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Exponential sums and total Weil representations of finite
symplectic and unitary groups

Nicholas M. Katz and Pham Huu Tiep

Abstract

We construct explicit local systems on the affine line in characteristic p > 2, whose geometric
monodromy groups are the finite symplectic groups Sp2n(q) for all n ≥ 2, and others whose
geometric monodromy groups are the special unitary groups SUn(q) for all odd n ≥ 3, and q
any power of p, in their total Weil representations. One principal merit of these local systems is
that their associated trace functions are one-parameter families of exponential sums of a very
simple, i.e., easy to remember, form. We also exhibit hypergeometric sheaves on Gm, whose
geometric monodromy groups are the finite symplectic groups Sp2n(q) for any n ≥ 2, and others
whose geometric monodromy groups are the finite general unitary groups GUn(q) for any odd
n ≥ 3.
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1. Introduction

Throughout this paper, p is a prime and q = pf is a (strictly positive) power of p. We first
recall from [13, §1] the underlined motivation for this work. The solution [22] (see also [21])
of Abhyankar’s Conjecture for the affine line in characteristic p > 0 tells us that any finite
group G which is generated by its Sylow p-subgroups occurs as a quotient of the geometric
fundamental group π1(A1/Fp) of the affine line A1/Fp over Fp. In a series of papers (see e.g.
[1]), Abhyankar has written down explicit equations which realize many finite groups of Lie
type as such quotients.

Suppose we are given such a finite group G (i.e., one which is generated by its Sylow
p-subgroups), together with a faithful representation ρ : G→ GLn(C). Because G is finite,
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there is always some number field K such that the image of ρ lands in GLn(K). If we now
choose a prime number ` and an embedding of K into Q`, we can view ρ as a representation
ρ : G→ GLn(Q`). Since G is a quotient of π1(A1/Fp), we can compose

π1(A1/Fp)� G→ GLn(Q`),

to get a continuous `-adic representation of π1(A1/Fp), i.e., an `-adic local system on A1/Fp,
whose image is the finite group G.

There are a plethora of local systems on the affine line attached to families of exponential
sums. In the ideal world, we would be able, given the data (G, ρ) and any ` 6= p, to write
down a “simple to remember” family of exponential sums incarnating a local system which
gives (G, ρ). Needless to say, we are far from being in the ideal world.

In our previous paper [14], we worked in odd characteristic p and exhibited explicit local
systems on the affine line A1/Fp whose geometric monodromy groups were the symplectic
groups Sp2n(q) for all even n ≥ 2, or the special unitary groups SUn(q) for all odd n ≥ 3, in
their total Weil representations. In this paper, we give new local systems which do this, and
which also handle the case of Sp2n(q) for n odd. Moreover, our results lead to hypergeometric
sheaves whose geometric monodromy groups are the symplectic groups Sp2n(q) for any n ≥ 2,
and the general unitary groups GUn(q) for any odd n ≥ 3.

This paper may also be viewed as a companion piece to [15], which determines which almost
quasisimple groups can possibly occur as monodromy groups of hypergeometric sheaves.
Grosso modo, the main results of [15], see Theorems 6.4 and 7.4 therein, show that if a
finite classical group G in characteristic r can be realized as the geometric monodromy group
of a hypergeometric sheafH on Gm/Fp, then, aside from a small and explicit list of exceptions,
we necessarily have that r = p and that G is a general linear group GLn(q), a general unitary
group GUn(q), or a symplectic group Sp2n(q) with q a power of p, and moreover the resulting
representation of G is an irreducible Weil representation. The converse problem of showing
that such a finite classical group G acting in a Weil representation does indeed occur as the
geometric monodromy group of a hypergeometric sheaf H is the subject of the current paper
and its follow-up [16]. Known representation-theoretic results [15, Theorems 8.2, 8.4] as well
as the known local structure of the finite symplectic and unitary groups offer some hints
about, but do not specify, possible candidates for the hypergeometric sheaf H we are looking
for. The tasks of nailing down a suitable candidate and proving that it indeed realizes the
finite classical group in question are accomplished in these two papers.

All of the local systems on A1 in this paper are those attached to one-parameter families of
exponential sums of the following simple shape. We fix a nontrivial additive character ψ of Fp,
and for each finite extension k/Fp, we obtain the additive character ψk of k by composition
with Tracek/Fp . For fixed positive integers N > M with p - NM , we look at the one-parameter
family of the shape

t ∈ k 7→ (1/Gaussk)
∑
x∈k

ψk(xN + txM ),

with Gaussk a (correctly chosen) quadratic Gauss sum over k. The idea that such families
might, with suitable choices of N,M , give rise to total Weil representations of finite symplectic
or unitary group is already present, in special cases, in [14, Theorems 4.2 and 10.6], as well
as conjecturally in [12, Conjecture 9.2].

We first prove in §§2, 3 some general results about local systems of this (N,M) type. In
§§4, 5 we then specialize to the cases where

N = qn + 1, M = qm + 1, n > m > 0,

which, under suitable hypotheses, we show realize various total Weil representations. In
hindsight, our earlier paper [14] was devoted to the special case m = 1. Despite the apparent
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simplicity of these local systems, analysis of them depends heavily on their relation to
hypergeometric sheaves, and on a great deal of group theory and representation theory. In
§§6, 7 we prove several results about Weil representations of finite symplectic groups and
their extensions to overgroups, and restrictions to subgroups, of these symplectic groups.
These results then are used in §§8–10 to “go-up” from known one-parameter local systems
to multi-parameter local systems, and then to “go-down” to our target one-parameter local
systems. The idea behind “going up” and “going down” is based on the simple fact that if
we have a local system F on X and a map f : Y → X, the monodromy group of f?F on Y
is a subgroup of the monodromy group of F on X. For example, we might have two local
systems F1 and F2 on A1, and a local system G on A2, about which we know that for the
first inclusion i1 : A1 → A2, x 7→ (x, 0), we have i?1G ∼= F1 and that for the second inclusion
i2 : A1 → A2, y 7→ (0, y) we have i?2G ∼= F2. In this picture, we “go up“ from the monodromy
group of F1 to the monodromy group of G, and we “go down” from the monodromy group of
G to that of F2.

This technology of “going up” and “going down” also turns out to be a crucial ingredient in
our paper [16], which treats a very different kind of local system. A major difference between
the local systems considered in this paper and those in [16] is that the local monodromy at
0 of the sheaves in this paper uses a cyclic maximal torus of the finite classical group G in
question and the resulting trace functions are one-variable exponential sums, whereas in [16]
the local monodromy at 0 utilizes a maximal torus which is a product of two sub-tori and the
sheaves have trace functions which are two-variable exponential sums.

Our main results for finite symplectic groups Sp2n(q) are Theorems 9.2, 9.3, and 9.4. In
Theorem 9.2, we show that certain local systems on A1/Fp have as their geometric monodromy
groups the image of Sp2n(q) in its total Weil representation of degree qn and whose trace
functions are easy to remember one-parameter families of exponential sums. In Theorem 9.3
and Theorem 9.4 we show that certain hypergeometric sheaves on Gm/Fq have geometric
monodromy groups which are the images of Sp2n(q) in its irreducible Weil representations
of degree (qn ± 1)/2. The structure of the arithmetic monodromy groups is also determined
completely. We obtain similar results for the finite unitary groups, see Theorems 10.2–10.6.

To make the paper more accessible, we recall some group-theoretic definitions that will
be used throughout. For a finite group G and a prime p, Op(G) denotes the largest normal
subgroup of p-power order of G, Op′(G) denotes the largest normal subgroup of order coprime
to p, Op′(G) denotes the normal subgroup of G generated by all Sylow p-subgroups of G,
Z(G) denotes the center of G, and G(∞) denotes the last term of the derived series of G. A
finite group G is quasisimple if G = [G,G] and if G/Z(G) is simple; it is almost quasisimple
if S CG/Z(G) ≤ Aut(S) for some finite non-abelian simple group S.

We also recall some basic algebro-geometric notions. A connected scheme X has (once
chosen a base point η) a profinite étale fundamental group π1(X, η), which up to inner
automorphism is independent of the auxiliary choice of base point. Given a topological ring R,
a rank n R-local system F on X, also called a lisse R-sheaf of rank n on X, is just a continuous
homomorphism ρF : π1(X, η)→ GLn(R). When X is a connected scheme over a finite field k
such that X ⊗ k is connected, we refer to π1(X) as the arithmetic fundamental group of X,
and we refer to π1(X ⊗ k) as its geometric fundamental group. For brevity, we denote these
groups πarith

1 (X) and πgeom
1 (X). In this situation, for each finite extension field K/k, and

each point x ∈ X(K), the group πarith
1 (X) contains a well-defined Frobenius conjugacy class

Frobx,K . [When X/k is of finite type, these Frobenius conjugacy classes are dense; this is the
Chebotarev density theorem.] Given a rank n R-local system F on X, with corresponding
representation ρF , the trace function of F is the rule which attaches to each pair (K,x) with
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K/k a finite field extension and x ∈ X(K) the trace of Frobenius, i.e.,

Trace(Frobx,K |F) := Trace
(
ρF (Frobx,K)

)
.

It is often useful to think of this trace function as providing, for each finite field extension
K/k, the R-valued function on the set X(K) given by

x ∈ X(K) 7→ Trace(Frobx,K |F).

A local system F on X is said to be geometrically irreducible, respectively arithmetically
irreducible, if it is irreducible as a representation of πgeom

1 (X), respectively of πarith
1 (X).

Similarly, F is said to be geometrically semisimple, respectively arithmetically semisimple, if
it is completely reducible as a representation of πgeom

1 (X), respectively of πarith
1 (X).

In this paper, we are typically concerned with the case when X/k is either A1/Fq or Gm/Fq,
with Fq a finite extension of Fp, the ring R is the field Q` for some prime ` 6= p, and F is a
local system whose trace function is given by a simple (in the sense of simple to remember)
explicit formula involving exponential sums. Our particular interest is in local systems F for
which the images under ρF of πarith

1 (X) and πgeom
1 (X) are finite groups, which we call the

arithmetic monodromy group, respectively, geometric monodromy group, of F . When F is a
hypergeometric sheaf on Gm/Fp, we frequently work with its local monodromy groups at 0
and∞: its inertia subgroup I(0) with its wild inertia subgroup P (0), and its inertia subgroup
I(∞) with its wild inertia subgroup P (∞).

2. A miscellany on moments, irreducibility, and van der Geer–van der Vlugt

Let us recall the basic mechanism.
Let p be a prime, k/Fp a finite extension, U/k smooth, and geometrically connected variety

of dimension dim(U) > 0, ` a prime ` 6= p, and F a lisse Q` sheaf on U which is ι-pure of
weight zero for a given embedding ι : Q` ↪→ C. By purity, one knows [4, 3.4.1(iii)] that F is
geometrically semisimple, say on Uk := U ⊗k k we have

F ∼=
⊕
i

niGi,

with lisse Gi on Uk which are geometrically irreducible and pairwise non-isomorphic.

Proposition 2.1. One has∑
i

(ni)
2 = lim sup

finite extensions E/k

(1/#E)dim(U)
∑

x∈U(E)

|Trace(Frobx,E |F)|2.

Proof. We have∑
i

(ni)
2 = dim EndUk(F) = dimH2 dim(U)

c (Uk,End(F)(dim(U))).

This cohomology group is pure of weight zero, say with Frobeniusk eigenvalues αj , j = 1, . . . , d,

each unitary, for d the dimension of this H
2 dim(U)
c . By the Lefschetz trace formula, for each
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finite extension E/k, we have

Trace(FrobE |H2 dim(U)
c (Uk,End(F)(dim(U)))

+
∑

i<2 dim(U)

(−1)iTrace(FrobE |Hi
c(Uk,End(F)(dim(U)))

=
∑

x∈U(E)

Trace(Frobx,E |End(F))/(#E)dim(U).

The Hi
c traces for i < 2 dim(U) are O(1/

√
#E) (because the coefficients are pure of weight

−2 dim(U), so each Hi
c is mixed of weight ≤ i− 2 dim(U) ≤ −1), while the H

2 dim(U)
c trace is∑

j

(αj)
deg(E/k).

As the αj are each unitary, the H
2 dim(U)
c trace is always ≤ d in absolute value, but comes

arbitrarily close to d for some infinite sequence of E/k with suitably chosen degrees. The
lower Hi

c traces do not affect the lim sup, as they tend to 0 as the degree grows.

We will refer to the quantity
∑
i(ni)

2 in Proposition 2.1 above as the second moment
M2(F).

Given a nontrivial additive character ψ of Fp, for any finite extension E of Fp, we denote
by ψE the character

t 7→ ψ
(
TrE/Fp(t)

)
(2.1.1)

of E. Similarly, given a nontrivial multiplicative character χ of k× for a finite extension k of
Fp and a finite extension E of k, we will denote by χE the character

t 7→ χ
(
NE/k(t)

)
(2.1.2)

of E×. For such nontrivial χ, we adopt the convention that

χE(0) = 0.

In the special case where p > 2 and χ := χ2, the quadratic character of k×, then χE becomes
the quadratic character of E×, and so we will use χ2 to denote the quadratic character of E×

(when the choice of E is unambiguous).

The following elementary lemma in representation theory will be useful in this section.

Lemma 2.2. Let G be a group, F a field, and H CG a normal subgroup. Let V be a finite
dimensional FG-module. Suppose that the H-module V |H is semisimple: V |H = ⊕ti=1Wi,
where the simple summands Wi are pairwise non-isomorphic, and moreover, each Wi is
extendible to a G-module Vi. Then V is semisimple as an FG-module.

Proof. For each i and each g ∈ G, g(Wi) is a simple summand of V |H . Since Vi|H ∼= Wi,
this G-conjugate g(Wi) of Wi is isomorphic to Wi. By hypothesis, the Wi’s are pairwise
non-isomorphic, hence g(Wi) = Wi. Thus each subspace Wi of V is G-stable, and hence an
irreducible G-submodule. It follows that the G-module V is semisimple.

Lemma 2.3. Given strictly positive integers A 6= B which are both prime to p, a finite
extension k/Fp, a nontrivial additive character ψ of k, invertible scalars a, b ∈ k×, and an
element Gk in Q` with absolute value

√
#k, consider any lisse Q`-sheaf F on Gm/k whose
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trace function is given by

t ∈ E×/k 7→ −1

(Gk)deg(E/k)

∑
x∈E

ψE(axA + btxB).

Then we have the following results.
(i) We have

M2(F) = gcd(A,B).

(ii) Let us denote by D := gcd(A,B). Over the extension field k(µD), for each multiplicative
character χ of order dividing D we have the lisse sheaf Fχ whose trace function is given
by

t ∈ E×/k(µD) 7→ −1

(Gk)deg(E/k)

∑
x∈E

ψE(axA/D + btxB/D)χE(x).

Then geometrically we have

F ∼=
⊕

χ∈Char(D)

Fχ,

each Fχ is geometrically irreducible, and the various Fχ are pairwise not geometrically
isomorphic.

(iii) F is arithmetically semisimple.

In fact, this is a special case of the following slightly more general statement. Recall that
a one-variable polynomial f(x) over an Fp-algebra is said to be Artin-Schreier reduced if it
is the zero polynomial, or if it has no constant term, and if any monomial appearing with a
nonzero coefficient has degree prime to p. Given an Artin-Schreier reduced polynomial f(x),
we denote by

gcddeg(f)

the greatest common divisor of the degrees of the monomials appearing in f .

Proposition 2.4. Given strictly positive integers A 6= B which are both prime to p,
a finite extension k/Fp, a nontrivial additive character ψ of k, an Artin-Schreier reduced
polynomial f(x) ∈ k[x] of degree A, and an element Gk in Q` with absolute value

√
#k,

consider any lisse Q`-sheaf F on Gm/k whose trace function is given by

t ∈ E×/k 7→ −1

(Gk)deg(E/k)

∑
x∈E

ψE(f(x) + txB).

Then we have the following results.
(i) We have

M2(F) = gcd(gcddeg(f), B).

(ii) Let us denote by D := gcd(gcddeg(f), B). Then f(x) is of the form g(xD) for a unique
polynomial g(x) ∈ k[x]. Over the extension field k(µD), for each multiplicative character
χ of order dividing D we have the lisse sheaf Fχ whose trace function is is given by

t ∈ E×/k(µD) 7→ −1

(Gk)deg(E/k)

∑
x∈E

ψE
(
g(x) + txB/D

)
χE(x).

Then geometrically we have

F ∼=
⊕

χ∈Char(D)

Fχ,
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each Fχ is geometrically irreducible, and the various Fχ are pairwise not geometrically
isomorphic. The rank of F1 is Max(A/D,B/D)− 1, the rank of each Fχ with χ 6= 1 is
Max(A/D,B/D).

(iii) F is arithmetically semisimple.

Remark 2.5. When A > B, the sheaves F and Fχ are all lisse on A1, not “just” on Gm,
and this fact would slightly simplify the proof in this case.

Proof. We first calculate

(1/#E)
∑
t∈E
|Trace(Frobt,E |F)|2

for a single E/k, large enough to contain the Bth roots of unity. It is

(1/#E)2
∑

t∈E×,x,y∈E

ψE(f(x)− f(y) + t(xB − yB))

= (1/#E)2
∑
x,y∈E

ψE(f(x)− f(y))
∑
t∈E×

ψE(t(xB − yB)).

We now rewrite the sum so that the sum over t is over all t ∈ E. It becomes

−(1/#E)2
∑
x,y∈E

ψE(f(x)− f(y)) + (1/#E)2
∑
x,y∈E

ψE(f(x)− f(y))
∑
t∈E

ψE(t(xB − yB)).

We claim that the first term

−(1/#E)2
∑
x,y∈E

ψE(f(x)− f(y))

is O(1/#E). Indeed, it is minus the square absolute value of

(1/#E)
∑
x∈E

ψE(f(x)),

which is O(1/
√

#E) (because f has degree prime to p).
So it is only the second term which affects the lim sup. That term is

(1/#E)
∑

x,y∈E, xB=yB

ψE(f(x)− f(y)).

The domain of summation is the union of the lines y = ζx, one for each ζ ∈ µB . They all
intersect in x = y = 0, but otherwise are pairwise disjoint. So up to an error of at most
B/#E, this sum is ∑

ζ∈µB

(1/#E)
∑
x∈E

ψE(f(x)− f(ζx)).

Because f is Artin-Schreier reduced, so also is f(x)− f(ζx). If f(x)− f(ζx) is nonzero, then
its degree is prime to p, and by Weil the sum

(1/#E)
∑
x∈E

ψE(f(x)− f(ζx))

has absolute value O(1/
√

#E). If f(x)− f(ζx) = 0, then this sum is 1. Thus up to an
O(1/

√
#E) error, the sum is the number of ζ ∈ µB for which f(x) = f(ζx), an equality

which holds precisely for ζ a root of unity of order dividing gcddeg(f). This proves the first
assertion.
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Once we have (i), we write the trace function of F as

t ∈ E/k 7→
(
−1/(Gk)deg(E/k)

)∑
x∈E

ψE
(
g(xD) + txD(B/D)

)
.

If E contains µD, this is the sum over χ ∈ Char(D) of the functions

t ∈ E/k 7→
(
−1/(Gk)deg(E/k)

)∑
x∈E

ψE
(
g(x) + txB/D

)
χE(x),

each of which is the trace function of a lisse Fχ which is pure of weight zero and lisse
of rank A/D = deg(g) for χ = 1, and of rank deg(g)− 1. [Notice that deg(g) ≥ 2, because
Max(A,B)/D > Min(A,B)/D ≥ 1, so each Fχ is nonzero.] Once we have F having second
moment D expressed geometrically as the sum of D nonzero summands, each summand must
be irreducible (otherwise we get even more summands) and the D summands must be pairwise
non-isomorphic (for if

∑
i ni = D and

∑
i(ni)

2 = D, then each ni = 1).
To prove the arithmetic semisimplicity, it is enough to prove it after extension of scalars

from k to k(µD), for this replaces Garith by a normal subgroup of itself of index dividing the
degree of k(µD)/k. Then the arithmetic semisimplicity is immediate from Lemma 2.2, applied
to the normal subgroup Ggeom CGarith and the representation given by F .

Here is a slight generalization of this last result, where we allow a multiplicative character
to “decorate” the sum in question. The proof, a straightforward rewriting of the proof of
Proposition 2.4, is left to the reader.

Proposition 2.6. Given strictly positive integers A 6= B which are both prime to p,
a finite extension k/Fp, a nontrivial additive character ψ of k, an Artin-Schreier reduced
polynomial f(x) ∈ k[x] of degree A, a nontrivial multiplicative character ρ of k×, and an
element Gk in Q` with absolute value

√
#k, consider any lisse Q`-sheaf F on Gm/k whose

trace function is given by

t ∈ E×/k 7→ −1

(Gk)deg(E/k)

∑
x∈E

ψE(f(x) + txB)ρE(x).

Then we have the following results.

(i) We have

M2(F) = gcd(gcddeg(f), B).

(ii) Let us denote by D := gcd(gcddeg(f), B). Then f(x) is of the form g(xD) for a unique
polynomial g(x) ∈ k[x]. Extend scalars so that k contains µD and so that ρ is a Dth

power, say ρ = σD. For each multiplicative character χ of order dividing D we have the
lisse sheaf Fχ whose trace function is is given by

t ∈ E×/k 7→ −1

(Gk)deg(E/k)

∑
x∈E

ψE
(
g(x) + txB/D

)
χE(x)σE(x).

Then geometrically we have

F ∼=
⊕

χ∈Char(D)

Fχ,

each Fχ is geometrically irreducible, and the various Fχ are pairwise not geometrically
isomorphic.

(iii) F is arithmetically semisimple.
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We will also frequently use the following higher-dimensional analogue of the previous result:

Corollary 2.7. Given r + 1 ≥ 3 pairwise distinct integers A,B1, . . . , Br with

A ≥ 0, B1 > B2 > . . . > Br ≥ 1,

which are each prime to p, a finite extension k/Fp, a nontrivial additive character ψ of k,
an Artin-Schreier reduced polynomial f(x) ∈ k[x] of degree A, a nontrivial multiplicative
character ρ of k×, and an element Gk in Q` with absolute value

√
#k, consider any lisse

Q`-sheaf F on (Gm)r/k whose trace function is given by

(t1, . . . , tr) ∈ (E×)r/k 7→ −1

(Gk)deg(E/k)

∑
x∈E

ψE
(
f(x) +

∑
i

tix
Bi
)
ρE(x).

Then we have the following results.

(i) We have

M2(F) = gcd(gcddeg(f), B1, . . . , Br).

(ii) Let us denote by D := gcd(gcddeg(f), B1, . . . , Br). Then f(x) is of the form g(xD) for a
unique polynomial g(x) ∈ k[x]. Extend scalars so that k contains µD and so that ρ is a
Dth power, say ρ = σD. For each multiplicative character χ of order dividing D we have
the lisse sheaf Fχ whose trace function is is given by

(t1, . . . , tr) ∈ (E×)r/k 7→ −1

(Gk)deg(E/k)

∑
x∈E

ψE
(
g(x) +

∑
i

tix
B/D

)
χE(x)σE(x).

Then geometrically we have

F ∼=
⊕

χ∈Char(D)

Fχ,

each Fχ is geometrically irreducible, and the various Fχ are pairwise not geometrically
isomorphic.

(iii) F is arithmetically semisimple.

Proof. It is clear that the trace function of F is the sum of the trace functions of the Fχ.
So it suffices to show that each Fχ is geometrically irreducible, and that they are pairwise
not geometrically isomorphic.

Freeze ti for i ≥ 2 by setting ti = ai for any chosen ai ∈ Fp for which

ai + the coefficient of xBi in f(x) 6= 0.

[By such a choice of the ai, the monomials that appear in f(x) +
∑
i tix

Bi will be exactly those
that appear in f(x) + t1x

B1 +
∑
i≥2 aix

Bi .] By the previous result applied to this one variable
(t1) family, the pullbacks of the Fχ to Gm by t1 7→ (t1, a2, . . . , ar) are each geometrically
irreducible and pairwise not geometrically isomorphic. So a fortiori the same is true of the Fχ
themselves. [We use r ≥ 2 in this argument to be sure we may apply this pullback argument
in the case A = 0, in which case f(x), being Artin-Schreier reduced, is the zero polynomial,
and our family has trace function

(t1, . . . , tr) ∈ (E×)r/k 7→ (−1/(Gk)deg(E/k))
∑
x∈E

ψE(
∑
i

tix
Bi)ρE(x).]

As before, the arithmetic semisimplicity results from Lemma 2.2.
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To end this section, let us recall the wonderful insight of van der Geer and van der Vlugt.
When p > 2, we fix a choice GaussFp of quadratic Gauss sum over Fp. When p = 2, we use the

convention GaussF2 =
√

2. More generally, for a finite extension k of Fp, an additive character
α of k and a multiplicative character β of k×, recall that the Gauss sum Gauss(α, β) is∑

x∈k×
α(x)β(x) (2.7.1)

(hence, when p > 2, GaussFp is Gauss(ψ′, χ2) for some nontrivial additive character ψ′ of Fp).

Theorem 2.8. Let p be a prime, q a power of p, E/Fp a finite extension, and f(x) ∈ E[x]
a polynomial of the form

f(x) =

n∑
i=0

aix
qi+1

with n ≥ 0 and an 6= 0.

(i) Consider the sum

Sf :=
−1

(−GaussFp)deg(E/Fp)

∑
x∈E

ψE(f(x)).

If p is odd, and E contains Fq, then |Sf |2 is a power qr of q, with 0 ≤ r ≤ n. If p = 2,
the value 0 may also occur (as it does, for example, in the n = 0 case). If E ⊂ Fq, then
|Sf |2 is a power of #E. If p = 2, the value 0 may also occur.

(ii) Suppose p is odd, and denote by K = Q(
√

(−1)(p−1)/2p) the unique quadratic subfield
of the pth cyclotomic field Q(ζp). Consider the polynomial

f̃(x) :=

n∑
i=0

aix
(qi+1)/2

and the two sums

Sf̃ ,+ :=
−1

(−GaussFp)deg(E/Fp)

∑
x∈E

ψE(f̃(x)),

Sf̃ ,− :=
−1

(−GaussFp)deg(E/Fp)

∑
x∈E

ψE(f̃(x))χ2(x).

Both these sums lie in K. Moreover, if q is a square, and E contains Fq, then both these
sums lie in Q.

