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Exponential sums and total Weil representations of finite
symplectic and unitary groups
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ABSTRACT

We construct explicit local systems on the affine line in characteristic p > 2, whose geometric
monodromy groups are the finite symplectic groups Sp,,, (¢) for all n > 2, and others whose
geometric monodromy groups are the special unitary groups SU,(g) for all odd n > 3, and ¢
any power of p, in their total Weil representations. One principal merit of these local systems is
that their associated trace functions are one-parameter families of exponential sums of a very
simple, i.e., easy to remember, form. We also exhibit hypergeometric sheaves on G,,, whose
geometric monodromy groups are the finite symplectic groups Sp,,, (¢) for any n > 2, and others
whose geometric monodromy groups are the finite general unitary groups GU,(q) for any odd
n > 3.
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1. Introduction

Throughout this paper, p is a prime and ¢ = p/ is a (strictly positive) power of p. We first
recall from §1] the underlined motivation for this work. The solution [22] (see also [21])
of Abhyankar’s Conjecture for the affine line in characteristic p > 0 tells us that any finite
group G which is generated by its Sylow p-subgroups occurs as a quotient of the geometric
fundamental group 71 (A!/F,) of the affine line A'/F, over F,. In a series of papers (see e.g.
[1]), Abhyankar has written down explicit equations which realize many finite groups of Lie
type as such quotients.

Suppose we are given such a finite group G (i.e., one which is generated by its Sylow
p-subgroups), together with a faithful representation p : G — GL,(C). Because G is finite,
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there is always some number field K such that the image of p lands in GL,(K). If we now
choose a prime number ¢ and an embedding of K into Q, we can view p as a representation
p: G — GL,(Qy). Since G is a quotient of 71 (A'/F,), we can compose

Wl(Al/E) — G — GL,(Q),

to get a continuous f-adic representation of w1 (A!/F,), i.e., an f-adic local system on Al/F,,
whose image is the finite group G.

There are a plethora of local systems on the affine line attached to families of exponential
sums. In the ideal world, we would be able, given the data (G, p) and any ¢ # p, to write
down a “simple to remember” family of exponential sums incarnating a local system which
gives (G, p). Needless to say, we are far from being in the ideal world.

In our previous paper [14], we worked in odd characteristic p and exhibited explicit local
systems on the affine line A'/F, whose geometric monodromy groups were the symplectic
groups Sp,,, (¢) for all even n > 2, or the special unitary groups SU,,(¢) for all odd n > 3, in
their total Weil representations. In this paper, we give new local systems which do this, and
which also handle the case of Sps,,(q) for n odd. Moreover, our results lead to hypergeometric
sheaves whose geometric monodromy groups are the symplectic groups Sp,,,(¢) for any n > 2,
and the general unitary groups GU,(q) for any odd n > 3.

This paper may also be viewed as a companion piece to [15], which determines which almost
quasisimple groups can possibly occur as monodromy groups of hypergeometric sheaves.
Grosso modo, the main results of [15], see Theorems 6.4 and 7.4 therein, show that if a
finite classical group G in characteristic r can be realized as the geometric monodromy group
of a hypergeometric sheaf H on G,, /E, then, aside from a small and explicit list of exceptions,
we necessarily have that » = p and that G is a general linear group GL,,(q), a general unitary
group GU,(q), or a symplectic group Sp,,,(¢) with ¢ a power of p, and moreover the resulting
representation of G is an irreducible Weil representation. The converse problem of showing
that such a finite classical group G acting in a Weil representation does indeed occur as the
geometric monodromy group of a hypergeometric sheaf H is the subject of the current paper
and its follow-up [16]. Known representation-theoretic results |15, Theorems 8.2, 8.4] as well
as the known local structure of the finite symplectic and unitary groups offer some hints
about, but do not specify, possible candidates for the hypergeometric sheaf H we are looking
for. The tasks of nailing down a suitable candidate and proving that it indeed realizes the
finite classical group in question are accomplished in these two papers.

All of the local systems on A! in this paper are those attached to one-parameter families of
exponential sums of the following simple shape. We fix a nontrivial additive character v of IF,,
and for each finite extension k/F,, we obtain the additive character ¢ of k by composition
with Tracey, p,. For fixed positive integers N > M with p ¥ NM, we look at the one-parameter
family of the shape

t € k— (1/Gaussg) Zz/)k(:cN + taM),
ek

with Gaussy a (correctly chosen) quadratic Gauss sum over k. The idea that such families
might, with suitable choices of N, M, give rise to total Weil representations of finite symplectic
or unitary group is already present, in special cases, in |14, Theorems 4.2 and 10.6], as well
as conjecturally in |12 Conjecture 9.2].

We first prove in §§2, 3 some general results about local systems of this (N, M) type. In
884, 5 we then specialize to the cases where

N=q¢"+1, M=¢"+1, n>m>0,

which, under suitable hypotheses, we show realize various total Weil representations. In
hindsight, our earlier paper [14] was devoted to the special case m = 1. Despite the apparent
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simplicity of these local systems, analysis of them depends heavily on their relation to
hypergeometric sheaves, and on a great deal of group theory and representation theory. In
866, 7 we prove several results about Weil representations of finite symplectic groups and
their extensions to overgroups, and restrictions to subgroups, of these symplectic groups.
These results then are used in §§8-10 to “go-up” from known one-parameter local systems
to multi-parameter local systems, and then to “go-down” to our target one-parameter local
systems. The idea behind “going up” and “going down” is based on the simple fact that if
we have a local system F on X and a map f:Y — X, the monodromy group of f*F on Y
is a subgroup of the monodromy group of F on X. For example, we might have two local
systems F; and F, on A', and a local system G on A2, about which we know that for the
first inclusion iy : A — A2, z — (z,0), we have i1G = F; and that for the second inclusion
ig: Al — A%y — (0,y) we have i35G = F,. In this picture, we “go up*“ from the monodromy
group of F; to the monodromy group of G, and we “go down” from the monodromy group of
G to that of Fs.

This technology of “going up” and “going down” also turns out to be a crucial ingredient in
our paper [16|, which treats a very different kind of local system. A major difference between
the local systems considered in this paper and those in [16] is that the local monodromy at
0 of the sheaves in this paper uses a cyclic maximal torus of the finite classical group G in
question and the resulting trace functions are one-variable exponential sums, whereas in [16]
the local monodromy at 0 utilizes a maximal torus which is a product of two sub-tori and the
sheaves have trace functions which are two-variable exponential sums.

Our main results for finite symplectic groups Sp,,,(¢) are Theorems and In
Theorem we show that certain local systems on A! /F,, have as their geometric monodromy
groups the image of Sp,,(¢) in its total Weil representation of degree ¢" and whose trace
functions are easy to remember one-parameter families of exponential sums. In Theorem [9.3]
and Theorem we show that certain hypergeometric sheaves on G,,/F, have geometric
monodromy groups which are the images of Sp,,,(¢) in its irreducible Weil representations
of degree (¢"™ +1)/2. The structure of the arithmetic monodromy groups is also determined
completely. We obtain similar results for the finite unitary groups, see Theorems [10.2H10.6

To make the paper more accessible, we recall some group-theoretic definitions that will
be used throughout. For a finite group G and a prime p, O,(G) denotes the largest normal
subgroup of p-power order of G, O,/ (G) denotes the largest normal subgroup of order coprime
to p, OPI(G) denotes the normal subgroup of G generated by all Sylow p-subgroups of G,
Z(G) denotes the center of G, and G(°) denotes the last term of the derived series of G. A
finite group G is quasisimple if G = [G, G| and if G/Z(G) is simple; it is almost quasisimple
if S <1G/Z(G) < Aut(S) for some finite non-abelian simple group S.

We also recall some basic algebro-geometric notions. A connected scheme X has (once
chosen a base point 77) a profinite étale fundamental group 71(X,7), which up to inner
automorphism is independent of the auxiliary choice of base point. Given a topological ring R,
a rank n R-local system F on X, also called a lisse R-sheaf of rank n on X, is just a continuous
homomorphism pr : m1(X,7) — GL,,(R). When X is a connected scheme over a finite field k
such that X ® k is connected, we refer to 7;(X) as the arithmetic fundamental group of X,
and we refer to 71 (X ® k) as its geometric fundamental group. For brevity, we denote these
groups w1t (X)) and $°°™(X). In this situation, for each finite extension field K/k, and
each point z € X (K), the group 73" (X) contains a well-defined Frobenius conjugacy class
Frob, k. [When X/Fk is of finite type, these Frobenius conjugacy classes are dense; this is the
Chebotarev density theorem.] Given a rank n R-local system F on X, with corresponding
representation pr, the trace function of F is the rule which attaches to each pair (K, x) with
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K /k a finite field extension and x € X (K) the trace of Frobenius, i.e.,
Trace(Froby, k| F) := Trace(pr(Frob, )).

It is often useful to think of this trace function as providing, for each finite field extension
K /k, the R-valued function on the set X (K) given by

x € X(K) — Trace(Froby k|F).

A local system F on X is said to be geometrically irreducible, respectively arithmetically
irreducible, if it is irreducible as a representation of 7§°°™(X), respectively of 7rith(X).
Similarly, F is said to be geometrically semisimple, respectively arithmetically semisimple, if
it is completely reducible as a representation of 7§°*™(X), respectively of " ith(X).

In this paper, we are typically concerned with the case when X/k is either A'/F, or G,,,/F,,
with F, a finite extension of IF,, the ring R is the field Qg for some prime £ # p, and F is a
local system whose trace function is given by a simple (in the sense of simple to remember)
explicit formula involving exponential sums. Our particular interest is in local systems F for
which the images under pr of 73" (X) and 7{°°™(X) are finite groups, which we call the
arithmetic monodromy group, respectively, geometric monodromy group, of 7. When F is a
hypergeometric sheaf on G,,/F,, we frequently work with its local monodromy groups at 0
and oo: its inertia subgroup I(0) with its wild inertia subgroup P(0), and its inertia subgroup

I(c0) with its wild inertia subgroup P(c0).

2. A miscellany on moments, irreducibility, and van der Geer—van der Vlugt

Let us recall the basic mechanism.
Let p be a prime, k/IF;, a finite extension, U/k smooth, and geometrically connected variety
of dimension dim(U) > 0, ¢ a prime ¢ # p, and F a lisse Q; sheaf on U which is ¢-pure of

weight zero for a given embedding ¢ : Q; — C. By purity, one knows |4, 3.4.1(iii)] that F is
geometrically semisimple, say on Uy := U ® k we have

F = Pnigi,
i
with lisse G; on Uy which are geometrically irreducible and pairwise non-isomorphic.

PROPOSITION 2.1. One has

Z(m)zz lim sup (1/#E)4m®) Z |Trace(EFrob, g|F)|*.

P finite extensions E/k veU(E)

Proof. We have
> (ni)? = dim Endy, (F) = dimHZ ™ (U7, End(F)(dim(U))).

This cohomology group is pure of weight zero, say with Frobeniusy, eigenvalues o, j = 1,...,d,
each unitary, for d the dimension of this H? dim(U) By the Lefschetz trace formula, for each
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finite extension E/k, we have
Trace(Frobg|H? ™) (U, End(F)(dim(U)))
+ > (=1)'Trace(Frobg|H(Us, End(F)(dim(U)))
i<2dim(U)
= Y Trace(Frob, g|End(F))/(#E)"™).
z€eU(E)
The H} traces for i < 2dim(U) are O(1/v/#E) (because the coefficients are pure of weight
—2dim(U), so each H' is mixed of weight < i — 2dim(U) < —1), while the H A race is

deg(E/k
Z(aj) eg(E/k)
J
As the oy are each unitary, the H? dim®) trace is always < d in absolute value, but comes
arbitrarily close to d for some infinite sequence of E/k with suitably chosen degrees. The
lower H! traces do not affect the limsup, as they tend to 0 as the degree grows. ]

We will refer to the quantity >_.(n;)? in Proposition above as the second moment
My (F).

Given a nontrivial additive character i of IF,, for any finite extension E of F,, we denote
by ¥ g the character

t = ¢(Trgyp, (1)) (2.1.1)

of E. Similarly, given a nontrivial multiplicative character x of k* for a finite extension k of
F, and a finite extension E of k, we will denote by xg the character

t = x(Ng/(t)) (2.1.2)

of E*. For such nontrivial y, we adopt the convention that
XE (0) =0.

In the special case where p > 2 and x := x2, the quadratic character of £*, then xg becomes
the quadratic character of E*, and so we will use x2 to denote the quadratic character of E*
(when the choice of F is unambiguous).

The following elementary lemma in representation theory will be useful in this section.

LEMMA 2.2. Let G be a group, I a field, and H < G a normal subgroup. Let V be a finite
dimensional FG-module. Suppose that the H-module V|y is semisimple: V|y = &i_ W,
where the simple summands W; are pairwise non-isomorphic, and moreover, each W; is
extendible to a G-module V;. Then V is semisimple as an FG-module.

Proof. For each ¢ and each g € G, g(W;) is a simple summand of V|y. Since V;|g = W;
this G-conjugate g(W;) of W; is isomorphic to W;. By hypothesis, the W;’s are pairwise
non-isomorphic, hence g(W;) = W;. Thus each subspace W; of V is G-stable, and hence an
irreducible G-submodule. It follows that the G-module V is semisimple. ]

LEMMA 2.3. Given strictly positive integers A # B which are both prime to p, a finite
extension k/Fpﬁ nontrivial additive character ¢ of k, invertible scalars a,b € k™, and an
element Gy, in Qp with absolute value \/#k, consider any lisse Qg-sheaf F on G,,/k whose
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trace function is given by

-1
t (S EX/]C — W Z¢E(G$A +bt1‘B)

zeE

Then we have the following results.
(i) We have

M5 (F) = ged(A, B).

(ii) Let us denote by D := gcd(A, B). Over the extension field k(up), for each multiplicative
character x of order dividing D we have the lisse sheaf F, whose trace function is given

by
-1
x A/D B/D
te E*/k(up) — (Gr) T B0 ;;/;E(az + btz ) xp ().
Then geometrically we have
F= P F.
x€Char(D)

each F,, is geometrically irreducible, and the various F, are pairwise not geometrically
isomorphic.
(iii) F is arithmetically semisimple.

In fact, this is a special case of the following slightly more general statement. Recall that
a one-variable polynomial f(x) over an Fj-algebra is said to be Artin-Schreier reduced if it
is the zero polynomial, or if it has no constant term, and if any monomial appearing with a
nonzero coefficient has degree prime to p. Given an Artin-Schreier reduced polynomial f(x),
we denote by

ngdeg (f)

the greatest common divisor of the degrees of the monomials appearing in f.

PROPOSITION 2.4. Given strictly positive integers A # B which are both prime to p,
a finite extension k/F,, a nontrivial additive character v of k, an Artin-Schreier reduced
polynomial f(z) € k[x] of degree A, and an element Gy in Q, with absolute value /#k,
consider any lisse Qq-sheaf F on G,,/k whose trace function is given by

-1
te E*/kw— W Z¢E(f($) thxB)'
zeE

Then we have the following results.
(i) We have

M (F) = ged(gedgeg(f), B)-

(i) Let us denote by D := ged(gedgeg(f), B). Then f(x) is of the form g(xz) for a unique
polynomial g(x) € k[z]. Over the extension field k(up), for each multiplicative character
x of order dividing D we have the lisse sheaf F, whose trace function is is given by

te E*/k(up) — (Gk);ﬁ Z Ve (9(x) + th/D)XE(x).

zel

F= P F,

x€Char(D)

Then geometrically we have
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each F, is geometrically irreducible, and the various F, are pairwise not geometrically
isomorphic. The rank of Fy is Max(A/D, B/D) — 1, the rank of each F,, with x # 1 is
Max(A/D, B/ D).

(iii) F is arithmetically semisimple.

REMARK 2.5. When A > B, the sheaves F and F, are all lisse on A!, not “just” on G,
and this fact would slightly simplify the proof in this case.

Proof. We first calculate

(1/#E) Y _ |Trace(Frobe g| F)|*

tek

for a single E/k, large enough to contain the B* roots of unity. It is

(1I/#E)? Y ve(f@) - f) + = —y?)

tEEXJgGE
= (/#E)* > vu(f F@) Y vetE® —yP)).
r,yelE teEX

We now rewrite the sum so that the sum over ¢ is over all ¢t € E. It becomes
—(1/#E) > vu(f@) = f@)+ (1/#E) > vu(f )Y vet® —yP)).
r,yck z,yelE teE
We claim that the first term
—(1/#E)* Y vu(f(z) - f)
z,yekE
is O(1/#E). Indeed, it is minus the square absolute value of
(1L/#E) Y vu(f(x))
zeFE

which is O(1/v/#FE) (because f has degree prime to p).
So it is only the second term which affects the limsup. That term is

(/#E) > vs(f@)— f@).
r,yeE, xB=yB

The domain of summation is the union of the lines y = (z, one for each ¢ € up. They all
intersect in x =y = 0, but otherwise are pairwise disjoint. So up to an error of at most
B/#E, this sum is

> (U/#E) Y dp(f(x) - f(Ca).

Ceup el
Because f is Artin-Schreier reduced, so also is f(z) — f(¢x). If f(x) — f({x) is nonzero, then
its degree is prime to p, and by Weil the sum

(1/#E) Y ¢u(f(x) - f(¢x)

el
has absolute value O(1/#E). If f(xz)— f(¢x) =0, then this sum is 1. Thus up to an
O(1/\/#F) error, the sum is the number of ¢ € pup for which f(z) = f({z), an equality
which holds precisely for ¢ a root of unity of order dividing gcddcg( f). This proves the first
assertion.
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Once we have (i), we write the trace function of F as

te Bk (—1/(Gp) e F/R) N "y (g(aP) + tzPB/P)).
zeR

If E contains pip, this is the sum over x € Char(D) of the functions

tc Bk (—1/(Gk)dcg(E/k)) Z Ve (9(x) +t1;B/D)XE(x),
zeE

each of which is the trace function of a lisse F, which is pure of weight zero and lisse
of rank A/D = deg(g) for x =1, and of rank deg(g) — 1. [Notice that deg(g) > 2, because
Max(A, B)/D > Min(A, B)/D > 1, so each F, is nonzero.| Once we have F having second
moment D expressed geometrically as the sum of D nonzero summands, each summand must
be irreducible (otherwise we get even more summands) and the D summands must be pairwise
non-isomorphic (for if Y, n; = D and Y _,(n;)* = D, then each n; = 1).

To prove the arithmetic semisimplicity, it is enough to prove it after extension of scalars
from k to k(up), for this replaces Gayitn by a normal subgroup of itself of index dividing the
degree of k(p)/k. Then the arithmetic semisimplicity is immediate from Lemma applied
to the normal subgroup Ggeom <! Garith and the representation given by F. ]

Here is a slight generalization of this last result, where we allow a multiplicative character
to “decorate” the sum in question. The proof, a straightforward rewriting of the proof of
Proposition is left to the reader.

PROPOSITION 2.6. Given strictly positive integers A # B which are both prime to p,
a finite extension k/F,, a nontrivial additive character v of k, an Artin-Schreier reduced
polynomial f(x) € k[z] of degree A, a nontrivial multiplicative character p of k*, and an

element Gy, in Q; with absolute value \/#k, consider any lisse Q-sheaf F on G,,/k whose
trace function is given by

-1
el

(Gk)

Then we have the following results.
(i) We have

MQ(*F) = ng(ngdeg(f)7 B)

(i) Let us denote by D := ged(gedgeg(f), B). Then f(x) is of the form g(xz) for a unique
polynomial g(x) € k[z]. Extend scalars so that k contains pup and so that p is a D'}
power, say p = o . For each multiplicative character x of order dividing D we have the
lisse sheaf F, whose trace function is is given by

-1
te Ex/k — W Z 11)E (g(ﬂf) + th/D)XE(Z')O'E(.I‘)
zEE
Then geometrically we have
F= P F.
x€Char(D)

each F, is geometrically irreducible, and the various F, are pairwise not geometrically
isomorphic.
(iil) F is arithmetically semisimple.
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We will also frequently use the following higher-dimensional analogue of the previous result:

COROLLARY 2.7. Given r + 1 > 3 pairwise distinct integers A, By, ..., B, with
A>0, By >By>...> B, >1,

which are each prime to p, a finite extension k/F,, a nontrivial additive character i of k,
an Artin-Schreier reduced polynomial f(x) € k[x] of degree A, a nontrivial multiplicative

character p of k*, and an element Gy in Q, with absolute value /#k, consider any lisse
Qg-sheaf F on (G,,)"/k whose trace function is given by

. -1 ,
(t1, ... tr) € (E7) [k — (D Z ¥ (f(x) + ZfiCCBZ)PE(x)-
rel %
Then we have the following results.
(i) We have

MQ(]:) = ng(ngdeg(f>7 Bi,...,B;).

(i) Let us denote by D := ged(gedgey(f), Ba,- - ., Br). Then f(x) is of the form g(zP) for a
unique polynomial g(z) € k[z]. Extend scalars so that k contains pp and so that p is a
D™ power, say p = 0. For each multiplicative character x of order dividing D we have
the lisse sheaf F,, whose trace function is is given by

(tla ce. 7tr) € (EX)T/k = (ka;% Z 1/)E(g(1') +Ztil’B/D)XE(CE)O'E((£).

el

Then geometrically we have

F= P F.,

x€Char(D)

each F, is geometrically irreducible, and the various F, are pairwise not geometrically
isomorphic.
(iii) F is arithmetically semisimple.

Proof. It is clear that the trace function of F is the sum of the trace functions of the F,.
So it suffices to show that each F, is geometrically irreducible, and that they are pairwise
not geometrically isomorphic.

Freeze t; for ¢ > 2 by setting ¢; = a, for any chosen a; € F,, for which

a; + the coefficient of %7 in f(z) # 0.

[By such a choice of the a;, the monomials that appear in f(z) + >, t;27 will be exactly those
that appear in f(z) + t;2P + Y oiso a;xB.] By the previous result applied to this one variable
(t1) family, the pullbacks of the _]:X to G, by t1 — (t1,a9,...,a,) are each geometrically
irreducible and pairwise not geometrically isomorphic. So a fortiori the same is true of the F,
themselves. [We use r > 2 in this argument to be sure we may apply this pullback argument
in the case A =0, in which case f(z), being Artin-Schreier reduced, is the zero polynomial,
and our family has trace function

by s ty) € (BX) [ o> (~1/(G) 5 E0) 3 (3 125 p(a).
zel %
As before, the arithmetic semisimplicity results from Lemma [2.2] ]
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To end this section, let us recall the wonderful insight of van der Geer and van der Vlugt.
When p > 2, we fix a choice Gaussy, of quadratic Gauss sum over [F,,. When p = 2, we use the
convention Gaussy, = /2. More generally, for a finite extension k of F,,, an additive character
a of k and a multiplicative character 8 of k*, recall that the Gauss sum Gauss(a, ) is

> a(@)Bx) (2.7.1)
ek

(hence, when p > 2, Gaussg, is Gauss(¢)’, x2) for some nontrivial additive character ¢’ of IF,,).

THEOREM 2.8. Let p be a prime, q a power of p, E/F,, a finite extension, and f(z) € E[z]
a polynomial of the form

F) =3 et
=0

with n > 0 and a, # 0.
(i) Consider the sum

-1
(—Gauss, )dee(E/F;) > ve(f(@).

zel

Sy =

If p is odd, and E contains F, then |S¢|? is a power q" of q, with 0 <r <n. If p =2,
the value 0 may also occur (as it does, for example, in the n = 0 case). If E C Fy, then
|S¢|? is a power of #E. If p= 2, the value 0 may also occur.

