(ζq+1) by Theorem 11.1. Hence the root of unity αj belongs
to Q(ζq+1) by (16.11.10). If 2|(q + 1) then it follows that

(16.11.11) αq+1
j = 1

for all j. In the case 2|q, we have α
2(q+1)
j = 1. Replacing g by g2 and h

by h2, which still fulfills (16.11.7)–(16.11.10) and which replaces each αj by
α2
j , we then see that (16.11.11) holds in this case as well. Together with

(16.11.9) and (16.11.10), this implies that Φj(g)
q+1 = Id for all j, whence

Φ(g)q+1 = Id and gq+1 = 1 by faithfulness of Φ. Recalling (16.11.5) and
(16.11.6), we must then have that

(16.11.12) ord(g) = q + 1, L ∩ 〈g〉 = 1.

Thus H = L � 〈g〉 and GUn(q) = L � 〈h〉 are two split extensions of the
group L ∼= SUn(q) by Cq+1. Now using (16.11.7), (16.11.9), and (16.11.12),

one can readily check that the map sgi �→ shi, s ∈ L and 0 ≤ i ≤ q, yields
a group isomorphism ι : H ∼= GUn(q).

(vi) Now, applying Theorem 14.4 to the system W := W(a, b) and

N := M , we see that WM := [M ]�W(a, b) has arithmetic monodromy
group Garith,k,WM

= SUn(q). It follows that the arithmetic monodromy
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group G�
arith,k of W�(a, b) = [AB]�WM is contained in SUn(q) = G�

geom,
whence G�

arith,k = G�
geom = SUn(q).

To determine Garith,k, we note by (16.11.2) that

|Garith,k/L| = |Garith,k|/|PGUn(q)| = |Z(Garith,k)|

which divides q + 1 by (16.11.3). On the other hand, Garith,k contains the
normal subgroup Ggeom of order (q+1) · |L|. It follows that Garith,k = Ggeom.

(vii) Next we identify the character of Ggeom on W(a, b). Let 〈g0〉 denote
the image of I(0) inH = Ggeom. Then we can relabel Φj so that the spectrum
of Φj(g0) equals{

εi | 0 ≤ i ≤ MAB − 1, (εi)A 
= �βj , (εi)B 
= �αj
}
,

and furthermore Φ0 is self-dual. Note that, since H/L is cyclic, 〈L, g0〉 is
normal in H and so contains the normal closure of 〈g0〉 in H. But the normal
closure of 〈g0〉 in H equals H by [KT7, Theorem 4.1], hence 〈L, g0〉 = H.
Now we can apply Theorem 16.8 to obtain an automorphism γ of H such
that Tr

(
Φ(γ(x))

)
= ζn,q(x) for all x ∈ H. Thus, adjusting the identification

ι : H ∼= GUn(q) by γ, we see that H ∼= GUn(q) acts on W(a, b) with the
total Weil character ζn,q.

(viii) Now we again assume p > 2 and turn our attention to W̃(a, b). The
arguments in (i), (ii) also apply to G̃arith,k and G̃geom. The only difference
is that instead of (16.11.1) we can now say only that all traces are ±qm,
0 ≤ m ≤ n.

Hence, when we apply Lemma 16.4(iii), we cannot (yet) rule out the
existence of the trace −qn, and so, instead of (16.11.3), we now have

Z(Ggeom) ≤ Z(Garith,k) has order dividing 2(q + 1).

But now we note that the sheaf [M ]�W̃(a, b) is arithmetically isomorphic
to [M ]�W(a, b) = WM . Hence L = SUn(q) = Ggeom,WM

= Garith,k,WM
is a

normal subgroup of G̃geom of index dividing M and a subgroup of G̃arith,k of
index dividing M . With this extra information, the arguments in (iv), (v)
can now be repeated verbatim to show that G̃geom

∼= GUn(q); in particular,
|G̃geom/L| = M . As G̃arith,k ≥ G̃geom and [G̃arith,k : L]|M , we conclude that
G̃arith,k = G̃geom.

To identify the character ϕ̃ of G̃geom acting on W̃(a, b), let 〈g0〉 denote
the image of I(0) in H̃ := G̃geom. Again applying [KT7, Theorem 4.1], we



Hypergeometric sheaves and finite groups 671

see that g0 generates H̃ modulo [H̃, H̃ ]; in particular, χ2(g0) = −1. Note
that tensoring with Lχ2

has the effect of multiplying the eigenvalues of g0 by
−1. It follows that, the eigenvalues of g0 in a representation of H̃ affording
the character ϕ̃χ2 are the same as the eigenvalues of g0 acting on W(a, b).
By the result of (vii), we know that ϕ̃χ2 = ζn,q, hence ϕ̃ = ζn,qχ2 as stated
in (c).

The final result of this section determines the arithmetic monodromy
groups of W(a, b), W̃(a, b), and W�(a, b).

Theorem 16.12. Let q = pf be a power of a prime p, and let n = a+ b ≥ 4
with a, b ∈ Z≥1, 2 � ab, and gcd(a, b) = 1. Then over any subfield k = Fq2/d

of Fq2 the following statements hold.

(i) The arithmetic monodromy group Garith,k of W(a, b), respectively

G̃arith,k of W̃(a, b), is GUn(q) · Cd, which in each case induces a sub-
group of outer field automorphisms of SUn(q) of order d. Furthermore,

Garith,k/Z(GUn(q)) ∼= G̃arith,k/Z(GUn(q)) ∼= PGUn(q)�Gal(Fq2/k).

(ii) The arithmetic monodromy group G�
arith,k of the local system W�(a, b)

is SUn(q) · Cd, and induces a subgroup of outer field automorphisms
of SUn(q) of order d, modulo the inner-diagonal automorphisms of
SUn(q).

Proof. (i) First we determine the order of cyclic quotients Garith,k/Ggeom

and G�
arith,k/G

�
geom.

Suppose that p > 2. Recall that Garith,Fp
contains Ggeom = Garith,Fq2

as
a normal subgroup with cyclic quotient of order e that divides the integer
2f := deg(Fq2/Fp). We now look at the element g := Frob4,Fp

∈ Garith,Fp
.