Proof. The first statement is van der Geer and van der Vlugt [25, Proposition 3.1 and
§13]. For the second statement, we argue as follows. The Gauss sum itself lies in K, so it
suffices to look at the sums without the Gauss sum factor. For λ2 a square in F×p , and any

power Q of p, we have (λ2)
(Q+1)/2

= λQ+1 = λ2. So the substitution x 7→ λ2x leaves the sum
invariant. When q is a square, and E is an extension of Fq, the Gauss sum factor lies in Q,
and again it suffices to look at the sums without the Gauss sum factor. Then every λ ∈ F×p
becomes a square τ2 with τ ∈ Fq. Then we have (τ2)(qi+1)/2 = τ q

i+1 = τ2, so the substitution
x 7→ τ2x = λx leaves the sum invariant.
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Theorem 2.9. Let p be a prime and n ∈ Z≥1. Let F be any lisse sheaf on (Gm × An)/Fp,
with coordinates (rn, rn−1, . . . , r0) whose trace function at a point

(rn, rn−1, . . . , r0) ∈ E× × En,
for E/Fp a finite extension, is

(rn, rn−1, . . . , r0) 7→ −1

(−GaussFp)deg(E/Fp)

∑
x∈E

ψE
(
rnx

1+pn +

n−1∑
i=0

rix
1+pi

)
.

Then F is arithmetically semisimple, and both its geometric and arithmetic monodromy
groups Ggeom and Garith are finite.

Proof. Once we know that F is arithmetically semisimple, the finiteness is proved as
follows. We have Ggeom CGarith, so it suffices to prove the finiteness of Garith. The group
Garith is a subgroup of index dividing 2 in the Garith of the pullback to Fp2 . For this pullback,
each trace lies in Q(ζp), and by Theorem 2.8 has square absolute value either 0 or a power of
p. By [13, Lemma 5.1], this forces each trace to lie in Z[ζp]. Because F is pure of weight zero,
the fact that its traces are algebraic integers forces its Garith to be finite, cf. [11, Proposition
2.1 and Remark 2.2].

We now explain why F is arithmetically semisimple. The key point, as we will see below, is
that by Chebotarev, two lisse sheaves with the same trace function have isomorphic arithmetic
semisimplifications.

Suppose first that p = 2. Then we will show that F is geometrically, and hence arithmeti-
cally, irreducible. Indeed, after pullback to the line (1, 0, . . . , 0, r2

0), the trace function of the
pullback of F becomes (remember p = 2)

r0 ∈ E 7→
−1

(−GaussFp)deg(E/Fp)

∑
x∈E

ψE(x1+pn + r0x),

which is the trace function of the geometrically (and hence arithmetically) irreducible Fourier
transform sheaf [19, Definition 1.2.1.1 and Corollary 1.3.2.4]

FTψ
(
Lψ(x1+pn )

)
⊗ (−GaussFp)− deg(/Fp).

Hence by Chebotarev our pullback is itself arithmetically irreducible. Therefore F is all the
more arithmetically irreducible.

Suppose now that p is odd. Then the arithmetic semisimplicity is just the D = 2 case of
Lemma 2.7.

3. (A,B) generalities

In this section, we consider the following situation. We are given a prime p, a (strictly
positive) power q = pf of p, and two relatively prime, strictly positive integers A,B, both
of which are prime to p. We also fix a prime ` 6= p so as to be able to use Q`-cohomology,
and an embedding of Qab = Q(all roots of unity) into Q`. We also fix a nontrivial additive
character ψ of Fp which, unless explicitly specified otherwise, is the additive character we will
use throughout.

We first recall the notion of Kummer and Artin-Schreier sheaves. The Artin-Schreier sheaf
Lψ is the lisse rank one sheaf on A1/Fp whose trace function at a point t ∈ E, for E a finite
extension of Fp, is

Trace(Frobt,E |Lψ) := ψE(t),
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with ψE as defined in (2.1.1). For any scheme X/Fp, and any function f on X, we view f as a
morphism to A1, and define Lψ(f) := f?Lψ as a lisse sheaf on X. For E/Fp a finite extension
and x ∈ X(E), we have

Trace(Frobx,E |Lψ(f)) := ψE(f(x)).

For a multiplicative character χ of a finite extension k of Fp, the Kummer sheaf Lχ on
Gm/k is the lisse sheaf of rank one whose trace function at a point t ∈ E×, for E a finite
extension of k, is

Trace(Frobt,E |Lχ) := χE(t),

with χE as defined in (2.1.2). By abuse of notation, for χ nontrivial we also let Lχ denote
the sheaf j!Lχ on A1/k with the inclusion j : Gm → A1 and with trace 0 at time 0. For any
scheme X/k and any invertible function f on X, we view f as a morphism to Gm, and define
Lχ(f) := f?Lχ as a lisse sheaf on X. For E/k a finite extension and x ∈ X(E), we have

Trace(Frobx,E |Lχ(f)) := χE(f(x)).

For given multiplicative characters χ1, . . . , χn, ρ1, . . . , ρm of k×, let

Hypψ(χ1, . . . , χn; ρ1, . . . , ρm)

be the hypergeometric sheaf Hλ(!, ψ;χ1, . . . , χn; ρ1, . . . , ρm) on Gm/k of [8, Corollary 8.4.6.2]
with λ = 1.

For a multiplicative character χ of a finite extension k of Fp, we denote

Char(A,χ) := {ξ | ξA = χ} and Char(A) := Char(A,1).

If χ has order D, the individual characters in Char(A,χ) have order dividing AD, and may
only be definable over some finite extension K/k with #K − 1 divisible by AD. But as we
will see and use later, the entire set Char(A,χ) is k-rational.

We first define

Hsmall,A,B := Hypψ(Char(A) r {1};Char(B) r {1}),

of type (A− 1, B − 1) and rank max(A,B)− 1. It is pure of weight A+B − 3 by [8, Theorem
8.4.2(4)]. For each character χ with χA 6= 1, we define

Hbig,A,B,χ := Hypψ(Char(A);Char(B,χ)),

of rank max(A,B). The hypothesis that χA 6= 1 insures that the two sets Char(A) and
Char(B,χ) are disjoint, for if ρ were in both, then ρB = χ, hence ρAB = χA. But also ρA = 1,
so ρAB = 1, a contradiction. Thus Hbig,A,B,χ is of type (A,B) and rank max(A,B). It is pure
of weight A+B − 1, again by [8, Theorem 8.4.2(4)].

Similarly, for each character χ with χB 6= 1, we define

H]big,A,χ,B := Hypψ(Char(A,χ);Char(B)).

The hypothesis that χB 6= 1 insures that the two sets Char(A,χ) and Char(B) are disjoint
(same argument as above). Thus H]big,A,χ,B is of type (A,B) and rank max(A,B). It is pure of

weight A+B − 1 by [8, Theorem 8.4.2(4)]. The sheavesHsmall,A,B ,Hbig,A,B,χ, andH]big,A,χ,B
are defined over a large enough finite extension k of Fp so that all the involved characters are
characters of k×.

Because gcd(A,B) = 1, at least one of A,B is odd.

Lemma 3.1. If A−B ≥ 2, then the sheaves Hsmall,A,B and Hbig,A,B,χ for any χ with
χA 6= 1 each have geometric determinant LχA−1

2
, with the understanding that χ2 is the
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quadratic character if p is odd, and is 1 if p = 2. If B −A ≥ 2, then Hsmall,A,B has geometric
determinant LχB−1

2
, and Hbig,A,B,χ has geometric determinant LχχB−1

2
.

Proof. Immediate from [8, Theorem 8.12.2].

Lemma 3.2. If A−B ≥ 2, the sheaf H]big,A,χ,B for any χ with χB 6= 1 has geomet-

ric determinant LχA−1
2 χ. If B −A ≥ 2, H]big,A,χ,B for any χ with χB 6= 1 has geometric

determinant LχB−1
2

.

Proof. Immediate from [8, Theorem 8.12.2].

Remark 3.3. In the following sections, we will deal systematically with descents of
hypergeometric sheaves. Here is one way to think of them. View a given hypergeometric
sheaf H as living on Gm/Fp, and giving an irreducible Q`-representation V of the geometric
fundamental group πgeom

1 := π1(Gm/Fp). Given a finite field k/Fp, a descent H0 of H may
be seen as an irreducible Q`-representation V0 of the arithmetic fundamental group πarith

1 :=
π1(Gm/k) whose restriction to the normal subgroup πgeom

1 < πarith
1 is V . If such a descent

V0 to Gm/k exists, any other such descent is of the form V0 ⊗ ρ for some one-dimensional
representation ρ of the quotient group πarith

1 /πgeom
1

∼= Gal(Fp/k). This indeterminacy will
appear later as a clearing factor when we force our descents to be pure of weight zero.

The arguments of [14, §§7,8] give the following lemmas.

Lemma 3.4. Suppose A and B are strictly positive integers, both prime to p, with
gcd(A,B) = 1. Then Hsmall,A,B is geometrically isomorphic to the lisse sheaf

Hsmall,A,B,descent

on Gm/Fp whose trace function is as follows: for E/Fp a finite extension, and u ∈ E×, the
trace at time u is given by

u ∈ E× 7→ −
∑

x,y∈E,xA=uyB

ψE(Ax−By).

For any finite extension E = Fq of Fp and any multiplicative character χ of E× of order
say D, the field

Fp(χ) := Fp(µD)

is a subfield of E.

Lemma 3.5. Suppose A and B are strictly positive integers, both prime to p, with
gcd(A,B) = 1. Suppose χA 6= 1. Then Hbig,A,B,χ is geometrically isomorphic to the lisse
sheaf

Hbig,A,B,χ,descent
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on Gm/Fp(χ) whose trace function is as follows: for E/Fp(χ) a finite extension, and u ∈ E×,
the trace at time u is given by

u ∈ E× 7→ −
∑

x,y∈E,xA=uyB

ψE(Ax−By)χE(y).

Lemma 3.6. Suppose A and B are strictly positive integers, both prime to p, with
gcd(A,B) = 1. Suppose χB 6= 1. Then H]big,A,χ,B is geometrically isomorphic to the lisse
sheaf

H]big,A,χ,B,descent
on Gm/Fp(χ) whose trace function is as follows: for E/Fp(χ) a finite extension, and u ∈ E×,
the trace at time u is given by

u ∈ E× 7→ −
∑

x,y∈E,xA=uyB

ψE(Ax−By)χE(x).

We have the following rationality results.

Lemma 3.7. Suppose A ≡ B(mod (p− 1)). Then we have the following results.
(i) Hsmall,A,B,descent has all its traces in Q.
(ii) Given a character χ with χA 6= 1, for D the order of χ define Eχ := Fp(µD(p−1)). Then

pulled back to Gm/Eχ, Hbig,A,B,χ,descent has all its traces in Q(χ) := Q(the values of χ).
(iii) Given a character χ with χB 6= 1, for D the order of χ define Eχ := Fp(µD(p−1)). Then

pulled back to Gm/Eχ, H]big,A,χ,B,descent has all its traces in Q(χ).

Proof. From the explicit formulas, we see that the traces lie in Q(ζp) and in
Q(ζp, χ) respectively. So it suffces to show the traces are fixed by Gal(Q(ζp)/Q) and by
Gal(Q(ζp, χ)/Q(χ)) respectively. For any λ ∈ F×p , the domain of summation, xA = uyB is
mapped to itself by the automorphism (x, y) 7→ (λx, λy), precisely because (p− 1)|(A−B).
Making this substitution shows that each trace of Hsmall,A,B,descent is fixed by F×p ∼=
Gal(Q(ζp)/Q). To prove (ii) and (iii), the key point is that over extensions of Eχ, the restriction
of χ to the subgroup F×p of E×χ is trivial. So the same substitution shows that each trace of
Hbig,A,B,χ,descent on Gm/Eχ is fixed by F×p ∼= Gal(Q(ζp, χ)/Q(χ)).

Lemma 3.8. Suppose p is odd. Denote by K the unique subfield of Q(ζp) which is quadratic
over Q. [Thus K is Q(GaussFp), with GaussFp either choice of quadratic Gauss sum over Fp.]
Suppose A and B are strictly positive integers, both prime to p, with gcd(A,B) = 1. Suppose
further that we have the congruence

2A ≡ 2B (mod (p− 1)),

or that we have the congruence

(q + 1)A ≡ (q + 1)B (mod (p− 1)),

Then all three of the sheaves Hsmall,A,B,descent, Hbig,A,B,χ2,descent and H]big,A,χ2,B,descent
have

all their traces in K.

Proof. For any λ ∈ F×p , we have λ2 = λq+1. So the domain of summation, xA = uyB is
mapped to itself by the automorphism (x, y) 7→ (λ2x, λ2y) = (λq+1x, λq+1y), either because
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2A ≡ 2B (mod (p− 1)) or because (q + 1)A ≡ (q + 1)B (mod (p− 1)). Making this substi-
tution shows that each trace is fixed by the subgroup of squares in F×p ∼= Gal(Q(ζp)/Q).

We now use the fact that gcd(A,B) = 1 to find integers α, β with

αA− βB = 1.

In the indexing set equation, xA = uyB , write u = uαA−βB . Then this equation becomes

(x/uα)A = (y/uβ)B .

Again because gcd(A,B) = 1, there exists a unique z ∈ E such that

x/uα = zB , y/uβ = zA.

Making use of these substitutions, we obtain the following.

Lemma 3.9. Suppose A and B are strictly positive integers, both prime to p, with
gcd(A,B) = 1. Then we have the following results.
(i) Hsmall,A,B,descent is isomorphic to the lisse sheaf on Gm/Fp whose trace function is as

follows: for E/Fp a finite extension, and u ∈ E×, the trace at time u is given by

u ∈ E× 7→ −
∑
z∈E

ψE(AuαzB −BuβzA).

(ii) Hbig,A,B,χ,descent is isomorphic to the lisse sheaf on Gm/Fp(χ) whose trace function is as
follows: for E/Fp(χ) a finite extension, and u ∈ E×, the trace at time u is given by

u ∈ E× 7→ −
∑
z∈E

ψE(AuαzB −BuβzA)χE(uβzA).

(iii) H]big,A,χ,B,descent is isomorphic to the lisse sheaf on Gm/Fp(χ) whose trace function is as
follows: for E/Fp(χ) a finite extension, and u ∈ E×, the trace at time u is given by

u ∈ E× 7→ −
∑
z∈E

ψE(AuαzB −BuβzA)χE(uαzB).

We now consider the Kummer pullbacks by [A], u 7→ uA, and by [B], u 7→ uB .

Corollary 3.10. Suppose A and B are strictly positive integers, both prime to p, with
gcd(A,B) = 1, and with χ a character with χA 6= 1 and with ρ a character with ρB 6= 1.
Then we have the following results.
(i) The Kummer pullback [A]?Hsmall,A,B,descent is isomorphic to the lisse sheaf on Gm/Fp

whose trace function is as follows: for E/Fp a finite extension, and u ∈ E×, the trace at
time u is given by

u ∈ E× 7→ −
∑
z∈E

ψE(AuzB −BzA),

by the substitution z 7→ z/uβ .
The Kummer pullback [B]?Hsmall,A,B,descent is isomorphic to the lisse sheaf on Gm/Fp
whose trace function is as follows: for E/Fp a finite extension, and u ∈ E×, the trace at
time u is given by

u ∈ E× 7→ −
∑
z∈E

ψE(AzB −Bu−1zA),
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by the substitution z 7→ z/uα.
(ii) The Kummer pullback [A]?Hbig,A,B,χ,descent is isomorphic to the lisse sheaf on

Gm/Fp(χA) whose trace function is as follows: for E/Fp(χA) a finite extension, and
u ∈ E×, the trace at time u is given by

u ∈ E× 7→ −
∑
z∈E

ψE(AuzB −BzA)χAE(z),

using the substitution z 7→ z/uβ .
The Kummer pullback [B]?Hbig,A,B,χ,descent is isomorphic to the lisse sheaf on Gm/Fp(χ)
whose trace function is as follows: for E/Fp(χ) a finite extension, and u ∈ E×, the trace
at time u is given by

u ∈ E× 7→ −
∑
z∈E

ψE(AzB −Bu−1zA)χE(u−1zA),

using the substitution z 7→ z/uα.
(iii) The Kummer pullback [A]?H]big,A,ρ,B,descent is isomorphic to the lisse sheaf on Gm/Fp(ρ)

whose trace function is as follows: for E/Fp(ρ) a finite extension, and u ∈ E×, the trace
at time u is given by

u ∈ E× 7→ −
∑
z∈E

ψE(AuzB −BzA)ρE(uzB).

The Kummer pullback [B]?H]big,A,ρ,B,descent is isomorphic to the lisse sheaf on

Gm/Fp(ρB) whose trace function is as follows: for E/Fp(ρB) a finite extension, and
u ∈ E×, the trace at time u is given by

u ∈ E× 7→ −
∑
z∈E

ψE(AzB −Bu−1zA)ρBE(z),

using the substitution z 7→ z/uα.

Lemma 3.11. Suppose A and B are strictly positive integers, both prime to p, with
gcd(A,B) = 1. Define K := Q(GaussFp). Suppose further that A > B and that

2A ≡ 2B ≡ 2 (mod (p− 1)),

or that

(q + 1)A ≡ (q + 1)B ≡ 2 (mod (p− 1)).

Then we have the following results.
(i) The lisse sheaf [A]?Hsmall,A,B,descent on Gm/Fp has all traces in K.
(ii) Given χ with χA 6= 1, and D the order of χA, define FχA := Fp(µD(p−1)/2). Then the

lisse sheaf [A]?Hbig,A,B,χ,descent on Gm/FχA has all traces in K.
(iii) Given ρ with ρB 6= 1, and D the order of ρB , define FρB := Fp(µD(p−1)/2). Then the lisse

sheaf [B]?H]big,A,χ,B,descent on Gm/FρB has all traces in K.

Proof. The key point is that under the first hypothesis, for λ ∈ F×p , we have (λ2)A = λ2A =
λ2, similarly (λ2)B = λ2. Under the second hypothesis, (λ2)A = (λq+1)A = λ2, similarly
(λ2)B = λ2. To prove (i), for each λ ∈ F2

p, simply make the substitution z 7→ λ2z; this does
not change the sum, but both zA and zB are multiplied by λ2. For (ii) and (iii), use the
same substitution, remembering that χA(λ2) = 1 over extensions of FχA and ρB(λ2) = 1 over
extensions of FρB .
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Given a fixed nontrivial additive character ψ of Fp, for any a ∈ F×p , let

ψa : t ∈ Fp 7→ ψ(at), more generally, ψa,E : u ∈ E 7→ ψE(au) (3.11.1)

for any finite extension E of Fp.

Proposition 3.12. Suppose A and B are strictly positive integers, both prime to p, with
gcd(A,B) = 1. Suppose further that A−B ≥ 2 and that A is odd. Then we have the following
results.

(i) Suppose p is odd. Then for any nontrivial additive character ψ′ of Fp, the lisse sheaf
Hsmall,A,B,descent ⊗ (−Gauss(ψ′, χ2))− deg on Gm/Fp is pure of weight zero and has

arithmetic determinant
(
(χ2(−1))(A−1)/2

)deg
.

(ii) Suppose p = 2. Then the lisse sheaf Hsmall,A,B,descent ⊗ (−
√

2)− deg on Gm/F2 is pure of
weight zero and has arithmetically trivial determinant.

(iii) Suppose p is odd. Define ε(A) := (−1)(A−1)/2, and consider the character ψ−ε(A)AB of
Fp as defined in (3.11.1). Then the lisse sheaf

Hbig,A,B,χ2,descent ⊗ (−Gauss(ψ−ε(A)AB , χ2))− deg

on Gm/Fp has arithmetically trivial determinant.

Proof. The explicit formulas of Lemma 3.9 makes clear that Hsmall,A,B and
Hbig,A,B,χ2,descent are pure of weight one, and thus their twists in the two cases puts us
in weight zero. We first prove (i) and (ii). To save having to write “by (−Gauss(ψ′, χ2))− deg

or by (−
√

2)− deg” in the rest of the proof, let us adopt the convention that

Gauss(ψ′, χ2) :=
√
p for p = 2.

The hypergeometric description of Hsmall,A,B shows that the determinant is geometrically
trivial, cf. [8, 8.12.2, (3)]. Therefore the determinant is of the formDdeg for some `-adic unitD.
To show that D = 1, it suffices to do so at the single point v = 1 in Gm(Fp). This determinant
at v = 1 is equal to the determinant at v = 1 on the Kummer pullback by v 7→ vA. But this
Kummer pullback, whose trace function is, by Corollary 3.10,

v ∈ E× 7→ −1(
−Gauss(ψ, χ2)

)deg(E/Fp)

∑
z∈E

ψE(AvzB −BzA),

is lisse on A1/Fp, and its determinant remains Ddeg.
So its determinant at v = 1 is equal to its determinant at v = 0. But at v = 0, we are

looking at the cohomology group

H1
c (A1/Fp,Lψ(−BzA))⊗ (−Gauss(ψ, χ2))− deg.

Because A is odd, if we had twisted instead by either choice of
√
p− deg, then we would be

arithmetically symplectically self dual, and would have determinant 1. So if p is 1 modulo
4, this is our situation: we are arithmetically symplectically self-dual, and therefore the
determinant D = 1. However, if p is 3 modulo 4, then our twisting Gauss sum is i

√
p, so

our determinant is iA−1, which is (−1)(A−1)/2, which, because p is 3 modulo 4, is the asserted
(χ2(−1))(A−1)/2.

We now turn to proving (iii). Again the hypergeometric description of Hbig,A,B,χ2,descent

shows, by [8, 8.12.2, (3)], that its determinant is geometrically trivial, of the form Ddeg for
some `-adic unit D. We now repeat the argument above. It suffices to show that D = 1 at the
point v = 1 in Gm(Fp). This is equal to the determinant at v = 1 on the Kummer pullback
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by v 7→ vA. But this Kummer pullback, whose trace function is, by Corollary 3.10,

v ∈ E× 7→ −1(
−Gauss(ψ−ε(A)AB , χ2)

)deg(E/Fp)

∑
z∈E

ψE(AvzB −BzA)χ2(z),

is lisse on A1/Fp, and its determinant remains Ddeg. So its determinant at v = 1 is equal to
its determinant at v = 0. But at v = 0, we are looking at the cohomology group

H1
c (A1/Fp,Lψ(−BzA) ⊗ Lχ2(z))⊗

(
−Gauss(ψ−ε(A)AB , χ2)

)− deg
,

which, because A is odd, is orthogonally self-dual. It is proven in [9, 1.4] that with the
imposed choice of quadratic Gauss sum, this orthogonal autoduality has determinant D = 1
(remembering that we are applying the cited result to the additive character ψ−B).

Proposition 3.13. Suppose A and B are strictly positive integers, both prime to p, with
gcd(A,B) = 1. Suppose further that p is odd, that A−B ≥ 2 and that A is even. Then we
have the following results.

(i) For any C ∈ F×p , consider the character ψC of Fp as defined in (3.11.1). The lisse sheaf
[A]?Hsmall,A,B,descent ⊗ (−Gauss(ψC , χ2))− deg on A1/Fp, whose trace function at u ∈ E
for any finite extension E of Fp is

u ∈ E 7→ −1(
−Gauss(ψC , χ2)

)deg(E/Fp)

∑
z∈E

ψE(AuzB −BzA),

is pure of weight zero and has arithmetic determinant
(
χ2(2ABC(−1)A/2)

)deg
.

(ii) Choose a character ρ with ρA = χ2. For any choice of C ∈ F×p , the lisse sheaf

[A]?Hbig,A,B,ρ,descent ⊗ (−Gauss(ψC , χ2))− deg

on A1/Fp, with trace function

u ∈ E 7→ −1(
−Gauss(ψC , χ2)

)deg(E/Fp)

∑
z∈E

ψE(AuzB −BzA)χ2(z),

is pure of weight zero and has arithmetic determinant
(
χ2(2(−1)A/2)

)deg
.

Proof. The explicit formulas of Corollary 3.10 make that the [A]? pullbacks are lisse on
A1/Fp, and after the twist by any quadratic Gauss sum, are pure of weight zero. Because A is
even, it results from Lemma 3.1 that each pullback has geometrically trivial determinant. So
to compute the arithmetic determinant, it suffices to do so at time u = 0 in A1(Fp). At this
point, we use the idea already used in the proof of Proposition 3.12, namely we first compute
the determinants of the cohomology groups

H1(A1/Fp,Lψ(−BzA)) and H1(A1/Fp,Lψ(−BzA) ⊗ Lχ2(z)).

These are computed in parts (1) and (2) of [12, Theorem 2.3], where the D there is our A,
the q there is p, and the ψ there is our ψ−B . The first determinant is

(−Gauss(ψ−BA/2, χ2)
)
p(A/2)−1

= χ2(−CAB/2)
(
−Gauss(ψC , χ2)

)(
χ2(−1)(−Gauss(ψC , χ2))2

)(A/2)−1

= χ2(−2CAB)χ2(−1)(A/2)−1
(
−Gauss(ψC , χ2)

)A−1

= χ2(2CAB(−1)A/2)
(
−Gauss(ψC , χ2)

)A−1
.
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The second determinant is
(
−Gauss(ψBA, χ2)

)
times the first, so is

χ2(CAB)χ2(2CAB(−1)A/2)
(
−Gauss(ψC , χ2)

)A
.

In both cases, after the Gauss sum twisting, we are left with the asserted arithmetic
determinant.

Proposition 3.14. Suppose A and B are strictly positive integers, both prime to p, with
gcd(A,B) = 1. Suppose further that p is odd, that A−B ≥ 2, that A is even and that B is
odd. Choose integers α, β with

αA− βB = 1, α even,

(which is always possible, for if (α, β) works, then so does (α+B, β +A), and B is odd). For
any choice of C ∈ F×p , the lisse sheaf

H]big,A,χ2,B,descent
⊗ (−Gauss(ψC , χ2))− deg

on Gm/Fp, with trace function

u ∈ E× 7→ −1(
−Gauss(ψC , χ2)

)deg(E/Fp)

∑
z∈E

ψE(AuαzB −BuβzA)χ2(z),

is pure of weight zero and has arithmetic determinant
(
χ2(2(−1)A/2)

)deg
.

