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Abstract. We continue the program set up in [KT5] to study the monodromy groups of hyper-
geometric and Kloosterman sheaves. We gave there easy to apply criteria on these sheaves that
their monodromy groups satisfy the group-theoretic condition (S+), and showed that many of the
finite almost quasisimple groups occur as monodromy groups of such sheaves. Here, we show that
precisely 12 of the 26 sporadic simple groups occur in this way (and explain why the others cannot
occur this way). We also treat some small rank finite groups of Lie type, as well as certain primitive
complex reflection groups.
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1. Introduction

Given a prime p, it was conjectured by Abhyankar [Abh1] and proven by Raynaud [Ray] (see also
[Pop]) that any finite group G which is generated by its Sylow p-subgroups occurs as a quotient of
the fundamental group of the affine line A1/Fp. The analogous result for the multiplicative group
Gm := A1 r {0}, also conjectured by Abhyankar and proven by Harbater [Har] is that any finite

group G which, modulo the subgroup Op′(G) generated by its Sylow p-subgroups, is cyclic, occurs as
a quotient of the fundamental group of Gm/Fp. In the ideal world, given such a finite group G, and
a complex representation V of G, we would be able, for any prime ` 6= p, to choose an embedding
of C into Q`, and to write down an explicit Q`-local system on either A1/Fp or on Gm/Fp whose
geometric monodromy group is G, in the given representation.

In some earlier papers [KT1], [KT2], [KT3], [KT4], we have been able to do this for some
particular pairs (G,V ). When we were able to do this on A1, it was through one-parameter families
of “simple to remember” exponential sums, often but not always rigid local systems on A1. When
we have been able to do this on Gm, it was through explicit irreducible hypergeometric sheaves of
type (D,m) with D > m (which include Kloosterman sheaves as the special case m = 0).

We took a new point of view in [KT5], where we investigated what possible (G,V ) can hy-
pergeometric sheaves of type (D,m) with D > m give rise to? We consider only those that are
geometrically irreducible, i.e., those that have no common character both “upstairs” and “down-
stairs”. These are precisely the hypergeometric sheaves of type (D,m) with D > m on which their
geometric monodromy groups Ggeom acts irreducibly. One also knows that if Ggeom is finite for a
hypergeometric sheaf of type (D,m) with D > m, then a generator of local monodromy at 0 is an
element of G which has all distinct eigenvalues in the given representation (a “simple spectrum”

element). And by Abhyankar, if Ggeom is finite, then G/Op′(G) is cyclic.
To avoid confusion, let us explain the difference between hypergeometric sheaves of type (D,m)

with D > m, which we consider here, and hypergeometric sheaves of type (D,D). The latter
correspond to the classical hypergeometric equation DFD−1, which in the case D = 2 carries the
name of Gauss. They have been beautifully studied for general D by Beukers and Heckman [BH].
These hypergeometric sheaves are not lisse on Gm, but rather have nontrivial local monodromy at
the point 1 which is a pseudoreflection. Their monodromy groups have been completely classified
by Beukers and Heckman. When they are finite, they are only “interesting” in rank D ≤ 8.
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As in [KT5], let us say that a triple (G,V, g) satisfies the Abhyankar condition at p if G is

a finite group such that G/Op′(G) is cyclic, V a faithful, irreducible, finite-dimensional complex
representation of G, and g ∈ G is an element of order coprime to p that has simple spectrum on V .
The main objective of [KT5] was to study the natural question of which triples (G,V, g), with G
a finite group, either almost quasisimple or an extraspecial normalizer, that satisfy the Abhyankar
condition at p, occur “hypergeometrically”, that is, as (Ggeom,H, g) for a hypergeometric sheaf H
and a simple spectrum element g ∈ Ggeom which generates local monodromy around 0 on Gm/Fp
such that V realizes the action of G = Ggeom on H.

The main results of [KT5] essentially classify all such triples (G,V, g) that can possibly arise from
hypergeometric sheaves, and also determine the possible structure of geometric monodromy groups
of hypergeometric sheaves that satisfy the group-theoretic condition (S+). The converse problem
of determining whether such triples do indeed arise from hypergeometric sheaves is the subject
of [KT6], [KT7] (devoted to finite classical groups) and the present paper (dealing with sporadic
groups and small-rank groups of Lie type).

A natural question is which of the 26 sporadic groups, or more generally which almost quasisimple
groups G whose unique non-abelian composition factor is a sporadic group, can occur hypergeo-
metrically, say with a hypergeometric sheaf of type (D,m) with D > m. As mentioned above, the
first obstruction is that G must have a faithful irreducible D-dimensional representation in which
some element (the one that will provide local monodromy at 0 for the hypergeometric sheaf) has
simple spectrum, i..e. has D distinct eigenvalues in the representation. Such an element must have
order ≥ D in G (for it has order d < D, all of its eigenvalues will be among the dth roots of unity).
In particular, G must have a conjugacy class of elements whose order is at least the dimension of
the lowest dimensional nontrivial irreducible representation of G. This kind of obstruction rather
dramatically shows that the Fischer–Griess Monster does not occur hypergeometrically: its lowest
dimensional nontrivial irreducible representation has dimension 196883, whereas the largest order
of any of its elements is 119. In fact, this “simple spectrum” obstruction rules out 12 of the sporadic
groups as well as any of the almost quasisimple groups in which these 12 sporadic groups occur.
The 14 “survivors” of this obstruction are listed in lines 2 through 15 in Table 1. Two of these
survivors, namely M12 and HS, were shown in [KT5, Lemmas 9.6 and 9.7] not to occur hyper-
geometrically. What about the remaining 12 candidates? Earlier papers of ours, namely [KRL],
[KRLT1]–[KRLT3], showed that 2 · J2 and each of Co3, Co2, 6 · Suz, and 2 · Co1 occurred. One of
the main results of this paper is to show that all the remaining candidates also occur, and to give
for each a hypergeometric sheaf whose monodromy group it is.

We also obtain some small groups of Lie type groups in “non-generic” situations, either via
a hypergeometric sheaf in the “wrong” characteristic, or a hypergeometric sheaf in the expected
characteristic but which is not (known to be) part of any “family”. It seems worth pointing out that
each of these groups displays a group-theoretically exceptional property: either it has exceptional
Schur multiplier (e.g. PSL3(4) with Schur multiplier C4 ×C12 or Sp6(2) with Schur multiplier C2),
or it can be realized as an exceptional group of Lie type (e.g. G2(2) ∼= SU3(3) · 2 or 2G2(3) ∼=
SL2(8) · C3). Furthermore, we also exhibit hypergeometric sheaves, which realize several primitive
complex reflection groups in dimension 2, 4, 6, and 8, in their reflection representations (these
“reflection sheaves” are marked by symbol ♠ in Table 2.) As shown in [KT9, Theorem 4.10],
primitive complex reflection groups in odd dimensions ≥ 3 cannot occur this way. Finally, we
construct a few multi-parameter local systems on Am with finite monodromy, whose trace functions
are again some “simple” exponential character sums.

To identify candidate hypergeometric sheaves H for a given triple (G,V, g), we use the spectrum
of g on V to determine the shape of the set of “upstairs” characters of H. To control the shape of
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the set of “downstairs” characters, in particular the number of them, which is the dimension of the
tame part for the inertia group I(∞), we use local group theory to analyze possible candidates for
the image of I(∞) in G. Each such candidate can live in many different characteristics p, and a
priori there is no guarantee a given such candidate has finite geometric monodromy group Ggeom. A
key part of the proof is to use Kubert’s V -function [Ku], [Ka7, §13], to establish finite monodromy
for suitable candidates (and to quickly eliminate others). Once this is done, another key part of the
proof is to use representation theory to identify Ggeom (as well as the arithmetic monodromy groups
Garith of suitable descents of H). All in all, we have been able to show that all pairs (G,V ) that
are predicted in [KT5] to lead to hypergeometric sheaves with finite, almost quasisimple, geometric
monodromy groups satisfying condition (S+), do in fact occur hypergeometrically.

We recall from [KT5] some group-theoretic definitions that will be used throughout. For a finite
group G and a prime p, Op(G) denotes the largest normal subgroup of p-power order of G, Op′(G)

denotes the largest normal subgroup of order coprime to p, Op′(G) denotes the normal subgroup of

G generated by all Sylow p-subgroups of G, Z(G) denotes the center of G, and G(∞) denotes the
last term of the derived series of G. A finite group G is quasisimple if G = [G,G] and if G/Z(G) is
simple; it is almost quasisimple if S C G/Z(G) ≤ Aut(S) for some finite non-abelian simple group
S. Let d(S) denote the smallest degree of faithful projective irreducible complex representations of
a simple group S, and let ō(g) denote the order of the element gZ(G) in G/Z(G) for any g ∈ G.
Adopting the notation of [GMPS], let meo(X) denote the largest order of elements in a finite group
X; also, by an outer automorphism of X we mean an automorphism of X which is not inner.

We also recall some basic algebro-geometric notions. A connected scheme X has (once cho-
sen a base point η) a profinite fundamental group πi(X, η), which up to inner automorphism is
independent of the auxiliary choice of base point. Given a topological ring R, a rank n R-local
system F on X, also called a lisse R-sheaf of rank n on X, is just a continuous homomorphism
ρF : πi(X, η) → GLn(R). When X is a connected scheme over a finite field k such that X ⊗ k is
connected, we refer to π1(X) as the arithmetic fundamental group of X, and we refer to π1(X ⊗ k)
as its geometric fundamental group. For brevity, we denote these groups πarith

1 (X) and πgeom
1 (X).

In this situation, for each finite extension field K/k, and each point x ∈ X(K), the group πarith
1 (X)

contains a well-defined Frobenius conjugacy class Frobx,K . [When X/k is of finite type, these Frobe-
nius conjugacy classes are dense; this is the Chebotarev density theorem.] Given a rank n R-local
system F on X, with corresponding representation ρF , the trace function of F is the rule which
attaches to each pair (K,x) with K/k a finite field extension and x ∈ X(K) the trace of Frobenius,
i.e.,

Trace(Frobx,K |F) := Trace
(
ρF (Frobx,K)

)
.

It is often useful to think of this trace function as providing, for each finite field extension K/k, the
R-valued function on the set X(k) given by

x ∈ X(K) 7→ Trace(Frobx,K |F) := Trace
(
ρF (Frobx,K)

)
.

A local system F on X is said to be geometrically irreducible, respectively arithmetically irreducible,
if it is irreducible as a representation of πgeom

1 (X), respectively of πarith
1 (X). Similarly, F is said to

be geometrically semisimple, respectively arithmetically semisimple, if it is completely reducible as
a representation of πgeom

1 (X), respectively of πarith
1 (X).

In this paper, we are typically concerned with the case when X/k is either A1/Fq or Gm/Fq,
with Fq a finite extension of Fp, the ring R is the field Q` for some prime ` 6= p, and F is a local
system whose trace function is given by a simple (in the sense of simple to remember) explicit
formula involving exponential sums. Our particular interest is in local systems F for which the
images under ρF of πarith

1 (X) = π1(X) and πgeom
1 (X) = π1(X/k) are finite groups, which we call
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the arithmetic monodromy group, respectively, geometric monodromy group, of F . When F is a
hypergeometric sheaf on Gm/Fp, we frequently work with its local monodromy groups at 0 and ∞:
its inertia subgroup I(0) with its wild inertia subgroup P (0), and its inertia subgroup I(∞) with
its wild inertia subgroup P (∞). We say that such an F has type (D,m), if it has rank D and,
furthermore, the I(∞)-tame part has dimension m (so the I(∞)-wild part, usually referred to as
the wild part and denoted by Wild, has dimension W := D −m). Given a prime p and an integer

N ≥ 1 coprime to p, µN denotes the unique (cyclic) subgroup of order N of F×p , CharN = Char(N)

denotes the set of all Q`
×

-valued characters of (Fp(µN ))× of order dividing N , Char×N denotes the
subset of all such characters of order exactly N , ξN denotes a fixed such character of exact order
N , 1 denotes the trivial character, and Charntriv(N) := Char(N) r {1}.

2. Almost quasisimple groups containing elements with simple spectra

One of the main results of [KT5] is the determination of all triples (G,V, g) subject to the following
condition:

(?):
G is an almost quasisimple finite group, with S the unique non-abelian composition
factor, V a faithful irreducible CG-module, and g ∈ G has simple spectrum on V .

With G as in (?), G(∞) is quasisimple and S ∼= G(∞)/Z(G(∞)). On the other hand, G/Z(G) is
almost simple: S C G/Z(G) ≤ Aut(S). We will frequently identify G with its image in GL(V ).
An element g ∈ G ≤ GL(V ) is called an ss-element, or an element with simple spectrum, if the
multiplicity of any eigenvalue of g acting on V is 1.

Recall [Is-FGT, 9A, pp. 273-274] that for a finite group G, E(G) denotes the layer of G, the
subgroup of G generated by its subnormal quasisimple subgroups. These subgroups, the components
of G, commute with each other, and thus E(G) is the product, inside G, of its components. Under

the assumption that G is almost quasisimple, E(G) coincides with G(∞).
Table 1, taken from [KT5], summarizes the classification of ss-elements in the non-generic cases

of sporadic groups and A7 and some small rank Lie-type groups, under the additional condition
that V |E(G) is irreducible. For each V , we list all almost quasisimple groups G with common E(G)
that act on V , and we list the number of isomorphism classes of such representations in a given
dimension, for a largest possible G up to scalars (if no number is given, it means the representation
is unique up to equivalence in given dimension). For each representation, we list the names of
conjugacy classes of ss-elements in a largest possible G, as listed in [GAP], and/or the total number
of them. [Let us clarify the notion of “a largest possible G”. For a pair (L, χ) in question, where L
is quasisimple and χ is a faithful irreducible character of L, we list an almost quasisimple group G
such that E(G) = L, χ extends to G, and G/Z(G) (which is a subgroup of Aut(L) containing L)
is maximal (with respect to inclusion). Modulo its center, such a group G is well-defined, but not
unique a priori. However, in the cases under consideration, G/Z(G) turns out to be unique.]

We also give a reference where a local system realizing the given representation is constructed.
The indicator ] signifies that we have a local system conjectured to realize the given representation,
whereas (-) means that no hypergeometric sheaf with G as monodromy group can exist, as shown
in [KT5, §9].

Theorem 2.1. [KT5, Theorem 6.4] In the situation of (?), assume that S is one of 26 sporadic
simple groups, or A7, and that V |E(G) is irreducible. Then (S,G, V, g) is as listed in Table 1.

Table 2, also (almost entirely) reproduced from [KT5, Table 3], lists certain hypergeometric
sheaves

Hypψ(χ1, . . . , χD; ρ1, . . . , ρm)

in characteristic p that were conjectured to produce G as geometric monodromy groups.



6 NICHOLAS M. KATZ, ANTONIO ROJAS-LEÓN, AND PHAM HUU TIEP

S meo(Aut(S)) d(S) G dim(V ) ss-classes

A7 12 4 2A7 4 (2 reps) ] 9 classes
S7 6 (2 reps) [KT5, 9.3] 7A, 6C, 10A, 12A (4 classes)

3A7 6 (2 reps) ] 6 classes
6A7 6 (4 reps) ] 15 classes

M11 11 10 M11 10 (3 reps) ] 11AB (2 classes)
11 ] 11AB (2 classes)

M12 12 10 2M12 · 2 10 (4 reps) (-) 11 classes
M12 11 (2 reps) (-) 11AB (2 classes)

2M12 · 2 12 (2 reps) (-) 24AB (2 classes)

M22 14 10 2M22 · 2 10 (4 reps) ] 10 classes

M23 23 22 M23 22 ] 23AB (2 classes)

M24 23 23 M24 23 ] 23AB (2 classes)
J2 24 6 2J2 6 (2 reps) [KRL] 17 classes

2J2 · 2 14 (2 reps) ] 28AB, 24CDEF (6 classes)

J3 34 18 3J3 18 (4 reps) ] 19AB, 57ABCD (6 classes)
HS 30 22 HS · 2 22 (2 reps) (-) 30A

McL 30 22 McL · 2 22 (2 reps) ] 30A, 22AB (3 classes)

Ru 29 28 2Ru 28 ] 29AB, 58AB (4 classes)
Suz 40 12 6Suz 12 (2 reps) [KRLT3] 57 classes
Co1 60 24 2Co1 24 [KRLT3] 17 classes
Co2 30 23 Co2 23 [KRLT2] 23AB, 30AB (4 classes)
Co3 30 23 Co3 23 [KRLT1] 23AB, 30A (3 classes)

PSL3(4) 21 6 6S · 21 6 (4 reps) ] many classes
41S · 23 8 (8 reps) ] 12 classes
2S · 22 10 (4 reps) ] 14CDEF (4 classes)

PSU4(3) 28 6 61S · 22 6 (4 reps) ] many classes

Sp6(2) 15 7 Sp6(2) 7 ] 7A, 8B, 9A, 12C, 15A
2Sp6(2) 8 ] 8 classes
Sp6(2) 15 (-) 15A

Ω+
8 (2) 30 8 2Ω+

8 (2) · 2 8 ] 22 classes
2B2(8) 15 14 2B2(8) · 3 14 (6 reps) ] 15AB (2 classes)

G2(3) 18 14 G2(3) · 2 14 (2 reps) ] 14A, 18ABC (4 classes)

G2(4) 24 12 2G2(4) · 2 12 (2 reps) ] 20 classes

Table 1. Elements with simple spectra in non-generic cases

In Table 2, we fix a nontrivial additive character ψ of the prime field Fp, and for each integer
N ≥ 1 coprime to p we fix a multiplicative character ξN of order N . The last column indicates the
conjectured image of I(∞). The shape of these sheaves was predicted using the spectrum of the
ss-elements g on V as classified in Theorem 2.1, and p-local subgroups of the hypothetical group G
and their possible action on V . We have also included certain local systems for the exceptional cover
3 ·A6, and for the two “exceptional” groups of Lie type SU3(3) · 2 ∼= G2(2) and SL2(8) · 3 ∼= 2G2(3),
as well as certain cross-characteristic sheaves for some finite groups of Lie type (that is, when the
characteristics of the sheaf and the group are unequal; this must be the case unless the rank of the
sheaf is small, see [KT5, Theorem 7.3]). Furthermore, we have added local systems that realize
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S G p rank χ1, . . . , χD ρ1, . . . , ρm Image of I(∞)

A6 3S 3 3 1, ξ5, ξ
−1
5 ∅ 31+2 : 2

(2× 3S) · 23 5 6 Char8 r {ξ8, ξ
−1
8 } ξ12, ξ

7
12 5 : 4

A7 2S 3 4 1, ξ7, ξ
2
7 , ξ

4
7 ∅ 32 : 4

2S 5 4 1, ξ7, ξ
2
7 , ξ

4
7 ∅ 5 : 4

3S 5 6 ξ3 · Char×7 1, ξ2 5 : 4
6S 5 6 ξ6 · Char×7 ξ8, ξ

−1
8 5 : 8

M11 S 3 10 Char×11 Char2 32 : 8
S 3 10 Char×11 ξ8, ξ

3
8 32 : 8

S 3 11 Char11 Char4 r {1} 32 : 8

M22 2S 2 10 Char×11 ξ7, ξ
2
7 , ξ

4
7 23 : 7

M23 S 2 22 Char×23 Char15 r Char×15 24 : 15

M24 S 2 23 Char23 Char×3 26 : 21

McL S · 2 3 22 Char22 Char×5 31+4 : 20
S · 2 5 22 Char22 Char×3 51+2 : 24

J2 2S 5 6 Char×12 t Char×3 ∅ 52 : 12
2S · 2 5 14 Char28 r Char14 ξ8, ξ

−1
8 52 : 24

J3 3S 2 18 ξ3 · Char×19 1, ξ5, ξ
−1
5 24 : 15

Ru 2S 5 28 Char×29 ξ12, ξ
3
12, ξ

5
12, ξ

9
12 52 : 24

PSL3(4) 6S 2 6 Char×7 ξ3 24 : 5

41S · 23 7 8 ξ1,3,5,7,9,13,15,17
20 ξ3, ξ

2
3 7 : 6

2S · 22 3 10 Char14 r {ξ0,1,2,4
7 } Char×4 32 : 8

PSU4(3) 61 · S 3 6 Char×7 ξ2 34 : 10
61 · S 3 6 Char×7 ξ2, ξ4, ξ

−1
4 31+2

+ : 4

Sp6(2) S 7 7 Char5 t Char×3 ξ2 7 : 6
2S 7 8 Char×15 Char2 7 : 6

Ω+
8 (2) 2S · 2 5 8 Char×9 t Char2 ∅ 52 : 8

2S · 2 5 8 Char7 t {ξ2} ∅ 52 : 8

G2(3) S · 2 13 14 Char18 r {ξ0,1,2,3
6 } Char×4 13 : 12

G2(4) 2 · S 2 12 Char×13 Char×3 2-group : 15

SU3(3) S · 2 7 6 Char×12 t {ξ6, ξ
2
6} ∅ 7 : 6

S · 2 7 7 Char×12 t Char3 ξ2 7 : 6
2B2(8) S · 3 13 14 Char15 r {1} ξ12, ξ

5
12 13 : 12

SL2(8) S · 3 7 7 Char×9 t {1} ξ2 7 : 6
S · 3 7 8 Char9 r {1} Char2 7 : 6

SU3(4) (2× S) · 4 5 12 Char16 r {ξ0,1,4,7
8 } ∅ 52 : 24

(2× S) · 4 13 12 Char16 r {ξ0,1,4,7
8 } ∅ 13 : 24

Ω+
8 (2) W (E8) = 2S · 2 2 8 ♠ Char×15 Char9 r Char×3 C18

PSU4(3) 61 · S · 22 2 6 ♠ Char×7 ξ1,3,4,6,7
9 C18

SU4(2) W (E6) = S · 2 2 6 ♠ Char×9 Char5 C10
∼= PSp4(3) 2S × 3 3 4 ♠ Char×5 Char4 r {1} C12

A5 2S × 5 5 2 ♠ Char×3 ξ2 C10

1 SL2(3) 3 2 ♠ Char×4 1 C3

Table 2. Hypergeometric sheaves in non-generic cases
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the Weyl groups W (E6) = SU4(2) · 2 and W (E8) = 2 · Ω+
8 (2) · 2, as well as the extended binary

icosahedral group 5×SL2(5), the Witting group 3×Sp4(3), and the Mitchell group 61 ·PSU4(3) ·22,
in their reflection representations; these “reflection sheaves” are marked by symbol ♠ in the table.
The notation for outer automorphisms like 21, 22, etc. is taken from [Atlas].

Each of the local systems in Table 2 will be proved in this paper to have the conjectured group
G as its geometric monodromy group Ggeom (and to satisfy (S+)). In all cases, we also determine
the arithmetic monodromy groups of suitable descents of the constructed hypergeometric sheaves.

3. Preliminary results on condition (S+)

We work over an algebraically closed field C of characteristic zero, which we will take to be Q` for
some prime ` in the rest of this paper. Given a finite-dimensional C-vector space V and a Zariski
closed subgroup G ≤ GL(V ), recall from [GT, 2.1] that G (or more precisely the pair (G,V )) is
said to satisfy (S) if each of the following four conditions is satisfied.

(i) The G-module V is irreducible.
(ii) The G-module V is primitive.
(iii) The G-module V is tensor indecomposable.
(iv) The G-module V is not tensor induced.

[Note that (ii) already implies (i), but we have stated condition (i) for clarity.] We will say that
(G,V ) satisfies (S+) if in addition to satisfying (S), the center Z(G) is finite. More generally, if
Γ is any group given with a finite-dimensional representation Φ : Γ → GL(V ), then we say (Γ, V )
satisfies (S+), if (Φ(Γ), V ) satisfies the four conditions of (S) and, in addition, det(Φ(Γ)) is finite.
Roughly speaking, condition (S+) corresponds to Aschbacher’s class S of maximal subgroups of
classical groups [Asch].

Lemma 3.1. [KT5, Lemmas 1.1, 1.4] Suppose (G,V ) satisfies the condition (S+), dim(V ) > 1,
and Z(G) is finite. Then we have three possibilities:

(a) The identity component G◦ is a simple algebraic group, and V |G◦ is irreducible.
(b) G is finite, and almost quasisimple, i.e. there is a finite non-abelian simple group S such

that S C G/Z(G) < Aut(S). Furthermore, V is irreducible over the last term G(∞) of the
derived series of G.

(c) G is finite and it is an “extraspecial normalizer” (in characteristic r), that is, dim(V ) = rn

is a power of a prime r, and G contains a normal r-subgroup R = Z(R)E, where E is
an extraspecial r-group E of order r1+2n that acts irreducibly on V , and either R = E or
Z(R) ∼= C4.

Lemma 3.2. [KT5, Lemma 1.6] Let Γ be a group, C an algebraically closed field of characteristic
zero, n ∈ Z≥1, Φ : Γ → GLn(C) = GL(V ) a representation of Γ, and G ≤ GL(V ) the Zariski
closure of Φ(Γ). Then (Γ, V ) satisfies (S+) if and only if (G,V ) satisfies (S+). This equivalence
holds separately for each of the four conditions defining (S+).

We work in characteristic p, and use Q`-coefficients for a chosen prime ` 6= p. We fix a nontrivial
additive character ψ of Fp, with values in µp(Q`). We will consider Kloosterman and hypergeometric

sheaves on Gm/Fp as representations of π1(Gm/Fp), and prove that, under various hypotheses, they

satisfy (S+) as representations of π1(Gm/Fp). As noted in Lemma 3.2, this is equivalent to their
satisfying (S+) as representations of their geometric monodromy groups.

On Gm/Fp, we consider a Kloosterman sheaf

Kl := Klψ(χ1, . . . , χD)
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of rank D ≥ 2, defined by an unordered list of D not necessarily distinct multiplicative characters
of some finite subfield Fq of Fp. Recall [Ka4, 8.4.10.1] that any Kloosterman sheaf is geometrically
irreducible.

Theorem 3.3. [KT5, Theorem 1.7] Let K be a Kloosterman sheaf of rank D ≥ 2 in characteristic
p which is primitive. Suppose that D 6= 4. If p = 2, suppose also that D 6= 8. Then K satisfies
(S+).

There are certain cases in which a primitive Kloosterman sheaf of rank 4 satisfies (S+).

Lemma 3.4. Let K be a Kloosterman sheaf of rank D = 4 in characteristic p which is primitive.
Suppose that one of the following two conditions holds.

(i) p = 2.
(ii) There exists an odd integer N prime to p such that K is of the form

Kl(α1, α2, α3, α4)

with each αNi = 1 and αi 6= αj for i 6= j. Suppose further that
∏
i αi = 1, and that K is not

geometrically self-dual (i.e., the αi are not stable by complex conjugation).

Then K satisfies (S+).

Proof. From [KT5, Lemma 2.2], K is tensor indecomposable. It remains to show that it is not
tensor induced. We argue by contradiction. Since D = 4, the only possibility is that it is 2-tensor
induced. By [KT5, Lemma 3.2], this forces 2 to be prime to p. Suppose now that (ii) holds. Then
[2]?K is tensor decomposable, say

[2]?K ∼= A⊗ B,
with A,B local systems of rank 2 on Gm/Fp, cf. [KT5, Lemma 2.1 (i)]. Moreover, by [KT5, Lemma
2.1 (ii)], we may assume both of A,B are tame at 0.

We now consider the I(0) representations. That of [2]?K is the direct sum of the characters
α2
i . Therefore the I(0) representations of each of A,B must be semisimple, say AI(0) = Λ1 + Λ2,
BI(0) = Λ3 + Λ4. replacing A by L1/Λ1

⊗ A and replacing B by LΛ1 ⊗ B, we may assume further
that

AI(0) = 1 + Λ2, BI(0) = Λ3 + Λ4.

Expanding their tensor product, we get that Λ3,Λ4 are each among the α2
i , so each have order

dividing N . This then forces Λ2 to have order dividing N . Fix a character ρ of order N , and write

Λ1 = ρa, Λ2 = ρb, Λ1 = ρs.

Thus
(1+ ρa)⊗ (ρb + ρc) = ρb + ρc + ρa+b + ρa+c

is the sum of the α2
i . By assumption, the product of the αi is 1, so also the product of their squares.

Therefore the product of the four characters ρb, ρc, ρa+b, ρa+c is trivial. So we have

b+ c+ a+ b+ a+ c ≡ 0 (mod N),

i.e. 2(a + b + c) ≡ 0 (mod N). As N is odd, we have a + b + c ≡ 0 (mod N). Thus the four
characters are ρb, ρc, ρ−c, ρ−b, which occur in complex conjugate pairs. Therefore the α2

i occur in
complex conjugate pairs, say α2

1α
2
2 = 1, α2

3α
2
4 = 1. As N is odd, this forces α1α2 = 1, α3α4 = 1. �

We next consider a hypergeometric sheaf H of type (D,m) with D > m ≥ 0, thus

H = Hypψ(χ1, . . . , χD; ρ1, . . . , ρm).

Here the χi and ρj are (possibly trivial) multiplicative characters of some finite subfield Fq, with
the proviso that no χi is any ρj . [The case m = 0 is precisely the Kloosterman case.]
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Theorem 3.5. [KT5, Theorem 1.9] Let H be a hypergeometric sheaf of type (D,m) with D > m > 0,
with D ≥ 4. Suppose that H is primitive, p - D, and W > D/2. If p is odd and D = 8, suppose
W > 6. If p 6= 3, suppose that either D 6= 9, or that both D = 9 and W > 6. Then H satisfies
(S+).

In the case when p divides D, we need stronger hypotheses to show that (S+) holds.

Theorem 3.6. [KT5, Theorem 1.12] Let H be a hypergeometric of type (D,m) with D > m > 0,
with D > 4. Suppose that H is primitive. Suppose that p|D, and W > (2/3)(D − 1). If p = 2,
suppose D 6= 8. If p = 3, suppose (D,m) is not (9, 1). Then H satisfies (S+).

To determine the primitivity of a sheaf H, we will use

Proposition 3.7. [KRLT3, Proposition 1.2] Suppose that H is geometrically induced, i.e. that
there exists a smooth connected curve U/Fq, a finite étale map π : U → Gm/Fq of degree d ≥ 2, a
lisse sheaf G on U , and an isomorphism H ∼= π?G. Then up to isomorphism we are in one of the
following situations.

(i) (Kummer induced) U = Gm, π is the N th power map x 7→ xN for some N ≥ 2 prime to
p with N |n and N |m, G is a hypergeometric sheaf of type (n/N,m/N), and the lists of χi
and of ρj are each stable under multiplication by any character Λ of order dividing N .

(ii) (Belyi induced) U = Gmr {1}, π is either x 7→ xA(1−x)B or is x 7→ x−A(1−x)−B, G is
LΛ(x) ⊗Lσ(x−1) for some multiplicative characters Λ and σ, and one of the following holds:
(a) Both A,B are prime to p, but A + B = d0p

r with p - d0 and r ≥ 1. In this case π is
x 7→ xA(1 − x)B, the χi are all the Ath roots of Λ and all Bth roots of σ, and the ρj
are all the d0

th roots of (Λσ)1/pr .
(b) A is prime to p, B = d0p

r with p - d0 and r ≥ 1. In this case π is x 7→ x−A(1− x)−B,
the χi are all the (A + B)th roots of Λσ, and the ρj are all the Ath roots of Λ and all

the d0
th roots of σ1/pr .

(c) B is prime to p, A = d0p
r with p - d0 and r ≥ 1. In this case π is x 7→ x−A(1− x)−B,

the χi are all the (A+B)th roots of Λσ, and the ρj are all the Bth roots of σ together

with all the d0
th roots of Λ1/pr .

The following two statements are useful in studying representations with irrational traces:

Lemma 3.8. [KT5, Lemma 6.3] Let Φ : G → GL(V ) ∼= GLn−1(C) be a faithful irreducible repre-
sentation of a finite almost quasisimple group G, which contains a normal subgroup S ∼= An with
n ≥ 7. Suppose that

(a) V |S ∼= S(n−1,1)|S, where S(n−1,1) denotes the “deleted permutation representation” of Sn, and
(b) Q(ϕ) ⊆ K for some number field K, if ϕ denotes the character of Φ.

Then Q(ϕ) ⊆ K0, the subfield obtained by joining to Q all roots of unity that belong to K. In fact,
Q(ϕ) is some cyclotomic extension Q(ζm) contained in K, and Tr(Φ(g)) is an integer multiple of a
root of unity for any g ∈ G.

Lemma 3.9. Let G and H be two finite, almost quasisimple groups with G(∞) = H(∞) and
G/Z(G) = H/Z(H) (as subgroups of Aut(S) for S the unique non-abelian composition factor of
G). Let ϕ ∈ Irr(G) and ψ ∈ Irr(H) be irreducible characters such that ϕ|L = ψ|L ∈ Irr(L). Then
there exists a root of unity γ ∈ C such that

(a) Q(ϕ) ⊆ Q(ψ)(γ) and Q(ψ) ⊆ Q(ϕ)(γ), and
(b) If Q(ψ) ⊆ Q(ϕ) in addition, then Q(ϕ) = Q(ψ)(γ).

Under the extra assumption that Q(ψ) = Q, we also have that ϕ(g) is an integer multiple of a root
of unity for any g ∈ G.
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Proof. Let ϕ be afforded by a representation Φ : G→ GL(V ) and let ψ be afforded by a represen-
tation Ψ : H → GL(V ), for a complex vector space V . Since ϕ|L = ψ|L ∈ Irr(L), we may assume
that Φ|L = Ψ|L. Consider any g ∈ G. Since G/Z(G) = H/Z(H), there is h ∈ H such that g
and h induce the same automorphism of S = L/Z(L) via conjugations. Applying Φ and Ψ, we see
that x := Ψ(h−1)Φ(g) centralizes Φ(L) modulo scalars in GL(V ), i.e. [x,Φ(L)] ≤ Z(GL(V )) and so
[[x,Φ(L)],Φ(L)] = 1. But L = [L,L], so Φ(L) = [Φ(L),Φ(L)] and [x,Φ(L)] = [x, [Φ(L),Φ(L)]] = 1
by the Three Subgroups Lemma. Hence x = αg · Id for some αg ∈ C, i.e. Φ(g) = αgΨ(h). Since
both g and h are of finite order, in fact αg is a root of unity. Taking

N := lcm
(
o(αg) | ϕ(g) 6= 0

)
,

and γ := ζN , we see that ϕ(g) = αgψ(h) ∈ Q(ψ)(γ) and ψ(h) = α−1
g ϕ(g) ∈ Q(ϕ)(γ), proving

the first two inclusions. Assume now that Q(ψ) ⊆ Q(ϕ). Then, when ϕ(g) 6= 0, we have that
ψ(h) 6= 0 and αg = ϕ(g)/ψ(h) ∈ Q(ϕ). This implies by the choice of N that γ ∈ Q(ϕ), and so
Q(ϕ) = Q(ψ)(γ).

Under the extra assumption that Q(ψ) = Q, we also see that ϕ(g) = αgψ(h) ∈ αgZ. �

4. Ggeom and Garith

Let k be a finite field of characteristic p, X/k a geometrically connected smooth k-scheme of
dimension d ≥ 1, ` 6= p a prime number, and F a lisse Q`-sheaf on X. We view F as a representation
of πarith

1 (X) := π1(X) and also as a representation of πgeom
1 (X) := π1(X ⊗k k), a closed normal

subgroup of πarith
1 (X) which sits in a short exact sequence

1→ πgeom
1 (X)→ πarith

1 (X)→ Gal(k/k)→ 1.

We define algebraic groups Ggeom CGarith to be the Zariski closures of the images of πgeom
1 (X) and

of πarith
1 (X) respectively.

For ease of later reference, we state a useful fact about the compatibility of the formation of
Zariski closure with group homomorphisms, cf. [Bor, Chapter I, &2, 2.1(f)].

Lemma 4.1. Let G,H be linear algebraic groups over an algebraically closed field k, and f : G→ H
a k-homomorphism of algebraic groups. Let Γ ⊂ G(k) be a subgroup of the “abstract” group G(k).

Denote by Γ the Zariski closure of Γ in G, and by f(Γ) the Zariski closure of f(Γ) in H. Then

f(Γ) = f(Γ).

Lemma 4.2. Suppose Garith for F is finite. Then the quotient group Garith/Ggeom is a finite cyclic
group. It is generated by the image in Garith/Ggeom of any Frobenius element Frobx,k at any k

valued point x ∈ X(k). Its order is the least integer N ≥ 1 such that FrobNx,k lands in Ggeom.

Proof. If Garith is finite, then its quotient Garith/Ggeom is a finite quotient of the pro-cyclic group

Gal(k/k). In Gal(k/k), the image of any Frobx,k is a topological generator. Thus Garith/Ggeom is
the finite cyclic group generated by the image of any Frobx,k. �

Corollary 4.3. In the situation of the lemma, let d ≥ 1 be an integer, let kd/k denote the extension
of degree d, and let N := |Garith/Ggeom|. Then for the pullback Fd of F to X ⊗k kd, Ggeom,Fd =
Ggeom,F remains the same, but Garith,FdCGarith,F is the subgroup of index gcd(d,N). In particular,
Garith,Fd = Ggeom if and only if N |d.

Proof. The invariance of Ggeom is a tautology. Pick x ∈ X(k). The quotient Garith,Fd/Ggeom is the

subgroup of Garith,F/Ggeom generated by Frobx,kd = (Frobx,k)
d. So this is the statement that the

subgroup of Z/NZ generated by the integer d is as asserted. �
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5. Structure of Ggeom

First we recall several results concerning the structure of the geometric monodromy group Ggeom

of an irreducible hypergeometric sheaf, and the images of local monodromies I(0) and I(∞) in
Ggeom.