For any divisor c of 2f , by Lemma 16.3 the absolute value of the trace of
gc = Frob4,Fpc

on W(a, b) is pc/2. On the other hand, by Theorem 16.11(a),
the absolute value of the trace of any element in Ggeom on W(a, b) is a power
of q = pf . It follows that gc /∈ Ggeom whenever c is a proper divisor of 2f .
Hence we conclude that e = 2f . Now, since k = Fq2/d is a subfield of Fq2 ,
then Garith,k/Ggeom is cyclic of order dividing d and Garith,k has index at
most 2f/d in Garith,Fp

= Ggeom · C2f , whence Garith,k = Ggeom · Cd.

The structure of G�
arith,k/G

�
geom can be determined entirely similarly,

utilizing Lemma 16.3 for Frob2,Fp
.

Next we assume p = 2 and consider the element h ∈ G�
arith,F2

provided

by Frob0,F2
. By Lemma 16.3(ii), when c|2f the trace of h2f/c = Frob0,F

q2/c
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on W�(a, b) is 0 if 2|c, and q2/c if 2 � c. In particular, if c > 1 this trace is
not a power of −q, and so h2f/c /∈ G�

geom by the result of Theorem 16.11(d).

Thus h2f ∈ G�
geom but h2f/c /∈ G�

geom for any 1 < c|2f . It follows that
|G�

arith,F2
/G�

geom| = 2f , and more generally |G�
arith,k/G

�
geom| = d, as above.

To show that |Garith,F2
/Ggeom| = 2f , we note that G�

arith,F2
is a subgroup

of Garith,F2
. Thus the element h ∈ G�

arith,F2
also lies in Garith,F2

and moreover
the representation of Garith,F2

on W(a, b) restricts to the representation of
G�

arith,F2
on W�(a, b). So viewing h as lying in Garith,F2

, for each divisor c

of 2f with c > 1, the trace of h2f/c on W(a, b) is not a (−q)-power and so
h2f/c /∈ Ggeom. Hence |Garith,F2

/Ggeom| = 2f , and we can conclude as above.

(ii) Let Φ denote the representation of Garith,Fp
on W(a, b), with char-

acter, say, ϕ. Next we show that Garith,Fp
cannot contain any element z

which acts as the scalar −1 on W(a, b). Assume the contrary. First, by The-
orem 16.11(a), no element in Ggeom can have trace −qn on W(a, b), hence
z /∈ Ggeom. Now, if p > 2, then, as shown in (i), Garith,Fp

= 〈g,Ggeom〉. Hence
we can find 0 ≤ j ≤ 2f − 1 such that z ∈ gjGgeom. As z2 ∈ Ggeom but
z /∈ Ggeom, we have g2j ∈ Ggeom with j > 0, which implies j = f by (i).
Thus gf = zg0 for some g0 ∈ Ggeom = GUn(q). As Φ(z) = −Id, we then
obtain that ϕ(gf ) = −ϕ(g0). But this is a contradiction, since

|ϕ(gf )| =
∣∣Trace(Frob4,Fq

|W(a, b)
)∣∣ = √

q

as mentioned in (i), whereas ϕ(g0) is a power of −q by Theorem 16.11(a).
Similarly, if p = 2, then, as shown in (i), Garith,F2

= 〈h,Ggeom〉. Hence we
can again find 0 ≤ j ≤ 2f − 1 such that z ∈ hjGgeom. As z2 ∈ Ggeom but
z /∈ Ggeom, we have h2j ∈ Ggeom with j > 0, which implies j = f again by
(i). Thus hf = zg0 for some g0 ∈ Ggeom = GUn(q). As Φ(z) = −Id, we then
obtain that ϕ(hf ) = −ϕ(g0). But this is a contradiction, since

ϕ(hf ) = Trace
(
Frob0,Fq

|W�(a, b)
)
= 0

as mentioned in (i), whereas ϕ(g0) is a power of −q, in particular nonzero,
by Theorem 16.11(a).

(iii) Now we study the subgroup

Zd := CGarith,F
q2/d

(SUn(q))

for any d|2f , and aim to show that

(16.12.1) Z2f
∼= Cq+1.
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Recall by Theorem 16.11(a) that the restriction of Φ to SUn(q) is a sum
of q+ 1 pairwise non-isomorphic irreducible Weil representations. It follows
that Zd fixes each of these q + 1 summands, and acts via scalars on each of
them, inducing a linear character λi, 0 ≤ i ≤ q. In particular, Zd is a finite
abelian group. We can label these characters so that λ0 corresponds to the
unique hypergeometric summand H0 (of rank (qn + q)/(q + 1)) of W(a, b).
We claim that

(16.12.2) ϕ(x) ∈ {0,±pi | 0 ≤ i ≤ nf −1}, λ0(x) = ±1, for all 1 
= x ∈ Zd

if p = 2, or if p > 2 but d|f . Indeed, by Theorem 11.7 (i), respectively
(i-bis), ϕ(y) is an integer for any y ∈ Garith,k. In particular, the represen-
tation of Garith,k on H0 is self-dual, and so λ0(x) = ±1. Furthermore, by
Theorem 11.8(i-ter), |ϕ(x)|2 is either 0 or a power of p, hence the integer
ϕ(x) itself is also 0 or ± a power of p. Moreover, ϕ(x) 
= −qn by (ii), and
ϕ(x) = qn implies x = 1 by faithfulness of ϕ. Hence (16.12.2) follows.

Assume now that p = 2. Note that

(16.12.3) Z2f ≥ Z1 = CGUn(q)(SUn(q)) = Cq+1.

Also, (16.12.2) implies that Z2f satisfies the assumptions in Lemma 16.4. If
(n, q) 
= (4, 2), then Lemma 16.4(iii) implies that |Z2f | divides q+1. Together
with (16.12.3), this implies (16.12.1). Suppose (n, q) = (4, 2). Then (16.12.3)
and Lemma 16.4(iv) again imply that |Z2f | divides q + 1, and so (16.12.1)
follows again.

(iv) Here we assume that p > 2. Using (16.12.2) and Lemma 16.4(iii), we
obtain that |Zf | divides q + 1. Since Zf ≥ Z1 = CGUn(q)(SUn(q)) = Cq+1,
we conclude that

(16.12.4) Zf = Cq+1 = Z(Ggeom).