Proof. From the explicit formula for its trace function, it is obvious thatH]big,A,χ2,B,descent

is pure of weight one, and hence that twisting by any quadratic Gauss sum renders it pure
of weight zero. Because B is odd and α is even, the asserted trace formula is just (iii) of
Proposition 3.9. Because A is even, it results from Lemma 3.2 that H]big,A,χ2,B,descent

has
geometrically trivial determinant. Therefore we may compute its arithmetic determinant at
the point u = 1 in Gm(Fp). This is the determinant attached to the trace function over varying
extensions E/Fp given by

−
∑
z∈E

ψE(AzB −BzA)χ2(z),

which is in turn the trace at u = 1 on the lisse sheaf on A1/Fp whose trace function is

u ∈ E 7→ −
∑
z∈E

ψE(AuzB −BzA)χ2(z).

This lisse sheaf is none other than [A]?Hbig,A,B,ρ,descent, for any choice of ρ with ρA = χ2,
which, we have seen in Proposition 3.13, has geometrically trivial determinant, and whose

arithmetic determinant is the asserted
(
χ2(2(−1)A/2)

)deg
.

A hypergeometric sheaf H is said to be geometrically induced if the representation of the
geometric monodromy group Ggeom of H can be induced from a proper subgroup. We note
by [10, Proposition 1.2] that this occurs precisely when H is either Kummer induced or Belyi
induced, as described in (i), respectively in (ii), of [10, Proposition 1.2]. In particular, we have
the following result:

Proposition 3.15. If a geometrically irreducible hypergeometric sheaf H of type (n,m)
with n > m > 0, or with m > n > 0, is Belyi induced, then n−m is prime to p, and is divisible
by p− 1.
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Proof. In the notations of [10, Proposition 1.2] (whose A and B have nothing to do with
ours), when n > m > 0, we have n = A+B and either A+B or A or B is d0p

r with sr ≥ 1
and d0 prime to p. In these cases, m is either d0, or d0 +B, or A+ d0. So in each case,

n−m = d0p
r − d0 = d0(pr − 1),

which is prime to p and is divisible by p− 1. To deal with the case m > n > 0, first apply
multiplicative inversion.

Corollary 3.16. Suppose A and B are strictly positive integers, both prime to p, with
gcd(A,B) = 1. Suppose further that A−B is divisible by p. Then neither Hsmall,A,B nor

Hbig,A,B,χ for any χ with χA 6= 1 nor H]big,A,ρ,B for any ρ with ρB 6= 1 is geometrically
induced.

Proof. The relative primality of A and B shows that neither sheaf is Kummer induced.
That neither is Belyi induced results from Proposition 3.15.

Combining the above primitivity result Corollary 3.16 with [15, Theorem 1.5], we get the
following two results.

Proposition 3.17. Suppose A and B are strictly positive integers, both prime to p,
with gcd(A,B) = 1. Suppose that A−B is divisible by p, and that max(A,B) is prime to p.
Suppose further that

|A−B| > max(A,B)/2 ≥ 2.

In the special case max(A,B) = 8, suppose A−B = 7 (possible only when p = 7). In the
special case max(A,B) = 9, suppose A−B = 7 or 8 (possible only when p = 7, respectively
when p = 2). Then for any χ with χA 6= 1, Hbig,A,B,χ satisfies condition (S+) (as defined in
[15, §1]).

Proposition 3.18. Suppose A and B are strictly positive integers, both prime to p, with
gcd(A,B) = 1. Suppose that A−B is divisible by p, and that max(A− 1, B − 1) is divisible
by p. Suppose further that

|A−B| > (2/3)(max(A− 1, B − 1)− 1) > 2

In the special case max(A,B) = 8, suppose A−B = 7 (possible only when p = 7). In the
special case p = 2, suppose max(A− 1, B − 1) 6= 8. Then Hsmall,A,B satisfies condition (S+).

4. Local system candidates for Sp2n(q)

In this section, expanding [14], we consider the following situation: p is an odd prime, q
is a (strictly positive) power q = pf of p, and we are given two positive integers n 6= m with
gcd(n,m) = 1 about which we assume

gcd(qn + 1, qm + 1) = 2.

Notice that n,m cannot both be odd, otherwise q + 1 divides gcd(qn + 1, qm + 1), nor can
they both be even, as gcd(n,m) = 1. So precisely one of n,m is even, and the other is odd.
In what follows, we suppose that

n even, m odd.
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We define

A := (qn + 1)/2, B := (qm + 1)/2.

We will apply the results of the previous section to this (A,B), and to the quadratic
character χ2. Thus A is odd. The parity of B depends on the value of q mod 4 (B will be odd
if q is 1 (mod 4), and will be even if q is 3 (mod 4)).

Lemma 4.1. There exist integers α, β with αA− βB = 1 with β even.

Proof. If α, β has αA− βB = 1, so does (α+B, β +A). Since A is odd, we may change
the parity of β at will.

For the rest of this section, we fix a choice of α, β with

αA− βB = 1, β even.

We consider the hypergeometric sheaf

Hsmall,A,B := Hypψ(Char(A) r {1};Char(B) r {1}),

of rank max(A,B)− 1, and the hypergeometric sheaf

Hbig,A,B := Hbig,A,B,χ2 := Hypψ(Char(A);Char(B,χ2)),

of rank max(A,B). Let Hsmall,A,B,descent and Hsmall,A,B,descent be as in Lemma 3.4 and
Lemma 3.5, respectively.

Lemma 4.2. We have the following results.
(i) The sheaf Hsmall,A,B,descent is isomorphic to the lisse sheaf on Gm/Fp whose trace

function is as follows: for E/Fp a finite extension, and u ∈ E×, the trace at time u
is given by

u ∈ E× 7→ −
∑
z∈E

ψE(AuαzB −BuβzA).

(ii) The sheaf Hbig,A,B,descent is isomorphic to the lisse sheaf on Gm/Fp whose trace function
is as follows: for E/Fp a finite extension, and u ∈ E×, the trace at time u is given by

u ∈ E× 7→ −
∑
z∈E

ψE(AuαzB −BuβzA)χ2(z).

Proof. Immediate from Corollary 3.10. The first assertion is Lemma 3.9(i). The second
is statement (ii) of that same lemma, remembering that β is even and A is odd, so that
χ2(uβzA) = χ2(z).

Corollary 4.3. The direct sum

WH,Sp := Hsmall,A,B,descent ⊕Hbig,A,B,descent
is isomorphic to the arithmetically semisimple lisse sheaf on Gm/Fp whose trace function is
as follows: for E/Fp a finite extension, and u ∈ E×, the trace at time u is given by

u ∈ E× 7→ −
∑
z∈E

ψE(Auαzq
m+1 −Buβzq

n+1).
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Proof. The sheaf WH,Sp is arithmetically semisimple by its very definition, and its trace
function at time u ∈ E× is

−
∑
z∈E

ψE(AuαzB −BuβzA)(1 + χ2(z)) = −
∑
z∈E

ψE(Auαz2B −Buβz2A),

and 2A = qn + 1, 2B = qm + 1.

Remark 4.4. If A > B, then after [A] pullback, both [A]?Hsmall,A,B and [A]?Hbig,A,B
become lisse on A1. But when A < B, neither [A]?Hsmall,A,B nor [A]?Hbig,A,B becomes lisse
on A1.

Theorem 4.5. Suppose A > B. Then we have the following results.

(i) For G either choice of minus the quadratic Gauss sum over Fp, the lisse sheaf

Hsmall,A,B,descent ⊗ G− deg

on Gm/Fp has arithmetically trivial determinant.
(ii) Denote by ψ the nontrivial additive character t 7→ ψ(−t). Then with the clearing factor

G := −Gauss(ψ, χ2)

the lisse sheaf Hbig,A,B,descent ⊗ G− deg on Gm/Fp has arithmetically trivial determinant.
(iii) If −1 is not a square in Fp, then with the clearing factor −Gauss(ψ, χ2), the arithmetic

determinant of the lisse sheaf Hbig,A,B,descent ⊗ (−Gauss(ψ, χ2))− deg is (−1)deg.

Proof. The first assertion is a special case of Proposition 3.12(i), because the (A− 1)/2
exponent there is (qn − 1)/4, which is even because n is even and q is odd. The second
assertion is a special case of Proposition 3.12(iii), remembering that in this case ε(A) = 1
(because, as n is even, (A− 1)/2 = (qn − 1)/4 is even), and −AB = −(qn + 1)(qm + 1)/4 is
≡ −1/4 (mod p), and modulo squares is −1. For (iii), observe that when −1 is not a square
in Fp, the “usual” Gauss sum is minus the one making the arithmetic determinant trivial in
(ii), and as the rank A is odd, the arithmetic determinant in (iii) will be (−1)deg.

Theorem 4.6. Suppose B > A. Then on Gm/Fp2 , with the clearing factor

G̃ := (−1)(p−1)/2p,

we have the following results.

(i) If B is odd, the lisse sheaf Hsmall,A,B,descent ⊗ G̃− deg has arithmetically trivial determi-
nant, and the lisse sheaf Hbig,A,B,descent ⊗ G̃− deg has geometric determinant Lχ2

. The
Kummer pullback

[2]?Hsmall,A,B,descent ⊗ G̃− deg

has arithmetically trivial determinant.
(ii) If B is even, the lisse sheaf Hsmall,A,B,descent ⊗ G̃− deg has geometric determinant Lχ2

,
and the lisse sheaf Hbig,A,B,descent ⊗ G̃− deg has arithmetically trivial determinant. The
Kummer pullback

[2]?Hsmall,A,B,descent ⊗ G̃− deg

has arithmetically trivial determinant.
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Proof. Again we have B −A ≥ 2, so the geometric determinant of Hsmall,A,B,descent is
the product of all the nontrivial characters of order dividing B, so is trivial if B is odd and
is Lχ2

if B is even. The geometric determinant of Hbig,A,B,descent is the product of all the
characters in Char(B,χ2), which is Lχ2 if B is odd and is trivial if B is even. So after taking
the appropriate [2]? Kummer pullbacks, both sheaves in question have geometrically trivial
determinants, and we proceed as in the proof of Theorem 4.5, first evaluating at u = 1, then
at u = 1 on the [B]? pullbacks, which are lisse on P1 r 0, then at u =∞ on these pullbacks,
to reduce to applying [12, 2.3, (1) and (2)], with the D there taken to be our B, and the ψ
taken to be ψ−A. The results of [12, 2.3, (1) and (2)] involve various quadratic Gauss sums,
but by working on Gm/Fp2 , only their squares occur, and these squares are each the G̃ in the
statement of the theorem.

From Lemma 3.11, we have

Lemma 4.7. Each of the sheaves [A]?Hsmall,A,B,descent and [A]?Hbig,A,B,descent has all its
traces in K.

Recall once again that for our (A,B), the image of each of A,B in Fp is 1/2. We now consider
the Kummer pullback by [A], and, with ψ−1/2,E as defined in (3.11.1), apply Corollary 3.10
to obtain the following:

Corollary 4.8. We have the following results.
(i) The Kummer pullback [A]?Hsmall,A,B,descent is isomorphic to the lisse sheaf on Gm/Fp

whose trace function is as follows: for E/Fp a finite extension, and u ∈ E×, the trace at
time u is given by

u ∈ E× 7→ −
∑
z∈E

ψ−1/2,E(zA − uzB).

(ii) The Kummer pullback [A]?Hbig,A,B,descent is isomorphic to the lisse sheaf on Gm/Fp
whose trace function is as follows: for E/Fp a finite extension, and u ∈ E×, the trace at
time u is given by

u ∈ E× 7→ −
∑
z∈E

ψ−1/2,E(zA − uzB)χ2(z).

(iii) The Kummer pullback [A]?WH,Sp of the sheaf WH,Sp defined in Corollary 4.3 is
isomorphic to the arithmetically semisimple lisse sheaf on Gm/Fp whose trace function
is as follows: for E/Fp a finite extension, and u ∈ E×, the trace at time u is given by

u ∈ E× 7→ −
∑
z∈E

ψ−1/2,E(z2A − uz2B) = −
∑
z∈E

ψ−1/2,E(zq
n+1 − uzq

m+1).

In particular, if E is a subfield of Fq, then the trace at the time u = 1 is −#E.

Let us denote by

WH,Sp(1/2)

the constant field twist of WH,Sp obtained by dividing the trace over E by −Gauss(ψE , χ2),
so that it is pure of weight zero.

Theorem 4.9. We have the following results.
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(i) Over any extension of Fq, the square absolute values of traces of WH,Sp(1/2) are powers
of q. Over any subfield k of Fq, the square absolute values of the traces of WH,Sp(1/2)
are powers of #k; moreover, the trace at u = 1 has squared absolute value equal to #k.

(ii) The arithmetic and geometric monodromy groups ofWH,Sp(1/2) (and hence also of both
Hsmall,A,B,descent(1/2) and Hbig,A,B,descent(1/2)) are finite, and all three of these sheaves
have all traces in K.

Proof. Assertion (i) is van der Geer-van der Vlugt [13, Lemma 5.2], and Lemma 4.7. It
implies the second assertion, cf. [13, §5]. [Note that the definition of the relevant local systems
in [13, §5] uses a possibly different clearing factor, which can, however, change only the sign
of the trace function.]

Now we consider the sheaf

WSp(1/2),

the constant field twist of WSp := [A]?WH,Sp obtained by dividing the trace over E by
−Gauss(ψE , χ2). We record the following corollary of Theorem 4.9.

Corollary 4.10. We have the following results.
(i) Over any extension of Fq, the square absolute values of traces of WSp(1/2) are powers

of q. Over any subfield k of Fq, the square absolute values of the traces of WSp(1/2) are
powers of #k; moreover, the trace at u = 1 has squared absolute value equal to #k.

(ii) The arithmetic and geometric monodromy groups of WSp(1/2) (and hence also of both
[A]?Hsmall,A,B,descent(1/2) and [A]?Hbig,A,B,descent(1/2)) are finite, and all three of these
sheaves have all traces in K.

Theorem 4.11. If A > B, then on A1/Fp2 , both Hsmall,A,B,descent(1/2) and
Hbig,A,B,descent(1/2) have arithmetically trivial determinants. If B > A, then on Gm/Fp2 ,
both [2]?Hsmall,A,B,descent(1/2) and [2]?Hbig,A,B,descent(1/2) have arithmetically trivial
determinants.

Proof. This is a special case of Theorem 4.5 when A > B, and of Theorem 4.6 when
B > A.

Proposition 4.12. Both sheaves Hsmall,A,B and Hbig,A,B satisfy condition (S+). Their
wild parts (at ∞ if A > B, at 0 if B > A) have dimension |A−B|, with all slopes 1/|A−B|.

Proof. To avoid the confusion caused by not knowing if A > B or if B > A, let us define

c := max(n,m), d := min(n,m), C := max(A,B) = (qc + 1)/2, D := min(A,B) = (qd + 1)/2.

At the expense of a possible multiplicative inversion, our sheaves are of type (C − 1, D − 1)
and of type (C,D). Both have wild part of dimension

W := C −D = (qc − qd)/2.

This difference being divisible by p, their primitivity results from Corollary 3.16.
The ranks are both prime to p, being (qc ± 1)/2. So we may apply [15, Theorem 1.5].

We must show that W > (D − 1)/2 for Hsmall,A,B and W > D/2, that D − 1 ≥ 4, and check
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that neither D − 1 nor D is 8. We have c ≥ 2, so D − 1 = (qc − 1)/2 ≥ (32 − 1)/2 = 4. Neither
D − 1 nor D is 8, otherwise we have either

(qc − 1)/2 = 8 or (qc + 1)/2 = 8.

In the first case qc = 17, impossible as c ≥ 2. In the second case, qc = 15, nonsense.
It remains to show that W > D/2, i.e., that

(qc − qd)/2 > (qc + 1)/4,

or, equivalently,

2(qc − qd) > qc1, i.e. qc − 2qd > 1, i.e. qd(qc−d − 2) > 1.

This last holds because q ≥ 3 and c− d ≥ 1, d ≥ 1.

5. Local system candidates for SUn(q)

We now turn to the particular situation relevant to unitary groups. Thus q is a power of
p, n > m > 0 are odd integers with gcd(n,m) = 1 (which forces gcd(qn + 1, qm + 1) = q + 1),
and

A := (qn + 1)/(q + 1), B := (qm + 1)/(q + 1).

Remark 5.1. In this section, we impose n > m, so that A > B. In the previous section,
we imposed n even, m odd, but this did not determine which of A,B was the larger.

Lemma 5.2. Both A and B are odd. Indeed A ≡ n (mod (q + 1)), B ≡ m (mod (q + 1)).

Proof. If p = 2, then each of qn + 1, qm + 1, q + 1 is odd. If p is odd, then

A := (qn + 1)/(q + 1) = 1− q + q2 − q3 + . . .+ qn−1 ≡ n (mod (q + 1)),

hence A has the same parity as n, which is odd. Simillarly, B ≡ m (mod (q + 1)).

Notice here that both A,B are ≡ 1(mod (q − 1)), hence also ≡ 1(mod (p− 1)).

Proposition 5.3. For any nontrivial character ρ of F×q2 of order dividing q + 1, there is a

lisse sheaf Gρ on A1/Fq2 whose trace function is as follows: for E/Fq2 a finite extension, and
u ∈ E, the trace at time u is given by

u ∈ E 7→ −
∑
z∈E

ψE(uzB − zA)ρE(z).

This sheaf Gρ is geometrically isomorphic to the Kummer pullback [A]?Hbig,A,B,χ,descent for
any choice of χ with χA = ρ. Moreover, the sheaf Gρ has all its traces in the field Q(ρ).

Proof. To get the existence, choose any χ with χA = ρ, and apply Corollary 3.10. The
traces a priori lie in Q(ζp, ρ). To see that they lie in Q(ρ), we must show that for any λ ∈ F×p ,
and any u ∈ E/Fq2 we have the identity∑

z∈E
ψE(λuzB − λzA)ρE(z) =

∑
z∈E

ψE(uzB − zA)ρE(z).
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In fact, this will hold for any λ ∈ F×q , by the substitution z 7→ λz, because both A,B ≡
1(mod (q − 1)) and because λ is the (q + 1)th power of some element of Fq2 by surjectivity of
the norm.

Proposition 5.4. There is a lisse sheaf G1 on A1/Fp whose trace function is as follows:
for E/Fp a finite extension, and u ∈ E, the trace at time u is given by

u ∈ E 7→ −
∑
z∈E

ψE(uzB − zA).

This sheaf G1 is geometrically isomorphic to the Kummer pullback [A]?Hsmall,A,B,descent. It
has all its traces in Q (again because both A,B ≡ 1 (mod (q − 1))).

Proposition 5.5. The direct sum
⊕

ρ∈Char(q+1) Gρ is geometrically isomorphic to the
arithmetically semisimple lisse sheaf

WSU

on A1/Fp whose trace function at time u ∈ E/Fp is given by

u ∈ E 7→ −
∑
z∈E

ψE(uzq
m+1 − zq

n+1).

Corollary 5.6. Each of the lisse sheaves Gρ is geometrically irreducible.

Proof. Here are two proofs. Because gcd(qn + 1, qm + 1) = q + 1,WSU has second moment
q + 1 (by Lemma 2.4). Being the sum of the q + 1 summands Gρ, each summand must be
geometrically irreducible. Alternatively, one could use the fact that gcd(A,B) = 1, and apply
Proposition 2.6 to each Gρ.

Theorem 5.7. On A1/Fq4 , each of the lisse sheaves Gρ ⊗ (1/q2)deg has arithmetically
trivial determinant. In characteristic 2, this is already true for the lisse sheaves Gρ ⊗ (1/q)deg

on A1/Fq2 .

Proof. From Lemmas 3.1 and 5.2, we know that each has geometrically trivial determinant.
So it suffices to show that at a single point u ∈ Fq4 , the determinant is 1. We take the
point u = 0. According to [12, 2.3, parts (3) and (4)], the determinant for G1 at the point
u = 0 viewed in Fq2 is (q2)(A−1)/2 = qA−1, and the determinant of Gρ for ρ nontrivial is(
−Gauss(ψA,Fq2 , ρ)

)
(q2)(A−1)/2 (recall (3.11.1) and (2.7.1)). Recall that, for any ψ which

begins life over Fp, the Gauss sum Gauss(ψFq2 , ρ) is independent of the choice of ψ (because

every element of F×p becomes a (q + 1)th power in Fq2), and its square is q2. By Stickelberger’s
theorem [2, 11.6.1], for ρ nontrivial of order r dividing q + 1, one has

Gauss
(
ψFq2 , ρ

)
=

{
(−1)(q+1)/rq, q odd,

q, q even.
(5.7.1)

So over Fq4 , these determinants are respectively (q2)A−1 and (q2)A. Hence after the⊗(1/q2)deg

twist, all these determinants become 1. And in characteristic 2, these determinants already
become 1 on A1/Fq2 .
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Corollary 5.8. Suppose p is odd, q a power of p, and ρ a nontrivial character of F×q2 of
order r dividing q + 1. Then, on Gm/Fq2 the arithmetic determinant of

Gρ ⊗
(
−Gauss(ψFq2 , χ2)

)− deg /Fq2

is trivial if (−1)(q+1)/r = (−1)(q+1)/2, and is (−1)− deg /Fq2 otherwise.

Proof. By Theorem 5.7, the arithmetic determinant of Gρ ⊗
(
−Gauss(ψFq2 , ρ)

)− deg /Fq2 is
trivial. If instead we look at

Gρ ⊗
(
−Gauss(ψFq2 , χ2)

)− deg /Fq2 ,

the factor by which we have twisted differs, thanks to Stickelberger [2, 11.6.1], by the ratio

(−Gauss(ψFq2 , ρ))/(−Gauss(ψFq2 , χ2)) = (−1)(q+1)/r/(−1)(q+1)/2.

Let us denote ε := (−1)(q+1)/r/(−1)(q+1)/2. As Gρ has rank A, which is odd (being 1 modulo
q − 1), this second twist will have arithmetic determinant ε− deg /Fq2 .

Let us denote by

WSU(1/2)

the sheaf on A1/Fp2 obtained by twistingWSU by −χ2(−1)/p for p odd, and by 1/p for p = 2.

Theorem 5.9. We have the following results for the sheaf WSU(1/2) on A1/Fp2 .

(i) Over any extension of Fq2 , all traces lie in Q.
(ii) If p is odd, then over any extension of Fq2 , all traces are ±(powers of q). If p = 2, the

trace 0 may also occur.
(iii) The arithmetic and geometric monodromy groups of WSU(1/2) (and hence also of each

Gρ(1/2)) are finite.

Proof. To see that (i) holds, notice that for λ ∈ F×q , there exists τ ∈ Fq2 with τ q+1 = λ,

by surjectivity of the norm. Because n,m are both odd, we have τ q = τ q
m

= τ q
n

. Apply this
to λ which lies in F×p . Making the substitution z 7→ τz has the effect of replacing ψ(x) by
ψ(λx), without changing the sum, which therefore lies in Q. to prove (ii), it suffices, given
(i), to show that the square absolute values of traces are powers of q2. This holds because
in the van der Geer-van der Vlugt approach, when p is odd, each square absolute value is
the cardinality of a vector space over Fq2 , cf. [13, beginning of §5] with t = 0 to see this in
the case m = 1. When p = 2, the trace is the sum of the values of an additive character on
such a vector space, so the sum is either 0, if the additive character is nontrivial, or it is the
dimension of the vector space. The integrality of the traces then implies the finiteness of the
arithmetic and geometric monodromy groups, cf. [13, §5].

Proposition 5.10. For A,B as above, i.e.

A = (qn + 1)/(q + 1), B = (qm + 1)/(q + 1), n > m > 0, 2 - nm,

and χ a character with χA 6= 1, both the sheaves Hsmall,A,B,descent and Hbig,A,B,χ,descent
satisfy property (S+).
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Proof. The fact that gcd(A,B) = 1 shows that neither sheaf is Kummer induced. For each
sheaf, the wild part has dimension A−B = (qn − qm)/(q + 1), which is divisible by qm, hence
also by p, so neither is Belyi induced (by Proposition 3.15). Thus both sheaves are primitive.

We first treat Hbig,A,B,χ,descent, of rank A prime to p. By [15, 1.2.3], provided that the
rank A ≥ 4 and A 6= 8, 9, it suffices to show that

A−B > A/2,

i.e., that (after multiplying both sides by q + 1)

qn − qm > (qn + 1)/2, i.e., that 2qn − 2qm > qn + 1, i.e., that qn − 2qm > 1,

i.e., that

qm(qn−m − 2) > 1.

Because m ≥ 1 and n−m ≥ 2 (both being odd), we have

qm(qn−m − 2) ≥ q(q2 − 2) ≥ 2(22 − 2) = 4 > 1.

The least possible values of A are attained by (q = 2, n = 3), (q = 3, n = 3), all other possible
A are ≥ 11 (attained by (q = 2, n = 5)). For (q = 2, n = 3), we have A = 3, which is prime,
and hence property (S+). holds. Similarly, for (q = 3, n = 3), we have A = 7, again prime
(or, an acceptable value).

We now treatHsmall,A,B,descent. Here the rank is A− 1 = (qn − q)/(q + 1) which is divisible
by p. By [15, 1.2.6], provided that the rank A− 1 > 4 and A− 1 6= 8, 9, it suffices to show
that

A−B > (2/3)(A− 2),

i.e., that (after multiplying both sides by q + 1)

qn − qm > (2/3)(qn + 1− 2(q + 1)), i.e., that 3qn − 3qm > 2qn + 2− 4q − 4,

i.e., that qn − 3qm > −2q − 2.

In fact, we have qn − 3qm ≥ q. Indeed,

qm − 3qm = qb(qn−m − 3) ≥ q(q2 − 3) ≥ q > 0.

The least possible values of A− 1 are attained by (q = 2, n = 3), (q = 3, n = 3), all other
possible A− 1 are ≥ 10 (attained by (q = 2, n = 5)). For (q = 2, n = 3), we have A− 1 = 2,
which is prime. For (q = 3, n = 3), we have A− 1 = 6, which is an acceptable value.