Theorem 5.1. [KT5, Theorem 4.1] Let H be an irreducible Q`-hypergeometric sheaf on Gm/Fp,
with p 6= `, and of type (D,m) with wild part of dimension D −m ≥ 2. Denote by G0 the Zariski
closure inside the geometric monodromy group Ggeom of the normal subgroup generated by all Ggeom-
conjugates of the image of I(0). Then G0 = Ggeom. In particular, if Ggeom is finite then it is
generated by all Ggeom-conjugates of the image of I(0), and Ggeom = Op(Ggeom).

The next theorem is the D −m = 1 analogue of Theorem 5.1.

Theorem 5.2. Let H = Hypψ(χ1, . . . , χD; ρ1, . . . , ρD−1) be an irreducible Q`-hypergeometric sheaf

on Gm/Fp, with p 6= `, and of type (D,m) with wild part of dimension D−m = 1. Denote by G0 the
Zariski closure inside the geometric monodromy group Ggeom of the normal subgroup generated by
all Ggeom-conjugates of the image of I(0). Then the quotient Ggeom/G0 is the additive group Fp, and

the projection of Ggeom onto this Fp, viewed by composition as a homomorphism π1(Gm/Fp)→ Fp
is the geometric monodromy group of Lψ.

Proof. Let K := Ggeom/G0. Because H is geometrically irreducible, Ggeom has a faithful irreducible
representation, and hence is reductive. Therefore its quotient K is reductive.

By the arithmetic determinant formula [Ka4, Theorem 8.12.2 (3)], a prime to p power of det(H)
is Lψ(ax) for some a ∈ F×p , which is certainly trivial on the (pro) prime to p image of I(0). So the
quotient K admits a nontrivial quotient Lψ. So K is nontrivial.

Consider a nontrivial irreducible representation, say ρ, of K. View ρ as an irreducible represen-
tation of the reductive group Ggeom. Then ρ, indeed any irreducible representation of Ggeom, is a
direct summand of some

H⊗a ⊗ (H∨)⊗b.

Consider now the P (∞)-representation of H. By hypothesis, it is of the form (Wild1)⊕ (D−1)1,
with Wild1 a one-dimensional representation with Swan∞ = 1. From the arithmetic determinant
formula, we see that Wild1 = Lψ. From this retain only that the P (∞)-representation of H is a

direct sum of various Lψ(ax) with a ∈ Fp. Therefore the P (∞)-representation of H⊗a ⊗ (H∨)⊗b is
also such a direct sum, and hence the P (∞)-representation of ρ is such a direct sum.

Now view ρ as a representation of π1(Gm/Fp). So viewed, ρ is trivial on I(0), so may be viewed

as a lisse Q`-sheaf Fρ on the affine line A1/Fp which is irreducible and nontrivial. Therefore

H i
c(A1/Fp,Fρ) = 0 for i 6= 1. By the Euler-Poincare formula [Ka3, 2.3.1],

χc(A1/Fp,Fρ) = rank(Fρ)− Swan∞(Fρ),
and hence

h1
c(A1/Fp,Fρ) = Swan∞(Fρ)− rank(Fρ).

As h1
c ≥ 0, we find that

Swan∞(Fρ) ≥ rank(Fρ).
The P (∞)-representation of Fρ is a direct sum with multiplicities of various Lψ(ax) with a ∈ Fp.

Thus Swan∞(Fρ) is the total number of constituents Lψ(ax) with a ∈ F×p . In particular,

Swan∞(Fρ) ≤ rank(Fρ).
Therefore we have equality:

Swan∞(Fρ) = rank(Fρ),



RIGID LOCAL SYSTEMS AND SPORADIC SIMPLE GROUPS 13

and the P (∞)-representation of Fρ is a direct sum

Fρ|P (∞) =
⊕
a∈F×p

naLψ(ax).

Because Fρ is lisse and geometrically irreducible on A1, it is perverse irreducible. Therefore its
Fourier Transform FTψ(Fρ) is perverse irreducible. But this FT has generic rank zero (indeed
vanishes outside F×p ), and so is punctual. But the only punctual sheaf which is perverse irreducible

is a single delta sheaf. So our FT must be δ−a for some a ∈ F×p . By Fourier inversion, we find that
Fρ is Lψ(−x).

Here is another, more elementary, version of the argument of this last paragraph. We first show
that Fρ has rank one. Indeed, it is has rank 2 or more, and we choose an a ∈ F×p such that Lψ(ax)

occurs in the P (∞)-representation of Fρ, then Fρ ⊗ Lψ(−ax) remains geometrically irreducible and
nontrivial, and keeps the same rank, but its Swan∞ has decreased, which violates the inequality
Swan∞ ≥ rank. Once Fρ has rank one, then Fρ ⊗ Lψ(−ax) is both lisse at 0 and tame at ∞, so is
geometrically trivial, which is to say that Fρ ∼= Lψ(ax).

Thus the only nontrivial irreducible representations of the reductive group K are the p − 1
characters of order p given by the Lψ(ax) as a ranges over F×p . Therefore K is itself the additive
group of Fp, and each nontrivial character of K is an Lψ(−ax). �

Theorem 5.3. [KT5, Theorem 4.7] Let H be an irreducible Q`-hypergeometric sheaf on Gm/Fp
definable on Gm/Fq for some finite extension Fq/Fp, with p 6= `, and of type (D,m) with D > m.
Denote by GP (∞) the Zariski closure inside the geometric monodromy group Ggeom of the normal
subgroup generated by all Ggeom-conjugates of the image of the wild inertia group P (∞). Then
Ggeom/GP (∞) is a finite cyclic p′-group.

We can be more specific about the order of the finite cyclic p′-group of Theorem 5.3. Recall that

Gm(Fp) acts on itself via translations x 7→ ax, a ∈ Fp
×

. These translations fix each of the points
0 and ∞, and hence yield outer automorphism (outer because of not fixing chosen base points)

on each of the groups π1(Gm/Fp), I(0), I(∞), P (∞). Because this action, for a fixed a ∈ Fp
×

,
is well-defined up to an inner automorphism on each of these groups, it has a well-defined action,
called multiplicative translation by a, on equivalence classes of irreducible Q`-representations Φ of
each of these groups, sending the equivalence class of Φ to its multiplicative translate by a.

Corollary 5.4. Let H := Hypψ(χ1, . . . , χD; ρ1, . . . , ρm) be an irreducible Q`-hypergeometric sheaf

on Gm/Fp, definable on Gm/Fq for some finite extension Fq/Fp, with p 6= ` (i.e. all the characters
χi, ρj are of finite order). Suppose D > m. Write W := D−m, the dimension of Wild (the wild part
of the I(∞)-representation) as W = w0p

a with w0 prime to p and a ≥ 0. Define integers A,B,C,E
as follows.

(a) A := lcm(orders of the χi).
(b) B := lcm(orders of the ρj) if m > 0, B := 1 if m = 0.
(c) C := w0 if a = 0 (i.e. if p - w), C := w0(pa + 1) if a > 0.

(d) D is the order of any character Λ such that ΛpW = det(Wild)p⊗ξW−1
2 , with the understanding

that if p = 2 then ξ2 := 1, cf. (5.4.1) for the explicit formula for det(Wild).

Then the order of the finite cyclic p′-group Ggeom/GP (∞) divides gcd(A, lcm(B,C,D)).

Proof. Let us denote by K the finite cyclic p′-group Ggeom/GP (∞), and by K(0) and K(∞) the

images of I(0) and I(∞), respectively, in K. We know that the resulting map π1(Gm/Fp) � K
corresponds to a Kummer sheaf Lσ for some character σ of finite order, which is #K(0) = #K(∞).
K(0) is a rank one quotient of the image of I(0) on H, so has order dividing A. The group K(∞)
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is a quotient of the image of I(∞) on H. Let us write this image as Wild + Tame (in the category
of I(∞)-representations). The image of I(∞) on Wild + Tame is a subgroup of the product

(the image of I(∞)|Tame)× (the image of I(∞)|Wild).

Thus K(∞) is a subgroup of the product of a rank one quotient of I(∞)|Tame with a rank one
quotient of I(∞)|Wild). The first factor has order dividing B.

It remains to explain that lcm(C,D) is the order the quotient of I(∞)|Wild by its p-Sylow
subgroup. [Note that while I(∞)|Tame need not be a finite group, indeed will be finite precisely
when the ρj are all distinct, the group I(∞)|Wild is always finite, cf. [KT9, Proposition 5.2].]

Suppose first that W = 1. Then Wild is of the form Lψ ⊗ Lτ , and we recover τ as the Λ in the
definition of D. So here C = 1 and D is the order of τ , so indeed lcm(C,D) is as asserted in this
case.

Suppose next thatW ≥ 2, so that det(Wild) is tame (because all slopes of Wild are 1/W < 1, hence
det(Wild) has its unique slope, which is its Swan conductor, < 1 and hence, being a nonnegative
integer, is 0). Thus det(H) is tame at both 0 and ∞, and hence the determinants at both 0 and
∞ are the same Kummer sheaf Lσ. At 0, the determinant is

∏
i χi. At ∞, the determinant is

det(Wild)⊗
∏
j ρj . Equating the two expressions, we see that

(5.4.1) det(Wild) =
(∏
i

χi
)
/
(∏
j

ρj
)
.

The idea now is to exploit the fact that the isomorphism class of Wild as an I(∞)-representation
is determined, up to a multiplicative translation, by its determinant, cf. [Ka4, 8.6.3]. This allows
us to consider the canonical extension of a given I(∞)-representation: it is a lisse sheaf on Gm/Fp
with the imposed I(∞)-representation and which is tame at 0. It has the remarkable property that
If we form the canonical extension FWild of Wild in the sense of [Ka2, §1.5], then by [Ka2, 1.4.12]
the quotient of I(∞)|Wild by its p-Sylow subgroup is precisely the image of I(0) on FWild.

In the case when W > 1 is prime to p, one knows [Ka2, 1.3.2, 4)] that Klψ(CharW ) is a canonical
extension. Its determinant is 1 if W is odd, and is the quadratic character ξ2 if W is even (which
forces p to be odd), so its Wild has determinant 1 if W is odd, and ξ2 if is even. If we tensor
Klψ(CharW ) with LΛ, then we have the canonical extension of the previous Wild tensored with LΛ,

whose determinant is thus ΛW ξW−1
2 . Thus lcm(C,D) is as asserted in this case.

In the case when W = w0p
a with a ≥ 1, we know, by a theorem of Pink, cf. [KT1, 20.3] and

[Ka2, 1.3.2 (4)], that the Kummer direct image

[w0]?Klψw0

(
Charntriv(pa + 1)

) ∼= Klψ(Char(w0(pa + 1)) \ Char(w0)
)

is a canonical extension. Its determinant, which is also det(Wild), is 1 if pw0 is even, and is 1 if pw0

is odd. If we tensor with LΛ, we change det(Wild) by a factor of ΛW , and we now have characters of
the form Λ(a character of order dividing w0(pa+1)). Thus lcm(C,D) is as asserted in this case. �

Remark 5.5. Here is an immediate application of Corollary 5.4. Let q = pa with a > 0, and
Klψ(χ1, . . . , χq). Suppose that

∏
i χi = ξ2. Then the order of the finite cyclic p′-group Ggeom/GP (∞)

divides both lcm(orders of the χi) and q+ 1. For an apparently more striking application, take the
Kloosterman sheaf of any rank n ≥ 2 with all its characters 1, i.e. the “classical” rank nKloosterman
sheaf Kln studied in [Ka3, 11.0.1]. Here we have A = 1, and hence Ggeom = GP (∞) for Kln.

As another application, take any (irreducible) hypergeometric of type (D,m) with D > m and
all “upstairs” characters 1. Again here we have A = 1, and hence Ggeom = GP (∞). But there is
a simpler explanation. The action of I(0) is unipotent, and so the group G0 of Theorem 5.1 is
connected. If D − m ≥ 2, then Ggeom = G0 by Theorem 5.1, hence Ggeom is connected, so has
no nontrivial finite quotient. If D − m = 1, then by Theorem 5.2, the quotient Ggeom/G0 has
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order p. So in this W = 1 case, Ggeom has no finite quotient of order prime to p, and once again
Ggeom = GP (∞).

Proposition 5.6. [KT5, Proposition 4.8] Let H be an (irreducible) hypergeometric sheaf of type
(D,m) in characteristic p, with D > m and with geometric monodromy group G = Ggeom. Then
the following statements hold for the image Q of P (∞) in G:

(i) If H is not Kloosterman, i.e. if m > 0, then Q ∩ Z(G) = 1.
(ii) Suppose H is Kloosterman and D > 1. Then Q 6≤ Z(G). If p - D, then Q ∩ Z(G) = 1. If p|D

then either Q ∩ Z(G) = 1 or Q ∩ Z(G) ∼= Cp.
(iii) If D > 1, then 1 6= Q/(Q ∩ Z(G)) ↪→ G/Z(G) and p divides |G/Z(G)|.
(iv) If D−m ≥ 2, the determinant of G is a p′-group. If moreover p - D, then Z(G) is a p′-group.
(v) Suppose that p = 2 and G is finite. Then the trace of any element g ∈ G on H is 2-rational

(i.e. lies in a cyclotomic field Q(ζN ) for some odd integer N); in particular, the 2-part of
|Z(G)| is at most 2.

Remark 5.7. If the rank D of a hypergeometric sheaf H is divisible by its characteristic p, then,
even when the sheaf has trivial geometric determinant, the center of its geometric monodromy
group can still have order divisible by p – see e.g. Theorems 18.2 and 25.2, as well as the sheaves
of rank 24 with geometric monodromy group 2 · Co1 and of rank 12 with geometric monodromy
group 6 · Suz in [KRLT3]. Moreover, if D −m = 1, then the determinant of G has order divisible
by p, simply because a nontrivial element in the image of P (∞) acts as a complex reflection, i.e., a
pseudoreflection, of p-power order; see Theorem 30.7 (below) for examples of such sheaves.

Proposition 5.8. [KT5, Proposition 4.10] Let H be an irreducible hypergeometric sheaf on Gm/Fp
of type (D,m) with W := D−m > 0 the dimension of the wild part Wild of the I(∞)-representation.
If p -W , then we have the following results.

(i) Wild is the Kummer direct image [W ]?(L) of some linear character L of Swan conductor 1.
(ii) Wild as a P (∞) representation is the direct sum of the W multiplicative translates of L|P (∞)

by µW (with µW acting through its translation action on Gm).
(iii) Any element of I(∞) of pro-order prime to p which maps onto a generator of I(∞)/P (∞)

acts on the set of the W irreducible constituents of Wild|P (∞) through the quotient µW of
I(∞), cyclically permuting these irreducible constituents.

(iv) The image of P (∞) is isomorphic to the additive group of the finite field Fp(µW ).

Next is an analogue of Proposition 5.8 in the case p|dimWild.

Proposition 5.9. Let H be an irreducible hypergeometric sheaf on Gm/Fp of type (D,m) with
W := D−m > 0 the dimension of the wild part Wild of the I(∞)-representation. Suppose W = paW0

with a ≥ 1 and p - W0. Let γ ∈ I(∞) be an element of of pro-order prime to p which maps onto a
generator of I(∞)/P (∞). Then we have the following results.

(i) Wild is the Kummer direct image [W0]?(P ) of an irreducible I(∞)-representation P of di-
mension pa, all of whose slopes are 1/pa, and whose restriction to P (∞) is irreducible.

(ii) Wild as a P (∞) representation is the direct sum of the W0 multiplicative translates of P |P (∞)

by µW .
(iii) The action of γ on the set of the W0 irreducible constituents of Wild|P (∞) factors through

the quotient µW of I(∞), cyclically permuting these multiplicative translates of P |P (∞).

(iv) The action of γW0 on Wild maps each of the W0 multiplicative translates of P |P (∞) to itself.

(v) There exists a root of unity ζ of order prime to p such that the spectrum of γW0 on each
multiplicative translates of P |P (∞) is the set ζ ·(µpa+1r{1}) of multiples by ζ of the nontrivial
roots of unity of order dividing pa + 1.
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Proof. The first three assertions are proven in [Ka3, 1.14], and the fourth follows formally from the
third. To deal with (v), we will reduce to the case when W0 = 1. For this, we must distinguish
the group I(∞), to which γ belongs, from its normal subgroup of cyclic index W0 from which P
is induced. We will denote this subgroup situation as I(W0) < I(1). Then γW0 ∈ I(W0). The

pullback to I(W0) of Wild = Ind
I(1)
I(W0)(P ) is the direct sum of the representations

g 7→ P (γigγ−i)

of I(W0), indexed by i (mod W0). Thus for g := γW0 , the spectrum of γW0 is the same in each
of these W0 summands. So we must understand the spectrum of γW0 on P . But in I(W0), γW0

is an element of pro-order prime to p which maps onto a generator of I(W0)/P (W0), and P is
an irreducible I(W0)-representation P of dimension pa, all of whose slopes are 1/pa. Thus we are
reduced to treating the case W0 = 1.

According to [Ka4, 8.6.3]. for any d ≥ 2, the isomorphism class of any I(∞)-representation of
dimension d with all slopes 1/d is determined, up to multiplicative translation, by its determinant,
which is necessarily tame. Applying this to our Wild of dimension pa, we see that we by replacing
Wild with Wild ⊗ Lχ, which changes the determinant by a factor χp

a
, we can achieve any tame

determinant we like, while the effect of replacing Wild with Wild⊗ Lχ on the spectrum of γ|Wild is
simply to multiply every eigenvalue by the scalar χ(γ).

We now reduce further to the case D = pa,m = 0, so that Wild is the entire I(∞)-representation.
Consider the Kloosterman sheaf

K(pa + 1) := Kl(Charpa+1 r {1}).
It suffices to show that on its Wild, γ has spectrum µpa+1 r {1}. The Kummer pullback [pa +
1]?K(pa+1) is (visibly) lisse on A1, and up to a multiplicative translate is isomorphic to the Fourier
Transform FT (Lψ(xpa+1)), cf. [Ka4, 9.2.3]. According to a result [KT1, 20.1] of Pink, this Kummer

pullback has geometric monodromy group a finite p-group. It then follows from [Ka1, 1.3.2] that
K(pa+ 1) defines a “special” covering of Gm, which means that K(pa+ 1) is the canonical extension
[Ka1, 1.5.7] of its Wild. By [Ka1, 1.4.12], the group Ggeom,K for K(pa + 1) is equal to the image
G∞,K of I(∞)|Wild. Moreover, the quotient of Ggeom,K = G∞,K by its unique p-Sylow subgroup
P∞,K is cyclic of order pa + 1, and a prime to p element of G∞,K which generates G∞,K/P∞,K, e.g.
the image of γ, is a generator of the image G0,K of I(0) on K(pa+1)|I(0), and G∞,K is the semidirect
product

Ggeom,K = G∞,K ∼= P∞,K oG0,K.

Let us denote by ρ the representation of Ggeom,K = G∞,K defined by K(pa + 1). If we view the
image of γ as lying in G∞,K, then ρ(γ) is the action of γ on Wild. If we view the image of γ as lying
in Ggeom,K, then ρ(γ) is the action of γ on the I(0)-representation K(pa + 1)|I(0) of K(pa + 1). Thus
the spectrum of γ|Wild is equal to the spectrum of γ on K(pa + 1)|I(0). This I(0)-representation is
the direct sum of all the nontrivial characters of order dividing pa + 1, and thus the spectrum of γ
on it consists of µpa+1 r {1}, as asserted. �

Lemma 5.10. Let H be a geometrically irreducible hypergeometric sheaf of type (D,m) in charac-
teristic p with D > m which is definable on some Gm/Fq. Suppose that on Gm/Fp, the dual H∨
is geometrically isomorphic to H ⊗ L for some L which is lisse of rank one. Suppose that either
D ≥ 3 or that (D,m) = (2, 0). Then there exists a multiplicative character ρ of finite order such
that H⊗Lρ is geometrically self-dual.

Notice that if W := D − m > 1, then all slopes of H at both 0 and ∞ are < 1, while if
W := D −m = 1 then all slopes at 0 and all but one slope at ∞ are 0, and there is one slope 1 at
∞. Thus Lemma 5.10 is a special case of the following result.
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Lemma 5.11. Let F be a lisse sheaf on Gm/Fp which is definable on some Gm/Fq, whose dual F∨
is (geometrically) isomorphic to F ⊗L for some L which is lisse of rank one. Suppose that at both 0
and ∞, F has strictly more than rank(F)/2 slopes which are < 1. Then there exists a multiplicative
character ρ of finite order such that H⊗Lρ is geometrically self-dual.

Proof. The key point is to show that L is tame at both 0 and ∞. For then L is of the form Lχ for

some character of πtame at 0,∞
1 := πtame

1 (Gm/Fp). Both F and its dual have determinants which are
geometrically of finite order, because each of these determinants is definable on some Gm/Fq: this
finiteness is Grothendieck’s local monodromy theorem in the form [De, 1.3.8], applied to det(F)

and its dual. Equating their determinants, we see that their ratio, L⊗rank(F), is geometrically of
finite order, which in turn forces χ to be of finite order. Then we look for a tame character ρ of
finite order such that F ⊗ Lρ is (geometrically) self-dual, i.e., we want (F ⊗ Lρ)∨ ∼= F ⊗ Lρ. But
(F ⊗ Lρ)∨ is F∨ ⊗ (Lρ)⊗−1 ∼= F ⊗ Lχ ⊗ (Lρ)⊗−1. So ρ will work provided that

Lχ ⊗ (Lρ)⊗−1 ∼= Lρ, i.e., provided ρ2 = χ.

In odd characteristic p, χ has two square roots, both tame, and we may take either one. In
characteristic 2, χ has some odd order 2m+ 1, and then χm+1 is its unique tame square root.

To show that L is tame at 0, we use the fact [Ka3, Lemma 1.3] that F and F∨ have the same
slopes as each other at 0. If L is not tame at 0, then its Swan conductor r0 at 0 is a strictly positive
integer r0 ≥ 1. But then by [Ka3, Lemma 1.3], applied to L and to the part of F|I(0) of slope
< 1, F ⊗L will have strictly more than rank(F)/2 slopes equal to r0 at 0, and hence F∨ has these
same slopes. But then F∨ has strictly fewer than rank(F)/2 slopes which are < 1 at 0, contrary to
hypothesis. Therefore r0 = 0. The same argument shows that r∞ = 0, and thus L is tame at both
0 and ∞. �

Lemma 5.12. Let F be a lisse sheaf H on Gm/Fp of rank D ≥ 1. Let χ be any multiplicative
character of finite order and let Ggeom,Hχ be the geometric monodromy group of Hχ := H ⊗ Lχ.

Then Ggeom,Hχ is finite if and only if Ggeom,H is finite. Furthermore, denoting by Gm ⊂ GLD(Q`)
the subgroup of scalars, we have

Ggeom,H/(Ggeom,H ∩Gm) = Ggeom,Hχ/(Ggeom,Hχ ∩Gm), [Ggeom,H, Ggeom,H] = [Ggeom,Hχ , Ggeom,Hχ ].

Similarly, (Ggeom,H)(∞) = (Ggeom,Hχ)(∞).

Proof. To say that H has finite Ggeom,H is to say that there exists a finite étale f : E → Gm/Fp
which trivializes H, i.e., such that f?H is constant. For N the (necessarily prime to p) order of χ,
the Kummer covering [N ] : Gm/Fp → Gm/Fp trivializes Lχ. Then any connected component of the

fibre product over Gm/Fp of these two coverings is a finite etale covering which trivializes H⊗Lχ.
Since we obtain H from H⊗Lχ by tensoring with Lχ, the implication of finiteness goes both ways.
For the second statement, let

π1(Gm/Fp)
φ
� Ggeom,H

Φ→ GLD(Q`)

realize H and let

π1(Gm/Fp)
$
� Ggeom,Hχ

Ψ→ GLD(Q`)

realize Hχ. Tensoring H with Lχ has the effect of changing (Φ ◦ φ)(g) for any g ∈ π1(Gm/Fp) by

some scalar multiple of it, indeed, (Φ ◦ φ)(g) = χ(g)(Ψ ◦$)(g) as elements of GLD(Q`). Moreover,
if h ∈ π1(Gm/Fp) then

[(Φ ◦ φ)(g), (Φ ◦ φ)(h)] = [(Ψ ◦$)(g), (Ψ ◦$)(h)],
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again as elements in GLD(Q`). Thus the two subgroups

Γ := Φ(φ(π1(Gm/Fp)))
and

Γχ = Ψ($(π1(Gm/Fp)))
of GLD(Q`) have the same image in PGLD(Q`). Passing to Zariski closures, and applying Lemma
4.1 to the canonical map f : GLD(Q`)→ PGLD(Q`) and to each of the groups Γ and Γχ, we get

Ggeom,H/(Ggeom,H ∩Gm) = Ggeom,Hχ/(Ggeom,Hχ ∩Gm)

as subgroups of PGLD(Q`). Hence we have

[Ggeom,H, Ggeom,H] = [Ggeom,Hχ , Ggeom,Hχ ]

as subgroups of GLD(Q`). This last equality implies that

(Ggeom,H)(∞) = (Ggeom,Hχ)(∞)

as subgroups of GLD(Q`). �

Recall that we fix a nontrivial additive character ψ of Fp. For any finite extension Fq of Fp, ξ2 is
the quadratic character of F×q , and ψFq is the composition of ψ with the trace map Tr : Fq → Fp.

Proposition 5.13. [KT7, Cor.14.15] Suppose H is a geometrically irreducible hypergeometric sheaf
H of type (D,m) with D > m ≥ 0 on Gm/Fq. Then Ggeom is finite if and only if for G the quadratic
Gauss sum over Fq,

G :=
(
−Gauss(ψFq , ξ2)

)D+m−1
,

the constant field twist H⊗ G− deg /Fq has finite Garith.

Let us write explicitly the local system H of Proposition 5.13 as

H := Hyp(χ1, . . . , χD; ρ1, . . . , ρm).

Here all the χi and ρj have order dividing q − 1. Choose an embedding of Z[µq−1] into the Witt
vectors W (Fq), and write each χi and each ρj as a power of the Teichmuller character Teichq, say

χi = Teichai(q−1)
q , ρj = Teich

bj(q−1)
q ,

with fractions ai, bj ∈ (Q/Z)prime to p whose denominators divide q − 1. [Recall that Teichq is the
unique multiplicative character of F×q with values in µq−1(W (Fq)) which attaches to an element α

of F×q the unique (q− 1)st root of unity in W (Fq) which reduces mod pW (Fq) to α. In other words,
Teich(α) is the “Teichmuller lifting” of α.]

As explained in [Ka7, §13], Kubert’s V -function is the Q-valued function on (Q/Z)prime to p

which attaches to an element a with denominator dividing q − 1 the ordq of the Gauss sum

Gauss(ψFq ,Teich
a(q−1)
q ). It is given explicitly by Stickelberger’s formula, cf. [Ka7, 13.4].

Proposition 5.14. [Ka7, 13.2] In terms of Kubert’s V -function [Ka7, §13], the criterion for H to
have finite geometric monodromy group, or equivalently for

H⊗
((
−Gauss(ψFq , ξ2)

)D+m−1
)− deg /Fq

to have finite arithmetic monodromy group, is the following. For every x ∈ (Q/Z)prime to p, and for
every N ∈ (Z/(q − 1)Z)×, we have∑

i

V (Nai + x) +
∑
j

V (−Nbj − x) ≥ (D +m− 1)/2.
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6. Rationality, moments, and reduction mod ` of hypergeometric sheaves

Proposition 6.1. Let H be a geometrically irreducible hypergeometric sheaf

H := Hypψ(χ1, . . . , χn; ρ1, . . . , ρd)

of type (n, d) with n 6= d in characteristic p. Denote by Λ :=
∏
i χi/

∏
j ρj, and by M the order of

Λ. Denote by N the lcm of the orders of the χi and the ρj. Let F be a finite extension of Fp(µN )

in which every element of F×p becomes an M th power. Then we have the following results for every
finite extension E/F.

(i) For any u ∈ E×, Trace(Frobu,E |H) ∈ Q(ζN , ζp).
(ii) Suppose that n ≡ d (mod (p− 1)). Then each Trace(Frobu,E |H) ∈ Q(ζN ).

(ii-bis) Suppose that r|(p − 1), and rn ≡ rd (mod (p − 1)). Let K ⊂ Q(ζp) be the extension K/Q
of degree r inside Q(ζp). Then each Trace(Frobu,E |H) ∈ K(ζN ).

(iii) Suppose that L is an intermediate field Q ⊂ L ⊂ Q(ζN ), and that each of the multisets {χi}i
and {ρj}j is fixed (as a multiset) by Gal(Q(ζN )/L). Then each Trace(Frobu,E |H) ∈ L(ζp).
If in addition n ≡ d (mod (p− 1)), then each Trace(Frobu,E |H) ∈ L.

(iii-bis) Suppose that r|(p− 1), and rn ≡ rd (mod (p− 1)). Suppose that L is an intermediate field
Q ⊂ L ⊂ Q(ζN ), and that each of the multisets {χi}i and {ρj}j is fixed (as a multiset) by
Gal(Q(ζN )/L). Let K ⊂ Q(ζp) be the extension K/Q of degree r inside Q(ζp). Then each
Trace(Frobu,E |H) ∈ KL, KL denoting the compositum of K and L inside Q(ζp, ζN ).

Moreover, if H has finite Ggeom, then the above statements hold for the traces Trace(γ|H) of all
elements of Ggeom.

Proof. The first assertion is immediate from fact [Ka4, 8.2.7] that the trace function of H is given
as follows.

(−1)n+d−1Trace(Frobu,E |H) =
∑

x1, . . . , xn, y1, . . . , yd ∈ E,∏
i xi = u

∏
j yj

ψE(
∑
i

xi −
∑
j

yj)
∏
i

χi(xi)
∏
j

ρj(yj).

To show (ii), (ii-bis), and (iii), we use the fact that = Gal(Q(ζN , ζp)/Q) is the product group
Gal(Q(ζN )/Q)×Gal(Q(ζp)/Q).

For (ii), suppose that n ≡ d (mod (p − 1)). The for each α ∈ F×p , the domain of summation is
invariant under the homothety multiplying each xi and each yj by α. So the trace is also equal to∑

x1, . . . , xn, y1, . . . , yd ∈ E,∏
i xi = u

∏
j yj

ψE(α(
∑
i

xi −
∑
j

yj))
∏
i

χi(αxi)
∏
j

ρj(αyj)

=
∑

x1, . . . , xn, y1, . . . , yd ∈ E,∏
i xi = u

∏
j yj

Λ(α)ψE(α(
∑
i

xi −
∑
j

yj))
∏
i

χi(xi)
∏
j

ρj(yj)

=
∑

x1, . . . , xn, y1, . . . , yd ∈ E,∏
i xi = u

∏
j yj

ψE(α(
∑
i

xi −
∑
j

yj))
∏
i

χi(xi)
∏
j

ρj(yj),

simply because Λ(α) = 1. Thus the trace is invariant under Gal(Q(ζp)/Q) = Gal(Q(ζN , ζp)/Q(ζN )).
For (ii-bis), repeat the same argument with αr to see that the trace is invariant under

Gal(Q(ζp)/K) = Gal(Q(ζp, ζN )/K(ζN )).

For (iii), if σ ∈ Gal(Q(ζN )/Q) fixes each of the multisets {χi}i and {ρj}j , then the trace is
invariant under σ, viewed now as lying in Gal(Q(ζN , ζp)/Q(ζp)), simply by making the corresponding
permutations of the xi and of the yj .
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For (iii-bis), the trace lies both in L(ζp) by (iii) and in K(ζN ) by (ii-bis). The intersection of
these two fields is KL. To see this, we use the fact that Gal(Q(ζN , ζp)/Q) is the product group
Gal(Q(ζN )/Q)×Gal(Q(ζp)/Q). Denote by

A := Gal(Q(ζp)/K) ≤ Gal(Q(ζp)/Q), B := Gal(Q(ζN )/L) ≤ Gal(Q(ζN )/Q).

Then K(ζN ) is the fixed field of A×Gal(Q(ζN )/Q), and L(ζp) is the fixed field of Gal(Q(ζp)/Q)×B.
Therefore the intersection of these two fields is the fixed field of the intersection of A×Gal(Q(ζN )/Q)
with Gal(Q(ζp)/Q)×B (inside Gal(Q(ζp, ζN )/Q)). This intersection is A×B, whose fixed field we
claim is KL. Indeed, KL certainly lies in the fixed field of A×B. But K and L are linearly disjoint,
being subfields of the linearly disjoint fieldsQ(ζp) andQ(ζN ), so deg(KL/Q) = deg(K/Q) deg(L/Q).
But this is precisely the degree over Q of the fixed field of A×B.

If Ggeom for H is finite, then we argue as follows. At the expense of replacing F by a quadratic
extension, we reduce to the case when the clearing factor −Gauss(ψF, ξ2) is a rational number, in
fact some choice of ±

√
#F. So the sheaf

H0 := H⊗ (−Gauss(ψF, ξ2))−(n+d−1) deg(E/F)

has the same trace field as H. By Proposition 5.13, H0 has finite Garith,H0 . Thus Ggeom < Garith,H0 ,
and becauseGarith,H0 is finite, every element inGarith,H0 is some Frobu,E |H0 for some finite extension
E/F and some u ∈ E×. �

Corollary 6.2. We have the following results.

(i) Suppose that n ≡ d ( mod (p−1)). Let L ⊆ Q(ζN ) be the fixed field of those σ ∈ Gal(Q(ζN )/Q)
which fix both of the multisets {χi}i and {ρj}j. Then L is the field generated over Q by the
traces Trace(γ|H) of the elements γ ∈ Ggeom.

(ii) Suppose that Gal(Q(ζN )/Q) fixes both the multisets {χi}i and {ρj}j. Let r be the smallest
divisor of p−1 such that ((p−1)/r)|(n−d), i.e. gcd(n−d, p−1) = (p−1)/r. Let K ⊂ Q(ζp)
be the extension K/Q of degree r inside Q(ζp). Then K is the field generated over Q by the
traces Trace(γ|H) of the elements γ ∈ Ggeom.

Proof. For (i), we know that the trace field lies in L, by the “moreover” statement of Theorem 6.1.
Suppose that σ ∈ Gal(Q(ζN )/Q) fixes all traces Trace(γ|H). We must show that σ fixes both the
sets {χi}i and {ρj}j . Consider the hypergeometric sheaf

Hσ := Hypψ(χσ1 , . . . , χ
σ
n; ρσ1 , . . . , ρ

σ
d)

obtained using the characters χσi := σ ◦ χi and ρσj := σ ◦ ρj . Then H and Hσ have the same trace

function on all Frobu,E , and hence the same trace function on πgeom
1 . Therefore H and Hσ, being

geomerically irreducible, are geometrically isomorphic as local systems on Gm/F. But we recover
the multisets {χi}i, respectively {ρj}j , as the multiset of characters in the I(0)-representation, re-
spectively as the tame characters in the I(∞)-representation. Therefore σ fixes both these multisets.

For (ii), we again know that the trace field lies in K, by the “moreover” statement of Theorem
6.1. Suppose that α ∈ F×p ∼= Gal(Q(ζp)/Q) fixes all traces Trace(γ|H). We must show that α acts

as the identity on K, or equivalently that α(p−1)/r = 1, or equivalently that αn−d = 1. The effect
of replacing ψ by ψα : x 7→ ψ(αx) is to replace H by its multiplicative translate by αn−d, but leave
the traces of all all Frobu,E unchanged. Just as in the proof of (i) above, this implies a geometric

isomorphism between H and its multiplicative translate by αn−d. This in turn implies a geometric
isomorphism between the wild part Wild of the I(∞)-representation of H and it multiplicative
translate by αn−d. By [Ka3, 4.1.6 (3)], there is no such isomorphism unless αn−d = 1. �
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We now consider the following situation, in which the trace field of a hypergeometric sheaf H is a
quadratic extension Q(

√
r) of Q, and we ask when the sum of the trace of H and its Gal(Q(

√
r/Q)-

conjugate takes only even integer values.

Proposition 6.3. Suppose p is an odd prime, r 6= p is another odd prime, ξr is a character of
order r, and N is an integer prime to p. Denote by ξ2 the quadratic character. Denote by Tsq

the set of characters ξsr as s runs over the squares in F×r , and by Tnsq the set of characters ξsr
as s runs over the nonsquares in F×r . Denote by ξ2Tnsq the set of characters ξ2ρ with ρ ∈ Tnsq.

Let A and B be (possibly empty) Gal(Q/Q)-stable sets of characters of order dividing N . Suppose
#A+ r − 1 ≡ #B(mod (p− 1)) but #A+ r − 1 6= #B. Define

Nr := lcm(N, r).

Suppose that the hypergeometric sheaf in characteristic p on Gm/Fp(µNr) given by

H := Hypψ(A, Tsq, ξ2Tnsq;B)

is geometrically irreducible.

(i) Denote by ε the choice of ±1 for which εr ≡ 1( mod 4). For each finite extension k/Fp(µNr)
such that k/Fp has even degree, and each u ∈ k×, Trace(Frobu,k|H) is an algebraic integer
in Q(

√
εr), i.e., lies in Z[(1 +

√
εr)/2].

(ii) For each finite extension k/Fp(µNr) such that k/Fp has even degree, and each u ∈ k×,

TraceQ(
√
r)/Q

(
Trace(Frobu,k|H)

)
∈ 2Z.

(iii) Suppose in addition that H has finite Ggeom. Denote by H0 the constant field twist of H by
the correct power of −Gauss(ψ, ξ2), cf. Proposition 5.13, so that H0 has finite Garith. Then
for each finite extension k/Fp(µNr) such that k/Fp has even degree,

TraceQ(
√
r)/Q

(
Trace(Frobu,k|H0)

)
∈ 2Z.