Assume now that (16.12.1) does not hold, i.e. Z2f > Zf . As Garith,Fp2
has

index 2 in Garith,Fp
by (i), we have that Z2fGarith,Fp2

= Garith,Fp
, whence

|Z2f | = |Garith,Fp
/Garith,Fp2

| · |Zf | = 2(q + 1).

It follows that

(16.12.5) Z2f = 〈t, Zf 〉

for some 2-element t, say of order 2e for some e ∈ Z≥1. Recall that t acts as
a scalar αi on each of the q+1 subsheaves Hi of W(a, b), hence αi ∈ Q(ζ2e).



674 Nicholas M. Katz and Pham Huu Tiep

Next, by Theorem 16.11(a), the trace of each element y ∈ Ggeom on each Hi

is its trace in some Weil representation with character ζi
′

n,q, hence belonging
to Q(ζq+1) by (16.4.4). Now, by (16.12.4) and (16.12.5), any element x ∈ Z2f

is tcy for some c ∈ Z and some y ∈ Ggeom, so we get ϕ(x) ∈ Q(ζ2e , ζq+1). On
the other hand, ϕ(x) ∈ Q(ζp) by Theorem 11.7(i). Thus

ϕ(x) ∈ Q(ζ2e , ζq+1) ∩Q(ζp) = Q,

i.e. ϕ(x) ∈ Z. Furthermore, |ϕ(x)|2 is a p-power by Theorem 11.8(i-ter), so
we conclude that ϕ(x) is ± a p-power. Next, recall from Theorem 16.11(a)
that Ggeom acts onH0 via its Weil character ζ0n,q which is trivial at Z(Ggeom).
It follows that λ0(u) = 1 for all u ∈ Zf . As t2 ∈ Zf , we must have that
λ0(t)

2 = λ0(t
2) = 1, i.e. λ0(t) = ±1. Thus λ0 takes values ±1 on Z2f . We

have therefore shown that (16.12.2) holds for d = 2f as well. Now we can
again apply Lemma 16.4(iii) to see that the equality |Z2f | = 2(q + 1) must
imply the existence of some element z ∈ Z2f that acts as the scalar −1 on
W(a, b), which is impossible by (ii).

(v) We have shown that (16.12.1) holds, that is, Z2f = Cq+1 = Z(Ggeom).
Together with the result of (i), it implies that, while acting via conju-
gation on SUn(q), Garith,Fp

induces a subgroup of automorphisms of or-
der 2f |PGUn(q)|, which is exactly |Aut(SUn(q))|. Hence Garith,Fp

induces
the full group C2f of outer field automorphisms of SUn(q) (modulo inner-
diagonal automorphisms), whereas GUn(q) induces the full group of inner-
diagonal automorphisms of SUn(q). Since Garith,k ≥ GUn(q), it follows that
Garith,k induces the full group Cd of outer field automorphisms of SUn(q).
Using (16.12.1) again, we can identify Garith,k/Z(Ggeom) with the subgroup
PGUn(q)�Gal(Fq2/k) of Aut(SUn(q)).

Next, the generator g when p > 2 and h when p = 2 of Garith,Fp
modulo

Ggeom, induces an outer field automorphism of SUn(q) of order 2f modulo
inner-diagonal automorphisms of SUn(q). As G�

arith,Fp
is also generated by g,

respectively by h, modulo G�
geom = SUn(q), we obtain the statement for

G�
arith,k as well.

(vi) To identify the arithmetic monodromy group of W̃(a, b) over Fq2/d

(when p > 2), we note that the absolute value of the trace of gc = Frob4,Fpc

on W̃(a, b) is still pc/2 when c|2f , whereas the absolute value of the trace of
any element in G̃geom is ± a power of q but never −qn, by Theorem 16.11(c).
Now we can repeat the arguments in (i) verbatim to obtain that

G̃arith,k = G̃geom · Cd.
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Next, note that, since 2|n, the determinant on Fn
q2 of any central element y

of GUn(q) is a square in μq+1, hence χ2(y) = 1 and so, by Theorem 16.11(a),

(c), y still acts trivially on the hypergeometric summand of W̃(a, b). Now,
applying Theorem 11.8(i-ter) to G̃arith,Fp2

and repeating the arguments of

(ii)–(iv), we obtain that G̃arith,Fp
induces the full group C2f of outer field

automorphisms of SUn(q), and so we are done with G̃arith,k as well.

17. Determination of monodromy groups: the case
M = q + 1 and n = 2

In this section we assume that

(17.0.1) p any prime, q = pf , M = q + 1, A = B = 1.

Fix α, β ∈ Z such that αA− βB = 1 and α+ β coprime to M , i.e.

(17.0.2) α = β + 1 and gcd(1 + 2β, q + 1) = 1.

With this choice of parameters, the principal objects of this section are the
local systems

Wα(1, 1) = W(1, 1) := W(M,A,B)

on Gm/Fp and

W�
α(1, 1) = W�(1, 1) := [MAB]�W(M,A,B)

on A1/Fp as introduced in Definition 16.1; moreover, we can and will view
α as an integer modulo q + 1. In particular, Wα(1, 1) is the arithmetically
semisimple local system on Gm/Fp whose trace function at v ∈ E×, E/Fp a
finite extension, is given by

v �→ 1

#E

∑
x,w∈E

ψE

(
xw − v−αxq+1 − vβwq+1

)
.

It is the descent (cf. the beginning of §13) from Gm/Fq2 to Gm/Fp of the
direct sum of the Kloosterman sheaves

Kl(M,A,B, σ−β , σ−α)(−1) = Klψ
(
Char(q + 1)� {σ−β, σ−α}

)
(−1),

with 1 
= σ ∈ Char(q + 1), see (4.2.1), and the hypergeometric sheaf

Hyp(M,A,B,1,1) = Hypψ
(
Char(q + 1)� {1};1

)
,
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see (5.0.1). Its Kummer pullback W�
α(1, 1) = [q+1]�Wα(1, 1) is a lisse sheaf

on A1, with trace function at v ∈ E, E/Fp a finite extension, given by

v �→ 1

#E

∑
x,w∈E

ψE

(
vxw − xq+1 − wq+1

)
.