Remark 5.11. There is one situation in which the sheaves Gρ are the [A]? pullbacks
of canonically chosen hypergeometric sheaves, namely the case when gcd(n, q + 1) = 1.
The key observation is that A ≡ n (mod (q + 1)), cf. Lemma 5.2. In defining the sheaves
Hbig,A,B,χ,descent, we can choose for χ a nontrivial character of order dividing q + 1. For these
χ, χ 7→ χA = χn is simply a permutation of the nontrivial elements of Char(q + 1). Moreover,
in choosing α, β with αA− βB = 1, we may change (α, β) to (α+ nB, β + nA) for any integer
n. Since A is invertible mod q + 1, we may impose on β any congruence mod q + 1 that we
like. We will impose that β is divisible by q + 1, and write

β = (q + 1)γ
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for some γ ∈ Z. With this choice, the trace function of Hbig,A,B,χ,descent is simply

u ∈ E× 7→ −
∑
z∈E

ψE(AuαzB −BuβzA)χE(uβzA)

= −
∑
z∈E

ψE(AuαzB −BuβzA)χnE(z),

because χ has order dividing q + 1, β ≡ 0(mod (q + 1)), and χA = χn.
Recall that A,B ≡ 1(mod q). So in this gcd(n, q + 1) = 1 case the direct sum⊕

χ∈Char(q+1),χ6=1

Hbig,A,B,χ,descent ⊕Hsmall,A,B,descent (5.11.1)

has trace function

u ∈ E× 7→ −
∑
z∈E

ψE(uαzq
m+1 − uβzq

n+1). (5.11.2)

This formula is analogous to that of Corollary 4.3, where A was odd and β could always be
taken even. Moreover, the [A]? Kummer pullback of Hn,m has trace function

u ∈ E× 7→ −
∑
z∈E

ψE(uαAzq
m+1 − uβAzq

n+1)

= −
∑
z∈E

ψE(uαA−βBuβBz(q+1)B − uβAz(q+1)A)

= −
∑
z∈E

ψE(uuγ(q+1)Bz(q+1)B − uβAz(q+1)A)

= −
∑
z∈E

ψE
(
u(uγz)(q+1)B − uβA−γ(q+1)A(uγz)(q+1)A

)
= −

∑
z∈E

ψE(uzq
m+1 − zq

n+1),

(5.11.3)

the last equality by the substitution z 7→ z/uγ .

Remark 5.12. There is another situation in which there are canonical choices of
hypergeometric sheaves whose [B]? pullbacks have interesting trace functions, namely the
situation in which gcd(m, q + 1) = 1, or equivalently gcd(B, q + 1) = 1. In this case, we can
choose integers (α, β) with αA− βB = 1 and impose any congruence condition we like on α
(because B is invertible modulo q + 1, cf. the remark above). We impose that α is divisible
by q + 1, and write

α = (q + 1)δ

for some integer δ. Then from Lemma 3.9 we have that for any nontrivial character χ of order
dividing q + 1, the lisse sheaf H]big,A,χ,B,descent on Gm/Fq2 has trace function as follows: for
E/Fq2 a finite extension, and u ∈ E×, the trace at time u is given by

u ∈ E× 7→ −
∑
z∈E

ψE(uαzB − uβzA)χBE(z).

Since χ 7→ χB is a bijection on the set of nontrivial characters of order dividing q + 1, with
G := −Gauss for either choice Gauss of quadratic Gauss sum over Fp, the direct sum

Hn,mbis :=

( ⊕
χ∈Char(q+1),χ6=1

H]big,A,χ,B,descent ⊕Hsmall,A,B,descent
)
⊗ G− deg (5.12.1)
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has trace function

u ∈ E× 7→ 1

Gauss(ψE , χ2)

∑
z∈E

ψE(uαzq
m+1 − uβzq

n+1). (5.12.2)

[This formula looks very much like that of (5.11.2), but the reader must remember that the
exponents (α, β) of u are different in the two cases; also, Hn,mbis has a clearing factor Gdeg.]
The [B]? pullback W n,m

bis of Hn,mbis has trace function

u ∈ E× 7→ 1

Gauss(ψE , χ2)

∑
z∈E

ψE(zq
m+1 − u−1zq

n+1), (5.12.3)

by an argument similar to that in Remark 5.11.

In the general case of any odd n, we can build the sheaves Hbig,A,B,χ using the following
choice of characters:

Lemma 5.13. Let n ∈ Z≥1 be odd and let q be any prime power. If gcd(n, q + 1) = 1,
define n0 := 1. If gcd(n, q + 1) > 1, let p1, . . . , ps be the distinct prime divisors of gcd(n, q + 1),
pcii be the pi-part of n, and define n0 :=

∏s
i=1 p

ci
i = gcd(n, (q + 1)n). If ν is a multiplicative

character of order n0(q + 1), then νA has order q + 1; and conversely any character of order
q + 1 can be obtained this way.

Proof. The case gcd(n, q + 1) = 1 has already been explained in Remark 5.11, so we will
assume gcd(n, q + 1) > 1. First we prove that

gcd(n0(q + 1), A) = n0. (5.13.1)

Let p1, . . . , ps, ps+1, . . . , pt be the distinct prime divisors of q + 1 (for some t ≥ s). If 1 ≤ i ≤ s,
then pi|n and so it is odd but divides q + 1, whence the pi-part of A = (qn + 1)/(q + 1) is
exactly pcii . To see this, use the fact, applied successively to x := −q and to an odd prime
pi := `, that if x ∈ Z has ord`(x− 1) = d > 0, then ord`(x

` − 1) = d+ 1, while for an integer
m prime to `, ord`(x

m − 1) = d, cf. also [17, Lemma 4.4]. In particular, this shows that n0|A
and pi - (A/n0). If s+ 1 ≤ i ≤ t, then pi - n and pi|(q + 1), but A ≡ n(mod q + 1), and so A
is coprime to pi, whence pi - (A/n0) in this case as well. Thus (5.13.1) is proved.

Now let ν have order n0(q + 1). Then νn0 has order q + 1. Since gcd(A/n0, q + 1) = 1 by
(5.13.1), νA = (νn0)A/n0 has order q + 1. The converse also follows by the same argument.

6. Extensions of Weil representations of finite symplectic groups

In this section, we consider a non-degenerate symplectic space W = F2N
p for a fixed prime

p > 2, a (reducible) total Weil representation of degree pN of Γ = Sp(W ) ∼= Sp2N (p) with
character ωN,p as in [13]; in particular,

|ωN,p(g)| = |CW (g)|1/2 (6.0.1)

for any g ∈ Γ, where CW (g) := {w ∈W | g(w) = w}. We will also take N = nf and q = pf

for some positive integers N, f . We may then assume that W is obtained from the symplectic
space W1 := F2n

q with a Witt basis (e1, . . . , en, f1, . . . , fn) and symplectic form (·|·), by viewing
W1 as an Fp-vector space with symplectic form TrFq/Fp

(
(·|·)

)
. Using this basis, for any divisor
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e|f we can consider the transformation

σr :

n∑
i=1

(xiei + yifi) 7→
n∑
i=1

(xri ei + yri fi)

induced by the Galois automorphism x 7→ xr for r := q1/e. Then σe belongs to Γ and induces
a field automorphism of order e of L := Sp(W1) ∼= Sp2n(q). In what follows, we will refer to
Lo 〈σr〉 as a standard subgroup Sp2n(q) o Ce of Γ. Also, let j be the central involution of Γ.

We will denote by ωN,q the restriction of the total Weil character ωN,p to L, and let the
character ξn,q, respectively ηn,q, denote the irreducible summand of ωN,q of degree (qn + 1)/2,
respectively (qn − 1)/2. The following statement clarifies the behavior of total Weil characters
under embeddings Sp2n(qm) ↪→ Sp2nm(q) (by a similar base change as above); cf. [13, Lemma
4.3] for the case of irreducible Weil characters.

Lemma 6.1. Let q be an odd prime power and let n,m ≥ 1. For fixed total Weil
representations

Φ : Sp2n(qm)→ GLqnm(C), Λ : Sp2nm(q)→ GLqnm(C),

affording character ωn,qm , respectively ωnm,q, there exists an embedding

Θ : Sp2n(qm)→ Sp2nm(q)

such that the representations Φ and Λ ◦Θ of Sp2n(qm) are equivalent.

Proof. Fix an embedding ι of X := Sp2n(qm) into Sp2nm(q). For ε = ±, let Φε, respectively
Λε, denote the unique irreducible constituent of Φ, respectively of Λ, of degree (qnm + ε)/2.
As is well-known, Λε ◦ ι is an irreducible Weil representation of X of degree deg(Φε), and so
there is an outer diagonal automorphism αε of X such that Λε ◦ ι ◦ αε ∼= Φε. If α+ and α−

belong to the same coset of Inn(X) in Aut(X), then we may in fact assume that α+ = α−

and take Θ = ι ◦ α+. Otherwise, since any non-inner diagonal automorphism of X fuses the
two irreducible Weil characters of any given degree, we see by [24, Lemma 2.6(iii)] that

Tr(Φ+(t)) = −Tr(Φ−(t))

for any transvection t ∈ X, and so ωn,qm(t) = Tr(Φ(t)) = 0, contradicting (6.0.1).

We will need the following slight extension of [20, Lemma 3.1]:

Lemma 6.2. Let e be an odd integer, and consider the subgroup Lo 〈σr〉 of Γ. Then

ξN,p(σr) = (rn + 1)/2, ηN,p(σr) = (rn − 1)/2.

Proof. Note that B := 〈e1, . . . , en〉Fq and B∗ := 〈f1, . . . , fn〉Fq are complementary maxi-
mal totally isotropic Fp-subspaces of W , both fixed by σr ∈ Γ. Then ωN,p is the character
afforded by the reducible Weil representation of Γ = Sp(W ) as constructed in [5, §13] using the

decomposition W = B ⊕B∗. Let
(
·
p

)
denote the Legendre symbol on Fp. Then the character

value of ωN,p at any element g ∈ StabΓ(B,B∗) is given in [5, (13.3)]:

ωN,p(g) =

(
det (g|B)

p

)
· |CB(g)|.
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Recall that σr has odd order e, and(
det ((σr)|B)

p

)e
=

(
det (((σr)

e)|B)

p

)
= 1.

Hence
(

det ((σr)|B)
p

)
= 1 and so, since, |CB(σr)| = r, we have

ξN,p(σr) + ηN,p(σr) = rn.

For the central involution j of Sp(W ) we have that det(j|B) = (−1)N , and so(
det ((jσr)|B)

p

)
=

(
−1

p

)N
=: κ.

Furthermore, since e is odd, the equation xr = −x has only one solution x = 0 in the field
Fq = Fre , which implies that |CB(jσr)| = 1. It follows that

ξN,p(jσr) + ηN,p(jσr) = κ.

Note that, by [24, Lemma 2.6(i)], j acts via multiplication by κ in any irreducible Weil
representation of degree (pN + 1)/2 and via multiplication by −κ in any irreducible Weil
representation of degree (pN − 1)/2. Therefore,

ξN,p(jσr) = ξN,p(σr) · κ, ηN,p(jσr) = −ηN,p(σr) · κ.

It follows that ξN,p(σr) = (rn + 1)/2 and ηN,p(σr) = (rn − 1)/2, as stated.

Lemma 6.3. Let q = pf be a power of a prime p > 2, n ∈ Z≥1, and let L := Sp2n(q) with
(n, q) 6= (1, 3). Suppose that Φ : G→ GLqn(C) is a faithful representation of a finite group
G ≥ L with the following properties:
(a) Φ is a sum of two representations, Φ+ of degree (qn − 1)/2 and Φ− of degree (qn + 1)/2;
(b) For ε = ±, Kε := Q

(
Tr(Φε(g)) | g ∈ G

)
is contained in K := Q(

√
(−1)(p−1)/2p);

(c) Φε|L is irreducible for each ε = ±; and
(d) For all g ∈ G, |Tr(Φ(g))|2 is always a power of p.
Then the following statements hold.
(i) Φ|L is a total Weil representation.

(ii) CG(L) = Z(G) = C × Z(L), where we have Z(L) = 〈j〉 ∼= C2, and C can be chosen to act
via scalars in Φ. Furthermore, either
(α) C = 1 or C2, or
(β) p = 3, C ∈ {C3, C6}, Kε = K and p divides |det(Φε(G))| for both ε = ±.

Proof. (i) Using the well-known character table of Sp2(q) when n = 1 and [23, Theorem
5.2] when n ≥ 2, we see that Φε|L is an irreducible Weil representation of L for each ε = ±.
Now if these two irreducible Weil representations do not come from the same total Weil
representation, then for a transvection t ∈ L we have by [24, Lemma 2.6(iii)] that Tr(Φ(t)) =
0, contradicting (d). Hence Φ|L is a total Weil representation.

(ii) Consider any element z ∈ CG(L). By Schur’s lemma, Φε(z) = zε · Id for some root of
unity zε ∈ C. As Φ = Φ+ ⊕ Φ−, z ∈ Z(G) and so

CG(L) = Z(G).

By (b), zε ∈ K. Now, ±1 are the only roots of unity in K, unless p = 3. In the former case,
we obtain that Z(G) = C × Z(L), where 1 ≤ C ≤ C2 and

Φ(C2 × Z(L)) = {diag(±Id,±Id)} .
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Thus, assuming Z(G) 6≤ C2 × Z(L), we must have that p = 3, and zε is a root of unity of
order 3 or 6 for some ε and some z ∈ CG(L). In this case, K contains exactly 6 roots of unity
±ζk3 , 0 ≤ k ≤ 2. Next, condition (d) implies that

|ω(z)|2 =
q2n + 1

2
+
q2n − 1

4
(t+ t−1)

is a power of 3 for t = z+/z−, a 6th root of unity. As qn > 3, this can happen only when
t = ±1. Thus both z+ and z− now have order divisible by 3. It is easy to see that in this case
we have Z(G) = C × Z(L), where C3 ≤ C ≤ C6 and

Φ(C6 × Z(L)) = {±ζk3 · diag(Id,±Id) | 0 ≤ k ≤ 2}.
In particular, we can find an element t ∈ CG(L) with Φ(t) = ζ3 · Id. It follows that for each
ε = ± we have that det(Φε(t)) = ζε3 has order 3 and so p divides |det(Φε(G))|, and furthermore
Kε = K.

We have also shown that for any z ∈ Z(G),

Φ(z) = z−Φ(jk) (6.3.1)

for some k = 0, 1 and some z− ∈ K×; i.e. z acts as a scalar in Φ.

The main result of this section is the following theorem:

Theorem 6.4. Let q = pf be a power of a prime p > 2, n ∈ Z≥1, and let L := Sp2n(q)
with (n, q) 6= (1, 3). Suppose that Φ : G→ GLqn(C) is a faithful representation of a finite
group GB L with the following properties:
(a) Φ is a sum of two representations, Φ+ of degree (qn − 1)/2 and Φ− of degree (qn + 1)/2;
(b) For all g ∈ G and ε = ±, Tr(Φε(g)) ∈ K, where K = Q if p = 3 and 2|f , and K =

Q(
√

(−1)(p−1)/2p) otherwise;
(c) Φε|L is irreducible for each ε = ±; and
(d) For all g ∈ G, |Tr(Φ(g))|2 is always a power of q.
Then Φ|L is a total Weil representation. Furthermore, G = CL and Z(G) = C × Z(L), where
Z(L) = 〈j〉 ∼= C2, and either
(α) |C| ≤ 2, or
(β) p = 3 divides |det(Φε(G))| for each ε = ±, 2 - f , and C ∈ {C3, C6}.
In all cases, C can be chosen to act via scalars in Φ.

Proof. (i) The fact that Φ|L is a total Weil representation and that CG(L) = Z(G)
together with its structure are already proved in Lemma 6.3.

By Lemma 6.1, we may assume that L embeds in Γ = Sp(W ) ∼= Sp2nf (p) as the subgroup
Sp(W1) introduced above via base change, and so the character of Φ|L is the restriction to
L of ω := ωnf,p. We may also assume that Φ, Φε extend to Γ, and denote them by the same
symbols. Also write ξ and η instead of ξnf,p and ηnf,p.

Note that any element in NΓ(L) preserves the equivalence class of each of the Weil
representations Φε|L, hence it can only induce a field automorphism of L (modulo Inn(L)).
The subgroup of all the field automorphisms of L is cyclic of order f . Thus we may assume
that there is some e|f such that G induces a subgroup of field automorphisms of L of order
e. In the notation introduced right before Lemma 6.1, this means that the action of G via
conjugation on L induces the same automorphism subgroup as of

H := Lo 〈σr〉 < Γ.

In view of the above results, we are done if e = 1. Assume the contrary: e > 1.
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(ii) Replacing G by a subgroup of index 2 if necessary, first we rule out the case e > 1 is
odd. Let g ∈ G induce (via conjugation) the same automorphism of L as of σr. It follows that
Φε(g)Φε(σr)

−1 centralizes Φε(L), and so by Schur’s lemma we have

Φ+(g) = βΦ+(σr), Φ−(g) = βαΦ−(σr) (6.4.1)

for some α, β ∈ C×. As σr has order e, we obtain that

Φ(ge) = βe · diag(Id, αeId).

By (b), βe, αeβe ∈ K; in particular, αe ∈ K. Using the oddness of e and replacing g by gj if
necessary, we may assume that either α = 1, or p = 3 and α = ζ±1

3 . However, in the latter
case by Lemma 6.2 we have that

|ω(g)|2 = |Tr(Φ(g))|2 = |ξ(σr) + αη(σr)|2 =

∣∣∣∣rn + 1

2
+ α

rn − 1

2

∣∣∣∣2 =
r2n + 3

4
,

which can be a p-power only when rn = 3. In particular, it can be a q-power only when
rn = 3 = q, and this contradicts the assumption (n, q) 6= (1, 3).

Thus we have shown that α = 1 in (6.4.1), i.e. Φ(g) = βΦ(σr). On the other hand, by the
choice of g, we have that G = 〈L,Z(G), g〉. As H = 〈L, σr〉, together with (6.4.1), this shows
that Φ(G) and Φ(H) are the same up to scalar matrices in GLqn(C). Now we apply [14,
Theorem 3.5] to get an element h ∈ H such that |Tr(Φ(h))|2 = r. As we have just shown,
Φ(h) = γΦ(g̃) for some γ ∈ C×. Since h and g̃ have finite order, |γ| = 1. Thus

|ω(g̃)|2 = |Tr(Φ(g̃))|2 = |Tr(Φ(h))|2 = r,

contradicting (d).

(iii) It remains to rule out the case e = 2. We again use the element h ∈ H with
|Tr(Φ(h))|2 = r = q1/2 constructed in [14, Theorem 3.5]. Let g′ ∈ G induce the same
automorphism of L as of h. As in (iii), we can again write

Φ+(g′) = β′Φ+(h), Φ−(g′) = β′α′Φ−(h)

for some α′, β′ ∈ C×. Since g′, h have finite order, |β′| = |α′| = 1. Now we have

r = |Tr(Φ(h))|2 = |ξ(h) + η(h)|2,

but

|ω(g′)|2 = |Tr(Φ(g′))|2 = |ξ(h) + α′η(h)|2

is a power of q by (d). This implies that ξ(h), η(h) 6= 0 and

α′ 6= 1. (6.4.2)

Since Q(η) = Q(ξ) ⊆ K′ := Q(
√

(−1)(p−1)/2p) for Γ, cf. [5, Lemma 13.5], it follows from (b)
that

α′ ∈ K′. (6.4.3)

In our case, h2 ∈ L, and so h2 ∈ G. It follows that

Φ(h2)−1Φ(g′2) = β′2 · diag(Id, α′2Id)

belongs to Φ(G) and centralizes Φ(L). In this case, (6.3.1) shows that α′2 = ±1. But
then (6.4.3) rules out the case α′2 = −1, and so α′ = −1 by (6.4.2). Recalling Φ(j) =
±diag(Id,−Id), we now have

Φ(jg′) = ±β′ · diag(Φ+(h),Φ−(h)),
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whence

|ω(jg′)|2 = |Tr(Φ(jg′))|2 = |ξ(h) + η(h)|2 = r,

again contradicting (d).

Theorem 6.4 will usually be used in tandem with the following Goursat-like theorem:

Theorem 6.5. Let p ≥ 3 be a prime, f, n ∈ Z≥1, q = pf , and let (n, q) 6= (1, 3). Let Φ :
L→ GLqn(C) be a faithful representation of a finite group L, which is a sum of two irreducible
representations Φε of degree (qn − ε)/2, ε = ±, that satisfies the following three conditions:
(a) For each ε = ±, Φε(L) is quasisimple;
(b) For (at least) one value γ = ±, there are positive integers nγ , aγ such that nf = nγaγ

and Φγ(L) is isomorphic to a quotient of Sp2nγ (paγ ); and

(c) For each g ∈ L, |Tr(Φ(g))|2 is a power of q.
Then there is some divisor d of n such that L ∼= Sp2n/d(q

d), and furthermore Φ is a total Weil
representation of L.

Proof. (i) For each ε = ±, we have that Lε := Φε(L) is quasisimple, with cyclic center
Z(Lε) and simple quotient Sε = Lε/Z(Lε). Let Kε denote the kernel of Φε. Interchanging ε
with −ε if necessary, we may assume that γ = −. Now we have the exact sequences

1→ K+ → L
Φ+

−→ L+ → 1, 1→ K− → L
Φ−−→ L− → 1.

As L− is quasisimple and K+ C L, either Φ−(K+) = L− or Φ−(K+) ≤ Z(L−).
Assume we are in the former case. Then Φ maps K+ isomorphically onto L−, and so

K+
∼= L−. Furthermore, Φ−(L) = Φ−(K+), which implies that L = K+K−. However,

K+ ∩K− = Ker(Φ) = 1,

so we must have that L = K+ ×K−. We also have K− ∼= L/K+ ∼= Φ+(L) ∼= L+. Thus

L = K+ ×K− ∼= L− × L+.

By Burnside’s theorem, Φ+(K−) = Φ+(L) contains some element g− ∈ K− with
Tr(Φ+(g−)) = 0. Likewise, Φ−(K+) = Φ−(L) contains some element g+ ∈ K+ with
Tr(Φ−(g+)) = 0. As gε ∈ Kε acts trivially in Φε, for g := g+g− ∈ L we have

Tr(Φ(g)) = Tr(Φ+(g)) + Tr(Φ−(g)) = Tr(Φ+(g−)) + Tr(Φ−(g+)) = 0,

contradicting (c).
We have shown that Φ−(K+) ≤ Z(L−); i.e. Φ−(h) centralizes Φ−(L) if h ∈ K+. Clearly,

Φ+(h) = Id also centralizes Φ+(L). Thus Φ(h) centralizes Φ(L), and so h ∈ Z(L) since Φ is
faithful. It follows that K+ ≤ Z(L).

(ii) Recall that L/K− = Φγ(L) = Lγ is isomorphic to a quotient of Sp2nγ (paγ ); in particular,
Sγ = PSp2nγ (paγ ) is a quotient of L. As K+ ≤ Z(L), we see that Sγ is a non-abelian
composition factor of the quasisimple group L+ = L/K+. It follows that S+

∼= Sγ . In the
case Sγ ∼= PSp2(9), note that, among central extensions of PSp2(9), only quotients of Sp2(9)
can have irreducible representations of degree 4 or 5. Thus in all cases Lε are quotients of
Sp2nγ (paγ ), and we can view Φε as an irreducible representation of Sp2nγ (paγ ) of degree
(paγnγ − ε)/2. Using the well-known character table of Sp2(paγ ) when nγ = 1 and [23,
Theorem 5.2] when nγ ≥ 2, we see that each Φε is an irreducible Weil representation of
the quasisimple group 2Sγ = Sp2nγ (paγ ).
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Without loss of generality, we may assume that deg(Φ−) is odd, whence Φ−(L) = L− ∼= Sγ
is simple, and the arguments in (i) show that Φ−(K+) = 1. Hence Φ(K+) = 1, and so K+ =
1 since Φ is faithful. As deg(Φ+) is even, it follows that L ∼= Φ+(L) ∼= 2Sγ = Sp2nγ (paγ ).
Now if these two irreducible Weil representations Φ± of L do not come from the same total
Weil representation of L, then for a transvection t ∈ L we have by [24, Lemma 2.6(iii)] that
Tr(Φ(t)) = 0, again contradicting (c). Hence Φ|L is a total Weil representation.

Next, we choose u ∈ L to be a regular unipotent element. Then u acting on the natural
module F2nγ

paγ with exactly paγ fixed points. Applying to u the well-known character formula

[13, (3.4.5)] for total Weil representations, we then obtain that |Tr(Φ(u))|2 = paγ . Condition
(c) implies that paγ is a power qd of q, and we are done.

The following statement is well known; we include the proof for the reader’s convenience.

Lemma 6.6. Let S1, . . . , Sn be finite non-abelian simple groups. For each i, let πi denote
the projection of S1 × S2 × . . .× Sn onto the ith component. Let G ≤ S1 × . . .× Sn be
a subgroup such that πi(G) = Si for all i = 1, 2, . . . , n. Then there exists a subset J of
{1, 2, . . . , n} such that G is isomorphic to the direct product

∏
j∈J Sj .

Proof. We induct on n, with the induction base n = 1 being trivial. For the induction step
n ≥ 2, let K1 := Ker

(
(π1)|G

)
and let K2 be the kernel of the homomorphism

π′ := π2 × π3 × . . .× πn : G→ S2 × S3 × . . .× Sn.

Then K1,K2 CG and K1 ∩K2 = 1. In particular, π1 maps K2 injectively onto a normal
subgroup of π1(G) = S1. By simplicity, K2 = 1 or π1(K2) = S1. In the former case, π′ is
injective, hence we can consider G as a subgroup of S2 × S3 × . . .× Sn, and conclude by
applying the induction hypothesis for n− 1.

In the latter case, π1(K2) = π1(G), whence G = K1K2 = K1 ×K2 and K2
∼= S1. It also

follows for each i ≥ 2 that πi(K1) = πi(G) = Si. As K1 ≤ S2 × S3 × . . .× Sn, we can again
apply the induction hypothesis to K1 to obtain J ′ ⊆ {2, 3, . . . , n} such that K1

∼=
∏
j∈J′ Sj .

Thus G ∼=
∏
j∈J Sj with J := J ′ ∪ {1}.

The next result generalizes Goursat’s lemma [18, p. 75, Exercise 5]:

Proposition 6.7. Let G be a perfect finite group, and let Φ : G→ GLN (C) be a faithful
representation that satisfies the following conditions:
(a) Φ = ⊕ni=1Φi is a sum of n irreducible constituents;
(b) Li := Φi(G) is quasisimple, with simple quotient Si = Li/Z(Li).
Then there is a subset {j1, j2, . . . , jm} of {1, 2, . . . , n} such that G is isomorphic to a central
product Rj1 ∗Rj2 ∗ . . . ∗Rjm , where each Rji is a quasisimple cover of Sji .