In particular, each element γ ∈ Ggeom has

TraceQ(
√
r)/Q

(
Trace(γ|H)

)
∈ 2Z.

Proof. For (i), we apply Proposition 6.1. The character Λ there is ξ
(r−1)/2
2 τ for a Gal(Q/Q)-invariant

character τ , so Λ itself is either 1 or ξ2. That the traces are algebraic integers is obvious from the
explicit formula recalled there, and their being in Q(

√
r) results from Proposition 6.1(iii).

The first statement of (iii) follows from (ii), because the clearing factor is ± a power of p, which
does not affect parity. The second statement follows from this one, simply because Ggeom is a
subgroup of Garith. To prove (ii), we argue as follows. The group Gal(Q(

√
r)/Q) conjugates of

the traces of H are the traces of the “conjugate” hypergeometric sheaf Hconj , which is defined
exactly as H but using a choice ξr

conj which is ξsr for s any nonsquare in F×r . The effect of this
choice is to interchange the two sets Tsq and Tnsq. We use the same ψ, because the condition that
#A+ r−1 ≡ #B (mod (p−1)) insures that the traces are independent of the choice of ψ. To show
that H⊕Hconj has traces in 2Z, i.e., to show that H⊕Hconj has all traces zero in Z/2Z, it suffices
to show that H⊕Hconj has all traces zero in the larger finite ring

R := Z[ζprN ]/2Z[ζprN ].

This will be trivially true if H and Hconj have equal traces in R. But mod 2, the quadratic character
becomes trivial, so each of the sheaves H and Hconj has traces in R equal to the traces in R of the
hypergeometric sheaf Hypψ(A,Char×r ;B). �
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Remark 6.4. Thanks to Corollary 6.2, there are other situations in which Frobenius traces a
priori lie in a quadratic extension of Q, and one can ask if there is any imposed congruence on the
trace down to Q of these Frobenius traces. The answer is no in general. Here are some examples.
Consider, for odd p ≥ 5, the following one-parameter family: for variable finite extensions k/Fp,

t ∈ k 7→ (1/Gauss(ψk, ξ2))
∑
x∈k

ψk(x
(p+1)/2 + tx).

This is a descent to Gm/Fp of [(p+ 1/2] Kummer pullback of the Kloosterman sheaf

Klψ(Char(p+1)/2 r {1}),

which naturally lives on Gm/Fp2 . By Corollary 6.2, this Kloosterman sheaf has trace field the
quadratic field Q(

√
εp) for ε the choice of ±1 for which εp ≡ 1 (mod 4). So the trace field of the

descent must contain Q(
√
εp), but it is obvious that our one parameter family has traces in this

field. For the descent, one knows [KT1, Theorem 17.2] that Garith = Ggeom is either SL2(p) (if p ≡ 1
(mod 4)) or PSL2(p) (if p ≡ 3 (mod 4)). In both cases, from the character table of SL2(p) one
knows that among the traces that occur for Ggeom are both (−1±√εp)/2, each of which has trace
−1 down to Q. On the other hand, both 0, ±1 and (p− 1)/2 occur as traces for Ggeom as well.

Next we turn to the consideration of moments. Recall that for a finite dimensional Q`-repre-
sentation V of a group G, the moment Ma,b of the pair (G,V ) is the dimension of the space of

G-invariants in V ⊗a ⊗ (V ∗)⊗b. For an odd integer a, we write Ma := Ma,0. [For an even integer
2n, each of M2n,0 and Mn,n is sometimes called M2n. The two can differ, unless V is self-dual; e.g.
M3,3 = 6 but M6,0 = 2 for a faithful 6-dimensional complex representation of 61 ·PSU4(3) [GAP] –
this has been exploited in part in the proof of Theorem 20.6 to distinguish between 6 ·PSL3(4) and
61 · PSU4(3).]

Theorem 6.5. Let H be a (geometrically irreducible) hypergeometric sheaf on Gm/Fq of type (D,m)
with W := D −m > 0. Let a, b be nonnegative integers, and consider the moment Ma,b of the D-

dimensional representation of π1(Gm/Fp) defined by H. Denote by H0 any lisse sheaf on Gm/Fq
which is pure of weight zero and which is geometrically isomorphic to H. Denote by

Ha,b0 := H⊗a0 ⊗ (H∨0 )⊗b.

Denote by A,B,C the following constants.

C := dimension of the space of I(0)-invariants in Ha,b0 .

B := Swan∞(Ha,b0 ) +Ma,b.

A := B − C.
Then we have the following estimate.∣∣∣∣ 1

q − 1

∑
u∈F×q

Trace(Frobu,Fq |H
a,b
0 )

∣∣∣∣ ≤ q

q − 1
Ma,b +

A
√
q

q − 1
+

B

q − 1
.

Proof. The key point is that Ma,b is the dimension h2
c(Gm/Fq,Ha,b0 ) = h2

c(Gm/Fq,Ha,b).
We first recall some facts about the hic(Gm/Fq,F) for lisse sheaves F on Gm/Fq. The Lefschetz

trace formula gives∑
x∈F×q

Trace(Frobu,Fq |F) = Trace
(
FrobFq |H2

c (Gm/Fq,F)
)
− Trace

(
FrobFq |H1

c (Gm/Fq,F)
)
.
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If F is pure of weight zero, then H2
c is pure of weight 2, and H1

c is mixed of weight ≤ 1, indeed

H1
c = H1

c (wt = 1)⊕H1
c (wt ≤ 0).

Thus for F pure of weight zero, we have∣∣∑
x∈F×q

Trace(Frobu,Fq |F)
∣∣ ≤ qh2

c +
√
qh1

c(wt. = 1) + h1
c(wt. ≤ 0) ≤ qh2

c +
√
qh1

c(wt. = 1) + h1
c .

When F is lisse on Gm/Fp, the Euler-Poincaré formula is

χc(Gm/Fp,F) = −Swan0(F)− Swan∞(F).

When F is tame at 0, this becomes

Swan∞(F) = h1
c − h2

c .

To compute the dimension of H1
c (wt = 1), we use the fact that for the inclusion j : Gm ⊂ P1, the

group H1(P1/Fq, j?F) is pure of weight one. We exploit this by looking at the short exact sequence

of sheaves on P1/Fq given by

0→ j!F → j?F → (FI(0))0 ⊕ (FI(∞))∞ → 0,

where the last two summands are skyscraper sheaves at 0 and ∞. The group

H0(P1/Fq, j?F) = H0(Gm/Fq,F)

is the space of πgeom
1 invariants in F , so it injects into the space FI(∞) of I(∞)-invariants in F .

This injectivity, together with the long exact sequence

0→ H0(P1/Fq, j?F)→ FI(0) ⊕FI(∞) → H1
c (Gm/Fq,F)→ H1(P1/Fq, j?F0)→ 0,

gives the inequality

h1
c(wt. = 1) = h1

c − dimFI(0) − (dimFI(∞) − dimh0) ≤ h1
c − dimFI(0).

Apply this with F taken to be Ha,b0 . Then h2
c is Ma,b, and the Euler-Poincaré formula gives

h1
c = Swan∞(Ha,b0 ) +Ma,b.

Thus

h1
c(wt. = 1) ≤ h1

c − dimFI(0) = Swan∞(Ha,b0 ) +Ma,b − dimFI(0).

Then the estimate

|
∑
x∈F×q

Trace(Frobu,Fq |F)| ≤ qh2
c +
√
qh1

c(wt. = 1) + h1
c

becomes∣∣∑
x∈F×q

Trace(Frobu,Fq |H
a,b
0 )
∣∣ ≤ qMa,b +

(
Swan∞(Ha,b0 ) +Ma,b− dimFI(0)

)√
q+ Swan∞(Ha,b0 ) +Ma,b.

�

To make this last result usable in practice, we need upper bounds for Swan conductors, and lower
bounds for dimensions of I(0)-invariants. For these tasks, we give the following lemmas.
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Lemma 6.6. Let H be a geometrically irreducible hypergeometric sheaf on Gm/Fq of type (D,m)
with W := D −m > 0. Let a, b be nonnegative integers. Denote by

Ha,b := H⊗a ⊗ (H∨)⊗b.

Then

Swan∞(Ha,b) ≤ (Da+b −ma+b)/W.

Proof. The I(∞)-representation of both H and H∨ are of the form Tamem ⊕WildW , with Tamem
tame of rank m and WildW of rank W , with all slopes 1/W . Any multiple tensor product of such
WildW ’s has all slopes ≤ 1/W . So expanding Da+b = (m+W )a+b by the binomial theorem,

Da+b =
a+b∑
i=0

(
a+ b

i

)
W ima+b−i,

we see that

Swan∞(Ha,b) ≤ 1

W

a+b∑
i=1

(
a+ b

i

)
W ima+b−i =

Da+b −ma+b

W
.

�

Lemma 6.7. Suppose M ≥ 1 is an integer prime to p and V is an I(0)-representation which factors
through the µM quotient of I(0). Fix a character ξ := ξM of order M , and write the characters in
V as powers of ξ, say

V = ⊕iξei .
Then the character of the I(0)-representation V a,b := V ⊗a ⊗ (V ∨)⊗b takes value

(
∑
i

ζei)a(
∑
i

ζ−ei)b

at ζ ∈ µM . Furthermore,

dim(V a,b)I(0) =
1

M

∑
ζ∈µM

(
∑
i

ζei)a(
∑
i

ζ−ei)b.

Proof. By hypothesis, I(0) acts through its quotient µM , so this is just the calculation of the
dimension of invariants in a representation of a finite group as the integral of its trace over the
group. �

Remark 6.8. Here are two examples. When the I(0)-representation is the direct sum of the
characters in the set

(6.8.1) Charntriv(M) := Char(M) r {1},

it is self-dual, and we are looking at the average over µM of the restriction to µM of the function

((XM − 1)/(X − 1)− 1)a+b.

At ζ 6= 1, its value is (−1)a+b. At ζ = 1, its value is (M − 1)a+b. So in this case the dimension of
the space of I(0)-invariants is

(1/M)
(
(M − 1)a+b + (M − 1)(−1)a+b

)
=
M − 1

M

(
(M − 1)a+b−1 − (−1)a+b−1

)
,

a number familiar in Hodge theory as the dimension of the middle primitive Betti number of a
smooth hypersurface of degree M and dimension a+ b− 2, cf. [KS, 11.4.1].
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When the I(0)-representation is the direct sum of the characters Char(M) \ {ξe, ξf}, then we are
looking at the average over µM of the restricion to µM of the function

((XM − 1)/(X − 1)−Xe −Xf )a((XM − 1)/(X − 1)−X−e −X−f )b.

So the dimension of the space of invariants is

(1/M)
(
(M − 2)a+b +

∑
ζ 6=1

(ζe + ζf )a(ζ−e + ζ−f )b)
)

=(1/M)(M − 2)a+b +
(
“error” term ≤ ((M − 1)/M)2a+b

)
≥(1/M)(M − 2)a+b − 2a+b.

We now give a version of Theorem 6.5 adapted to the situation on A1.

Theorem 6.9. Let F be a lisse sheaf on A1/Fq of rank D ≥ 1 which is pure of weight zero. Let
a, b be nonnegative integers, and consider the moment Ma,b of the D-dimensional representation of

π1(A1/Fp) given by F . Suppose that the I(∞)-representation of F has a tame part of dimension
≥ m and has all I(∞) slopes ≤ α. Denote by Ha,b the constant

Ha,b := Ma,b + (α− 1)Da+b − αma+b.

Then we have the following estimate.∣∣∣∣1q ∑
u∈Fq

Trace(Frobu,Fq |Fa,b)
∣∣∣∣ ≤Ma,b +

Ha,b√
q
.

Proof. The Euler-Poincaré formula for a lisse G on A1/Fp is

χc(A1/Fp,G) := h2
c(A1/Fp,G)− h1

c(A1/Fp,G) = rank(G)− Swan∞(G).

We apply this to Fa,b. Its I(∞)-representation has a tame part of dimension at least ma+b (namely

Tamea,b), and so its wild part has dimension at most Da+b −ma+b. As all I(∞) slopes of Fa,b are
≤ α, we get

Swan∞(Fa,b) ≤ α(Da+b −ma+b),

and hence
−χc(A1/Fp,Fa,b) = Swan∞(Fa,b)−Da+b ≤ (α− 1)Da+b − αma+b.

On the other hand h2
c(A1/Fp,Fa,b) = Ma,b, and so we get the inequality

h1
c(A1/Fp,Fa,b) ≤ Ha,b.

Now we apply the Lefschetz trace formula:∑
u∈Fq

Trace(Frobu,Fq |Fa,b) = Trace(FrobFq |H2
c (A1/Fp,Fa,b)− Trace(FrobFq |H1

c (A1/Fp,Fa,b).

Applying Deligne’s fundamental estimate [De, 3.3.4 and 3.2.3] that the H1
c is mixed of weight ≤ 1

while the H2
c is pure of weight two, we divide through by q and get the asserted inequality. �

We now turn to a discussion of hypergeometric sheaves “mod `”. We begin with the case of
Kloosterman sheaves.

Fix a prime ` 6= p, a finite extension k`/F` such that p|#k×` , and denote by R` the ring of Witt
vectors Witt(k`), and by R`,a the ring R`[ζ`a ]. [Thus for ` a prime which is 1 (mod p) and k` = F`,
R` is just Z`, and R`,a is Z`[ζ`a ].] The ring R`,a is a discrete valuation ring, with uniformizing
parameter

λ := ζ`a − 1
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and residue field k`. In [Ka3, 4.1.1, 4.1.2], the theory of Kloosterman sheaves is developed over R`,a.
We may speak of Klψ(χ1, . . . , χn) for any choice of characters χi whose orders are prime to p and

divide `a#(k×` ). It is a local system on Gm/Fp[µ`a#(k×` )] (with the convention that Fp[µN ] := Fp[µN0 ]

for N0 the prime-to-p part of N) of free R`,a modules of rank n, which after extension of scalars

from R`,a to Q` is the Kloosterman sheaf we have been concerned with up to now. We will refer to
it as a Kloosterman sheaf over R`,a. For a shorthand, we will write

Klψ(χ1, . . . , χn)k` := Klψ(χ1, . . . , χn)⊗R`,a k`.
The key point is that Klψ(χ1, . . . , χn)k` depends only on the reductions mod λ of the characters χi,

i.e., on the χi as characters with values in k×` . It is a local system on Gm/Fp[µ#(k×` )] of k`-spaces

of rank n.

Theorem 6.10. Let Kl := Klψ(χ1, . . . , χD)k` be a Kloosterman sheaf over R`,a, with reduction mod
` denoted Klk`. Then we have the following results.

(a) The I(∞)-representation of Klk` is totally wild, with Swan = 1 and all slopes 1/D.
(b) The I(∞)-representation of Klk` is absolutely irreducible as k`-representation.

(c) The π1(Gm/Fp)-representation of Klk` is absolutely irreducible as k`-representation.
(d) For any integer N ≥ 1 which is prime to p, the Kummer direct image [N ]?(Klk`) is a

Kloosterman sheaf of rank ND. If R`,a is large enough to contain all the N th roots of all the

R×`,a-valued the characters χi, this direct image is geometrically isomorphic to the reduction

mod ` of the Kloosterman sheaf

Klψ1/N
(all N th roots of all the χi).

(e) Suppose that all the χi have order dividing a power of `. Then we have an isomorphism of
Kloosterman sheaves over k`

Klψ(χ1, . . . , χD)k`
∼= Klψ(1 repeated D times)k` .

(f) If N is a power of ` we have geometric isomorphisms of Kloosterman sheaves over k`

[N ]?(KlψN (1 repeated D times)k`)
∼= Klψ(1 repeated ND times)k` .

Proof. Assertion (a) results from [Ka3, 5.1, (1) and (5)], and (b) results from (a) and [Ka3, 1.14].
Trivially we have (b) =⇒ (c). For (d), [Ka3, 1.13.2] shows that [N ]?(Klk`) has all I(∞) slopes
1/ND. As it is tame at 0, it is Kloosterman by [Ka3, 8.7.1]. The direct image formula [Ka3,
5.6.2] asserts that the direct image formula holds over R`,a if we do a constant field twist of the
source by a power of the product of minus the Gauss sums for all the nontrivial characters of
order dividing N . The square of this twisting factor is ± a power of p. Thus if we work over a
large enough ground field Fq/Fp, this twisting factor reduces mod ` to 1 in k`. So when we reduce
mod `, this twisting factor disappears, yielding the asserted isomorphism as representations of
π1(Gm/a sufficiently large extension of Fp), so in particular as representations of πgeom

1 . Assertion
(e) is a tautology, and (f) is immediate from (d) and (e). �

The following corollary is immediate from (f) of the above Theorem 6.10, we state it for ease of
later reference.

Corollary 6.11. Let N be a power of `, and D ≥ 1. Then we have a geometric isomorphism

Klψ(1 repeated ND times)k`
∼= [N ]?(KlψN ((1 repeated D times)k` .

For G the image of πgeom
1 in GLND(k`) under the representation given by the first factor, this

representation of G is induced from a D-dimensional representation of a normal subgroup H C G
with G/H cyclic of order N .
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We now turn to the discusssion of general hypergeometric sheaves mod `.
Let K1 and K2 be Kloosterman sheaves over R`,a, of ranks n and d respectively, and assume

n > d. Say
K1 = Klψ(χ1, . . . , χn), K2 = Klψ(ρ1, . . . , ρd).

We define the hypergeometric sheaf

Hypψ(χ1, . . . , χn; ρ1, . . . , ρd)

as a local system on Gm/Fp[µ`a#(k×` )] of free R`,a modules of rank n as the ! multiplicative convolu-

tion of K1 := Klψ(χ1, . . . , χn) with inv?K2 := inv?Klψ(ρ1, . . . , ρd). Concretely, for the multiplication

map mult : Gm ×Gm → Gm, we define

K1 ?×,! inv?K2 := R(mult)!(K1 � inv?K2).

In more down to earth terms, for the projection pr2 of Gm × Gm with coordinates (x, t) on the
second factor, this is

R(pr2)!(K1(x)⊗K2(x/t)).

Each of the sheaves K1 ⊗ k` and K2 ⊗ k` is geometrically irreducible (because already I(∞)-
irreducible), so fibre by fibre the R2 vanishes, and the R1 has rank n (because the tensor product
has all slopes 1/d). Moreover, by the long exact cohomology sequence attached to the universal
coefficient short exact sequence

0→ K1(x)⊗K2(x/t)
λ−→ K1(x)⊗K2(x/t)→ (K1(x)⊗ k`)⊗ (K2(x/t)⊗ k`)→ 0

one shows, fibre by fibre, that R1 is a lisse sheaf of free R` modules, and that its formation commutes
with extension of scalars either R` � k` or R` ↪→ Q`. In particular, the reduction mod λ,

Hypψ(χ1, . . . , χn; ρ1, . . . , ρd)k`

is the hypergeometric sheaf over k` defined by the same convolution recipe applied toKlψ(χ1, . . . , χn)k`
and Klψ(ρ1, . . . , ρd)k` .

Theorem 6.12. Consider a hypergeometric Hk` := Hypψ(χ1, . . . , χn; ρ1, . . . , ρd)k` in which no χi
is a ρj as a k×` -valued character. Then H is absolutely (i.e., after extension of scalars from k` to

F`) geometrically irreducible.

Proof. Repeat the proof [Ka4, 8.4.2 (1)] given in the Q` case, using the mod λ Fourier transform
here in place of the Q` Fourier transform used there. �

We will also use the fact that when there is a common character upstairs and downstairs, the
mod λ representation is always reducible.

Theorem 6.13. The hypergeometric sheaf

Hypψ(1, χ2, . . . , χn;1, ρ2, . . . , ρd)k`

sits in a π1(Gm/Fp[µ#(k×` )])-equivariant short exact sequence

0→ U → Hypψ(1, χ2, . . . , χn;1, ρ2, . . . , ρd)k` → Hypψ(χ2, . . . , χn; ρ2, . . . , ρd)k`(−1)→ 0,

where U := H1
c (Gm/Fp,Hypψ(χ2, . . . , χn; ρ2, . . . , ρd)k`) is a rank 1 constant sheaf.

Proof. We have the convolution formula

Hypψ(1, χ2, . . . , χn;1, ρ2, . . . , ρd)k` = Hyp(1;1)k` ?×,! Hypψ(χ2, . . . , χn; ρ2, . . . , ρd)k` .

Following the lines of the proof of the analogous result in [Ka4, 8.4.7], we must analyze the object
Hyp(1;1)k` . It is R(pr2)!)Lψ(x−x/t). It is clear that the R2 vanishes outside t = 1, and there is it
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δ1(−1). Fibre by fibre, one sees that the R0 vanishes, and the R1 has constant rank 1, and its trace
function is constant, equal to 1. Moreover, the R1 is a sheaf of perverse origin, so it is lisse of rank
one. Having constant trace, it must be the constant sheaf k`. Thus the entire R is perverse (shifted
by 2 (its R0 = 0, its R1 is lisse, and its R2 is punctual)). So we have a short exact sequence of
perverse sheaves

0→ k`[1]→ Hyp(1;1)k` → δ1(−1)→ 0,

and the proof concludes exactly as in [Ka4, 8.4.7]. �

7. Descents of hypergeometric sheaves

There are a number of situations in which a hypergeometric sheaf has a “simple to remember”
descent to a lisse sheaf on Gm/Fp. Here are three of them.

Proposition 7.1. Let A and B be prime to p positive integers with gcd(A,B) = 1. Then we have
the following results, in which we continue to use the notation Charntriv(A) of (6.8.1).

(i) Choose integers α, β with αA − βB = 1. Suppose (A,B) 6= (1, 1) and p is odd. Then the
hypergeometric sheaf

Hypψ(Charntriv(A);Charntriv(B)),

which is pure of weight A+B − 3, is geometrically isomorphic to the lisse sheaf on Gm/Fp
which is pure of weight one and whose trace function is as follows: for variable finite exten-
sions k/Fp,

u ∈ k 7→ −
∑
x∈k

ψk(Au
αxB −BuβxA).

(i-bis) Choose integers α, β with αA − βB = 1. Suppose (A,B) 6= (1, 1) and p = 2. Then the
hypergeometric sheaf

Hypψ(Charntriv(A);Charntriv(B)),

which is pure of weight A+B − 3, is geometrically isomorphic to the lisse sheaf on Gm/F4

which is pure of weight one and whose trace function is as follows: for variable finite exten-
sions k/F4,

u ∈ k 7→ −
∑
x∈k

ψk(Au
αxB −BuβxA).

(ii) The hypergeometric sheaf Hypψ(Char(A);Charntriv(B)), which is pure of weight A+ B − 2,
is geometrically isomorphic to the lisse sheaf GA,Bntriv on Gm/Fp which is pure of weight two
and whose trace function is as follows: for variable finite extensions k/Fp,

u ∈ k 7→
∑

x∈k, y∈k×
ψk(ux

B/yA +Ay −Bx).

(iii) The hypergeometric sheaf Hypψ(Charntriv(B);Char(A)), which is pure of weight A+ B − 2,
is geometrically isomorphic to the lisse sheaf GBntriv,A on Gm/Fp which is pure of weight two
and whose trace function is as follows: for variable finite extensions k/Fp,

u ∈ k 7→
∑

x∈k, y∈k×
ψk(−u−1xB/yA −Ay +Bx).

Proof. The first statement is proven in [KT6, Lemma 3.9 (i)]. The second is proven in [KRLT2,
Lemmas 1.3 and 1.4]. The third follows from the second and the fact [Ka4, 8.2.14] that the sheaf
HypψCharntriv(B);Char(A)) is just inv?Hypψ(Char(A);Charntriv(B)). �
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Proposition 7.2. Suppose A and B are prime to p positive integers with gcd(A,B) = 1 and
A − B ≥ 2. Suppose further that A is odd. Choose integers α, β with αA − βB = 1. If p is odd,
denote by SA,B the local system on Gm/Fp whose trace function is given by

u ∈ k/Fp 7→
1

Gauss(ψk, ξ2)

∑
x∈k

ψk(Au
αxB −BuβxA).

If p = 2, denote by SA,B the local system on Gm/F4 whose trace function is given by

u ∈ k/F4 7→
1

2deg(k/F4)

∑
x∈k

ψk(Au
αxB −BuβxA).

If p is odd and either p or A is 1(mod 4), then the arithmetic determinant of SA,B on Gm/Fp
is trivial. If p = 2, the arithmetic determinant SA,B on Gm/F4 is trivial. If both p and A are

3(mod 4), then the arithmetic determinant SA,B on Gm/Fp is (−1)deg.

Proof. In all cases SA,B is geometrically isomorphic to Hypψ(Charntriv(A);Charntriv(B)). Because A
is odd and A−B ≥ 2, the geometric determinant of Hypψ(Charntriv(A);Charntriv(B)), and hence of

SA,B, is trivial. Therefore the arithmetic determinant is of the form δdeg, and δ is the common value
of det(Frobu,Fp |SA,B) at points u ∈ F×p for p odd, and the common value of det(Frobu,F4 |SA,B) at

points u ∈ F×4 if p = 2.
We take the point u = 1. Consider the Kummer pullback [A]?SA,B, whose trace function [KT6,

Corollary 3.10(i)] is as follows: for p odd, it is

u ∈ k/Fp 7→
1

Gauss(ψk, ξ2)

∑
x∈k

ψk(Aux
B −BxA),

and for p even it is

u ∈ k/F4 7→
1

2deg(k/F4)

∑
x∈k

ψk(Aux
B −BxA).

So the pullback local system is lisse on A1, and continues to have trivial geometric determinant.
Because 1A = 1, we have δ = det(Frob1,Fp |[A]?SA,B) for p odd, and δ = det(Frob1,F4 |[A]?SA,B) for

p even. Because [A]?SA,B is lisse on A1, the determinant at u = 1 is the same as the deterninant at
u = 0. At u = 0, we are looking at

Trace(Frob0,k|[A]?SA,B) =
1

Gauss(ψk, ξ2)

(∑
x∈k

ψk(−BxA)

)
,

for p odd, and at

Trace(Frob0,F4n
|[A]?SA,B) =

1

2n

∑
x∈F4n

ψk(−BxA)

for p = 2.
If p = 2 or if p ≡ 1(mod 4), this is symplectic, so has determinant 1. If p ≡ 3(mod 4), then

this i × symplectic (because we need to have cleared by ±√p to have been symplectic), so the

determinant is iA−1. �

There are further cases where a hypergeometric sheaf has a descent to Gm over a smaller field.
Some have been described in Proposition 7.1. The key new input is the following. We have a finite

field Fpf and a multiplicative character χ of F×
pf

such that the f characters χ, χp, . . . , χp
f−1

are all

distinct. As explained in [Ka3, Section 8.8], the Kloosterman sheaf

Klψ(χ, χp, . . . , χp
f−1

)
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has a natural descent to a lisse sheaf on Gm/Fp, pure of weight f − 1, which we will denote

Klψ(χ, pf ).

Let us briefly recall the overall set up. Given a field k, and a finite étale k-algebra K/k, we form
the “restriction of scalars” group scheme K× over k, defined as follows. For any k-algebra A, we
form the K-algebra A⊗k K, and define

K×(A) := (A⊗k K)×.

When L/k is a finite extension, then L ⊗k K is finite flat over L, over K, and over k. So we have
two norm maps

Norm1 : L⊗k K → L,

and
Norm2 : L⊗k K → K,

and we have an absolute trace map

Trace : L⊗k K → k.

When k is a finite field, ψ is an additive character of k, and χ is a multiplicative character of
K×, we can form the following sum: for each finite extension L/k, and each u ∈ L×,

u 7→ (−1)dimk(K)−1
∑

x∈L⊗kK, Norm1(x)=u

ψ(Trace(x))χ(Norm2(x)).

When the finite etale algebra K is the f -fold self product K = kf , this is the usual Kloosterman

sum. When k = Fp, K = Fpf , and χ is a character of F×
pf

with f distinct conjugates χ, χp, . . . , χp
f−1

,

this is the trace function of a lisse sheaf

Klψ(χ, pf )

on Gm/Fp, which is pure of weight f − 1 and which, pulled back to Gm/Fpf , is isomorphic to

Klψ(χ, χp, . . . , χp
f−1

).
At this point, the reader may wonder about the apparently arbitrary choice of χ among the

various χp
j

in the formula

u 7→ (−1)dimk(K)−1
∑

x∈L⊗kK, Norm1(x)=u

ψ(Trace(x))χ(Norm2(x)).

Lemma 7.3. Let k = Fp, K/k and L/k finite extension fields, and χ a character of K×. For any
u ∈ L, we have the identity∑

x∈L⊗kK, Norm1(x)=u

ψ(Trace(x))χ(Norm2(x)) =
∑

x∈L⊗kK, Norm1(x)=u

ψ(Trace(x))χp(Norm2(x)).

Proof. For an element
∑

i ai ⊗ bi with the ai ∈ L and the bi ∈ K, we have

Norm1(
∑
i

ai ⊗ bi) =
∏

σ∈Gal(K/k)

(
∑
i

ai ⊗ σ(bi)),

Norm2(
∑
i

ai ⊗ bi) =
∏

ρ∈Gal(L/k)

(
∑
i

ρ(ai)⊗ bi).

Thus for σ ∈ Gal(K/k), we have idL ⊗ σ acting on L⊗k K, and the equivariance formulas that for
x ∈ L⊗k K,

Norm1((idL ⊗ σ)(x)) = Norm1(x), Norm2((idL ⊗ σ)(x)) = σ(Norm2(x)).
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Apply this with σ taken to be the Frobenius automorphism x 7→ xp of K. �

Notice that when f = 1, χ is a character of F×p , and Klψ(χ, p) is just Lψ ⊗ Lχ.

Lemma 7.4. Let χ be a multiplicative character of of F×
pf

. The character
∏f−1
i=0 χ

pi has order

dividing p − 1, so may be viewed as a character of F×p , call it (
∏f−1
i=0 χ

pi)Fp. For a ∈ F×p , we have
the identity

χ(a, viewed in F×
pf

) =
(f−1∏
i=0

χp
i)

Fp(a).

Proof. Because χ as a character of F×
pf

has finite order prime to p, we lose no information as

viewing χ as having values in F×
pf

(instead of in . Because the source group is cyclic, χ is of the form

χ(x) = xn for some integer n, well defined mod pf − 1. Viewing χ this way, we have χ(a) = an.

The character
∏f−1
i=0 χ

pi is then the character

x 7→ xn(pf−1)/(p−1) = NormF
pf
/Fp(x)n,

which is to say that
∏f−1
i=0 χ

pi , viewed as a character of F×p , is the character x 7→ xn. �

Here are some further cases of descents of hypergeometric sheaves to Gm/Fp. To describe them,

we use the symbol (Klχ) to denote a list of multiplicative characters of the form χ, χp, . . . , χp
f−1

consisting of f distinct characters of F×
pf

, and by Klψ(Klχ) the descent Klψ(χ, pf ) described above.

Let us also denote by

(7.4.1) ΛKlχ

the character (
∏f−1
i=0 χ

pi)Fp of F×p described in Lemma 7.4 attached to Klψ(χ, pf ).
Let us denote by Known any of the sets of characters

Charntriv(A), [M ]?Charntriv(A), Char(A), (Klχ),

and denote by
D(A)ntriv, D([M ]?Charntriv(A)), D(A), D(Klχ)

their Kloosterman descents. One checks that D([M ]?Charntriv(A)) is the [M ]? of the descent of
Charntriv(A) formed using the additive character x 7→ ψ(Mx), i.e., D([M ]?Charntriv(A)) has trace
function

u ∈ L× 7→ −
∑

t∈L, tM=u

∑
x∈L

ψL(−MxA/t+MAx).

We will refer to these as “easy” Known’s, and their descents as “easy” descents. For each “easy”
descent D, we define

(7.4.2) ΛD := 1.

We then add to the list of Known’s any list of characters each of which has order dividing p− 1,
which we descend simply as the Kloosterman with these characters. For this descent D, we define
ΛD to be the product of the occurring characters. For any single χ of order dividing p− 1, we also
add to the list of Known’s any the lists

{χρ : ρ in one of the lists Charntriv(A), [M ]?Charntriv(A),Char(A)} .
We descend these as

Lχ ⊗ (the known descent of Charntriv(A), [M ]?Charntriv(A),Char(A)).
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For such a descent D := Lχ ⊗ (an “easy” descent, of rank r(D)), we define

(7.4.3) ΛD := χr(D),

but cf. Remark 7.8. We will refer to these descents, together with the (Klχ) cases, as the “hard”
Knowns.

For each Known, we must keep track of the “weight drop” it affords. This data is given in Table
3. In its first three rows, ρ is any character of order dividing p− 1.

input characters input weight Descent Descent weight weight loss

ρCharntriv(A) A− 2 Lρ ⊗D(A)ntriv 1 A− 3
ρ[M ]?Charntriv(A) M(A− 2) Lρ ⊗D([M ]?Charntriv(A)) 1 M(A− 2)− 1

ρChar(A) A− 1 Lρ ⊗D(A) 0 A− 1

χ, χp, . . . , χp
f−1

f − 1 Klψ(χ, pf ) f − 1 0
list of f characters of F×p f − 1 same list f − 1 0

Table 3. Weight loss in passing to descent, ρ any character of order dividing p− 1

Theorem 7.5. Let H be an irreducible hypergeometric of type (n,m) with n 6= m, of the form

Hypψ
(
t(various Known1

′s) r t(various Known2
′s);t(various Known3

′s)
)
.

Denote by L the fixed field of the subgroup of Gal(Q/Q) which fixes as a set each of the following
sets:

(a) For each Known1, the set of characters occurring in Known1.
(b) For each Known2, the set of characters occurring in Known2.
(c) For each Known3, the set of characters occurring in Known3.

[Here we understand that when (Klχ) is a list of χp
j
, then all the χp

j
are the “characters which

occur in” the corresponding Klψ(Klχ).] Then we have the following results.

(i) H has a descent H0 to a lisse sheaf on Gm/Fp which is pure of integer weight w(H0). If p
is odd, then

H00 := H0 ⊗ (−Gauss(ψ, ξ2))−w(H0) deg /Fp

is pure of weight zero. If p = 2 and the weight w(H0) is even, then

H00 := H0 ⊗ 2−(w(H0)/2) deg /F2

is pure of weight zero. If p = 2 and the weight (w(H0) is odd, then pulled back to Gm/F4,

H00 := H0 ⊗ 2−w(H0) deg /F2

is pure of weight zero.
(ii) Define the character Λ of F×p using (7.4.2), (7.4.3) as follows:

Λ :=

( ∏
Known1

′s

ΛKnown

)
/

( ∏
Known2

′s and Known3
′s

ΛKnown

)
.

Suppose n ≡ m ( mod (p−1)). If Λ is trivial, then for k/Fp a finite extension, each Frobenius
trace Trace(Frobu,k|H0), u ∈ k×, lies in L. If either the weight w(H0) is even or if k/Fp is an
extension of even degree, the same is true for each Frobenius trace Trace(Frobu,k|H00), u ∈
k×. More generally, if Λ has order d, then for k/Fpd a finite extension, each Frobenius trace

Trace(Frobu,k|H0), u ∈ k×, lies in L. If either the product dw(H0) is even, or if k/Fpd has

even degree, the same is true is true for each Frobenius trace Trace(Frobu,k|H00), u ∈ k×.
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(iii) If we drop the hypothesis that n ≡ m ( mod (p−1)) in (ii) above, then for every finite exten-
sion k/Fp of degree divisible by the order d of Λ, each Frobenius trace Trace(Frobu,k|H0), u ∈
k×, lies in L(ζp). The same statement holds for Trace(Frobu,k|H00) if either p is odd or if
in addition k/Fp has even degree.

(iii-bis) Suppose that r|(p − 1), and rn ≡ rd (mod (p − 1)). Suppose that L is an intermediate
field Q ⊂ L ⊂ Q(ζN ), and that each of the sets {χi}i and {ρj}j is fixed (as a set) by
Gal(Q(ζN )/L). Let K ⊂ Q(ζp) be the extension K/Q of degree r inside Q(ζp). Then for ev-
ery finite extension k/Fp of degree divisible by the order d of Λ, each Trace(Frobu,E |H0), u ∈
k×, lies in KL. If either r is even or if the product dw(H0) is even, or if k/Fpd has even

degree, the same statement holds for Trace(Frobu,k|H00), u ∈ k×.

Proof. The case when there is a “subtraction” of Known2’s is handled moving them “downstairs”
and treating the (no longer irreducible) hypergeometric sheaf

Hypψ
(
t(various Known1

′s;t(various Known2
′s) t (various Known3

′s)
)

and then forming its Cancel, i.e., its highest weight quotient, cf. [KT7, Theorem 7.1 and Section
10]. To treat the case of

Hypψ(t(various Known1
′s);t(various Known3

′s)),

we form the ! multiplicative convolution of the descents D(Known) of the “upstairs” Known’s with

the inv?(D(Known) of the descents of the “downstairs” Known’s.
In either case, we end up with a (not necessarily irreducible) hypergeometric of some type (n,m)

of the form
Hypψ(t(various Known1

′s);t(various Known3
′s)).

The weight of H0 is then

w(H0) = n+m− 1−
∑

“upstairs” and “downstairs” descents Di

(weight loss in passing to Di),

with the weight losses tabulated in Table 3.
From the explicit trace formulas of the descents of the Known’s, we see that the only multiplicative

characters that occur are those in the (Kl) components. By insisting that either the weight w(H0)
is even or that k/Fp has even degree, we insure that the clearing factor is ± a power of p, so does
not alter the field of traces. If the integer r of (iii-bis) is even, then the quadratic Gauss sum which
enters into the clearing factor lies in the field K, so does not alter the fact that traces lie in KL.