First we prove a unitary analogue of [KT5, Lemma 7.1]:

Lemma 17.1. Let V = Cq2 and let Φ : G → GL(V ) be a faithful represen-
tation such that

(a) Tr(Φ(g)) ∈ {1,−q, q2} for all g ∈ G.
(b) Φ ∼= ⊕q

i=0Φi, where the Φi ∈ Irr(G) are pairwise inequivalent.

Then |G| = |GU2(q)|.

Proof. Let

r := #{g ∈ G | Tr(Φ(g)) = −q}, s := #{g ∈ G | Tr(Φ(g)) = 1},

so that |G| = r + s + 1 by (a). The assumption (b) implies for ϕ := Tr(Φ)
that

0 = [ϕ, 1G]G =
q2 − rq + s

r + s+ 1
, q + 1 = [ϕ,ϕ]G =

q4 + rq2 + s

r + s+ 1
.

Solving for r and s, we obtain that r = q3 − 1, s = q4 − q2 − q, and so
|G| = (q2 − 1)(q2 + q) = |GU2(q)|.

The total Weil character ζ2,q of GU2(q), cf. (16.4.3), decomposes as∑q
i=0 ζi,2, with ζi,2 ∈ Irr(GU2(q)) of degree q − 1 + δi,0 and pairwise dis-

tinct. The larger-degree character ζ0,2 restricts to the Steinberg character
St of L = SL2(q) ∼= SU2(q). Furthermore, if 1 ≤ i ≤ q/2 then ζi,2 and
ζq−1−i,2 restrict to the same irreducible character (denoted θi in [Do, §38])
of L = SL2(q), and those �q/2� characters are pairwise distinct. If 2 � q, then
(ζ(q−1)/2,2)|L is the sum of two distinct irreducible characters (denoted η1, η2
in [Do, §38]) of degree (q − 1)/2. We will refer to these characters θi, and
also η1, η2 when 2 � q, as irreducible Weil characters of SU2(q), and (ζ2,q)|L
as the total Weil character of L, now viewed as SU2(q).

Now we prove an analogue of Theorem 16.6, which characterizes the
total Weil representation of SU2(q).

Theorem 17.2. Let p be any prime, q be any power of p, q ≥ 4, and let
L = SL2(q). Suppose ϕ is a reducible complex character of L such that
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(a) ϕ(1) = q2;

(b) ϕ(g) ∈ {1,−q, q2} for all g ∈ L;

(c) every irreducible constituent of ϕ is among the irreducible Weil charac-

ters St, θi, 0 ≤ i ≤ q/2, and also η1, η2 when 2 � q, of L.

Then ϕ is the total Weil character (ζ2,q)|L of L.

Proof. (i) We will use the character tables of SL2(q), Theorem 38.1 of [Do]

for 2 � q and Theorem 38.2 of [Do] for 2|q. Write

(17.2.1) ϕ =

{
a · St+

∑(q−1)/2
i=1 biθi + c1η1 + c2η2, 2 � q,

a · St+
∑q/2

i=1 biθi, 2|q,

with coefficients a, bi, ci ∈ Z≥0. Evaluating ϕ at an element x of order q− 1,

we see by (b) that ϕ(y) = a is a (−q)-power with 0 ≤ a ≤ ϕ(1)/St(1) = q,

which is possible only when a = 1. As before, let � denote a primitive

(q + 1)th root of unity in C.
First suppose that 2|q. Then

∑
i bi = (q2 − q)/(q − 1) = q by degree

comparison in (17.2.1). Next, we fix an element y ∈ L of order q + 1, and

for 1 ≤ l ≤ q/2 we have

ϕ(yl) = −1−
q/2∑
i=1

bi
(
�il + �−il

)
.

It follows that

q/2∑
l=1

ϕ(yl) = −q/2−
q/2∑
i=1

bi

( q/2∑
l=1

(
�il + �−il

))
= −q/2 +

q/2∑
i=1

bi = q/2.

As each value ϕ(yl) is either 1 or −q, we must have that ϕ(yl) = 1 for all

1 ≤ l ≤ q/2. Thus, the polynomial

f(t) =

q/2∑
i=1

bi
(
tq+1−i + ti

)
+ 2 ∈ Q[t]

of degree q has all �l, 1 ≤ l ≤ q as roots. Since f(1) = 2
∑q/2

i=1 bi+2 = 2q+2,

we conclude that f(t) = 2(tq+1 − 1)/(t − 1), i.e. bi = 2 for all i, and so

ϕ = (ζ2,q)|L, as stated.
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(ii) Assume now that 2 � q. Then
∑

i bi+(c1+c2)/2 = (q2−q)/(q−1) = q

by degree comparison in (17.2.1). Evaluating ϕ at an element u ∈ L of order

p and another element v ∈ L of order p that is not conjugate to u, we obtain

ϕ(u)=−
∑
i

bi−
c1 + c2

2
+
√
εq
c1 − c2

2
, ϕ(v)=−

∑
i

bi−
c1 + c2

2
−√

εq
c1 − c2

2
,

where ε := (−1)(q−1)/2. Thus ϕ(u) + ϕ(v) = −2q. As each of ϕ(u), ϕ(v) is

either 1 or −q, we must have that ϕ(u) = −q = ϕ(v), whence c1 = c2 =: c,

and so
(q−1)/2∑

i=1

bi + c = q.

Next we evaluate ϕ at the central involution j of L:

ϕ(j) = q + (q − 1)
∑
i

bi(−1)i − cε(q − 1).

In particular,

q2 − ϕ(j) = ϕ(1)− ϕ(j) = 2(q − 1)
(∑

2�i

bi +
1 + ε

2
c
)

is divisible by 2(q − 1). On the other hand, ϕ(j) ∈ {1,−q, q2} and q ≥ 4, so

ϕ(j) 
= −q, and either

(17.2.2) ϕ(j) = q2,
∑
2�i

bi +
1 + ε

2
c = 0,

∑
2|i

bi +
1− ε

2
c = q,

or

(17.2.3) ϕ(j) = 1,
∑
2�i

bi +
1 + ε

2
c =

q + 1

2
,
∑
2|i

bi +
1− ε

2
c =

q − 1

2
.