Suppose that, in addition to (a)–(b), Φ also satisfies the following two additional conditions:

(c) Tr(Φ(g)) 6= 0 for all g ∈ G;
(d) For any quasisimple subgroup H ≤ G and for any proper subset X ⊂ {Φ1,Φ2, . . . ,Φn}

with the property that Φi(H) = Φi(G) for all Φi ∈ X , there exists h ∈ H such that
Tr(Φi(h)) = 0 for all Φi ∈ X . [Note that, by Burnside’s theorem, this condition is
automatic if n = 2.]

Then G is quasisimple.
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Proof. (i) Consider the natural projection

Θ : L1 × L2 × . . .× Ln → L1/Z(L1)× L2/Z(L2)× . . .× Ln/Z(Ln) = S1 × S2 × . . .× Sn.

Next, Φ gives rise to an injective homomorphism

Φ̃ : g ∈ G 7→ diag
(
Φ1(g),Φ2(g), . . . ,Φn(g)

)
∈ L1 × L2 × . . .× Ln.

Then ΘΦ̃(G) is a subgroup of S1 × S2 × . . .× Sn that projects surjectively onto each of the n
components. By Lemma 6.6, there is a subset J := {j1, j2, . . . , jm} of {1, 2, . . . , n} such that

ΘΦ̃(G) ∼= Sj1 × Sj2 × . . .× Sjm .

Let Z := Ker(ΘΦ̃). Then Φ̃(Z) ≤ Z(L1)× Z(L2)× . . .× Z(Ln) and so centralizes Φ̃(G). As
Φ̃ is faithful, Z ≤ Z(G).

We have proved that there is a surjective homomorphism

Σ : G� Sj1 × Sj2 × . . .× Sjm
with kernel Z ≤ Z(G) (in fact, the simplicity of Sj for all j ∈ J then implies that Z = Z(G)).

Let j ∈ J and set R̃j := Σ−1(Sj), Rj := R̃
(∞)
j . Then it is easy to see that

Σ(Rj) = Sj = Σ(R̃j)

and so R̃j = ZRj . This in turn implies that Rj/(Z ∩Rj) ∼= R̃j/Z ∼= Sj , whence Rj is a
quasisimple cover of Sj . Since R̃j CG, we also have that Rj CG. Consider any i ∈ J with
i 6= j. Then Σ(Ri ∩Rj) = 1 and so Ri ∩Rj ≤ Z. In particular, [Ri, Rj ] ≤ Ri ∩Rj centralizes
Rj . It follows from the Three Subgroups Lemma that [Ri, Rj ] = [[Ri, Ri], Rj ] is in fact trivial.
This implies that Rj1Rj2 . . . Rjm is a central product. Next,

Σ(ZRj1Rj2 . . . Rjm) = Sj1 × Sj2 × . . .× Sjm = Σ(G),

implying G = ZRj1Rj2 . . . Rjm . As G = G(∞), it follows that

G = Rj1Rj2 . . . Rjm = Rj1 ∗Rj2 ∗ . . . ∗Rjm . (6.7.1)

In particular, the first statement of the proposition follows.

(ii) For the second statement, note that, by (6.7.1), for each 1 ≤ i ≤ n we can express

Φi = Ψi,1 �Ψi,2 � . . .�Ψi,m

as an outer tensor product of Ψi,k ∈ Irr(Rjk), 1 ≤ k ≤ m. It follows that Li = Φi(G) is a
central product Ψi,1(Rj1) ∗Ψi,2(Rj2) ∗ . . . ∗Ψi,m(Rjm) of (normal) subgroups. Since Li is
quasisimple and since each Rjk is also quasisimple, we conclude that all but one Ψi,k are
trivial, say for all k 6= ki. This implies that

Li = Φi(G) = Ψi,ki(Rki) = Φi(Rki).

On the other hand, the faithfulness of Φ implies that each Rj with j ∈ J must be acting
nontrivially in some Φi. So we can partition {Φ1,Φ2, . . . ,Φn} into a disjoint union

X1 t X2 t . . . t Xm
of non-empty subsets such that for each 1 ≤ t ≤ m and for all Φi ∈ Xt we have

Li = Φi(G) = Φi(Rjt) (6.7.2)

but Φi(Rj′) is trivial for all j′ ∈ J r {jt}.
Now if m = 1, then G is quasisimple, as stated. Suppose m ≥ 2. Then Rjt is a quasisimple

subgroup of G, and |Xt| ≤ n− 1. By (6.7.2) and assumption (d), there exists xt ∈ Rjt such
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that Tr(Φi(xt)) = 0 for all Φi ∈ Xt. Setting g := x1x2 . . . xt, we see that

Tr(Φi(g)) = Tr(Φi(xt)) = 0

for all Φi ∈ Xt. It follows that Tr(Φ(g)) =
∑n
i=1 Tr(Φi(g)) = 0, contradicting (c).

7. Going-up and going-down

First we prove the following going-up result. (Notice the difference between this and
Theorem 6.4: in the latter we assumed that L is a normal subgroup of G.) Usually, we
apply this result with (G, e) = (G̃, 1), in which case condition (e) is equivalent to (d).

Theorem 7.1. Let q = pf be a power of a prime p > 2, n ∈ Z≥1, and let H := Sp2n(q)
with qn ≥ 9. Suppose that Φ : G̃→ GLqn(C) is a faithful representation of a finite group
G̃ ≥ H with the following properties:
(a) Φ is a sum of two representations, Φ+ of degree (qn − 1)/2 and Φ+ of degree (qn − 1)/2;
(b) For all g ∈ G̃ and ε = ±, Tr(Φε(g)) ∈ K, where K = Q if p = 3 and 2|f , and K =

Q(
√

(−1)(p−1)/2p) otherwise;
(c) Φε|H is irreducible for each ε = ±; and
(d) For some subgroup G ≤ G̃ that contains G̃(∞), |Tr(Φ(x))|2 is always a power of q for all

x ∈ G.
(e) There exists some divisor e of f such that |Tr(Φ(y))|2 is always a power of q1/e for all

y ∈ G̃. If e > 1, assume in addition that there exists some g ∈ G̃ such that |Tr(Φ(g))|2 =
q1/e and that, if p = 3 then p - |det(Φε(G̃))| for ε = ±.

Then H C G̃, G = CG(H)H and CG̃(H) = Z(G̃) = C × Z(H), where Z(H) = 〈j〉 ∼= C2, and
either
(i) C = 1 or C2, or

(ii) e = 1, p = 3 divides |det(Φε(G̃))| for each ε = ±, 2 - f , and C ∈ {C3, C6}.
Moreover, G̃ induces a field automorphism of order e of H, and G̃/CG̃(H) ∼= PSp2n(q) o Ce.

Proof. Let L := G̃(∞) = G(∞). Since H is perfect, L ≥ H, and so Φε(L) contains Φε(H),
which in turn contains Φε(H1) with H1

∼= SL2(qn) a subgroup of H. Since L is perfect, Φε(L)
lands in SL(qn+ε)/2(C). Now, applying [13, Theorems 4.1 and 4.2] to Φε : L→ SL(qn+ε)/2(C),
for each ε = ± we obtain a pair (nε, aε) with nf = nεaε and Φε(L) is isomorphic to a quotient
of Sp2nε(p

aε). By Theorem 6.5, L ∼= Sp2n/d(q
d) for some divisor d|n. But L ≥ H = Sp2n(q),

hence H = L by order comparison. Thus H C G̃, and the statements about G and CG̃(H)
follow from Theorem 6.4 and Lemma 6.3. We are also done if e = 1 (by taking G = G̃).

Consider the case e > 1. Since no outer-diagonal automorphism of H can preserve the
equivalence class of Φε|H , G̃ can only induce inner and field automorphisms of H, whence there
exists some e′|f such that G̃/CG̃(H) ∼= PSp2n(q) o Ce′ , where the subgroup Ce is generated

by the field automorphism σ induced by the Galois automorphism x 7→ xq
1/e′

. By Lemma 6.1,
we may embed H in Γ := Sp2nf (p) and extend Φ to a total Weil representation Γ→ GLqn(C).
As noted in [14, §3], there is a standard subgroup

H̃ = Sp2n(q) o Ce′

of Γ with [H̃, H̃] = H that induces the same automorphism subgroup of H as the one induced
by G̃. In particular, for any element x ∈ G̃, there is an element x∗ ∈ H̃ such that conjugations
by x and x∗ induce the same automorphism of H. By Schur’s lemma, for each ε = ± there is
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αε(x) ∈ C× such that

Φε(x) = αε(x)Φε(x∗). (7.1.1)

Note that CH̃(H) = Z(H) = 〈j〉C2, so x∗ is unique up to a power of j. We will show that

α−(x), α+(x) ∈ {1,−1}. (7.1.2)

Indeed, as H̃ is contained in the perfect group Γ, det(Φε(x∗)) = 1. Now, by assumption (e),

αε(x)(qn−ε)/2 = det
(
αε(x)Φε(x∗)

)
= det

(
Φε(x)

)
has order coprime to p when p = 3. Thus

p - |αε(x)| when p = 3. (7.1.3)

Next, by [7, Lemma (8.14)(c)], since Φε|H is irreducible, for each ε = ± there is some yε =
hεx ∈ Hx such that Tr(Φε(yε)) 6= 0. Then, by the above remark, if y∗ε is chosen to fulfill (7.1.1)
for yε, then it is equal to hεx

∗ up to a power of j. As Φε(j) = ±Id, we have

Φε(hε)Φ
ε(x) = Φε(yε) = αε(yε)Φ

ε(y∗ε ) = ±αε(yε)Φε(hεx∗) = ±αε(yε)Φε(hε)Φε(x∗).

Comparing this to (7.1.1), we obtain αε(x) = ±αε(yε). On the other hand, taking traces, we
see that

0 6= Tr(Φε(yε)) = αε(yε)Tr(Φε(y∗ε )),

and furthermore, Tr(Φε(yε)) ∈ K1 := Q(
√

(−1)(p−1)/2p) by (b) and Tr(Φε(y∗ε )) ∈ K1 by [5,
Lemma 13.5] applied to Weil characters of Γ = Sp2nf (p). It follows that αε(x) = ±αε(yε) is a
root of unity in K1, whose order is coprime to p when p = 3 by (7.1.3). Hence (7.1.2) follows.

Now, if α−(x) = α+(x), then (7.1.1) implies that Φ(x) = α+(x)Φ(x∗); set x] := x∗ in this
case. If α−(x) = −α+(x), then taking x] := jx∗, we again have that Φ(x) = ±α+(x)Φ(x]).
Thus in all cases, given any x ∈ G̃, there is (a unique) x] ∈ H̃ such that

Φ(x) = ±Φ(x]), and conjugations by x and x] induce the same automorphism of H.
(7.1.4)

Applying this result to the element g ∈ G̃ in (e), we see that |Tr(Φ(g]))|2 = q1/e. By [14,
Theorem 3.5], q1/e is a power of q1/e′ .

Again by [14, Theorem 3.5], H̃ contains an element h such that |Tr(Φ(h))|2 = q1/e′ . Since
H̃ and G̃ induce the same automorphism subgroup of H and since CH̃(H) = 〈j〉, by (7.1.4)
there exists some k ∈ {0, 1} and some s ∈ G̃ such that jkh = s]. Also by (7.1.4),

Φ(jks) = Φ(jk)Φ(s) = ±Φ(jk)Φ(s]) = ±Φ(jk)Φ(jkh) = ±Φ(j2k)Φ(h) = ±Φ(h),

in particular, |Tr(Φ(jks))|2 = q1/e′ . But jks ∈ G̃, hence q1/e′ is a power of q1/e. We conclude
that q1/e = q1/e′ , i.e. e = e′, as stated.

Next we prove a going-down result:

Theorem 7.2. Let p > 2 be a prime, N ∈ Z≥1, p ≥ 13 if N = 1, and (p,N) 6= (3, 2), (3, 3),
(5, 3). Consider a total Weil representation Φ : Γ→ GLpN (C) of Γ := Sp2N (p) and extend it
to

Φ : Γ̃ := C × Γ→ GLpN (C),

where C is a finite cyclic group and acts faithfully via scalars in Φ. Suppose G is a subgroup
of Γ̃ with the following properties:
(a) Each of the two irreducible components Φε, of degree (pN − ε)/2 for ε = ±, of Φ is

irreducible over L := G(∞), with Φε(L) being quasisimple; and
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(b) There exists a power q = pf such that |Tr(Φ(x))|2 is a power of q for each x ∈ G.
Then f |N , and there exist a divisor d of N/f and a divisor e of d such that

Sp2N/df (qd) ∼= LCG ≤ C ×
(
Sp2N/df (qd) o Ce

)
= CG,

with the subgroup Sp2N/df (qd) o Ce identified in Γ as in [13, §4], and G inducing a subgroup of
order e of outer field automorphism of L. Moreover, if there exists g ∈ G with |Tr(Φ(g))|2 = q,
then e = d.

Proof. Note that L ≤ Γ and Φε(Γ) < SL(pN−ε)/2(C) since Γ is perfect; furthermore, for

all x ∈ Γ we have Tr(Φε(x)) ∈ Q(
√

(−1)(p−1)/2p), cf. [5, Lemma 13.5]. By [13, Theorem 4.7]
applied to the irreducible subgroup Φ−(L) of SL(pN+1)/2(C), one of the following must occur:

(i) There is a factorization N = AB, a divisor b|B, and a standard subgroup H :=
Sp2A(pB) o Cb of Γ such that Φ−(L) = Φ−(H).

(ii) p = 3, 2 - N , and Φ−(L) contains SUN (3) as a proper normal subgroup of 2-power
index.

As Φ−(L) is perfect, (i) must hold and moreover b = 1. In particular, L projects onto the
simple group PSp2A(pB). Applying Theorem 6.5, we conclude that there exists some d ∈ Z≥1

such that

B = df, N = AB = Adf,

and L ∼= Sp2N/df (qd); in particular, f |N and d|(N/f). Using the equality Φ−(L) = Φ−(H)
and the inclusion Ker(Φ−) ∩ Γ ≤ Z(Γ) = Z(H), we see that L = H. Thus L is the standard
subgroup Sp2A(pB), with normalizer C ×

(
Sp2A(pB) o CB

)
in Γ̃, that induces the full group

(of order B) of outer field automorphisms of L.
Since LCG ≤ NΓ̃(L), there is some e|B that G induces a subgroup Ce of outer field

automorphisms of L. As CΓ̃(L) = Z(L)C, in this case we have

G ≤ C ×
(
Sp2N/df (qd) o Ce

)
= CG.

By [14, Theorem 3.5], we can find h ∈ Sp2N/df (qd) o Ce such that |Tr(Φ(h))|2 = pB/e. As
h ∈ CG, we can find z ∈ C such that zh ∈ G. But Φ(C) is scalar, so

|Tr(Φ(g))|2 = |Tr(Φ(h))|2 = pB/e,

and condition (b) implies that e|d.
Assume now that |Tr(Φ(g))|2 = q for some g ∈ G. Then g = z1h1 for some z1 ∈ C and

h1 ∈ Sp2N/df (qd) o Ce. This again implies that

|Tr(Φ(h1))|2 = |Tr(Φ(g))|2 = pf .

By [14, Theorem 3.5], pf is a power of pB/e, i.e. B/e = df/e divides f , and we conclude that
e = d in this case.

8. Local systems and total Weil representations: Symplectic groups over Fp
Fix a prime p > 2 and N ≥ 3. In this section, we will work with the local system Gu,r,s,t

on Gm × A3/Fp whose trace function is given as follows: for k/Fp a finite extension, and
(u, r, s, t) ∈ k× × k3,

(u, r, s, t) 7→ 1

Gauss(ψk, χ2)

∑
x∈k

ψ−1/2,k

(
−uxp

N+1 + rxp
2+1 + sxp+1 + tx2

)
,
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and its various specializations, say G1,r,0,0 obtained when we take u = 1, s = 0, and t = 0.
Then Gu,r,s,tarith,k and Gu,r,s,tgeom denote the arithmetic and the geometric monodromy groups of

Gu,r,s,t, respectively. We use the same notation for various specializations, e.g., G1,r,0,0
arith,k and

G1,r,0,0
geom denote the arithmetic and the geometric monodromy groups of G1,r,0,0, respectively.

By Theorem 2.9, all these monodromy groups are finite.

Theorem 8.1. Over any finite extension k of Fp, the following statements hold.
(i) The geometric monodromy group G−1,0,s,t

geom of G−1,0,s,t equals L = Sp2N (p) in one of its
total Weil representations. If 2|N , then we also have G−1,0,s,0

geom = L. Furthermore,

C0 × L = G−1,r,s,t
arith,k ≥ G

−1,r,s,t
geom B L,

where C0 is a cyclic scalar subgroup, and either |C0| ≤ 2, or p = 3 and |C0| divides 6.
Moreover,

C × L = Gu,r,s,tarith,k ≥ G
u,r,s,t
geom B L,

where C is a cyclic scalar subgroup, and either |C| = 1, 2, or p = 3 and |C| divides 6.
(ii) Assume 2 - N . Then each of Gu,1,0,0geom and Gu,1,0,0arith,k contains the normal subgroup L =

Sp2N (p) acting in one of its total Weil representations, and furthermore, is equal to
C ′ × L for a cyclic scalar subgroup C ′ of order ≤ 2.

Proof. (i) First we choose k to contain Fp2 , so that any element of F×p is a square in k. In
this case, Gauss(ψk, χ2) = Gauss((ψa)k, χ2) for any ψa : t 7→ ψ(at) with a ∈ F×p as defined in
(3.11.1). It follows that G−1,0,s,t is the local system W2-param(ψ−1/2, N, p) introduced in [14,
§4] when 2 - N and in [14, §9] when 2|N . Hence G−1,0,s,t

geom = L by [14, Theorems 4.3 and 10.3].
Similarly, when 2|N , we have G−1,0,s,0

geom = L by [14, Theorem 10.6].

Now we return to work with any extension k of Fp. Then G−1,0,s,t
arith,k contains G−1,0,s,t

geom = L

as a normal subgroup. Since G−1,r,s,t
∗ contains G−1,0,s,t

∗ and is finite (with ∗ =arith or geom),
applying Theorem 2.8 and the second moment two result (Proposition 2.4), we see that the
second statements in (i) follows from Theorem 7.1 (with G̃ = G = G−1,r,s,t

∗ and H = L =
Sp2N (p)). The same argument also applies to Gu,r,s,t∗ .

(ii) Let Φ : Gu,r,s,tarith,k = CL→ GLpN (C) denote the corresponding representation of Gu,r,s,tarith,k

acting on Gu,r,s,t. Note that CL = C × L by (i). Next, by Corollary 2.7, Φ is a sum of two
irreducible representations Φε of degree (pN − ε)/2, ε = ±.

Now we aim to determineG := Gu,1,0,0geom ≤ CL, which is irreducible in both Φε by Proposition
2.4. Recall that each of the two irreducible summands of Gu,1,0,0 is the Kummer pullback by
u 7→ uA, A = (p2 + 1)/2, of one of the two irreducible hypergeometric summands Hu,1,0,0,ε
of rank (pN − ε)/2, ε = ±, which both satisfy (S+) by Proposition 4.12. [These two
hypergeometric sheaves were denoted by Hsmall,A,B,descent and Hbig,A,B,descent in Corollary
4.8, with (A,B) := ((p2 + 1)/2, (pN + 1)/2).] Hence we can apply [6, Proposition 2.8] to its
geometric monodromy group Hu,1,0,0,ε

geom which is finite.
Consider some ε = ± and assume we are in the extraspecial case of [6, Proposition 2.8(iii)].

Then (pN − ε)/2 = (p1)m for some prime p1, and Hu,1,0,0,ε
geom contains a normal p1-subgroup

P1 that acts irreducibly on the sheaf Hu,1,0,0,ε. As N ≥ 3 is odd, p1 - A. On the other hand,
Gu,1,0,0,εgeom is a normal subgroup of Hu,1,0,0,ε

geom of index dividing A. It follows that

P1 CG
u,1,0,0,ε
geom = Φε(G).

Recall that G ≤ CL = C × L with L = Sp2N (p). Since (pN − ε)/2 = (p1)m, we see that Sylow
p1-subgroups of L are abelian (in fact cyclic). Hence Sylow p1-subgroups of G are abelian,
and so P1 is abelian. But this contradicts the irreducibility of P1 on Hu,1,0,0,ε.



Page 42 of 63 NICHOLAS M. KATZ AND PHAM HUU TIEP

Thus we have shown that Hu,1,0,0,ε
geom is almost quasisimple for each ε = ±. Using property

(S+) and [6, Lemma 2.5], we then have that Φε(G(∞)) is a quasisimple irreducible subgroup
of SL(pN−ε)/2(C). Furthermore, G(∞) ≤ (CL)(∞) = L = Sp2N (p). By Theorem 7.2, there are

some divisors d|N and e|d such that G(∞) = Sp2N/d(p
d) o Ce, whence e = 1 by perfectness.

(Note that Theorem 7.2 assumes p > 5 when N = 3. However, when N = 3, since |Hu,1,0,0,ε
geom |

is divisible by (p3 − ε)/2 for each ε = ±, it is easy to see that |G(∞)| is divisible by 13 · 7 when
p = 3 and by 31 · 7 when p = 5. Using the list of maximal subgroups of Sp6(p) [3, Tables 8.28,
28.29], we see that the same conclusion holds for p = 3, 5.) In particular, Hu,1,0,0,ε

arith,k BH
u,1,0,0,ε
geom

contains the normal quasisimple subgroup Φε(Sp2N/d(p
d)). It also contains (the image) of the

inertia subgroup I(0), which has a cyclic p′-subgroup 〈h〉 of order divisible by (pN−2 − 1)/2
that cyclically permutes the (pN−2 − 1)/2 irreducible P (0)-submodules of dimension p2 by
Proposition 4.12.

Next we choose ε0 = ± such that D0 := (pN − ε0)/2 is even. Since no outer-diagonal
automorphisms of Sp2N/d(p

d) can preserve the Weil representation Φε0(Sp2N/d(p
d)) up to

equivalence, by Schur’s lemma we have

Sp2N/d(p
d)CHu,1,0,0,ε0

arith,k ≤ NGLD0
(C)(Sp2N/d(p

d)) ≤ (Sp2N/d(p
d) · Cd)Z, (8.1.1)

where Z = Z(GLD0
(C)).

Consider the case N ≥ 5. Then pN−2 − 1 admits a primitive prime divisor ` by [26], which
is either equal to N − 1 or at least 2(N − 2) + 1 > N . In either case, ` is coprime to N but
divides |h|. Let h0 denote the `-part of h. Now using ` - d and (8.1.1), we see that h0 ∈
Sp2N/d(q

d)Z. Since h0 acts nontrivially on the set of (pN−2 − 1)/2 irreducible P0-submodules

in Hu,1,0,0,ε0 , we conclude that h0 /∈ Z and ` divides |Sp2N/d(p
d)|. Thus there exists 1 ≤ i ≤

N/d such that `|(p2di − 1), whence N − 2 divides 2id by the choice of `. As 2 - N ≥ 5, it
follows that N − 2 = id. Hence d divides both N − 2 and N , and we conclude that d = 1.

Next we consider the case N = 3 but d > 1. Then d = 3. Let Q denote the image of P (0) in
Hu,1,0,0,ε0

arith,k . Then (8.1.1) shows thatQ has a normal subgroupQ1 of index dividing d = 3, where

Q1 ∈ Sylp(Sp2(p3)Z) is abelian. It follows from Ito’s theorem [7, (6.15)] that any irreducible
CQ1-module has dimension dividing 3. But this contradicts the fact that P (0) possesses an
irreducible submodule of dimension p2 on Hu,1,0,0,ε0 .

Thus we have shown that d = 1 and so G(∞) = Sp2N (p) = L. Clearly, G(∞) is a normal
subgroup of each of Gu,1,0,0geom , Gu,1,0,0arith,k. Furthermore, by Theorem 4.11, det(Hu,1,0,0,ε

arith,k ) has order
a 2-power (dividing 4; note that we use the oddness of p here to deduce the normality of
arithemetic monodromy groups of [2]? pullbacks). It follows that det(Φε(Gu,1,0,0arith,k)) is also a
2-group. The statement now follows from Theorem 6.4.

For later use, in the case N > N ′ > 2, we also need to consider the local system G̃v,r,s,t on
A4/Fp whose trace function, for k/Fp a finite extension and (v, r, s, t) ∈ k4, is given by

(v, r, s, t) 7→ 1

Gauss(ψk, χ2)

∑
x∈k

ψ−1/2,k

(
xp

N+1 + vxp
N′+1 + rxp

2+1 + sxp+1 + tx2
)
.

Let G̃v,r,s,tarith,k and G̃v,r,s,tgeom denote the arithmetic and geometric monodromy groups of G̃v,r,s,t,
respectively.

Theorem 8.2. Over any finite extension k of Fp, we have

C̃ × L = G̃v,r,s,tarith,k ≥ G̃
v,r,s,t
geom B L,

where L = Sp2N (p) in one of its total Weil representations, C̃ is a cyclic scalar subgroup, and
either |C̃| = 1, 2, or p = 3 and |C̃| divides 6.



EXPONENTIAL SUMS AND SYMPLECTIC AND UNITARY GROUPS Page 43 of 63

Proof. Note that G̃0,0,s,t is the local system G−1,0,s,t considered in Theorem 8.1. Hence,

G̃v,r,s,tarith,k B G̃
v,r,s,t
geom ≥ G−1,0,s,t

geom = L = Sp2N (p).

Again by Theorem 2.9, both G̃v,r,s,tarith,k and G̃v,r,s,tgeom are finite. Using Proposition 2.4 and Theorem
2.8, we now see that the statements follow from Theorem 7.1.

9. Local systems and total Weil representations: Symplectic groups over Fq
We continue to work with the prime p > 2, and fix a power q = pf and positive integers

n,m, where

n > m, gcd(n,m) = 1, 2|mn, qn > 9, and either m < n/2, or (n,m) = (3, 2), (2, 1).
(9.0.1)

This assumption implies that

gcd(qn + 1, qm + 1) = 2. (9.0.2)

For compatibility with the notations used in §4, we recall that precisely one of n,m is even,
and we define the integers A,B as follows:

(A,B) =

{ (
(qn + 1)/2, (qm + 1)/2

)
, if 2|n,(

(qm + 1)/2, (qn + 1)/2
)
, if 2|m. (9.0.3)

In this section, our ultimate target is the local systemW(ψ, n,m, q) on A1/Fp, whose trace
function for k/Fp a finite extension and r ∈ k is given as follows:

r 7→ 1

Gauss(ψk, χ2)

∑
x∈k

ψ−1/2,k

(
xq

n+1 + rxq
m+1

)
. (9.0.4)

To study W(ψ, n,m, q), we first study the local system W̃u,r on Gm × A1/Fp whose trace
function is given as follows. For k/Fp a finite extension, and (u, r) ∈ k× × k,

(u, r) 7→ 1

Gauss(ψk, χ2)

∑
x∈k

ψ−1/2,k

(
−uxq

n+1 − rxq
m+1

)
.