It remains only to recall how the fact that n ≡ m (mod (p − 1)) implies that the traces are
independent of the choice of ψ. Let us illustrate in a special case, before treating the general case.
Consider a hypergeometric of the form

H := Hypψ(Charntriv(A); (Kl)), where (Kl) = {χ, χp, . . . , χpf−1},

in which #A− 1 ≡ f (mod (p− 1)). Here the character Λ of F×p is just χ, restricted to F×p ⊂ F×
pf

,

and is assumed trivial.
For L/Fp a finite extension, and u ∈ L×, Trace(Frobu,L|H0) is (−1)#A−1−f−1 times∑

st=u

∑
x∈L

ψL(−xA/s+Ax)
∑

y∈L⊗FpK,Norm1(y)=1/t

ψk(Trace(y))χ(Norm2(y)) =

(solve for t = 1/Norm1(y), then for s = u/t = uNorm1(y))

=
∑

x∈L, y∈L⊗FpK

ψL
(
−xA/(uNorm1(y)) +Ax

)
ψk(Trace(y))χ(Norm2(y).
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If we replace ψ by x 7→ ψ(ax) with a ∈ F×p , this expression changes to

=
∑

x∈L, y∈L⊗FpK

ψL
(
−axA/(uNorm1(y)) + aAx

)
ψk(Trace(ay))χ(Norm2(y).

Making the substitutions x 7→ x/a, y 7→ y/a, this becomes

=
∑

x∈L, y∈L⊗FpK

ψL
(
−a(x/a)A/(uNorm1(y/a)) +Ax

)
ψk(Trace(y))χ(Norm2(y/a) =

=
∑

x∈L, y∈L⊗FpK

ψL
(
−a(xA/aA)/(uNorm1(y)/af ) +Ax

)
ψk(Trace(y))χ(Norm2(y)/adeg(L/Fp)).

In the first sum, the factor aaf/aA is 1 by the imposed congruence #A − 1 ≡ f (mod (p − 1)), so

this expression is just χ(1/adeg(L/Fp)) = Λ(1/adeg(L/Fp)) times the original sum.
In the general case, the argument goes as follows. Fix a finite extension L/Fp. For each known

descent D, with rank r(D), view u ∈ L× 7→ Trace(Frobu,L|D) as a function u 7→ D(u) on L×, which
(L being fixed) we will refer to as “the trace function of D”. For a ∈ F×p , denote by Da(u) the trace
function we get by replacing ψ by x 7→ ψ(ax). Equivalently, if we denote by σa the automorphism
of Q(ζp, µprime to p)/Q(µprime to p) which maps ζp to ζap , then Da(u) = σa(D(u)). The key identity
is

Da(u) = D(uar(D))ΛD(a− deg(L/Fp)).

When we form a multiple ! multiplicative convolution of, say S various D(i)’s and T various

inv?D(j)’s, its trace function is (−1)S+T−1 times∑
∏
i si=u

∏
j tj

∏
i

D(i)(si)
∏
j

D(j)(tj).

When we replace each D(i) by D(i)
a and each D(j) by D(j)

a , this sum becomes Λ(1/adeg(L/Fp) times∑
∏
i si=u

∏
j tj

∏
i

D(i)(sia
r(D(i)))

∏
j

D(j)(tja
r(D(j))).

Our assumption on the type (n,m) that n−m is divisble by p−1 means that
∑

i r(D(i)) ≡
∑

j r(D(j)

(mod (p− 1)). Thus in the above sum, the domain of summation∏
i

si = u
∏
j

tj

is equal to the domain of summation∏
i

(sia
r(D(i))) = u

∏
j

(tja
r(D(j))).

So if deg(L/Fp) is divisible by the order d of Λ, trace function of this multiple convolution is
independent of the choice of nontrivial additive character ψ of Fp.

To prove (iii-bis), repeat the proof of (iii-bis) given in Proposition 6.1. �

Remark 7.6. In the above discussion, we focused on and used the additional descents of Kloost-
erman sheaves of the form

Klψ(χ, χp, . . . , χp
f−1

),
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in which the χp
i

are f distinct characters of F×
pf

. There is nothing special about Fp here: we could

have descended Kloosterman sheaves

Klψ(χ, χq, . . . , χq
f−1

),

in which the χq
i

are f distinct characters of F×
qf

, and used the same recipe to get a descent Klψ(χ, qf )

to Gm/Fq. Let us allow these, and also as Known any list of characters each of which has order
dividing q− 1. For any single χ of order dividing q− 1, we may also add to the list of Known’s any
the lists

{χρ : ρ in one of the lists Charntriv(A), [M ]?Charntriv(A),Char(A), (Klχ)} .
Then the obvious reformulation of Theorem 7.5 produces descents to Gm/Fq with the same ratio-
nality properties when n ≡ m (mod (p− 1)). In this situation, the character Λ becomes a character
of F×q , but it is still the order d of its restriction to F×p , and not its order as a character of F×q , by
which the degrees of extensions L/Fq must be divisible to have traces in L. One example of this
sort of descent situation is in characteristic p = 2, χ of order 5, and Klψ(χ, χ4), which is an F4

instance. Another is in characteristics p = 3, 5, with χ a character of order 7, and Klψ(χ, χ2, χ4),
which is an Fp2 instance for p = 3, 5 (but an Fp instance for p = 2, 11).

To avoid any ambiguity, let us formulate explicitly the Fq-version of Theorem 7.5. We have the
“easy” descents as before. For each character ρ of order dividing q − 1, we have objects

{χρ : ρ in one of the lists Charntriv(A), [M ]?Charntriv(A),Char(A)} .

We descend these as

Lχ ⊗ (the known descent of Charntriv(A), [M ]?Charntriv(A),Char(A)).

For such a descent D := Lχ⊗ (an “easy” descent, of rank r(D)), , we define ΛD as a character of
F×p by

(7.6.1) ΛD := χr(D) restricted to F×p .

For each subfield Fq0 ⊂ Fq, we may define the (Klρ) data over Fq0 , i.e., a multiplicative character ρ
of some degree f ≥ 2 extension of Fq0 which has f distinct conjugates under ρ 7→ ρq0 , which allows

us to form Klψ(ρ, (q0)f ) on Gm/Fq0 . We then take the pull back of Klψ(ρ, (q0)f ) to Gm/Fq to be
the descent D of this (Klρ) data, and define its ΛD as a character of F×p by

(7.6.2) ΛD := ρr(D) restricted to F×p .

With these notions of what is a Known over Fq, we may state the Fq version of Theorem 7.5.

Theorem 7.7. Let H be an irreducible hypergeometric of type (n,m) with n 6= m, of the form

Hypψ
(
t(various Known1

′s) r t(various Known2
′s);t(various Known3

′s)
)
.

Denote by L the fixed field of the subgroup of Gal(Q/Q) which fixes as a set each of the following
sets:

(a) For each Known1, the set of characters occurring in Known1.
(b) For each Known2, the set of characters occurring in Known2.
(c) For each Known3, the set of characters occurring in Known3.

[Here we understand that when (Klρ) is the list of ρq
j
, then all the ρq

j
are the “characters which

occur in” the corresponding Klψ(Klρ).] Then we have the following results.
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(i) H has a descent H0 to a lisse sheaf on Gm/Fq which is pure of integer weight w(H0). If p
is odd, then

H00 := H0 ⊗ (−Gauss(ψ, ξ2))−w(H0) deg /Fq

is pure of weight zero.If p = 2 and either the weight w(H0) is even or deg(Fq/Fp) is even,
then

H00 := H0 ⊗ 2− deg(Fq/Fp)(w(H0)/2) deg /Fq

is pure of weight zero. If p = 2 and deg(Fq/Fp)w(H0) is odd, then pulled back to Gm/Fq2,

H00 := H0 ⊗ 2−w(H0) deg /Fq

is pure of weight zero.
(ii) Define the character Λ of F×p using (7.4.2), (7.4.3) as follows:

Λ :=

( ∏
Known1

′s

ΛKnown

)
/

( ∏
Known2

′s and Known3
′s

ΛKnown

)
.

Suppose n ≡ m (mod (p − 1)). If Λ is trivial, then for k/Fq a finite extension, each
Frobenius trace Trace(Frobu,k|H0), u ∈ k×, lies in L. If either the weight w(H0) is even
or if k/Fp is also an extension of even degree, the same is true for each Frobenius trace
Trace(Frobu,k|H00), u ∈ k×. More generally, if Λ has order d, then for k/Fq a finite exten-
sion such that k/Fp has degree divisible by d, each Frobenius trace Trace(Frobu,k|H0), u ∈
k×, lies in L. If either the product dw(H0) is even, or if k/Fp also has even degree, the
same is true is true for each Frobenius trace Trace(Frobu,k|H00), u ∈ k×

(iii) If we drop the hypothesis that n ≡ m (mod (p − 1)) in (ii) above, then for every finite
extension k/Fq such that k/Fp has degree divisible by the order d of Λ, each Frobenius trace
Trace(Frobu,k|H0), u ∈ k×, lies in L(ζp). The same statement holds for Trace(Frobu,k|H00)
if either p is odd or if in addition k/Fp has even degree.

(iii-bis) Suppose that r|(p − 1), and rn ≡ rd (mod (p − 1)). Suppose that L is an intermediate
field Q ⊂ L ⊂ Q(ζN ), and that each of the sets {χi}i and {ρj}j is fixed (as a set) by
Gal(Q(ζN )/L). Let K ⊂ Q(ζp) be the extension K/Q of degree r inside Q(ζp). Then for
every finite extension k/Fq such that k/Fp has degree divisible by the order d of Λ, each
Trace(Frobu,E |H0), u ∈ k×, lies in KL. If either r is even or if the product dw(H0) is even,
or if in addition k/Fp has even degree, the same statement holds for Trace(Frobu,k|H00), u ∈
k×.

Proof. Repeat verbatim the proof of Theoreom 7.5, replacing deg(L/Fp) by deg(L/Fq), and replacing
L⊗Fp K by L⊗Fq K. �

Remark 7.8. Even in the case of descents to Gm/Fp, there can be several ways to proceed, which
can give different descents D with different characters ΛD. Here is a simple example. Fix p ≥ 5, a
character ρ of order p− 1, and consider the Kloosterman sheaf

Klψ(ρ, ρ2, . . . , ρp−1).

We can recognize its list of its characters as being Char(p−1), which provide one descent, call it D1.
We might (foolishly) recognize the list of characters as being ρ · Char(p− 1), and form the descent
D2 := Lρ ⊗D1. Or we might simply descend this Kloosterman sheaf as itself; call this descent D3.
Their associated characters Λ are succesively 1, ρ, and the quadratic character ξ2, which are all
distinct (because p ≥ 5, ρ cannot be ξ2). So a fortiori, these three descents are all distinct.

Here is another example. Fix an integer n ≥ 3, and a prime p which is 1 (mod n(n+ 1)). Let ρ
be a character of order n, and consider the list of characters ρ · Charntriv(A) for A = n+ 1. We can
descend it as D1 := Lρ⊗D(A)ntriv, or we can form the Kloosterman sheaf with this list of characters
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and descend it as itself; call this descent D2. Here the associated characters Λ are successively ρ
and ξn2 .

8. The notational scheme for descents

In each of the following sections, we will prove results in the following three part form.

(A) A certain hypergeometric sheaf H has a finite geometric monodromy group Ggeom,H. The
characters occurring in H will be listed either individually or in terms of the sets CharN and
Char×N .

(B) The determination of the finite group Ggeom,H.
(C) Specifying a descent H00 of H to Gm over a small field, often Fp but in some cases Fp2 , and

specifying its finite arithmetic group Garith,H00 .

For part (C), we will name the descents as H(D1;D2) or H(D1 \D2;D3) or as H(D1 tD2;D3) or
as H(D1;D2 t D3), in this way specifying which descents Di are to be used in the construction of
H0, by the operations of multiple ! convolution, D 7→ inv?D, and Cancel, as explained in the first
paragraph of the proof of Theorem 7.5. Once we have this H0, H00 is then obtained by constant
field twisting by the appropriate power of the quadratic Gauss sum if p is odd, or by the appropriate
power of 2 if p = 2, see Theorems 7.5 and 7.7. The descents Di descending the sets Char(N) or
Charntriv(N) will be denoted by those sets; the Kloosterman descents Klψ(Klξ) will be noted (Kl)

ξ,qf0
.

We will also specify the character Λ of F×p .
The descents occurring in the paper are all listed in Table 4.

9. Proving finiteness of Ggeom

As already explained in Propositions 5.13 and 5.14, to prove finiteness of the geometric mon-
odromy group for a hypergeometric sheaf, one needs to prove an inequality for Kubert’s V -function
[Ka7, 13.2] of the following form. One is given positive integers n,m,α1, . . . , αn, one is given repre-
sentatives β1, . . . , βn, γ1, . . . , γm in [0, 1) of elements of (Q/Z)prime to p, and one is given a rational
number A ∈ Q. What must be proved is the inequality

V (α1x+ β1) + · · ·+ V (αnx+ βn) ≤ V (x+ γ1) + · · ·+ V (x+ γm) +A

for every x ∈ (Q/Z)prime to p.

For the finitely many values x = −γj (j = 1, . . . ,m) and x = −βi+k
αi

(i = 1, . . . , n, k = 0, . . . , αi−1)
the inequality can be checked directly.

Otherwise, we proceed as follows. For r ≥ 1 and an integer x, define [x]r to be the sum of the
p-adic digits of the representative in {1, . . . , pr − 1} of the congruence class of x modulo pr − 1. For
x ∈ {1, . . . , pr − 2}, one has [KRL, §4]

V

(
x

pr − 1

)
=

1

r(p− 1)
[x]r.

Denote by r0 the smallest positive integer such that (pr0 − 1)βi, (p
r0 − 1)γj ∈ Z for every i, j.

Then one needs to show that for every r ∈ r0Z+ and every integer 1 ≤ x ≤ pr − 1 not equal to
(pr − 1)(1− γj) for any j, one has

(9.0.1)

m∑
i=1

[αix+ (pr − 1)βi]r ≤
n∑
j=1

[x+ (pr − 1)γj ]r + (p− 1)rA.
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No. p H Descent H0 on Λ

1 3 Kl(1, ξ5, ξ45) H(Char(1) t (Kl)ξ5,92 ; ∅) Gm/F9 1

2 5 Hyp(Char8 r {ξ8, ξ−18 }; ξ12, ξ712) Hyp(Char8 r {ξ8, ξ−18 }; ξ12, ξ712) Gm/F25 1

3 3 Kl(1, ξ7, ξ27 , ξ47) H(Char(1) t (Kl)ξ7,93 ; ∅) Gm/F9 1

4 5 Hyp(ξ6 · Char×7 ; ξ8, ξ
7
8) H(ξ6 ⊗ Charntriv(7); {ξ8, ξ78}) Gm/F25 1

5 5 Hyp((ξ3 · Char×7 ;1, ξ2) H(ξ3 ⊗ Charntriv(7);Char(2)) Gm/F25 1

6 5 Kl(1, ξ7, ξ27 , ξ47) H(Char(1) t (Kl)ξ7,253 ; ∅) Gm/F25 1

7 3 Hyp(ξ2 · Char×11; ξ8, ξ
3
8) H(ξ2 ⊗ Charntriv(11); (Kl)ξ8,32), Gm/F9 ξ2

8 2 Hyp(Char×11; ξ7, ξ
2
7 , ξ

4
7) H(Charntriv(11); (Kl)ξ7,23) Gm/F2 1

9 3 Hyp(Char22;Char×5 ) G22,5ntriv , H(Char(22);Charntriv(5)) Gm/F3 1

10 5 Hyp(Char22;Char×3 ) G22,3ntriv , H(Char(22);Charntriv(3)) Gm/F5 1

11 5 Hyp(Char28 r Char14; ξ8, ξ
7
8) H([14]?Charntriv(2); {ξ8, ξ78}) Gm/F25 1

12 2 Hyp(ξ3 · Char×19;1, ξ5, ξ̄5) H(ξ3 ⊗ Charntriv(19); (Kl)ξ5,42) Gm/F4 1

13 5 Hyp(Char×29; ξ12, ξ
3
12, ξ

5
12, ξ

9
12) H(Charntriv(29); {ξ312, ξ912} t (Kl)ξ12,52) Gm/F5 ξ2

14 3
Hyp(Char14 r {1, ξ7, ξ27 , ξ47};

ξ4, ξ
3
4)

H(Charntriv(14) \ (Kl)ξ7,93 ; (Kl)ξ4,32),
H((Kl)ξ14,36 t (Kl)ξ37 ,93 t Charntriv(2); (Kl)ξ4,32)

Gm/F9 1

15 7 Hyp(ξ1,3,5,7,9,13,15,1720 ; ξ3, ξ
2
3)

H([10]?Charntriv(2) r (Kl)ξ1120 ,492 ;Charntriv(3)),

H((Kl)ξ20,74 t (Kl)ξ520,72 t (Kl)ξ1320 ,492 ;Charntriv(3))
Gm/F49 1

16 2 Hyp(Char×7 ; ξ3) H(Charntriv(7); {ξ3}) Gm/F4 1

17 3 Hyp(Char×7 ; ξ2) S7,2, H(Charntriv(7);Charntriv(2)) Gm/F3 1

18 3 Hyp(Char×7 ;Char4 r {1}) S7,4, H(Charntriv(7);Charntriv(4)) Gm/F3 1

19 7 Hyp(Char5 t Char×3 ; ξ2) H(Char(5) t Charntriv(3);Charntriv(2)) Gm/F7 1

20 7 Hyp(Char×15;Char2) H((Kl)ξ15,74 t (Kl)ξ215,74 ;Char(2)) Gm/F7 1

21 5 Kl(Char×9 t Char2)
H(Char(2) t [3]?Charntriv(3); ∅),
H((Kl)ξ9,56 t Char(2); ∅) Gm/F5 1

22 5 Kl(Char7 t {ξ2}) H(Char(7) t Charntriv(2); ∅) Gm/F5 1

23 13
Hyp(Char18 r {1, ξ6, ξ26 , ξ36};

ξ4, ξ
3
4)

H(Char(18) \ {1, ξ6, ξ26 , ξ36}; {ξ4, ξ34}), Gm/F13 1

24 2 Hyp(Char×13;Char×3 ) S13,3,H(Charntriv(13);Charntriv(3)) Gm/F2 1

25 7 Kl({Char×12 ∪ {ξ6, ξ36}) H((Kl)ξ12,72 t (Kl)ξ1112 ,72 t {ξ6, ξ
3
6}; ∅) Gm/F7 ξ46

26 7 Hyp(Char×12 ∪ Char3; ξ2) H(1, ξ12, ξ
4
12, ξ

5
12, ξ

7
12, ξ

8
12, ξ

11
12 ; ξ2) Gm/F49 1

27 13 Hyp(Char15 r {1}; ξ12, ξ512) H(Charntriv(15); {ξ12, ξ512}) Gm/F13 ξ2
28 7 Hyp(Char×9 t {1}; ξ2) H(Char(1), [3]?Charntriv(3);Charntriv(2)) Gm/F7 1

29 7 Hyp(Char9 r {1};Char2) G9ntriv,2,H(Charntriv(9);Char(2)) Gm/F7 1

30 2 Hyp(Char×39;1) H((Kl)ξ39,212 t (Kl)ξ739,212 ;Char(1)) Gm/F2 1

31 3
Hyp(Char20 r (Char4 ∪ Char5);

1)
H((Kl)ξ20,34 t (Kl)ξ220,34 t (Kl)ξ1120 ,34 ;Char(1)) Gm/F3 1

32 3 Hyp(Char×28;1) Hyp((Kl)ξ28,36 t (Kl)ξ528,36 ;Char(1)) Gm/F3 1

33 2 Hyp(Char×15;Char9 r Char×3 ) H((Kl)ξ15,24 t (Kl)ξ715,24 ;Char(1), [3]?Charntriv(3)) Gm/F2 1

34 2 Hyp(Char×9 ;Char5) H([3]?Charntriv(3);Char(5)) Gm/F2 1

35 2 Hyp(Char×7 ;Char×3 t ξ9, ξ49 , ξ79) H(Charntriv(7);Charntriv(3) t (Kl)ξ9,43) Gm/F4 1

36 3 Hyp(Char×5 ;Char4 r Char1) H(Charntriv(5);Charntriv(4)) Gm/F3 1

37 5 Hyp(Char×3 ;Char×2 ) H(Charntriv(3);Charntriv(2)) Gm/F5 1

38 3 Hyp(Char×4 ;1) H([2]?Charntriv(2);Char(1)) Gm/F3 1

39 5 Kl(Char×12 t Char×3 ) Kl((ξ4)Charntriv(3), (ξ34)Charntriv(3),Charntriv(3)) Gm/F5 1

40 5 Kl((Char16 r Char8) t ξ2,3,5,68 ) Kl(([8]?Charntriv(2), ξ2,3,5,68 ) Gm/F52 1

41 13 Kl(Char16 r Char8) t ξ2,3,5,68 ) Kl([8]?Charntriv(2), ξ2,3,5,68 ) Gm/F132 1

42 5 Hyp(Char7; ξ1,3,56 ) H(Char(7), [3]?Charntriv(2)) Gm/F5 1

43 3 Hyp(Char7; ξ2Char5) H(Char(7), [5]?Charntriv(2)) Gm/F3 1

44 7 Hyp(Char×5 ; ξ2) H(Charntriv(5),Charntriv(2)) Gm/F7 1

Table 4. Descents of some hypergeometric sheaves
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Lemma 9.1. For a positive integer x, denote by [x] the sum of its p-adic digits. Suppose that there
exists some B ≥ 0 such that

[α1x+(pr−1)β1]+ · · ·+[αnx+(pr−1)βn] ≤ [x+(pr−1)γ1]+ · · ·+[x+(pr−1)γm]+ (p−1)rA+B

for every r ∈ r0Z+ and every 0 ≤ x ≤ pr − 1. Then (9.0.1) holds for every r ∈ r0Z+ and every
1 ≤ x ≤ pr − 1 not equal to (pr − 1)(1− γj) for any j.

Proof. For any such x, notice that each of the sums

α1x+ (pr − 1)β1, . . . , αnx+ (pr − 1)βn

is strictly positive. Using the fact that [z]r ≤ [z] for z > 0 [KRL, Proposition 2.2] we get

[α1x+ (pr − 1)β1]r + · · ·+ [αnx+ (pr − 1)βn]r

≤ [α1x+ (pr − 1)β1] + · · ·+ [αnx+ (pr − 1)βn]

≤ [x+ (pr − 1)γ1] + · · ·+ [x+ (pr − 1)γm] + (p− 1)rA+B.

If, for some j = 1, . . . ,m, x+(pr−1)γj ≤ pr−1, then [x+(pr−1)γj ] = [x+(pr−1)γj ]r. Otherwise,
pr − 1 < x+ (pr − 1)γj < 2(pr − 1) and the representative in {1, . . . , pr − 1} of the congruence class
of x+ (pr − 1)γj modulo pr − 1 is then x+ (pr − 1)γj − pr + 1. Therefore

[x+ (pr − 1)γj ]r = [x+ (pr − 1)γj − pr + 1]

= [x+ (pr − 1)γj + 1]− 1

= [x+ (pr − 1)γj ]− q(p− 1)

where q is the number of consecutive “p − 1” digits at the end of the p-adic digit expansion of
x+ (pr − 1)γj . Since x+ (pr − 1)γj < 2(pr − 1) and x+ (pr − 1)γj 6= pr − 1 for every j, q is at most
r − 1, so

[α1x+ (pr − 1)β1]r + · · ·+ [αnx+ (pr − 1)βn]r

≤ [x+ (pr − 1)γ1] + · · ·+ [x+ (pr − 1)γm] + (p− 1)rA+B

≤ [x+ (pr − 1)γ1]r + · · ·+ [x+ (pr − 1)γm]r + (p− 1)rA+ (p− 1)(r − 1)m+B.

Furthermore, for every s ≥ 1, the last r digits of prs−1
pr−1 x + (prs − 1)γj = prs−1

pr−1 (x + (pr − 1)γj) are

the same as the last r digits of x+ (pr − 1)γj and, in particular, the last r digits are not all p− 1,

so we get (letting y = prs−1
pr−1 x):

[α1y + (prs − 1)β1]rs + · · ·+ [αny + (prs − 1)βn]rs

≤ [y + (prs − 1)γ1]rs + · · ·+ [y + (prs − 1)γm]rs + (p− 1)rsA+ (p− 1)(r − 1)m+B.

Using the Hasse-Davenport relation [y]rs = s[x]r [KRLT1, Lemma 2.10], we conclude that

[α1x+ (pr − 1)β1]r + · · ·+ [αnx+ (pr − 1)βn]r

≤ [x+ (pr − 1)γ1]r + · · ·+ [x+ (pr − 1)γm]r + (p− 1)rA+
(p− 1)(r − 1)m+B

s

and letting s→∞ we obtain (9.0.1). �

In order to prove the inequality

(9.1.1) [α1x+(pr−1)β1]+· · ·+[αnx+(pr−1)βn] ≤ [x+(pr−1)γ1]+· · ·+[x+(pr−1)γm]+(p−1)rA+B
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for every r ∈ r0Z+ and every 0 ≤ x ≤ pr−1 we proceed by induction on r. For a few small values of
r it is done by a computer check. Then we proceed as follows for a given r, assuming it has already
been proved for smaller r. Let

∆(r, x) = [x+(pr−1)γ1]+· · ·+[x+(pr−1)γm]+(p−1)rA−[α1x+(pr−1)β1]−· · ·−[αnx+(pr−1)βn],

we need to show that ∆(r, x) ≥ −B.
We first prove a few cases of (9.1.1), in the following way. For some small s < r which is also a

multiple of r0 we split off the last s digits of x. That is, we write x = psy + z with 0 ≤ y < pr−s

and 0 ≤ z < ps. For every i = 1, . . . , n let ui be the number of digit carries in the sum

αix+ (pr − 1)βi = ps(αiy + (pr−s − 1)βi) + (αiz + (ps − 1)βi)

and for every j = 1, . . . ,m let vj be the number of digit carries in the sum

x+ (pr − 1)γj = ps(y + (pr−s − 1)γj) + (z + (ps − 1)γj)

then
[αix+ (pr − 1)βi] = [αiy + (pr−s − 1)βi] + [αiz + (ps − 1)βi]− (p− 1)ui

and
[x+ (pr − 1)γj ] = [y + (pr−s − 1)γj ] + [z + (ps − 1)γj ]− (p− 1)vj .

Assume ∆(s, z)− (p− 1)
∑

j vj + (p− 1)
∑

i ui ≥ 0. Then

∆(r, x) = ∆(r − s, y) + ∆(s, z)− (p− 1)
∑
j

vj + (p− 1)
∑
i

ui ≥ ∆(r − s, y)

and we conclude by induction.
For the remaining cases of (9.1.1), we use the following substitution method: for some small s < r

which is also a multiple of r0 we write x = psy + z with 0 ≤ y < pr−s and 0 ≤ z < ps. Let s′ ≤ s
and 0 ≤ z′ ≤ ps

′ − 1, and let x′ = ps
′
y + z′ and r′ = r − s + s′. Assume that ∆(r′, x′) ≥ −B has

already been proved (which is true by induction if s′ < s). For every i = 1, . . . , n let bi (respectively
b′i) be the number obtained by removing the last s digits of αiz+ (ps− 1)βi (resp. by removing the

last s′ digits of αiz
′ + (ps

′ − 1)βi) and for every j = 1, . . . ,m let cj (respectively c′j) be the number

obtained by removing the last s digits of z + (ps − 1)γj (resp. by removing the last s′ digits of

z′ + (ps
′ − 1)γj), which is always 0 or 1. Assume that bi = b′i for every i and cj = c′j for every j,

and that ∆(s, z) ≥ ∆(s′, z′). Then the number of digit carries in the sum

αix
′ + (pr

′ − 1)βi = ps
′
(αiy + (pr

′−s′ − 1)βi) + (αiz
′ + (ps

′ − 1)βi)

is ui, and the number of digit carries in the sum

x′ + (pr
′ − 1)γj = ps

′
(y + (pr

′−s′ − 1)γj) + (z′ + (ps
′ − 1)γj)

is vj . So we get

∆(r, x) = ∆(r − s, y) + ∆(s, z)− (p− 1)
∑
j

vj + (p− 1)
∑
i

ui

≥ ∆(r′ − s′, y) + ∆(s′, z′)− (p− 1)
∑
j

vj + (p− 1)
∑
i

ui

= ∆(r′, x′)

≥ −B.
For some local systems for which r0 is large, it will me more convenient to use the following

variant of the previous procedure. Note that multiplication by pr0 fixes the γj modulo 1. Suppose
that there is some r1 such that pr1 permutes the γj modulo 1, and assume that (pr1 − 1)βi ∈ Z for
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every i for simplicity (the argument could be extended to the case where multiplication by pr1 also
permutes the βi, but we will not need this case here). Let r1 be the smallest positive integer with
such property, then r1|r0 and r0/r1 is the order of the permutation under which multiplying by pr1

acts on the γj .
Suppose, after relabeling the γj , that γ1, . . . , γe form a cycle for this action. Then e|(r0/r1), let

r0 = r1ef . Splitting the p-adic digits of (pr0 − 1)γ1 in groups of r1, we can write

(pr0 − 1)γ1 = hefp
r1(ef−1) + hef−1p

r1(ef−2) + · · ·+ h2p
r1 + h1

with 0 ≤ hi ≤ pr1 − 1. Since pr1(pr0 − 1)γj ≡ (pr0 − 1)γj+1 for j = 1, . . . , e− 1 and pr1(pr0 − 1)γe ≡
(pr0 − 1)γ1 (mod pr0 − 1), we conclude that he+i = hi for 0 ≤ i ≤ e(f − 1) and

(pr0 − 1)γj = he+1−jp
r1(ef−1) + he−jp

r1(ef−2) + · · ·+ h3−jp
r1 + h2−j

for 1 ≤ j ≤ e, where l is the representative in {1, . . . , e} of the congruence class of l modulo e.
For every k = 1, . . . , ef and 1 ≤ j ≤ e, let

hk,j =
k−1∑
l=0

hj+lp
lr1 .

Roughly speaking, these are the numbers formed by taking k consecutive (from the cyclic point of
view) groups of r1 digits of (pr0−1)γ1, the last of them being the j-th one (counting from the right).
Then 0 ≤ hk,j < pkr1 , h1,j = hj , and (pr0 − 1)γj = hef,2−j . Also, if k > 1, hk,j = pr1hk−1,j+1 + hj
and, more generally, hk,j = pir1hk−i,j+i + hi,j for 0 < i < k. We use this last formula to extend the

definition of hk,j to every positive integer k. In particular, we have hef+k,j = pkr1hef,j+k + hk,j =

pkr1(pr0 − 1)γ2−j−k + hk,j .

Similarly, using the other cycles for the action of multiplication by pr1 on the γj , we define hj
and hk,j for every j = 1, . . . ,m and k ≥ 1.

In this situation, the inequality (9.1.1) is a special case of the following inequality: for every
k ≥ 1 and every 0 ≤ x ≤ pr − 1, where r = kr1,

(9.1.2) [α1x+ (pr − 1)β1] + · · ·+ [αnx+ (pr − 1)βn] ≤ [x+ hk,1] + · · ·+ [x+ hk,m] + (p− 1)rA+B.

When k is a multiple of ef (that is, when r0|r) this inequality reduces to (9.1.1), since the hk,j are
a permutation of the (pr − 1)γj . We define

∆(r, x) = [x+ hk,1] + · · ·+ [x+ hk,m] + (p− 1)rA− [α1x+ (pr − 1)β1]− · · · − [αnx+ (pr − 1)βn],

and want to show that ∆(r, x) ≥ −B.
The induction step now works as follows. For some small l < k we split off the last s := lr1 digits

of x: we write x = psy + z with 0 ≤ y < pr−s and 0 ≤ z < ps. For every i = 1, . . . , n let ui be the
number of digit carries in the sum

αix+ (pr − 1)βi = ps(αiy + (pr−s − 1)βi) + (αiz + (ps − 1)βi)

as before, and let vj be the number of digit carries in the sum

x+ hk,j = ps(y + hk−l,j+l) + (z + hl,j)

then

[αix+ (pr − 1)βi] = [αiy + (pr−s − 1)βi] + [αiz + (ps − 1)βi]− (p− 1)ui

and

[x+ hk,j ] = [y + hk−l,j+l] + [z + hl,j ]− (p− 1)vj .
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Assume ∆(s, z)− (p− 1)
∑

j vj + (p− 1)
∑

i ui ≥ 0. Then

∆(r, x) = ∆(r − s, y) + ∆(s, z)− (p− 1)
∑
j

vj + (p− 1)
∑
i

ui ≥ ∆(r − s, y)

and we conclude by induction.
For the remaining cases of (9.1.2) we proceed by replacing the last digits as in the previous case:

let s = lr1 and s′ = l′r1 with l′ ≤ l < k, write x = psy + z with 0 ≤ y < pr−s and 0 ≤ z < ps,
let 0 ≤ z′ ≤ ps

′ − 1 and x′ = ps
′
y + z′, and define r′ = r − s + s′, k′ = k − l + l′. Assume that

∆(r′, x′) ≥ −B has already been proved. Let bi and b′i be as above, and for every j = 1, . . . ,m
let cj (respectively c′j) be the number obtained by removing the last s digits of z + hl,j (resp. by

removing the last s′ digits of z′ + hl′,j+l−l′). Assume that bi = b′i for every i and cj = c′j for every

j, and that ∆(s, z) ≥ ∆(s′, z′). Then the number of digit carries in the sum

αix
′ + (pr

′ − 1)βi = ps
′
(αiy + (pr

′−s′ − 1)βi) + (αiz
′ + (ps

′ − 1)βi)

is ui, and the number of digit carries in the sum

x′ + hk′,j−l+l′ = ps
′
(y + hk−l,j+l) + (z′ + hl′,j+l−l′)

is vj . So we get

∆(r, x) = ∆(r − s, y) + ∆(s, z)− (p− 1)
∑
j

vj + (p− 1)
∑
i

ui

≥ ∆(r′ − s′, y) + ∆(s′, z′)− (p− 1)
∑
j

vj + (p− 1)
∑
i

ui

= ∆(r′, x′)

≥ −B.

10. The alternating group A6

We begin by noting that
S := A6

∼= PSL2(9) ∼= PSU2(9),

and, in the notation of [Atlas], S · 21
∼= S6 and S · 22

∼= PGL2(9) ∼= PGU2(9). Hence, using results
of [KT1, Theorem 17.1] we can get hypergeometric sheaves in characteristic p = 3 which realize
the 4-dimensional faithful representations of 2A6

∼= SL2(9). Likewise, using [KT5, Theorem 9.3] we
can get hypergeometric sheaves in characteristic p = 3 which realize the 5-dimensional irreducible
representations of A6. Next, using [KT4, Corollary 8.2] we can get hypergeometric sheaves, still in
characteristic p = 3, which realize irreducible representations of 2 · A6 · 22 of degree 9 and 10 (that
are irreducible over 2 ·A6). Finally, using [KT7, Theorem 17.4] we can get hypergeometric sheaves,
again in characteristic p = 3, which realize irreducible representations of 2 ·A6 · 22 of degree 8 (that
are irreducible over 2 · A6).

Now we settle the question whether the exceptional covers 3 · A6 and 6 · A6 can occur as Ggeom

of some hypergeometric sheaves: the answer is “no” for 6 · A6 and “yes” for 3 · A6.

Lemma 10.1. There are no hypergeometric sheaves of type (D,m) with D > m in characteristic p
that satisfy (S+) and have Ggeom B 6 · A6.

Proof. Suppose such a sheaf H exists and let g0 be the image of a generator of I(0) in G := Ggeom.
Then g0 has simple spectrum on H, and so D cannot exceed ō(g0). On the other hand, condition
(S+) and the hypothesis G B L := 6 · A6 imply by Lemma 3.1 that G/Z(G) ↪→ Aut(A6) and so
ō(g0) ≤ 10 by [Atlas]. Thus D ≤ 10. But L acts irreducibly and faithfully on H, so D = 6 by
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[Atlas]. Now, ō(g0) ≥ 6 implies g0 /∈ Z(G)L, and so G must induce an outer automorphism of L.
But this is impossible, because no outer automorphism of L can stabilize the equivalence class of a
faithful 6-dimensional representation of L (see [Atlas]). �

Theorem 10.2. The local system K := Kl(1, ξ5, ξ
4
5) in characteristic p = 3 has finite geometric

monodromy group.