(ii) Suppose p is odd, and denote by K = Q(+/(—1)®—1/2p) the unique quadratic subfield
of the p'" cyclotomic field Q((,). Consider the polynomial

o) = Y aate
=0

and the two sums
1 _
i = (—Gaussg,, )de8(E/Fp) Z v (f(z)),

el

S; = - > vs(f@)xa(e).

(—Gaussﬁp)deg(E/Fp) =

Both these sums lie in K. Moreover, if q is a square, and E contains Iy, then both these
sums lie in Q.

Proof. The first statement is van der Geer and van der Vlugt |25, Proposition 3.1 and
§13]. For the second statement, we argue as follows. The Gauss sum itself lies in K, so it

suffices to look at the sums without the Gauss sum factor. For A\? a square in FX, and any

p b
power @ of p, we have ()\2)(Q+1)/2 = \@*1 = )2, So the substitution = + A2z leaves the sum

invariant. When ¢ is a square, and E is an extension of [y, the Gauss sum factor lies in Q,
and again it suffices to look at the sums without the Gauss sum factor. Then every A € F;
becomes a square 72 with 7 € F,. Then we have (7))@ +1/2 = 7a'+1 = 72 50 the substitution
x + 722 = Az leaves the sum invariant. |
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THEOREM 2.9. Let p be a prime and n € Z>1. Let F be any lisse sheaf on (G, x A™)/F,,

with coordinates (ry,ryn—1,...,79) whose trace function at a point
(PmyTn—1,---,70) € E* X E™,
for E/F), a finite extension, is
1 n—1 )
— 1+p™ PRES S
(Pry T—1y---,70) — (—Gauser, ) 2(E/E,) ZwE(rnm +Zr1x )
Fp z€EE i=0

Then F is arithmetically semisimple, and both its geometric and arithmetic monodromy
groups Ggeom and Gaign are finite.

Proof. Once we know that F is arithmetically semisimple, the finiteness is proved as
follows. We have Ggeom < Garith, S0 it suflices to prove the finiteness of Garicn. The group
Glarith is a subgroup of index dividing 2 in the Gy of the pullback to Fp2. For this pullback,
each trace lies in Q((,), and by Theorem has square absolute value either 0 or a power of
p. By [13| Lemma 5.1], this forces each trace to lie in Z[(,]. Because F is pure of weight zero,
the fact that its traces are algebraic integers forces its Ga,itn to be finite, cf. [11, Proposition
2.1 and Remark 2.2].

We now explain why F is arithmetically semisimple. The key point, as we will see below, is
that by Chebotarev, two lisse sheaves with the same trace function have isomorphic arithmetic
semisimplifications.

Suppose first that p = 2. Then we will show that F is geometrically, and hence arithmeti-
cally, irreducible. Indeed, after pullback to the line (1,0,...,0,72), the trace function of the
pullback of F becomes (remember p = 2)

-1

14p"
et (—Gaussy, )des(E/Fp) ZE¢E(x + roz),
P e

which is the trace function of the geometrically (and hence arithmetically) irreducible Fourier
transform sheaf [19| Definition 1.2.1.1 and Corollary 1.3.2.4]

FTy (Ew(mlﬂﬂ‘)) ® (—Gaussr, )~ deg(/Fp)

Hence by Chebotarev our pullback is itself arithmetically irreducible. Therefore F is all the
more arithmetically irreducible.

Suppose now that p is odd. Then the arithmetic semisimplicity is just the D = 2 case of
Lemma O

3. (A, B) generalities

In this section, we consider the following situation. We are given a prime p, a (strictly
positive) power ¢ = pf of p, and two relatively prime, strictly positive integers A, B, both
of which are prime to p. We also fix a prime £ # p so as to be able to use QQg-cohomology,
and an embedding of Q** = Q(all roots of unity) into Q,. We also fix a nontrivial additive
character v of IF,, which, unless explicitly specified otherwise, is the additive character we will
use throughout.

We first recall the notion of Kummer and Artin-Schreier sheaves. The Artin-Schreier sheaf
Ly is the lisse rank one sheaf on A!/F, whose trace function at a point ¢ € E, for E a finite
extension of F,, is

Trace(Froby, g|Ly) == VE(t),
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with g as defined in (2.1.1)). For any scheme X /F,, and any function f on X, we view f as a
morphism to A', and define Lyp) := [*Ly as a lisse sheaf on X. For E/IF, a finite extension
and x € X(FE), we have

Trace(Frobe g|Lyy)) := YE(f(z)).

For a multiplicative character x of a finite extension k of F,, the Kummer sheaf L, on
G /k is the lisse sheaf of rank one whose trace function at a point ¢t € E*, for E a finite
extension of k, is

Trace(Froby g|Ly) == Xg(t),
with xg as defined in (2.1.2). By abuse of notation, for x nontrivial we also let £, denote
the sheaf ji£, on A'/k with the inclusion j : G,,, — A! and with trace 0 at time 0. For any

scheme X /k and any invertible function f on X, we view f as a morphism to G,,, and define
L) = f*Ly as a lisse sheaf on X. For E/k a finite extension and x € X (£), we have

Trace(Froby g|Ly(s)) == xe(f(z)).

For given multiplicative characters X1, .., Xn,P1,---,Pm of k>, let

Hypy (X15- -, Xni P15+ -+ Pm)
be the hypergeometric sheaf Hx (!, 95 X1, .-, Xn; P1s- -+ Pm) 00 G, /K of [8 Corollary 8.4.6.2)
with A = 1.
For a multiplicative character x of a finite extension k of I,,, we denote

Char(A4, x) := {€ | €* = x} and Char(A) := Char(4,1).

If x has order D, the individual characters in Char(A, x) have order dividing AD, and may
only be definable over some finite extension K/k with #K — 1 divisible by AD. But as we
will see and use later, the entire set Char(A, x) is k-rational.

We first define
Homaii, A,B := Hypy(Char(A) ~ {1}; Char(B) \ {1}),

of type (A — 1, B — 1) and rank max(A, B) — 1. It is pure of weight A + B — 3 by [8], Theorem
8.4.2(4)]. For each character x with x“ # 1, we define

Hbig,A,B,x = Hypy(Char(A); Char(B,X)),
of rank max(A, B). The hypothesis that x“ # 1 insures that the two sets Char(A4) and
Char(B, x) are disjoint, for if p were in both, then p® = x, hence pAZ = x4. But also p* = 1,
so pAB =1, a contradiction. Thus Hpig 4.5,y is of type (A, B) and rank max(A, B). It is pure
of weight A + B — 1, again by |8, Theorem 8.4.2(4)].
Similarly, for each character y with x? # 1, we define

’H,gig’A,X’B = Hypy (Char(A4, x); Char(B)).

The hypothesis that xZ # 1 insures that the two sets Char(4,x) and Char(B) are disjoint
(same argument as above). Thus Hlﬁ)ig A 18 of type (A4, B) and rank max(A, B). It is pure of
weight A+ B — 1 by [8 Theorem 8.4.2(4)]. The sheaves Hsmai1, 4B, Hbig,A,B,y, and ’Hgig’A’X’B
are defined over a large enough finite extension k of I, so that all the involved characters are

characters of k*.
Because ged(A, B) = 1, at least one of A, B is odd.

LEMMA 3.1. If A— B > 2, then the sheaves Homaii, a5 and Hpig 4 B, for any x with
x4 #1 each have geometric determinant Lngl, with the understanding that xo is the
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quadratic character if p is odd, and is 1 if p = 2. If B — A > 2, then Hsmai1, A, has geometric
determinant £X2B—17 and Hpig,A,B, has geometric determinant EXXzB—l.

Proof. Tmmediate from |8 Theorem 8.12.2]. O

LEMMA 3.2. If A— B > 2, the sheaf Hgig,A,x,B for any x with xP® # 1 has geomet-
ric determinant ,CXIZA—IX. If B—-A>2, Hgiy,A,x,B for any x with x® # 1 has geometric
determinant EXQB—I.

Proof. Immediate from [8, Theorem 8.12.2]. O

REMARK 3.3. In the following sections, we will deal systematically with descents of
hypergeometric sheaves. Here is one way to think of them. View a given hypergeometric
sheaf H as living on G, /IFT), and giving an irreducible Qg-representation V' of the geometric
fundamental group 7¥°°™ := m1(G,,/F,). Given a finite field k/F,, a descent Ho of H may
be seen as an irreducible Qy-representation V{ of the arithmetic fundamental group W%rith =
71(G,,, /k) whose restriction to the normal subgroup 7™ < 7##h is V. If such a descent
Vo to G,,/k exists, any other such descent is of the form Vj ® p for some one-dimensional
representation p of the quotient group m§™th /7™ = Gal(F,/k). This indeterminacy will
appear later as a clearing factor when we force our descents to be pure of weight zero.

The arguments of [14} §§7,8] give the following lemmas.

LEMMA 3.4. Suppose A and B are strictly positive integers, both prime to p, with
ged(A, B) = 1. Then Hsmau, A, B is geometrically isomorphic to the lisse sheaf

Hsmall,A,B,descent

on G,,/F, whose trace function is as follows: for E/F, a finite extension, and u € E*, the
trace at time u is given by

ue B — — Z YE(Ax — By).

z,yEB A =uyB
For any finite extension E = F, of F, and any multiplicative character x of E* of order
say D, the field
Fp(x) :=Fp(up)

is a subfield of E.

LEMMA 3.5. Suppose A and B are strictly positive integers, both prime to p, with
gcd(A, B) = 1. Suppose x* # 1. Then Hpig,a,B,y 1s geometrically isomorphic to the lisse
sheaf

Hbig,A,B,x,descent
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on G, /F,(x) whose trace function is as follows: for E/IF,(x) a finite extension, and u € E*,
the trace at time u is given by

ue EX — — > Ye(Ar — By)xe(y)-

z,y€E,xA=uyB

LEMMA 3.6. Suppose A and B are strictly positive integers, both prime to p, with
ged(A, B) = 1. Suppose xP # 1. Then HgigAX p Is geometrically isomorphic to the lisse
sheaf

241

big,A,x,B,descent

on G, /F,(x) whose trace function is as follows: for E/IF,(x) a finite extension, and u € E*,
the trace at time u is given by

ue EX — — > Yr(Ar — By)xe(v).

z,y€E,xA=uyB

We have the following rationality results.

LEMMA 3.7. Suppose A= B(mod (p — 1)). Then we have the following results.
(1) Hsmall, A, B,descent has all its traces in Q.
(i) Given a character x with x* # 1, for D the order of x define E\ = F,(jup(,—1). Then
pulled back to G,/ Ey,, Hyig, A, B,x,descent has all its traces in Q(x) := Q(the values of x).
(iii) Given a character x with x® # 1, for D the order of x define Ey := Fy(up(p—1)). Then
pulled back to G,,,/E,, Hgig,A%B’descmt has all its traces in Q(x).

Proof. From the explicit formulas, we see that the traces lie in Q((,) and in
Q(p, x) respectively. So it suffces to show the traces are fixed by Gal(Q((,)/Q) and by
Gal(Q(¢p, x)/Q(x)) respectively. For any A € F), the domain of summation, = uy® is
mapped to itself by the automorphism (z,y) — (Az, A\y), precisely because (p — 1)|(4 — B).
Making this substitution shows that each trace of Hgmair,a,B descent is fixed by IF; ~
Gal(Q(¢p)/Q). To prove (ii) and (iii), the key point is that over extensions of E,, the restriction
of x to the subgroup F’ of E is trivial. So the same substitution shows that each trace of
Hbig,A,B,x,descent on GWL/EX is fixed by IF;; = Gal(Q(va X)/Q(X)) 0

LEMMA 3.8.  Suppose p is odd. Denote by K the unique subfield of Q(¢,) which is quadratic
over Q. [Thus K is Q(Gaussg, ), with Gaussy, either choice of quadratic Gauss sum over [,.]
Suppose A and B are strictly positive integers, both prime to p, with gcd(A, B) = 1. Suppose
further that we have the congruence

2A =2B (mod (p — 1)),
or that we have the congruence
(¢+1)A=(¢+1)B (mod (p — 1)),

§
Then all three of the sheaves Hgmall, A, B,descent, Hoig, A, B xs,descent ald ’}-[bigywaz)’Bydescem have
all their traces in K.

A

Proof.  For any A € F), we have A2 = \9*1 So the domain of summation, 24 = uy®? is

mapped to itself by the automorphism (z,y) + (\2x, A\2y) = (A9F1x, N71y), either because
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2A =2B (mod (p — 1)) or because (¢+ 1)A = (¢+ 1)B (mod (p — 1)). Making this substi-
tution shows that each trace is fixed by the subgroup of squares in F) = Gal(Q(()/Q).
|

We now use the fact that ged(A, B) =1 to find integers a, 8 with

aA— (B =1.

A = uyB, write u = u**~PB. Then this equation becomes

(z/u)* = (y/u”)"
Again because ged(A, B) = 1, there exists a unique z € E such that
B = A

In the indexing set equation, =

z/u® =28 y/u

Making use of these substitutions, we obtain the following.

LEMMA 3.9. Suppose A and B are strictly positive integers, both prime to p, with
ged(A, B) = 1. Then we have the following results.
(1) Hsmall, A, B descent 1S iSomorphic to the lisse sheaf on G,,/F, whose trace function is as
follows: for E/F, a finite extension, and u € E*, the trace at time u is given by

u€ EX — — Z Vp(Au®zB — BuP2?t).
z€E
(i) Hpig,A,B,x,descent 1S isomorphic to the lisse sheaf on G, /Fy,(x) whose trace function is as
follows: for E/F,(x) a finite extension, and v € E*, the trace at time u is given by

u€ EX — — Z Vp(Au®zB — BuP ) xp(uP21).
z€E

(iii) ng‘g,A,X,B,descem is isomorphic to the lisse sheaf on G, /F,(x) whose trace function is as
follows: for E/F,(x) a finite extension, and v € E*, the trace at time u is given by

u € E* H—ZwE(AuazB—Bu Mxewz?).
zER

We now consider the Kummer pullbacks by [A], u +— u?, and by [B], u +— u®.

COROLLARY 3.10. Suppose A and B are strictly positive integers, both prime to p, with
ged(A, B) =1, and with x a character with x* # 1 and with p a character with pP # 1.
Then we have the following results.

(i) The Kummer pullback [A]*Hsmaii, A, B,descent 1S iSomorphic to the lisse sheaf on G, /F,
whose trace function is as follows: for E/F, a finite extension, and u € E*, the trace at
time w is given by

ueE* — — Z Yp(Auz® — B24),
z€E

by the substitution z +— z/u®.

The Kummer pullback [B*Hsmali, A, B,descent 1S iSomorphic to the lisse sheaf on G, /F,
whose trace function is as follows: for E/F, a finite extension, and v € E*, the trace at
time u is given by

u€EX — — Z VYp(AzB — Bu1z4),
zeE
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by the substitution z — z/u®.

(ii) The Kummer pullback [A]*Hpig,A,B,y,descent 1 isomorphic to the lisse sheaf on
Gum/Fp(x?) whose trace function is as follows: for E/F,(x*) a finite extension, and
u € E*, the trace at time u is given by

ue B — — Z Ve(Auz? — B2 x4 (2),
z€E
using the substitution z + z/u”.
The Kummer pullback [B]*Hpig, A, B,y,descent 1S isomorphic to the lisse sheaf on G, /Fp(x)
whose trace function is as follows: for E/F,(x) a finite extension, and u € E*, the trace
at time w is given by

ueEX — — Z V(A28 — Bul 2 xp(utz4),
zeE

using the substitution z — z/u®.

(i) The Kummer pullback [A]*Hgig’A’p’B’descem is isomorphic to the lisse sheaf on G,, /IF,(p)
whose trace function is as follows: for E/F,(p) a finite extension, and v € E*, the trace

at time u is given by

u€ EX — — Z VYp(Auz® — Bz pp(uz?).
z€E

The Kummer pullback [B]*Hgig)A,p)Bdescem is isomorphic to the lisse sheaf on
G /Fp(pP) whose trace function is as follows: for E/F,(pP) a finite extension, and
u € B the trace at time u is given by

ueE* — — Z VYE(AZB — Bu='2%)pE(2),
z€E

using the substitution z — z/u®.

LEMMA 3.11. Suppose A and B are strictly positive integers, both prime to p, with
ged(A, B) = 1. Define K := Q(Gaussr, ). Suppose further that A > B and that

2A=2B =2 (mod (p — 1)),

or that
(g+1)A=(¢+1)B=2 (mod (p—1)).

Then we have the following results.
(1) The lisse sheaf [A]*Hsmaii, A, B,descent 01 Gy, /I, has all traces in K.
(ii) Given x with x* # 1, and D the order of x*, define F, . := Fp(ttp(p—1)/2). Then the
lisse sheaf [A]*Hyig, A, B x,descent 01 Gy /Ty 4 has all traces in K.
(iii) Given p with p? # 1, and D the order of p®, define ¥,z := Fy(1up(p—1y/2). Then the lisse
sheaf [B]*Hgig,A,x,B,descent on G, /F,5 has all traces in K.

Proof.  The key point is that under the first hypothesis, for A € F7, we have (M)A =224 =
A2, similarly (A2)Z = A2, Under the second hypothesis, (\2)4 = (A\?1)4 = )2, similarly
(A2)B = A2, To prove (i), for each A € ]Fi, simply make the substitution z — A\2z; this does
not change the sum, but both z4 and 2P are multiplied by A2. For (ii) and (iii), use the
same substitution, remembering that x(A\?) = 1 over extensions of F, 4 and p?(A\?) = 1 over

extensions of 5. ]
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Given a fixed nontrivial additive character i of ), for any a € F, let

Yq 1t € Fp — ¢(at), more generally, ¢, g : u € E v+ ¢Yg(au) (3.11.1)

for any finite extension F of F,,.

ProrosITION 3.12. Suppose A and B are strictly positive integers, both prime to p, with
ged(A, B) = 1. Suppose further that A — B > 2 and that A is odd. Then we have the following
results.

(i) Suppose p is odd. Then for any nontrivial additive character i’ of F,, the lisse sheaf
Hsmall A.B.descent @ (—Gauss(¥, x2))~ 9% on G /F, is pure of weight zero and has
arithmetic determinant ((Xg(fl))(A’l)/z)deg.

(ii) Suppose p = 2. Then the lisse sheaf Homail, A, B descent & (—v2)~ 98 on G,, /Iy is pure of
weight zero and has arithmetically trivial determinant.

(ili) Suppose p is odd. Define e(A) := (—1)(A4=1/2 and consider the character ¥_.ayap of
F, as defined in ([3.11.1)). Then the lisse sheaf

Hbig, A, B xa,descent @ (—GaLISS((/J_E(A)AB; X2))” e

on G, /F, has arithmetically trivial determinant.

Proof. The explicit formulas of Lemma makes clear that Hgmau,a,p and
Hbig,A,B,xa,descent are pure of weight one, and thus their twists in the two cases puts us
in weight zero. We first prove (i) and (ii). To save having to write “by (—Gauss(v)’, x2))~ 48
or by (—v/2)79°8” in the rest of the proof, let us adopt the convention that

Gauss(¢', x2) == +/p for p=2.

The hypergeometric description of Hgmair, 4,5 shows that the determinant is geometrically
trivial, cf. |8, 8.12.2, (3)]. Therefore the determinant is of the form D98 for some (-adic unit D.
To show that D = 1, it suffices to do so at the single point v = 1 in G, (F,). This determinant
at v = 1 is equal to the determinant at v = 1 on the Kummer pullback by v + v#. But this
Kummer pullback, whose trace function is, by Corollary

-1
veEBX AvzP — Bz4),
(~Gauss(y, x2)) "=/ 2l )

is lisse on A!/F,, and its determinant remains D4,
So its determinant at v = 1 is equal to its determinant at v = 0. But at v = 0, we are
looking at the cohomology group

H(} (Al/Ea ‘C’([)(—BZA)) ® (—G3U55(¢7 XQ))_ deg.

Because A is odd, if we had twisted instead by either choice of |/p~ deg, then we would be
arithmetically symplectically self dual, and would have determinant 1. So if p is 1 modulo
4, this is our situation: we are arithmetically symplectically self-dual, and therefore the
determinant D = 1. However, if p is 3 modulo 4, then our twisting Gauss sum is i,/p, so
our determinant is 4=, which is (—1)(‘4_1)/27 which, because p is 3 modulo 4, is the asserted
(x2(=1))A-1/2,

We now turn to proving (iil). Again the hypergeometric description of Hpig, 4,8,y descent
shows, by [8, 8.12.2, (3)], that its determinant is geometrically trivial, of the form D9¢& for
some f-adic unit D. We now repeat the argument above. It suffices to show that D = 1 at the
point v =1 in G,,,(F,). This is equal to the determinant at v = 1 on the Kummer pullback
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by v+ v, But this Kummer pullback, whose trace function is, by Corollary

-1
v BX SR ETED) Z ’(/}E(AUZB — BZA)Xz(Z)a
(—Gauss(¥_c(ayaB, X2)) 2€E

is lisse on A!/F,, and its determinant remains D°8. So its determinant at v = 1 is equal to
its determinant at v = 0. But at v = 0, we are looking at the cohomology group

_ —de
HY(AY /Ty, Ly(—pan) © Lyy(2) ® (—Gauss(Y_cayas, x2)) s

which, because A is odd, is orthogonally self-dual. It is proven in [9, 1.4] that with the

imposed choice of quadratic Gauss sum, this orthogonal autoduality has determinant D =1

(remembering that we are applying the cited result to the additive character ¥ _p). ]

ProroSITION 3.13. Suppose A and B are strictly positive integers, both prime to p, with
ged(A, B) = 1. Suppose further that p is odd, that A — B > 2 and that A is even. Then we
have the following results.

(i) For any C € F,;, consider the character 1c of F), as defined in (3-11.1)). The lisse sheaf
[A]*H smait, A, B,descent @ (—Gauss(¥c, x2))” 9% on Al /Fp, whose trace function at u € E
for any finite extension E of F, is

-1
ueFE— Auz® — Bz4),
(—Gauss(lﬁc%z))dcg(E/FP) Z;;wE( :

is pure of weight zero and has arithmetic determinant (XQ(QABC(—I)A/Q))deg.