As above, we fix an element y ∈ L of order q + 1, and for 1 ≤ l ≤ (q − 1)/2

we then have

ϕ(yl) = −1−
(q−1)/2∑

i=1

bi
(
�il + �−il

)
− 2c(−1)l.
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It follows that

(q−1)/2∑
l=1

ϕ(yl) = −(q − 1)/2−
(q−1)/2∑

i=1

bi

((q−1)/2∑
l=1

(
�il + �−il

))
− 2c

(q−1)/2∑
l=1

(−1)l

= −(q − 1)/2−
(q−1)/2∑

i=1

bi
(
−1− (−1)i

)
+ c(1− ε)

= −(q − 1)/2 + 2
(∑

2|i
bi + c(1− ε)/2

)
.

In the case of (17.2.2),
∑(q−1)/2

l=1 ϕ(yl) = −(q − 1)/2 + 2q > (q − 1)/2,
a contradiction. Hence (17.2.3) holds, and we have that

(q−1)/2∑
l=1

ϕ(yl) = −(q − 1)/2 + (q − 1) = (q − 1)/2.

As each value ϕ(yl) is either 1 or −q, we must have that ϕ(yl) = 1 for all
1 ≤ l ≤ (q − 1)/2. Thus, the polynomial

g(t) =

(q−1)/2∑
i=1

bi
(
tq+1−i + ti

)
+ 2ct(q+1)/2 + 2 ∈ Q[t]

of degree q admits each of �l 
= ±1 with 0 ≤ l ≤ q as a root, and so
g(t) = (at+ b)(tq+1 − 1)/(t2 − 1) for some a, b ∈ Q. Since b = g(0) = 2 and

(a+ b)(q + 1)/2 = g(1) = 2
∑(q−1)/2

i=1 bi + 2c+ 2 = 2q + 2, we conclude that
a = b = 2, g(t) = 2(tq+1 − 1)/(t − 1), i.e. bi = 2 for all i and c1 = c2 = 1,
and so ϕ = (ζ2,q)|L, as stated.

A characterization of the total Weil character ζ2,q of GU2(q), cf. (16.4.3),
is given in the next result, which is an analogue of Theorem 16.8:

Theorem 17.3. Let q be any prime power, � := ζq+1, and let

Φ : G := GU2(q) → GLq2(C)

be a faithful complex representation that satisfies the following conditions:

(a) Φ = ⊕q
j=0Φj with Φj being irreducible of degree q − 1 + δj,0;

(b) There is an element g ∈ G such that the matrix Φj(g) has spectrum
{�i | 0 ≤ i ≤ q, i 
= 0, j} when 0 ≤ j ≤ q, and that G = 〈[G,G], g〉.
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Then there exists an automorphism γ of G such that Tr
(
Φ(γ(h))

)
= ζ2,q(h)

for all h ∈ G.

Proof. The spectra of Φj(g) show that g has both order and central order

q+1 in G. Thus, for a fixed � ∈ F×
q2 of order q+1, after a suitable conjugation,

we may assume that g = diag(�c, �d) with c, d ∈ Z/(q+1)Z. Since g generates
G modulo [G,G], det(g) has order q + 1. Changing � to another element of

order q + 1, we may therefore assume that c + d = 1. Now, the condition

that g has central order q+1 is equivalent to that gcd(1− 2c, q+1) = 1. As

noted in Remark 16.7, since 1 + 2(c − 1) = 2c − 1 is coprime to q + 1, the

map γc−1 of (16.7.1) is an automorphism of G. Hence we can replace g by

γc−1(g) = diag(�, 1) and thus assume that

(17.3.1) g = diag(�, 1).

We will use the character table of G as given in [E]. In particular, the

character ϕ0 of Φ0 is denoted χ
(t0)
q therein, and by (b) we have

−1 = ϕ0(g) = χ(t0)
q (g) = −�t0 ,

whence t0 = 0. Furthermore, the character ϕj of Φj , 1 ≤ j ≤ q, is denoted

χ
(tj ,uj)
q−1 therein for some tj , uj ∈ Z/(q + 1)Z with tj 
= uj (and one has

χ
(tj ,uj)
q−1 = χ

(uj ,tj)
q−1 ). Using (b) and (17.3.1), we then obtain

−1− �ij = ϕj(g
i) = χ

(tj ,uj)
q−1 (gi) = −�tji − �uji

for 1 ≤ i ≤ q. Viewing 0 ≤ tj , uj ≤ q and setting

fj(x) := xtj + xuj − xj − 1 ∈ Q[x],

we see that fj has degree at most q and vanishes at all �i, 1 ≤ i ≤ q. It

follows that fj(x) is identically zero, i.e. {tj , uj} = {0, j}.
We have shown that the character of Φ is χ

(0)
q +

∑q
j=1 χ

(j,0)
q−1 . Direct

check shows that the latter character is ζ2,q, and so we are done. For later

use, we also note that, for the central element z := diag(�, �), we have

χ
(j,0)
q−1 (z) = (q − 1)�j , i.e.

(17.3.2) Φj(z) = �j · Id.
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Lemma 17.4. Denote by H the hypergeometric component of W(1, 1), with

the choice (α, β) = (1, 0) of (α, β) with αA − βB = α − β = 1. Denote by

H0,0 the lisse sheaf of weight 0 on Gm/Fp which is the weight 0 quotient

of the lisse sheaf on Gm/Fp which is mixed of weight ≤ 0 and whose trace

function is given at v ∈ E× for E/Fp a finite extension by

v �→ (1/#E)
∑

(x,w)∈E××E×

ψE(x− v−1xq+1/w − w).

Denote by F1,0 the lisse sheaf on Gm/Fp whose trace function is given at

v ∈ E× for E/Fp a finite extension by

v �→ (1/#E)
∑

x∈E,w∈E×

ψE(x− v−1xq+1/w − w).

Then we have the following results.

(i) H0,0 is geometrically isomorphic to H.

(ii) F1,0 is pure of weight zero, and its pullback to Gm/Fq is arithmetically

isomorphic to the lisse sheaf F1 of [KT5, Section 4] with n = 2 there.

(iii) H0,0 is arithmetically isomorphic to F1,0.