Proof. We need to show:

V (x) + V

(
x+

1

5

)
+ V

(
x+

4

5

)
≥ 1

and

V (x) + V

(
x+

2

5

)
+ V

(
x+

3

5

)
≥ 1,

which are equivalent via the change of variable x 7→ 3x. Using the fact that V ( i5) = V ( 16i
34−1

) = 1
8 [16i]

for 1 ≤ i ≤ 4 we check thate second inequality holds for 5x ∈ Z. For all other values of x, following
§9, it suffices to prove

0 ≤
[
x+

2(3r − 1)

5

]
+

[
x+

3(3r − 1)

5

]
+ [x]− 2r

for every r ≥ 1 divisible by r0 = 4 and every 0 ≤ x ≤ 3r − 1. Since multiplication by 32 permutes
γ1 = 2

5 and γ2 = 3
5 and fixes γ3 = 0 modulo 1, we can take r1 = 2. Then, with the notation of §9,

we have (34 − 1)γ1 = 10123; hj = 123, 103 and h2,j = 10123, 12103 for j = 1, 2 respectively. We will
prove that

0 ≤ [x+ hk,1] + [x+ hk,2] + [x]− 2r

for every r = 2k ≥ 2 and 0 ≤ x ≤ 3r − 1. For r ≤ 6 we check it by computer. For r > 6 we proceed
by induction as described in §9, proving first the following cases by splitting off the last digits of x.
Here

∑
i ui is always 0, since there are no terms on the left-hand side of the inequality.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 2
∑

j vj + 2
∑

i ui

00,01,02,10 2 00,01,02,10 ≥ 0 0 0 ≥ 0
ab11; ab 6= 12 2 11,12 ≥ 2 0 ≤ 1 ≥ 0

ab20; ab 6= 10, 12 2 20,21,22 ≥ 2 0 ≤ 1 ≥ 0
a1020; a 6= 2 4 1020 1 0 0 1

021020 6 021020 3 0 0 3

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c3 = c′3 corresponding to γ3 = 0, since it is always 0):

z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) c1 = c′1 c2 = c′2
1211,1220 4 20 2 3 2 1 1

12 2 11 2 5 2 1 0
121020,221020 6 20 2 ≥ 2 2 1 1

21,22 2 20 2 ≥ 3 2 1 1

�

Theorem 10.3. The local system K := Kl(1, ξ5, ξ
4
5) in characteristic p = 3 has geometric mon-

odromy group Ggeom = 3 · A6. Moreover, H := K ⊗ Lξ2 has a descent H′ to F9 with arithmetic
monodromy group Garith,k,H′ = Ggeom,H′ ∼= (3 · A6)× C2 over any finite extension k ⊇ F9.
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Proof. (i) By Theorem 10.2, G = Ggeom is finite. Let ϕ denote the character of the representation
G→ GL(V ) of G realizing K. Now, K is visibly not Kummer induced, so (being Kloosterman) it is
primitive. As dim(V ) = 3, (G,V ) is tensor indecomposable, and not tensor induced. Hence (G,V )
satisfies (S+). Next, by the construction of H, the field of values Q(ϕ) := Q(ϕ(g) | g ∈ G) contains√

5. Indeed, for a generator g0 of the image I(0) in G we have ϕ(g0) = (1 +
√

5)/2 and moreover g0

has central order 5. Furthermore, the image Q of P (∞) acts irreducibly on V by Proposition 5.9.
In particular, Q is a non-abelian 3-group, so of order at least 33. Moreover, Z(Q) 6= 1 acts faithfully,
as scalars, on V , hence ϕ(z) = 3ζ3 for some z ∈ Z(Q) of order 3. It follows that Q(ϕ) 3

√
−3, and

so Q(ϕ) = Q(
√

5,
√
−3) by Proposition 6.1(iii). Now, since the cyclic group Z(G) acts via scalars,

we have that

(10.3.1) Z(G) ≤ C6.

Suppose G satisfies conclusion (c) of Lemma 3.1. Then G contains an irreducible normal 3-
subgroup R, and

G/CG(R)R ↪→ Out(R) ↪→ SL2(3) ∼= 2 · A4.

But this is a contradiction, since CG(R) = Z(G) and 5 divides |G/Z(G)| but not |S4|.
Thus G is almost quasisimple. Let S denote the unique non-abelian composition factor of G,

so that S = L/Z(L) for L := E(G) = G(∞). Then V |L is irreducible by Lemma 3.1, and so
CG(L) = Z(G) by Schur’s lemma. Furthermore, as ō(g0) = 5 and 33 divides |Q|, we have by
(10.3.1) that 32 · 5 divides the order of G/Z(G) ≤ Aut(S). Now we can apply the main result of
[HM] to see that S = A6 and L = 3 ·A6. Since 5 - |Out(S)|, g0 must lie in the inverse image Z(G)L
of S in G, whence g0 ∈ LCG because 5 - |Z(G) by (10.3.1). It now follows from Theorem 5.1 that
G = L = 3 · A6.

(ii) By Theorem 7.7, K has a descent K00 to F9 for which any element in Garith,k,K00 still has trace

in Q(
√

5,
√
−3) when k ⊇ F9, and with K0 given on line 1 of Table 4. Now we take H′ := K00⊗Lξ2 ,

and note that any element in Garith,k,H′ has trace in Q(
√

5,
√
−3), whence

(10.3.2) Z(Garith,k,H′) ≤ C6.

Let H := Ggeom,H = Ggeom,H′ . By Lemma 5.12, we have that H/Z(H) ∼= G/Z(G) ∼= A6 and

H(∞) ∼= G(∞) = 3 · A6. In particular, H(∞) acts irreducibly on H; and

Z(Garith,k,H′) ≥ Z(H) ≥ Z(H(∞)) = C3.

Next, a generator h0 of the image of I(0) in H has eigenvalues −1,−ζ5,−ζ4
5 on H, whence h5

0 acts
as the scalar −1 on H. It now follows from (10.3.2) that Z(Garith,k,H′) = Z(H) = C6. Now, since no

outer automorphism of H(∞) fixes the equivalence class of the H(∞)-module H, we conclude that
Garith,k,H′ = H = Z(H)H(∞) = (3 · A6)× C2. �

Theorem 10.4. The local system H2 := Hyp(Char8 r {ξ8, ξ̄8}; ξ12, ξ
7
12) in characteristic p = 5 has

finite geometric monodromy group.
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Proof. We need to show:

V (8x)− V
(
x+

1

8

)
− V

(
x+

7

8

)
+ V

(
−x− 1

12

)
+ V

(
−x− 7

12

)
≥ 0,

V (8x)− V
(
x+

3

8

)
− V

(
x+

5

8

)
+ V

(
−x− 1

12

)
+ V

(
−x− 7

12

)
≥ 0,

V (8x)− V
(
x+

1

8

)
− V

(
x+

7

8

)
+ V

(
−x+

1

12

)
+ V

(
−x+

7

12

)
≥ 0,

V (8x)− V
(
x+

3

8

)
− V

(
x+

5

8

)
+ V

(
−x+

1

12

)
+ V

(
−x+

7

12

)
≥ 0.

The first two and the last two are equivalent via the change of variable x 7→ x+ 1
2 , and the change

of variable x 7→ 5x interchanges the first and fourth ones, so they are all equivalent. Using the fact
that V ( i

24) = V ( i
52−1

) = 1
8 [i] for 1 ≤ i ≤ 23 we check that the inequalities hold for 24x ∈ Z. For all

other values of x we can rewrite the third inequality, using that V (x) + V (−x) = 1 for x 6= 0, as

V (8x) ≤ V
(
x+

1

8

)
+ V

(
x+

7

8

)
+ V

(
x+

1

12

)
+ V

(
x+

7

12

)
− 1

and, following §9, it suffices to prove

[8x] ≤
[
x+

5r − 1

8

]
+

[
x+

7(5r − 1)

8

]
+

[
x+

5r − 1

12

]
+

[
x+

7(5r − 1)

12

]
− 4r

for every r ≥ 1 multiple of r0 = 2 and every 0 ≤ x ≤ 5r − 1. For r ≤ 4 we check it by computer.
For r > 4 we proceed by induction as described in §9, proving first the following cases by splitting
off the last digits of x.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 4
∑

j vj + 4
∑

i ui

00, 01, 02, 03 2 00, 01, 02, 03 ≥ 0 ≥ 0 0 ≥ 0
a04, . . . , a20; a 6= 3 2 04, . . . , 20 ≥ 0 ≥ 0 0 ≥ 0
a21, . . . , a41; a 6= 0, 3 2 21, . . . , 41 ≥ 0 ≥ 0 0 ≥ 0

242, 442 2 42 8 ≥ 0 0 ≥ 8
443, 444 2 44 0 ≥ 0 0 ≥ 0

00ab, 01ab, 02ab 4 00ab, 01ab, 02ab ≥ 0 ≥ 0 0 ≥ 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table:
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z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 = c′1 c2 = c′2 c3 = c′3 c4 = c′4
0304, . . . , 0344 4 04 2 ≥ 0 0 1 0 1 0 0
1304, . . . , 1344 4 14 2 ≥ 0 0 2 0 1 0 0
2304, . . . , 2344 4 24 2 ≥ 0 0 4 0 1 0 1
3304, . . . , 3333 4 33 2 ≥ 4 4 10 0 1 0 1
3334, . . . , 3344 4 34 2 ≥ 8 8 11 0 1 0 1
4304, . . . , 4344 4 44 2 ≥ 0 0 12 1 1 1 1
1021, . . . , 1044 4 11 2 ≥ 0 0 1 0 1 0 0
2021, . . . , 2044 4 21 2 ≥ 0 0 3 0 1 0 1
3021, . . . , 3030 4 24 2 ≥ 0 0 4 0 1 0 1
3031, . . . , 3044 4 31 2 ≥ 8 8 10 0 1 0 1
4021, . . . , 4044 4 41 2 ≥ 8 8 11 0 1 0 1

1142, 1143, 1144 4 12 2 ≥ 4 4 2 0 1 0 0
2142, 2143, 2144 4 22 2 ≥ 0 0 3 0 1 0 1
3142, 3143, 3144 4 32 2 ≥ 8 8 10 0 1 0 1
4142, 4143, 4144 4 42 2 ≥ 8 8 12 1 1 0 1

1243, 1244 4 13 2 0 0 2 0 1 0 0
2243, 2244 4 23 2 0 0 3 0 1 0 1
3243, 3244 4 33 2 4 4 10 0 1 0 1
4243, 4244 4 43 2 0 0 12 1 1 1 1

�

Theorem 10.5. The local system H2 := Hyp(Char8 r {ξ8, ξ̄8}; ξ12, ξ
7
12) in characteristic p = 5 has

geometric monodromy group Ggeom = (2 × 3A6) · 23. Moreover, H2 is defined over F25, and has
arithmetic monodromy group Garith,k = Ggeom over any finite extension k of F25.

Proof. (i) By Theorem 10.4, G = Ggeom is finite. Let ϕ denote the character of the representation
Φ : G → GL(V ) of G realizing H2. It is clear that H is not Kummer induced. Furthermore, the
shape of the “upstairs” and “downstairs” characters of H2 shows by Proposition 3.7(ii) that it is
not Belyi induced. Hence (G,V ) satisfies (S+) by Theorem 3.5. Next, among the nontrivial Galois
automorphisms of Q(ζ24)/Q, only ζ24 7→ ζ7

24 fixes each of the set of “upstairs” characters and the
set of “downstairs” characters of H2. Hence the field of values Q(ϕ) := Q(ϕ(g) | g ∈ G) is

(10.5.1) Q(ϕ) = Q(
√

2,
√
−3)

by Proposition 6.1(iii). Now, since the cyclic group Z(G) acts via scalars, we have that

(10.5.2) Z(G) ≤ C6.

We now have that G is almost quasisimple by Lemma 3.1. Let S denote the unique non-abelian
composition factor of G, so that S = L/Z(L) for L := E(G) = G(∞). Then V |L is irreducible by
Lemma 3.1, and so CG(L) = Z(G) by Schur’s lemma. Furthermore, if g0 denotes a generator of the
image of I(0) in G, then ō(g0) = 8, and the image Q of P (∞) has order 5 by Proposition 5.8(iv).
Hence, by (10.5.2) we have that G/Z(G) ≤ Aut(S) contains elements of order 8 and 5. Now we can
apply the main result of [HM] to arrive at the following possibilities.
• S = A7. In this case, G/Z(G) ≤ S7 cannot contain any element of order 8, a contradiction.
• (S,L) = (SU3(3), SU3(3)), (SU4(2),SU4(2)), or (PSU4(3), 61 · PSU4(3)). In all these cases, we

can find an almost quasisimple group M ≤ L · 2 and an irreducible character ψ of M such that
M (∞) = L = G(∞), M/Z(M) ∼= G/Z(G), ψ|L = ϕ|L, and Q(ψ) ⊆ Q(

√
−3) ⊂ Q(ϕ). By Lemma

3.9, we can find a root of unity γ such that Q(ϕ) = Q(ψ)(γ), contrary to (10.5.1).
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• (S,L) = (PSL3(4), 6 ·PSL3(4)). In this case, using [GAP] we can check that Φ (in fact already
Φ|L) has M2,2 = 2. Now we apply Theorem 6.5, with (a, b) = (2, 2), and C = 146, B ≤ 322, A ≤ 176
(according to Lemmas 6.6, 6.7, and Remark 6.8), which implies that the approximation of M2,2 over
F56 is at most 3.43. However, a calculation with Mathematica yields an approximation of (at least)
4.24 over F56 , a contradiction.
• (S,L) = (J2, 2J2). In this case, Q(ϕ|L) = Q(

√
5), contradicting (10.5.1).

• S = A6 and L = 6 · A6 or 3 · A6. Note that the former possibility is ruled out by Lemma 10.1.
Hence L = 3 · A6. Since G/Z(G) ≤ Aut(S) = S · 22 contains an element of order 6, G/Z(G) > S.
Next, Φ|L is irreducible, hence G/Z(G) cannot be S · 21 or S · 22 by [Atlas]. It follows that
G/Z(G) = S · 23. We also know that C3 = Z(L) ≤ CG(L) = Z(G) ≤ C6 by (10.5.2). As g0 has
central order 8, we can find an element h in the group H = 3S ·23 listed in [GAP] and an irreducible
character ψ of H, afforded by a representation Ψ : H → GL(V ), such that Ψ|L = Φ|L and g0 and
h induce the same automorphism of L. Arguing as in the proof of Lemma 3.9, we can find α ∈ C×
such Φ(g0) = αΨ(h). Now we have

Trace(Φ(g0)) = ϕ(g0) =
√

2, Trace(Ψ(h)) = ψ(h) = ±
√
−2,

and so α = ±
√
−1. Also note that g2

0 ∈ G and h2 ∈ L. It follows that g2
0h
−2 ∈ G and

Φ(g2
0) = Φ(g0)2 = −Ψ(h2),

i.e. Φ(g2
0h
−2) = −Id. Thus g2

0h
−2 is a central element of order 2, and we conclude that Z(G) ∼= C6

and G = (2× 3A6) · 23.

(ii) The sheaf H2 is visibly defined over F25. Furthermore, over any finite extension k of F25,
by Proposition 6.1(iii), any element in Garith,k still has trace in Q(

√
2,
√
−3). Since any element in

CGarith,k
(L) = Z(Garith,k) acts via scalars, which are then roots of unity in Q(

√
2,
√
−3), we see that

CGarith,k
(L) = C6 = CG(L). Hence, if Garith,k > Ggeom, we see that some element of Garith,k must

induce an outer automorphism of S lying outside of S · 23, which is impossible under the condition
that it fixes L = 3 · S and ϕ|L, see [Atlas]. Therefore we must have that Garith,k = Ggeom. �

11. The alternating group A7

Theorem 11.1. The Kloosterman sheaf Kl(1, ξ7, ξ
2
7 , ξ

4
7) in characteristic p = 3, where ξ7 is a

character of order 7, has finite geometric monodromy group.

Proof. We need to show:

V (x) + V

(
x+

1

7

)
+ V

(
x+

2

7

)
+ V

(
x+

4

7

)
≥ 3

2

or

V (x) + V

(
x− 1

7

)
+ V

(
x− 2

7

)
+ V

(
x− 4

7

)
≥ 3

2

depending on the choice of χ. Note that these two inequalities are equivalent via the change of
variable x 7→ 3x, since V (3x) = V (x), so we will consider only the first one. Using the fact that
V ( i7) = V ( 104i

36−1
) = 1

12 [104i] for 1 ≤ i ≤ 6 we check that the inequality holds for 7x ∈ Z. For all
other values of x, following §9, it suffices to prove

0 ≤
[
x+

3r − 1

7

]
+

[
x+

2(3r − 1)

7

]
+

[
x+

4(3r − 1)

7

]
+ [x]− 3r

for every r ≥ 1 divisible by r0 = 6 and every 0 ≤ x ≤ 3r − 1. Since multiplication by 32 permutes
γ1 = 1

7 , γ2 = 2
7 and γ3 = 4

7 cyclically modulo 1, we can take r1 = 2. Then, with the notation
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of §9, we have (36 − 1)γ1 = 0102123; hj = 123, 023, 013; h2,j = 02123, 01023, 12013 and h3,j =
0102123, 1201023, 0212013 for j = 1, 2, 3 respectively. We will prove that

0 ≤ [x+ hk,1] + [x+ hk,2] + [x+ hk,3] + [x]− 3r

for every r = 2k ≥ 2 and 0 ≤ x ≤ 3r − 1. For r ≤ 4 we check it by computer. For r > 4 we proceed
by induction as described in §9, proving first the following cases by splitting off the last digits of x.
Here

∑
i ui is always 0, since there are no terms on the left-hand side of the inequality.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 2
∑

j vj + 2
∑

i ui

00,01,02,10 2 00,01,02,10 ≥ 0 0 0 ≥ 0
ab11, ab12, ab20; ab 6= 20 2 11,12,20 ≥ 2 0 ≤ 1 ≥ 0

ab21; ab 6= 20, 21 2 21 4 0 ≤ 1 ≥ 2
ab22; ab 6= 10, 20, 21 2 22 4 0 ≤ 2 ≥ 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c4 corresponding to γ4 = 0, since it is always 0):

z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) c1 = c′1 c2 = c′2 c3 = c′3
2011,2012,2020,2021,2022 4 21 2 ≥ 4 4 1 1 0

2121,2122 4 22 2 4 4 1 1 1
1022 4 11 2 2 2 0 1 0

�

Theorem 11.2. The local system K := Kl(1, ξ7, ξ
2
7 , ξ

4
7) in characteristic p = 3 has geometric

monodromy group Ggeom = 2A7. Moreover, it has a descent K′ to F9 with arithmetic monodromy
group Garith,k = Ggeom over any finite extension k ⊇ F9.

Proof. By Theorem 11.1, G = Ggeom is finite. Let ϕ denote the character of the representation
G→ GL(V ) of G realizing K. By the construction of H, the field of values

Q(ϕ) := Q(ϕ(g) | g ∈ G)

contains
√
−7. Indeed, for a generator g0 of the image I(0) in G we have ϕ(g0) = (1 +

√
−7)/2

and moreover g0 has central order 7. Using Corollary 6.2(i) we see that Q(ϕ) = Q(
√
−7). Now, K

is visibly not Kummer induced, so (being Kloosterman) it is primitive, whence it satisfies (S+) by
Lemma 3.4.

We have shown that (G,V ) satisfies (S+), and G contains g0 with ō(g0) = 7. Next, since the
cyclic group Z(G) acts via scalars and Q(ϕ) = Q(

√
−7), we have that

(11.2.1) Z(G) ≤ C2.

Furthermore, the image Q of P (∞) is elementary abelian of order 32 by Proposition 5.8(iv), and
Q ↪→ G/Z(G) by Proposition 5.6(ii). Suppose G satisfies conclusion (c) of Lemma 3.1. Then G
contains an irreducible normal 2-subgroup R, and

G/CG(R)R ↪→ Out(R) ↪→ Sp4(2) ∼= S6.

But this is a contradiction, since CG(R) = Z(G) ≤ C2 by (11.2.1), and 7 divides |G| but not |S6|.
Thus G is almost quasisimple. Let S denote the unique non-abelian composition factor of G,

so that S = L/Z(L) for L := E(G) = G(∞). Then V |L is irreducible by Lemma 3.1, and so
CG(L) = Z(G) by Schur’s lemma. Furthermore, as ō(g0) = 7 and |Q| = 32 we have that 32 · 7
divides the order of G/Z(G) ≤ Aut(S). Now we can apply the main result of [HM] to see that
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S = A7 and L = 2A7. In this case we also have that Z(G) = Z(L) = C2 by (11.2.1). Since
7 - |Out(S)|, g0 must lie in the inverse image L of S in G, whence Ggeom = L by Theorem 5.1.

By Theorem 7.7, K has a descent K′ = K00 to F9 for which any element in Garith,k still has

trace in Q(
√
−7) whenever k ⊇ F9, with K0 given on line 3 of Table 4. Since any element in

CGarith,k
(L) = Z(Garith) acts via scalars, which are then roots of unity in Q(

√
−7), we see that

CGarith,k
(L) = C2 = Z(L).

Since no outer automorphism of L can fix the character ϕ|L, we conclude that Garith,k = L =
Ggeom. �

Theorem 11.3. The local system Hyp(ξ6 · Char×7 ; ξ8, ξ̄8) in characteristic p = 5, where ξ6 is a
character of order 6 and ξ8 a character of order 8, has finite geometric monodromy group.

Proof. Here the four inequalities to prove are, depending on the choice of ξ6 and ξ8:

V

(
7x+

1

6

)
− V

(
x+

1

6

)
+ V

(
−x+

1

8

)
+ V

(
−x− 1

8

)
≥ 1

2
,

V

(
7x− 1

6

)
− V

(
x− 1

6

)
+ V

(
−x+

1

8

)
+ V

(
−x− 1

8

)
≥ 1

2
,

V

(
7x+

1

6

)
− V

(
x+

1

6

)
+ V

(
−x+

3

8

)
+ V

(
−x− 3

8

)
≥ 1

2

and

V

(
7x− 1

6

)
− V

(
x− 1

6

)
+ V

(
−x+

3

8

)
+ V

(
−x− 3

8

)
≥ 1

2
.

The change of variable x 7→ 5x interchanges the first and fourth and the second and third inequali-
ties, so we will focus on the second and fourth ones. Using the fact that V ( i

24) = V ( i
54−1

) = 1
16 [i]

for 1 ≤ i ≤ 23 we check that the inequalities hold for 24x ∈ Z. For all other values of x, using
that V (x) + V (−x) = 1 for x 6= 0, the second inequality is equivalent, via the change of variable
x 7→ x+ 1

8 , to

V

(
7x+

1

24

)
≤ V

(
x+

7

24

)
+ V

(
x+

1

4

)
+ V (x)− 1

2

and, following §9, it suffices to prove[
7x+

5r − 1

24

]
≤
[
x+

7(5r − 1)

24

]
+

[
x+

5r − 1

4

]
+ [x]− 2r

for every r ≥ 1 divisible by r0 = 2 and every 0 ≤ x ≤ 5r − 1. For r ≤ 4 we check it by computer.
For r > 4 we proceed by induction as described in §9, proving first the following cases by splitting

off the last digits of x. Note that 7(5r−1)
24 = 1212 . . . 125 and 5r−1

2 = 1111 . . . 115.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 4
∑

j vj + 4
∑

i ui

00, . . . , 32 2 00, . . . , 32 ≥ 0 ≥ 0 0 ≥ 0
ab33; ab 6= 32 2 33 8 ≥ 0 ≤ 1 ≥ 4

a34, . . . , a44; a 6= 2, 3 2 34, . . . , 44 ≥ 0 ≥ 0 0 ≥ 0
ab34, ab44; ab ≤ 31 4 ab34, ab44 ≥ 0 ≥ 0 0 ≥ 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c3 corresponding to γ3 = 0, since it is always 0):
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z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 = c′1 c2 = c′2
3233,3234,3244 4 33 2 ≥ 8 8 10 1 0

3334,3344 4 34 2 ≥ 0 0 10 1 1
4234,4244 4 43 2 ≥ 4 4 11 1 1
4334,4344 4 44 2 ≥ 0 0 11 1 1

40,41 2 34 2 ≥ 0 0 10 1 1
42,43 2 44 2 ≥ 4 0 11 1 1

For 24x 6∈ Z the fourth inequality is equivalent, via the change of variable x 7→ x+ 1
8 , to

V (7x) ≤ V
(
x+

5

24

)
+ V

(
x+

11

24

)
+ V (x)− 1

2

and, following §9, it suffices to prove

[7x] ≤
[
x+

5(5r − 1)

24

]
+

[
x+

11(5r − 1)

24

]
+ [x]− 2r

for every r ≥ 1 divisible by r0 = 2 and every 0 ≤ x ≤ 5r − 1. For r ≤ 6 we check it by computer.
For r > 6 we proceed by induction as described in §9, proving first the following cases by splitting

off the last digits of x. Note that 5(5r−1)
24 = 1010 . . . 105 and 11(5r−1)

24 = 2121 . . . 215; we also denote
Σ := ∆(s, z)− 4

∑
j vj + 4

∑
i ui.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj Σ

00, . . . , 23 2 00, . . . , 23 ≥ 0 ≥ 0 0 ≥ 0
a24, . . . , a34; a 6= 3 2 24, . . . , 34 ≥ 0 ≥ 0 0 ≥ 0
a40, . . . , a44; a 6= 3, 4 2 40, . . . , 44 ≥ 0 ≥ 0 0 ≥ 0

ab24, ab40, ab42; ab ≤ 22 4 ab24, ab40, ab42 ≥ 0 ≥ 0 0 ≥ 0
a330; a 6= 2 2 30 0 ≥ 1 1 ≥ 0
a334; a 6= 2 2 34 8 ≥ 0 1 ≥ 4

04440,14440,24440 4 4440 0 ≥ 0 0 ≥ 0
034440,134440 6 034440,134440 4 ≥ 0 0 ≥ 4
044440,144440 6 044440,144440 0 ≥ 0 0 ≥ 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c3 corresponding to γ3 = 0, since it is always 0):
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z = last
digits of x

s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 = c′1 c2 = c′2

2324,2330,2334,2340,2342 4 24 2 ≥ 0 0 3 0 1
2440,2442 4 30 2 ≥ 0 0 4 0 1

3324,3340,3342 4 34 2 ≥ 8 8 10 0 1
3440,3442 4 40 2 ≥ 0 0 10 1 1

4324,4340,4342,4442 4 44 2 ≥ 4 4 11 1 1
234440 6 24 2 0 0 3 0 1
244440 6 30 2 0 0 4 0 1
334440 6 34 2 8 8 10 0 1
344440 6 40 2 0 0 10 1 1
434440 6 44 2 4 4 11 1 1
444440 6 4440 4 0 0 11 1 1
31,32 2 30 2 0 0 4 0 1

33 2 34 2 12 8 10 0 1
41 2 40 2 0 0 10 1 1

43,44 2 42 2 ≥ 4 4 11 1 1

�

Theorem 11.4. The local system H := Hyp(ξ6 ·Char×7 ; ξ8, ξ̄8) in characteristic p = 5 has geometric
monodromy group Ggeom = 6A7. Moreover, H has a descent H′ to F25 with arithmetic monodromy
group Garith,k = Ggeom over any finite extension k of F25.

Proof. By Theorem 11.3, G = Ggeom is finite. Let ϕ denote the character of the representation
G→ GL(V ) of G realizing H. By the construction of H, the field of values Q(ϕ) := Q(ϕ(g) | g ∈ G)
contains both ζ6 and

√
2. Indeed, for a generator g0 of the image I(0) in G we have ϕ(g0) = −ζ6

and moreover g7
0 acts a central element of order 6. Furthermore, a p′-generator g∞ of the image of

I(∞) modulo P (∞) in G has trace 0 on Wild and ζ8 + ζ̄8 =
√

2 on Tame, whence ϕ(g∞) =
√

2.
Now using Corollary 6.2(i) we see that Q(ϕ) = Q(

√
−3,
√

2). It is clear that H is not Kummer
induced. Furthermore, the shape of the “upstairs” and “downstairs” characters of H shows by
Proposition 3.7(ii) that it is not Belyi induced. Hence, by Theorem 3.5, (G,V ) satisfies (S+). As
D = dim(V ) = 6, G must be almost quasisimple by Lemma 3.1. Next, since the cyclic group Z(G)
acts via scalars and Q(ϕ) = Q(

√
−3,
√

2), but g7
0 ∈ Z(G) has order 6, we have that

(11.4.1) Z(G) ∼= C6.

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for

L := E(G) = G(∞).

Then V |L is irreducible by Lemma 3.1, and so CG(L) = Z(G) by Schur’s lemma. Furthermore, as
ō(g0) = 7 we have C7 ↪→ G/Z(G) ≤ Aut(S). Moreover, the image Q of P (∞) is cyclic of order 5
by Proposition 5.8(iv), and Q ↪→ G/Z(G) by Proposition 5.6(i). Now we can apply the main result
of [HM] to arrive at the following possibilities for (S,L).
• (S,L) = (PSL3(4), 6 · PSL3(4)) or (PSU4(3), 61 · PSU4(3)). In these two cases, Z(G) = Z(L) =

C6. Next, since 7 - |Out(S)|, the element g0 of central order 7 must lie in the inverse image L of S
in G, whence G = L by Theorem 5.1. Now, using [GAP] we can check that no element of G has
trace of absolute value

√
2, contrary to ϕ(g∞) =

√
2.

• (S,L) = (J2, 2 · J2). In this case, Q(ϕ) ⊇ Q(ϕ|L) = Q(
√

5), a contradiction.
• S = A7. Again since 7 - |Out(S)|, g0 must lie in the inverse image Z(G)L of S in G, whence

G = Z(G)L by Theorem 5.1. Now, if L = A7 or 3 · A7, then according to [GAP], no element in
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Z(G)L can have trace
√

2, contradicting the existence of the element g∞. Hence L = 6 · A7, in
which case we have Z(G) = Z(L) and Ggeom = L = 6A7.

By Theorem 7.7, H has a descent H′ = H00 to F25, for which any element in Garith,k still has

trace in Q(
√
−3,
√

2) when k ⊇ F25, with H0 given on line 4 of Table 4. Since any element in
CGarith,k

(L) = Z(Garith,k) acts via scalars, which are then roots of unity in Q(
√
−3,
√

2), we see that
CGarith,k

(L) = C6 = Z(L). Since no outer automorphism of L fixes the character ϕ|L, we conclude
that Garith,k = L = Ggeom.

For the next application, we identify g∞ in G. Since it has central order divisible by 4, it belongs
to class 4A in G/Z(G), in the notation of [Atlas]. Also, recall that g∞ permutes the 4 eigenspaces
for Q in Wild cyclically, and has eigenvalues ζ8 and ζ̄8 on Tame. It follows that the central element
g4
∞ acts as a scalar α on Wild for some α ∈ C×, and as the scalar −1 on Tame. This implies that
α = −1 by Schur’s lemma, and thus o(g∞) = 8. Now, G = 6A7 has two classes of elements of order
8, 8a and 8b in the notation of [GAP], and (modulo the central involution) we may assume g∞
belongs to class 8a. �

Theorem 11.5. The following statements hold.

(i) The local system H1 := Hyp(ξ3 ·Char×7 ;1, ξ2) in characteristic p = 5 has geometric monodromy

group Ggeom,H1 = 3A7. Moreover, H1⊗Lξ2 has a descent H]1 to F25 with arithmetic monodromy
group G

arith,k,H]1
= G

geom,H]1
∼= (3A7)× C2 over any finite extension k ⊇ F9.

(ii) The local system H2 := Kl(1, ξ7, ξ
2
7 , ξ

4
7) in characteristic p = 5 has geometric monodromy group

Ggeom,H2 = 2A7. Moreover, H2 has a descent (H2)00 to F25, with arithmetic monodromy group
Garith,k,(H2)00 = Ggeom over any finite extension k of F25.

Proof. (i) Let G = 6A7. The hypergeometric sheaf H in Theorem 11.4 gives rise to a surjection
φ : π1(Gm/Fp) � G, together with a faithful irreducible representation Φ : G → GL6(Q`). We

also consider an irreducible representation Φ1 : G → GL6(Q`) with kernel C2 and an irreducible
representation Φ2 : G→ GL4(Q`) with kernel C3. Note that, for any p-element h ∈ G,

Trace(Φ1(h)) = Trace(Φ(h)), Trace(Φ2(h)) = Trace(Φ(h))− 2.

It follows from [KT5, Theorem 5.1] that Φi ◦φ gives rise to a hypergeometric sheaf H′i, of type (6, 2)
and with geometric monodromy group G/C2

∼= 3A7 if i = 1, and of type (4, 0) and with geometric
monodromy group G/C3

∼= 2A7 if i = 2. Furthermore, in the notation of the proof of Theorem 11.4,
g0 is an element of order 42 in G. Changing g0 to a suitable generator of 〈g0〉, we may assume that

the spectrum of Φ1(g0) consists of ζ6ζ
j
7 , 1 ≤ j ≤ 6, and thus the “upstairs” characters of H′1 match

the “upstairs” characters of H1. Next, the spectrum of any element of order 8, including g∞, in
Φ1 consists of single eigenvalues ζ4 and ζ−1

4 , and double eigenvalues 1 and −1. Since g∞ permutes
the 4 eigenspaces for P (∞) on the wild part of H′1 cyclically by Proposition 5.8(iii), it must admit
eigenvalues 1 and −1 on the tame part Tame of H′1, and thus the “downstairs” characters of H′1
match the “downstairs” characters of H1. Consequently, H′1 is geometrically isomorphic to H1, and
the statement about Ggeom,H1 is proved.

By Theorem 7.7, H1 has a descent (H1)00 to F25 for which any element in Garith,k,K00 still

has trace in Q(
√
−3) when k ⊇ F25, and with (H1)0 given on line 5 of Table 4. Now we take

H]1 := (H1)00 ⊗ Lξ2 , and note that any element in G
arith,k,H]1

has trace in Q(
√
−3), whence

(11.5.1) Z(G
arith,k,H]1

) ≤ C6.
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Let H := G
geom,H]1

= Ggeom,H1⊗Lξ2 . Then a generator h0 of the image of I(0) in H has eigenvalues

−ζ3ζ
i
7, 1 ≤ i ≤ 6, on H]1, whence h7

0 acts as the scalar −ζ3 on H]1. It now follows from (11.5.1) that

(11.5.2) Z(G
arith,k,H]1

) = Z(H) = C6.

By Lemma 5.12, we also have that

(11.5.3) H/Z(H) ∼= Ggeom,H1/Z(Ggeom,H1) ∼= S, and H(∞) ∼= (Ggeom,H1)(∞) ∼= 3 · S,

with S = A7. It now follow from (11.5.2) that H = Z(H)H(∞) = (3 · S) × C2. Now, since no

outer automorphism of H(∞) fixes the equivalence class of the H(∞)-module H]1, we conclude from

(11.5.2) that G
arith,k,H]1

= Z(H)H(∞) = H = (3 · A6)× C2.

(ii) Likewise, changing g0 to a suitable generator of 〈g0〉, we may assume that the spectrum of
Φ2(g0) consists of −1,−ζ7,−ζ2

7 ,−ζ4
7 . It follows that the Kloosterman sheaf H′2 is geometrically

isomorphic to K := Kl(ξ2, ξ2ξ7, ξ2ξ
2
7 , ξ2ξ

4
7), and thus H2

∼= K ⊗ Lξ2 . Applying Lemma 5.12 to
H := Ggeom,H2 , we have H/Z(H) ∼= (G/C3)/Z(G/C3) ∼= A7 and

H(∞) ∼= (Ggeom,K)(∞) = (Φ2(G))(∞) ∼= 2A7.

By Corollary 6.2(i), the field of traces of H2 is Q(
√
−7), which implies that CH(H(∞)) = Z(H) =

C2 = Z(H(∞)). Also, since outer automorphisms of 2A7 do not preserve the equivalence class of any

4-dimensional irreducible representation of 2A7, H can only induce inner automorphisms of H(∞).
It follows that H = H(∞) = 2A7. By Theorem 7.7, H2 has a descent (H2)00 to F25, for which any
element in Garith,k still has trace in Q(

√
−7) when k ⊇ F25, with (H2)0 given on line 6 of Table 4.

The statement about Garith,k,(H2)00 can now be proved using the same arguments as in the proof of
Theorem 11.4. �

12. The Mathieu group M11

Theorem 12.1. Consider the hypergeometric sheaves

H1 = Hyp(Char×11;Char2), H2 = Hyp(ξ2 · Char×11; ξ8, ξ
3
8), H3 = Hyp(Char11,Char4 r {1})

in characteristic p = 3. Then each Hi has a descent H′i to F3, such that, over any finite extension
k of F3, which contains F9 when i = 2, for H′i we have that Garith,k = Ggeom, where Ggeom = M11

if i = 1, 3 and Ggeom = M11 × C2 if i = 2.

Proof. (i) First we consider the case i = 1, 3. The statement about Ggeom was proved in [KT5,
Lemma 9.5]. As explained in [KT5, Lemma 9.2], the sheaf H1 is Sawin-like, and so it has a descent
to F3 which is (1/f)?(Q`)/Q`, with f = x9(1 − x)2. Similarly, H3 is Sawin-like and has a descent
to F3 which is f?(Q`)/Q`, with f = x11(1 − x). Moreover, Garith,k is contained in Sn with n = 11,
respectively n = 12, as a subgroup which contains S := M11 as a normal subgroup and which acts
irreducibly on the deleted permutation module S(n−1,1) of Sn. The centralizer of S in Sn consists
of permutations that act as scalars on the module, hence it is trivial. Since Aut(S) = S, see [GLS,
§5.3], it follows that NSn(S) = S and so Garith,k = S.

(ii) Consider the case i = 2. As shown in [KT5, Lemma 9.5], the sheaf H2 ⊗ Lξ2 (and after
replacing ξ8 by ξ̄8) has geometric monodromy group Ggeom,H2⊗Lξ2 = S. Hence G/Z(G) = S for

G := Ggeom by Lemma 5.12. Next we note thatH2 has a descentH′2 = (H2)00 to F3 by Theorem 7.5,
which has Q(

√
−2) as the field of traces of elements in Garith,k when k ⊇ F9, with (H2)0 specified

in Table 4, line 7. Now G(∞) is a cover of S, and so G(∞) = S. Next, the centralizer C of S in
Garith,k < GL10(C) consists of scalar transformations, and since Z(S) = 1 and Aut(S) = S, we have
that Garith,k = C × S with C ≤ C2. Moreover, if g0 generates the image of I(0) in G, then g11

0 acts
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as the scalar −1 on H2, whence g11
0 ∈ C. Thus C = C2 and Garith,k = S × C2. Since g11

0 ∈ C r S,
we see that the normal closure of g0 contains C × S, and so Ggeom = Garith,k by Theorem 5.1. �

13. The Mathieu group M22

Theorem 13.1. The local system Hyp(Char×11; ξ7, ξ
2
7 , ξ

4
7) in characteristic 2 has finite geometric

monodromy group.