(ii) Choose a character p with p* = xo. For any choice of C' € F}¥, the lisse sheaf

[A}*Hbig,A,B,p,descent ® (—G8U55(¢Ca XZ))i deg

on A'/F,, with trace function

-1
ue E— . Z VY (Auz? — Bz4)xs(2),
(~Gauss(vc, x2))*= )

is pure of weight zero and has arithmetic determinant (x2(2(—1)A/2))

deg

Proof. The explicit formulas of Corollary make that the [A]* pullbacks are lisse on
A'/F,, and after the twist by any quadratic Gauss sum, are pure of weight zero. Because A is
even, it results from Lemma that each pullback has geometrically trivial determinant. So
to compute the arithmetic determinant, it suffices to do so at time u = 0 in A'(F,). At this
point, we use the idea already used in the proof of Proposition [3.12] namely we first compute
the determinants of the cohomology groups

H'(A'JFy, Ly~ poay) and H'(A'/Fp, Ly—p.ay ® Ly, (2))-
These are computed in parts (1) and (2) of |12 Theorem 2.3], where the D there is our A,
the ¢ there is p, and the 1 there is our 1_g. The first determinant is
(—Gauss(¢)_paja, x2))p /2!
= x2(—CAB/2)(—Gauss(¢c, x2)) (x2(—1)(—Gauss(¢c, x2))?)
= x2(—2CAB)x2(~1)/D 7! (—Gauss(c, x2)) "

= x2(2CAB(~1)*/?)(~Gauss(¢c. x2)) "'

(A/2)—1
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The second determinant is (—Gauss(z/)BA7 XQ)) times the first, so is

x2(CAB)x2(2CAB(~1)42) (~Gauss(tbc, x2)) "

In both cases, after the Gauss sum twisting, we are left with the asserted arithmetic
determinant. 0

ProPOSITION 3.14. Suppose A and B are strictly positive integers, both prime to p, with
ged(A, B) = 1. Suppose further that p is odd, that A — B > 2, that A is even and that B is
odd. Choose integers «, 3 with

aA— BB =1, «even,

(which is always possible, for if («, 3) works, then so does (o« + B, 8 + A), and B is odd). For
any choice of C € F,;, the lisse sheaf
’Hgig,A,xz,B,descent ® (‘GaUSS(UJC, XQ))_ deg
on G, /F,, with trace function
-1

u€eE* — E Ve(Au“2P — BuP 24 xs(2)
deg(E/F, ’
(*Gausswo,m)) s/ )ZGE

is pure of weight zero and has arithmetic determinant (x2(2(—1)

A/z))deg‘

Proof. From the explicit formula for its trace function, it is obvious that /Hgi 9. Ao, B.descent

is pure of weight one, and hence that twisting by any quadratic Gauss sum renders it pure
of weight zero. Because B is odd and « is even, the asserted trace formula is just (iii) of
Proposition Because A is even, it results from Lemma that Hgi%AyX%B’descem has
geometrically trivial determinant. Therefore we may compute its arithmetic determinant at
the point v = 1in G,, (IF,). This is the determinant attached to the trace function over varying
extensions E/F, given by

- Z V(A28 — Bz)xa(2),

z€E

which is in turn the trace at u = 1 on the lisse sheaf on A!/F, whose trace function is

ue b — Z VYe(Auz® — BzY)xa(2).
z€E

This lisse sheaf is none other than [A]*Hpig A, B.p descent, for any choice of p with P = xa,
which, we have seen in Proposition has geometrcilcally trivial determinant, and whose
arithmetic determinant is the asserted (x2(2(—1)%/2)) ®. O

A hypergeometric sheaf H is said to be geometrically induced if the representation of the
geometric monodromy group Ggeom of H can be induced from a proper subgroup. We note
by |10, Proposition 1.2] that this occurs precisely when H is either Kummer induced or Belyi
induced, as described in (i), respectively in (ii), of [L0OL Proposition 1.2]. In particular, we have
the following result:

PROPOSITION 3.15. If a geometrically irreducible hypergeometric sheaf H of type (n,m)
withn > m > 0, or withm > n > 0, is Belyi induced, then n — m is prime to p, and is divisible

by p — 1.
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Proof. In the notations of [L0, Proposition 1.2] (whose A and B have nothing to do with
ours), when n > m > 0, we have n = A+ B and either A+ B or A or B is dgp” with sr > 1
and dy prime to p. In these cases, m is either dgy, or dy + B, or A + dy. So in each case,

n—m = dop" —do = do(p" — 1),

which is prime to p and is divisible by p — 1. To deal with the case m > n > 0, first apply
multiplicative inversion. ]

COROLLARY 3.16. Suppose A and B are strictly positive integers, both prime to p, with
ged(A, B) = 1. Suppose further that A — B is divisible by p. Then neither Hgmaii, A, 1OT
Hyig,A,B, for any x with XA # 1 nor Hgigﬁ,p’B for any p with pB # 1 is geometrically
induced.

Proof. The relative primality of A and B shows that neither sheaf is Kummer induced.
That neither is Belyi induced results from Proposition [3.15} O

Combining the above primitivity result Corollary with [15, Theorem 1.5], we get the
following two results.

ProrosITION 3.17. Suppose A and B are strictly positive integers, both prime to p,
with ged(A, B) = 1. Suppose that A — B is divisible by p, and that max(A, B) is prime to p.
Suppose further that

|A — B| > max(A, B)/2 > 2.

In the special case max(A, B) =8, suppose A — B =7 (possible only when p="7). In the
special case max(A, B) =9, suppose A — B =T or 8 (possible only when p = 7, respectively
when p = 2). Then for any x with x* # 1, Hpig .5, satisfies condition (S+) (as defined in
[15, §1]).

PROPOSITION 3.18. Suppose A and B are strictly positive integers, both prime to p, with
ged(A, B) = 1. Suppose that A — B is divisible by p, and that max(A — 1, B — 1) is divisible
by p. Suppose further that

|A—B|> (2/3)(max(A—-1,B—1)—1) > 2

In the special case max(A, B) =8, suppose A — B =7 (possible only when p="7). In the
special case p = 2, suppose max(A — 1, B — 1) # 8. Then Hgsmau, 4,5 satisfies condition (S+).

4. Local system candidates for Sps,,(q)

In this section, expanding [14], we consider the following situation: p is an odd prime, ¢
is a (strictly positive) power g = p! of p, and we are given two positive integers n # m with
ged(n,m) = 1 about which we assume

ged(¢" +1,¢™ +1) =2.

Notice that n,m cannot both be odd, otherwise ¢ + 1 divides ged(¢™ + 1,¢™ + 1), nor can
they both be even, as ged(n, m) = 1. So precisely one of n,m is even, and the other is odd.
In what follows, we suppose that

n even, m odd.
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We define
A:=(q"+1)/2, B:=(¢"+1)/2.
We will apply the results of the previous section to this (A, B), and to the quadratic

character xo. Thus A is odd. The parity of B depends on the value of ¢ mod 4 (B will be odd
if g is 1 (mod 4), and will be even if ¢ is 3 (mod 4)).

LEMMA 4.1. There exist integers «, 8 with aA — B =1 with 3 even.

Proof. If a, 8 has «A — B =1, so does (o + B, 3+ A). Since A is odd, we may change
the parity of 5 at will. O

For the rest of this section, we fix a choice of «, 8 with
aA— BB =1, 3 even.
We consider the hypergeometric sheaf
Hsmau,a,5 1= Hypy (Char(A) \ {1}; Char(B) \ {1}),
of rank max(A, B) — 1, and the hypergeometric sheaf
Hpig,A,B = Hpig,A,B,x> ‘= Hypy(Char(A); Char(B, x2)),

of rank max(A, B). Let Homali, A,B,descent a0 Hsmall A, B descent D€ as in Lemma and
Lemma [3.5] respectively.

LEMMA 4.2. We have the following results.

(1) The sheaf Hsmali, A,B,descent 1S isomorphic to the lisse sheaf on G,,/F, whose trace
function is as follows: for E/F, a finite extension, and u € E*, the trace at time u
is given by

u€ EX — — Z Yp(Au®zB — BuP2?t).
zelR

(ii) The sheaf Hpig A,B,descent IS Isomorphic to the lisse sheaf on G, /F, whose trace function
is as follows: for E /I, a finite extension, and u € E*, the trace at time u is given by

u€ EX — — Z Yr(Au®zB — BuP ) xa(2).

zel

Proof. Immediate from Corollary The first assertion is Lemma [3.9[i). The second
is statement (ii) of that same lemma, remembering that § is even and A is odd, so that

x2(u’z) = xa(2). O

COROLLARY 4.3. The direct sum

WH,Sp = Hsmall,A,B,descent 3] Hbig,A7B,descent

is isomorphic to the arithmetically semisimple lisse sheaf on G, /F, whose trace function is
as follows: for E/IF, a finite extension, and v € E*, the trace at time u is given by

m

u€EX — — Z Yp(Au®z?" T — Buf 21"+,
z€E
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Proof. The sheaf Wy, g, is arithmetically semisimple by its very definition, and its trace
function at time u € E* is

— > Up(Au2® — BuP M) (14 x2(2)) = = Y ¥u(Au®z*? — BuP2*),
zeE zeER

and 2A=q¢" +1, 2B =q¢™ + 1. O

REMARK 4.4. If A > B, then after [A] pullback, both [A]*Hsmau,a,p and [A]*Hpig A8
become lisse on A'. But when A < B, neither [A]*Hsmai 4,5 nOr [A]*Hpig, 4, becomes lisse
on Al

THEOREM 4.5. Suppose A > B. Then we have the following results.
(1) For G either choice of minus the quadratic Gauss sum over F,, the lisse sheaf

—de
Hsmall,A,B,descent & G &

on G, /T, has arithmetically trivial determinant.
(ii) Denote by 1 the nontrivial additive character t — ¥(—t). Then with the clearing factor

G := —Gauss(?, x2)

the lisse sheaf Hyig. A, B descent © G~ deg on G /F,, has arithmetically trivial determinant.
(iii) If —1 is not a square in F,,, then with the clearing factor —Gauss(¢, x2), the arithmetic
determinant of the lisse sheaf Hpig A, B descent @ (—Gauss(¥), x2))~ deg jg (—1)des,

Proof. The first assertion is a special case of Proposition 3.12]i), because the (4 —1)/2
exponent there is (¢ — 1)/4, which is even because n is even and ¢ is odd. The second
assertion is a special case of Proposition [3.12(iii), remembering that in this case e(A) = 1
(because, as n is even, (A —1)/2 = (¢" —1)/4 is even), and —AB = —(¢" + 1)(¢™ +1)/4 is
= —1/4 (mod p), and modulo squares is —1. For (iii), observe that when —1 is not a square
in [Fp, the “usual” Gauss sum is minus the one making the arithmetic determinant trivial in
(ii), and as the rank A is odd, the arithmetic determinant in (iii) will be (—1)d°&. O

THEOREM 4.6. Suppose B > A. Then on G,,/F,2, with the clearing factor
G = (1)~ D/,

we have the following results.

(1) If B is odd, the lisse sheaf Hgmaii, A, B,descent ® G~ d°g has arithmetically trivial determi-
nant, and the lisse sheaf Hyig A B descent @ G~ deg has geometric determinant Ly,. The
Kummer pullback

* ~—d
[2} Hsmall,A,B,descent ® G &

has arithmetically trivial determinant. R

(ii) If B is even, the lisse sheaf Hsmall, A, B descent @ G~ deg has geometric determinant Ly,,
and the lisse sheaf Hyig A, B, descent @ G~ 48 has arithmetically trivial determinant. The
Kummer pullback

* ~—d
[2} Hsmall,A,B,descent & G &

has arithmetically trivial determinant.
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Proof. Again we have B — A > 2, so the geometric determinant of Hsmair, A, B,descent 1S
the product of all the nontrivial characters of order dividing B, so is trivial if B is odd and
is Ly, if B is even. The geometric determinant of Hpig 4, B descent i the product of all the
characters in Char(B, x2), which is £, if B is odd and is trivial if B is even. So after taking
the appropriate [2]* Kummer pullbacks, both sheaves in question have geometrically trivial
determinants, and we proceed as in the proof of Theorem first evaluating at u = 1, then
at u = 1 on the [B]* pullbacks, which are lisse on P! \ 0, then at u = oo on these pullbacks,
to reduce to applying (12, 2.3, (1) and (2)], with the D there taken to be our B, and the v
taken to be 1_ 4. The results of |12, 2.3, (1) and (2)] involve various quadratic Gauss sums,
but by working on G, /F,2, only their squares occur, and these squares are each the G in the
statement of the theorem. |

From Lemma we have

LEMMA 4.7. Each of the sheaves [A]*Hsmai1, A, B,descent and [A]*Hpig A B descent has all its
traces in K.

Recall once again that for our (A, B), the image of each of A, B in F,, is 1/2. We now consider

the Kummer pullback by [A], and, with ©_; /5 g as defined in (3.11.1)), apply Corollary
to obtain the following:

COROLLARY 4.8. We have the following results.

(i) The Kummer pullback [A]*Hsmail, A, B,descent 1S iSomorphic to the lisse sheaf on G, /F,
whose trace function is as follows: for E/IF,, a finite extension, and v € E*, the trace at
time w is given by

ue BEX — — Z 1/}_1/27]5(2‘4 —uz?).
zeE

(ii) The Kummer pullback [A]*Hbig, A, B, descent 1S isomorphic to the lisse sheaf on G,,/F,
whose trace function is as follows: for E/F, a finite extension, and u € E*, the trace at
time w is given by

ue B — — Z V_1/2,8(2* —uzP)xa(2).
zeE
(i) The Kummer pullback [A]*Wy s, of the sheaf Wy s, defined in Corollary is
isomorphic to the arithmetically semisimple lisse sheaf on G, /FF,, whose trace function
is as follows: for E /I, a finite extension, and u € E*, the trace at time u is given by

u€ B — Z Yo12,5(2*" —u?P) = - Z Y_1jo,p (27 T —uz? T,
zelR zeE

In particular, if E is a subfield of IF, then the trace at the time u =1 is —#F.

Let us denote by
Wisp(1/2)

the constant field twist of Wy s, obtained by dividing the trace over E by —Gauss(¢f, x2),
so that it is pure of weight zero.

THEOREM 4.9. We have the following results.
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(i) Over any extension of F,, the square absolute values of traces of Wy sp(1/2) are powers
of g. Over any subfield k of F,, the square absolute values of the traces of Wy s,(1/2)
are powers of #k; moreover, the trace at u = 1 has squared absolute value equal to #k.

(ii) The arithmetic and geometric monodromy groups of Wi sp(1/2) (and hence also of both
Hsmail, A,B,descent (1/2) and Hyig A, B descent(1/2)) are finite, and all three of these sheaves
have all traces in K.

Proof. Assertion (i) is van der Geer-van der Vlugt |13, Lemma 5.2], and Lemma Tt
implies the second assertion, cf. [13] §5]. [Note that the definition of the relevant local systems
in [13] §5] uses a possibly different clearing factor, which can, however, change only the sign
of the trace function.] O

Now we consider the sheaf
Wsp(l/Q)v

the constant field twist of Ws, := [A]*Wj s, obtained by dividing the trace over E by
—Gauss(9 g, x2). We record the following corollary of Theorem

COROLLARY 4.10. We have the following results.

(i) Over any extension of Fy, the square absolute values of traces of Ws,(1/2) are powers
of q. Over any subfield k of Fy, the square absolute values of the traces of Wsp(1/2) are
powers of #k; moreover, the trace at u = 1 has squared absolute value equal to #k.

(ii) The arithmetic and geometric monodromy groups of Ws,(1/2) (and hence also of both
[A]*Hs'rnall,A,B,descent(1/2) and [A]*Hbig,A,B,descent(l/z)) are finite, and all three of these
sheaves have all traces in K.

THEOREM 4.11. If A> B, then on Al/sz, both Hsmall,A,B,descent(l/2) and
Hbig,A,B,descent (1/2) have arithmetically trivial determinants. If B > A, then on G, /F,z,
both [2]*Msmaii, A,B,descent(1/2) and [2]*Hpig, A, B descent(1/2) have arithmetically trivial
determinants.

Proof. This is a special case of Theorem when A > B, and of Theorem [£.6] when
B> A O

PROPOSITION 4.12. Both sheaves Hsmau, 4,8 and Hyig 4,5 satisty condition (S+). Their
wild parts (at oo if A > B, at 0 if B > A) have dimension |A — B|, with all slopes 1/|A — B|.

Proof. To avoid the confusion caused by not knowing if A > B or if B > A, let us define
¢ := max(n,m), d := min(n,m), C := max(A, B) = (¢° +1)/2, D :=min(4, B) = (¢* +1)/2.
At the expense of a possible multiplicative inversion, our sheaves are of type (C —1,D — 1)
and of type (C, D). Both have wild part of dimension

W:=C~-D=(¢—q%)/2.

This difference being divisible by p, their primitivity results from Corollary
The ranks are both prime to p, being (¢ £1)/2. So we may apply |15, Theorem 1.5].
We must show that W > (D — 1)/2 for Hsmau,a,5 and W > D/2, that D — 1 > 4, and check
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that neither D — 1 nor D is 8. We have ¢ > 2,50 D — 1 = (¢ — 1)/2 > (3% — 1) /2 = 4. Neither
D — 1 nor D is 8, otherwise we have either

(¢°=1)/2=8or (¢°+1)/2=8.

In the first case ¢° = 17, impossible as ¢ > 2. In the second case, ¢° = 15, nonsense.
It remains to show that W > D/2, i.e., that

(¢°—qh)/2> (¢“ +1)/4,
or, equivalently,
2(¢° — q%) > ¢¢, e ¢©—2¢1>1, ie q¢%¢c?-2) > 1.
This last holds because ¢ >3 andc—d>1,d > 1. O

5. Local system candidates for SU,(q)

We now turn to the particular situation relevant to unitary groups. Thus ¢ is a power of
p, n > m > 0 are odd integers with ged(n, m) = 1 (which forces ged(¢™ + 1,¢™ + 1) =g+ 1),
and

A= ("+1)/(g+1), B:=(¢"+1)/(g+1).

REMARK 5.1. In this section, we impose n > m, so that A > B. In the previous section,
we imposed n even, m odd, but this did not determine which of A, B was the larger.

LEMMA 5.2. Both A and B are odd. Indeed A =n (mod (¢+ 1)), B=m (mod (¢ +1)).

Proof. If p =2, then each of ¢" +1,¢™ + 1,q+ 1 is odd. If p is odd, then
A=("+1)/(a+1)=1-q+¢ ¢ +...+¢"7" =n (mod (¢ +1)),
hence A has the same parity as n, which is odd. Simillarly, B = m (mod (g + 1)). O

Notice here that both A, B are = 1(mod (¢ — 1)), hence also = 1(mod (p — 1)).

PROPOSITION 5.3. For any nontrivial character p ofIFqX2 of order dividing q + 1, there is a
lisse sheaf G, on A'/F 2 whose trace function is as follows: for E/F 2 a finite extension, and
u € F, the trace at time u is given by

u€ FEw— — Z VYe(uz? — 2N pp(2).
zelR

This sheaf G, is geometrically isomorphic to the Kummer pullback [A]*Hyig, A, B x,descent fOr
any choice of x with x* = p. Moreover, the sheaf G, has all its traces in the field Q(p).

Proof. To get the existence, choose any x with x* = p, and apply Corollary The
traces a priori lie in Q((p, p). To see that they lie in Q(p), we must show that for any A € F;,
and any u € E/F,2 we have the identity

S vp0ust = A pp(z) = 3 v(us? — M)os(z).

zeE zelR
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In fact, this will hold for any A € F;, by the substitution 2+ Az, because both A, B =
1(mod (g — 1)) and because A is the (g + 1)*" power of some element of F 2 by surjectivity of
the norm. U

PROPOSITION 5.4. There is a lisse sheaf Gy on Al/Fp whose trace function is as follows:
for E/F, a finite extension, and u € E, the trace at time u is given by

ue b — — ZwE(uzB —24).
z€E
This sheaf Gy is geometrically isomorphic to the Kummer pullback [A]*Hsmaii, A, B descent- It
has all its traces in Q (again because both A, B =1 (mod (q — 1))).

PROPOSITION 5.5. The direct sum @pGChar(qH) G, is geometrically isomorphic to the
arithmetically semisimple lisse sheaf

Wsu

on Al/F, whose trace function at time u € E/F, is given by

ue b — — Z Yp(uzd 1 — 20"+,
z€E

COROLLARY 5.6. Each of the lisse sheaves G, is geometrically irreducible.

Proof. Here are two proofs. Because ged(¢™ + 1,¢™ + 1) = ¢ + 1, Wiy has second moment
g+ 1 (by Lemma . Being the sum of the ¢ + 1 summands G,, each summand must be
geometrically irreducible. Alternatively, one could use the fact that ged(A, B) = 1, and apply
Proposition to each G,. O

THEOREM 5.7. On A'/F,, each of the lisse sheaves G, ® (1/¢*)9°¢ has arithmetically
trivial determinant. In characteristic 2, this is already true for the lisse sheaves G, ® (1/q)4°#
on Al /Fq2 .

Proof. From Lemmas[3.1]and[5.2] we know that each has geometrically trivial determinant.
So it suffices to show that at a single point u € Fg4, the determinant is 1. We take the
point u = 0. According to [12} 2.3, parts (3) and (4)], the determinant for Gy at the point
u =0 viewed in Fg is (qz)(A’l)/2 = ¢4, and the determinant of G, for p nontrivial is
(—Gauss(P 45 ,.p))(¢%) A D/2 (recall and (2.7.1)). Recall that, for any i which
begins life over F,, the Gauss sum Gauss(w]gq2 ,p) is independent of the choice of 1 (because
every element of F)' becomes a (g + 1)*® power in Fq2), and its square is ¢%. By Stickelberger’s
theorem [2| 11.6.1], for p nontrivial of order r dividing ¢ + 1, one has

_1)(‘1+1)/7'q7 q Odd,

o q oven (5.7.1)

_J(
GaUSS(’lZ)FQQ ) p) - {
So over F 4, these determinants are respectively (¢?)4~1 and (¢%). Hence after the ®(1/q?)d°®

twist, all these determinants become 1. And in characteristic 2, these determinants already
become 1 on A!/F . O
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COROLLARY 5.8. Suppose p is odd, q a power of p, and p a nontrivial character of]FqX2 of
order r dividing ¢ + 1. Then, on G,,,/F 2 the arithmetic determinant of

G, ® (—GausSW]Fqg X2)) deg /Ry

is trivial if (—1)@FD/7 = (=1)@+D/2 and js (—1)~ 98 /%2 otherwise.

Proof. By Theorem|5.7}, the arithmetic determinant of G, ® (—Gauss(¢r ,,p)) doe/Fe2 i

trivial. If instead we look at

— de; 2
gp ® (—GaUSS(qu2 ’ XZ)) 8/Fs s

the factor by which we have twisted differs, thanks to Stickelberger |2} 11.6.1], by the ratio

(—Gauss(ts ., p))/ (~Gauss(ife ., X2)) = (1) (#F /7 /(~1){a+ /2,

Let us denote e := (—1)(aT1/7/(—1)(@+1)/2 A5 G, has rank A, which is odd (being 1 modulo
g — 1), this second twist will have arithmetic determinant e~ deg /Fy2, O

Let us denote by
WSU(l/Q)
the sheaf on A'/F > obtained by twisting Wsu by —x2(—1)/p for p odd, and by 1/p for p = 2.

THEOREM 5.9. We have the following results for the sheaf Wsy(1/2) on A!/F .
(i) Over any extension of IF 2, all traces lie in Q.
(i) If p is odd, then over any extension of F, all traces are & (powers of q). If p =2, the
trace 0 may also occur.

(iii) The arithmetic and geometric monodromy groups of Wsy(1/2) (and hence also of each
G,(1/2)) are finite.

Proof.  To see that (i) holds, notice that for A € F, there exists 7 € F,2 with Tt = )\
by surjectivity of the norm. Because n, m are both odd, we have 7¢ = 77" = 79", Apply this
to A which lies in F\. Making the substitution z ~— 7z has the effect of replacing 1 (x) by
¥(Ax), without changing the sum, which therefore lies in Q. to prove (ii), it suffices, given
(i), to show that the square absolute values of traces are powers of ¢2. This holds because
in the van der Geer-van der Vlugt approach, when p is odd, each square absolute value is
the cardinality of a vector space over F 2, cf. [13, beginning of §5] with ¢ = 0 to see this in
the case m = 1. When p = 2, the trace is the sum of the values of an additive character on
such a vector space, so the sum is either 0, if the additive character is nontrivial, or it is the
dimension of the vector space. The integrality of the traces then implies the finiteness of the
arithmetic and geometric monodromy groups, cf. [13} §5]. ]

ProrosiTION 5.10. For A, B as above, i.e.
A=(q"+1)/(g+1), B=(¢"+1)/(¢+1), n>m>0, 2¢nm,

and x a character with x* # 1, both the sheaves Hsmall,A,B,descent a0d Hpig A By, descent
satisfy property (S+).
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Proof. The fact that gcd(A4, B) = 1 shows that neither sheaf is Kummer induced. For each
sheaf, the wild part has dimension A — B = (¢" — ¢™)/(q + 1), which is divisible by ¢™, hence
also by p, so neither is Belyi induced (by Proposition . Thus both sheaves are primitive.