Proof. For the first assertion, H is geometrically the Cancel of the sheaf

Hyp(Char(q + 1);1,1), cf. Corollary 9.3 (ii), whose trace function is that of

H0,0 (up to a constant field twist), cf. Corollary 8.2. For the second assertion,

the trace function of F1,0, restricted to extensions E/Fq, is identical to that

of F1, cf. [KT5, Section 4] in the case n = 2. For the third assertion, we

know by (ii) that

v �→ (1/#E)
∑

x∈E,w∈E×

ψE(x− v−1xq+1/w − w)

is pure of weight zero. We must show that it is the weight zero quotient of

v �→ (1/#E)
∑

(x,w)∈E××E×

ψE(x− v−1xq+1/w − w).

Equivalently, we must show that their difference is mixed of weight ≤ −1.
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But their difference is

v �→ (1/#E)
∑

x=0,w∈E×

ψE(x− v−1xq+1/w − w)

= (1/#E)
∑

w∈E×

ψE(−w) = −1/#E.

The main result of this section is the following theorem, which comple-

ments Theorem 16.11:

Theorem 17.5. Let q = pf ≥ 4 be a power of a prime p. Then the following

statements hold for the geometric and arithmetic monodromy groups Ggeom

and Garith,k of the local system W(1, 1) over any finite extension k of Fq2 .

(a) Garith,k = Ggeom
∼= GU2(q). Furthermore, we can identify Ggeom with

GU2(q) in such a way that the action of GU2(q) on W(1, 1) affords the

total Weil character ζ2,q.

(b) Let Hi be any of the q+1 hypergeometric constituents of W(1, 1). Then

Hi has arithmetic and geometric monodromy groups Gi
arith,k = Gi

geom,

Gi
geom/Z(G

i
geom)

∼= PGU2(q), and Z(Gi
geom) is cyclic of order dividing

q + 1.

(c) Over any subfield Fq2/d of Fq2 , the arithmetic monodromy group

Garith,F
q2/d

of W(1, 1) is GU2(q) · Cd, and induces a subgroup of outer

field automorphisms of SU2(q) of order d/ gcd(2, d). Furthermore,

CGarith,F
q2/d

(SU2(q)) has order (q + 1) · gcd(2, d), and

Garith,F
q2/d

/CGarith,F
q2/d

(SU2(q)) ∼= PGU2(q)�Gal(Fq2/Fq2 gcd(2,d)/d).

(d) The local system W�(1, 1) has geometric monodromy group and arith-

metic monodromy group G�
arith,k = G�

geom = (Ggeom)
(∞) ∼= SU2(q), with

SU2(q) acting via its total Weil representation. Furthermore, over any

subfield Fq2/d of Fq2 , the arithmetic monodromy group of W�(1, 1) is

SU2(q)·Cd, and induces a subgroup of outer automorphisms of SU2(q) of

order d/ gcd(2, d), modulo the inner-diagonal automorphisms of SU2(q).

Proof. (i) Let Φ : G := Garith,k → GLqn(C) denote the corresponding repre-

sentation of Garith,k on W := W(1, 1). By Theorem 11.1, Φ ∼= ⊕q
i=0Φi, where

deg(Φi) = q − 1 + δi,0. Now, by Theorem 11.9 we have

(17.5.1) Tr(Φ(u)) = 1,−q, or q2, for all u ∈ Garith,k.
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It follows from Lemma 17.1 that |Ggeom| = |GU2(q)| = |Garith,k|, and so

(17.5.2) G := Ggeom = Garith,k has order equal to |GU2(q)|.

Next, note that the hypergeometric summand H0 of rank q is precisely the
sheaf H1 considered in [KT5, §1], hence

(17.5.3) Φ0(G) = G0
geom

∼= PGL2(q) ∼= PGU2(q)

by [KT5, Corollary 8.2].

(ii) Next we take L := G(∞). Then L has S := PSU2(q) as a composition
factor, and so we can write |L| = e · |PSU2(q)| = eq(q2− 1)/ gcd(2, q− 1) for
some e ∈ Z≥1. On the other hand, by Corollary 13.4, some hypergeometric
summand of W(1, 1) has geometric determinant Lν with ν of order exactly
M = q + 1, whence q + 1 divides |G/[G,G]|. It now follows from (17.5.2)
that q + 1 divides |G/L| = (q + 1) · gcd(2, q − 1)/e, i.e.

(17.5.4) e| gcd(2, q − 1).

Since |G/L| divides the integer (q+1) · gcd(2, q− 1) which is prime to p, we
have that L ≥ Op′

(G). On the other hand, G/Op′
(G) is cyclic for G = Ggeom

by [Abh, Proposition 6(III)], therefore Op′
(G) ≥ L. Thus L = Op′

(G), and
so the integer n(G) defined prior to Theorem 14.6 is (q+1) · gcd(2, q− 1)/e,
a multiple of q + 1 by (17.5.4). Now applying Theorem 14.6 to the sheaf
W�(1, 1) = [q + 1]�W , we see that G�

arith,k = G�
geom; moreover, G�

geom has
index q+1 in G and contains L as a normal subgroup of index gcd(2, q−1)/e.
But W�(1, 1) is a local system on A1, so G�

geom has no nontrivial p′-quotient.
Thus we conclude that e = gcd(2, q−1), and |L| = |SU2(q)|. Recall that L is
perfect and has S = PSU2(q) as a composition factor. If 2|q, we must have
that L ∼= SU2(q). If 2 � q, then L admits a normal subgroup L1 of order 2
such that L/L1

∼= S. In this case, L1 ≤ Z(L), and so L ∼= SU2(q) as well.
Thus we have shown that

(17.5.5) G�
arith,k = G�

geom = L ∼= SU2(q).

Moreover, the geometric determinant Lν mentioned above now implies that

(17.5.6) G/L ∼= Cq+1, G = 〈L, g〉.

(iii) More generally, let us consider the kernel K of Φ0. By (17.5.2) and
(17.5.3),

(17.5.7) |K| = |G|/|PGU2(q)| = q + 1.
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Next, K ∩ L is the kernel of the representation (Φ0)|L of degree q. First we

note that any representation (Φi)|L cannot be trivial, as otherwise Φi(G)

would have order dividing

|G/L| = q + 1 < (q − 1)2 ≤ rank(Hi)
2,

contradicting the irreducibility of G on Hi. In particular, this holds for

(Φ0)|L. Now if 2|q, then L ∼= S is simple, and so K ∩ L = 1 = Z(L). It

follows that |KL| = |G|, and so G ∼= K × L and K ∼= G/L ∼= Cq+1 by

(17.5.6), whence there exists ι : G ∼= GU2(q). We also note that, since the

smallest degree of nontrivial irreducible representations of SU2(q) is q − 1,

all (Φi)|L are irreducible, and afford characters St or θi, whence Φ|L is the

total Weil representation by (17.5.1) and Theorem 17.2.