Proof. For one of the possible choices of characters of order 7, we need to show

V (11x)− V (x) + V

(
−x+

1

7

)
+ V

(
−x+

2

7

)
+ V

(
−x+

4

7

)
− 1 ≥ 0

Using the fact that V ( i7) = 1
3 [i] for i = 1, . . . , 6 we get that V ( i7) = 0, 1

3 ,
1
3 ,

2
3 ,

1
3 ,

2
3 ,

2
3 for i = 0, 1, . . . , 6

respectively, so the inequality holds for 7x ∈ Z. Similarly, using that

V (
i

77
) = V (

13944699i

230 − 1
) =

1

30
[13944699i]

for i = 1, . . . , 10 we check that the inequality holds for 11x ∈ Z. For all other values of x, using
that V (x) + V (−x) = 1 if x 6= 0, we can rewrite the inequality as

V (11x) ≤ V
(
x+

1

7

)
+ V

(
x+

2

7

)
+ V

(
x+

4

7

)
+ V (x)− 1.

As described in §9, it suffices to prove

[11x] ≤
[
x+

2r − 1

7

]
+

[
x+

2(2r − 1)

7

]
+

[
x+

4(2r − 1)

7

]
+ [x]− r

for every r ≥ 1 divisible by r0 = 3 and every 0 ≤ x ≤ 2r−1. Notice that, in this case, multiplication
by 2 permutes γ1 = 1

7 , γ2 = 2
7 and γ3 = 4

7 cyclically, so we can take r1 = 1. Then, with the

notation of §9, we have (23 − 1)γ1 = 1 = 0012, h1 = 1, h2 = h3 = 0, h2,j = 012, 002, 102 and
h3.j = 0012, 1002, 0102 for j = 1, 2, 3 respectively. For γ4 = 0, which is fixed by multiplication by 2,
it is clear that h4 = hr,4 = 0 for every r. We will prove that

[11x] ≤ [x+ hr,1] + [x+ hr,2] + [x+ hr,3] + [x]− r

for every r ≥ 1 and every 0 ≤ x ≤ 2r − 1. For r ≤ 6 we check it by computer. For r > 6 we proceed
by induction as described in §9. First we prove some cases by splitting off the last digits of x. These
cases are enumerated in the following table, depending on the last 2-adic digits of x.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)−
∑

j vj +
∑

i ui

0 1 0 0 0 0 0
01 2 01 0 ≥ 0 0 ≥ 0
011 3 011 3 ≥ 0 0 ≥ 3

00111 5 00111 1 ≥ 0 0 ≥ 1
010111 6 010111 0 ≥ 0 0 ≥ 0
001111 6 001111 2 ≥ 2 0 ≥ 2

For the remaining cases, we replace the last digits of x by different digits for which the inequality
is already proved, as described at the end of §9. The substitutions are summarized in the following
table (we do not include the c4 corresponding to γ4 = 0, since it is always 0):
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z = last
digits of x

s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 = c′1 c2 = c′2 c3 = c′3

110111 6 111 3 2 2 1001 1 1 1
101111 6 11 2 5 3 1000 0 1 1
11111 5 1111 4 3 3 1010 1 1 1

For the other possible choice of characters of order 7, we need to show

V (11x)− V (x) + V

(
−x− 1

7

)
+ V

(
−x− 2

7

)
− V

(
−x− 4

7

)
− 1 ≥ 0

As in the previous case, we can check manually that the inequality holds for 7x ∈ Z and 11x ∈ Z.
For all other values of x, Using the fact that V (x) + V (−x) = 1 if x 6= 0, we can rewrite the
inequality as

V (11x) ≤ V
(
x+

3

7

)
+ V

(
x+

6

7

)
+ V

(
x+

5

7

)
+ V (x)− 1,

and it suffices to prove

[11x] ≤
[
x+

3(2r − 1)

7

]
+

[
x+

6(2r − 1)

7

]
+

[
x+

5(2r − 1)

7

]
+ [x]− r + 1

for every r ≥ 1 divisible by r0 = 3 and every 0 ≤ x ≤ 2r − 1. Again, multiplication by 2
permutes γ1 = 3

7 , γ2 = 6
7 and γ3 = 5

7 cyclically, so we can take r1 = 1. In this case we have

(23 − 1)γ1 = 1 = 0112, h1 = h2 = 1, h3 = 0, h2,j = 112, 012, 102 and h3.j = 0112, 1012, 1102 for
j = 1, 2, 3 respectively. For γ4 = 0, h4 = hr,4 = 0 for every r. We will prove that

[11x] ≤ [x+ hr,1] + [x+ hr,2] + [x+ hr,3] + [x]− r + 1

for every r ≥ 1 and every 0 ≤ x ≤ 2r − 1. For r ≤ 7 we check it by computer. For r > 7 we proceed
by induction as before, proving first some cases by splitting off the last digits:

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)−
∑

j vj +
∑

i ui

0 1 0 1 0 0 1
001 3 001 1 ≥ 0 0 ≥ 0

000101 6 000101 0 0 0 0
10101 2 01 0 ≥ 2 2 ≥ 0

0001101 7 0001101 2 ≥ 0 0 ≥ 2
111101 4 1101 2 ≥ 0 1 ≥ 1
1011 1 1 0 ≥ 3 2 ≥ 1
111 1 1 0 ≥ 1 1 ≥ 0

For the remaining cases we apply the following substitutions:

z = last
digits of x

s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 = c′1 c2 = c′2 c3 = c′3

0100101 7 010101 6 -1 -1 11 1 1 0
1100101 7 1101 4 2 2 1000 1 1 1
1001101 7 1001010 7 1 1 110 1 1 1
101101 6 10101 5 0 0 111 1 1 1
011101 6 01101 5 1 1 100 0 1 1
0011 4 0100 4 2 2 10 0 1 0
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�

Theorem 13.2. The local system H := Hyp(Char×11; ξ7, ξ
2
7 , ξ

4
7) in characteristic p = 2 has geometric

monodromy group Ggeom = 2M22, the double cover of the Mathieu group M22. The sheaf H has a
descent H′ to F2, such that, over any finite extension k of F4, H′ has Garith,k = Ggeom.

Proof. By Theorem 13.1, G = Ggeom is finite. Let ϕ denote the character of the representation
G→ GL(V ) of G realizing H. By the construction of H, the field of values Q(ϕ) := Q(ϕ(g) | g ∈ G)
contains

√
−7; indeed, a p′-generator g∞ of the image of I(∞) modulo P (∞) in G has trace

ζ7 + ζ2
7 + ζ4

7 = (−1 +
√
−7)/2 on Tame and 0 on Wild, whence ϕ(g∞) = (−1 +

√
−7)/2. In fact, by

Corollary 6.2(i) we have Q(ϕ) = Q(
√
−7). It is clear that H is not Kummer induced. Furthermore,

the shape of the “upstairs” and “downstairs” characters of H shows by Proposition 3.7(ii) that it is
not Belyi induced. Hence, by Theorem 3.6, (G,V ) satisfies (S+). As D = dim(V ) = 10, G must be
almost quasisimple by Lemma 3.1. Furthermore, since the cyclic group Z(G) acts via scalars and
Q(ϕ) = Q(

√
−7), we have that

(13.2.1) Z(G) ↪→ C2.

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for L :=

E(G) = G(∞). Then V |L is irreducible by Lemma 3.1, and so CG(L) = Z(G) by Schur’s lemma.
Furthermore, ō(g0) = 11 for a generator g0 of the image of I(0), and 7|ō(g∞), whence both cyclic
groups C11 and C7 embed in G/Z(G) ≤ Aut(S). Now we can apply the main result of [HM] to
arrive at the following two possibilities for (S,L).

• S = A11, and V |L is just the deleted permutation module S(10,1)|L. In this case, since S C
G/Z(G) ≤ Aut(S) = S11, the element g0 of order 11 must belong to the inverse image S × Z(G)
of S in G. Using (13.2.1), we see that in fact g0 ∈ S, hence G = S by Theorem 5.1. But this is a
contradiction, since Q(ϕ) would have been equal to Q.
• (S,L) = (M22, 2 · 22). Now we have Z(G) = Z(L) = C2 by (13.2.1). Furthermore, the element

g0 lies in LCG, hence Ggeom = L by Theorem 5.1.

We now use H′ = H00 as constructed in Theorem 7.5 (where H0 indicated in Table 4, line 8, has
weight 4 in this case), for which the field of traces of elements in Garith,k is still Q(

√
−7). Hence,

analogously to (13.2.1), we still have Z(Garith,k) = CGarith,k
(L) = Z(L) = C2. Now, if Garith,F2 = L

then we are done. Consider the case Garith,F2 > L. As Garith,F2/Z(L) embeds in Aut(S) = S · 2, we
must then have that Garith,k = L · 2 = 〈L, h〉. Thus modulo L = Ggeom, any element in Garith,k is

hdeg with h2 ∈ L. Hence Garith,k = L when k ⊇ F4. �

14. The Mathieu group M23

In this section, we work with the hypergeometric sheaf

H := Hyp(Char×23;1, ξ3, ξ
2
3 , ξ5, ξ

2
5 , ξ

3
5 , ξ

4
5)

in characteristic p = 2.

Lemma 14.1. For f(X) := X20(X − 1)3 ∈ F2[X], there exists a geometric isomorphism

H ∼= (1/f)?Q`/Q`.

Proof. This is a particular case of Sawin’s result [KT5, Lemma 9.2 (ii)], applied with A = 20, B = 3
in characteristic p = 2. �

Theorem 14.2. The geometric monodromy group Ggeom of H is the Mathieu group M23 in its
22-dimensional irreducible representation.
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Proof. From the (1/f)? description, Ggeom,H is a subgroup of the Galois group of the equation

X20(X − 1)3 = 1/t,

in F2(t)[X]. This Galois group is a subgroup of the symmetric group S23.
We now pass to the Kummer pullback [23]?H and see that

Ggeom,[23]?H CGgeom,H

is a normal subgroup (of index dividing 23), which is the Galois group of the polynomial

X20(X − 1)3 = 1/t23.

Next we show that the Galois group of X20(X − 1)3 = 1/t23 is M23, by making use of a result
[Abh2, Theorem 2], according to which M23 is the Galois group of the equation

Y 23 + tY 3 − 1 = 0

in F2(t)[Y ]. Since the derivative of this polynomial is Y 22 + tY 2, this equation has 23 distinct roots
α1, . . . , α23.

Let us write K := F2(t), and L/K the Galois extension

L := K(all roots αi of Y 23 + tY 3 − 1 = 0).

Let us denote by L0 ⊂ L the subfield

L0 := K(the cubes of the roots of Y 23 + tY 3 − 1 = 0).

We claim that L0 = L. Indeed, if L0 were a proper subfield of L, there would exist nontrivial
elements σ ∈ Gal(L/K) which fix the cubes of all roots. But if σ(α3

i ) = α3
i , then σ(αi) = ωiαi for

some ωi ∈ µ3. If ωiαi and αi are both roots of Y 23 + tY 3−1 = 0, then as they have the same cubes,
we infer that

α23
i = (ωiαi)

23.

As αi 6= 0, this implies that ω23
i = 1. As ω3

i = 1, we get ωi = 1, and hence σ is the identity.
The same argument shows that the 23 cubes α3

i are pairwise distinct.
So it suffices to compute the polynomial f(X) satisfied by the 23 cubes of the roots of Y 23 +

tY 3 − 1 = 0, or equivalently the polynomial satisfied by the quantities 1/tα3
i , 1 ≤ i ≤ 23, for the

Galois group of that polynomial will be Gal(L/K) = M23. We write the equation as

Y 20 = Y −3 − t.

Thus

Y 60 = (Y −3 − t)3.

Write

X := 1/(tY 3),

so that Y −3 = tX. Then in terms of X this equation becomes

(1/tX)20 = (tX − t)3, i.e. t23X20(X − 1)3 = 1, i.e. X20(X − 1)3 = 1/t23.

Since the latter polynomial has degree 23 in X, this must be f(X).
We have shown that S := M23 = Ggeom,[23]?H C Ggeom,H ≤ S23. Note that Aut(M23) = M23

[GLS, §5.3] and CS23(M23) = 1. [Indeed, M23 is a double transitive subgroup of S23, hence it
acts irreducibly on the deleted permutation module of S23, and so its centralizer must act via
scalars on the module and therefore must be trivial.] It follows that NS23(M23) = M23 and so
Ggeom,H = M23. �
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Corollary 14.3. For f(X) := X20(X − 1)3 ∈ F2[X], the lisse sheaf

H0 := (1/f)?Q`/Q`

on Gm/F2 has Ggeom = Garith = M23.

Proof. We have M23 = Ggeom CGarith < S23, and M23 is its own normalizer in S23. �

15. The Mathieu group M24

In this section, we consider the hypergeometric sheaf

H := Hyp(Char23;Char×3 )

in characteristic p = 2.

Lemma 15.1. For f(X) := X23(X − 1) ∈ F2[X], there exists a geometric isomorphism

H ∼= f?Q`/Q`.

Proof. This is a particular case of Sawin’s result [KT5, Lemma 9.2 (i)], applied with A = 23, B = 1
in characteristic p = 2. �

Theorem 15.2. The geometric monodromy group Ggeom of H is the Mathieu group M24 in its
23-dimensional irreducible representation.

Proof. Exactly as in the proof of Theorem 14.2, we see that Ggeom,H is the Galois group of the
equation

X23(X − 1) = t

in F2(t)[X], and that it is a subgroup of S24. We again pass to the Kummer pullback [23]?H to see
that Ggeom,[23]?H CGgeom,H. Now Ggeom,[23]?H is the Galois group of

X23(X − 1) = t23.

Divide through by t23, and write Y := X/t. Then our equation becomes

Y 23(tY − 1) = 1.

Now write Z := 1/Y . The equation becomes

(1/Z)23(t/Z − 1) = 1.

Multiply through by Z24, the equation becomes

t− Z = Z24,

which Abhyankar and Yie [AY, Theorem (1.1)] proved has Galois group M24. Thus

M24 = Ggeom,[23]?H CGgeom,H ≤ S24.

As in the proof of Theorem 14.2, we also have CS24(M24) = 1 and Aut(M24) = M24. It follows that
NS24(M24) = M24 and so Ggeom,H = M24. �

Corollary 15.3. For f(X) := X23(X − 1) ∈ F2[X], the lisse sheaf

H0 := f?Q`/Q`

on Gm/F2 has Ggeom = Garith = M24.

Proof. We have M24 = Ggeom CGarith < S24, and M24 is its own normalizer in S24. �
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16. The MacLaughlin group McL

Theorem 16.1. The local system H(22, 5) = Hyp(Char22;Char×5 ) in characteristic 3 has finite
monodromy.

Proof. We need to show:

V (22x) + V (−5x)− V (−x) ≥ 0.

Using the fact that V ( i
22) = V ( 11i

35−1
) = 1

10 [11i] for 1 ≤ i ≤ 21 and that V ( i5) = V ( 16i
34−1

) = 1
8 [16i]

we check that the inequality holds for 22x ∈ Z and for 5x ∈ Z. For all other values of x, using
that V (x) + V (−x) = 1 if x 6= 0 and V (5x) =

∑
i mod 5 V (x+ i

5)− 2 [Ka7, §13], we can rewrite the
inequality as

V (22x) ≤ V
(
x+

1

5

)
+ V

(
x+

3

5

)
+ V

(
x+

4

5

)
+ V

(
x+

2

5

)
− 1

and, following §9, it suffices to prove

[22x] ≤
[
x+

3r − 1

5

]
+

[
x+

3(3r − 1)

5

]
+

[
x+

4(3r − 1)

5

]
+

[
x+

2(3r − 1)

5

]
− r + 1

for every r ≥ 1 divisible by r0 = 4 and every 0 ≤ x ≤ 3r − 1. Since multiplication by 3 permutes
γ1 = 1

5 , γ2 = 3
5 , γ3 = 4

5 and γ4 = 2
5 cyclically modulo 1, we can take r1 = 1. Then, with the

notation of §9, we have (34 − 1)γ1 = 01213; hj = 1, 2, 1, 0; h2,j = 213, 123, 013, 103 and h3,j =
1213, 0123, 1013, 2103 for j = 1, 2, 3, 4 respectively. We will prove that

[22x] ≤ [x+ hr,1] + [x+ hr,2] + [x+ hr,3] + [x+ hr,4]− r + 1

for every r ≥ 1 and 0 ≤ x ≤ 3r − 1. For r ≤ 5 we check it by computer. For r > 5 we proceed by
induction as described in §9, proving first the following cases by splitting off the last digits of x.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 2
∑

j vj + 2
∑

i ui

0 1 0 3 0 0 3
01,21 1 1 1 ≥ 0 0 ≥ 1
011 2 11 4 ≥ 0 0 ≥ 4
111 1 1 1 ≥ 1 1 ≥ 1

0211,2211 2 11 4 ≥ 0 1 ≥ 2
002,202 2 02 0 ≥ 0 0 ≥ 0

0102 4 0102 2 ≥ 0 0 ≥ 2
1102 2 02 0 ≥ 1 1 ≥ 0

02102,22102 3 102 -1 ≥ 2 1 ≥ 1
012 2 12 4 ≥ 0 0 ≥ 4

112,022,222 1 2 -1 ≥ 2 1 ≥ 1
2212 2 12 4 ≥ 0 1 ≥ 2

00122,20122 4 0122 2 ≥ 1 0 ≥ 4
01122 5 01122 5 ≥ 0 0 ≥ 5

11122,21122 2 22 2 ≥ 1 2 ≥ 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table.
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z = last
digits of x

s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 = c′1 c2 = c′2 c3 = c′3 c4 = c′4

1211 4 122 3 4 1 111 0 1 1 1
12102 5 122 3 3 1 111 1 1 1 0
0212 4 022 3 6 3 20 0 0 1 0
1212 4 122 3 4 1 111 0 1 1 1
10122 5 102 3 1 -1 22 0 1 1 0
2122 4 22 2 4 2 201 1 1 1 1

�

Theorem 16.2. The local system H(22, 3) = Hyp(Char22;Char×3 ) in characteristic 5 has finite
monodromy.

Proof. We need to show:

V (22x) + V (−3x)− V (−x) ≥ 0.

Using the fact that V ( i
22) = V ( 142i

55−1
) = 1

20 [142i] for 1 ≤ i ≤ 21 and that V ( i3) = V ( 8i
52−1

) = 1
8 [8i]

for i = 1, 2 we check that the inequality holds for 22x ∈ Z and for 3x ∈ Z. For all other values of
x, using that V (x) + V (−x) = 1 if x 6= 0 and V (3x) =

∑
i mod 3 V (x + i

3) − 1 [Ka7, §13], we can
rewrite the inequality as

V (22x) ≤ V
(
x+

1

3

)
+ V

(
x+

2

3

)
and, after a change of variable x 7→ x+ 2

3 , as

V

(
22x+

2

3

)
≤ V

(
x+

1

3

)
+ V (x).

Following §9, it suffices to prove[
22x+

2(5r − 1)

3

]
≤
[
x+

5r − 1

3

]
+ [x] + 4

for every r ≥ 1 divisible by r0 = 2 and every 0 ≤ x ≤ 5r − 1. For r ≤ 6 we check it by
computer. For r > 6 we proceed by induction as described in §9, proving first the following cases
by splitting off the last digits of x. Note that 5r−1

3 = 1313 . . . 135. We also use the notation
Σ := ∆(s, z)− 4

∑
j vj + 4

∑
i ui.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj Σ

00, . . . , 31 2 00, . . . , 31 ≥ 0 ≥ 0 0 ≥ 0
x32, . . . , x44, x 6= 1 2 32, . . . , 44 ≥ 0 ≥ 0 0 ≥ 0

x132, . . . , x144, x 6= 3, 4 4 x132, . . . , x144 ≥ 0 ≥ 0 0 ≥ 0
04132,24132,34132,44132 4 4132 -4 ≥ 1 0 ≥ 0

014132,114132,214132 6 014132,114132,214132 ≥ 0 ≥ 0 0 ≥ 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c2 corresponding to γ2 = 0, since it is always 0):
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z = last
digits of x

s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 = c′1

3132, . . . , 3144 4 32 2 ≥ 0 0 30 1
314132 6 3133 4 0 0 30 1
414132 6 4133 4 -4 -4 34 1

4133, . . . , 4144 4 4132 4 ≥ −4 -4 34 1

�

Theorem 16.3. Each of the two hypergeometric sheaves H(22, 3) = Hyp(Char22;Char×3 ) in charac-
teristic p = 5 and H(22, 5) = Hyp(Char22;Char×5 ) in characteristic p = 3 has geometric monodromy
group Ggeom = McL ·2, the full automorphism group of the MacLaughlin sporadic simple group McL.
Each of these sheaves H has a descent H′ to Fp, such that, over any finite extension k of Fp2, H′
has arithmetic monodromy group Garith,k = Ggeom.

Proof. (i) By Theorems 16.1 and 16.2, G = Ggeom is finite. Let ϕ denote the character of the
representation Φ : G→ GL(V ) of G realizing H. By the construction of H and Corollary 6.2(i), the
field of values Q(ϕ) := Q(ϕ(g) | g ∈ G) is precisely Q. It is clear that H is not Kummer induced.
Furthermore, the shape of the “downstairs” characters of H shows by Proposition 3.7(ii) that it is
not Belyi induced. Hence, by Theorem 3.5, (G,V ) satisfies (S+). As D = dim(V ) = 22, G must be
almost quasisimple by Lemma 3.1.

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for L :=

E(G) = G(∞). Then V |L is irreducible by Lemma 3.1, and so CG(L) = Z(G) by Schur’s lemma,
and furthermore Z(G) ≤ C2 since Q(ϕ) = Q. Furthermore, ō(g0) = 22 for a generator g0 of the
image of I(0), whence 22 divides the order of G/Z(G) ≤ Aut(S). If p = 3, then dimWild = 18,
and so the image Q of P (∞) must admit an irreducible complex representation of dimension 9,
whence 35 divides |Q|, and so also divides |G/Z(G)| by Proposition 5.6(i). Likewise, if p = 5, then
dimWild = 20, and so the image Q of P (∞) must admit an irreducible complex representation of
dimension 5, whence 53 divides |Q|, and so also divides |G/Z(G)|.

In the case p = 3, by Proposition 5.8, a p′-generator g∞ must interchange the two simple P (∞)-
submodules in Wild, each of dimension 9, and there is some root of unity ζ such that the spectrum
of g2

∞ on each summand is ζ · (µ10 r {1}). Besides, g∞ has all four nontrivial 5th roots of unity as
eigenvalues on Tame. It follows that 20|ō(g∞). Next, if we write o(ζ) = 2b ·m with a ∈ Z≥0 and

2 - m, then Φ(g2b+2

∞ ) has spectrum

β · (µ5 r {1})︸ ︷︷ ︸
4 times

, β, β, µ5 r {1},

where β := ζ2b+1
has odd order m. It follows that

(16.3.1) ϕ(g2b+2

∞ ) = −1− 2β.

Now we can apply the main result of [HM] to arrive at the following possibilities for (S,L).

• S = PSL2(23), PSL43, or M23. This is impossible, since Aut(S) = PGL2(23), PGL2(43), or
M23 does not have order divisible by 35 or 53.

• S = HS. This case is ruled by [KT5, Lemma 9.7].

• S = PSU6(2). Since 53 does not divide |Aut(S)|, we must have that p = 3. In the latter case,
as 20|ō(g∞), C20 embeds in Aut(S), which is impossible.

• S = L = A23, and V |L is just the deleted permutation module S(22,1)|L. In this case, the Sylow
5-subgroups of Aut(S) = S23 are elementary abelian of order 54. Now if p = 5, then by Proposition
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5.6(i), Q embeds in Aut(S) and so is abelian, contradicting dimWild = 20. Hence p = 3. As

Z(G) ≤ C2 and Aut(S)/S ∼= C2, the element g2b+2

∞ must belong to O2(G) = S = A23, and so

ϕ(g2b+2

∞ ), the trace of g2b+2

∞ on S(22,1), must be an integer ≥ −1. By (16.3.1), this means that the
root of unity β satisfies β ∈ Z≤0. But this is impossible, since o(β) = m is odd.

• S = L = McL. Since meo(S) = 11 but ō(g0) = 22, we must have that

G/Z(G) ∼= Aut(S) = S · C2.

If Z(G) = 1, then G ∼= McL · 2 as stated. Otherwise we have Z(G) = C2, and S = O2(G). In this
case, S contains the p-subgroup Q, and so G/S is cyclic by Theorem 5.3, of order 4. Recall [Atlas]
that Aut(S) is a split extension of S by C2. Hence we can find an element x ∈ G such that x2,
but not x, centralizes S; say x induces the outer automorphism x0 of S of class 2b in the notation
of [GAP]. If x2 = 1, then 〈S, x〉 ∼= Aut(S) and Z(G) ∩ 〈S, x〉 = 1, whence G = Z(G) × 〈S, x〉 and
G/S ∼= C2

2 , a contradiction. Thus 1 6= x2 ∈ CG(S) = Z(G), whence Φ(x2) = −Id.
Consider an extension of Φ|S to Aut(S) which we also denote by Φ. Since x and x0 induce the

same automorphism on S, Φ(x) = αΦ(x0) for some α ∈ C×. As o(x0) = 2, we then have

−Id = Φ(x2) = α2Φ(x2
0) = α2 · Id,

whence α = ±i. The coset Sx0 also contains an element sx0 that belongs to class 4b in the notation
of [GAP], for some s ∈ S, and Tr(Φ(sx0)) = ±4 (see [GAP]). It follows that

ϕ(sx) = Tr(Φ(sx)) = Tr(Φ(s)Φ(x)) = αTr(Φ(s)Φ(x0)) = αTr(Φ(sx0)) = ±4i,

with sx ∈ G, contradicting Q(ϕ) = Q.

(ii) We use H′ = H00 as constructed in Theorem 7.5 (with H0 given in Table 4, lines 9 and 10),
for which, over any finite extension k of Fp2 , the field of traces of elements in Garith,k is still Q, and
so we still have

Z(Garith,k) = CGarith,k
(S) ≤ C2.

Now, if Garith,Fp = Ggeom then we are done. Consider the case where Garith,Fp > Ggeom. As
Garith,Fp/Z(Garith,Fp) embeds in Aut(S) = S · 2 ∼= Ggeom, we must then have that Z(Garith,Fp) = C2

and Garith,Fp = 〈Ggeom, h〉 with h2 ∈ Ggeom. Thus modulo Ggeom, any element in Garith,k is hdeg /Fp .
Hence Garith,k = Ggeom when k ⊇ Fp2 . �

17. The Janko group J2

Theorem 17.1. The local system H := Hyp(Char28 r Char14; ξ8, ξ̄8) in characteristic p = 5 has
finite geometric monodromy group.

Proof. We need to show that

V (28x)− V (14x) + V

(
−x+

1

8

)
+ V

(
−x− 1

8

)
≥ 1

2

or

V (28x)− V (14x) + V

(
−x+

3

8

)
+ V

(
−x− 3

8

)
≥ 1

2

depending on the choice of χ. These inequalities are equivalent via the change of variable x 7→ 5x,
so it suffices to prove the first one. Using the fact that

V (
i

56
) = V (

279i

56 − 1
) =

1

24
[279i]



RIGID LOCAL SYSTEMS AND SPORADIC SIMPLE GROUPS 63

for 1 ≤ i ≤ 55, we check that the inequality holds for 28x ∈ Z and for 8x ∈ Z. For all other values
of x, using that V (x) + V (−x) = 1 if x 6= 0 and V (28x) = V (14x) + V (14x+ 1

2)− 1
2 [Ka7, §13], we

can rewrite the inequality via the change of variable x 7→ x+ 1
8 as

V

(
14x+

1

4

)
≤ V

(
x+

1

4

)
+ V (x)

and, following §9, it suffices to prove[
14x+

5r − 1

4

]
≤
[
x+

5r − 1

4

]
+ [x]

for every r ≥ 1 and every 0 ≤ x ≤ 5r − 1. For r ≤ 3 we check it by computer. For r > 3 we proceed
by induction as described in §9, proving first the following cases by splitting off the last digits of x.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 4
∑

j vj + 4
∑

i ui

0,1,2,3 1 0,1,2,3 0 ≥ 0 0 ≥ 0
04,14,24,44 1 4 0 ≥ 0 0 ≥ 0
034,134,234 3 034,134,234 ≥ 0 ≥ 0 0 ≥ 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c2 = c′2 corresponding to γ2 = 0, since it is always 0):

z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 = c′1
334 3 34 2 0 0 20 1
434 3 44 2 0 0 23 1

�

Theorem 17.2. The local system H := Hyp(Char28 r Char14; ξ8, ξ̄8) in characteristic p = 5 has
geometric monodromy group Ggeom = 2J2·2. Furthermore, H has a descent H′ to F25 with arithmetic
monodromy group Garith,k = Ggeom over any finite extension k of F25.

Proof. By Theorem 17.1, G = Ggeom is finite. Let ϕ denote the character of the representation
G → GL(V ) of G realizing H. By the construction of H, the field of values Q(ϕ) := Q(ϕ(g) |
g ∈ G) contains

√
2; indeed, a p′-generator g∞ of the image of I(∞) modulo P (∞) in G has trace

ζ8 + ζ̄8 =
√

2 on Tame and 0 on Wild, whence ϕ(g∞) =
√

2. In fact, by Corollary 6.2(i) we have
Q(ϕ) = Q(

√
2). It is clear that H is not Kummer induced. Furthermore, the shape of the “upstairs”

and “downstairs” characters of H shows by Proposition 3.7(ii) that it is not Belyi induced. Hence,
by Theorem 3.5, (G,V ) satisfies (S+). As D = dim(V ) = 14, G must be almost quasisimple by
Lemma 3.1. Furthermore, since the cyclic group Z(G) acts via scalars and Q(ϕ) = Q(

√
2), we have

that

(17.2.1) Z(G) ↪→ C2.

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for L :=

E(G) = G(∞). Then V |L is irreducible by Lemma 3.1, and so CG(L) = Z(G) by Schur’s lemma.
Furthermore, ō(g0) = 14 for a generator g0 of the image of I(0), whence C14 ↪→ G/Z(G) ≤ Aut(S).
Moreover, the image Q of P (∞) is elementary abelian of order 25 by Proposition 5.8(iv), and
Q ↪→ G/Z(G) by Proposition 5.6(i). Now we can apply the main result of [HM] to arrive at the
following possibilities for (S,L).

• S = L = A15, and V |L is just the deleted permutation module S(14,1)|L. In this case, Q(ϕ)
would have been equal to Q by Lemma 3.8, a contradiction.
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• S = L = J2. In this case, Q(ϕ) ⊇ Q(ϕ|L) = Q(
√

5), again a contradiction.
• (S,L) = (J2, 2 · J2). Now we have Z(G) = Z(L) = CG(L) = C2 by (17.2.1). Furthermore, the

element g0 of central order 14 does not lie in LCG, hence G > L. Now

S ∼= L/Z(L) < G/Z(G) ≤ Aut(S) = S · 2,
and we conclude that Ggeom = 2J2 · 2.

By Theorem 7.7, H has a descent H′ = H00 to F25 for which any element in Garith,k still has trace

in Q(
√

2) when k ⊇ F25, with H0 given on line 11 of Table 4. Since any element in CGarith,k
(L) =

Z(Garith,k) acts via scalars, which are then roots of unity in Q(
√

2), we see that

CGarith,k
(L) = C2 = Z(L).

Since Ggeom already induces the full automorphism group J2 · 2 of L, we conclude that Garith,k =
Ggeom. �

Theorem 17.3. The local system K := Kl(Char×12 t Char×3 }) in characteristic p = 5 has finite
monodromy.

Proof. We need to show:

V

(
x+

1

12

)
+ V

(
x+

5

12

)
+ V

(
x+

7

12

)
+ V

(
x+

11

12

)
+ V

(
x+

1

3

)
+ V

(
x+

2

3

)
≥ 5

2
.

Following §9, it suffices to prove

0 ≤
[
x+

5r − 1

12

]
+

[
x+

5(5r − 1)

12

]
+

[
x+

7(5r − 1)

12

]
+

+

[
x+

11(5r − 1)

12

]
+ +

[
x+

5r − 1

3

]
+

[
x+

2(5r − 1)

3

]
− 10r

for every r ≥ 1 divisible by r0 = 2 and every 0 ≤ x ≤ 5r−1. Notice that, in this case, multiplication
by 5 permutes γ1 = 1

12 and γ2 = 5
12 , γ3 = 7

12 and γ4 = 1112; and γ5 = 1
3 and γ6 = 2

3 , so we can take

r1 = 1. Then, with the notation of §9, we have (52− 1)γ1 = 025, (52− 1)γ3 = 245, (52− 1)γ5 = 135,
hj = 2, 0, 4, 2, 3, 1 and h2,j = 025, 205, 245, 425, 135, 315 for j = 1, . . . , 6 respectively. We will prove
that

0 ≤ [x+ hr,1] + [x+ hr,2] + [x+ hr,3] + [x+ hr,4] + [x+ hr,5] + [x+ hr,6]− 12r

for every r ≥ 1 and every 0 ≤ x ≤ 5r − 1. For r ≤ 4 we check it by computer. For r > 4 we proceed
by induction as described in §9, proving first the following cases by splitting off the last digits of x.
We don’t write the

∑
ui since there are none in this case.

last digits of x s z ∆(s, z)
∑

j vj ∆(s, z)− 4
∑

j vj

0 1 0 2 0 ≥ 2
a1; a 6= 2 1 1 4 0 ≥ 4
a21; a 6= 0 1 1 4 1 ≥ 0
a2; a 6= 2, 3 1 2 6 0 ≥ 6
a22; a 6= 0 1 2 6 1 ≥ 2
a32; a 6= 1 1 2 6 1 ≥ 2

13 1 3 4 0 ≥ 4
ab3; ab 6= 02, 13, 20, 24 1 4 6 1 ≥ 2

1203,4203 3 203 4 0 ≥ 4
a133; a 6= 3 2 33 4 1 ≥ 0

ab4; ab 6= 02, 13, 20, 24, 31 1 3 4 1 ≥ 0
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The remaining cases are proved by substitution of the last digits, as specified in the following
table:

z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) c1 = c′1 c2 = c′2 c3 = c′3 c4 = c′4 c5 = c′5 c6 = c′6
021,022,023,024 3 03 2 ≥ 4 2 0 0 1 0 0 0

132,134 3 14 2 6 6 0 0 1 0 1 0
3133,3203,3243 4 333 3 4 4 0 1 1 1 1 1

0203,0243 4 033 3 2 2 0 0 0 1 0 0
2203 4 204 3 6 6 0 0 1 1 0 1
1243 4 103 3 8 6 0 0 0 1 0 0
2243 4 233 3 6 6 0 0 1 1 0 1
4243 4 433 3 6 6 1 1 1 1 1 1
204 3 21 2 6 6 0 0 1 1 0 1
244 3 3 1 6 4 0 1 1 1 0 1
314 3 32 2 6 6 0 1 1 1 1 1

�

Theorem 17.4. The local system K := Kl(Char×12tChar
×
3 ) in characteristic p = 5 has Ggeom = 2·J2.

Furthermore, K has a descent K′ to Fp, which over any extension k of Fp has arithmetic monodromy
group Garith,k = Ggeom.

Proof. Because K is Kloosterman, it is not Belyi induced, and it is visibly not Kummer induced.
Hence, it is (S+) by Theorem 3.3. By Theorem 17.3, G = Ggeom is finite. Let ϕ denote the character
of the representation Φ : G → GL(V ) of G realizing K. By the construction of H and Corollary
6.2(ii), the field of values Q(ϕ) := Q(ϕ(g) | g ∈ G) is precisely Q(

√
5). Moreover, the representation

is symplectic by [Ka4, 8.8.2], and

(17.4.1) Z(G) ↪→ C2.

As dim(V ) = 6, G is almost quasisimple by Lemma 3.1. Let S denote the unique non-abelian

composition factor of G, so that S = L/Z(L) for L := E(G) = G(∞). Then V |L is irreducible by
Lemma 3.1, and so CG(L) = Z(G) by Schur’s lemma, and furthermore Z(G) ≤ C2 by (25.5.1).
Moreover, the image Q of P (∞) is elementary abelian of order 25 by Proposition 5.8(iv), and
Q ↪→ G/Z(G) by Proposition 5.6(i). Now we can apply the main result of [HM] to see that S = J2

and L = 2 ·S; in particular, Z(G) = Z(L) = C2 by (17.4.1). Note that ϕ|L is not fixed by any outer
automorphism of L. Hence G = L.

A descent K′ of K over Fp is constructed using Theorem 7.5(i), and listed on line 39 in Table 4.

By Theorem 7.5(iii), the field of traces is still Q(
√

5); hence (17.4.1) also holds for Garith,k. Thus
Z(Garith,k) = C2 = Z(Ggeom) over any extension k of Fp. Since ϕ|L is not invariant under any
automorphism of L, we conclude that Garith,k = Ggeom. �

18. The Janko group J3

In this section, let H := Hyp(ξ3 · Char×19;1, ξ5, ξ̄5) be the hypergeometric sheaf in characteristic
p = 2, with 18 “upstairs” characters ξ3 · Char×19, and 3 “downstairs” characters 1, ξ5, and ξ̄5.

Theorem 18.1. The hypergeometric sheaf H = Hyp(ξ3 · Char×19;1, ξ5, ξ̄5) in characteristic p = 2
has finite geometric monodromy group Ggeom.