We first treat Hpig 4,8,y descent, Of rank A prime to p. By [15, 1.2.3], provided that the
rank A >4 and A # 8,9, it suffices to show that

A—B>A/2,
i.e., that (after multiplying both sides by ¢ + 1)
q"—q" > (q" +1)/2, i.e,that 2¢" —2¢™ > ¢" + 1, i.e., that ¢" —2¢™ > 1,
i.e., that
q" ("™ —2) > 1.
Because m > 1 and n —m > 2 (both being odd), we have
g™ ("™ = 2) > q(¢* —2)>2(22 —2) =4 > 1.

The least possible values of A are attained by (¢ = 2,n = 3), (¢ = 3,n = 3), all other possible
A are > 11 (attained by (¢ = 2,n =5)). For (¢ = 2,n = 3), we have A = 3, which is prime,
and hence property (S+). holds. Similarly, for (¢ = 3,n = 3), we have A =7, again prime
(or, an acceptable value).

We now treat Hsmali, A, B.descent- Here the rank is A — 1 = (¢™ — ¢)/(q + 1) which is divisible
by p. By [15] 1.2.6], provided that the rank A —1 >4 and A — 1 # 8,9, it suffices to show
that

A—B>(2/3)(A-2),
i.e., that (after multiplying both sides by ¢ + 1)

" —q" > (2/3)(¢" +1—2(q¢+1)), ie,that 3¢"™ —3¢™ > 2¢" +2 — 4q — 4,
i.e.,that ¢" —3¢™ > —2q — 2.

In fact, we have ¢" — 3¢™ > ¢. Indeed,
qm _ 3qm _ qb(qn—m _ 3) > q(q2 _ 3) > q> 0.

The least possible values of A —1 are attained by (¢ =2,n=3),(¢ = 3,n=3), all other
possible A — 1 are > 10 (attained by (¢ = 2,n =5)). For (¢ =2,n = 3), we have A — 1 =2,
which is prime. For (¢ = 3,n = 3), we have A — 1 = 6, which is an acceptable value. |

REMARK 5.11. There is one situation in which the sheaves G, are the [A]* pullbacks
of canonically chosen hypergeometric sheaves, namely the case when ged(n,q+ 1) =1.
The key observation is that A =n (mod (¢ + 1)), cf. Lemma In defining the sheaves
Hbig, A,B,x,descent, We can choose for x a nontrivial character of order dividing ¢ + 1. For these
x> X — X = X" is simply a permutation of the nontrivial elements of Char(q + 1). Moreover,
in choosing «, 8 with a4 — B = 1, we may change (o, 8) to (o + nB, 8 + nA) for any integer
n. Since A is invertible mod ¢ + 1, we may impose on  any congruence mod ¢ + 1 that we
like. We will impose that (3 is divisible by ¢ + 1, and write

B=I(qg+1)y
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for some € Z. With this choice, the trace function of Hyig, a,B,y,descent is simply

u€ EX — — Z Vp(Au® 2B — BuP 2 xp(uP2?4)
zER
=— Z Ve (Au“zP — BuP ) (2),
zER

because x has order dividing ¢ + 1, 8 = 0(mod (g + 1)), and x* = x".
Recall that A, B = 1(mod ¢). So in this ged(n,q + 1) = 1 case the direct sum

@ Hbig,A,B,x,descent S Hsmall,A,B,descent (5111)
X€Char(g+1),x#1

has trace function
ue E* — — Z PYp(u®z?" T — P20 1), (5.11.2)
zeFE

This formula is analogous to that of Corollary where A was odd and § could always be
taken even. Moreover, the [A]* Kummer pullback of H™™ has trace function

u€E* — - Z wE(uo‘Azqu — uﬁAzq”H)

2€B

= = 3 P (ueAPB BB _ B (ah1)A)
2€E

= =Y G BB _ fa DAy s
2€E

=— Z VE (u(u’Yz)(qul)B _ uﬂA—v(qH)A(mz)(qH)A)
2€E

= =) p(uzt" 0,

z€E

the last equality by the substitution z — z/u?.

REMARK 5.12. There is another situation in which there are canonical choices of
hypergeometric sheaves whose [B]* pullbacks have interesting trace functions, namely the
situation in which ged(m, g+ 1) = 1, or equivalently ged(B, ¢+ 1) = 1. In this case, we can
choose integers («, 3) with «A — B = 1 and impose any congruence condition we like on «
(because B is invertible modulo ¢ + 1, cf. the remark above). We impose that « is divisible
by ¢ + 1, and write

a=(¢g+1)
for some integer §. Then from Lemma [3.9] we have that for any nontrivial character x of order

dividing ¢ + 1, the lisse sheaf ’Hgig’A’X’B’descent on G,,/F, has trace function as follows: for
E/F g a finite extension, and u € £, the trace at time u is given by

u€ EX — — Z Yp(u®2B —uP 2 xE(2).
z€E

Since x — x® is a bijection on the set of nontrivial characters of order dividing ¢ + 1, with
G := —Gauss for either choice Gauss of quadratic Gauss sum over IFj,, the direct sum

HZ?:I = ( @ /HgigvAx,B,descent & HSmall;A7B,d63cent) ® G~ deg (5~12'1)
X€Char(g+1),x#1
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has trace function

1 m n
ueEE  —» —-F—— Yp(u®zd" Tt —uf 21", 5.12.2

Gauss(¢g, x2) Zg}; ( ) ( )
[This formula looks very much like that of (5.11.2)), but the reader must remember that the
exponents («, 8) of u are different in the two cases; also, H;;." has a clearing factor Gdes ]
The [B]* pullback W,""™ of H,;"" has trace function

1 m n
WEE s — L0 gl 5.12.3
Gauss(vmxa) ;ET/JE( ) ( )

by an argument similar to that in Remark

In the general case of any odd n, we can build the sheaves Hyig 4,5, using the following
choice of characters:

LEMMA 5.13. Let n € Z>1 be odd and let ¢ be any prime power. If gcd(n,q+ 1) =1,
defineng := 1. Ifged(n,q+ 1) > 1, let p1, . .., ps be the distinct prime divisors of ged(n, g + 1),
pi* be the p;-part of n, and define ng :=[];_, pi* = ged(n, (¢ +1)"). If v is a multiplicative
character of order ng(q + 1), then v* has order q + 1; and conversely any character of order
q + 1 can be obtained this way.

Proof. The case ged(n, g + 1) = 1 has already been explained in Remark so we will
assume ged(n, g + 1) > 1. First we prove that

ged(no(g + 1), A) = no. (5.13.1)

Let p1,...,Ds,Dst1,- - -, Pt be the distinct prime divisors of ¢ + 1 (for some ¢t > s). If 1 < < s,
then p;|n and so it is odd but divides ¢ + 1, whence the p;-part of A= (¢"+1)/(¢+1) is
exactly p;*. To see this, use the fact, applied successively to x := —¢ and to an odd prime
p; := £, that if € Z has ordy(z — 1) = d > 0, then ord,(z* — 1) = d + 1, while for an integer
m prime to ¢, ordy(z™ — 1) = d, cf. also |17, Lemma 4.4]. In particular, this shows that ng|A
and p; 1 (A/ng). If s+ 1 <14 <t, then p; tn and p;|(¢+ 1), but A =n(mod ¢+ 1), and so A
is coprime to p;, whence p; 1 (A/ng) in this case as well. Thus is proved.

Now let v have order ng(g + 1). Then v™ has order ¢+ 1. Since ged(A/ng,q+ 1) =1 by
, vA = (I/"O)A/ "0 has order g 4+ 1. The converse also follows by the same argument. []

6. Extensions of Weil representations of finite symplectic groups

In this section, we consider a non-degenerate symplectic space W = FZQ,N for a fixed prime
p > 2, a (reducible) total Weil representation of degree pV of T' = Sp(W) = Sp,x (p) with
character wy p as in [13]; in particular,

lwnp(9)l = [Cw ()] (6.0.1)

for any g € T', where Cy(g) := {w € W | g(w) = w}. We will also take N = nf and ¢ = pf
for some positive integers N, f. We may then assume that W is obtained from the symplectic
space Wi := F2" with a Witt basis (eq, ..., en, f1,. .., fn) and symplectic form (-|-), by viewing
W1 as an [Fj,-vector space with symplectic form Try_ /g, ((|)) Using this basis, for any divisor
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el f we can consider the transformation
n n
op Y (miei +yifi) = > (aTei + i fi)

i=1 i=1

induced by the Galois automorphism z — 2" for r := ¢*/¢. Then o, belongs to I' and induces
a field automorphism of order e of L := Sp(W7) 2 Sp,,,(¢). In what follows, we will refer to
L x (o,) as a standard subgroup Sps,,(q) x C of T'. Also, let j be the central involution of T".

We will denote by w4 the restriction of the total Weil character wy , to L, and let the
character &, 4, respectively 7, 4, denote the irreducible summand of wy 4 of degree (¢™ + 1)/2,
respectively (¢™ — 1)/2. The following statement clarifies the behavior of total Weil characters
under embeddings Sp,,, (¢™) <> SPay,.m (¢) (by a similar base change as above); cf. |13, Lemma
4.3] for the case of irreducible Weil characters.

LEMMA 6.1. Let q be an odd prime power and let n,m > 1. For fixed total Weil
representations

D : Sy (4™) = GLyn (€), A $pyy(g) = GLyn (C),
affording character wy, gm , respectively wpnm q, there exists an embedding

O: Spgn(q"L) — Sp2nm(q)

such that the representations ® and A o © of Sp,,, (¢™) are equivalent.

Proof. Fix an embedding ¢ of X := Sp,,,(¢™) into Spa,,,,,(q). For e = £, let ®¢, respectively
A€, denote the unique irreducible constituent of @, respectively of A, of degree (¢"™ + €)/2.
As is well-known, A€o is an irreducible Weil representation of X of degree deg(®€), and so
there is an outer diagonal automorphism af of X such that A€o0 = ®¢. If ot and o™
belong to the same coset of Inn(X) in Aut(X), then we may in fact assume that o™ = o~
and take © = 1o a". Otherwise, since any non-inner diagonal automorphism of X fuses the
two irreducible Weil characters of any given degree, we see by [24] Lemma 2.6(iii)] that

Tr(@7 (1) = —Te (2 (1))
for any transvection ¢t € X, and so wy ¢m (t) = Tr(®(t)) = 0, contradicting (6.0.1). O

We will need the following slight extension of [20, Lemma 3.1]:

LEMMA 6.2. Let e be an odd integer, and consider the subgroup L x {(o,.) of I'. Then

Enplor) = (" +1)/2, nnploy) = (r" —1)/2.

Proof. Note that B := (e1,...,e,)r, and B* := (f1,..., fu)r, are complementary maxi-
mal totally isotropic IFp-subspaces of W, both fixed by o, € I'. Then wy , is the character
afforded by the reducible Weil representation of I' = Sp(W) as constructed in |5, §13] using the

decomposition W = B & B*. Let (5) denote the Legendre symbol on FF,,. Then the character
value of wy ), at any element g € Stabr(B, B*) is given in [5, (13.3)]:

wnp(g) = (dt(”)> Ca(g).

p
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Recall that o, has odd order e, and

det ((0)|B) e: det (((o+)°)|B) —1
( P > ( b )

Hence (W) =1 and so, since, |Cp(0,)| = r, we have

Enp(or) + v plor) = 7"
For the central involution j of Sp(W) we have that det(j|g) = (—1), and so

(=)= () =

Furthermore, since e is odd, the equation " = —x has only one solution z = 0 in the field
F, = F,e, which implies that |Cg(jo,)| = 1. It follows that

fN,p(jar) + nNyp(jUr) =K.

Note that, by |24, Lemma 2.6(i)], j acts via multiplication by & in any irreducible Weil
representation of degree (p"V + 1)/2 and via multiplication by —& in any irreducible Weil
representation of degree (p" — 1)/2. Therefore,

Enp(dor) =E&nplor) K, nnp(dor) = —nnplor) - K
It follows that &n (o) = (1™ +1)/2 and nwn p(0y) = (r™ — 1)/2, as stated. O

LEMMA 6.3. Let ¢ = p/ be a power of a prime p > 2, n € Z>1, and let L := Sp,,, (q) with
(n,q) # (1,3). Suppose that ® : G — GL4n (C) is a faithful representation of a finite group
G > L with the following properties:

) ® is a sum of two representations, ®* of degree (¢"™ —1)/2 and ®~ of degree (¢" +1)/2;

) Fore==+, K. :=Q(Tr(®(g)) | g € G) is contained in K := Q(+/(—1)(»=1/2p);

) ¢y is 1rreduc1ble for each € = £; and

(d) For all g € G, |Tr(®(g))|? is alwayb a power of p.

Then the following statements hold.

(1) <I>| 1, is a total Weil representation.

i) Cg(L) = Z(G) = C x Z(L), where we have Z(L) = (j) = Cy, and C' can be chosen to act

via scalars in ®. Furthermore, either
(o) C =1 orCy or
(B) p=3,C e {C5,Cs}, K. =K and p divides | det(®¢(G))| for both € = £

(a
(b
(c
(i

Proof. (i) Using the well-known character table of Sp,(¢) when n =1 and 23] Theorem
5.2] when n > 2, we see that ®¢|y, is an irreducible Weil representation of L for each e = =+.
Now if these two irreducible Weil representations do not come from the same total Weil
representation, then for a transvection ¢t € L we have by [24, Lemma 2.6(iii)] that Tr(®(t)) =
0, contradicting (d). Hence ®@|z, is a total Weil representation.

(ii) Consider any element z € Cg(L). By Schur’s lemma, ®¢(z) = z. - Id for some root of
unity ze € C. As ® = dT d d~, 2 € Z(G) and so

Ce(L) = Z(G).

By (b), z. € K. Now, +1 are the only roots of unity in K, unless p = 3. In the former case,
we obtain that Z(G) = C x Z(L), where 1 < C' < Cy and

O(Cy x Z(L)) = {diag(+Id, £Id)} .
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Thus, assuming Z(G) £ Cy x Z(L), we must have that p =3, and z. is a root of unity of
order 3 or 6 for some € and some z € Cg(L). In this case, K contains exactly 6 roots of unity
+¢%, 0 < k < 2. Next, condition (d) implies that

_ q2n +1 an

2 -1 —1
Wt = T+ Tt

is a power of 3 for t = 2z, /z_, a 6 root of unity. As ¢" > 3, this can happen only when
t = 1. Thus both z; and z_ now have order divisible by 3. It is easy to see that in this case
we have Z(G) = C x Z(L), where C5 < C < Cg and

®(Cs x Z(L)) = {£¢¥ - diag(Id, +1d) | 0 < k < 2}.

In particular, we can find an element ¢ € C(L) with ®(t) = (3 - Id. It follows that for each
€ = + we have that det(®¢(¢)) = ¢§ has order 3 and so p divides | det(®¢(G))[, and furthermore
K, = K.
We have also shown that for any z € Z(Q),
B(2) = z_®(5%) (6.3.1)

for some k = 0,1 and some z_ € K*; i.e. z acts as a scalar in . ]

The main result of this section is the following theorem:

THEOREM 6.4. Let ¢ =p/ be a power of a prime p > 2, n € Z>1, and let L := Sp,, (q)
with (n,q) # (1,3). Suppose that ® : G — GL4n (C) is a faithful representation of a finite
group G > L with the following properties:

(a) ® is a sum of two representations, ®* of degree (¢" —1)/2 and ®~ of degree (¢" + 1)/2;

(b) For all g€ G and € ==+, Tr(®(g)) € K, where K=Q if p=3 and 2|f, and K=
Q(/(=1)»=1)/2p) otherwise;

(c) ®¢|y, is irreducible for each e = +; and

(d) For all g € G, |Tr(®(g))|? is always a power of q.

Then ®|;, is a total Weil representation. Furthermore, G = CL and Z(G) = C x Z(L), where

Z(L) = (j) = Cy, and either

(a) IC] <2, or

(8) p =3 divides | det(®*(Q))| for each e = &, 24 f, and C € {Cs,Cs}.

In all cases, C' can be chosen to act via scalars in ®.

Proof. (i) The fact that ®|; is a total Weil representation and that Cg(L) = Z(G)
together with its structure are already proved in Lemma |6.3

By Lemma we may assume that L embeds in I' = Sp(W) = Sp,,, ¢(p) as the subgroup
Sp(W7) introduced above via base change, and so the character of ®|;, is the restriction to
L of w:=wys,p. We may also assume that ®, ®° extend to I', and denote them by the same
symbols. Also write £ and 7 instead of &, ¢, and 7y, 5,p.

Note that any element in Np(L) preserves the equivalence class of each of the Weil
representations ®€|,, hence it can only induce a field automorphism of L (modulo Inn(L)).
The subgroup of all the field automorphisms of L is cyclic of order f. Thus we may assume
that there is some e|f such that G induces a subgroup of field automorphisms of L of order
e. In the notation introduced right before Lemma this means that the action of G via
conjugation on L induces the same automorphism subgroup as of

H:=Lx o) <T.

In view of the above results, we are done if e = 1. Assume the contrary: e > 1.
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(ii) Replacing G by a subgroup of index 2 if necessary, first we rule out the case e > 1 is
odd. Let g € G induce (via conjugation) the same automorphism of L as of ... It follows that
®<(g)P¢(0,)~! centralizes (L), and so by Schur’s lemma we have

F(g) = o+ (0r), @ (9) = fad®™ (oy) (6.4.1)
for some «, 5 € C*. As o, has order e, we obtain that
®(g°) = B¢ - diag(Id, o°1d).

By (b), 8¢, a®p¢ € K; in particular, a® € K. Using the oddness of e and replacing g by gj if
necessary, we may assume that either « =1, or p =3 and a = C;El. However, in the latter
case by Lemma [6.2] we have that

r+1 -1 243

wl(9)? = ITH(@(9) = le(or) + an(e) = | = + o) =5,

which can be a p-power only when ™ = 3. In particular, it can be a g-power only when
r™ = 3 = ¢, and this contradicts the assumption (n,q) # (1,3).

Thus we have shown that a = 1 in (6.4.1)), i.e. ®(g) = 8®(0,). On the other hand, by the
choice of g, we have that G = (L, Z(G), g). As H = (L, 0,.), together with , this shows
that ®(G) and ®(H) are the same up to scalar matrices in GLgn(C). Now we apply [14,
Theorem 3.5] to get an element h € H such that |Tr(®(h))|? = 7. As we have just shown,
®(h) = y®(g) for some v € C*. Since h and g have finite order, |y| = 1. Thus

w(@)I* = |Te(2(9)* = [T (®(h))|* = r,

contradicting (d).

(i) It remains to rule out the case e=2. We again use the element h € H with
|Te(®(h))|> =r = ¢*/? constructed in [14, Theorem 3.5]. Let ¢’ € G induce the same
automorphism of L as of h. As in (iii), we can again write

T(g) =BT (h), @7 (g') = B'a/®7(h)
for some o, 8’ € C*. Since ¢, h have finite order, |8'| = |&/| = 1. Now we have
r=|Te(®(h)[* = €(h) + ()],
but
w(g)I? = Te(@(g))[* = [€(h) + a'n(h)[?
is a power of ¢ by (d). This implies that £(h),n(h) # 0 and
o #1. (6.4.2)

Since Q(n) = Q(¢) C K’ := Q(v/(—1)r=1/2p) for T, cf. |5, Lemma 13.5], it follows from (b)
that

o €K', (6.4.3)
In our case, h? € L, and so h? € G. Tt follows that
@(hQ)—lé(gIQ) — BIQ . dlag(Id, O/QId)

belongs to ®(G) and centralizes ®(L). In this case, (6.3.1) shows that o/2 = +1. But

then (6.4.3) rules out the case o> = —1, and so o/ = —1 by (6.4.2). Recalling ®(j) =
+diag(Id, —Id), we now have

®(4g') = £ - diag(®™ (h), @~ (h)),
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whence
w(ig )P = Te(@(ig))* = €(h) +n(h)]* =1,
again contradicting (d). O

Theorem will usually be used in tandem with the following Goursat-like theorem:

THEOREM 6.5. Let p >3 be a prime, f,n € Z>1, ¢ =p’, and let (n,q) # (1,3). Let ® :
L — GL4» (C) be a faithful representation of a finite group L, which is a sum of two irreducible
representations ®¢ of degree (¢™ — €)/2, € = &, that satisfies the following three conditions:
(a) For each e = £, ®°(L) is quasisimple;

(b) For (at least) one value v = =+, there are positive integers n.,a, such that nf =n,a,
and ®7(L) is isomorphic to a quotient of Spy,, (p*); and

(c) For each g € L, |Tr(®(g))|? is a power of q.

Then there is some divisor d of n such that L = Sp,, 4(q), and furthermore ® is a total Weil

representation of L.

Proof. (i) For each € = £, we have that L. := ®¢(L) is quasisimple, with cyclic center
Z(L.) and simple quotient S. = L./Z(L.). Let K. denote the kernel of ®¢. Interchanging e
with —e if necessary, we may assume that v = —. Now we have the exact sequences

+ _
1—>K+—>L¢—>L+—>1, 1K L2y -1

As L_ is quasisimple and K} <1 L, either &~ (K)=L_ or & (K) < Z(L_).
Assume we are in the former case. Then & maps K, isomorphically onto L_, and so
K, = L_. Furthermore, ®~ (L) = &~ (K ), which implies that L = K K_. However,

KyNK_ =Ker(d) =1,
so we must have that L = K x K_. We also have K_ = L/K+ = &*(L) = L. Thus
L:K+XK72L7XL+.

By Burnside’s theorem, ®1(K_)=®*(L) contains some element g¢g_ € K_ with
Tr(®*(g-)) =0. Likewise, ® (Ky)=® (L) contains some element ¢, € K, with
Tr(® (g94+)) = 0. As g € K, acts trivially in ®¢, for g := g1 g_ € L we have

Tr(®(g)) = Tr(9F(g)) + Tr(® (9)) = Tr(®*(9-)) + Tr(®~ (9+)) = 0,

contradicting (c).

We have shown that &~ (K;) < Z(L_); i.e. &~ (h) centralizes ®~ (L) if h € K. Clearly,
d+(h) = 1d also centralizes ®+(L). Thus ®(h) centralizes ®(L), and so h € Z(L) since P is
faithful. It follows that K, < Z(L).

(ii) Recall that L/K_ = ®7(L) = L, is isomorphic to a quotient of Sp,,, (p®”); in particular,
Sy =PSpy, (p*) is a quotient of L. As Ky <Z(L), we see that S, is a non-abelian
composition factor of the quasisimple group Ly = L/K,. It follows that S; = .S,. In the
case S, = PSp,(9), note that, among central extensions of PSp,(9), only quotients of Sp,(9)
can have irreducible representations of degree 4 or 5. Thus in all cases L. are quotients of
SPay, (p*), and we can view @€ as an irreducible representation of Sp,, (p®) of degree
(p*™ —€)/2. Using the well-known character table of Sp,(p®*) when n, =1 and [23,
Theorem 5.2] when n, > 2, we see that each ®° is an irreducible Weil representation of
the quasisimple group 25, = Spy,,_ (p®).
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Without loss of generality, we may assume that deg(®~) is odd, whence ®~(L) = L~ = S,
is simple, and the arguments in (i) show that ® (K ;) = 1. Hence ®(K ) =1, and so K =
1 since @ is faithful. As deg(®") is even, it follows that L = ®*(L) =25, = Sp,, (p*).
Now if these two irreducible Weil representations ®* of L do not come from the same total
Weil representation of L, then for a transvection ¢ € L we have by |24, Lemma 2.6(iii)] that
Tr(®(t)) = 0, again contradicting (c). Hence @[y, is a total Weil representation.

Next, we choose u € L to be a regular unipotent element. Then u acting on the natural
module Fi?} with exactly p® fixed points. Applying to u the well-known character formula
[13] (3.4.5)] for total Weil representations, we then obtain that |Tr(®(u))|?> = p® . Condition
(c) implies that p® is a power ¢? of ¢, and we are done. O

The following statement is well known; we include the proof for the reader’s convenience.