By Proposition 2.6 and (9.0.2), W̃u,r is the sum of two irreducible subsystems of rank (qn ±
1)/2. Let G̃u,rarith,k and G̃u,rgeom denote the arithmetic and the geometric monodromy groups of

W̃u,r, and similarly, G̃u,r,εarith,k and G̃u,r,εgeom denote the arithmetic and the geometric monodromy

groups of each of the two irreducible subsystems W̃u,r,ε, of rank (qn − ε)/2 for ε = ±.
Now, let W(n,m) denote the local system defined as follows. When 2|n, i.e. when A > B

in (9.0.3), it is the local system W̃−1,r on A1/Fp, that is, the one with trace function given
as follows: for k/Fp a finite extension, and r ∈ k,

r 7→ 1

Gauss(ψk, χ2)

∑
x∈k

ψ−1/2,k

(
xq

n+1 − rxq
m+1

)
.

When 2 - n, i.e. when A < B in (9.0.3), it is the local system W̃u,−1 on Gm/Fp, with trace
function given as follows: for k/Fp a finite extension, and u ∈ k×,

u 7→ 1

Gauss(ψk, χ2)

∑
x∈k

ψ−1/2,k

(
−uxq

n+1 + xq
m+1

)
.

For ε = ±, letW(n,m, ε) denote the irreducible subsystem ofW(n,m) of rank (qn − ε)/2. By
Corollary 4.8,W(n,m, ε) is the [A]? Kummer pullback of the hypergeometric sheaf H(n,m, ε)
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defined by

H(n,m,+) := Hsmall,A,B,descent ⊗
(
−Gauss(ψ, χ2)

)− deg
,

H(n,m,−) := Hbig,A,B,descent ⊗
(
−Gauss(ψ, χ2)

)− deg
.

(9.0.5)

Let G(n,m)arith,k, G(n,m)geom, G(n,m, ε)arith,k, G(n,m, ε)geom, H(n,m, ε)arith,k, and
H(n,m, ε)geom denote the arithmetic and geometric monodromy groups of the local systems
W(n,m),W(n,m, ε), and H(n,m, ε), respectively. The pullback relation implies that Ggeom C
Hgeom and the quotient is a cyclic group of order dividing A, for a pair of respective geometric
monodromy groups Ggeom and Hgeom.

Theorem 9.1. Given the assumption (9.0.1), and over any finite extension k of Fq,
the following statements hold. Each of G(n,m)geom and G(n,m)arith,k contains the normal
subgroup M = Sp2n(q) acting in one of its total Weil representations, and furthermore, is of
the form C ′ ×M for a suitable cyclic scalar subgroup C ′ of order ≤ 2.

Proof. (i) Write q = pf , define N := nf , N ′ := mf , and choose κ := 1 if 2|N and κ := 2 if

2 - N . First we consider the local system W̃u,r,s on Gm × A2/Fp, with arithmetic monodromy
group G̃u,r,sarith,k, and with trace function given as follows: for (u, r, s) ∈ k× × k2,

(u, r, s) 7→ 1

Gauss(ψk, χ2)

∑
x∈k

ψ−1/2,k

(
−uxq

n+1 − rxq
m+1 + sxp

κ+1
)

=
1

Gauss(ψk, χ2)

∑
x∈k

ψ−1/2,k

(
−uxp

N+1 − rxp
N′+1 + sxp

κ+1
)
.

When 2|N , the system W̃−1,0,s at u = 1 and r = 0 is exactly the system G−1,0,s,0 considered in

§8. Likewise, when 2 - N , the system W̃u,0,1 at r = 0 is exactly the system Gu,1,0,0 considered

in §8. It follows from Theorem 8.1 (applied to W̃1,0,s, respectively W̃u,0,1) that (G̃u,r,sarith,k)(∞)

contains L = Sp2N (p) acting in one of its total Weil representations.

By Theorem 2.8, the sheaf W̃u,r,s and its various specializations satisfy the p-power
property for the entire sheaf and the property of having all traces belonging to K for the
two irreducible subsheaves. Moreover, their monodromy groups satisfy the second moment
2 property, as follows from Corollary 2.7. In the subsequent arguments, we will repeatedly
use these properties without recalling them explicitly again. Now, Theorem 7.1 applied to
G̃u,r,sarith,k ≥ L, with (G̃,G,H, e) = (G̃u,r,sarith,k, G̃

u,r,s
arith,k, L, 1), yields that

G̃u,r,sarith,k = C × L, (9.1.1)

where C a cyclic scalar subgroup, and either |C| = 1, 2, or p = 3 and |C| = 3, 6.
Let Φ : G̃u,r,sarith,k = CL→ GLpN (C) denote the corresponding representation of G̃u,r,sarith,k

acting on W̃u,r,s, which is a sum of two irreducible representations Φε of degree (pN − ε)/2,
ε = ±.

(ii) Given the information about respective cyclic quotients, we see that the groups
G(n,m)geom and G(n,m)arith,k have a common last term M of their derived series:

M = (G(n,m)geom)(∞) = (G(n,m)arith,k)(∞).

As G(n,m)arith,k ≤ G̃u,r,sarith,k, it follows from (9.1.1) that

M ≤ L = Sp2N (p). (9.1.2)
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Recall from (9.0.5) that each of the two irreducible summands W(n,m, ε), ε = ±, is the
[A]? Kummer pullback, with

A = (qn + 1)/2 when 2|n and A = (qm + 1)/2 when 2 - n, (9.1.3)

of the irreducible hypergeometric sheaf H(n,m, ε) of rank (pN − ε)/2, which satisfies (S+) by
Proposition 4.12. Hence we can apply [6, Proposition 2.8] to its geometric monodromy group
H(n,m, ε)geom which is finite.

Assume we are in the extraspecial case of [6, Proposition 2.8(iii)] for some ε = ±. Then
(qn − ε)/2 = (p2)a for some prime p2 and some a ∈ Z≥1, and H(n,m, ε)geom contains a normal
p2-subgroup P2 that acts irreducibly on the sheaf H(n,m, ε). Assume in addition that ε = +
when 2|n. Then recalling (9.0.1) and (9.1.3), we easily check that p2 - A. On the other hand,
G(n,m, ε)geom is a normal subgroup of H(n,m, ε)geom of index dividing A. It follows that

P2 CG(n,m, ε)geom = Φε(G(n,m)geom) ≤ Φε(G̃u,r,sarith,k).

Now using (9.1.1) and the equality (pN − ε)/2 = (p2)a, we see that Sylow p2-subgroups of
G̃u,r,sarith,k are abelian. Hence Sylow p2-subgroups of G(n,m, ε)geom are abelian, and so P2 is
abelian. But this contradicts the irreducibility of P2 on H(n,m, ε).

We still assume the extraspecial case, but now with ε = − and 2|n. Then A = (qn + 1)/2 =
(p2)a. Again, G(n,m,−)geom is a normal subgroup of H(n,m,−)geom of index dividing A,
and

G(n,m,−)geom = Φ−(G(n,m)geom) ≤ Φ−(G̃u,r,sarith,k).

Now using (9.1.1) and the equality (pN + 1)/2 = (p2)a, we see that Sylow p2-subgroups of
G̃u,r,sarith,k are cyclic of order (p2)a. Hence Q2 := P2 ∩G(n,m,−)geom C P2 is cyclic of order say

(p2)b with 0 ≤ b ≤ a, and P2/Q2 is a cyclic group of order dividing A. Note that Aut(Q2) is
trivial if b = 0 and is cyclic of order (p2)b−1(p2 − 1) if b ≥ 1. As b ≤ a and P2/R2 ↪→ Aut(Q2)
for R2 := CP2

(Q2)C P2, we have

|P2/R2| ≤ (p2)a−1. (9.1.4)

Next, R2/Q2 ≤ P2/Q2 is cyclic, and Q2 ≤ Z(R2). Hence R2 is abelian. This, together with
(9.1.4), implies by Ito’s theorem [7, (6.15)] that any irreducible CP2-module has dimension
at most (p2)a−1. But this again contradicts the irreducibility of P2 on H(n,m,−).

(iii) Thus we have shown that H(n,m, ε)geom is almost quasisimple for all ε = ±. Using
property (S+) and [6, Lemma 2.5], we then have that Φε(M) is a quasisimple irreducible
subgroup of SL(pN−ε)/2(C), and, furthermore, M ≤ L = Sp2N (p) by (9.1.2). By Theorem 7.2,
there are some divisors d of n = N/f and e of d such that M = Sp2n/d(q

d) o Ce, whence e = 1
by perfectness. [Note that Theorem 7.2 assumes p > 5 when N = 3 and p > 3 when N = 2.
However, when N = 3, the statement follows from Theorem 8.1(i) and (iii); and the case
(p,N) = (3, 2) is excluded by the assumption qn = pN > 9.] In particular, H(n,m, ε)arith,k B
H(n,m, ε)geom contains the normal quasisimple subgroup Φε(Sp2n/d(q

d)). By Proposition
4.12, it also contains (the image) of the inertia subgroup I(δ), which has a cyclic p′-subgroup
〈h〉 of order divisible by (qn−m − 1)/2 that cyclically permutes the (qn−m − 1)/2 irreducible
P (δ)-submodules of dimension qm, where δ :=∞ if 2|n and δ := 0 if 2 - n.

Next we choose ε0 = ± such that D0 := (qn − ε0)/2 is even. Since no outer-diagonal
automorphism of Sp2n/d(q

d) can preserve the Weil representation Φε0(Sp2n/d(q
d)) up to

equivalence, by Schur’s lemma we have

Sp2n/d(q
d)CH(n,m, ε0)arith,k ≤ NGLD0

(C)(Sp2n/d(q
d)) ≤ (Sp2n/d(q

d) · Cdf )Z, (9.1.5)

where Z = Z(GLD0
(C)).
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Consider the case n−m ≥ 3; in particular, m < n/2. Then qn−m − 1 = p(n−m)f − 1 admits
a primitive prime divisor ` by [26], and either ` = (n−m)f + 1 or

` ≥ 2f(n−m) + 1 > N = nf.

Clearly, ` - df in the latter case. In the former case, if f ≥ 2 we have ` > 2(n−m) > n ≥ d and
` - f , whence ` - df . On the other hand, if f = 1 in the former case, then n/2 < ` = n−m+ 1,
so `|df would imply ` = n = d, m = 1, 2|n, and so n−m = 1, a contradiction. Thus ` - df in
all cases, but ` divides |h|. Let h0 denote the `-part of h. Now using ` - df and (9.1.5), we
see that h0 ∈ Sp2n/d(q

d)Z. Since h0 acts nontrivially on the set of (qn−m − 1)/2 irreducible

P (δ)-submodules in H(n,m, ε0), we conclude that h0 /∈ Z and so ` divides |Sp2n/d(p
df )|. Thus

there exists 1 ≤ i ≤ n/d such that `|(p2idf − 1), whence n−m divides 2id by the choice of `.
As n−m > n/2 and n−m is odd, it follows that n−m = id. Hence d divides both n−m
and n. Since gcd(n,m) = 1 by (9.0.1), we conclude that d = 1.

Next we consider the case n−m < 3 but d > 1. Then (n,m) = (3, 2) or (2, 1), and d = n.
Let Q denote the image of P (δ) in H(n,m, ε0)arith,k. Then (9.1.5) shows that Q has a normal
subgroup Q1 of index dividing nf , where Q1 ∈ Sylp(Sp2(qn)Z) is abelian. It follows from
Ito’s theorem [7, (6.15)] that any irreducible CQ1-module has dimension dividing nf . But
this contradicts the fact that P (δ) possesses an irreducible submodule of dimension qm = pmf

on H(n,m, ε0).
Thus we have shown that d = 1 and so M = Sp2n(q). Clearly, M is a normal subgroup

of each of G(n,m)geom, G(n,m)arith,k. Furthermore, by Theorem 4.11, det(H(n,m, ε)arith,k)
has order a 2-power (dividing 4; again, we are using the oddness of p here). It follows that
det(Φε(G(n,m)arith,k)) is also a 2-group. The statement now follows from Theorem 6.4.

The first main result of this section is the following theorem describing the monodromy
groups of the local system W(ψ, n,m, q) defined in (9.0.4).

Theorem 9.2. Given the assumption (9.0.1), the following statements hold.
(i) Let k be any finite extension of Fq. Then the geometric monodromy group

Ggeom(ψ, n,m, q) and the arithmetic monodromy group Garith(ψ, n,m, q, k) of
W(ψ, n,m, q) on A1/k are

Ggeom(ψ, n,m, q) = M, Garith(ψ, n,m, q, k) = Carith,k ×M,

where M = Sp2n(q) acts via one of its total Weil representations, and either Carith,k ≤ C2,
or 2 - nf , p = 3, and Carith,k ≤ C6.

(ii) Let e|f and let k = Fq1/e be a subfield of Fq. Then on A1/k the arithmetic monodromy
group Garith(ψ, n,m, q, k) of W(ψ, n,m, q) contains Garith(ψ, n,m, q,Fq) as a normal
subgroup of index e:

Garith(ψ, n,m, q, k) =
(
Carith,Fq ×M

)
· Ce,

and induces a subgroup of order e of outer field automorphisms of M = Sp2n(q).

Proof. (i) In the case 2|n, W(ψ, n,m, q) is the pullback by [r 7→ −r] of W(n,m),
and the statements are already proved in Theorem 9.1, using the extra information that
Ggeom(ψ, n,m, q) has no nontrivial p′-quotient.

Consider the case 2 - n. Then, the Kummer pullback

K = [qm + 1]?W(ψ, n,m, q)
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of W(ψ, n,m, q) has trace function at r ∈ k×

r 7→ 1

Gauss(ψk, χ2)

∑
x∈k

ψ−1/2,k

(
xq

n+1 + (rx)q
m+1

)
=

1

Gauss(ψk, χ2)

∑
x∈k

ψ−1/2,k

(
(r−1x)q

n+1 + xq
m+1

)
on Gm/k.

On the other hand, if we define

W ′(n,m) := [u 7→ −u]?W(n,m),

and define

K′ := [u 7→ 1/u]?[qn + 1]?W ′(n,m),

then K′ has trace function at u ∈ k×

u 7→ 1

Gauss(ψk, χ2)

∑
x∈k

ψ−1/2,k

(
(u−1x)q

n+1 + xq
m+1

)
.

Thus K′ is arithmetically isomorphic to K, because they have equal trace functions and are
each arithmetically semisimple. So they have the same geometric and arithmetic monodromy
groups as each other:

Kgeom = K ′geom, Karith,k = K ′arith,k.

From the definition of K′ as a pullback, we see that K ′geom = Kgeom is a normal subgroup of
G(n,m)geom, with cyclic quotient. It follows from Theorem 9.1 that

M = (G(n,m)geom)(∞) ≤ Kgeom ≤ G(n,m)geom = C0 ×M,

for some cyclic scalar subgroup C0. Hence (Kgeom)(∞) = M . From the definition of K as a
pullback, we see that Kgeom is a normal subgroup of Ggeom(ψ, n,m, q), with cyclic quotient,
and that Garith(ψ, n,m, q, k)/Ggeom(ψ, n,m, q) is cyclic. This in turn implies that

(Garith(ψ, n,m, q, k))(∞) = (Ggeom(ψ, n,m, q))(∞) = (Kgeom)(∞) = M, (9.2.1)

where M = Sp2n(q) acts on W(ψ, n,m, q) via one of its total Weil representations.
Note that the arithmetic monodromy group Karith,k of K is a subgroup of G(n,m)arith,k

containing M . Hence, by Theorem 9.1, Karith,k/M is a 2-group. Next, Kgeom is a normal sub-
group of Ggeom(ψ, n,m, q), with cyclic quotient of order dividing qm + 1 which is coprime to p.
It follows that p - |Ggeom(ψ, n,m, q)/M |. As Ggeom(ψ, n,m, q) has no nontrivial p′-quotient,
it follows from (9.2.1) that Ggeom(ψ, n,m, q) = M . The statement for Garith(ψ, n,m, q, k)
now follows by applying Theorem 2.8 (guaranteeing the necessary properties on traces) and
Theorem 6.4.

(ii) It suffices to consider the case q = pf > p. By assumption, Fq is an extension of degree
e of k. Hence, Garith(ψ, n,m, q,Fq) is a normal subgroup of G̃ := Garith(ψ, n,m, q, k), with
cyclic quotient of order dividing e. In particular, it follows from (i) that

G̃(∞) = M = Sp2n(q), |G̃| ≤ e|Garith(ψ, n,m, q,Fq)|. (9.2.2)

On the other hand, if mf > 2, note that W(ψ, n,m, q) is precisely the sheaf G̃r,0,0,0 (over k)
considered in Theorem 8.2, with (N,N ′) = (nf,mf), whence G̃ is a subgroup of

Γ̃ := G̃r,v,s,tarith,k = C × L,

with L = Sp2N (p) acting via one of its total Weil representations, and C a finite cyclic
subgroup. If mf = 2 (and so (m, f) = (1, 2)), then W(ψ, n,m, q) is the sheaf G−1,r,0,0



Page 48 of 63 NICHOLAS M. KATZ AND PHAM HUU TIEP

considered in Theorem 8.1, with N = nf , whence G̃ is a subgroup of Γ̃ := Gu,r,s,tarith,k = C × L
with C a finite cyclic subgroup. Now we can apply Theorem 4.9(i) toW(ψ, n,m, q) to see that
|Tr(Φ(x))|2 is a power of q1/e for all x ∈ G̃, and q1/e can be attained, if Φ : G̃→ GLqn(C) is
the representation of G̃ on the sheafW(ψ, n,m, q). By Theorem 7.2, there exists some divisor
d of N/(f/e) = ne such that

Sp2ne/d(q
d/e)C G̃ ≤ C ×

(
Sp2ne/d(q

d/e) o Cd
)

= CG̃.

Recalling (9.2.2), we now see that d = e, and that G̃ induces a subgroup of order e of
outer field automorphisms of M . As Garith(ψ, n,m, q,Fq) = Carith,Fq ×M induces only inner

automorphisms of M , (9.2.2) implies that G̃ = Garith(ψ, n,m, q,Fq) · Ce, as stated.

In fact, the central factor Carith,k in Theorem 9.2(i) will be explicitly determined in Theorem
9.4.

To formulate the second main result of the section, recall the assumptions (9.0.1)
and (9.0.3), and consider the hypergeometric sheaves H(n,m,+) of rank (qn − 1)/2 and
H(n,m,−) of rank (qn + 1)/2 introduced in (9.0.5). Among these two sheaves, we denote
the one of even rank by Heven(n,m) and the one of odd rank by Hodd(n,m). Also, let

H(n,m) := H(n,m,+)⊕H(n,m,−) = Hodd(n,m)⊕Heven(n,m).

Theorem 9.3. Given the assumption (9.0.1) and the above notation, the following
statements hold.
(i) Let k be any finite extension of Fq. Then the arithmetic monodromy group Heven

arith (n,m, k)
and the geometric monodromy group Heven

geom(n,m) of Heven(n,m) on Gm/k are

Heven
arith (n,m, k) = Heven

geom(n,m) = M ∼= Sp2n(q)

and M = Sp2n(q) acts in one of its even-degree irreducible Weil representations. Further-
more, the arithmetic monodromy group Hodd

arith(n,m, k) and the geometric monodromy
group Hodd

geom(n,m) of Hodd(n,m) on Gm/k are

Hodd
arith(n,m, k) = C ′arith,k ×M/Z(M), Hodd

geom(n,m) = C ′geom ×M/Z(M),

where M/Z(M) ∼= PSp2n(q) acts in one of its odd-degree irreducible Weil representations,
and

1 ≤ C ′geom ≤ C ′arith,k

with C ′arith,k a central subgroup of order ≤ 2.
(ii) Let e|f and let k = Fq1/e be a subfield of Fq. Then on Gm/k the arithmetic monodromy

group Heven
arith (n,m, k) of Heven(n,m) contains Heven

arith (n,m,Fq) as a normal subgroups of
index e, and likewise for the monodromy group of Hodd(n,m):

Heven
arith (n,m, k) = M · Ce, Hodd

arith(n,m, k) =
(
C ′arith,Fq ×M/Z(M)

)
· Ce,

and each of them induces a subgroup of order e of outer field automorphisms of M =
Sp2n(q).

Proof. (i) Note that H(n,m) = Heven(n,m)⊕Hodd(n,m) is exactly the system
WH,Sp(1/2) defined after Corollary 4.8, because we already built the Tate (1/2)-twist into
the definition of Heven(n,m) and Hodd(n,m); in particular, Theorem 4.9 applies to H(n,m).
Now, the geometric monodromy group Ggeom of H(n,m) contains G(n,m)geom as a normal
subgroup, with cyclic quotient of order dividing A which is coprime to p, and G(n,m)geom
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is described in Theorem 9.1. As Ggeom is a normal subgroup with cyclic quotient in the
arithmetic monodromy group Garith,k of H(n,m), it follows that

G
(∞)
arith,k = G(∞)

geom = M ∼= Sp2n(q),

acting via a total Weil representation. Next, as p is odd, Theorem 4.11 shows that the
determinant of Garith,k on each of the two irreducible subsheaves of H(n,m) is a 2-group.
Now, Lemma 4.7 and Corollary 4.8 ensure that we can first apply Theorem 6.4 to obtain

Garith,k = C ′arith,k ×M, Ggeom = C ′geom ×M, (9.3.1)

where C ′geom ≤ C ′arith,k are both central of order ≤ 2, acting on H(n,m) via scalars. The

statements in (i) then follow, by recalling that Heven
arith (n,m, k) and Hodd

arith(n,m, k) are the
images of Garith,k acting on Heven(n,m) and Hodd(n,m), with cyclic centers, and noting that
Z(M) acts trivially on Hodd(n,m) and as {±1} on Heven(n,m).

(ii) We again work with H(n,m) and its arithmetic monodromy group Garith,k. By
Theorem 4.11, the determinantal image of Garith,k on each of Heven(n,m) and Hodd(n,m)
is a p′-group. Now, Theorem 4.9 ensures that we can apply Theorem 7.1 to (G̃,G,H) =
(Garith,k, Garith,Fq ,M). As Garith,k/Garith,Fq is cyclic of order dividing e, the statements follow.

Our final result in this section determines all the central subgroups involved in Theorems
9.1–9.3.

Theorem 9.4. Keep the assumption (9.0.1). Then the following statements hold.
(i) Assume that 2|n. Then the central subgroups C ′ in Theorem 9.1, Carith,k in Theorem

9.2(i), C ′geom and C ′arith,k in Theorem 9.3(i) are all trivial. Furthermore, for any extension
k of Fq, H(n,m) has its arithmetic and geometric monodromy groups Garith,k = Ggeom =
Sp2n(q).

(ii) Assume that 2 - n. Then the central subgroups C ′geom and C ′arith,k in Theorem 9.3(i)
are both cyclic of order 2. Furthermore, G(n,m)arith,k = G(n,m)geom = C2 × Sp2n(q) in

Theorem 9.1. Moreover, the local system H̃(n,m) := H(n,m)⊗ Lχ2
has its geometric

monodromy group G̃geom = Sp2n(q).
(iii) Assume again that 2 - n. Then the central subgroup Carith,k in Theorem 9.2(i) has order

1 when q ≡ 1(mod 4) or if k ⊇ Fp2 , and has order 2 if q ≡ 3(mod 4) and k 6⊇ Fp2 .

Proof. (i) Our assumptions on (n, q) imply that the sheaf Hodd(n,m) is the sheaf
H(n,m,−) of rank A = (qn + 1)/2 defined using Hbig,A,B,descent in (9.0.5). By Theorem
4.5(ii), Hodd(n,m) has trivial arithmetic determinant. Since the rank (qn + 1)/2 is odd, any
central element of order 2 in Hodd

arith(n,m, k) would have determinant −1, a contradiction.
It follows that Z(Hodd

arith(n,m, k)) has odd order, and so C ′arith,k = 1 in Theorem 9.3(i). In
particular, we have Garith,k = M ∼= Sp2n(q) in (9.3.1). Now, using the [A]? Kummer pullback
to get back to W(n,m), and the further pullback by [r 7→ −r] to get to W(ψ, n,m, q), we
conclude that C ′ = 1 in Theorem 9.1 and Carith,k = 1 in Theorem 9.2(i).

(ii) Our assumptions on (n, q) imply that the sheaf Hodd(n,m) is the sheaf H(n,m,−)
of rank B = (qn + 1)/2 defined using Hbig,A,B,descent in (9.0.5) when 2 - B, and it is the
sheaf H(n,m,+) of rank B − 1 = (qn − 1)/2 defined using Hsmall,A,B,descent in (9.0.5) when
2|B. Now, by Theorem 4.6, Hodd(n,m) has geometric determinant Lχ2 , and so some element
of Hodd

geom(n,m) has determinant −1 on Hodd(n,m). Hence, Hodd
geom(n,m) cannot be perfect,

and therefore Hodd
geom(n,m) ∼= C2 × PSp2n(q) and C ′arith,k = C ′geom

∼= C2 in Theorem 9.3(i); in
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particular, (9.3.1) implies that H has geometric monodromy group

Ggeom = 〈c〉 ×M ∼= C2 × Sp2n(q). (9.4.1)

Next, since W(n,m,−) is the [A]? Kummer pullback of Hodd(n,m), G(n,m,−)geom is a
normal subgroup of Hodd

geom(n,m, k) of index dividing A, which is odd, and this implies that
G(n,m,−)geom cannot be perfect. As G(n,m,−)geom is the image of G(n,m)geom acting on
W(n,m,−), it follows that G(n,m)arith,k = G(n,m)geom = C2 × Sp2n(q) in Theorem 9.1.