Proof. We need to show:

V

(
19x+

1

3

)
− V

(
x+

1

3

)
+ V (−x) + V

(
−x− 1

5

)
+ V

(
−x+

1

5

)
≥ 1,
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V

(
19x− 1

3

)
− V

(
x− 1

3

)
+ V (−x) + V

(
−x− 1

5

)
+ V

(
−x+

1

5

)
≥ 1,

V

(
19x+

1

3

)
− V

(
x+

1

3

)
+ V (−x) + V

(
−x− 2

5

)
+ V

(
−x+

2

5

)
≥ 1

and

V

(
19x− 1

3

)
− V

(
x− 1

3

)
+ V (−x) + V

(
−x− 2

5

)
+ V

(
−x+

2

5

)
≥ 1.

The change of variable x 7→ 2x interchanges the first and fourth and the second and third inequali-
ties, so it suffices to prove the last two. Using the fact that V ( i

15) = V ( i
24−1

) = 1
4 [i] for 1 ≤ i ≤ 14

we check that the inequalities hold for 3x ∈ Z and for 5x ∈ Z. For all other values of x, using that
V (x) + V (−x) = 1 if x 6= 0 we can rewrite the fourth inequality as

V

(
19x+

1

3

)
≤ V

(
x+

1

3

)
+ V

(
x+

2

5

)
+ V

(
x− 2

5

)
+ V (x)− 1

and, via the change of variable x 7→ x+ 2
3 , this is equivalent to

V (19x) ≤ V
(
x+

2

3

)
+ V

(
x+

1

15

)
+ V

(
x+

4

15

)
+ V (x)− 1.

Following §9, it suffices to prove

[19x] ≤
[
x+

2(2r − 1)

3

]
+

[
x+

2r − 1

15

]
+

[
x+

4(2r − 1)

15

]
+ [x]− r

for every r ≥ 1 divisible by r0 = 4 and every 0 ≤ x ≤ 2r−1. Notice that, in this case, multiplication
by 22 fixes γ1 = 2

3 and γ4 = 0 and permutes γ2 = 1
15 and γ3 = 4

15 , so we can take r1 = 2. Then, with

the notation of §9, we have (24 − 1)γ1 = 10102, (2
4 − 1)γ2 = 00012, h1 = 102, h2 = 012, h3 = 002

and h2,j = 10102, 00012, 01002 for j = 1, 2, 3 respectively. For γ4 = 0 it is clear that h4 = hr,4 = 0
for every r. We will prove that

[19x] ≤ [x+ hk,1] + [x+ hk,2] + [x+ hk,3] + [x]− r
for every r = 2k ≥ 1 and every 0 ≤ x ≤ 2r − 1. For r ≤ 10 we check it by computer. For r > 10
we proceed by induction as described in §9, proving first the following cases by splitting off the last
digits of x.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)−
∑

j vj +
∑

i ui

00,01 2 00,01 0 ≥ 0 0 ≥ 0
010,011 2 11 1 ≥ 0 0 ≥ 1

1110 2 10 0 ≥ 1 1 ≥ 0
00110,00111 4 0110,0111 ≥ 0 ≥ 0 0 ≥ 0

0010111 6 010111 0 ≥ 0 0 ≥ 0
011010111 8 11010111 0 ≥ 0 0 ≥ 0

110111 4 0111 2 ≥ 0 1 ≥ 1
001111 4 1111 2 ≥ 0 1 ≥ 1
0101111 6 101111 0 ≥ 0 0 ≥ 0
111111 2 11 1 ≥ 2 3 ≥ 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c4 = c′4 corresponding to γ4 = 0, since it is always 0):
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z = last
digits of x

s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 = c′1 c2 = c′2 c3 = c′3

01010111 8 010111 6 0 0 110 1 0 0
0111010111 10 01110010 8 2 2 1000 1 0 0
1111010111 10 11111000 8 4 4 10010 1 1 1

010110 6 010111 6 1 0 110 1 0 0
110110 6 1110 4 6 4 10000 1 1 0

01101111 8 011100 6 2 2 1000 1 0 0
11101111 8 111100 6 2 2 10001 1 1 1
011111 6 1000 4 2 0 1001 1 0 0

The third inequality can be rewritten as

V

(
19x+

2

3

)
≤ V

(
x+

2

3

)
+ V

(
x+

2

5

)
+ V

(
x+

3

5

)
+ V (x)− 1

and following §9, it suffices to prove[
19x+

2(2r − 1)

3

]
≤
[
x+

2(2r − 1)

3

]
+

[
x+

2(2r − 1)

5

]
+

[
x+

3(2r − 1)

5

]
+ [x]− r + 1

for every r ≥ 1 divisible by r0 = 4 and every 0 ≤ x ≤ 2r−1. Notice that, in this case, multiplication
by 22 fixes γ1 = 2

3 and γ4 = 0 and permutes γ2 = 2
5 and γ3 = 3

5 , so we can take r1 = 2. Then, with

the notation of §9, we have (24 − 1)γ1 = 10102, (2
4 − 1)γ2 = 01102, h1 = h2 = 102, h3 = 012 and

h2,j = 10102, 01102, 10012 for j = 1, 2, 3 respectively. For γ4 = 0 it is clear that h4 = hr,4 = 0 for
every r. We will prove that[

19x+
2(2r − 1)

3

]
≤ [x+ hk,1] + [x+ hk,2] + [x+ hk,3] + [x]− r + 1

for every r = 2k ≥ 1 and every 0 ≤ x ≤ 2r − 1. For r ≤ 8 we check it by computer. For r > 8
we proceed by induction as described in §9, proving first the following cases by splitting off the last
digits of x. In fact, we will prove the following sharper inequality:[

19x+
2(2r − 1)

3

]
≤ [x+ hk,1] + [x+ hk,2] + [x+ hk,3] + [x]− r

whenever, if we split the r digits of x in k blocks of 2, the last block different from 00 is not 11. If
we split x as psy + z then, for the induction step to work in the proof of the sharper inequality, we
need ∆(s, z)−

∑
j vj +

∑
i ui ≥ 1 instead of 0 if the last two-digit block of y different from 00 is 11,

unless the same is true for z (or z = 0). Moreover, if the last two-digit block of z different from 00
is 11 but it is not the case for y, then it suffices with ∆(s, z)−

∑
j vj +

∑
i ui ≥ −1.
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last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)−
∑

j vj +
∑

i ui

00 2 00 0 0 0 ≥ 0
01 2 01 1 ≥ 0 0 ≥ 1

0010 4 0010 1 ≥ 0 0 ≥ 1
000110 6 000110 2 ≥ 0 0 ≥ 2
100110 4 0110 0 ≥ 0 0 ≥ 0
110110 4 0110 0 ≥ 3 1 ≥ 2

01001010,10001010 6 001010 0 ≥ 0 0 ≥ 0
00001010,00111010 8 00001010,00111010 1 ≥ 0 0 ≥ 1
11001010,1111010 4 1010 1 2 ≤ 2 ≥ 1

1110 2 10 1 ≥ 1 1 ≥ 1
0011,1111 2 11 0 ≥ 3 ≤ 2 ≥ 1

00000111,01000111 8 00000111,01000111 0 ≥ 0 0 ≥ 0
10000111 6 000111 −1 0 0 ≥ −1
11000111 6 000111 −1 ≥ 1 0 ≥ 0
00110111 8 00110111 1 ≥ 0 0 ≥ 1
11110111 6 110111 2 ≥ 0 2 ≥ 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c4 = c′4 corresponding to γ4 = 0, since it is always 0). Here, in order
to prove the sharper inequality, if the last two-digit block of z different from 00 is 11 but that of z′

is not 11, we need ∆(s′, z′) ≤ ∆(s, z) + 1. If the last two-digit block of z′ different from 00 is 11 but
that of z is not 11, we need ∆(s′, z′) ≤ ∆(s, z)− 1.

z = last
digits of x

s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 = c′1 c2 = c′2 c3 = c′3

010110 6 0110 4 2 0 111 1 0 0
011010 6 0111 4 1 0 1000 1 1 0
101010 6 1011 4 1 0 1101 1 1 1

10111010 8 110000 6 1 0 1110 1 1 1
010111 6 011000 6 -1 0 111 1 0 0
100111 6 1010 4 0 1 1100 1 1 1

01110111 8 01111010 8 0 1 1001 1 0 1
10110111 8 10111010 8 1 1 1110 1 1 1
001011 6 001010 6 -1 0 11 0 0 0
011011 6 011100 6 1 0 1000 1 1 0
101011 6 101100 6 0 0 1101 1 1 1
111011 6 111100 6 4 3 10010 1 1 1

�

Theorem 18.2. The hypergeometric sheaf H = Hyp(ξ3 · Char×19;1, ξ5, ξ̄5) in characteristic p = 2
has geometric monodromy group Ggeom = 3 · J3, the triple cover of the third Janko sporadic simple
group J3. Conversely, if H′ is an irreducible hypergeometric sheaf in some characteristic r with
finite geometric monodromy group H which is almost quasisimple with S = J3 as its non-abelian
composition factor, then rank(H′) = 18, r = 2, and the 18 “upstairs” characters of H′ are χ ·Char×19
for some multiplicative character χ.
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Proof. (i) By Theorem 18.1, G = Ggeom is finite. Let ϕ denote the character of the representation
G → GL(V ) of G realizing H. By the construction of H and Corollary 6.2(i), the field of values
Q(ϕ) := Q(ϕ(g) | g ∈ G) is precisely Q(

√
5, ζ3). It is clear that H is not Kummer induced.

Furthermore, the shape of the “downstairs” characters of H shows by Proposition 3.7(ii) that it is
not Belyi induced. Hence, by Theorem 3.6, (G,V ) satisfies (S+). As D = dim(V ) = 18, G must be
almost quasisimple by Lemma 3.1.

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for L :=

E(G) = G(∞). Then V |L is irreducible by Lemma 3.1, and so CG(L) = Z(G) by Schur’s lemma.
Furthermore, ō(g0) = 19 for a generator g0 of the image of I(0), and 5|ō(g∞) for a p′-element g∞
that generates I(∞) modulo P (∞), whence 19 · 5 divides the order of G/Z(G) ≤ Aut(S). Now we
can apply the main result of [HM] to arrive at the following possibilities for (S,L).

• S = L = A19, and V |L is just the deleted permutation module S(18,1)|L. In this case, Q(ϕ)
must be Q(ζ3) by Lemma 3.8, which is a contradiction since

√
5 ∈ Q(ϕ).

• S = PSL2(19). Since p = 2 and dimWild = 15, by Proposition 5.8(iv) the image Q of P (∞)
in G is an elementary abelian 2-group of order 24; furthermore, Q ↪→ G/Z(G) ≤ Aut(S). This is
impossible, since Aut(S) = PGL2(19).
• (S,L) = (J3, 3 · J3). Since any outer automorphism of L does not preserve ϕ|L, we have that

G = Z(G)L. Note that any element of Z(G) must act on V as a scalar z which is a root of unity
in Q(ϕ), whence z6 = 1 and |Z(G)| divides 6. In particular, L is a normal subgroup of index ≤ 2
in G. As o(g0) = 57, L contains both g0 and its normal closure in G. Hence Ggeom = G = L by
Theorem 5.1.

(ii) For the converse, let 〈h0〉 be the image of I(0) in H. Then S C H/Z(H) ≤ Aut(S). As h0

has simple spectrum on H′, D := rankH′ ≤ ō(h0) ≤ meo(Aut(S)) = 34. Using [GAP], we can

see that D = 18 and H/Z(H) = S, and furthermore H = Z(H)L with L := H(∞) ∼= 3 · S. Let ς
denote the character of the representation of H underlying H′. Again using [GAP] we can check
that |ς(h)|/ς(1) ≤ 1/6 for all h ∈ H r Z(H). Assume now that r 6= 2. Then the image Q of P (∞)
has order at least 3. Applying [KT5, (7.2.2)], we get that W ≥ 18 · (1 − 1/6) · (1 − 1/3) = 10 for
the dimension of the wild part of H′. On the other hand, note that L = 3 · J3 has an irreducible
9-dimensional representation over F2 which certainly extends to an irreducible representation Λ :
H → GL9(F2). Hence, by [KT5, Theorem 4.14], Λ(H) is cyclic, a contradiction. Thus r = 2.
Finally, as h0 has simple spectrum on H, it must have order 19 modulo Z(H) [GAP], and we can
then read off the “upstairs” characters of H′ by inspecting the eigenvalues of such an element on
H′. �

Corollary 18.3. The hypergeometric sheaf H = Hyp(ξ3 · Char×19;1, ξ5, ξ̄5) in characteristic p = 2
has a descent H] to F4, with arithmetic monodromy group Garith,k = 3 · J3 over any finite extension
k of F16.

Proof. By Theorem 7.7, H has a descent H] = H00 to F4 for which any element in Garith,Fk still

has trace in Q(
√

5, ζ3) for any finite extension k of F4, with H0 given on line 12 of Table 4. Recall
from Theorem 18.2 that L := Ggeom = 3 · J3. Since any element in CGarith,k

(L) = Z(Garith,k) acts

via scalars, which are then roots of unity in Q(
√

5, ζ3), we see that

C3 = Z(L) ≤ CGarith,k
(L) = Z(Garith,k) ≤ C6.

Since no outer automorphism of L can preserve the equivalence class of the representation of L
on H, we must have that Garith,k = Z(Garith,k)L. Now if Z(Garith,F4) = Z(L) then Garith,k = L
and we are done. Consider the case Z(Garith,F4) = C6. In this case Garith,F4 = Ggeom × 〈z〉 for

some central involution z, and so modulo Ggeom every element in Garith,F4 is zdeg /F4 . In particular,
Garith,k = Ggeom when k ⊇ F16. �
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19. The Rudvalis group Ru

In this section, letH := Hyp(Char×29; ξ12, ξ
3
12, ξ

5
12, ξ

9
12) be the hypergeometric sheaf in characteristic

p = 5, with 28 “upstairs” characters Char×29, and 4 “downstairs” characters ξ12, ξ
3
12, ξ

5
12, ξ

9
12.

Theorem 19.1. The hypergeometric sheaf H = Hyp(Char×29; ξ12, ξ
3
12, ξ

5
12, ξ

9
12) in characteristic p = 5

has finite geometric monodromy group Ggeom.

Proof. We need to show:

V (29x)− V (x) + V

(
−x+

1

12

)
+ V

(
−x+

5

12

)
+ V

(
−x+

1

4

)
+ V

(
−x− 1

4

)
≥ 3

2

or

V (29x)− V (x) + V

(
−x− 1

12

)
+ V

(
−x− 5

12

)
+ V

(
−x+

1

4

)
+ V

(
−x− 1

4

)
≥ 3

2

depending on the choice of χ. Using the fact that

V (
i

348
) = V (

17538838i

514 − 1
) =

1

56
[17538838i]

for 1 ≤ i ≤ 347, we check that the inequality holds for 29x ∈ Z and for 12x ∈ Z. For all other
values of x, using that V (x) + V (−x) = 1 for x 6= 0, we can rewrite the first inequality as

V (29x) ≤ V (x) + V

(
x+

1

12

)
+ V

(
x+

5

12

)
+ V

(
x+

1

4

)
+ V

(
x+

3

4

)
− 3

2

and, following §9, it suffices to prove

[29x] ≤
[
x+

5r − 1

12

]
+

[
x+

5(5r − 1)

12

]
+

[
x+

5r − 1

4

]
+

[
x+

3(5r − 1)

4

]
+ [x]− 6r

for every r ≥ 1 divisible by r0 = 2 and every 0 ≤ x ≤ 2r−1. Notice that, in this case, multiplication
by 5 permutes γ1 = 1

12 and γ2 = 5
12 and fixes γ3 = 1

4 , γ4 = 3
4 and γ5 = 0, so we can take r1 = 1.

Then, with the notation of §9, we have (52 − 1)γ1 = 025, (5
2 − 1)γ3 = 115, (5

2 − 1)γ4 = 335,
hj = 2, 0, 1, 3 and h2,j = 02, 20, 11, 33 for j = 1, 2, 3, 4 respectively. We will prove that

[29x] ≤ [x+ hr,1] + [x+ hr,2] + [x+ hr,3] + [x+ hr,4] + [x]− 6r

for every r ≥ 1 and every 0 ≤ x ≤ 2r − 1. For r ≤ 5 we check it by computer. For r > 5 we proceed
by induction as described in §9, proving first the following cases by splitting off the last digits of x.
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last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 4
∑

j vj + 4
∑

i ui

0,1 1 0,1 0 ≥ 0 0 ≥ 0
a2; a 6= 1 1 2 0 ≥ 0 0 ≥ 0
03,23,33 1 3 0 ≥ 0 0 ≥ 0

04,24 1 4 0 ≥ 0 0 ≥ 0
a12, a13, a14; a 6= 1 2 12,13,14 ≥ 0 ≥ 0 0 ≥ 0

a112, a113, a114; a 6= 1 3 112,113,114 0 ≥ 0 0 ≥ 0
043 2 43 4 ≥ 0 0 ≥ 4

0243,2243,3243 3 243 0 ≥ 0 0 ≥ 0
0343,2343 3 343 0 ≥ 0 0 ≥ 0

0443 3 443 1 ≥ 4 0 ≥ 4
034,234 2 34 4 ≥ 0 0 ≥ 4

0334,2334 3 334 4 ≥ 0 0 ≥ 4
044 2 44 4 ≥ 0 0 ≥ 4

03343,23343 4 3343 0 ≥ 0 0 ≥ 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c5 = c′5 corresponding to γ5 = 0, since it is always 0):

z = last
digits of x

s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 = c′1 c2 = c′2 c3 = c′3 c4 = c′4

1112,1113,1114 4 112 3 0 0 12 0 0 0 1
143,144 3 20 2 4 0 21 0 0 0 1

1243 4 130 3 0 0 14 0 0 0 1
4243 4 430 3 4 4 101 1 1 1 1
1343 4 140 3 4 4 20 0 0 0 1
13343 5 1343 4 4 4 20 0 0 0 1
33343 5 3343 4 0 0 41 1 0 1 1
43343 5 4343 4 4 4 102 1 1 1 1
4343 4 440 3 4 4 102 1 1 1 1
1443 4 200 3 4 0 21 0 0 0 1
2443 4 300 3 4 0 32 0 1 0 1
3443 4 400 3 4 0 43 0 1 1 1
4443 4 444 3 4 4 103 1 1 1 1
134 3 14 2 8 4 20 0 0 0 1
1334 4 134 3 8 8 20 0 0 0 1
3334 4 334 3 4 4 41 0 1 1 1
4334 4 434 3 8 8 102 1 1 1 1
434 3 44 2 8 4 102 1 1 1 1
244 3 30 2 4 0 32 1 0 0 1
344 3 343 3 0 0 42 1 0 1 1
444 3 443 3 4 4 103 1 1 1 1

For 29x /∈ Z and 12x /∈ Z, the second inequality can be rewritten as

V (29x) ≤ V (x) + V

(
x− 1

12

)
+ V

(
x− 5

12

)
+ V

(
x+

1

4

)
+ V

(
x+

3

4

)
− 3

2
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and, via the change of variable x 7→ x+ 1
2 , as

V

(
29x+

1

2

)
≤ V

(
x+

1

12

)
+ V

(
x+

5

12

)
+ V

(
x+

1

4

)
+ V

(
x+

3

4

)
+ V

(
x+

1

2

)
− 3

2
.

Following §9, it suffices to prove[
29x+

5r − 1

2

]
≤
[
x+

5r − 1

12

]
+

[
x+

5(5r − 1)

12

]
+

[
x+

5r − 1

4

]
+

[
x+

3(5r − 1)

4

]
+

[
x+

5r − 1

2

]
− 6r + 4

for every r ≥ 1 divisible by r0 = 2 and every 0 ≤ x ≤ 2r − 1. Again, multiplication by 5 permutes
γ1 = 1

12 and γ2 = 5
12 and fixes γ3 = 1

4 , γ4 = 3
4 and γ5 = 1

2 , so we can take r1 = 1. Then, with

the notation of §9, we have (52 − 1)γ1 = 025, (5
2 − 1)γ3 = 115, (5

2 − 1)γ4 = 335, (5
2 − 1)γ5 = 225,

hj = 2, 0, 1, 3, 2 and h2,j = 02, 20, 11, 33, 22 for j = 1, . . . , 5 respectively. We will prove that[
29x+

5r − 1

2

]
≤ [x+ hr,1] + [x+ hr,2] + [x+ hr,3] + [x+ hr,4] + [x+ hr,5]− 6r + 4

for every r ≥ 1 and every 0 ≤ x ≤ 2r − 1. For r ≤ 5 we check it by computer. For r > 5 we proceed
by induction as described in §9, proving first the following cases by splitting off the last digits of x.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 4
∑

j vj + 4
∑

i ui

0,1 1 0,1 ≥ 0 ≥ 0 0 ≥ 0
a2; a 6= 1 1 2 4 ≥ 0 0 ≥ 4
a12; a 6= 1 2 12 4 ≥ 0 0 ≥ 4
a112; a 6= 1 3 112 4 ≥ 0 0 ≥ 4
003,303,403 2 03 −4 ≥ 1 0 ≥ 0

103 3 103 0 ≥ 0 0 ≥ 0
a203; a 6= 1 3 203 0 ≥ 0 0 ≥ 0
013,313,413 2 13 −4 ≥ 1 0 ≥ 0

a113, a213; a 6= 1 3 113,213 0 ≥ 0 0 ≥ 0
a1113; a 6= 1 4 1113 0 ≥ 0 0 ≥ 0
023,323,423 2 23 0 ≥ 0 0 ≥ 0

33 1 3 −4 ≥ 1 0 ≥ 0
043 2 43 1 ≥ 0 0 ≥ 0

a143; a 6= 1 3 143 0 ≥ 0 0 ≥ 0
443 1 3 −4 ≥ 2 1 ≥ 0
04 2 04 4 ≥ 0 0 ≥ 4

a14; a 6= 1 2 14 0 ≥ 0 0 ≥ 0
a24; a 6= 1, 2 2 24 0 ≥ 0 0 ≥ 0

034 1 4 −4 ≥ 2 1 ≥ 0
044 2 44 0 ≥ 0 0 ≥ 0
444 1 4 −4 ≥ 2 1 ≥ 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table, in which we have b1 = b′1, c1 = c′1, c2 = c′2, c3 = c′3, c4 = c′4, and c5 = c′5.



RIGID LOCAL SYSTEMS AND SPORADIC SIMPLE GROUPS 73

z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) b1 c1 c2 c3 c4 c5

1112 4 112 3 4 4 12 0 0 0 1 0
1203, 1213, 1143 4 114 3 0 0 13 0 0 0 1 0

11113 5 1113 4 0 0 12 0 0 0 1 0
123,124 3 13 2 0 −4 14 0 0 0 1 0
223,224 3 23 2 4 0 30 0 0 0 1 1
243,244 3 30 2 −4 −4 32 1 0 0 1 1
343,344 3 40 2 −4 −4 43 1 0 1 1 1

114 3 113 3 0 0 13 0 0 0 1 0
134 3 14 2 0 0 20 0 0 0 1 0
234 3 24 2 0 0 31 0 0 0 1 1
334 3 34 2 −4 −4 42 1 0 1 1 1
434 3 44 2 0 0 103 1 1 1 1 1
144 3 143 3 0 0 21 0 0 0 1 0

�

Theorem 19.2. The following statements hold.

(i) The hypergeometric sheaf H = Hyp(Char×29; ξ12, ξ
3
12, ξ

5
12, ξ

9
12) in characteristic p = 5 has geo-

metric monodromy group Ggeom = 2 · Ru, the double cover of the Rudvalis sporadic simple
group Ru.

(ii) The sheaf H̃ := H ⊗ Lξ4 has geometric monodromy group G̃geom = Ggeom ◦ C4, the central

product of Ggeom = 2 ·Ru with the cyclic scalar subgroup C4. Furthermore, H̃ has a descent H̃′
to F5 with arithmetic monodromy group G̃arith,k = G̃geom over any finite extension k of F25.

Proof. (i) By Theorem 19.1, G := Ggeom is finite. Let ϕ denote the character of the representation
G → GL(V ) of G realizing H. By the construction of H and Corollary 6.2(i), the field of values
Q(ϕ) := Q(ϕ(g) | g ∈ G) is precisely Q(i) with i = ζ4. It is clear that H is not Kummer induced.
Furthermore, the shape of the “upstairs” and “downstairs” characters of H shows by Proposition
3.7(ii) that it is not Belyi induced. Hence, by Theorem 3.5, (G,V ) satisfies (S+). As D = dim(V ) =
28, G must be almost quasisimple by Lemma 3.1. Furthermore, since the cyclic group Z(G) acts
via scalars and Q(ϕ) = Q(i), we have that

(19.2.1) Z(G) ↪→ C4.

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for L :=

E(G) = G(∞). Then V |L is irreducible by Lemma 3.1, and so CG(L) = Z(G) by Schur’s lemma.
Furthermore, ō(g0) = 29 for a generator g0 of the image of I(0), and 24|ō(g∞) for a p′-element g∞
that generates I(∞) modulo P (∞), whence both cyclic groups C29 and C24 embed in G/Z(G) ≤
Aut(S). Now we can apply the main result of [HM] to arrive at the following possibilities for (S,L).

• S = L = A29, and V |L is just the deleted permutation module S(28,1)|L. In this case, since
SCG/Z(G) ≤ Aut(S) = S29, the element g0 of order 29 must belong to the inverse image S×Z(G)
of S in G. Using (19.2.1), we see that in fact g0 ∈ S, hence G = S by Theorem 5.1. But this is a
contradiction, since Q(ϕ) would have been equal to Q.
• S = PSL2(29). This is impossible, since C24 does not embed in Aut(S) = PGL2(29).
• (S,L) = (Ru, 2 · Ru). Since Aut(L) = L, we have that G = Z(G)L. Again using (19.2.1) we

see that g0 ∈ L, whence Ggeom = G = L by Theorem 5.1.

(ii) By Theorem 7.5, H̃ has a descent H̃′ = (H̃)00 to F5, for which any element in G̃arith,k still

has trace in Q(i) over any finite extension k of F25, with (H̃)0 given in Table 4, line 13. It follows
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that Z(G̃geom) ≤ Z(G̃arith,k) ≤ C4. Next, if g̃0 generates the image of I(0) in G̃ := G̃geom, then note

that g̃29
0 acts as the scalar i on H̃, whence we now have

(19.2.2) Z(G̃geom) = Z(G̃arith,k) = C4.

By Lemma 5.12, G̃/Z(G̃) ∼= G/Z(G) = S, and G̃(∞) ∼= G(∞) = L. Next, since L already induces

the full automorphism group Ru of LC G̃arith,k, we conclude that

G̃arith,k = G̃geom = Z(G̃geom)L = (2 · Ru) ◦ C4.

[Note that (2 ·Ru)◦C4 is the automorphism group of a certain 28-dimensional lattice over Gaussian
integers, see [Atlas]]. �

20. The special linear group PSL3(4)

Theorem 20.1. The local system H := Hyp(Char14 r {1, ξ7, ξ
2
7 , ξ

4
7}; ξ4, ξ̄4) in characteristic p = 3

has finite geometric monodromy group.

Proof. We need to show:

V (14x)− V (x)− V
(
x+

1

7

)
− V

(
x+

2

7

)
− V

(
x+

4

7

)
+ V (−4x)− V (−2x) + 2 ≥ 0

and

V (14x)− V (x)− V
(
x− 1

7

)
− V

(
x− 2

7

)
− V

(
x− 4

7

)
+ V (−4x)− V (−2x) + 2 ≥ 0

which are equivalent via the change of variable x 7→ 3x. Using the fact that

V (
i

28
) = V (

26i

36 − 1
) =

1

12
[26i]

for 1 ≤ i ≤ 13, we check that the first inequality holds for 28x ∈ Z. For all other values of x we can
rewrite it, using that V (x) + V (−x) = 1 for x 6= 0 and V (2x) = V (x) + V (x+ 1

2)− 1
2 [Ka7, §13], as

V (14x) ≤ V
(
x− 1

7

)
+ V

(
x− 2

7

)
+ V

(
x− 4

7

)
+ V

(
x+

1

4

)
+ V

(
x+

3

4

)
+ V (x)− 2

and, via the change of variable x 7→ x+ 1
4 , as

V

(
14x+

1

2

)
≤ V

(
x+

3

28

)
+ V

(
x+

27

28

)
+ V

(
x+

19

28

)
+ V

(
x+

1

4

)
+ V

(
x+

1

2

)
+ V (x)− 2

Following §9, it suffices to prove[
14x+

3r − 1

2

]
≤
[
x+

3(3r − 1)

28

]
+

[
x+

27(3r − 1)

28

]
+

[
x+

19(3r − 1)

28

]
+

[
x+

3r − 1

4

]
+

[
x+

3r − 1

2

]
+ [x]− 4r

for every r ≥ 1 multiple of r0 = 6 and every 0 ≤ x ≤ 3r−1. Notice that, in this case, multiplication
by 32 permutes γ1 = 3

28 , γ2 = 27
28 and γ3 = 19

28 cyclically and fixes γ4 = 1
4 , γ5 = 1

2 and γ6 = 0, so we can

take r1 = 2. Then, with the notation of §9, we have (36−1)γ1 = 0022203, hj = 203, 223, 003, 023, 113,
h2,j = 22203, 00223, 20003, 02023, 11113 and h3,j = 0022203, 2000223, 2220003, 0202023, 1111113 for
j = 1, . . . , 5 respectively. We will prove that[

14x+
3r − 1

2

]
≤ [x+ hk,1] + [x+ hk,2] + [x+ hk,3] + [x+ hk,4] + [x+ hk,5] + [x]− 4r
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for every r = 2k ≥ 2 and every 0 ≤ x ≤ 2r − 1. For r ≤ 6 we check it by computer. For r > 6
we proceed by induction as described in §9, proving first the following cases by splitting off the last
digits of x.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 2
∑

j vj + 2
∑

i ui

00 2 00 0 0 0 0
a01, a02; a 6= 2 2 01,02 ≥ 0 ≥ 0 0 ≥ 0
a201; a 6= 2 2 01 0 1 1 0
a202; a 6= 2 2 02 2 0 1 0

012201,102201,122201,212201 4 2201 6 ≥ 0 ≤ 1 ≥ 4
110,111 2 10,11 ≥ 0 ≥ 0 0 ≥ 0

0210,1010,1210,2010 2 10 0 ≥ 1 ≤ 1 ≥ 0
0211,1011,1211,2011 2 11 2 ≥ 0 ≤ 1 ≥ 0

00010,10010 4 0010 0 ≥ 0 0 ≥ 0
020010,120010 4 0010 0 ≥ 1 1 ≥ 0

ab12, ab20; ab 6= 00, 11, 22 2 12,20 ≥ 2 ≥ 0 ≤ 1 ≥ 0
ab1112; ab 6= 00, 11, 22 4 1112 2 ≥ 0 ≤ 1 ≥ 0

ab21, ab22; ab 6= 00, 11, 20, 22 2 21,22 ≥ 4 ≥ 0 ≤ 1 ≥ 2
ab2221; ab 6= 00, 11, 20, 22 4 2221 10 ≥ 0 ≤ 1 ≥ 8

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c6 = c′6 corresponding to γ6 = 0, since it is always 0):

z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 c2 c3 c4 c5

002201 6 0022 4 0 0 1 0 0 1 0 0
022201 6 1000 4 6 0 12 0 1 1 0 0
112201 6 1122 4 6 6 22 0 1 1 0 1
202201 6 2022 4 6 6 102 0 1 1 1 1

222201,222221 6 2222 4 ≥ 10 10 112 1 1 1 1 1
2202,2210,2211 4 2201 4 6 6 111 1 1 1 1 1

220010 6 2201 4 6 6 111 1 1 1 1 1
0011,0012,0020,0021,0022 4 0010 4 ≥ 0 0 1 1 0 0 0 0

001112 6 0011 4 0 0 1 0 0 1 0 0
111112 6 1112 4 2 2 21 0 1 1 0 1
221112 6 2212 4 8 8 111 1 1 1 1 1

2212,2220 4 2211 4 ≥ 6 6 111 1 1 1 1 1
1120,1121 4 1112 4 2 2 21 1 0 1 0 1

1122 4 12 2 6 2 22 1 0 1 0 1
2021,2022 4 21 2 6 4 102 1 0 1 1 1

002221 6 01 2 8 0 2 0 0 1 0 0
112221 6 12 2 10 2 22 0 1 1 0 1
202221 6 21 2 12 4 102 0 1 1 1 1
2222 4 2221 4 10 10 112 1 1 1 1 1

�

Theorem 20.2. The local system H := Hyp(Char14 r {1, ξ7, ξ
2
7 , ξ

4
7 ; ξ4, ξ̄4) in characteristic p = 3

has geometric monodromy group Ggeom = 2 ·PSL3(4) ·22. Moreover, H has a descent H′ to F9, with
arithmetic monodromy group Garith,k = Ggeom for any finite extension k of F9.
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Proof. (i) By Theorem 20.1, G = Ggeom is finite. Let ϕ denote the character of the representation
G → GL(V ) of G realizing H. By the construction of H and Corollary 6.2(ii), the field of values
Q(ϕ) := Q(ϕ(g) | g ∈ G) is Q(

√
−7). It is clear that H is not Kummer induced. Furthermore,

the shape of the “upstairs” and “downstairs” characters of H shows by Proposition 3.7(ii) that it
is not Belyi induced. Hence, by Theorem 3.6, (G,V ) satisfies (S+). As D = dim(V ) = 10, G
must be almost quasisimple by Lemma 3.1. Next, since the cyclic group Z(G) acts via scalars and
Q(ϕ) = Q(

√
−7), we have that

(20.2.1) Z(G) ↪→ C2.

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for L :=

E(G) = G(∞). Then V |L is irreducible by Lemma 3.1, and so CG(L) = Z(G) by Schur’s lemma.
Furthermore, for a generator g0 of the image of I(0) in G we have ō(g0) = 14, and so C14 ↪→
G/Z(G) ≤ Aut(S). Moreover, the image Q of P (∞) is elementary abelian of order 32 by Proposition
5.8(iv), and a p′-generator g∞ of the image of I(∞) modulo P (∞) in G has central order divisible
by 8 by Proposition 5.9(iii). Now we can apply the main result of [HM] to arrive at the following
possibilities for (S,L).

• S = L = A11, and V |L is just the deleted permutation module S(10,1)|L. This case is however
impossible, since otherwise we would have Q(ϕ) = Q by Lemma 3.8.
• S = L = A7. Since ϕ|S is not stable under outer automorphisms of S, we have that G =

Z(G)× S. But this is a contradiction, since S contains no element of order 8.
• (S,L) = (M22, 2M22). Using [GAP] we can check that the restriction of ϕ|L to 2′-elements yields

an irreducible 2-Brauer character of L. In other words, a reduction modulo 2 of Φ is an absolutely
irreducible 2-modular representation of G. However, this is impossible: applying Theorem 6.13 with
` = 2 we see that such a reduction of Φ must admit a trivial composition factor over G.
• (S,L) = (PSL3(4), 2 · PSL3(4)). Now we have Z(L) = Z(G) = CG(L) = C2 by (20.2.1). Recall

that G/Z(G) ≤ Aut(S) = S · (C2 × S3), G admits an irreducible representation of degree 10, and
contains the g0 element of central order 14. Hence we see by [Atlas] that G/Z(G) = S ·22. It follows
that Ggeom = L · 22 = 2 · PSL3(4) · 22.

(ii) By Theorem 7.7, H has a descent H′ = H00 to F9, for which any element in G̃arith,k still has

trace in Q(
√
−7) over any finite extension k of F9, with H0 either of the two choices given in Table

4, line 14. Since any element in CGarith,k
(L) = Z(Garith,k) acts via scalars, which are then roots of

unity in Q(
√
−7), we see that CGarith,k

(L) = C2 = Z(L). Hence, if Garith,k > Ggeom, we see that
some element of Garith,k must induce an outer automorphism of L lying outside of S · 22, which is
impossible under the condition that it acts on L = 2 · S, see [Atlas]. Therefore we must have that
Garith,k = L = Ggeom. �

Theorem 20.3. The local system H2 := Hyp({ξi20 | i = 1, 3, 5, 7, 9, 13, 15, 17}; ξ3, ξ
2
3) in character-

istic p = 7 has finite geometric monodromy group.

Proof. We need to show:

V

(
10x+

1

2

)
− V

(
x+

11

20

)
− V

(
x+

19

20

)
+ V

(
−x+

1

3

)
+ V

(
−x+

2

3

)
≥ 0,

V

(
10x+

1

2

)
− V

(
x+

13

20

)
− V

(
x+

17

20

)
+ V

(
−x+

1

3

)
+ V

(
−x+

2

3

)
≥ 0,

V

(
10x+

1

2

)
− V

(
x+

1

20

)
− V

(
x+

9

20

)
+ V

(
−x+

1

3

)
+ V

(
−x+

2

3

)
≥ 0,
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and

V

(
10x+

1

2

)
− V

(
x+

3

20

)
− V

(
x+

7

20

)
+ V

(
−x+

1

3

)
+ V

(
−x+

2

3

)
≥ 0.