LEMMA 6.6. Let Sy,...,S, be finite non-abelian simple groups. For each i, let m; denote
the projection of S; x Sa X ...x S, onto the i*® component. Let G < S x...x S, be
a subgroup such that m;(G) =S; for all i =1,2,...,n. Then there exists a subset J of
{1,2,...,n} such that G is isomorphic to the direct product [[ ;. ; S;.

Proof. We induct on n, with the induction base n = 1 being trivial. For the induction step
n>2, let Ky := Ker((m)|g) and let K5 be the kernel of the homomorphism

=Ty Xy X ... X7yt G— Sy x Sy x ... XS,

Then K;,K; <G and K;N Ko = 1. In particular, 71 maps K5 injectively onto a normal
subgroup of m(G) = S;. By simplicity, Ko =1 or m(K3) = S;. In the former case, 7' is
injective, hence we can consider G as a subgroup of Ss x S3 x ... x S, and conclude by
applying the induction hypothesis for n — 1.

In the latter case, m(K2) = m1(G), whence G = K1 Ko = K7 X Ky and Ko 2 S7. It also
follows for each i > 2 that m;(K7) = m;(G) = S;. As K7 < S5 x S3 X ...x Sy, we can again
apply the induction hypothesis to K to obtain J' C {2,3,...,n} such that K1 =[], S;.
Thus G = [[;c;S; with J == J U {1}.

The next result generalizes Goursat’s lemma [18] p. 75, Exercise 5]:

PROPOSITION 6.7. Let G be a perfect finite group, and let ® : G — GLy(C) be a faithful
representation that satisfies the following conditions:

(a) ® =@ D; is a sum of n irreducible constituents;

(b) L; := ®,(G) is quasisimple, with simple quotient S; = L;/Z(L;).

Then there is a subset {j1,J2,...,jm} of {1,2,...,n} such that G is isomorphic to a central

product R;, * R;, ... x R; , where each R;, is a quasisimple cover of Sj,.

Suppose that, in addition to (a)—(b), ® also satisfies the following two additional conditions:

(c) Tr(®(g)) # 0 for all g € G;

(d) For any quasisimple subgroup H < G and for any proper subset X C {®1,Ps,...,P,}
with the property that ®;(H) = ®;(G) for all ®; € X, there exists h € H such that
Tr(®;(h)) =0 for all ®; € X. [Note that, by Burnside’s theorem, this condition is
automatic if n = 2.]

Then G is quasisimple.
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Proof. (i) Consider the natural projection
©:Ly X LoX...X Ly — L1/Z(Ly) X Ly/Z(Ly) X ... X L,/Z(L,) =51 X Sy X ... X S,.
Next, ® gives rise to an injective homomorphism
®: g€ G diag(P1(g9), P2(9), ..., Prulg)) € L1 X Ly X ... X Ly.

Then @(i)(G) is a subgroup of S; x Sy x ... x S, that projects surjectively onto each of the n
components. By Lemma there is a subset J := {j1,72,...,dm} of {1,2,...,n} such that
OD(G) = S, x Sj, x...x 8 .

Let Z := Ker(©®). Then ®(Z) < Z(L1) x Z(Ls) X ... x Z(L,) and so centralizes ®(G). As

® is faithful, Z < Z(Q).
We have proved that there is a surjective homomorphism

X:G =855 x5, x...x8;

Im

with kernel Z < Z(G) (in fact, the simplicity of S; for all j € J then implies that Z = Z(G)).
Let j € J and set R; := ©~1(S;), Rj == R§°°). Then it is easy to see that

E(R;) =85 =X(R;)

and so R; = ZR;. This in turn implies that R;/(Z N R;) = R;/Z = S;, whence R; is a
quasisimple cover of S;. Since Rj <G, we also have that R; < G. Consider any i € J with
i # j. Then ¥(R; N R;) =1 and so R; N R; < Z. In particular, [R;, R;] < R; N R; centralizes
R;. It follows from the Three Subgroups Lemma that [R;, R;] = [[R;, R;], R;] is in fact trivial.
This implies that R; R,, ... R;,  is a central product. Next,

Y(ZRjRj,...Rj,) =S5 xSj, x...x8; =3G),
implying G = ZRj, R;, ... Rj,,. As G = G it follows that
G=R;R;,...R;,,=Rj, *Rj, *...xRj_. (6.7.1)
In particular, the first statement of the proposition follows.
(ii) For the second statement, note that, by , for each 1 < i < n we can express
o, =V, KV, K. KT,

as an outer tensor product of ¥, € Irr(R;,), 1 <k <m. It follows that L, = ®;(G) is a
central product W;1(Rj,)* ¥;2(R;,) *...* ¥, n(R;,,) of (normal) subgroups. Since L; is
quasisimple and since each R;, is also quasisimple, we conclude that all but one ¥, ; are
trivial, say for all k # k;. This implies that

L= CI)Z(G) = \Iliyk:i (RkL) = ¢Z(sz>

On the other hand, the faithfulness of ® implies that each R; with j € J must be acting
nontrivially in some ®;. So we can partition {®1, ®3,..., P, } into a disjoint union

XiUuXUu...ukx,
of non-empty subsets such that for each 1 <t¢ < m and for all ®; € A} we have
Li = 3,(G) = ®,(R,,) (6.7.2)

but ®,;(R;) is trivial for all j* € J ~ {j:}.
Now if m = 1, then G is quasisimple, as stated. Suppose m > 2. Then R;, is a quasisimple
subgroup of G, and |X;| <n — 1. By (6.7.2) and assumption (d), there exists z; € R;, such
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that Tr(®;(x¢)) = 0 for all &; € X,;. Setting g := x1x9 ... x4, we see that
Tr(®i(g)) = Tr(®i(z)) =0
for all ®; € X;. It follows that Tr(®(g)) = > ., Tr(®;(g)) = 0, contradicting (c). O

7. Going-up and going-down

First we prove the following going-up result. (Notice the difference between this and
Theorem in the latter we assumed that L is a normal subgroup of G.) Usually, we
apply this result with (G, e) = (G, 1), in which case condition (e) is equivalent to (d).

THEOREM 7.1. Let ¢ = p’ be a power of a prime p > 2, n € Z>1, and let H := Sp,,,(q)
with ¢" > 9. Suppose that ® : G — GLg(C) is a faithful representation of a finite group
G > H with the following properties:

(a) ® is a sum of two representations, ®* of degree (¢" — 1)/2 and ®* of degree (¢ —1)/2;

(b) For all g€ G and ¢ =+, Tr(®%(g)) € K, where K=Q if p=3 and 2|f, and K =
Q(/(=1)»=1)/2p) otherwise;

(¢) ®€¢|y is irreducible for each e = +; and

(d) For some subgroup G < G that contains G(*), |Tr(®(x))|? is always a power of q for all
xeq.

(e) There exists some divisor e of f such that |Tr(®(y))|? is always a power of q'/¢ for all
y € G. Ife > 1, assume in addition that there exists some g € G such that |Tr(®(g))|? =
¢/¢ and that, if p = 3 then pt|det(®<(G))| for e = +.

Then H <G, G = Cg(H)H and Cg(H) = Z(G) = C x Z(H), where Z(H) = (j) = Cy, and

either

(i) C=1or Cy, or

(ii) e =1, p =3 divides | det(®(G))| for each e = +, 2t f, and C € {C3, Cs}.

Moreover, G induces a field automorphism of order e of H, and G/Cg(H) = PSp,,,(q) x C..

Proof. Let L := G = G(*), Since H is perfect, L > H, and so ®¢(L) contains ®¢(H),
which in turn contains ®¢(H;) with H; = SLa(¢™) a subgroup of H. Since L is perfect, ®¢(L)
lands in SL(gn1)/2(C). Now, applying [13, Theorems 4.1 and 4.2] to ®° : L — SL4n¢)/2(C),
for each e = £ we obtain a pair (n., a.) with nf = nca. and ®¢(L) is isomorphic to a quotient
of Spy,, (p?). By Theorem L = Spy,, /4(¢%) for some divisor d|n. But L > H = Sp,,(q),
hence H = L by order comparison. Thus H <1 G, and the statements about G and Cs(H)
follow from Theorem and Lemma We are also done if e = 1 (by taking G = G).

Consider the case e > 1. Since no outer-diagonal automorphism of H can preserve the
equivalence class of ®¢|fr, G can only induce inner and field automorphisms of H, whence there
exists some €’|f such that G/Cx(H) = PSp,, (¢) x Cer, where the subgroup C, is generated

by the field automorphism ¢ induced by the Galois automorphism x — qu/d. By Lemma
we may embed H in I' := Sp,,,;(p) and extend ® to a total Weil representation I' — GLgn (C).
As noted in |14} §3], there is a standard subgroup

H= Spa,(q) @ Cer

of I' with [H, H] = H that induces the same automorphism subgroup of H as the one induced
by G. In particular, for any element z € G, there is an element * € H such that conjugations
by x and z* induce the same automorphism of H. By Schur’s lemma, for each € = + there is
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ae(x) € C* such that

O¢(z) = a.(z)P(x"). (7.1.1)
Note that C;(H) = Z(H) = (j)C2, so * is unique up to a power of j. We will show that
a_(z), a4 (z) € {1, —-1}. (7.1.2)

Indeed, as H is contained in the perfect group I', det(®¢(z*)) = 1. Now, by assumption (e),
e ()" =92 = = det(awe (z) @ (%)) = det(D(x))
has order coprime to p when p = 3. Thus
p1|ac(z)| when p = 3. (7.1.3)

Next, by [7, Lemma (8.14)(c)], since ®¢|g is irreducible, for each € = + there is some y, =
hex € Ha such that Tr(®¢(y.)) # 0. Then, by the above remark, if y* is chosen to fulfill (7.1.1])
for y., then it is equal to h.z* up to a power of j. As ®¢(j) = £Id, we have

P (he)P () = P(Ye) = e (Ye) P (y7) = e (ye) @ (her™) = Eae(ye) P (he) (7).
Comparing this to (7.1.1]), we obtain a.(z) = *a.(y.). On the other hand, taking traces, we
see that

0 # Tr(P°(ye)) = ve(ye) Tr(2(y7)),

and furthermore, Tr(®¢(y.)) € K; := Q(1/(—=1)®=1/2p) by (b) and Tr(®c(y’)) € K; by [5,
Lemma 13.5] applied to Weil characters of I' = Sp,,, ;(p). It follows that ae(x) = tac(ye) is a
root of unity in K;, whose order is coprune to p when p = 3 by (7.1.3)). Hence ([7.1.2)) follows.

Now, if a_(x) = a4 (z), then 1) implies that ®(z) = a4 (x )<I>(:c ); set «f := x* in this
case. If a_(z) = —a4(z), then takmg 2% := jo*, we again have that ®(z) = +a (z)®(z?).
Thus in all cases, given any x € G, there is (a unique) x* € H such that

®(z) = +®(«*), and conjugations by z and z* induce the same automorphism of H.
) (7.1.4)
Applying this result to the element g € G in (e), we see that |Tr(®(g%))|> = ¢*/¢. By [14,
Theorem 3.5, q'/¢ is a power of ¢'/¢".

Again by |14 Theorem 3.5], H contains an element h such that |Tr(®(h ))|2 ¢ Since
H and G induce the same automorphism subgroup of H and since Cy(H by -
there exists some k € {0,1} and some s € G such that j°h = st. Also by (7.1.4] -,

©(j%s) = ()0 (s) = £ (5")2(s") = £ (5") (") = £8(5")(h) = £&(h),
in particular, |Tr(® (4" ))|2 ¢"/¢". But §"s € G, hence ¢!/ is a power of ¢*/¢. We conclude
that ¢1/¢ = ¢V/¢, ie. e = ¢, as stated O

Next we prove a going-down result:

THEOREM 7.2. Letp > 2 beaprime, N € Z>1,p > 13if N =1, and (p, N) # (3,2), (3,3),
(5,3). Consider a total Weil representation ® : I' = GL,~ (C) of I' := Sp,x (p) and extend it
to

$:T:=CxT — GL,~(C),

where C' is a finite cyclic group and acts faithfully via scalars in ®. Suppose G is a subgroup

of T' with the following properties:

(a) Each of the two irreducible components ®¢, of degree (p" —¢€)/2 for e = £, of ® is
irreducible over L := G(*) with ®¢(L) being quasisimple; and



Page 40 of NICHOLAS M. KATZ AND PHAM HUU TIEP

(b) There exists a power ¢ = p/ such that |Tr(®(z))|? is a power of q for each x € G.
Then f|N, and there exist a divisor d of N/f and a divisor e of d such that

Spanya () = L <G < O x (Spawygr(a”) x Ce) = CG,

with the subgroup Spy /47 (¢%) % Ce identified in T as in [13, §4], and G inducing a subgroup of
order e of outer field automorphism of L. Moreover, if there exists g € G with |Tr(®(g))|?> = q,
then e = d.

Proof. Note that L <T and ®(T") < SL(,~_¢)/2(C) since T' is perfect; furthermore, for
all x € T’ we have Tr(®¢(z)) € Q(+/(—1)®P=1)/2p), cf. |5, Lemma 13.5]. By [13, Theorem 4.7]
applied to the irreducible subgroup ®~ (L) of SL(,~ 1 1y/2(C), one of the following must occur:

(i) There is a factorization N = AB, a divisor b|B, and a standard subgroup H :=
Spya(pP) x Cp of T such that @~ (L) = &~ (H).

(ii) p=3, 2¢ N, and ®~ (L) contains SUy(3) as a proper normal subgroup of 2-power
index.

As &~ (L) is perfect, (i) must hold and moreover b = 1. In particular, L projects onto the
simple group PSp, 4 (p?). Applying Theorem we conclude that there exists some d € Z>1
such that

B=df, N=AB= Adf,

and L = SpQN/df(qd); in particular, f|N and d|(N/f). Using the equality ®~ (L) = &~ (H)
and the inclusion Ker(®~)NT < Z(T") = Z(H), we see that L = H. Thus L is the standard
subgroup Sp, 4 (p?), with normalizer C' x (Sp,y4(p?) % Cp) in T, that induces the full group
(of order B) of outer field automorphisms of L.

Since L <« G < N (L), there is some e|B that G induces a subgroup C. of outer field
automorphisms of L. As C(L) = Z(L)C, in this case we have

G < C x (Spanyar(q?) x Ce) = CG.

By (14, Theorem 3.5], we can find h € Spyy/qr(q 1) % C, such that |Tr(®(h))> = pB/c. As
h € CG, we can find z € C such that zh € G. Bu t ®(C) is scalar, so

Tr(@(g))* = [Tx(®(h)|* =

and condition (b) implies that e|d.
Assume now that |Tr(®(g))|? = ¢ for some g € G. Then g = z1h; for some z; € C' and
h1 € Spanyar (¢%) x C,. This again implies that
Te(@(h))? = [Te(@(9))* = p’.

By [14, Theorem 3.5], p/ is a power of pP/¢, i.e. B/e = df /e divides f, and we conclude that
e = d in this case. |

8. Local systems and total Weil representations: Symplectic groups over I,

Fix a prime p > 2 and N > 3. In this section, we will work with the local system G%7"-%¢
on G, x A3/F, whose trace function is given as follows: for k/F, a finite extension, and
(u,r,8,t) € kX x k3,

(u,r,8,t) = Gauss(1,., X2) 1/} Zﬁ’ 12,6 (= ug?" g T gt 4 2,
auss(¥y,, x2) £
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and its various specializations, say G1'"%? obtained when we take u =1, s =0, and t = 0.
Then Gzrftﬁi and Gyomt denote the arithmetic and the geometric monodromy groups of
Gwnst respectively. We use the same notation for various specializations, e.g., G;}ﬁ%% and
G;;;;g;o denote the arithmetic and the geometric monodromy groups of G100, respec%ively.

By Theorem all these monodromy groups are finite.

THEOREM 8.1. Over any finite extension k of I, the following statements hold.
(i) The geometric monodromy group G, L%t of G=1.0:5t equals L = Spyy(p) in one of its

geom
total Weil representations. If 2| N, then we also have chlo’%s’o = L. Furthermore,
—1,r,8,t —1,r,s,t
00 x L = Garith,k > Ggem:ls > L,

where Cy is a cyclic scalar subgroup, and either |Cy| < 2, or p =3 and |Cy| divides 6.
Moreover,

_ u,rs,t u,r,s,t
OxXL=Gn, =G > L,

geom

where C' is a cyclic scalar subgroup, and either |C’L: 1,2, or p = 3 and |C| divides 6.
(i) Assume 24 N. Then each of G5%° and GZr’ilt’l?:k contains the normal subgroup L =
Spon(p) acting in one of its total Weil representations, and furthermore, is equal to

C' x L for a cyclic scalar subgroup C’ of order < 2.

Proof. (i) First we choose k to contain Iz, so that any element of F’ is a square in k. In
this case, Gauss(vx, x2) = Gauss((Ya)r, X2) for any 1 : t = (at) with a € F)\ as defined in
(3:11.1). It follows that G~ is the local system Wa_.uum (¥—1/2, N, p) introduced in [14,
§4] when 2 1 N and in |14, §9] when 2|N. Hence G52t = L by |14, Theorems 4.3 and 10.3].

geom

Similarly, when 2| N, we have G 1% = L by [14, Theorem 10.6].

geom
) . —1,0,s,t : —1,0,8,t _
Now we return to work with any extension k of1 Igp. Then G ;1)) contains Ggegn®" = L
T,8,t ,0,s8,t

as a normal subgroup. Since G Lrst contains Gy and is finite (with x =arith or geom),
applying Theorem and the second moment two result (Proposition , we see that the
second statements in (i) follows from Theorem (with G =G =G, """ and H=1L =
Span(p)). The same argument also applies to G&™".

(ii) Let @ : G:rftflz = CL — GL,~ (C) denote the corresponding representation of G:rftflz
acting on G¥™%¢. Note that CL = C x L by (i). Next, by Corollary ® is a sum of two
irreducible representations ®¢ of degree (p”¥ — €)/2, € = +.

Now we aim to determine G := Ggéé}?;o < CL, which is irreducible in both ®¢ by Proposition
Recall that each of the two irreducible summands of G*%0 is the Kummer pullback by
u s u?t, A= (p?+1)/2, of one of the two irreducible hypergeometric summands H%1:0:0¢
of rank (pV —¢€)/2, e= 4, which both satisfy (S+) by Proposition m [These two
hypergeometric sheaves were denoted by Hsmaii, 4,B,descent a0d Hpig A, B,descent i Corollary
with (A, B) := ((p* +1)/2, (p" +1)/2).] Hence we can apply [6, Proposition 2.8] to its
geometric monodromy group ngv});gvo’f which is finite.

Consider some € = £ and assume we are in the extraspecial case of [6, Proposition 2.8(iii)].
Then (pV —€)/2 = (p1)™ for some prime py, and H%L0:%¢ contains a normal p;-subgroup
Py that acts irreducibly on the sheaf H*1%9%¢ As N > 3 is odd, p; { A. On the other hand,

ch’})}g’o’s is a normal subgroup of ch’é;g’o’ﬁ of index dividing A. It follows that

Py G GLim™e = 04(@).

Recall that G < CL = C x L with L = Sp,x(p). Since (p — €)/2 = (p1)™, we see that Sylow
pi-subgroups of L are abelian (in fact cyclic). Hence Sylow pi-subgroups of G are abelian,
and so P; is abelian. But this contradicts the irreducibility of P, on H® 100,
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Thus we have shown that H%L%0 is almost quasisimple for each e = +. Using property
(S+) and |6, Lemma 2.5], we then have that ®¢(G(>)) is a quasisimple irreducible subgroup
of SL,~ _¢)/2(C). Furthermore, G(*>) < (CL)*™) = L = Spyn(p). By Theorem there are
some divisors d|N and e|d such that G(>) = SpQN/d(pd) x Ce, whence e = 1 by perfectness.
(Note that Theorem [7.2| assumes p > 5 when N = 3. However, when N = 3, since |H!,0-0<|
is divisible by (p® — €)/2 for each € = +, it is easy to see that |G(>)| is divisible by 13 - 7 when
p =3 and by 31 - 7 when p = 5. Using the list of maximal subgroups of Spg(p) |3, Tables 8.28,
28.29], we see that the same conclusion holds for p = 3,5.) In particular, H;‘r’ilt’h_’,g’6 > Hgéé;g’o’e
contains the normal quasisimple subgroup ®¢(Spyy /d(pd)). It also contains (the image) of the
inertia subgroup 1(0), which has a cyclic p’-subgroup (h) of order divisible by (p™¥=2 —1)/2
that cyclically permutes the (p’¥—2 — 1)/2 irreducible P(0)-submodules of dimension p? by
Proposition [£.12]

Next we choose ¢y = £ such that Dy := (p" —€p)/2 is even. Since no outer-diagonal
automorphisms of Sp, N/d(pd) can preserve the Weil representation @EO(SpQN/d(pd)) up to

equivalence, by Schur’s lemma we have

SPan/a(P?) < Huii ™ < Newp, © (SPan/a(®?)) < (Span/a(@?) - Ca) Z, (8.1.1)

where Z = Z(GLp, (C)).

Consider the case N > 5. Then p™V =2 — 1 admits a primitive prime divisor ¢ by [26], which
is either equal to N — 1 or at least 2(N — 2) + 1 > N. In either case, ¢ is coprime to N but
divides |h|. Let hy denote the ¢-part of h. Now using £1d and 7 we see that hg €
Spon /d(qd)Z . Since hg acts nontrivially on the set of (p” =2 — 1)/2 irreducible Py-submodules
in Hw100:< we conclude that hg ¢ Z and ¢ divides |Sp2N/d(pd)\. Thus there exists 1 < ¢ <
N/d such that ¢|(p*>¥ — 1), whence N — 2 divides 2id by the choice of £. As 24 N >5, it
follows that N — 2 = id. Hence d divides both N — 2 and N, and we conclude that d = 1.

Next we consider the case N = 3 but d > 1. Then d = 3. Let @ denote the image of P(0) in
H “’iltﬁ’lg ' Then shows that @ has a normal subgroup @ of index dividing d = 3, where

N

ar

Q1 € Syl (Spy(p?)Z) is abelian. It follows from Ito’s theorem (7, (6.15)] that any irreducible
CQ;-module has dimension dividing 3. But this contradicts the fact that P(0) possesses an
irreducible submodule of dimension p? on H®1:0:0:¢0,

Thus we have shown that d = 1 and so G(>) = Spyy(p) = L. Clearly, G(>) is a normal
subgroup of each of G500, G:;ilt’}?:g. Furthermore, by Theorem det(H, sr’iltﬁ’g ‘) has order
a 2-power (dividing 4; note that we use the oddness of p here to deduce the normality of
arithemetic monodromy groups of [2]* pullbacks). It follows that det(®€ (szlt}?,?)) is also a
2-group. The statement now follows from Theorem ]

For later use, in the case N > N’ > 2, we also need to consider the local system G”"* on
A*/F, whose trace function, for k/F, a finite extension and (v,r,s,t) € k%, is given by

1 ’
Zw—l/lk (a:pN'H + pzP Tl + rgP 1 + szPtl 4+ tmz).

(v,r,s,t) m» —————
Gauss(wka X2) z€k

Sv,7,8,t ~ . . . s
Let Gy, and Gt denote the arithmetic and geometric monodromy groups of G,
respectively.