(iv) In this and the next parts of the proof we will assume 2 � q.

If (Φ0)|L is reducible, then each irreducible constituent of it has degree

≤ q/3 < (q − 1)/2, contrary to the fact that every nontrivial irreducible

representation of L ∼= SL2(q) has degree ≥ (q − 1)/2. Hence (Φ0)|L is an ir-

reducible representation of degree q, i.e. its Steinberg representation, and so

K∩L = Z(L). As [K,L] ≤ K∩L, in both cases we now have [[K,L], L] = 1,

and so by the Three Subgroups Lemma and by the perfectness of L we have

that [K,L] = [K, [L,L]] is contained in [[K,L], L] = 1, i.e.

(17.5.8) K ≤ CG(L).

We have also shown that each irreducible constituent of (Φi)|L is of degree q

(hence it is the Steinberg representation) if i = 0, or of degree q − 1 or

(q− 1)/2 if 1 ≤ i ≤ q and thus affords the character θi or ηj , in the notation

of Theorem 17.2. Together with (17.5.1), Theorem 17.2 applied to L implies

that Φ|L is the total Weil representation of L = SU2(q), as stated in (a). In

particular, the character of Φ|L contains exactly two irreducible constituents

of degree (q − 1)/2, namely η1 and η2.

By Corollary 4.12, for any 1 ≤ i ≤ q, Hi satisfies the condition (S+),

except for the sheaf Kl(M,A,B, σ−β , σ−α) with σα−β = χ2, equivalently,

σ = χ2 (recall that α−β = 1). We will choose our labeling so that this sheaf

is H(q+1)/2. Hence, if i 
= (q + 1)/2 then the normal subgroup L of G acts

irreducibly on Hi by [GT, Lemma 2.5].

Suppose for a moment that K 
= CG(L). By (17.5.7) and (17.5.8), we

then have |CG(L)| ≥ 2(q + 1). On the other hand, CG(L) ∩ L = Z(L) has

order 2. Hence |CG(L)L| ≥ (q+1)|L| = G, and so G = CG(L) ∗L, a central
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product with CG(L)∩L = Z(L) = K∩L. It follows that |CG(L)| = 2(q+1),
and

G/(K ∩ L) ∼= CG(L)/Z(L)× L/Z(L),

a direct product of a group of order q+1 and the simple group S ∼= PSU2(q).
Thus G/(K ∩ L) cannot map onto G/K = Φ0(G) ∼= PGU2(q), contrary to
(17.5.3). Thus we have shown that

(17.5.9) K = CG(L).

(v) We can view L as the commutator subgroup of GU2(q). Recalling
G/CG(L) ∼= PGU2(q) from (17.5.3) and (17.5.9), we now see that G induces
the full group of inner-diagonal automorphisms of L, which is the one in-
duced by elements by GU2(q) acting on L via conjugation. It follows that
we can find an element h ∈ GU2(q) such that

(17.5.10) g and h induce the same automorphism of L = SU2(q);

furthermore, changing g to another representative in its coset gG if necessary,
we can ensure that

(17.5.11) h = diag(�, 1)

for some � ∈ F×
q2 of order q + 1, and so

(17.5.12) ord(h) = q + 1, L ∩ 〈h〉 = 1.

Next, as shown in (iv), if j 
= 0, (q+1)/2 then (Φj)|L is irreducible, of degree
q − 1. Each such representation extends to a representation Φ̃j of GU2(q).
Moreover, as one can check using the character table of GU2(q) [E, §6],

(17.5.13) 0 
= Tr(Φ̃j(h)) ∈ Q(�) = Q(ζq+1)

(indeed, any irreducible representation of degree q−1 of GU2(q) is reducible
over SU2(q) if and only its trace at h is zero). Furthermore, the choice
(17.5.10) of h, and again the irreducibility of (Φj)|L established in (iv) ensure
that Φj(g)Φ̃j(h)

−1 centralizes Φj(L), whence

(17.5.14) Φj(g) = αjΦ̃j(h)

for some αj ∈ C×. In fact, αj is a root of unity because both g and h have
finite order. Also, since σ in Definition 16.1 is chosen to have order dividing
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q + 1, Tr(Φj(g)) ∈ Q(ζq+1) by Theorem 11.1. Hence the root of unity αj

belongs to Q(ζq+1) by (17.5.14). As 2|(q + 1), it follows that

αq+1
j = 1

for all j 
= 0, (q + 1)/2. Together with (17.5.12) and (17.5.14), this implies
that Φj(g)

q+1 = Id for all j 
= 0, (q+1)/2. In particular, gq+1 ∈ G has trace
q − 1 on all Hj with j 
= 0, (q + 1)/2. Hence

∣∣Tr(Φ(gq+1))
∣∣ = ∣∣ q∑

j=0

Tr(Φj(g
q+1))

∣∣
≥

∣∣ ∑
j �=0, q+1

2

Tr(Φj(g
q+1))

∣∣− ∣∣Tr(Φ0(g
q+1))

∣∣− ∣∣Tr(Φ q+1

2
(gq+1))

∣∣
≥ (q − 1)2 − q − (q − 1) = q2 − 4q + 2 ≥ q + 2

(as q ≥ 5). It follows from (17.5.1) that Tr(Φ(gq+1)) = q2 and so gq+1 = 1
by faithfulness of Φ. Recalling (17.5.6), we must then have that

(17.5.15) ord(g) = q + 1, L ∩ 〈g〉 = 1.

Thus G = L � 〈g〉 and GU2(q) = L � 〈h〉 are two split extensions of
L ∼= SU2(q) by Cq+1. Now using (17.5.10), (17.5.12), and (17.5.15), one
can readily check that the map sgi �→ shi, s ∈ L and 0 ≤ i ≤ q, yields a
group isomorphism ι : G ∼= GU2(q).

(vi) Now we return to the general case of any prime p. Statement (b),
both for 2|q and 2 � q, follows by applying Φi to G = Ggeom = Garith,k.