Let Z(M) = 〈t〉. Then t acts as −1 on the even-rank subsheaf Heven(n,m) of H(n,m) and
trivially on the odd-rank subsheaf Hodd(n,m). Replacing c from (9.4.1) by ct if necessary,
we may assume that c acts trivially on Heven(n,m), whence c acts as −1 on Hodd(n,m)
(otherwise c would be trivial). Now (9.4.1) implies that Hodd(n,m) has geometric determinant
Lχ2

and Heven(n,m) has trivial geometric determinant. Hence, both Hodd(n,m)⊗ Lχ2
and

Heven(n,m)⊗ Lχ2
have trivial geometric determinants.

Next, tensoring with Lχ2 changes the trace at v ∈ E× by a factor of χ2(v) = ±1. In
particular, it does not change the absolute value of the trace at any v ∈ E×. Furthermore, the
[2]? Kummer pullbacks of H(n,m) and H̃(n,m) are isomorphic, and so G̃geom has a normal
subgroup X of index at most 2, which is also a normal subgroup of Ggeom of index at most
2. It follows that (G̃geom)(∞) = X(∞) = M ∼= Sp2n(q). Applying Theorem 6.4 to G̃geom and
arguing as in (i) of the proof of Theorem 6.4, we conclude that M C G̃geom ≤ C2 × L. Now, if
G̃geom > M , then we have G̃geom = 〈c̃〉 ×M with 〈c̃〉 ∼= C2. Since c̃ has trivial determinant on
Hodd(n,m)⊗ Lχ2

, it acts trivially on it, and c̃ acts as 1 or −1 on Heven(n,m)⊗ Lχ2
. But this

means that the action of c̃ on H̃(n,m) agrees with some element in Z(M) and so c̃ ∈ Z(M)
by faithfulness, a contradiction. Thus G̃geom = M , as stated.

(iii) In this case we have 2 - n. Recalling (9.0.3), we note from Corollary 3.10 that

W(ψ, n,m, q) is the pullback by [r 7→ −r] of [B]?W̃, where

W̃ := Hsmall,B,A,descent ⊗
(
−Gauss(ψ, χ2)

)− deg ⊕Hbig,B,A,ρ,descent ⊗
(
−Gauss(ψ, χ2)

)− deg
,

and ρ is chosen so that ρB = χ2 (in particular, we will take ρ = χ2 if B = (qn + 1)/2 is odd).
Consider the case 2 - B, equivalently, 4|(q − 1). Then, for any k ⊇ Fq, −1 is a

square in k, whence Gauss(ψk, χ2) = Gauss(ψk, χ2). By Proposition 3.12, both the sheaves

Hsmall,B,A,descent ⊗
(
−Gauss(ψ, χ2)

)− deg
and Hbig,B,A,ρ,descent ⊗

(
−Gauss(ψ, χ2)

)− deg
have

trivial arithmetic determinants. Now consider any central element c in the arithmetic
monodromy group of [B]?W̃. By Theorem 9.2(i), ord(c) divides 2p. Now, on the subsystem of

[B]?W̃ of odd rank (qn − ε)/2 (for a suitable ε ∈ {−1, 1}), c acts as a scalar α with α2p = 1 and

1 = det(c) = α(qn−ε)/2, whence α = 1. On the subsystem of [B]?W̃ of even rank (qn + ε)/2, c
acts as a scalar β with β2p = 1 and 1 = det(c) = β(qn+ε)/2, whence β = ±1. We see that the
action of c agrees with the action of a central element ofM = Sp2n(q), and therefore c ∈ Z(M).
Pulling back by [r 7→ −r] to get to W(ψ, n,m, q), we obtain Carith,k = 1 in Theorem 9.2(i).

Now assume 2|B, equivalently, 4|(q + 1). We apply Proposition 3.13 with C = −1 to see

that the subsheaf [B]?Hsmall,B,A,descent ⊗
(
−Gauss(ψ, χ2)

)− deg
, which has odd rank B − 1,

has arithmetic determinant (−1)deg, whereas [B]?Hbig,B,A,ρ,descent ⊗
(
−Gauss(ψ, χ2)

)− deg
,

which has even rank B, has trivial arithmetic determinant. Again consider any central
element c in the arithmetic monodromy group of [B]?W̃. By Theorem 9.2(i), ord(c) divides
2p. Now, if k ⊇ Fp2 , equivalently, deg(k/Fp) is even, then c has trivial determinant on both

subsystems of [B]?W̃, and the previous arguments show that c ∈ Z(M), and pulling back by
[r 7→ −r], we see that Carith,k = 1 in Theorem 9.2(i). The same arguments also show that
we always have c2 ∈ Z(M), whence ord(c) divides gcd(4, 2p) = 2 and thus ord(c) divides 2.
Now assume that deg(k/Fp) is odd. We have just proved that Z(Garith(ψ, n,m, q, k)) is a
2-group and contains Z(M) ∼= C2, whence Carith,k has order 1 or 2. Suppose that Carith,k = 1.
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Then Garith(ψ, n,m, q, k) = M is perfect, and so it has trivial arithmetic determinant on both
subsystems of W(ψ, n,m, q), a contradiction. Thus Carith,k = C2 in this case.

10. Local systems and total Weil representations: Unitary groups over Fq
We continue to work with the prime p > 2, and fix a power q = pf and positive integers

n,m, where

n > m, gcd(n,m) = 1, 2 - mn, n ≥ 3, and either m < n/2, or (n,m) = (5, 3). (10.0.1)

This assumption implies that

gcd(qn + 1, qm + 1) = q + 1. (10.0.2)

For compatibility with the notations used in section §5, we denote

A := (qn + 1)/(q + 1), B := (qm + 1)/(q + 1).

In this section, we study the local system W n,m on A1/Fq2 with trace function given as
follows: for k/Fq2 a finite extension, and r ∈ k,

r 7→ 1

Gauss(ψk, χ2)

∑
x∈k

ψk
(
xq

n+1 − rxq
m+1

)
.

Next, we fix a character χq+1 of order q + 1, and then, for 0 ≤ j ≤ q, define W n,m,j to be
the local system on Gm/Fq2 whose trace function is given by as follows: for k/Fq2 a finite
extension, and r ∈ k,

r 7→ 1

Gauss(ψk, χ2)

∑
x∈k

ψk
(
xA − rxB

)
χjq+1(x).

By (10.0.2) and Proposition 2.4, W n,m = ⊕qj=0W n,m,j is the sum of (q + 1) irreducible
subsystems W n,m,j , of rank (qn − q)/(q + 1) for j = 0 and (qn + 1)/(q + 1) when 1 ≤ j ≤ q.
Let Gn,marith,k and Gn,mgeom, respectively Gn,m,jarith,k and Gn,m,jgeom , denote the arithmetic and the

geometric monodromy groups of W n,m, respectively of W n,m,j .
Next, recall that in Lemma 5.13 we defined

n0 := gcd(n, (q + 1)n),

and showed that we can fix a character ν of order n0(q + 1) such that νA = χq+1. We then
define the hypergeometric sheaves Hn,m,j over Gm/Fq2(ν) for j ∈ Z as follows:

Hn,m,j :=

{
Hsmall,A,B,descent ⊗

(
−Gauss(ψFq2 (ν), χ2)

)− deg
, if (q + 1)|j,

Hbig,A,B,νj ,descent ⊗
(
−Gauss(ψFq2 (ν), χ2)

)− deg
, if (q + 1) - j,

(10.0.3)

with Hsmall,A,B,descent and Hbig,A,B,χ,descent as defined in §5. We also let

Hn,m =

q⊕
j=0

Hn,m,j . (10.0.4)

By Propositions 5.3 and 5.4, W n,m,j is the [A]? Kummer pullback of Hn,m,−j . Denote the
arithmetic and geometric monodromy groups of Hn,m,j by Hn,m,j

arith,k and Hn,m,j
geom . Again, this

pullback relationship implies that Gn,m,jgeom CH
n,m,−j
geom and the quotient is a cyclic group of

order dividing A.

We will need the following statement, which is an odd-n analogue of [16, Lemma 17.3]. For
the reader’s convenience, we give the proof.
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Lemma 10.1. Let Z be a finite abelian group, q a prime power, and let λ0, λ1, . . . , λq ∈
Irr(Z).
(i) Suppose Λ :=

∑q
i=0 λi vanishes on Z r {1}. Then |Z| divides q + 1.

(ii) Suppose there is some z ∈ Z such that Λ =
∑q
i=0 λi vanishes on Z r {1, z} and Λ(z) =

−(q + 1). Then |Z| divides 2(q + 1).
(iii) Suppose 2 - n ≥ 3, (n, q) 6= (3, 2), λ2

0 = 1Z , and that

Σ := −λ0 +A

q∑
i=0

λi,

with A := (qn + 1)/(q + 1), takes values only in {−qn, 0,±qi | 0 ≤ i ≤ n− 1} on Z r {1}.
Then either |Z| divides q + 1, or Z contains an element z with λi(z) = −1 for all 0 ≤ i ≤ q.
In the latter case, |Z| divides 2(q + 1).

Proof. (i) Note that

[Λ, 1Z ]Z =
1

|Z|
∑
x∈Z

Λ(x) =
q + 1

|Z|

is an integer, whence the statement follows.
(ii) Let α be the linear character of 〈z〉 sending z to −1. Since Z is abelian, we can find a

linear extension β of α to Z. Now

[Λ, β]Z =
1

|Z|
∑
x∈Z

Λ(x)β(x) =
(q + 1)β(1)− (q + 1)β(z)

|Z|
=

2(q + 1)

|Z|

is an integer, whence the statement follows.

(iii) Consider any 1 6= x ∈ Z. By the assumption, λ0(x) = ±1, and Σ(x) = 0, −qn, or ±qj
for some 0 ≤ j ≤ n− 1. Now

Z 3 Σ(x) + λ0(x) = A · Λ(x),

and so Λ(x) = (Σ(x) + λ0(x))/A is both rational and an algebraic integer, whence

A divides Σ(x) + λ0(x). (10.1.1)

We will now show that either Σ(x) = −λ0(x) or Σ(x) = −qn. If Σ(x) = 0, or Σ(x) = ±qj with
1 ≤ j ≤ n− 2, or if Σ(x) = λ0(x), then Σ(x) + λ0(x) 6= 0 and

|Σ(x) + λ0(x)| ≤ qn−2 + 1 < A

(as n ≥ 3 and (n, q) 6= (3, 2)), contradicting (10.1.1). If Σ(x) = λ0(x)qn−1, then we have

A|(qn−1 + 1) by (10.1.1), whence qn+1
gcd(2,q−1) divides (q + 1) · qn−1+1

gcd(2,q−1) , which is impossible

since gcd(qn + 1, qn−1 + 1) = gcd(2, q − 1). If Σ(x) = −λ0(x)qn−1, then we have A|(qn−1 − 1)
by (10.1.1), which is also impossible since gcd(qn + 1, qn−1 − 1) = q + 1 < (qn + 1)/(q + 1) for
2 - n ≥ 3 and (n, q) 6= (3, 2).

(iv) Now, if Σ(x) 6= −qn for all 1 6= x ∈ Z, then Σ(x) = −λ0(x) and Λ(x) = 0 for all 1 6=
x ∈ Z, whence the statement follows from (i).

Consider the case Σ(x) = −qn for some 1 6= x ∈ Z. Then we must have λ0(x) = −1, and

q∑
i=0

(−λi(x)) = −Λ(x) = (−λ0(x)− Σ(x))/A = q + 1,

implying that all roots of unity−λi(x) must be 1. Now, assume Σ is faithful, and fix an element
z ∈ Z with λi(z) = −1 for all i. In this case, λi(xz

−1) = 1 for all i, and so Σ(xz−1) = qn and
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x = z by faithfulness of Σ. We have shown that Λ(x) = −(q + 1) for x = z, and Λ(x) = 0 for
all x ∈ Z r {1, z}, and so the statement follows from (ii).

In this section, we will work with a subgroup GUn(q) = GU(W ) of Sp2n(q) as specified
in [14, Theorem 3.4], W = Fnq2 , and with j = −1W , the central involution of both GU(W )
and Sp2n(q). For any prime power q and any n ≥ 2, recall that the finite unitary group
GU(W ) = GUn(q), admits a total Weil representation of degree qn over C, with character

ζn,q(g) = (−1)n(−q)dimF
q2

Ker(g−1W )
(10.1.2)

for any g ∈ GUn(q), see e.g. [24, (9)]. Fix primitive (q + 1)th roots of unity ρ ∈ C× and
% ∈ F×q2 . Then ζn,q =

∑q
i=0 ζ

i
n,q is the sum of q + 1 irreducible Weil characters of GUn(q),

with

ζin,q(g) =
(−1)n

q + 1

q∑
l=0

ρil(−q)dimF
q2

Ker(g−%l·1W )
(10.1.3)

being the character of the irreducible summand of the total Weil representation of GUn(q),
on which the generator z := % · Id acts as the scalar ρi, see [24, Lemma 4.1]. If 2|q or if n ≥ 3,
then the restrictions ζin of ζin,q to SUn(q), 0 ≤ i ≤ q, are pairwise distinct irreducible Weil
characters of SUn(q), see [24, Lemma 4.7]. We will also refer to the restriction of ζn,q to
SUn(q) as its total Weil character.

The main result of this section is the following theorem:

Theorem 10.2. Given the assumption (10.0.1). Then the geometric monodromy group
Gn,mgeom of W n,m is isomorphic to SUn(q) acting in its total Weil representation of degree qn.
Furthermore, for any finite extension k of Fq2 , the arithmetic monodromy group Gn,marith,k of
W n,m on Gm/k is

Gn,marith,k = Carith,k × SUn(q),

where Carith,k = Carith,Fq2 = 〈j〉 ∼= C2 if 2 - deg(k/Fq2), and Carith,k = 1 if 2 | deg(k/Fq2).

Proof. (i) Note that, since k ⊇ Fq2 , Gauss(ψk, χ2) = Gauss((ψa)k, χ2) for any ψa : t 7→
ψ(at) with a ∈ F×p . In particular, Wn,1 is precisely the pullback by [r 7→ −r] of the local
system W(ψ, n, q) considered in [14, §4], where we have shown in Theorem 4.2 that it has
geometric monodromy group SUn(q) (in its total Weil representation of degree qn). Thus
Gn,1geom = K := SUn(q).

(ii) In this and the next part of the proof we will assume that m > 1. Consider the local
systemW n,m,1,0 on A3/Fq2 with trace function given as follows. For k/Fq2 a finite extension,
and r, s, t ∈ k,

(r, s, t) 7→ 1

Gauss(ψk, χ2)

∑
x∈k

ψk
(
xq

n+1 − rxq
m+1 + sxq+1 + tx2

)
,

with arithmetic monodromy group Gn,m,1,0arith,k . As mentioned above, k ⊇ Fq2 implies that the

system W n,m,1,0|r=0 at r = 0 is exactly the local system W2-param(ψ, n, q) considered in [14,
§4]. By [14, Theorem 4.3], the arithmetic monodromy group of W n,m,1,0|r=0 equals L :=
Sp2n(q) in one of its total Weil representations of degree qn. Thus Gn,m,1,0arith,k contains L. By

Proposition 2.4, W n,m,1,0 is still a sum of two subsystems of rank (qn ± 1)/2. Furthermore,
it satisfies the conclusions of Theorem 2.8. Now, applying Theorem 7.1 to Gn,m,1,0arith,k ≥ L (with
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e = 1), we obtain that

Gn,m,1,0arith,k = C × L, (10.2.1)

where C a cyclic scalar subgroup, and either |C| = 1, 2, or p = 3, 2 - f , and |C| = 3, 6.

Let Φ : Gn,m,1,0arith,k = CL→ GLqn(C) denote the corresponding representation of Gn,m,1,0arith,k

acting on W n,m,1,0. Note that W n,m is precisely W n,m,1,0|s=0, t=0, hence G̃ := Gn,marith,k is

a subgroup of Gn,m,1,0arith,k . As W n,m is a local system on A1, its geometric monodromy group
G := Gn,mgeom satisfies

G = Op′(G). (10.2.2)

Given the information about respective cyclic quotients, we see that the two groups Gn,mgeom

and Gn,marith,k have a common last term K of their derived series:

K = (Gn,mgeom)(∞) = (Gn,marith,k)(∞) ≤ (Gn,m,1,0arith,k )(∞) = L. (10.2.3)

By (10.0.2) and Proposition 2.4, Φ|G is a sum of q + 1 irreducible summands Φj acting on
W n,m,j , 0 ≤ j ≤ q. Since Φ(C) consists of scalar matrices, the same is true for

CG = C × (CG ∩ L),

whence also for CG ∩ L. Applying [14, Theorem 3.4] to CG ∩ L, we see that

SUn(q)C CG ∩ L ≤ GUn(q),

where GUn(q) is realized inside L via a standard Hermitian structure on F2n
q . As K ≤ CG ∩ L,

we now have

SUn(q) = (CG ∩ L)(∞) ≤ (CG)(∞) = G(∞) = K = K(∞) ≤ (CG ∩ L)(∞) = SUn(q),

i.e. K = SUn(q), acting in its total Weil representation.

(iii) Since G̃BK by (10.2.3), from (10.2.1) we now get

GC G̃ ≤ NC×L(K) = C ×NL(K) = C ×
(
GUn(q) o C2

)
.

Note that C ×GUn(q) preserves the equivalence of each of q + 1 irreducible summands (Φi)|K ,
but the subgroup C2 (generated by a field automorphism) does not. It follows that

SUn(q) = K CG ≤ G̃ ≤ C ×GUn(q). (10.2.4)

Recall from Lemma 3.2 that the sheaves Hsmall,A,B and Hbig,A,B,χ all have geometric
determinants being trivial or Lχ2 . As Wn,m,j is the [A]? Kummer pullback of Hn,m,−j , the
same is true for G = Gn,mgeom acting on each Wn,m,j . Hence, if Φε denotes the two summands
of degree (qn − ε)/2, ε = ±, of the CL-representation Φ, then det(Φε(g))2 = 1 for all g ∈ G.
However, det(Φε(x)) = 1 for all x ∈ L as L is perfect, and det(Φε(c)) has order 3 if 1 6= c ∈
O3(C) when p = 3, since C is scalar and deg(Φε) is coprime to p. Recalling C ≤ C2·gcd(p,3),
we now see from (10.2.4) that SUn(q)CG ≤ Op′(C)×GUn(q). Together with (10.2.2), this
implies that G = K = SUn(q).

(iv) Now we return to the general case m ≥ 1 and let λj be the central character of Z(G̃)
acting on W n,m,j , 0 ≤ j ≤ q. Recall that Φ|G̃ has integer traces, belonging to {±qi | 0 ≤ i ≤
n} by Theorem 5.9, and so it is self-dual. But (Φ0)|G̃ is the unique irreducible constituent
of Φ|G̃ of degree A− 1, hence (Φ0)|G̃ is self-dual; in particular, λ2

0 is trivial. It follows that
Σ := −λ0 +A

∑q
i=0 λi satisfies all the hypotheses of Lemma 10.1, whence

|Z(G̃)| divides 2(q + 1). (10.2.5)

In particular, we are done if C ≤ C2. Consider the case C ≥ C3, whence p = 3. By (10.2.4),
CG̃(K) = Z(G̃), and G̃/CG̃(K) ≤ PGUn(q). It then follows from (10.2.5) that |G̃/G| divides
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2(q + 1)2. On the other hand, G̃/G ≤ C × Cq+1, with C × Cq+1 being an abelian group.
Hence,

G̃/G ≤ O3′(C × Cq+1) = O2(C)× Cq+1 =
(
O2(C)×GUn(q)

)
/G,

and so

Gn,marith,k ≤ O2(C)×GUn(q). (10.2.6)

(v) To completely determine Gn,marith,k, first we show that in (10.2.6) in fact we have

SUn(q) = H CGn,marith,k ≤ GUn(q). (10.2.7)

This is obvious if O2(C) = 1, so we will assume that O2(C) = 〈t〉 with Φ(t) = −Id and
that G̃ 3 th for some h ∈ GUn(q). We will decompose the total Weil representation Φ of
GUn(q) as ⊕qi=0Ψi as in [14, §3]; in particular, deg(Ψi) = (qn + 1)/(q + 1)− δi,0. The same
decomposition applies to O2(C)×GUn(q), as Φ(t) = −Id. Restricted to G̃, each Ψi with
1 ≤ i ≤ q corresponds to the action of G̃ on some Wn,m,j which in turn is the [A]? Kummer
pullback of Hbig,A,B,χ,descent for some χ. Restricted further down to H = SUn(q), Ψ(q+1)/2 is
the only self-dual one among the q irreducible Weil representations of degree A of H. Taking
ρ = χ = χ2 in Proposition 5.3, we see that Hbig,A,B,χ2,descent is geometrically self-dual of rank
A; hence this sheaf corresponds to Ψ(q+1)/2. Furthermore it has trivial arithmetic determinant,
by Proposition 3.12(iii), see also Corollary 5.8. On the other hand, by [14, Lemma 3.2(iii)],
det(Ψ(q+1)/2(h)) = 1, and so det(Ψ(q+1)/2(th)) = −1, a contradiction.

Having established (10.2.7), we can write Gn,marith,k = 〈H, g〉, where g := diag(ρj , 1, . . . , 1),

ρ ∈ F×q2 has order q + 1, and 0 ≤ j ≤ q. As shown in the proof of [14, Lemma 3.2],

det(Ψi(g)) = ζj(i+(q+1)/2), (10.2.8)

if 1 ≤ i ≤ q and ζ = ζq+1 ∈ C× has order q + 1. According to Corollary 5.8, all the q
components of degree A of Wn,m have arithmetic determinant ±1, hence det(Ψi(g)) = ±1
for all 1 ≤ i ≤ q. Applying this and (10.2.8) to i = (q + 3)/2, we get ζ2j = 1, i.e. (q + 1)/2
divides j. Since 2 - n it is easy to see that 〈H, g(q+1)/2〉 = H × 〈j〉, and so we have shown that

Gn,marith,k = Carith,k × SUn(q), (10.2.9)

with Carith,k ≤ Carith,Fq2 ≤ 〈j〉.
Assume now that for Carith,Fq2 = 1. Then,Gn,marith,Fq2

= H = SUn(q) is perfect. It follows that

all q + 1 subsheaves of Wn,m have trivial arithmetic determinants over Fq2 . If q ≡ 3(mod 4),
then we choose θ of order r := q + 1, so that (−1)(q+1)/r = −1 6= (−1)(q+1)/2. If q ≡ 1(mod 4),
then we choose θ of order r := (q + 1)/2, so that (−1)(q+1)/r = 1 6= (−1)(q+1)/2. In both cases,
by Corollary 5.8, this choice of θ implies that the subsheaf of rank A of Wn,m labeled by θ
has nontrivial arithmetic determinant (−1)deg over extensions of Fq2 , a contradiction. Hence
Carith,Fq2 = 〈j〉.

Finally, since Gn,marith,Fq2
/Gn,mgeom = C2, the C2 quotient is geometrically trivial and so must

be (−1)deg arithmetically. Together with (10.2.9), this implies that Carith,k = Carith,Fq2 when
2 - deg(k/Fq2) and Carith,k is trivial when 2|deg(k/Fq2).

Theorem 10.3. Given the assumption (10.0.1). Then the following statements hold.
(a) The geometric monodromy group H = Hn,m

geom of Hn,m contains Gn,mgeom = SUn(q) as a
normal subgroup, with Hn,m

geom/G
n,m
geom being cyclic of order n0. Furthermore, H/Z(H) ∼=

PGUn(q).
(b) Let 0 ≤ j ≤ q and let Hj = Hn,m,j

geom be the geometric monodromy group of the hyper-

geometric sheaf Hn,m,j , defined in (10.0.3). Then H
(∞)
j is the image of SUn(q) in an
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irreducible Weil representation, of degree A = (qn + 1)/(q + 1) if 1 ≤ j ≤ q and A− 1 if

j = 0, Hj/H
(∞)
j is cyclic of order dividing n0, and Hj/Z(Hj) ∼= PGUn(q).

(c) Let k be any finite extension of k0 := Fq2(ν) = Fq2n0 . Then the arithmetic monodromy
group of Hn,m over Gm/k is Carith,k ×Hn,m

geom, where Carith,k = 〈j〉 if 2 - deg(k/k0) and
Carith,k = 1 if 2|deg(k/k0).

Proof. (i) The definition given in (10.0.3) tells us that Hj has its I(0) being cyclic of order
A = (qn + 1)/(q + 1). Moreover, Hj has property (S+) by Proposition 5.10, and by Theorem

10.2, H
(∞)
j = Gn,m,−jgeom is the image of SUn(q) in the relevant irreducible Weil representation,

with Hj/H
(∞)
j being cyclic of order dividing A. Hence, PSUn(q) is the unique non-abelian

composition factor of Hj , and by [15, Theorem 8.3 and Corollary 8.4],

Hj/Z(Hj) ∼= PGUn(q). (10.3.1)

(ii) Next, since the [A]? Kummer pullback of Hn,m is Wn,m, G := Gn,mgeom
∼= SUn(q) is a

normal subgroup of H := Hn,m
geom, with cyclic quotient of order dividing A; in particular, we

can write

H = 〈G, g〉BG (10.3.2)

for some element g ∈ H.
Let Ψj denote the representation of H on Hn,m,j , so that Hj = Ψj(H) and (Ψj)|G is an

irreducible Weil representation of G = SUn(q). Note that the only automorphisms of G that
preserve the equivalence class of each (Ψj)|G are the inner-diagonal automorphisms, i.e. the
ones induced by elements in GUn(q) (via conjugation). It follows that we can find an element
h ∈ GUn(q) ≤ L (with L = Sp2n(q) as in the proof of Theorem 10.2) such that g and h induce
the same automorphism of G. Changing g to another representative in its coset gG, we can
make sure that

h = diag(ρ, 1, 1, . . . , 1) (10.3.3)

for some ρ ∈ µq+1 ≤ F×q2 . In particular,

hq+1 = 1, (10.3.4)

and Ψj(g)Ψj(h)−1 centralizes Ψj(G), whence

Ψj(g) = αjΨj(h) (10.3.5)

for some αj ∈ C×. In fact, αj is a root of unity because both g and h have finite order.
Recall by [14, (3.1.2)] that 0 6= Tr(Ψj(h)) ∈ Q(ζq+1). On the other hand, since ν is chosen

to have order n0(q + 1), Tr(Ψj(g)) ∈ Q(ζn0(q+1)) by Lemma 3.7. Hence the root of unity αj
belongs to Q(ζn0(q+1)), and so, as 2|(q + 1), we have that

α
n0(q+1)
j = 1 (10.3.6)

for all j. Together with (10.3.4) and (10.3.5), this implies that Ψj(g)n0(q+1) = Id for all j,
whence Φ(g)n0(q+1) = Id and gn0(q+1) = 1 by faithfulness of Φ. Coupled with (10.3.2), we
deduce that |H/G| divides n0(q + 1). But |H/G| divides A and gcd(A,n0(q + 1)) = n0 by

(5.13.1). Consequently, |H/G| divides n0. Applying Ψj , we also get that |Hj/H
(∞)
j | divides

n0.
Next we show that

CH(G) = Z(H), H/Z(H) ∼= PGUn(q). (10.3.7)

Indeed, note that CH(G) acts via scalars in each Ψj and so centralizes Ψj(H), whence
CH(G) = Z(H). We already showed that H/CH(G) embeds in PGUn(q) and contains
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PSUn(q) = G/Z(G). If H/Z(H) < PGUn(q), then applying Ψj and using Ψj(Z(H)) ≤ Z(Hj),
we would have that Hj/Z(Hj) is properly contained in PGUn(q), contradicting (10.3.1).