THEOREM 8.2. Over any finite extension k of IF,, we have
S — (viTsit ~v,r,8,t
Cx L=Gin = Geeom > L,

geom

where L = Sp,y (p) in one of its total Weil representations, C is a cyclic scalar subgroup, and
either |C| = 1,2, or p =3 and |C| divides 6.
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Proof. Note that QO 05t is the local system G~ 1:0%* considered in Theorem 8.1} Hence,

L8t

G:r:t; k > Ggegri]t > G 1 0 ot = = Sp2N(p)'
Again by T heorem both Gzrftfltk and chg;t are finite. Using Propositionand Theorem
we now see that the statements follow from Theorem [7.1] O

9. Local systems and total Weil representations: Symplectic groups over F,

We continue to work with the prime p > 2, and fix a power ¢ = p/ and positive integers
n, m, where

n>m, ged(n,m) =1, 2lmn, ¢" > 9, and either m < n/2, or (n,m) = (3,2), (2,1).
(9.0.1)
This assumption implies that
ged(¢"+1,¢m+1) =2. (9.0.2)
For compatibility with the notations used in §4, we recall that precisely one of n, m is even,
and we define the integers A, B as follows:

L[ (@ 1)/, (@ 1)/2), i 2n,
(4,B) = { E(Zm +1)/2, ggn n 1)/2%, it 2/m. (9.0-3)

In this section, our ultimate target is the local system W(1, n, m, q) on Al/IFp, whose trace
function for k/F, a finite extension and r € k is given as follows:

re — Y_q Qk anH + rzd" ). (9.0.4)
G 2 )

To study W(¥, n,m, q), we first study the local system WU on Gy X A'/F, whose trace
function is given as follows. For k/ F, a finite extension, and (u,r) € k* x k,

(uyr) » ——————— Z¢ 12, ( —uz? - ra:q"LH).

Gauss( 1/)1“ X2) ek

By Proposition and (| - WU is the sum of two irreducible subsystems of rank (¢"
) /2. Let Gar {th & and G’ denote the arithmetic and the geometric monodromy groups of

W and similarly, Garlth , and G’g‘e’;ﬁl denote the arithmetic and the geometric monodromy

geom

groups of each of the two irreducible subsystems W“’T’i of rank (¢"™ —€)/2 for e = £.

Now, let W(n,m) denote the local system defined as follows. When 2|n, i.e. when A > B
in , it is the local system WW™1" on Al /Fp, that is, the one with trace function given
as follows: for k/IF, a finite extension, and r € k,

re Z¢ 1o (27T =T,
Gauss(¢k,xg =

When 24 n, i.e. when A < B in (9.0.3)), it is the local system w1 on Gy, /Fp, with trace
function given as follows: for k/IF a finite extension, and u € k*,

U ————-r ZT/J 1/2k uz? 4 qm'H)

Gauss( 1/%7 X2) ek

For e = 4, let W(n,m, €) denote the irreducible subsystem of W(n,m) of rank (¢ — €)/2. By
Corollary [1.8 W(n, m,€) is the [A]* Kummer pullback of the hypergeometric sheaf H(n, m, €)
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defined by

— —d
H(?’L, m, +) = Hsmall,A,B,descent ® (—Gauss(l/% X2)> ega

Yox2)) (9.0.5)
H(na m, _) = Hbig,A,B,descent ® (—Gauss(¢, X2)> d g-

Let G(n, m)arith,ka G(n, m)gcorrn G(n, m, E)arith,k, G(n; m, 6)gcoma H(TL, m, 6)arith,ka and
H(n,m, €)geom denote the arithmetic and geometric monodromy groups of the local systems
W(n,m), W(n,m,e), and H(n,m, €), respectively. The pullback relation implies that Ggeom <
Hgeom and the quotient is a cyclic group of order dividing A, for a pair of respective geometric
monodromy groups Ggeom and Hgeom-

THEOREM 9.1. Given the assumption , and over any finite extension k of Fy,
the following statements hold. Each of G(n,m)geom and G(n,m)aritn,; contains the normal
subgroup M = Sp,,,(¢q) acting in one of its total Weil representations, and furthermore, is of
the form C’ x M for a suitable cyclic scalar subgroup C’ of order < 2.

Proof. (i) Write ¢ = p/, define N := nf, N' :=mf, and choose x := 1if 2|N and x := 2 if
2t N. First we consider the local system W*™* on G,,, x A2/ IF,,, with arithmetic monodromy
group Gdrlth » and with trace function given as follows: for (u,r,s) € k* x k2,

1 n m K
(uyr,8) = ————— % o p(—uz? TH—pp? T4 ggP
Gauss(z/;k, X2) Z]:g 2 )

pN+1 PN 41 P41
E P_ 1/2k ux —rr + sx )

Gauss wk,xg i

When 2| N, the system W10 at 4y = 1 and 7 = 0 is exactly the system G~ 10,50 considered in
L1kew1se when 2 4 N, the system Wu0l at r =0 s exactly the system G100 ‘considered
in §8 It follows from Theorem [8.1| (applied to WLOs | respectively W0 1) that ( antfl L))
contalns L = Spyy(p) acting in one of its total Weil representatlons
By Theorem the sheaf W%™* and its various specializations satisfy the p-power
property for the entire sheaf and the property of having all traces belonging to K for the
two irreducible subsheaves. Moreover, their monodromy groups satisfy the second moment
2 property, as follows from Corollary 2.7] In the subsequent arguments, we will repeatedly
use these properties without recalling them explicitly again. Now, Theorem [7.1] [7.1] applied to
i > Ly with (G, G, H, e) = (G i Giione L 1), vields that
Glrs =0 x L, (9.1.1)

arith,

where C' a cyclic scalar subgroup, and either [C| = 1,2, or p =3 and |C| = 3, 6. B

Let @ : G:r;ﬁ r = CL — GL,~(C) denote the corresponding representation of Gy
acting on VA *_ which is a sum of two irreducible representations ®¢ of degree (p™¥ — ¢€)/2,
€=*.

(ii) Given the information about respective cyclic quotients, we see that the groups
G(n,m)geom and G(n, m)arien,kx have a common last term M of their derived series:

M = (G(n7m)geom)(oo) = (G(nam)arith,k)(oo)~
As G(n,m)arith k. < G5 it follows from (9.1.1) that

arith,k’

M < L = Spyn(p). (9.1.2)
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Recall from (9.0.5) that each of the two irreducible summands W(n,m,¢€), e = %, is the
[A]* Kummer pullback, with

A= (¢"+1)/2 when 2|n and A = (¢"™ +1)/2 when 2 { n, (9.1.3)

of the irreducible hypergeometric sheaf H(n, m, €) of rank (p™ — €)/2, which satisfies (S+) by
Proposition Hence we can apply [6l, Proposition 2.8] to its geometric monodromy group
H(n,m, €)geom which is finite.

Assume we are in the extraspecial case of |6, Proposition 2.8(iii)] for some € = . Then
(¢" — €)/2 = (p2)* for some prime p, and some a € Z>1, and H(n,m, €)geom contains a normal
po-subgroup P, that acts irreducibly on the sheaf H(n,m,¢€). Assume in addition that e = +
when 2|n. Then recalling and , we easily check that ps t A. On the other hand,
G(n,m, €)geom is a normal subgroup of H(n,m, €)geom of index dividing A. It follows that

Py < G(n,m, €)geom = P(G(n,m)goom) < (Guilir -

Now using and the equality (pV —€)/2 = (p2)?, we see that Sylow py-subgroups of
G;‘r;ﬁ . are abelian. Hence Sylow py-subgroups of G(n,m, €)geom are abelian, and so Ps is
abelian. But this contradicts the irreducibility of Py on H(n,m,e).

We still assume the extraspecial case, but now with e = — and 2|n. Then A = (¢" +1)/2 =
(p2)®. Again, G(n,m, —)geom i a normal subgroup of H(n,m, —)geom of index dividing A,
and

G(n,m, —)geom = P~ (G(n, M) geom) < @‘(é:r’;’;k).

Now using and the equality (pVV + 1)/2 = (p2)?, we see that Sylow pg-subgroups of
Giiin . are cyclic of order (p2)?. Hence @y := P N G(n,m, —) geom <I Py is cyclic of order say
(p2)® with 0 < b < a, and P»/Qs is a cyclic group of order dividing A. Note that Aut(Qz) is
trivial if b = 0 and is cyclic of order (p2)®~!(py — 1) if b > 1. As b < a and Py/Ry — Aut(Q2)

for Ry := Cp,(Q2) < P2, we have
|P2/Ra| < (p2)* " (9.1.4)

Next, Ro/Q2 < P5/Q2 is cyclic, and Q2 < Z(Rs). Hence R is abelian. This, together with
(19.1.4), implies by Ito’s theorem |7}, (6.15)] that any irreducible CPs-module has dimension
at most (p2)®~!. But this again contradicts the irreducibility of Py on H(n,m,—).

(i) Thus we have shown that H(n,m,€)geom is almost quasisimple for all € = . Using
property (S+) and [6, Lemma 2.5], we then have that ®¢(M) is a quasisimple irreducible
subgroup of SL(,~ _¢)/2(C), and, furthermore, M < L = Spyy(p) by (©.12). By Theorem
there are some divisors d of n = N/ f and e of d such that M = szn/d(qd) X C¢, whence e = 1
by perfectness. [Note that Theorem assumes p > 5 when N =3 and p > 3 when N = 2.
However, when N = 3, the statement follows from Theorem [8.I[i) and (iii); and the case
(p, N) = (3,2) is excluded by the assumption ¢" = p" > 9.] In particular, H(n,m, €)arith k >
H (n,m, €)geom contains the normal quasisimple subgroup ®(Sp,,/4(¢%)). By Proposition
it also contains (the image) of the inertia subgroup I(¢), which has a cyclic p’-subgroup
(h) of order divisible by (¢"~™ — 1)/2 that cyclically permutes the (¢"~™ — 1)/2 irreducible
P(6)-submodules of dimension ¢, where § := oo if 2|n and § := 0 if 2 t n.

Next we choose ey =+ such that Dg:= (¢™ — €p)/2 is even. Since no outer-diagonal
automorphism of Spy, /4(¢?) can preserve the Weil representation <I>€°(Sp2n/d(qd)) up to
equivalence, by Schur’s lemma we have

SPan;a(q?) < H(n,m, €0)aritn k. < NaLp, € (SP2n/a(4?) < (SPansale?) - Cap)Z,  (9.1.5)
where Z = Z(GLp, (C)).
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Consider the case n — m > 3; in particular, m < n/2. Then ¢"~™ — 1 = p(n=m)f — 1 admits
a primitive prime divisor ¢ by [26], and either £ = (n —m)f + 1 or

0>2f(n—m)+1>N =nf.

Clearly, ¢ 1 df in the latter case. In the former case, if f > 2 we have ¢ > 2(n —m) > n > d and
£1 f, whence £t df. On the other hand, if f = 1 in the former case, thenn/2 < £{=n—m+ 1,
so £|df would imply £ =n =d, m =1, 2|n, and so n — m = 1, a contradiction. Thus ¢t df in
all cases, but ¢ divides |h|. Let ho denote the ¢-part of h. Now using £{ df and (9.1.5)), we
see that hg € Spy, /d(qd)Z . Since hg acts nontrivially on the set of (¢~ — 1)/2 irreducible
P(§)-submodules in H(n, m, €y), we conclude that hg ¢ Z and so ¢ divides |Sp2n/d(pdf)\. Thus
there exists 1 < < n/d such that ¢|(p*¥ — 1), whence n — m divides 2id by the choice of .
Asn—m >n/2 and n —m is odd, it follows that n —m = id. Hence d divides both n —m
and n. Since ged(n,m) =1 by , we conclude that d = 1.

Next we consider the case n —m < 3 but d > 1. Then (n,m) = (3,2) or (2,1), and d = n.
Let @ denote the image of P(d) in H(n,m, €)arith,k- Then shows that @ has a normal
subgroup @ of index dividing nf, where Q1 € Syl,(Spy(q™)Z) is abelian. It follows from
Tto’s theorem [7), (6.15)] that any irreducible CQ;-module has dimension dividing nf. But
this contradicts the fact that P(§) possesses an irreducible submodule of dimension ¢™ = p™/f
on H(n,m,e€).

Thus we have shown that d =1 and so M = Sp,,,(q). Clearly, M is a normal subgroup
of each of G(n,m)geom, G(1, M)arith, k- Furthermore, by Theorem det(H (n, m, €)arith,k)
has order a 2-power (dividing 4; again, we are using the oddness of p here). It follows that
det(®(G(n, m)arith,k)) is also a 2-group. The statement now follows from Theorem O

The first main result of this section is the following theorem describing the monodromy
groups of the local system W(y, n, m, q) defined in (9.0.4)).

THEOREM 9.2. Given the assumption , the following statements hold.
(i) Let k be any finite extension of F,. Then the geometric monodromy group
Ggeom (¥,n,m,q) and the arithmetic monodromy group Gavign(¥,n,m,q,k) of
W(,n,m,q) on Al /k are

Ggeom(w7 n,m, q) = Ma Garith(wv n,m,q, k) = Carith,k X Mv

where M = Sp,,,(q) acts via one of its total Weil representations, and either Caith,x < C2,
or24nf, p=3, and Cayithx < Cs.

(ii) Let e|f and let k =TF /. be a subfield of Fq. Then on A'/k the arithmetic monodromy
group Garign(¥,n,m,q, k) of W(3,n,m,q) contains Gaien(¥,n,m,q,F,) as a normal
subgroup of index e:

Garith(d}a n,m,q, k) = (Cﬁrithan X M) ’ Ce’

and induces a subgroup of order e of outer field automorphisms of M = Sp,,,(q).

Proof. (i) In the case 2|n, W(¢,n,m,q) is the pullback by [r+— —r] of W(n,m),
and the statements are already proved in Theorem using the extra information that
Ggeom (¥, m,m, ¢) has no nontrivial p’-quotient.

Consider the case 2 {n. Then, the Kummer pullback

K= [qm + 1}*W(¢7nam7 q)
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of W(v¢,n,m, q) has trace function at r € k*

1 n m
| w71 2,]{7 l‘q +1 + (r.’l;)q +1
Gauss(ipk,xg) g 2k )

b_yyop((rta) H 2
Gauss wka X2) % / )
on G, /k.

On the other hand, if we define

W' (n,m) := [u— —u]*W(n,m),
and define
K= [u 1/u]*[¢" + 1]"W' (n,m),

then K’ has trace function at u € k&~

1 n m
_— w,l 2,k (U_l.f)q +1 +$q +1 .
Gauss(¢y,, X2) ; 2 )

Thus K’ is arithmetically isomorphic to X, because they have equal trace functions and are
each arithmetically semisimple. So they have the same geometric and arithmetic monodromy
groups as each other:

! !
Kgeom = K Karith ke = Korigh k-

geom?

From the definition of K’ as a pullback, we see that K. ! = Kyeom is a normal subgroup of
G(n,m)geom, With cyclic quotient. It follows from Theorem - that

M = (G(nam)gcom)( ) S Kgcom < G(nam)gcom - C'0 X Ma

for some cyclic scalar subgroup Cy. Hence (ngom)(oo) = M. From the definition of K as a
pullback, we see that Kgeom is a normal subgroup of Ggeom (¢, 7, m, ), with cyclic quotient,
and that Garitn (¥, n, m, ¢, k) /Ggeom (¥, n, m, ) is cyclic. This in turn implies that

(Garith (¥, 1,m, 4, k) ) = (Ggeom (¥, 1,m, 0)) ) = (Kgeom) ™ = M, (9.2.1)

where M = Sp,,,(q) acts on W(, n,m, q) via one of its total Weil representations.

Note that the arithmetic monodromy group Kk of K is a subgroup of G(n,m)arith k
containing M. Hence, by Theorem Kovith /M is a 2-group. Next, Kgeom 1S @ normal sub-
group of Ggeom (¥, 7, m, ), with cyclic quotient of order dividing ¢ + 1 which is coprime to p.
It follows that p 1 |Ggeom (¥, n,m,q)/M|. As Ggeom (¥, n,m, ¢) has no nontrivial p’-quotient,
it follows from that Ggeom (¥, n,m,q) = M. The statement for Gaien(¥,n,m,q,k)
now follows by applying Theorem (guaranteeing the necessary properties on traces) and
Theorem [6.4

(ii) It suffices to consider the case ¢ = p/ > p. By assumption, I, is an extension of degree
e of k. Hence, Gayith (¥, n,m, q,Fy) is a normal subgroup of G := Gapien (¥, n,m, ¢, k), with
cyclic quotient of order dividing e. In particular, it follows from (i) that

é(oo) =M= Spgn(q)7 |é‘ < €|Garith(¢a n7va7Fq)|' (922)

On the other hand, if mf > 2, note that W(i,n,m,q) is precisely the sheaf G000 (over k)
considered in Theorem with (N N') = (nf,mf), whence G is a subgroup of

~T,0,8,t
Garlthk CXL’

with L = Spyn(p) acting via one of its total Weil representations, and C a finite cyclic
subgroup. If mf =2 (and so (m,f)=(1,2)), then W(¢»,n,m,q) is the sheaf G—170.0
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considered in Theorem with N = nf, whence G is a Subgroup of T := G:rlrtﬁf{ =CxL
with C' a finite cyclic subgroup. Now we can apply Theorem i) to W(i, n, m, q) to see that
|Tr(®(x))|* is a power of q/¢ for all z € G, and ¢'/* can be attained, if ® : G — GLn (C) is
the representation of G on the sheaf W(p,n,m,q). By Theorem. there exists some divisor
d of N/(f/e) = ne such that

Sp2ne/d(qd/e) < é <O x (Sp2ne/d(qd/e) X Cd) = Cé

Recalling ([9:2.2), we now see that d =e, and that G induces a subgroup of order e of
outer field automorphlsms of M. As Gamh(d), n,m,q,Fq) = Caritn,r, X M induces only inner
automorphisms of M, (9.2.2)) implies that G = Garith (¥, n,m, q,F ) C., as stated. ]

In fact, the central factor Cyyien k in Theorem|9.2[(1) will be explicitly determined in Theorem
9.4l

To formulate the second main result of the section, recall the assumptions ((9.0.1]
and (9.0.3), and consider the hypergeometric sheaves H(n,m,+) of rank (¢" —1)/2 and
H(n,m,—) of rank (¢" +1)/2 introduced in (9.0.5). Among these two sheaves, we denote
the one of even rank by H¢"*"(n, m) and the one of odd rank by #°(n,m). Also, let

H(n,m) := H(n,m,+) ®H(n,m,—) = ’HOdd(n, m) @ H" (n, m).

THEOREM 9.3. Given the assumption (9.0.1) and the above notation, the following
statements hold.
(i) Let k be any finite extension of Fy. Then the arithmetic monodromy group HS'SP (n, m, k)

and the geometric monodromy group Hgisit (n, m) of He*"(n,m) on G, /k are

arieh (7, M, k) = Hgedyi (n,m) = M = Sp,,, (q)

and M = Sp,,,(q) acts in one of its even-degree irreducible Weil representations. Further-
more, the arithmetic monodromy group Hgﬁth(n, m, k) and the geometric monodromy

group H%4 (n,m) of H°%(n,m) on G,,/k are

geom
Holfil?;lh(n7m’ k:) = Clrith,k X M/Z( Hggc;im( ) Céeom X M/Z<M)7

a a

where M /Z(M) = PSp,,, (q) acts in one of its odd-degree irreducible Weil representations,
and

!
1 < C < Carlth k

geom —

with C; ), 5, @ central subgroup of order < 2.

(ii) Let e|f and let k = F 4./ be a subfield of Fy. Then on G, /k the arithmetic monodromy
group HEE (n, m, k) of HEYE™ (n,m) contains Heuer(n,m,Fy) as a normal subgroups of
index e, and likewise for the monodromy group of H°%(n,m):

jﬁfﬁ(n,m, k) M- C., gﬁilh(nvm7k) = ( arith,Fy X M/Z( )) 'Cev

and each of them induces a subgroup of order e of outer field automorphisms of M =
Sp2n(q)

Proof. (i) Note that H(n,m)=H"(n,m)® H(n,m) is exactly the system
Wy sp(1/2) defined after Corollary because we already built the Tate (1/2)-twist into
the definition of He"(n, m) and H°*(n, m); in particular, Theorem applies to H(n,m).
Now, the geometric monodromy group Ggeom 0f H(n,m) contains G(n,m)geom as a normal
subgroup, with cyclic quotient of order dividing A which is coprime to p, and G(n,m)geom
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is described in Theorem As Ggeom is a normal subgroup with cyclic quotient in the
arithmetic monodromy group Gayith k of H(n, m), it follows that

ng?t)h,k =G, =M = Sp,,(q),

geom

acting via a total Weil representation. Next, as p is odd, Theorem shows that the
determinant of Gayithkx on each of the two irreducible subsheaves of H(n,m) is a 2-group.
Now, Lemma and Corollary ensure that we can first apply Theorem [6.4] to obtain

Garith k = Corign i, X M, Ggeom = Cgeom X M, (9.3.1)
where Cgeom < Cfiin i are both central of order <2, acting on H(n,m) via scalars. The
statements in (i) then follow, by recalling that HE% (n,m, k) and HC (n,m,k) are the

images of Garitn x acting on He"(n,m) and H%(n, m), with cyclic centers, and noting that
Z(M) acts trivially on H°%(n,m) and as {£1} on H"(n,m).

(ii) We again work with #H(n,m) and its arithmetic monodromy group Garith,x- BY
Theorem the determinantal image of Gayith,x on each of H"(n,m) and ’H"dd(mm)
is a p’-group. Now, Theorem ensures that we can apply Theorem to (GﬂG,H )=
(Glarith,ks Garith,Fy » M ). As Garith,k/Garith F, is cyclic of order dividing e, the statements follow.

O

Our final result in this section determines all the central subgroups involved in Theorems
9. 1H9. 9l

THEOREM 9.4. Keep the assumption (9.0.1)). Then the following statements hold.
(i) Assume that 2|n. Then the central subgroups C’ in Theorem Carith,k in Theorem
(1'), Cheom and Cy iy . in Theorem|9.3(i) are all trivial. Furthermore, for any extension
of Fy, H(n, m) has its arithmetic and geometric monodromy groups Garithk = Ggeom =

Sp2n(Q)

(ii) Assume that 2{n. Then the central subgroups Cgeoy and C} . in Theorem [9.3(1)
are both cyclic of order 2. Furthermore, G(n, m)arith k = G(1,M)geom = C2 X Sp,,, (¢) in
Theorem Moreover, the local system H(n,m) := H(n,m) ® Ly, has its geometric
monodromy group Ggeom = SPay, (q)-

(iii) Assume again that 2 { n. Then the central subgroup Cayith,k in Theorem (1) has order

1 when ¢ = 1(mod 4) or if k O [F,2, and has order 2 if ¢ = 3(mod 4) and k 2 F 2.

Proof. (i) Our assumptions on (n,q) imply that the sheaf #°(n,m) is the sheaf
H(n,m,—) of rank A= (¢" +1)/2 defined using Heig,A,B,descent il . By Theorem
ii), H°44(n,m) has trivial arithmetic determinant. Since the rank (¢" + 1)/2 is odd, any
central element of order 2 in H?% (n,m,k) would have determinant —1, a contradiction.
It follows that Z(HS% (n,m,k)) has odd order, and so Clitnx = 1 in Theorem i). In
particular, we have Garith,e = M = Spy,(¢) in (9.3.1). Now, using the [A]* Kummer pullback
to get back to W(n,m), and the further pullback by [r — —r] to get to W(¥,n,m,q), we
conclude that ¢/ = 1 in Theorem and Clayith,x = 1 in Theorem [9.2(i).