To complete the proof of (a), let 〈g0〉 denote the image of I(0) in the
group G = Ggeom. First we consider the case α = 1. Then we can relabel Φj

so that the spectrum of Φj(g0) equals {�i | i 
= 0, j}. Note that, since G/L
is cyclic, 〈L, g0〉 is normal in G and so contains the normal closure of 〈g0〉
in G. But the normal closure of 〈g0〉 in G equals G by [KT7, Theorem 4.1],
hence 〈L, g0〉 = G. Now we can apply Theorem 17.3 (and its proof) to obtain
γ ∈ Aut(G) such that Tr

(
Φ(γ(x))

)
= ζ2,q(x) for all x ∈ G, γ(g) = diag(�, 1),

cf. (17.3.1), and γ(z) = diag(�, �) acts in Φj via the scalar �j for a generator
z of Z(G), cf. (17.3.2). In particular, adjusting the identification ι by σ, we
see that G ∼= GU2(q) acts on W1(1, 1) with the total Weil character ζ2,q. We
also note that the local system W1(1, 1) gives rise to a surjection

φ : π1(Gm/Fp) � G,

and composing with Φj , it realizes the hypergeometric sheaf Hj .
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Next, we consider the general case of any (α, β) satisfying (17.0.2). As
noted in Remark 16.7, the map γβ defined in (16.7.1) is an automorphism
of G = GU2(q). Since γβ(g0) = g0z

β, the spectrum of γβ(g0) in Φj equals
{�i � i 
= αj, βj}. Now we twist the representation Φ of GU2(q) on W1(1, 1)
by γβ to obtain

Ψ(x) = Φ(γβ(x)) and Ψj(x) = Φj(γβ(x))

for all x ∈ G. Note that γβ does not change any unipotent element in G,
hence

Tr(Ψj(y)) = Tr(Φj(y))

for all p-elements y ∈ G. It follows from [KT7, Theorem 5.1] that composing
ψ with Ψj realizes a hypergeometric sheaf H̃0 of type (q, 1) when j = 0 and

a Kloosterman sheaf H̃j of rank q − 1 when 1 ≤ j ≤ q. The spectrum of
Ψj(g0) when j > 0 shows that

H̃j = Kl
(
Char(q + 1)� {σ−jα, σ−jβ}

)
for a fixed character σ of order q + 1. Likewise, the “upstairs” characters of
H̃0 are Char(q + 1) � {1}. We show that the “downstairs” character is 1.
Indeed, the image of I(∞) in G0

geom
∼= PGU2(q) is an elementary abelian

group of order q extended semidirectly by Cq−1. Now, Ψ0 still affords the

same character χ
(0)
q as of Φ0, so a generator of this Cq−1 has trace 1 in Ψ0,

showing that the “downstairs” character is 1. Thus

q⊕
j=0

H̃j
∼= Wα(1, 1),

with its geometric monodromy group acting via Ψ = Φ ◦ γβ.

(vii) Note that Lemma 16.3 also holds when a = b = 1. Hence, the same
arguments as in part (i) of the proof of Theorem 16.12, using the a = b = 1
case of Lemma 16.3, show that

(17.5.16) Garith,Fp
/Ggeom

∼= G�
arith,Fp

/G�
geom

∼= C2f ,

in fact,

(17.5.17) G�
arith,Fp

= 〈g�, G�
geom〉,

where g� = Frob2,Fp
when p > 2 and g� = Frob0,F2

when p = 2.
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Next, as shown in Lemma 17.4, the hypergeometric summand H0 of

W(1, 1) is arithmetically isomorphic to the sheaf H1 considered in [KT5,

§1]. By [KT5, Theorem 8.3], the latter has arithmetic monodromy group

(GL2(q)�Cf )/A over Fp, where A is the kernel of the action of GL2(q)�Cf

on H1 and Cf induces the full outer automorphism group (of order f) of

the simple group PSL2(q); furthermore |A| = q+1 by [KT5, Corollary 8.2].

Thus, if B is the kernel of the action of Garith,Fp
on H0, then

Garith,Fp
/B ∼= (GL2(q)� Cf )/A,

and so |B| = 2(q + 1). We note that B centralizes L = G�
geom

∼= SU2(q).

Indeed, as L is perfect, [B,L] = [B, [L,L]] is contained in [B ∩ L,L]. Now

B∩L�L, and any normal subgroup of order ≤ 2(q+1) of L is central in L.

Hence [B ∩L,L] = 1, and so [B,L] = 1, as claimed. Also, (GL2(q)�Cf )/A

induces the full automorphism group PGL2(q)�Cf of PSL2(q) ∼= PSU2(q).

Hence |CGarith,Fp
(SU2(q))| = 2(q + 1), and the statements in (c) for Garith,Fp

follow.

Furthermore, as shown in Lemma 16.3, when j|2f , Trace(Φ((g�)j)) can
be a power of −q only for j = 2f . Since Trace(Φ(h)) is a power of −q for

any h ∈ Ggeom and G�
geom ≤ Ggeom, it then follows from (17.5.17) that

G�
arith,Fp

∩Ggeom = G�
geom.

Together with (17.5.16), this implies that Garith,Fp
= G�

arith,Fp
Ggeom.

Now, Ggeom induces only inner-diagonal automorphisms of SU2(q) whereas

Garith,Fp
induces the full automorphism group of SU2(q). It follows that

G�
arith,Fp

must induce the full group Cf of outer field automorphisms of

SU2(q), and thus (d) follows for G�
arith,Fp

.

Note that Ggeom = GU2(q) induces the full subgroup PGU2(q) of inner-

diagonal automorphisms of SU2(q), and the quotient Garith,Fp
/Ggeom

∼= C2f

maps onto the group Cf of outer field automorphisms of SU2(q), hence with

kernel C2, the unique subgroup of order 2 in it, which then must coincide

with Garith,Fq
/Ggeom. Arguing as in part (i) of the proof of Theorem 16.12,

we also obtain (c) and (d) for Garith,F
q2/d

and G�
arith,F

q2/d
.

Note that the extra gcd(2, d) factor in Theorem 17.5(c) and (d), com-

pared to Theorem 16.12, is explained by the fact that the transpose-inverse

automorphism of SUn(q) becomes an inner-diagonal automorphism when

n = 2.
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