(iii) The relation (10.3.7) shows that H induces the full subgroup PGUn(q) of inner-diagonal
automorphisms of G. As H = 〈G, g〉, see (10.3.2), we may therefore assume that for the
element h = diag(ρ, 1, . . . , 1) in (10.3.3) we have ρ ∈ F×q2 is of order q + 1. Write

d := gcd(n, q + 1) = an− b(q + 1), hd = (ρa · 1W )h′ with h′ := diag(ρd−a, ρ−a, . . . , ρ−a),
(10.3.8)

for some a, b ∈ Z. Then ρd = ρan−b(q+1) = ρan, hence det(h′) = ρd−an = 1, i.e. h′ ∈ SUn(q).
We will now fix j := (q + 3)/2 in (10.3.5) and let α := αj . By the proof of [14, Lemma 3.2],

this choice of j (and the fact that ρ has order q + 1) ensures that det(Ψj(h)) is a primitive
(q + 1)th root ζq+1 of unity. On the other hand, by Lemma 3.1 and (10.3.5),

1 = det(Ψj(g)) = αA det Ψj(h) = αAζq+1.

Recalling by (10.3.6) that αn0(q+1) = 1, we can write α = ζcn0(q+1) for a primitive (n0(q + 1))th

root ζn0(q+1) of unity with ζn0

n0(q+1) = ζq+1 and c ∈ Z. Now ζq+1 = α−A = ζ
−(A/n0)c
q+1 has order

q + 1, and so gcd(c, q + 1) = 1. As n0|(q + 1)n, this implies that

gcd(c, n0(q + 1)) = 1, i.e. α = ζcn0(q+1) has order exactly n0(q + 1). (10.3.9)

Also write

n0 = de, q + 1 = dr

with e, r ∈ Z≥1.
Recall we have shown that |H/G| divides n0 = de, and H induces the subgroup PGUn(q)

of Aut(G), whereas G induces the subgroup PSUn(q) of order |PGUn(q)|/d of Aut(G). It
follows that |H/G| = ds for some divisor s of e. In particular, gds ∈ G, whence using (10.3.8)
we obtain that

Ψj(g
ds) = αdsΨj(h

ds) = αdsΨj

(
(ρa · 1W )s

)
Ψj

(
(h′)s

)
belongs to Ψj(G). As h′ ∈ G and Ψj(ρ · 1W ) = ζq+1 · Id by [14, (3.2.1)], this implies that the
scalar transformation αdsζasq+1 · Id belongs to Ψj(G). As the quasisimple group G = SUn(q)
acts irreducibly in Ψj and has center of order d, this scalar transformation has order dividing
d, that is, (

αd
2

ζadq+1)s = 1. (10.3.10)

Now, αd
2

= ζcd
2

n0(q+1) = ζcer by (10.3.9), if we take ζer := ζd
2

n0(q+1). Next, ζadq+1 = ζn0ad
n0(q+1) =

ζaeer . It follows that αd
2

ζadq+1 = ζc−aeer , and so (10.3.10) implies that er divides s(c− ae); in
particular, e divides sc. But c is coprime to n0 = de by (10.3.9), hence e|s. Consequently,
s = e, i.e. |H/G| = n0, as stated in (a).

(iv) Now we note that, since all prime divisors of the odd integer n0 divide q + 1 and ν has
order n0(q + 1), k0 = Fq2(ν) equals Fq2n0 . [Indeed, if ` is any (odd) prime divisor of n0 and
ord`(n0) = c > 0, then, as in the proof of Lemma 5.13, we have that `c|(q2a − 1)/(q + 1) if
and only if `c|a. Proceeding ` by `, we get that n0|(q2a − 1)/(q + 1), i.e. n0(q + 1) | (q2a − 1),
if and only if n0|a, and thus Fq2(ν) = Fq2n0 .] To determine H̃ := Hn,m

arith,k, we recall thatWn,m

is the [A]? Kummer pullback of Hn,m, hence G̃ := Gn,marith,k = Carith,k ×Gn,mgeom is a subgroup
in Hn,m

arith,k, with cyclic quotient of order dividing A. At the same time, Hn,m
arith,k contains H =

Hn,m
geom as a normal subgroup, also with cyclic quotient, and with H(∞) = G̃(∞) = Gn,mgeom

∼=
SUn(q). It follows that Gn,mgeom CH

n,m
arith,k, whence

Gn,mgeom CH
n,m
arith,k ≥ H

n,m
geom, and [Hn,m

arith,k : Gn,marith,k] divides A. (10.3.11)
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Recall by (10.3.7) that Hn,m
geom induces the subgroup PGUn(q) of all inner-diagonal automor-

phisms of Gn,mgeom = SUn(q). Again, since only inner-diagonal automorphisms of SUn(q) can
fix the equivalence of each irreducible Weil representations (Ψj)|G of SUn(q), Hn,m

arith,k must
induce the same subgroup PGUn(q) while acting on Gn,mgeom. In particular,

|Hn,m
arith,k| = |PGUn(q)| · |C̃| = |SUn(q)| · |C̃| = |Gn,marith,k/Carith,k| · |C̃|, (10.3.12)

where C̃ := CHn,marith,k
(Gn,mgeom). Together with (10.3.11), this implies that

|C̃| divides |Carith,k| ·A, (10.3.13)

Consider any c ∈ C̃. For any 0 ≤ j ≤ q, Ψj(c) centralizes the irreducible subgroup Ψj(G),
hence Ψj(c) = γj · Id for some root of unity γ ∈ C×. Just as above, we see that the field Eν =
Fp(µn0(q+1)(p−1)) of Lemma 3.7 is equal to k0 = Fq2n0 . Hence, by Lemma 3.7, γj deg(Ψj) =
Tr(Ψj(c)) belongs to Q(ν) = Q(ζn0(q+1)). As 2|(q + 1) and γj is a root of unity, we conclude

that γ
n0(q+1)
j = 1, and so cn0(q+1) = 1 for all c ∈ C̃, i.e. the exponent of C̃ divides n0(q + 1).

On the other hand, as C̃ acts via scalars in all Ψj , it is a (finite) abelian group. Thus |C̃|
divides (n0(q + 1))q+1. Applying (10.3.13) and (5.13.1), we now obtain that |C̃| divides

gcd
(
|Carith,k| ·A, (n0(q + 1))q+1

)
= |Carith,k| · n0 · gcd

(
A

n0
,
nq0(q + 1)q+1

|Carith,k|

)
= |Carith,k| · n0.

Together with (10.3.12), this implies that |Hn,m
arith,k/G

n,m
arith,k| = n0/e for some odd integer e|n0;

in particular, |Hn,m
arith,k| = |Carith,k| · |SUn(q)| · (n0/e) =

(
|Carith,k|/e

)
· |Hn,m

geom|. But Hn,m
geom is

a subgroup of Hn,m
arith,k and |Carith,k| ≤ 2, so we conclude that e = 1.

Now, if Carith,k = 1, then Hn,m
arith,k = Hn,m

geom. Assume that Carith,k = 〈j〉. Then 2 =
|Hn,m

arith,k/H
n,m
geom|. Recall by (a) that Hn,m

geom is an extension of the quasisimple subgroup G =
SUn(q) of odd index n0. On the other hand, by Theorem 10.2, Gn,marith,k = Carith,k × SUn(q),
and the order 2 subgroup Carith,k = 〈j〉 ≤ Z(GUn(q)) acts via scalars in each of Ψj , hence it
centralizes Hn,m

arith.k. It follows that Carith,k ∩Hn,m
geom = 1 and Hn,m

arith,k = Carith,k ×Hn,m
geom.

Finally, by Theorem 10.2, |Carith,k| = 2 if and only if 2 - deg(k/Fq2) if and only if 2 -
deg(k/k0), since deg(k0/Fq2) = n0 is odd.

Remark 10.4. In the special case where n = 3, m = 1, and 3|(q + 1), Theorem 10.3
complements [12, Theorem 19.2].

Now we specialize to the case where gcd(n, q + 1) = 1, and follow Remark 5.11 to choose
a ∈ Z so that aA ≡ 1 (mod (q + 1)) and take ν = χaq+1. Then the hypergeometric sheaves
Hn,m,j of (10.0.3) are defined over Gm/Fq2 , and their sum Hn,m = ⊕qj=0Hn,m,j has trace
function

u ∈ k× 7→ 1

Gauss(ψk, χ2)

∑
x∈k

ψk
(
uαxq

m+1 − uβxq
n+1
)
,

with αA− βB = 1 and β ∈ (q + 1)Z, see (5.11.1).

Theorem 10.5. Given the assumption (10.0.1), assume in addition that gcd(n, q + 1) = 1.
Then we have the following results.
(a) The geometric monodromy group Hn,m

geom of Hn,m is SUn(q) acting in its total Weil
representation of degree qn.
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(b) The geometric monodromy group Hn,m,j
geom of the hypergeometric sheaf Hn,m,j , 0 ≤ j ≤ q,

is the image of SUn(q) in an irreducible Weil representation, of degree A = (qn + 1)/(q +
1) if 1 ≤ j ≤ q and A− 1 if j = 0.

(c) Over any finite extension k of Fq2 , the arithmetic monodromy group Hn,m
arith,k of Hn,m is

equal to the arithmetic monodromy group Gn,marith,k of Wn,m in Theorem 10.2.

Proof. Note Theorem 10.5 is the n0 = 1 case of Theorem 10.3. But we will give an
alternative proof, which will later apply to the proof of Theorem 10.6.

(i) Consider the local systemW n,m,2 on Gm × A2/Fq2 with trace function given as follows.
For k/Fq2 a finite extension, and v ∈ k×, r, s ∈ k,

(v, r, s) 7→ 1

Gauss(ψk, χ2)

∑
x∈k

ψk
(
vxq

n+1 + rxq
m+1 + sxq

2+1
)
,

with geometric monodromy group Gn,m,2geom and arithmetic monodromy group Gn,m,2arith,k over

any finite extension k of Fq2 . Then the systemW n,m,2|v=1, r=0 at (v, r) = (1, 0) is exactly the
local systemW(ψ−2, n, 2, q) considered in (9.0.4). By Theorem 9.2, the geometric monodromy
group ofW n,m,2|v=1, r=0 equals L := Sp2n(q) in one of its total Weil representations of degree
qn. Thus Gn,m,2geom contains L. By Proposition 2.4, W n,m,2 is a sum of two subsystems of rank
(qn ± 1)/2. Furthermore, it satisfies the conclusions of Theorem 2.8. Now, applying Theorem
7.1 to Gn,m,2arith,k ≥ L (with e = 1), we obtain that

LCGn,m,2geom ≤ G
n,m,2
arith,k ≤ C × L, (10.5.1)

where C a cyclic scalar subgroup, and either |C| = 1, 2, or p = 3, 2 - f , and |C| = 3, 6.
Now, by specializing W n,m,2 to the curve v = −uβ , r = uα, s = 0, we obtain from (10.5.1)

that the geometric monodromy group H := Hn,m
geom of Hn,m is contained in C × L.

(ii) By (5.11.3) (and the fact that the traces are all real-valued), the [A]? Kummer pullback
of Hn,m is the local system W n,m which has geometric monodromy group Gn,mgeom = SUn(q)
by Theorem 10.2. Hence, Gn,mgeom is a normal subgroup of H with cyclic quotient of order

dividing A = (qn + 1)/(q + 1), which is coprime to 2p. It follows that L ≥ H(∞) = Gn,mgeom and

|H/H(∞)| is coprime to 2p. But H/(H ∩ L) embeds in CL/L ∼= C, and |C| divides 2p. Hence
SUn(q) = Gn,mgeom CH = H ∩ L ≤ L ∼= Sp2n(q). Furthermore, the action of H on Hn,m is the
sum of q + 1 irreducible representations, one of degree A− 1 and q of degree A. Hence, by
[14, Theorem 3.4], we know that SUn(q)CH ≤ GUn(q). Recall again that Gn,mgeom = SUn(q)
has index dividing A = (qn + 1)/(q + 1) which is coprime to q + 1 = |GUn(q)/SUn(q)| since
gcd(n, q + 1) = 1. Consequently, H = SUn(q) as stated in (a). Now (b) follows from (a), since
Hn,m,j

geom is the image of H = Hn,m
geom acting on an individual sheaf Hn,m,j .

(iii) For (c), we note that Hn,m
arith,k contains H as a normal subgroup of cyclic index, hence

H = H(∞) = (Hn,m
arith,k)(∞). The specialization v = −uβ , r = uα, s = 0 also shows that Hn,m

arith,k

is contained in Gn,m,2arith,k, hence

H CHn,m
arith,k ≤ NC×L(H) = C × (GUn(q) o C2).

Note that
[(
C × (GUn(q) o C2)

)
: H
]

divides 4(q + 1) · gcd(p, 3). On the other hand, since
Wn,m is the [A]? Kummer pullback of Hn,m, Gn,marith,k ≥ Gn,mgeom = H is subgroup of Hn,m

arith,k of
index dividing A = (qn + 1)/(q + 1) which is coprime to 2p(q + 1). Thus [Hn,m

arith,k : Gn,marith,k]
divides 4p(q + 1) and at the same time is coprime to 2p(q + 1). Hence Hn,m

arith,k = Gn,marith,k.

Next, we will work with any odd n ≥ 3 and any odd m < n that is coprime to q + 1, e.g.
m = 1. Then we follow Remark 5.12 to study the sheaf Hn,mbis defined in (5.12.1) over Gm/Fq2 ,
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which has trace function

u ∈ k× 7→ 1

Gauss(ψk, χ2)

∑
x∈k

ψk
(
uαxq

m+1 − uβxq
n+1
)
,

with αA− βB = 1 and α ∈ (q + 1)Z.

Theorem 10.6. Given the assumption (10.0.1), assume in addition that gcd(m, q + 1) =
1. Then we have the following results.
(a) The geometric monodromy group Hn,m

bis,geom of Hn,mbis is GUn(q) acting in its total Weil
representation of degree qn, with character

ζn,q : g 7→ (−1)n(−q)dimF
q2

Ker(g−1)
.

(b) The geometric monodromy groups Hn,m,j
bis,geom of the q + 1 summands Hn,m,jbis of Hn,mbis , are

the images of GUn(q) in q + 1 irreducible Weil representations, 1 of degree A− 1 and q
of degree A = (qn + 1)/(q + 1).

(c) For any finite extension k of Fq2 , the arithmetic monodromy group of Hn,mbis over Gm/k
is

Hn,m
bis,arith,k = Carith,k ×GUn(q),

with Carith,k being a cyclic scalar subgroup of order ≤ 2. In fact, if k/Fq2 has even degree,
or if q ≡ 3(mod 4), then Carith,k = 1. If q ≡ 1(mod 4) and k/Fq2 has odd degree, then
Carith,k = 〈t〉 ∼= C2.

(d) For the sheaf W n,m
bis = [B]?Hn,mbis , whose trace function, cf. (5.12.3), is

u ∈ E× 7→ 1

Gauss(ψE , χ2)

∑
z∈E

ψE(zq
m+1 − u−1zq

n+1),

its geometric monodromy group Gn,mbis,geom is GUn(q) acting in its total Weil representation
of degree qn. Furthermore, for any finite extension k of Fq2 , the arithmetic monodromy
group Gn,mbis,arith,k of Hn,mbis is equal to Hn,m

bis,arith,k.

Proof. (i) Using the same notation and the arguments in the proof of Corollary 10.5, by
specializing W n,m,2 to the curve v = −uβ , r = uα, s = 0, we again have that the geometric
monodromy group H := Hn,m

bis,geom of Hn,mbis is contained in C × L, with C a cyclic scalar
subgroup of order dividing 2 · gcd(p, 3). Defining L2 := O2(C)× L, note that L2 is a normal
subgroup of CL of index 1 or p.

Next, note that the Kummer pullback

K = [qm + 1]?W n,m

of W n,m, has trace function at r ∈ k×

r 7→ 1

Gauss(ψk, χ2)

∑
x∈k

ψk
(
xq

n+1 − (rx)q
m+1

)
=

1

Gauss(ψk, χ2)

∑
x∈k

ψk
(
xq

m+1 − (r−1x)q
n+1
)

on Gm/k (since −1 is a square in k ⊇ Fq2 and all traces are integers). On the other hand, by
(5.12.3), if we define

K′ := [qn + 1]?W n,m
bis = [qn + 1]?[B]?Hn,mbis ,

then K′ has trace function at u ∈ k×

u 7→ 1

Gauss(ψk, χ2)

∑
x∈k

ψk
(
xq

m+1 − (u−1x)q
n+1
)
.
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Thus K′ is arithmetically isomorphic to K, because they have equal trace functions and
are each arithmetically semisimple. So their geometric monodromy groups are the same:
Kgeom = K ′geom.

(ii) The aforementioned pullback relationships imply that Kgeom is a normal subgroup
of Gn,mgeom with cyclic quotient of order dividing qm + 1. It follows from Theorem 10.2
that Kgeom

∼= SUn(q), whence K ′geom
∼= SUn(q). Next, K ′geom is a normal subgroup of H =

Hn,m
bis,geom with cyclic quotient of order dividing AB(q + 1) which is coprime to p. But

H/(H ∩ L2) embeds in CL/L2, and |CL/L2| divides p. Hence

SUn(q) = K ′geom = H(∞) CH ∩ L2 = H ≤ L2 = O2(C)× L ≤ C2 × Sp2n(q).

Furthermore, the action of H on Hn,mbis is the sum of q + 1 irreducible representations, one of
degree A− 1 and q of degree A, and these representations remain irreducible upon restriction
to K ′geom ≤ H ∩ L. Hence, by [14, Theorem 3.4] applied to H ∩ L, we obtain that

SUn(q)CH ∩ L ≤ GUn(q);

in particular, [H ∩ L : K ′geom] divides q + 1. As H/(H ∩ L) embeds in L2/L which has order 1
or 2, we see that |H/K ′geom| divides 2(q + 1). At the same time, |H/K ′geom| divides AB(q + 1),
an odd multiple of q + 1. It follows that |H/K ′geom| divides q + 1.

Choosing χ of order q + 1 and using B = (qm + 1)/(q + 1) is coprime to q + 1, by Lemma
3.2 we see that H]big,A,χ,B,descent has geometric determinant Lχ. Hence, H/H(∞) has order

divisible by q + 1. Since K ′geom = H(∞), we have shown that

H/K ′geom
∼= Cq+1; (10.6.1)

in particular, |H| = |GUn(q)|.
(iii) Next, we claim that in fact O2(C) = C2 = 〈t〉 and H 6= H ∩ L. Assume the contrary:

O2(C) = 1 or H = H ∩ L. Then H ≤ L acts on Hn,mbis via restricting a total Weil representa-
tion Φ of L ∼= Sp2n(q) to H. By [14, Lemma 3.2(iii)], the image of H on one of the irreducible
summands of rank A of Hn,mbis has trivial determinant, which is impossible (since the only
summand of Hn,mbis that has trivial geometric determinant has rank A− 1).

As shown on [14, p. 9], NL(K ′geom) ∼= M o 〈σ〉, with M ∼= GUn(q) and σ ∈ L an involution
that acts as inversion on Z(M) ∼= Cq+1. It follows that

H ≤ NL2
(K ′geom) = (M o 〈σ〉)× 〈t〉.

Now using (10.6.1), we can write H = 〈K ′geom, h〉 where h = tiσjg for some g ∈M and
i, j ∈ {0, 1}. Note that i = 1 since H 6= H ∩ L. On the other hand, if j = 1, then h does
not fix invariant some of the irreducible Weil representations of K ′geom occurring in Hn,mbis , a
contradiction. Thus h = tg with g ∈M .

Let e denote the order of the coset gK ′geom as an element in M/K ′geom
∼= Cq+1, in particular,

e|(q + 1). By the choice of h, hK ′geom has order q + 1 in H/K ′geom. But h2e = g2e ∈ K ′geom, so
(q + 1)/2 divides e. We claim that

e = q + 1. (10.6.2)

Assume the contrary: e = (q + 1)/2. If q ≡ 3(mod 4), then h(q+1)/2 = g(q+1)/2 ∈ K ′geom, a
contradiction. Consider the case q ≡ 1(mod 4), in particular, 2 - e, and an odd prime divisor
r of q + 1. Then some subsheaf H′ of Hn,mbis of odd rank A has geometric determinant Lχ,
with χ of order r. On the other hand, t acts on Hn,mbis as scalar −1, and ge ∈ K ′geom

∼= SUn(q)
has trivial determinant on H′. It follows that h = tg has determinant of even order on H′, a
contradiction.

Now, (10.6.2) implies that 〈K ′geom, g〉 = M ∼= GUn(q). We also note that the action of
h = tg on Hn,mbis is −Φ(g). Since H = 〈K ′geom, h〉, using [14, Theorem 3.1(i)], it follows that
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the action of H on Hn,mbis affords the total Weil character ζn,q and that H ∼= GUn(q), and the
statements (a) and (b) follow.

(iv) The specialization v = −uβ , r = uα, s = 0 of Wn,m,2 at the beginning of (i) also
shows that H̃ := Hn,m

bis,arith,k embeds in C ′ × L for some cyclic scalar subgroup C ′ ≤ C2·gcd(p,3).

Recalling that Hn,m
bis,arith,k normalizes the standard subgroup H(∞) = (Hn,m

bis,geom)(∞) ∼= SUn(q)
of L = Sp2n(q) but preserves the equivalence class of each of the q + 1 irreducible Weil
representations of SUn(q), we obtain

GUn(q) ∼= H C H̃ ≤ NC′×L(SUn(q)) = C ′ ×GUn(q). (10.6.3)

In particular, the first statement in (c) follows if C ′ ≤ C2. Consider the case C ′ ≥ C3, whence
p = 3. In this case, (10.6.3) shows that

H̃/CH̃(H(∞)) ↪→ PGUn(q), (10.6.4)

and that CH̃(H(∞)) is contained in C ′ × Z(GUn(q)) which centralizes H̃, whence
CH̃(H(∞)) = Z(H̃). Arguing as in the proof of (10.2.5) and using Lemma 10.1, we also
have that |Z(H̃)| divides 2(q + 1). Together with (10.6.4), this implies that |H̃/H(∞)| divides
2(q + 1)2. On the other hand, by (10.6.3), H̃/H(∞) embeds in C ′ × Cq+1, an abelian group.
It follows that

H̃/H(∞) ≤ O3′(C
′ × Cq+1) = O2(C ′)× Cq+1 =

(
O2(C ′)×GUn(q)

)
/H(∞),

and so H̃ ≤ O2(C ′)×GUn(q), and the first statement in (c) is proved in full generality.
To determine Carith,Fq2 , we note that, since both n and m are odd, (5.12.2) shows that the

trace at u = 1 of Hn,mbis over Fq2 is

q2/Gauss(ψFq2 , χ2) = (−1)(q+1)/2q, (10.6.5)

since the Gauss sum Gauss(ψFq2 , χ2) is (−1)(q+1)/2q by Stickelberger’s formula (5.7.1). By (a),

the only trace of elements in H = Hn,m
bis,geom on Hn,mbis with absolute value q is (−1)n(−q) = q.

Assume that q ≡ 1(mod 4). As (10.6.5) gives trace −q, we must have that Carith,Fq2 =

C2. Thus [Hn,m
bis,arith,Fq2

: Hn,m
bis,geom] = 2, and so |Carith,k| = [Hn,m

bis,arith,k : Hn,m
bis,geom] is 2 if 2 -

deg(k/Fq2) and 1 if 2|deg(k/Fq2).
Next assume that q ≡ 3(mod 4) but Carith,Fq2 = C2, in particular,

[Hn,m
bis,arith,Fq2

: Hn,m
bis,geom] = 2.

It follows that the traces of any elements v with Fq2(v) of odd degree over Fq2 should be (−1)
times the traces of elements in H = Hn,m

geom. On the other hand, (10.6.5) gives trace at u = 1
to be q, a contradiction. Thus Carith,Fq2 = 1 when q ≡ 3(mod 4). Furthermore, Carith,k = 1

for any extension k/Fq2 , simply because Hn,m
bis,geom ≤ H

n,m
bis,arith,k ≤ H

n,m
bis,arith,Fq2

= Hn,m
bis,geom.

For (d), recall that gcd(B, q + 1) = 1, and thus Gn,mbis,geom B SUn(q) is a normal subgroup of
Hn,m
bis,geom = GUn(q) of index dividing B, which is prime to q + 1, so must itself be GUn(q).

Now, Gn,mbis,arith,k contains Gn,mbis,geom = GUn(q) and has index dividing B, which is odd, in
Hn,m
bis,arith,k = Carith,k ×GUn(q) with Carith,k ≤ C2. Hence Gn,mbis,arith,k = Hn,m

bis,arith,k.

Remark 10.7. It is striking that when gcd(m, q + 1) = 1, the local systems W n,m and
W n,m
bis have trace functions that differ “only” in which power of z has the parameter, yet the

first has geometric monodromy group SUn(q) while the second has geometric monodromy
group GUn(q).

As a word of caution, we also mention that the subgroup 〈j〉 × SUn(q) ≤ GUn(q) in
Theorem 10.2 is contained in a subgroup GUn(q) of Sp2n(q), which acts on a total Weil
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representation of Sp2n(q) via the character χ̃2ζn,q, where χ̃2 is the unique quadratic character
of GUn(q), cf. [14, Theorem 3.1]. In contrast, the subgroup GUn(q) in Theorem 10.6 is not
contained in Sp2n(q), and acts on a total Weil representation via the character ζn,q.
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