(ii) Our assumptions on (n,q) imply that the sheaf 7°(n,m) is the sheaf H(n,m,—)
of rank B = (¢" +1)/2 defined using Hpig, 4.8 descent 1N when 21 B, and it is the
sheaf H(n,m,+) of rank B — 1 = (¢" — 1)/2 defined using Hsmair, A, B descent i when
2|B. Now, by Theorem H°%(n, m) has geometric determinant £,,, and so some element
of Hgggm(n,m) has determinant —1 on H°%(n,m). Hence, H%% (n,m) cannot be perfect,

geom

and therefore Hggd (n,m) 22 Cy X PSpy,,(q) and Cf 4y, ;. = Cheom = C2 in Theorem (i); in
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particular, (9.3.1]) implies that H has geometric monodromy group
Ggeom = (¢) X M = C5 X Spy,(q). (9.4.1)

Next, since W(n,m,—) is the [A]* Kummer pullback of H°%(n,m), G(n,m,—)geom is a
normal subgroup of Hggglm (n,m, k) of index dividing A, which is odd, and this implies that
G(n,m, —)geom cannot be perfect. As G(n,m, —)geom is the image of G(n,m)geom acting on
W(n, m,—), it follows that G(n, m)arith k = G(1, M)geom = C2 X Spa, (¢) in Theorem [9.1

Let Z(M) = (t). Then ¢ acts as —1 on the even-rank subsheaf H¢""(n, m) of H(n,m) and
trivially on the odd-rank subsheaf H,q44(n, m). Replacing ¢ from by ct if necessary,
we may assume that ¢ acts trivially on H*"(n,m), whence c acts as —1 on H°%(n,m)
(otherwise ¢ would be trivial). Now implies that H°%(n, m) has geometric determinant
L,, and H"(n,m) has trivial geometric determinant. Hence, both #°(n,m) ® L,, and
HeU™ (n, m) ® L, have trivial geometric determinants.

Next, tensoring with L,, changes the trace at v € EX by a factor of x2(v) ==+1. In
particular, it does not change the absolute value of the trace at any v € E*. Furthermore, the
[2]* Kummer pullbacks of #(n,m) and H(n,m) are isomorphic, and s0 Ggeom has a normal
subgroup X of index at most 2, which is also a normal subgroup of Ggeom_of index at most
2. It follows that (égeom)(‘x’) = X () = ) Spay,(q). Applying Theorem to égeom and
arguing as in (i) of the proof of Theorem we conclude that M < égeom < Cy x L. Now, if
égeom > M, then we have égeom = (¢) x M with (¢) = C5. Since ¢ has trivial determinant on
HO(n,m) ® L,,, it acts trivially on it, and ¢ acts as 1 or =1 on H"*"(n,m) ® Ly, . But this
means that the action of ¢ on H(n,m) agrees with some element in Z(M) and so ¢ € Z(M)
by faithfulness, a contradiction. Thus égeom = M, as stated.

(iii) In this case we have 2{n. Recalling , we note from Corollary that
W(,n,m,q) is the pullback by [r — —r] of [B]*W, where
W= 7'[small,B,A,descent & (*Gauss(% XZ))ideg 2 7'Lbig,B,A,p,descent o2 (7Gauss(aa XQ))idega
and p is chosen so that p = y» (in particular, we will take p = x» if B = (¢" + 1)/2 is odd).

Consider the case 21 B, equivalently, 4|(¢ —1). Then, for any kD F,, —1 is a
square in k, whence Gauss(¢y, x2) = Gauss(1,, x2). By Proposition both the sheaves
Hsmall,B,A,descent 02y (—GaUSSW, XQ))_ °® and Hbig,B,A,p,descent @ (—GaUSS(¢, XQ))_deg have
trivial arithmetic determinants. Now consider any central element ¢ in the arithmetic
monodromy group of [B]*W. By Theorem i), ord(c) divides 2p. Now, on the subsystem of
[BI*W of odd rank (¢" — €)/2 (for a suitable e € {—1,1}), c acts as a scalar a with a®” = 1 and
1 =det(c) = al?"~9/2 whence a = 1. On the subsystem of [B]*W of even rank (¢" + ¢)/2, ¢
acts as a scalar 8 with 4% = 1 and 1 = det(c) = Ba"+9)/2 whence 3 = +1. We see that the
action of ¢ agrees with the action of a central element of M = Sp,,,(¢), and therefore c € Z(M).
Pulling back by [r — —r] to get to W(¢, n,m, q), we obtain Cayithx = 1 in Theorem i).

Now assume 2|B, equivalently, 4|(¢ 4+ 1). We apply Proposition with C' = —1 to see
that the subsheaf [B]*Hsmall, B, A descent @ (—Gauss(@7 Xg))_deg, which has odd rank B — 1,

has arithmetic determinant (—1)9°8 whereas [B]*Hbig,B,A,p,descent @ (—Gauss(@, Xg))_deg,
which has even rank B, has trivial arithmetic determinant. Again consider any central
element ¢ in the arithmetic monodromy group of [B]*W. By Theorem i), ord(c) divides
2p. Now, if k D F)2, equivalently, deg(k/F,) is even, then ¢ has trivial determinant on both
subsystems of [B]*W, and the previous arguments show that ¢ € Z(M), and pulling back by
[r— —r], we see that Cayith,x = 1 in Theorem i). The same arguments also show that
we always have ¢ € Z(M), whence ord(c) divides ged(4,2p) = 2 and thus ord(c) divides 2.
Now assume that deg(k/F,) is odd. We have just proved that Z(Gawitn(¥,n,m,q,k)) is a
2-group and contains Z(M) = Cy, whence Cayitn i has order 1 or 2. Suppose that Cyign r = 1.
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Then Gayitn (¥, n, m, g, k) = M is perfect, and so it has trivial arithmetic determinant on both
subsystems of W(i,n, m, q), a contradiction. Thus Cayith,x = C2 in this case. O

10.  Local systems and total Weil representations: Unitary groups over I,

We continue to work with the prime p > 2, and fix a power ¢ = p/ and positive integers
n, m, where

n>m, gcd(n,m)=1, 2{mn, n >3, and either m <n/2, or (n,m) = (5,3). (10.0.1)
This assumption implies that

ged(¢"+1,¢™+1)=¢+ 1. (10.0.2)
For compatibility with the notations used in section §5, we denote
A:=(q"+1)/(¢+1), B:=(¢"+1)/(qg+1).

In this section, we study the local system W™™ on Al /F42 with trace function given as
follows: for k/F 2 a finite extension, and 7 € k,

1 n m
T gt T L),
Gauss(¢;, x2) %wk( )

Next, we fix a character y,i1 of order ¢+ 1, and then, for 0 < j < ¢, define W™™J to be
the local system on G,,/F,2 whose trace function is given by as follows: for k/F 2 a finite
extension, and r € k,

- A_ By
" Gauss(k, X2) ;W (I " )Xqﬂ(x).

By (10.0.2) and Proposition wmnm = @?:OW"’m’j is the sum of (¢+ 1) irreducible
subsystems W™™J of rank (¢" — q)/(¢+ 1) for j =0 and (¢" +1)/(¢+ 1) when 1 < j <gq.
Let G and Ggih,, respectively G, and G, denote the arithmetic and the
geometric monodromy groups of W™™ respectively of W™™J.

Next, recall that in Lemma we defined
no := ged(n, (¢ +1)"),

and showed that we can fix a character v of order ng(q + 1) such that v = y,11. We then
define the hypergeometric sheaves H™™J over G, /F,2(v) for j € Z as follows:

—de . .
Hn’m’j L 7'lsm,all,A,B,descemﬁ & (*GaUSSW]F(ﬁ (v)» XQ)) g7 if (q + 1)|.73 (10 0 3)
- 7dC . . . .
Hbig,A,B,Vj,descent & (_Gauss(l/)]FqQ(V)7 XQ)) g7 if (q + 1) Jf.]a
with Hsmall,A,B,descent and Hbig,A,B,x,descent as defined in §5 We also let
q
W =P Hmm. (10.0.4)

=0

By Propositions and Wmmd s the [A]* Kummer pullback of H™™=J, Denote the
arithmetic and geometric monodromy groups of H™™J by H arith g and Hgégfr;j. Again, this

pullback relationship implies that Ggéf)’f;lj < Hgéggﬁ*j and the quotient is a cyclic group of
order dividing A.

We will need the following statement, which is an odd-n analogue of [16| Lemma 17.3]. For
the reader’s convenience, we give the proof.
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LEMMA 10.1. Let Z be a finite abelian group, q a prime power, and let Ao, A\1,..., A\ €
Irr(2).
(i) Suppose A :=3"1_, \; vanishes on Z \ {1}. Then |Z| divides q + 1.
(ii) Suppose there is some z € Z such that A =Y !_  \; vanishes on Z \ {1,z} and A(z) =
—(q+1). Then |Z| divides 2(q + 1).
(iii) Suppose 2{n >3, (n,q) # (3,2), \3 = 1z, and that

q
Y= —>\() + AZ )\i7
=0
with A == (¢" + 1)/(q + 1), takes values only in {—q",0,4+¢" | 0 <i<n—1} on Z \ {1}.
Then either | Z| divides q + 1, or Z contains an element z with \;(z) = —1 for all0 < i < q.
In the latter case, |Z| divides 2(q + 1).

Proof. (i) Note that

1 q+1
[A,lz]zzi A($):7
72 Z]
is an integer, whence the statement follows.
(ii) Let a be the linear character of (z) sending z to —1. Since Z is abelian, we can find a
linear extension S of a to Z. Now

_ b A8~ T DB — (g +DB() _ 2(g+1)
A Blz = ;A( )B(x) 7 y

is an integer, whence the statement follows.
(iii) Consider any 1 # x € Z. By the assumption, \g(x) = +1, and X(z) = 0, —¢", or +¢’
for some 0 < j <n —1. Now
Z 3 X(x)+ do(x) = A-Ax),
and so A(z) = (X(z) + Ao(z))/A is both rational and an algebraic integer, whence
A divides 3(x) + Ao(x). (10.1.1)

We will now show that either 3(z) = —\g(z) or L(x) = —¢". If (z) = 0, or X(z) = +¢’ with
1<j<n—2 orif 3(x) = \g(x), then X(z) + A\o(z) # 0 and

[Z(x) + Ao(z)] < "l+1< A

(as n >3 and (n,q) # (3,2)), contradicting (10.1.1)). If X(z) = Xo(z)¢" !, then we have
Al(g" ' +1) by (10.1.1)), whence Wﬁzal) divides (¢+1) - ggd(zi,;ay which is impossible
since ged (g™ + 1,¢" 1 + 1) = ged(2,q — 1). If X(z) = —Xg(x)g" !, then we have A|(¢"~! — 1)
by (10.1.1]), which is also impossible since ged(¢" + 1,¢" ' —1) = q¢+ 1 < (¢" + 1) /(¢ + 1) for
2¢n >3 and (n,q) # (3,2).

(iv) Now, if ¥(z) # —¢™ for all 1 # x € Z, then X(z) = —Ao(x) and A(z) =0 for all 1 #
x € Z, whence the statement follows from (i).

Consider the case X(z) = —¢" for some 1 # x € Z. Then we must have A\o(z) = —1, and

Z(—)\i(fﬂ)) =—A(z) = (= o() = X(x))/A=q+1,

i=0
implying that all roots of unity —\;(«) must be 1. Now, assume X is faithful, and fix an element
z € Z with \;(z) = —1 for all i. In this case, \;(zz~1) = 1 for all 4, and so X(zz71) = ¢" and
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x = z by faithfulness of 3. We have shown that A(z) = —(¢+ 1) for z = z, and A(z) = 0 for
all z € Z {1, z}, and so the statement follows from (ii). O

In this section, we will work with a subgroup GU,(q) = GU(W) of Sp,,(¢q) as specified
in (14, Theorem 3.4], W =F,, and with j = —1w, the central involution of both GU(W)
and Sp,,(¢). For any prime power ¢ and any n > 2, recall that the finite unitary group
GU(W) = GU,(q), admits a total Weil representation of degree ¢" over C, with character

Cuglg) = (—1)"(—q) "™z T (10.1.2)

for any g € GU,(q), see e.g. [24, (9)]. Fix primitive (¢ + 1)*® roots of unity p € C* and
o€ F:z. Then (pq= >0, Ch ¢ is the sum of ¢ + 1 irreducible Weil characters of GUy(q),
with
n q
4 dun]p 5 Ker(g—gl‘lw)
- a 10.1.3
Cig . + p" ( )

=0

being the character of the irreducible summand of the total Weil representation of GU,(q),
on which the generator z := p - Id acts as the scalar p?, see |24, Lemma 4.1]. If 2|q or if n > 3,
then the restrictions ¢! of CZL’q to SU,(q), 0 <1i < g, are pairwise distinct irreducible Weil
characters of SU,(q), see |24, Lemma 4.7]. We will also refer to the restriction of (, 4 to
SU,.(q) as its total Weil character.

The main result of this section is the following theorem:

THEOREM 10.2. Given the assumption (10.0.1). Then the geometric monodromy group
Giaom of W™ is isomorphic to SU,(q) acting in its total Weil representation of degree q".
Furthermore, for any finite extension k of Fyz, the arithmetic monodromy group G , of

Wm™ on G, /k is
Gt = Carith,k X SUn(q),
where Caritn,ke = Carith,r o = (J) = C2 if 21 deg(k/Fy2), and Carign,e = 1 if 2 | deg(k/Fg2).

Proof. (i) Note that, since k D Fg 2, Gauss(vr, x2) = Gauss((1q)r, x2) for any v, : t —
Y(at) with a € F. In particular, WmL s precisely the pullback by [r+ —r] of the local
system W(),n,q) considered in |14, §4], where we have shown in Theorem 4.2 that it has
geometric monodromy group SU,(¢q) (in its total Weil representation of degree ¢™). Thus
Gge})m = K :=SU,(q).

(ii) In this and the next part of the proof we will assume that m > 1. Consider the local
system W™ 10 on A3 /F > with trace function given as follows. For k/F 2 a finite extension,
and r, s,t € k,

1

(rs5,2) Gauss(g, x2)

Zwk xq L g0 g0t g )
z€k

with arithmetic monodromy group G:lr:?};l,;o As mentioned above, k D F,2 implies that the
system WM L0 o at r = 0 is exactly the local system W_uram (¥, 0 q) considered in |14,
§4]. By |14, Theorem 4.3], the arithmetic monodromy group of W”’m’l’oérzo equals L :=
SPs, (q) in one of its total Weil representations of degree ¢". Thus G;Lr:?hlk contains L. By
Proposition w10 g still a sum of two subsystems of rank (¢" 4+ 1)/2. Furthermore,
it satisfies the conclusions of Theoremﬁ Now, applying Theorem [7.1|to G:;;?};}I;O > L (with
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e = 1), we obtain that
armbd — O x I, (10.2.1)

arith,k =
where C' a cyclic scalar subgroup, and either |[C| =1,2, or p =3, 21 f, and |C| = 3,6.
Let @ : G’ = CL — GLgn (C) denote the corresponding representation of Gy
acting on W™ 1.0 Note that W™™ is precisely W™™ 10| ,_o, hence G := G, is

1,0 . . .
a subgroup of G[""". As W™™ is a local system on A!, its geometric monodromy group

G = G satisfies

geom
G =0"(G). (10.2.2)

Given the information about respective cyclic quotients, we see that the two groups Ggir,
and G711 . have a common last term K of their derived series:

K = (Gpm) ™) = (Guit, ) < (G i)™ = L. (10.2.3)

geom

By (10.0.2) and Proposition ®|¢ is a sum of ¢+ 1 irreducible summands ®; acting on
wmmi () < j < q. Since ®(C) consists of scalar matrices, the same is true for

CG=Cx(CGNL),
whence also for CG N L. Applying [14, Theorem 3.4] to CG' N L, we see that
SU,(q) <CG N L < GU,(q),

where GU,,(q) is realized inside L via a standard Hermitian structure on Fg". As K <CGNL,
we now have

SU.(q) = (CGN L) < (CG)™) =G = K = K*) < (CGNL)*) =SU,(q),
i.e. K = SU,(q), acting in its total Weil representation.

(iii) Since G > K by (10.2.3)), from (10.2.1)) we now get
GG <Neyr(K)=CxNy(K)=C x (GUn(q) x Cs).

Note that C' x GU,,(q) preserves the equivalence of each of ¢ + 1 irreducible summands (®; )|k,
but the subgroup Cs (generated by a field automorphism) does not. It follows that

SU,(q) = K <G <G < C xGU,(q). (10.2.4)

Recall from Lemma that the sheaves Hgmai,a,B and Hipig 4,8,y all have geometric
determinants being trivial or £,,. As W™™7 is the [A]* Kummer pullback of H™"™ 77, the
same is true for G = Gy, acting on each Wi Hence, if ®¢ denotes the two summands
of degree (¢" — €)/2, € = &, of the C'L-representation ®, then det(®¢(g))? = 1 for all g € G.
However, det(®¢(x)) =1 for all € L as L is perfect, and det(®¢(c)) has order 3 if 1 £ ¢ €
0O3(C) when p = 3, since C is scalar and deg(®°) is coprime to p. Recalling C' < Cy.4cd(p,3),
we now see from that SU,(¢q) < G < O, (C) x GU,(q). Together with (10.2.2), this
implies that G = K = SU,(q).

(iv) Now we return to the general case m > 1 and let A; be the central character of Z(G)
acting on W™™J () < j < q. Recall that ®|s has integer traces, belonging to {#¢* | 0 < i <
n} by Theorem and so it is self-dual. But (®g)|s is the unique irreducible constituent

of ®|5 of degree A — 1, hence (®¢)|s is self-dual; in particular, A3 is trivial. It follows that
Y= Ao+ AY ], A satisfies all the hypotheses of Lemma whence

|Z(@)| divides 2(q + 1). (10.2.5)

In particular, we are done if C' < Cy. Consider the case C' > C3, whence p = 3. By (10.2.4),
Cia(K) =7Z(G), and G/Cx(K) < PGU,(q). It then follows from (10.2.5)) that |G /G| divides
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2(¢+1)%. On the other hand, G/G < C x Cyy1, with C x Cyy; being an abelian group.
Hence,

G/G < 03/(C x Cyp1) = 02(C) x Cgpn = (02(C) x GU(q)) /G,
and so
Giith < 02(C) x GUn(q). (10.2.6)

(v) To completely determine Gy ., first we show that in (10.2.6) in fact we have
SUn(q) = H QG i x < GUn(q). (10.2.7)

This is obvious if O3(C) =1, so we will assume that O2(C) = (t) with ®(¢) = —Id and
that G > th for some h € GU,,(q). We will decompose the total Weil representation ® of
GU,(q) as @ ,¥; as in |14, §3]; in particular, deg(¥;) = (¢" +1)/(¢ + 1) — ;0. The same
decomposition applies to Oy(C) x GU,,(q), as ®(t) = —Id. Restricted to G, each W; with
1 < i < ¢ corresponds to the action of G' on some W™ which in turn is the [A]* Kummer
pullback of Hyig A,B,y,descent for some x. Restricted further down to H = SU,,(q), ¥(q41)/2 is
the only self-dual one among the ¢ irreducible Weil representations of degree A of H. Taking
p=X=Xx2in Proposition we see that Hyig, 4, B xs,descent 1s geometrically self-dual of rank
A; hence this sheaf corresponds to W (,41) /2. Furthermore it has trivial arithmetic determinant,
by Proposition iii)7 see also Corollary On the other hand, by [14, Lemma 3.2(iii)],
det(¥ (g41y/2(h)) = 1, and so det(¥ 441y/2(th)) = —1, a contradiction.

Having established (10.2.7), we can write Gty = (H, g), where g := diag(p’,1,...,1),
pE F;z has order ¢ + 1, and 0 < j < ¢. As shown in the proof of |14, Lemma 3.2],

det(W;(g)) = ¢JUHatD/2), (10.2.8)

if 1<i¢<q and ¢ = (441 € C* has order ¢+ 1. According to Corollary all the ¢
components of degree A of W™™ have arithmetic determinant +1, hence det(¥;(g)) = £1
for all 1 <1 < q. Applying this and (10.2.8) to i = (¢ + 3)/2, we get (¥ =1, i.e. (¢+1)/2
divides j. Since 2 { n it is easy to see that (H, g{¢t1/2) = H x (5), and so we have shown that

Glitnx = Carith kX SUn(q), (10.2.9)
with Casitnke < Carienp o < (J)-
Assume now that for CasienF , = 1. Then, Gllitnr , = H = SUy(q) is perfect. It follows that

all ¢ 4 1 subsheaves of W™ have trivial arithmetic determinants over Fg2. If ¢ = 3(mod 4),
then we choose 6 of order r := g + 1, so that (—=1)(@TD/" = —1 £ (=1)(a+1/2 If ¢ = 1(mod 4),
then we choose @ of order r := (¢ 4 1)/2, so that (—1)(@+1/7 = 1 # (—1)@+1)/2 Tn both cases,
by Corollary [5-8] this choice of # implies that the subsheaf of rank A of W™™ labeled by 6
has nontrivial arithmetic determinant (—1)9°® over extensions of F2, a contradiction. Hence
CarithF o = (J)-

Finally, since GZﬁir?h,qu / Ggiom = C2, the Oy quotient is geometrically trivial and so must

be (—1)9¢ arithmetically. Together with (10.2.9), this implies that Clarith b = Carith,]Fqg when
2 {deg(k/Fg2) and Carith,k is trivial when 2| deg(k/F2). O

THEOREM 10.3. Given the assumption ((10.0.1f). Then the following statements hold.
(a) The geometric monodromy group H = H:T  of H™™ contains G = SU,(q) as a

geom geom
normal subgroup, with Hyt, /Geoy, being cyclic of order ng. Furthermore, H/Z(H) =
PGU,(q). ‘
(b) Let 0<j <gq and let H; = Hgeow? be the geometric monodromy group of the hyper-

geometric sheaf H™™7, defined in ((10.0.3)). Then H](Oo) is the image of SU,(q) in an
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irreducible Weil representation, of degree A= (¢"+1)/(qg+ 1) if1<j<qand A—1if
j=0, Hj/Hj(-oo) is cyclic of order dividing ng, and H;/Z(H;) = PGU,(q).

(c) Let k be any finite extension of ko := Fg2(v) = F2n,. Then the arithmetic monodromy
group of H™™ over G, /k is Carith,k X Hgeot,s where Corigh, ke = (g) if 21 deg(k/ko) and
Carith,k =1 1f2| deg(k/ko)

Proof. (i) The definition given in tells us that H; has its 1(0) being cyclic of order
A = (¢"+1)/(q + 1). Moreover, H; has property (S+) by Proposition and by Theorem
10.20 H joo = Ggég”rﬁ_j is the image of SU,,(¢) in the relevant irreducible Weil representation,
with Hj/HJ(-OO) being cyclic of order dividing A. Hence, PSU,(¢) is the unique non-abelian
composition factor of H;, and by |15, Theorem 8.3 and Corollary 8.4],

(ii) Next, since the [A]* Kummer pullback of H™™ is W™ G = G, = SU,(q) is a
normal subgroup of H := Hgeom, with cyclic quotient of order dividing A; in particular, we
can write

H=(G,g)>G (10.3.2)

for some element g € H.

Let ¥, denote the representation of H on H™™J, so that H; = V;(H) and (¥;)|g is an
irreducible Weil representation of G = SU,,(¢q). Note that the only automorphisms of G that
preserve the equivalence class of each (V)| are the inner-diagonal automorphisms, i.e. the
ones induced by elements in GU,,(¢) (via conjugation). It follows that we can find an element
h € GU,(q) < L (with L = Sp,,, (¢) as in the proof of Theorem [10.2)) such that g and & induce
the same automorphism of G. Changing g to another representative in its coset gG, we can
make sure that

h = diag(p,1,1,...,1) (10.3.3)
for some p € pg41 < ]F:z. In particular,
RITE =1, (10.3.4)
and U;(g)¥;(h)~! centralizes ¥,(G), whence
¥, (g) = s U5 (h) (10.3.5)

for some o; € C*. In fact, «; is a root of unity because both g and h have finite order.
Recall by [14] (3.1.2)] that 0 # Tr(¥;(h)) € Q({4+1)- On the other hand, since v is chosen

to have order n9(q + 1), Tr(¥;(g)) € Q(Cny(g+1)) by Lemma [3.7] Hence the root of unity a;

belongs to Q((p,(g+1)), and so, as 2|(q + 1), we have that

a0t — (10.3.6)

j
for all j. Together with (10.3.4) and ([10.3.5)), this implies that ¥; (g)rolatD) = 1d for all 7,
whence ®(g)"0(@+1) =1d and g"(9t) =1 by faithfulness of ®. Coupled with (10.3.2)), we
deduce that |H/G| divides no(q+1). But |H/G| divides A and ged(A,no(g+ 1)) = ng by
(5.13.1)). Consequently, |H/G| divides ng. Applying ¥;, we also get that |Hj/H](-°°)| divides
no-.

Next we show that

Cy(G) =Z(H), H/Z(H)=PGU,(q). (10.3.7)

Indeed, note that Cg(G) acts via scalars in each ¥; and so centralizes ¥;(H), whence
Cu(G) =Z(H). We already showed that H/Cg(G) embeds in PGU,(q) and contains
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PSU,(¢) = G/Z(G).If H/Z(H) < PGU,(q), then applying ¥, and using ¥;(Z(H)) < Z(H,),
we would have that H;/Z(H;) is properly contained in PGU,,(q), contradicting (10.3.1]).

(iii) The relation ((10.3.7) shows that H induces the full subgroup PGU, (q) of inner-diagonal
automorphisms of G. As H = (G, g), see (10.3.2), we may therefore assume that for the
element h = diag(p, 1,...,1) in (10.3.3) we have p € quXQ is of order g + 1. Write

d:=gcd(n,q+1)=an—blg+1), ht=(p* 1y )k with b’ := diag(p?=%,p~%,...,p~ %),
(10.3.8)
for some a,b € Z. Then p? = pe»=ta+1) = pan hence det(h’) = p?= 2" =1, i.e. B’ € SU,(q).
We will now fix j := (¢ +3)/2 in and let o := ;. By the proof of [14, Lemma 3.2],
this choice of j (and the fact that p has order ¢ 4 1) ensures that det(¥;(h)) is a primitive
(g + 1)* root (41 of unity. On the other hand, by Lemma and ,

1 =det(¥;(g)) = a*det U;(h) = a®yi1.

Recalling by (10.3-6)) that a™0(@*1) = 1, we can write o = Cro(q41) for a primitive (no(q + 1))th

100t (g (g+1) Of unity with ¢ o(g+1) = = (q¢+1 and ¢ € Z. Now (441 = a4 = Cq;(f/m’)c has order

g+ 1, and so ged(c,q + 1) = 1. As ng|(g + 1)", this implies that
ged(e,no(g + 1)) =1, ice. a = ( (,41) has order exactly no(g + 1). (10.3.9)

Also write
ng=de, q+1=dr

with e,r € Z>;.

Recall we have shown that |H/G| divides ng = de, and H induces the subgroup PGU,(q)
of Aut(G), whereas G induces the subgroup PSU,(q) of order [PGU,(q)|/d of Aut(G). Tt
follows that |H/G| = ds for some divisor s of e. In particular, g% € G, whence using
we obtain that

U;(9%) = a®W;(h*) = a®™W; ((p* - 1w)*) ¥; ((A)°)

belongs to ¥,;(G). As b’ € G and U,;(p- 1w) = (441 - Id by |14} (3.2.1)], this implies that the
scalar transformation o® gi1 - 1d belongs to U;(G). As the quasisimple group G = SU,(q)
acts irreducibly in ¥; and has center of order d, thls scalar transformation has order dividing
d, that is,

(a®¢od ) = 1. (10.3.10)

2 C 2 — C 3 . a J— d
Now, o = nfl(q—l—l) = by (10.3.9), if we take (o, = Cno(q-l-l) Next, (qﬁl CZS&H)
¢ee. Tt follows that a? Cq+1 = (5, and so (10.3.10) 1mpl1eb that er divides s(c — ae); in
partlcular e divides sc. But ¢ is coprime to ng = de by ((10.3.9| , hence e|s. Consequently,
s =e, le. |H/G| = ng, as stated in (a).

(iv) Now we note that, since all prime divisors of the odd integer ng divide ¢ + 1 and v has
order ng(q + 1), ko = 2(V) equals I 2n,. [Indeed, if £ is any (odd) prime divisor of ng and
orde(ng) = ¢ > 0, then, as in the proof of Lemma [5.13] we have that £°|(¢°* —1)/(q + 1) if
and only if £°|a. Proceeding ¢ by ¢, we get that ng|(¢** —1) /(¢ + 1), i.e. no(q + 1) | (¢** — 1),
if and only if no|a, and thus Fy2 (v) = Fy2ne.] To determine H := H]ii} ,, we recall that W™
is the [A] Kummer pullback of H™™_ hence G := Gamh & = Carith ks X Ggeom is a subgroup
in H" with cyclic quotient of order dividing A. At the same time, H" mhlk Contams H=

arlth k>
Hgoom as a normal subgroup, also with cyclic quotient, and with H (OO) =G> = Ggiom =
SUn(g). It follows that Giaiy, <0 Holly ., whence
Giiom < Hamh p > Hygon,, and [H amh ke G:;glh’k] divides A. (10.3.11)
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Recall by (10.3.7) that Hgggh, induces the subgroup PGU,(q) of all inner-diagonal automor-
phisms of Gyl = SU,(g). Again, since only inner-diagonal automorphisms of SU,(g) can
fix the equivalence of each irreducible Weil representations (¥;)|¢ of SU,(q), H. 2y , must

arith,
induce the same subgroup PGU,(¢) while acting on Gy, In particular,

|H§nﬁlk = |PGU,(q)| - \é| = |SU.(q) - |é| = |G2£i7:h,k/0arith,k| : |C~'|’ (10.3.12)

where C := Cynm (Geom)- Together with (10.3.11)), this implies that

arith,k
|C| divides |Carien k| - 4, (10.3.13)

Consider any ¢ € C. For any 0 < j < g, V;(c) centralizes the irreducible subgroup ¥,;(G),
hence ¥;(c) = ~; - Id for some root of unity v € C*. Just as above, we see that the field E, =
Fp (fng(g+1)(p—1)) of Lemma is equal to kg = F2n,. Hence, by Lemma v, deg(¥;) =

Tr(¥;(c)) belongs to Q(v) = Q(Cny(g+1))- As 2[(g + 1) and 5 is a root of unity, we conclude

that 7;“’(‘”1) =1, and so ¢"(@t) =1 for all ¢ € C, i.e. the exponent of C divides n¢(qg + 1).

On the other hand, as C acts via scalars in all ¥, it is a (finite) abelian group. Thus [e]

divides (no(q + 1))4*1. Applying (10.3.13)) and (5.13.1]), we now obtain that |C| divides

A nl(g+1)itt
ged (|Caritn k| - A, (no(q + 1)) = |Caritn k| - no - ng<7 O(q)) = [Caritn,k| - 10-
no |Carith,k|

Together with (10.3.12), this implies that |H,1\} ,./Giey, x| = no/e for some odd integer e|no;
in particular, [H77% | = [Cartnal - 1SUn ()] - (10/€) = (ICosenil/) - [HZ]. But H2m, i

geom |* geom
a subgroup of H_\1} , and |Carien x| < 2, so we conclude that e = 1.

Now, if Cayithkx =1, then H 0 = Hyglr,- Assume that Carien g = (j). Then 2=
|H it o/ Haaom|- Recall by (a) that Hgelt, is an extension of the quasisimple subgroup G =

SU,(q) of odd index ng. On the other hand, by Theorem , G e = Caritnk X SUn(q),
and the order 2 subgroup Carith,x = (J) < Z(GU,(g)) acts via scalars in each of ¥, hence it
centralizes H, ) ;- It follows that Caith,x N Hyelt, = 1 and Ho o = Carien k. X Hyelh

geom geom"*
Finally, by Theorem |Carith,x| = 2 if and only if 2{deg(k/F,2) if and only if 2¢
deg(k/ko), since deg(ko/F,2) = no is odd. O

REMARK 10.4. In the special case where n =3, m =1, and 3|(q+ 1), Theorem [10.3]
complements |12, Theorem 19.2].

Now we specialize to the case where ged(n, ¢+ 1) = 1, and follow Remark to choose
a € Z so that aA =1 (mod (¢ +1)) and take v = xg ;. Then the hypergeometric sheaves
H™™3 of ([10.0.3)) are defined over G,,/F,2, and their sum H"™™ = @?:O’H”’m’j has trace
function

1 m n
ueEk = — e(utz? T — g fpd L),
Gauss(k, x2) gw ( )

with aA — B =1and 8 € (¢ + 1)Z, see (5.11.1].

THEOREM 10.5. Given the assumption , assume in addition that ged(n,q + 1) = 1.
Then we have the following results.
(a) The geometric monodromy group Hggllt, of H™™ is SU,(q) acting in its total Weil
representation of degree q".
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(b) The geometric monodromy group ng’g;ﬁj of the hypergeometric sheaf H™™J,0 < j < q,
is the image of SU,,(q) in an irreducible Weil representation, of degree A = (¢" +1)/(q +
1)ifl<j<qgand A—1ifj=0.

(c) Over any finite extension k of F 2, the arithmetic monodromy group H."\y , of H™™ is

n,m

equal to the arithmetic monodromy group G, .. of W™™ in Theorem

Proof. Note Theorem [10.5] is the ng =1 case of Theorem [10.3] But we will give an
alternative proof, which will later apply to the proof of Theorem [10.6]

(i) Consider the local system W™™2 on G,, x A?/F,» with trace function given as follows.
For k/F > a finite extension, and v € k*, r,s € k,

1 n m 2
- g (vz? T4 pg? T p gt L)
Gauss(¢, x2) ;C ( )

. . . . 2
with geometric monodromy group Gg:on? and arithmetic monodromy group Gy, over

any finite extension k of 2. Then the system W™™2|,_; ,—¢ at (v,r) = (1,0) is exactly the
local system W(v¥_a,n,2, q) considered in . By Theorem the geometric monodromy
group of W™™2|,_; ,._g equals L := Sp,,,(q) in one of its total Weil representations of degree
q". Thus Ggég"rf contains L. By Proposition W2 is a sum of two subsystems of rank

¢" £ 1)/2. Furthermore, it satisfies the conclusions of Theorem Now, applying Theorem
to Gt > L (with e = 1), we obtain that

(v,7,5)

LaGrm2 < grm? < O xL, (10.5.1)

geom arith,k
where C' a cyclic scalar subgroup, and either |C| = 1,2, or p =3, 21 f, and |C| = 3, 6.
Now, by specializing W™™?2 to the curve v = —u”, r = u®, s = 0, we obtain from (10.5.1))
that the geometric monodromy group H := Hggg, of H™™ is contained in C' x L.
(ii) By (5.11.3) (and the fact that the traces are all real-valued), the [A]* Kummer pullback
of H™™ is the local system W™™ which has geometric monodromy group G, = SU,(q)

geom
by Theorem Hence, Gy, is a normal subgroup of H with cyclic quotient of order
dividing A = (¢" + 1)/(q + 1), which is coprime to 2p. It follows that L > H(*) = G™ and

|H/H()| is coprime to 2p. But H/(H N L) embeds in CL/L = C, and |C| divides 2p. Hence
SU,(q) = Gt < H = HN L < L= Sp,,(q). Furthermore, the action of H on H™™ is the

sum of ¢ + ig irreducible representations, one of degree A — 1 and ¢ of degree A. Hence, by
[14, Theorem 3.4], we know that SU,(q) < H < GU,(q). Recall again that Gy, = SUn(q)
has index dividing A = (¢™ 4+ 1)/(g + 1) which is coprime to ¢ + 1 = |GU,(¢q)/SU,(q)| since
ged(n, ¢+ 1) = 1. Consequently, H = SU,(q) as stated in (a). Now (b) follows from (a), since

Hzim is the image of H = Ht. acting on an individual sheaf #™ "7,

(iii) For (c), we note that H"} , contains H as a normal subgroup of cyclic index, hence

arith,
H = H™) = (Hp ). The specialization v = —u”, 7 = u®, s = 0 also shows that H
3 : : n,m,2
is contained in G, hence
H < Hi o < Neoxrp(H) = C x (GU,(g) % Cy).

Note that [(C' x (GU,(q) x C2)) : H| divides 4(q + 1) - ged(p, 3). On the other hand, since
W™ is the [A]* Kummer pullback of H™™, G, > Ggath, = H is subgroup of H ) . of
index dividing A = (¢" +1)/(¢g + 1) which is coprime to 2p(q + 1). Thus [H7} , : G,

n,m

divides 4p(q + 1) and at the same time is coprime to 2p(q + 1). Hence H,\ly , = Gy . O

Next, we will work with any odd n > 3 and any odd m < n that is coprime to ¢ + 1, e.g.
m = 1. Then we follow Remark to study the sheaf ;" defined in (5.12.1)) over G, /F 2,
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which has trace function

1
c kX = q"+1 _ , B.q"+1
U Gauss(0r. xa) Zwk u T u”x )

with A — fB=1and a € (¢ + 1)Z.

THEOREM 10.6. Given the assumption ((10.0.1]), assume in addition that ged(m,q+ 1) =
1. Then we have the following results.
(a) The geometric monodromy group Hy;". .. of Hy;" is GUn(q) acting in its total Weil
representation of degree q", with character

Cng 19 (=1)"(=

(b) The geometric monodromy groups H;:’;gom of the ¢ + 1 summands Hy;7"7 of H2™™, are

the images of GU,,(q) in ¢+ 1 irreducible Weil representations, 1 of degree A — 1 and ¢
of degree A= (¢" +1)/(qg +1).

(c) For any finite extension k of Fg2, the arithmetic monodromy group of H:!" over G,,/k
is

q)diqu2 Ker(g—1) )

n,m
Hlns arith,k — Carith,k X GrUn(q>7

with Caitn,i being a cyclic scalar subgroup of order < 2. In fact, if k/F 2 has even degree,
or if ¢ = 3(mod 4), then Cyignr = 1. If ¢ = 1(mod 4) and k/F,2 has odd degree, then
Clarith,k = (t) = Co.

(d) For the sheaf W,;;™ = [B]*H,;", whose trace function, cf. (5.12.3)), is

m

ueE* — Yp(zd T — Tz,

1
Gauss(Vg, x2) ,;5

its geometric monodromy group Gy;". ..., is GUy(q) acting in its total Weil representation
of degree ¢q". Furthermore, for any finite extension k of IF;2, the arithmetic monodromy

group szs arith,k of Hb Is equal to Hbzs arith,k’

Proof. (i) Using the same notation and the arguments in the proof of Corollary by
specializing W™™?2 to the curve v = —u”, r = u®, s = 0, we again have that the geometric
monodromy group H := Hy;" . of ;™ is contained in C' x L, with C' a cyclic scalar
subgroup of order dividing 2 - gcd(p, 3). Defining Lo := O2(C) x L, note that Ly is a normal
subgroup of C'L of index 1 or p.

Next, note that the Kummer pullback

K= [qm + 1}*Wn,m
of W™™ has trace function at r € k*

Zw o Tﬁ)qm-&-l) _ 1 Zlbk(xqmﬂ _ (r—lx)q"-i-l)

" Gauss(y. x2) wk,xQ < Gauss(V, x2)

on G,,/k (since —1 is a square in k O F 2 and all traces are integers). On the other hand, by

(5.12.3), if we define
K= g+ W = g+ 1B HT

bis

then K’ has trace function at u € k&~
1

GausS(wk,Xz Zwk xq o — x)q H)



EXPONENTIAL SUMS AND SYMPLECTIC AND UNITARY GROUPS Page 61 of

Thus K’ is arithmetically isomorphic to K, because they have equal trace functions and
are each arithmetically semisimple. So their geometric monodromy groups are the same:
ngom = Kéeom'

(ii) The aforementioned pullback relationships imply that Kgeom is @ normal subgroup
of Ggiom With cyclic quotient of order dividing ¢™ + 1. It follows from Theorem

that Kgeom = SUn(q), whence Ky, = SU,(q). Next, Ky, is a normal subgroup of H =

bis,geom with cyclic quotient of order dividing AB(q+ 1) which is coprime to p. But
H/(H N Ly) embeds in CL/Ls, and |CL/Ls| divides p. Hence

SU.(¢) = Ky = H®) «HNLy=H < Ly = 05(C) x L < Cy x Spy,,(q).

geom
Furthermore, the action of H on H;;." is the sum of ¢ + 1 irreducible representations, one of

degree A — 1 and ¢ of degree A, and these representations remain irreducible upon restriction
to K! < H N L. Hence, by |14, Theorem 3.4] applied to H N L, we obtain that

geom
SUn(q) < HN L < GU,(g);

com) divides ¢ + 1. As H/(H N L) embeds in Lo/L which has order 1
| divides 2(q + 1). At the same time, |H/K!, .| divides AB(q + 1),

geom

in particular, [H N L : K
or 2, we see that |H /Ky,
an odd multiple of ¢ + 1. It follows that |H /K., | divides g + 1.

Choosing x of order ¢ + 1 and using B = (¢™ 4+ 1)/(q¢ + 1) is coprime to ¢ 4+ 1, by Lemma
we see that HgmA,X,B,descent has geometric determinant £, . Hence, H/H() has order

divisible by ¢ + 1. Since Kéeom = H(°) we have shown that
H/Kéeom = Cqul; (1061)
in particular, |[H| = |GU,(q)]|.

(iii) Next, we claim that in fact O2(C) = Cy = (t) and H # H N L. Assume the contrary:
0,(C)=1or H=HNL. Then H < L acts on H,;." via restricting a total Weil representa-
tion @ of L 2 Sp,,,(¢) to H. By |14, Lemma 3.2(iii)], the image of H on one of the irreducible
summands of rank A of H;;" has trivial determinant, which is impossible (since the only
summand of H;;" that has trivial geometric determinant has rank 4 — 1).

As shown on 14} p. 9], NL(K.eom) = M % (o), with M =2 GU,(¢) and o € L an involution

geom
that acts as inversion on Z(M) = Cy41. It follows that

H < Np, (Kfegm) = (M 2 {0)) x {t).

geom

Now using (10.6.1), we can write H = (K}...,,h) where h =t'olg for some g€ M and
i,j € {0,1}. Note that ¢ =1 since H # H N L. On the other hand, if j =1, then h does
not fix invariant some of the irreducible Weil representations of K., occurring in H,;", a
contradiction. Thus h = tg with g € M.

Let e denote the order of the coset gy, as an element in M/ Ky, = Cy11, in particular,

el(q+ 1). By the choice of h, hK},y, has order ¢ + 1 in H/K}...,- But h*® = g* € K}, so
(¢ +1)/2 divides e. We claim that
Assume the contrary: e = (¢ +1)/2. If ¢ = 3(mod 4), then hla+1/2 = gla+1)/2 ¢ Kloom: @

contradiction. Consider the case ¢ = 1(mod 4), in particular, 2 { e, and an odd prime divisor
r of ¢+ 1. Then some subsheaf H' of H;;" of odd rank A has geometric determinant L,
with x of order 7. On the other hand, t acts on H,;;;" as scalar —1, and g¢ € Kyo,, = SUpn(q)
has trivial determinant on H’. It follows that h = tg has determinant of even order on H’, a
contradiction.

Now, implies that (Kgeom,9) = M = GU,(q). We also note that the action of

h =tg on H,;" is —®(g). Since H = (Kyoom, h), using [14, Theorem 3.1(i)], it follows that
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the action of H on H;;." affords the total Weil character (,  and that H = GU,(q), and the
statements (a) and (b) follow.

(iv) The specialization v = —u?, r =u®, s =0 of W™™? at the beginning of (i) also
shows that H := H biaarith,, €mbeds in C7 x L for some cyclic scalar subgroup ¢ < Cy.geq(p,3)-
Recalling that H;.", ., , normalizes the standard subgroup H () = (H, ;i:;eom)(‘x’) =~ SU,(q)
of L = Sp,,(q) but preserves the equivalence class of each of the ¢+ 1 irreducible Weil
representations of SU,,(¢), we obtain

GU,(q) = H < H < Neix(SU,(q)) = C' x GU,(q). (10.6.3)

In particular, the first statement in (c¢) follows if C” < Cy. Consider the case C’ > C5, whence

p = 3. In this case, ((10.6.3) shows that

H/Cz(H®)) < PGU,(q), (10.6.4)
and that Cz(H()) is contained in C’ x Z(GU ( )) which centralizes H, whence
Cj(H®) = Z(H). Arguing as in the proof of (10.2.5) and using Lemma we also

have that |Z(H)| divides 2(¢ 4 1). Together with (10.6.4 0 6 | this implies that \H/H )| divides
2(g + 1)%. On the other hand, by (10.6.3), H/H©) embeds in C' x Cy11, an abelian group.
It follows that

H/H®™) < 03/(C" x Cyp1) = 02(C") x Cyy1 = (02(C") x GU,(q))/H)

and so H < 0,(C") x GU,(q), and the first statement in (c) is proved in full generality.
To determine C’amh F, 2, We note that, since both n and m are odd, ([5.12.2) shows that the
trace at u =1 of ;> over F 2 is

¢*/Gauss(Vr ,, x2) = (—1)@TD/%q, (10.6.5)

since the Gauss sum Gauss(¢r ., x2) is (— 1)(a+1)/2¢ by Stickelberger’s formula (5.7.1). By (a),
the only trace of elements in H = H;meeom on My with absolute value ¢ is (—1)"(—¢) = ¢.
Assume that ¢ = 1(mod 4). As gives trace —¢q, we must have that Carith,qu2 =
02 Thus [HIZ’:narlthIF 2 H;Ksn;eom] 27 and 80 ‘Carith,k| [Hblsmarlth k- Hl:lvs*n;;eom] is 2 if 2Jf
deg(k/F ) and 1 if 2] deg(k/F,z).
Next assume that ¢ = 3(mod 4) but C’arith,urﬁ = (5, in particular,

bzs

[ n,m . gn,m } -9
bis,arith,]Fqg * “tbis,geom! T

It follows that the traces of any elements v with Fg2(v) of odd degree over F,2 should be (—1)
times the traces of elements in H = H.™ . On the other hand, (10.6.5) gives trace at u = 1

to be ¢, a contradiction. Thus Canth,[g‘izoi 1 when ¢ = 3(mod 4) Furthermore, Cayithx = 1
for any extension k/F 2, simply because H,:.", "geom < H, ;:ﬁmth e < H;:;mh Fp = Hg;g?geom.
For (d), recall that ged(B,q + 1) = 1, and thus G?Z;ngeom > SU,,(q) is a normal subgroup of
H;s”;eom GU,(q) of index dividing B, which is prime to ¢ + 1, so must itself be GU,(q).
Now, Gyl i, contains Gyl “seom = GUn(g) and has index dividing B, which is odd, in
HlZZ:rithk = Oarlth,k x GU, ( ) with Oarlth 1 < Cy. Hence szs arith,k — Hl:;g;ﬁtmk [

REMARK 10.7. It is striking that when ged(m, ¢+ 1) = 1, the local systems W™™ and
W, have trace functions that differ “only” in which power of z has the parameter, yet the
first has geometric monodromy group SU,(¢) while the second has geometric monodromy
group GUp,(q).

As a word of caution, we also mention that the subgroup (j) x SU,(q) < GU,(q) in
Theorem is contained in a subgroup GU,(q) of Sp,,(¢), which acts on a total Weil
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representation of Spy,, (¢) via the character X2, 4, where X2 is the unique quadratic character

of

GU,(q), cf. [14] Theorem 3.1]. In contrast, the subgroup GU,(g) in Theorem is not

contained in Sp,,(¢), and acts on a total Weil representation via the character ¢, q.
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