The first two and the last two are equivalent via the change of variable x 7→ 7x. Using the fact
that V ( i

60) = V ( 40i
74−1

) = 1
24 [40i] for 1 ≤ i ≤ 59 we check that the inequalities hold for 20x ∈ Z and

for 3x ∈ Z. For all other values of x we can rewrite the first inequality, using that V (x)+V (−x) = 1
for x 6= 0, as

V

(
10x+

1

2

)
≤ V

(
x+

1

20

)
+ V

(
x+

9

20

)
+ V

(
x+

1

3

)
+ V

(
x+

2

3

)
− 1

and, following §9, it suffices to prove[
10x+

7r − 1

2

]
≤
[
x+

7r − 1

20

]
+

[
x+

9(7r − 1)

20

]
+

[
x+

7r − 1

3

]
+

[
x+

2(7r − 1)

3

]
− 6r

for every r ≥ 1 multiple of r0 = 4 and every 0 ≤ x ≤ 7r − 1. Notice that, in this case, mul-
tiplication by 72 permutes γ1 = 1

20 and γ2 = 9
20 and fixes γ3 = 1

3 and γ4 = 2
3 , so we can take

r1 = 2. Then, with the notation of §9, we have (74 − 1)γ1 = 02317, hj = 317, 027, 227, 447,
h2,j = 02317, 31027, 22227, 44447 for j = 1, . . . , 4 respectively. We will prove that

[
10x+

7r − 1

2

]
≤ [x+ hk,1] + [x+ hk,2] + [x+ hk,3] + [x+ hk,4]− 6r

for every r = 2k ≥ 2 and every 0 ≤ x ≤ 7r − 1. For r ≤ 4 we check it by computer. For r > 4
we proceed by induction as described in §9, proving first the following cases by splitting off the last
digits of x.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 6
∑

j vj + 6
∑

i ui

00, . . . , 22 2 00, . . . , 22 ≥ 0 ≥ 0 0 ≥ 0
a23, . . . , a35; a 6= 2 2 23, . . . , 35 ≥ 0 ≥ 0 0 ≥ 0
a36, . . . , a64; a 6= 2, 4 2 36, . . . , 44 ≥ 0 ≥ 0 0 ≥ 0
a65, a66; a 6= 2, 4, 5 2 65, 66 ≥ 0 ≥ 0 0 ≥ 0

0abc, 1abc 4 0abc, 1abc ≥ 0 ≥ 0 0 ≥ 0
a436, . . . , a443; a 6= 6 2 36, . . . , 43 ≥ 0 ≥ 1 1 ≥ 0
ab44; ab 6= 22, 64 2 44 18 ≥ 0 1 ≥ 12

The remaining cases are proved by substitution of the last digits, as specified in the following
table:
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z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 = c′1 c2 = c′2 c3 = c′3 c4 = c′4
2223, . . . , 2266 4 23 2 ≥ 0 0 3 0 0 0 1
3223, . . . , 3266 4 33 2 ≥ 6 6 5 0 0 0 1
4223, . . . , 4266 4 43 2 ≥ 0 0 6 0 1 0 1
5223, . . . , 5266 4 53 2 ≥ 6 6 11 0 1 1 1
6223, . . . , 6266 4 63 2 ≥ 6 6 12 0 1 1 1
2445, . . . , 2466 4 25 2 ≥ 0 0 4 0 0 0 1
3445, . . . , 3466 4 35 2 ≥ 0 0 5 0 0 0 1
4445, . . . , 4466 4 45 2 ≥ 0 0 10 0 1 1 1
5445, . . . , 5466 4 55 2 ≥ 0 0 11 0 1 1 1
6436, . . . , 6466 4 65 2 ≥ 0 0 13 1 1 1 1

2565, 2566 4 26 2 ≥ 0 0 4 0 0 0 1
3565, 3566 4 36 2 ≥ 0 0 6 0 1 0 1
4565, 4566 4 46 2 ≥ 0 0 10 0 1 1 1
5565, 5566 4 56 2 ≥ 0 0 11 0 1 1 1
6565, 6566 4 66 2 ≥ 0 0 13 1 1 1 1

The third inequality can be rewritten, using that V (x) + V (−x) = 1 for x 6= 0, as

V

(
10x+

1

2

)
≤ V

(
x+

11

20

)
+ V

(
x+

19

20

)
+ V

(
x+

1

3

)
+ V

(
x+

2

3

)
− 1

and, via the change of variable x 7→ x+ 1
2 , as

V

(
10x+

1

2

)
≤ V

(
x+

1

20

)
+ V

(
x+

9

20

)
+ V

(
x+

1

6

)
+ V

(
x+

5

6

)
− 1.

Following §9, it suffices to prove[
10x+

7r − 1

2

]
≤
[
x+

7r − 1

20

]
+

[
x+

9(7r − 1)

20

]
+

[
x+

7r − 1

6

]
+

[
x+

5(7r − 1)

6

]
− 6r

for every r ≥ 1 multiple of r0 = 4 and every 0 ≤ x ≤ 7r − 1. Notice that, in this case, mul-
tiplication by 72 permutes γ1 = 1

20 and γ2 = 9
20 and fixes γ3 = 1

6 and γ4 = 5
6 , so we can take

r1 = 2. Then, with the notation of §9, we have (74 − 1)γ1 = 02317, hj = 317, 027, 117, 557,
h2,j = 02317, 31027, 11117, 55557 for j = 1, . . . , 4 respectively. We will prove that[

10x+
7r − 1

2

]
≤ [x+ hk,1] + [x+ hk,2] + [x+ hk,3] + [x+ hk,4]− 6r

for every r = 2k ≥ 2 and every 0 ≤ x ≤ 7r − 1. For r ≤ 6 we check it by computer. For r > 6
we proceed by induction as described in §9, proving first the following cases by splitting off the last
digits of x.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 6
∑

j vj + 6
∑

i ui

00, . . . , 11 2 00, . . . , 11 ≥ 0 ≥ 0 0 ≥ 0
a12, . . . , a35; a 6= 1 2 12, . . . , 35 ≥ 0 ≥ 0 0 ≥ 0
a36, . . . , a55; a 6= 1, 4 2 36, . . . , 55 ≥ 0 ≥ 0 0 ≥ 0
a56, . . . , a66; a 6= 1, 4, 5 2 56, . . . , 66 ≥ 0 ≥ 0 0 ≥ 0

0abc 4 0abc ≥ 0 ≥ 0 0 ≥ 0
a3556; a 6= 1 4 3556 0 ≥ 0 0 ≥ 0

013556 6 013556 0 ≥ 0 0 ≥ 0



RIGID LOCAL SYSTEMS AND SPORADIC SIMPLE GROUPS 79

The remaining cases are proved by substitution of the last digits, as specified in the following
table:

z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 = c′1 c2 = c′2 c3 = c′3 c4 = c′4
1112, . . . , 1166 4 12 2 ≥ 0 0 2 0 0 0 1
2112, . . . , 2166 4 22 2 ≥ 0 0 3 0 0 0 1
3112, . . . , 3166 4 32 2 ≥ 6 6 5 0 0 0 1
4112, . . . , 4166 4 42 2 ≥ 0 0 6 0 1 0 1
5112, . . . , 5151 4 51 2 ≥ 6 6 10 0 1 0 1
5152, . . . , 5166 4 52 2 ≥ 12 12 11 0 1 0 1
6112, . . . , 6166 4 62 2 ≥ 6 6 12 0 1 1 1
1436, . . . , 1466 4 15 2 ≥ 0 0 2 0 0 0 1
2436, . . . , 2466 4 25 2 ≥ 6 6 4 0 0 0 1
3436, . . . , 3466 4 35 2 ≥ 6 6 5 0 0 0 1
4436, . . . , 4466 4 45 2 ≥ 12 12 10 0 1 0 1
5436, . . . , 5466 4 55 2 ≥ 12 12 11 0 1 0 1
6436, . . . , 6466 4 65 2 ≥ 6 6 13 1 1 1 1
1556, . . . , 1566 4 16 2 ≥ 0 0 3 0 0 0 1
2556, . . . , 2566 4 26 2 ≥ 0 0 4 0 0 0 1

113556 6 12 2 0 0 2 0 0 0 1
213556 6 22 2 0 0 3 0 0 0 1
313556 6 32 2 6 6 5 0 0 0 1
413556 6 42 2 0 0 6 0 1 0 1
513556 6 51 2 6 6 10 0 1 0 1
613556 6 62 2 6 6 12 0 1 1 1

3560, . . . , 3564 4 35 2 ≥ 6 6 5 0 0 0 1
3565, 3566 4 36 2 ≥ 0 0 6 0 1 0 1

4556, . . . , 4566 4 46 2 ≥ 6 6 10 0 1 0 1
5556, . . . , 5566 4 56 2 ≥ 0 0 11 0 1 1 1
6556, . . . , 6566 4 66 2 ≥ 0 0 13 1 1 1 1

�

Theorem 20.4. The local system H2 := Hyp(ξi20, i = 1, 3, 5, 7, 9, 13, 15, 17; ξ3, ξ̄3) in characteristic
p = 7 has geometric monodromy group Ggeom = 41 · PSL3(4) · 23. Moreover, H2 has a descent H′2
to F49, with arithmetic monodromy group Garith,k = Ggeom for any finite extension k of F49.

Proof. (i) By Theorem 20.3, G = Ggeom is finite. Let ϕ denote the character of the representation
Φ : G → GL(V ) of G realizing H2, and let g0 denote a generator of the image of I(0) in G.
By the construction of H, we may assume that the spectrum of g0 on V consists of ζi20, i =
1, 3, 5, 7, 9, 13, 15, 17. In particular, ϕ(g5

0) = 2
√
−1 and

(20.4.1) ϕ(g4
0) = −(ζ5 + ζ̄5),

and thus the field of traces Q(ϕ) contains both
√
−1 and

√
5. On the other hand, each of the

set of “upstairs” characters and the set of “downstairs” characters of H2 is fixed by the Galois
automorphisms ζ60 7→ ζ41

60 and ζ60 7→ ζ49
60 of Q(ζ60)/Q. It follows from Corollary 6.2(ii) that Q(ϕ) :=

Q(
√
−1,
√

5).

It is clear that H is not Kummer induced. Furthermore, the shape of the “upstairs” and
“downstairs” characters of H shows by Proposition 3.7(ii) that it is not Belyi induced. Also, it
is tensor indecomposable by [KRLT3, Corollary 10.4]. Now, if it is tensor induced, then, since



80 NICHOLAS M. KATZ, ANTONIO ROJAS-LEÓN, AND PHAM HUU TIEP

D = dim(V ) = 8, it is 3-tensor induced, and G acts transitively on the 3 tensor factors of a de-
composition V = V1 ⊗ V2 ⊗ V3 with dim(Vi) = 2, with kernel say K. By Proposition 5.8, the image
Q of P (∞) in G has order 7, which is coprime to |S3|, and so Q and its normal closure GP (∞) are
contained in K. By Theorem 5.3, G/GP (∞), hence G/K, is cyclic, and thus G/K ∼= C3. (Alterna-
tively, we can also use [KT5, Corollary 3.3] to deduce that G/K ∼= C3.) As o(g0) = 20 is coprime
to 3, g0 ∈ K, and so the normal closure of the image 〈g0〉 of I(0) is contained in K, contradicting
Theorem 5.1. Hence, (G,V ) satisfies (S+).

Next, since the cyclic group Z(G) acts via scalars and Q(ϕ) = Q(
√
−1,
√

5), we have that

(20.4.2) Z(G) ↪→ C4.

Suppose we are in the extraspecial case (c) of Lemma 3.1. Then G has a normal 2-subgroup R
which acts irreducibly on V , and Z(R) ≤ CG(R) = Z(G) ≤ 4. Furthermore, R = Z(R)E with
E = 21+6

ε for some ε = ±, and, using Φ to identify R and G with their images under Φ, we have

RCG ≤ NGL(V )(R) ≤ Z(GL(V )) ◦ (C4 ◦ 21+6
ε ) · Sp6(2)

(cf. [KT8, §8] and [NRS, §6]). Now, the element g4
0 of order 5 cannot centralize R and so induces

a nontrivial automorphism of R, where Aut(R) ∼= 26 · (2 × Sp6(2)) by [Gri, Corollary 2]. As the
Sylow 5-subgroups of (C4 ◦ 21+6

ε ) · Sp6(2) > 21+6
+ · Ω+

6 (2) are of order 5, we can find an element

h ∈ 21+6
+ · Ω+

6 (2) of order 5 and a scalar α ∈ C× such that g5
0 = αh. It follows that α5 = 1. On the

other hand, Trace(h) ∈ Z[
√

2] by [NRS, Theorem 2.2], and this contradicts (20.4.1).

We have shown that G is almost quasisimple. Let S denote the unique non-abelian composition
factor of G, so that S = L/Z(L) for L := E(G) = G(∞). Then V |L is irreducible by Lemma 3.1, and
so CG(L) = Z(G) by Schur’s lemma. Furthermore, since ō(g0) = 10, we have C10 ↪→ G/Z(G) ≤
Aut(S). Moreover, the image Q of P (∞) has order 7 as mentioned above, and so C7 ↪→ Aut(S) by
Proposition 5.6(i). Now we can apply the main result of [HM] to arrive at the following possibilities
for (S,L).
• (S,L) = (A9, 2A9) or (Sp6(2), 2 · Sp6(2)). In these cases, we can check using [Atlas] that

G/Z(G) = L/Z(L), G(∞) = L = L(∞), and Q(ϕ|L) = Q, which is a contradiction by Lemma 3.9,
since Q(ϕ) = Q(

√
−1,
√

5).
• (S,L) = (A8, 2A8), (A9,A9), (Ω+

8 (2), 2 ·Ω+
8 (2)). In these two cases, we can find using [GAP] an

almost quasisimple group L · 2 and a faithful character ψ of L · 2 such that (L · 2)/Z(L) ≥ G/Z(G),

(L · 2)(∞) = L = G(∞), ψ|L = ϕ|L, but Q(ψ) ⊆ Q(
√
−1) ⊂ Q(

√
−1,
√

5) = Q(ϕ). The latter again
contradicts Lemma 3.9.
• (S,L) = (PSL3(4), 41 ·PSL3(4)). Now we have C4 = Z(L) = Z(G) = CG(L) by (20.4.2). Recall

that G/Z(G) ≤ Aut(S) = S · (C2 × S3), G B L admits an irreducible representation of degree 8,
and contains the g0 element of central order 10. Hence we see by [Atlas] that G/Z(G) = S · 23. It
follows that Ggeom = L · 23 = 41 · PSL3(4) · 23.

(ii) By Theorem 7.5, H2 has a descent H′2 = (H2)00 to F49, for which any element in Garith,k

still has trace in Q(
√
−1,
√

5) over any finite extension k of F49, with (H2)0 given in Table 4, line
15. Since any element in CGarith,k

(L) = Z(Garith,k) acts via scalars, which are then roots of unity

in Q(
√
−1,
√

5), we see that CGarith,k
(L) = C4 = Z(L). Hence, if Garith,k > Ggeom, we see that

some element of Garith,k must induce an outer automorphism of S lying outside of S · 23, which is
impossible under the condition that it fixes L = 41 ·S and ϕ|L, see [Atlas]. Therefore we must have
that Garith,k = Ggeom. �

Theorem 20.5. The local system H3 := Hyp(Char×7 ; ξ3) in characteristic p = 2 has finite geometric
monodromy group.
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Proof. We need to show:

V (7x)− V (x) + V

(
−x+

1

3

)
≥ 0

and

V (7x)− V (x) + V

(
−x− 1

3

)
≥ 0

which are equivalent via the change of variable x 7→ 2x. Using the fact that V ( i
21) = V ( 3i

26−1
) = 1

6 [3i]
for 1 ≤ i ≤ 20 we check that the first inequality holds for 7x ∈ Z and for 3x ∈ Z. For all other
values of x we can rewrite it, using that V (x) + V (−x) = 1 for x 6= 0, as

V (7x) ≤ V
(
x+

1

3

)
+ V (x)

and, following §9, it suffices to prove

[7x] ≤
[
x+

2r − 1

3

]
+ [x] + 1

for every r ≥ 1 multiple of r0 = 2 and every 0 ≤ x ≤ 2r − 1. For r ≤ 6 we check it by computer.
For r > 6 we proceed by induction as described in §9, proving first the following cases by splitting
off the last digits of x.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)−
∑

j vj +
∑

i ui

00,10 2 00,10 ≥ 0 ≥ 0 0 ≥ 0
0001,0011 4 0001,0011 0 ≥ 0 0 ≥ 0

001001,001011 6 001001,001011 ≥ 0 ≥ 0 0 ≥ 0
101001 4 1001 −1 ≥ 1 0 ≥ 0
11001 4 1001 −1 ≥ 2 0 ≥ 1
101 2 01 −1 ≥ 1 0 ≥ 0

11011 4 1011 0 ≥ 0 0 ≥ 0
111 2 11 0 ≥ 0 0 ≥ 0

The remaining case is proved by substitution of the last digits, as specified in the following table
(we do not include the c2 = c′2 corresponding to γ2 = 0, since it is always 0):

z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 = c′1
101011 6 1011 4 0 0 100 1

�

Theorem 20.6. The local system H3 := Hyp(Char×7 ; ξ3) in characteristic p = 2, has geometric
monodromy group Ggeom = 6 · PSL3(4). Moreover, H3 has a descent H′3 to F4, with arithmetic
monodromy group Garith,k = Ggeom for any finite extension k of F4.

Proof. (i) By Theorem 20.5, G = Ggeom is finite. Let ϕ denote the character of the representation
Φ : G → GL(V ) of G realizing H3. It is clear that H is not Kummer induced. Furthermore, the
shape of the “downstairs” characters of H shows by Proposition 3.7(ii) that it is not Belyi induced.
Hence, (G,V ) satisfies (S+) by Theorem 3.6. Next, Q(ϕ) := Q(

√
−3) by Corollary 6.2(i). By

Theorem 7.5, H3 has a descent H′3 = (H3)00 to F4, for which any element in Garith,k still has trace
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in Q(
√
−3) over any finite extension k of F4, with (H3)0 given in Table 4, line 16. Since the cyclic

group Z(Garith,F4) acts via scalars and Q(ϕ) = Q(
√
−3), we have that

(20.6.1) Z(G) ≤ Z(Garith,F4) ↪→ C6.

As D = dim(V ) = 6, G is almost quasisimple by Lemma 3.1. Let S denote the unique non-abelian

composition factor of G, so that S = L/Z(L) for L := E(G) = G(∞). Then V |L is irreducible by
Lemma 3.1, and so CG(L) = Z(G) by Schur’s lemma. Furthermore, since ō(g0) = 7 for a generator
g0 of the image of I(0) in G, we have C7 ↪→ G/Z(G) ≤ Aut(S). Moreover, the image Q of P (∞) is
an elementary abelian group of order 24 by Proposition 5.8, whence 24 ↪→ Aut(S) by Proposition
5.6(i). Also, a p′-generator g∞ of the image of I(∞) modulo P (∞) has trace 0 on the wild part Wild
and eigenvalue of the tame part Tame of dimension 1; in particular, ō(g∞) = 5 and C5 ↪→ Aut(S).
Now we can apply the main result of [HM] to arrive at the following possibilities for (S,L).
• S = A7. This is impossible, since 24 does not embed in Aut(S) = S7.
• (S,L) = (J2, 2J2). This case is rule out since otherwise we would have that Q(ϕ|L) = Q(

√
5).

• (S,L) = (PSU4(3), 61 · PSU4(3)). In this case, using [GAP] we can check that ϕ|L has M6,0 =
2, and so ϕ has M6,0 ≤ 2. Now we apply Theorem 6.5, with (a, b) = (6, 0), and C = 6666,
B ≤ 9333, A ≤ 2667 (according to Lemmas 6.6, 6.7, and Remark 6.8), which implies that the
approximation of M6,0 at most 4.6135 over F220 . However, a calculation with [Mag], for which we
thank Andrew Sutherland, yields an approximation of (at least) 6.8996 over F220 , a contradiction.
[In this calculation, we use the trace function of H′3⊗Lξ3 , which has the same (6, 0) moment as H′3,

u ∈ E× 7→ 1

#E

∑
x∈E, 0 6=t∈E

ψ
(x7

t
+ x+

t

u

)
ξ3(t)

for any finite extension E of F4.]
• (S,L) = (PSL3(4), 6 · PSL3(4)). Now we have C6 = Z(L) = Z(G) = CG(L) by (20.6.1). As

Out(S) = C2 × S3 (see [Atlas]) and ō(g0) = 7, we see that g0 ∈ L and so Ggeom = L by Theorem
5.1.

(ii) Since any element in CGarith,k
(L) = Z(Garith,k) acts via scalars, we see by (20.6.1) that

CGarith,k
(L) = C6 = Z(L). Let ϕ also denote the character of Garith,F4 on the representation realizing

H′3, and assume that Garith,F4 > Ggeom. Then the outer automorphism of L induced by any element
in Garith,k r L must fix ϕ|L, and so it belongs to S · 21, see [Atlas]. Therefore we must have that
Garith,k = 6 ·PSL3(4) · 21. One such extension, call it H, is given in [GAP], with a faithful character

ς : H → GL(V ) and an element h (of class 8c), where ς|L = ϕ|L and Q(ς) = Q(
√
−3,
√

2) ⊇ Q(ϕ).
By Lemma 3.9, there is a root of unity γ ∈ C such that Q(ς) = Q(ϕ)(γ). Clearly, γ /∈ Q(

√
−3)

and Q(ς) has degree 2 over Q(
√
−3). It follows that Q(ς) = Q(

√
−3, γ) is a cyclotomic extension

of degree 4 over Q, and so it must be either Q(ζ8) or Q(ζ12). Both of these cases are however
impossible since Q(ς) contains both

√
2 and

√
−3. Consequently, Garith,F4 = Ggeom. �

21. The special unitary group PSU4(3)

Theorem 21.1. The local system Hyp(Char×7 ; ξ2) in characteristic p = 3 has finite geometric
monodromy group.

Proof. We need to show:

V (7x) + V (−2x) ≥ 1

2
.

Using the fact that V ( i
14) = V ( 13i

36−1
) = 1

12 [13i] for 1 ≤ i ≤ 27 we check that the inequality holds

for 28x ∈ Z. For all other values of x we can rewrite it, using that V (x) +V (−x) = 1 for x 6= 0 and
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V (2x) = V (x) + V (x+ 1
2)− 1

2 [Ka7, §13], as

V (7x) ≤ V
(
x+

1

2

)
+ V (x).

Following §9, it suffices to prove

[7x] ≤
[
x+

3r − 1

2

]
+ [x] + 2

for every r ≥ 1 and every 0 ≤ x ≤ 3r − 1. For r ≤ 6 we check it by computer. For r > 6 we proceed
by induction as described in §9, proving first the following cases by splitting off the last digits of x.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 2
∑

j vj + 2
∑

i ui

0,1 1 0,1 ≥ 0 ≥ 0 0 ≥ 0
02 2 02 0 ≥ 0 0 ≥ 0

012,022 3 012,022 1 ≥ 0 0 ≥ 0
00212 5 00212 0 0 0 0
010212 6 010212 0 0 0 0

110212,210212 5 10212 −1 ≥ 1 0 ≥ 0
020212,220212 5 20212 0 ≥ 0 0 ≥ 0
02212,22212 4 2212 1 ≥ 0 0 ≥ 1

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c2 = c′2 corresponding to γ2 = 0, since it is always 0).

z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 = c′1
112 3 12 2 −1 −1 10 1

120212 6 12112 5 2 0 11 1
1212 4 201 3 0 0 11 1
12212 5 1212 4 1 0 11 1
122 3 20 2 2 0 11 1
222 3 22 2 3 2 20 1

�

Theorem 21.2. The local system H = Hyp(Char×7 ; ξ2) in characteristic p = 3 has geometric
monodromy group Ggeom = 61 · PSU4(3). Furthermore, over any finite extension k of F3, the
descent S7,2 of H, see Proposition 7.2, has arithmetic monodromy group Garith,k equal to Ggeom if
2| deg(k/F3) and Ggeom · 22 if 2 - deg(k/F3).

Proof. (i) By Theorem 21.1, G = Ggeom is finite. Let ϕ denote the character of the representation
G → GL(V ) of G realizing H. By the construction of H and Corollary 6.2(ii), the field of values
Q(ϕ) := Q(ϕ(g) | g ∈ G) is Q(

√
−3). It is clear that H is not Kummer induced. Furthermore,

the shape of the “upstairs” and “downstairs” characters of H shows by Proposition 3.7(ii) that
it is not Belyi induced. Hence, by Theorem 3.6, (G,V ) satisfies (S+). As D = dim(V ) = 6, G
must be almost quasisimple by Lemma 3.1. Next, since the cyclic group Z(G) acts via scalars and
Q(ϕ) = Q(

√
−3), we have that

(21.2.1) Z(G) ↪→ C6.

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for L :=

E(G) = G(∞). Then V |L is irreducible by Lemma 3.1, and so CG(L) = Z(G) by Schur’s lemma.
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Furthermore, as ō(g0) = 7 for a p′-generator g0 of the image of I(0) in G, we have C7 ↪→ G/Z(G) ≤
Aut(S). Moreover, the image Q of P (∞) is elementary abelian of order 34 by Proposition 5.8(iv),
and Q ↪→ G/Z(G) by Proposition 5.6(i). Also by Proposition 5.8(iii), a p′-generator g∞ of the
image of I(∞) modulo P (∞) in G has central order divisible by 5, i.e. C5 ↪→ G/Z(G). Now we can
apply the main result of [HM] to arrive at the following possibilities for (S,L).
• S = A7 or PSL2(7). This case is ruled out since Aut(S) = S · 2 contains no subgroup of order

34.
• (S,L) = (PSL3(4), 6 ·PSL3(4)). This case is again ruled out since Aut(S) contains no subgroup

of order 34.
• (S,L) = (J2, 2 · J2). In this case, Q(ϕ) ⊇ Q(ϕ|L) = Q(

√
5), a contradiction.

• (S,L) = (PSU4(3), 61 · PSU4(3)). In this case, we have Z(G) = Z(L) = C6 by (21.2.1). Since
7 - |Out(S)|, the element g0 of order 7 lies in the inverse image L of S in G, hence Ggeom = L by
Theorem 5.1.

(ii) Now we turn our attention to H := Garith,k of S7,2 (also see line 17 of Table 4). By Proposition

7.1(i), the field of traces for elements in H is still Q(
√
−3) and so Z(H) = CH(G) = Z(G) = C6.

Recall that H/Z(H) ↪→ Aut(S) = S · D8. Furthermore, if H > G then H = G · 22 since the
central involution 21 of Out(S) = D8 does not preserve ϕ|G, see [Atlas], and any subgroup of order
4 of Out(S) must contain 21. Thus H/G ↪→ C2. Next, Proposition 7.2 shows that Garith,k has

determinant (−1)deg while acting on S7,2. It follows that H = G if 2|deg(k/F3) and H = G · 22

otherwise. �

Theorem 21.3. The local system H := Hyp(Char×7 ;Char4 r {1}) in characteristic p = 3 has finite
geometric monodromy group.

Proof. We need to show:

V (7x) + V (−4x) ≥ 1

2
.

Using the fact that V ( i
28) = V ( 26i

36−1
) = 1

12 [26i] for 1 ≤ i ≤ 27 we check that the inequality holds

for 28x ∈ Z. For all other values of x we can rewrite it, using that V (x) +V (−x) = 1 for x 6= 0 and
V (2x) = V (x) + V (x+ 1

2)− 1
2 [Ka7, §13], as

V (7x) ≤ V
(
x+

1

4

)
+ V

(
x+

3

4

)
+ V

(
x+

1

2

)
+ V (x)− 1.

Following §9, it suffices to prove

[7x] ≤
[
x+

3r − 1

4

]
+

[
x+

3(3r − 1)

4

]
+

[
x+

3r − 1

2

]
+ [x]− 2r + 1

for every r ≥ 1 multiple of r0 = 2 and every 0 ≤ x ≤ 3r−1. Notice that, in this case, multiplication
by 3 permutes γ1 = 1

4 and γ2 = 1
4 and fixes γ3 = 1

2 and γ4 = 0, so we can take r1 = 1. Then, with

the notation of §9, we have (32 − 1)γ1 = 023, hj = 23, 03, 13 and h2,j = 023, 203, 113 for j = 1, 2, 3
respectively. We will prove that

[7x] ≤ [x+ hr,1] + [x+ hr,2] + [x+ hr,3] + [x]− 2r + 1

for every r = 2k ≥ 2 and every 0 ≤ x ≤ 2r − 1. For r ≤ 6 we check it by computer. For r > 6
we proceed by induction as described in §9, proving first the following cases by splitting off the last
digits of x. We will actually prove the following sharper inequality

[7x] ≤ [x+ hr,1] + [x+ hr,2] + [x+ hr,3] + [x]− 2r

as long as the last two digits of x are not 12. If we split x as 3sy+ z then, for the induction step to
work in the proof of the sharper inequality, we need ∆(s, z)− 2

∑
j vj + 2

∑
i ui ≥ 1 instead of 0 if
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the last two digits of y are 12 but the last two digits of x are not. Moreover, if the last two digits
of x are 12 but those of y are not, then it suffices with ∆(s, z)− 2

∑
j vj + 2

∑
i ui ≥ −1.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 2
∑

j vj + 2
∑

i ui

0 1 0 1 0 0 1
01,11 1 1 0 ≥ 0 0 ≥ 0

02 1 2 1 ≥ 0 0 ≥ 1
0021,1021 3 021 0 ≥ 0 0 ≥ 0

012 3 012 2 ≥ 0 0 ≥ 2
0112 3 112 1 ≥ 0 0 ≥ 1

01212,12212,21212,22212 3 212 0 ≥ 1 ≤ 1 ≥ 0
00212 5 00212 0 0 0 0
010212 6 010212 0 0 0 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c4 = c′4 corresponding to γ6 = 0, since it is always 0). Here, in
order to prove the sharper inequality, if the last two digits of z are 12 but those of z′ are not, we
need ∆(s′, z′) ≤ ∆(s, z) + 1. If the last two digits of z′ are 12 but those of z are not, we need
∆(s′, z′) ≤ ∆(s, z)− 1.

z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 = c′1 c2 = c′2 c3 = c′3
2021 4 212 3 1 0 12 1 1 1
121 3 20 2 3 2 11 1 0 1
0221 4 1 1 3 0 2 0 1 0
1221 4 20 2 4 2 11 0 1 1
2221 4 221 3 5 4 20 1 1 1
1112 4 112 3 1 1 10 0 1 1
2112 4 212 3 0 0 12 1 1 1

110212 6 11021 5 3 4 10 0 1 0
210212 6 21021 5 0 1 12 1 1 1
20212 5 2021 4 0 1 12 1 1 1
11212 5 1120 4 2 2 10 1 0 1
02212 5 1000 4 2 3 2 1 0 0
022 3 10 2 3 1 2 1 0 0
122 3 20 2 4 2 11 1 0 1
222 3 221 3 5 4 20 1 1 1

�

Theorem 21.4. The local system H = Hyp(Char×7 ;Char4 r {1}) in characteristic p = 3 has geo-
metric monodromy group Ggeom = 61 ·PSU4(3). Furthermore, over any finite extension k of F3, the
descent S7,4 of H, see Proposition 7.2, has arithmetic monodromy group Garith,k equal to Ggeom if
2| deg(k/F3) and Ggeom · 22 if 2 - deg(k/F3).

Proof. (i) By Theorem 21.3, G = Ggeom is finite. Let ϕ denote the character of the representation
Φ : G→ GL(V ) of G realizing H. By the construction of H and Corollary 6.2(ii), the field of values
Q(ϕ) := Q(ϕ(g) | g ∈ G) is Q(

√
−3). It is clear that H is not Kummer induced. Furthermore,

the shape of the “upstairs” and “downstairs” characters of H shows by Proposition 3.7(ii) that
it is not Belyi induced. Hence, by Theorem 3.6, (G,V ) satisfies (S+). As D = dim(V ) = 6, G
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must be almost quasisimple by Lemma 3.1. Next, since the cyclic group Z(G) acts via scalars and
Q(ϕ) = Q(

√
−3), we have that

(21.4.1) Z(G) ↪→ C6.

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for L :=

E(G) = G(∞). Then V |L is irreducible by Lemma 3.1, and so CG(L) = Z(G) by Schur’s lemma.
Furthermore, as ō(g0) = 7 for a p′-generator g0 of the image of I(0) in G, we have C7 ↪→ G/Z(G) ≤
Aut(S). Moreover, the image Q of P (∞) is non-abelian of order divisible by 33 by Proposition
5.9(ii), and Q ↪→ G/Z(G) by Proposition 5.6(i). Now we can apply the main result of [HM] to
arrive at the following possibilities for (S,L).
• S = A7 or PSL2(7). This case is ruled out since Aut(S) = S · 2 contains no subgroup of order

33.
• S = L = SU3(3). Since 7 - |Out(S)|, the element g0 of order 7 lies in the inverse image S×Z(G)

of S in G, whence g0 ∈ S by (21.4.1). It follows that Ggeom = S by Theorem 5.1. But this is a
contradiction since Q(ϕ) would have been Q in this case.
• (S,L) = (PSL3(4), 6 · PSL3(4)). In this case, we have Z(G) = Z(L) = C6 by (21.4.1). Since

7 - |Out(S)|, the element g0 of order 7 lies in the inverse image L of S in G, hence Ggeom = L by
Theorem 5.1. Now using [GAP] we can check that the restriction of ϕ to 2′-elements of G yields
a reducible 2-Brauer character. But this is a contradiction, since a reduction modulo ` = 2 of the
representation Φ is absolutely irreducible by Theorem 6.12.
• (S,L) = (J2, 2 · J2). In this case, Q(ϕ) ⊇ Q(ϕ|L) = Q(

√
5), a contradiction.

• (S,L) = (PSU4(3), 61 · PSU4(3)). In this case, we have Z(G) = Z(L) = C6 by (21.4.1). Since
7 - |Out(S)|, the element g0 of order 7 lies in the inverse image L of S in G, hence Ggeom = L by
Theorem 5.1.

(ii) To determine Garith,k we can use the same arguments of the final paragraph of Theorem 21.2,
with either one of the two descents listed in Table 4, line 18. �

22. The symplectic group Sp6(2)

Theorem 22.1. The local system H := Hyp(Char5 t Char×3 ; ξ2) in characteristic p = 7 has finite
geometric monodromy group.

Proof. We need to show:

V (3x) + V (5x)− V (x) + V

(
−x− 1

2

)
≥ 1

2
.

Using the fact that V ( i
30) = V ( 80i

74−1
) = 1

24 [80i] for 1 ≤ i ≤ 29 we check that the inequality holds

for 30x ∈ Z. For all other values of x we can rewrite it, using that V (x) + V (−x) = 1 for x 6= 0, as

V (3x) + V (5x) ≤ V
(
x+

1

2

)
+ V (x) +

1

2
.

Following §9, it suffices to prove

[3x] + [5x] ≤
[
x+

7r − 1

2

]
+ [x] + 3r + 6

for every r ≥ 1 and every 0 ≤ x ≤ 7r − 1. For r ≤ 3 we check it by computer. For r > 3 we proceed
by induction as described in §9, proving first the following cases by splitting off the last digits of x:



RIGID LOCAL SYSTEMS AND SPORADIC SIMPLE GROUPS 87

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 6
∑

j vj + 6
∑

i ui

0,1,2,3 1 0,1,2,3 ≥ 0 ≥ 0 0 ≥ 0
a4, a5, a6; a = 0, 1, 2 2 a4, a5, a6 ≥ 0 ≥ 0 0 ≥ 0

44 1 4 −6 ≥ 1 0 ≥ 0
a54, a64; a = 0, 1, 2 3 a54, a64 ≥ 0 ≥ 0 0 ≥ 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c2 = c′2 corresponding to γ2 = 0, since it is always 0).

z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 b2 = b′2 c1 = c′1
34,35,36 2 4 1 ≥ −6 −6 1 2 1
354,364 3 34 2 −6 −6 1 2 1
454,464 3 51 2 0 0 2 3 1

554,564,654,664 3 64 2 ≥ −6 −6 2 4 1
45,46 2 5 1 6 0 2 3 1

55,56,65,66 2 6 1 ≥ 0 0 2 4 1

�

Theorem 22.2. (i) The local system H = Hyp(Char5 t Char×3 ; ξ2) in characteristic p = 7 has
geometric monodromy group Ggeom = Sp6(2).

(ii) The sheaf H1 := H⊗ Lξ2 has geometric monodromy group Ggeom,H1 = Sp6(2)× C2. Further-
more, H1 has a descent H′1 to F7 with arithmetic monodromy group Garith,k,H′1 = Ggeom,H1

over any finite extension k of F7.

Proof. (i) By Theorem 22.1, G = Ggeom is finite. Let ϕ denote the character of the representation
G → GL(V ) of G realizing H. By the construction of H and Corollary 6.2(i), the field of values
Q(ϕ) := Q(ϕ(g) | g ∈ G) is Q. It is clear that H is not Kummer induced. Furthermore, the shape
of the “upstairs” and “downstairs” characters of H shows by Proposition 3.7(ii) that it is not Belyi
induced. Hence, by Theorem 3.6, (G,V ) satisfies (S+). Next, since the cyclic group Z(G) acts via
scalars and Q(ϕ) = Q, we have that

(22.2.1) Z(G) ↪→ C2.

Also, ō(g0) = 15 for a p′-generator g0 of the image of I(0) in G, and so C15 ↪→ G/Z(G). Now,
if we are in case (c) of Lemma 3.1, then G contains an irreducible 7-subgroup E of order 73

with CG(E) = Z(G) and G/Z(G) embeds in 72 · SL2(7). It follows from (22.2.1) that 5 - |G|, a
contradiction. Hence, G must be almost quasisimple by Lemma 3.1.

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for L :=

E(G) = G(∞). Then V |L is irreducible by Lemma 3.1, and so CG(L) = Z(G) by Schur’s lemma.
Now we can apply the main result of [HM] to arrive at the following two possibilities for (S,L).
• S = L = A8. Since G/Z(G) ↪→ Aut(S) and 15 is coprime to |Out(S)|, the element g0 of order

15 must belong to the inverse image S × Z(G) of S in G. Using (22.2.1), we then see that g0 ∈ S,
and so G = S by Theorem 5.1. Thus G ∼= SL4(2), and so dimWild ≤ 4 by [KT5, Theorem 4.14], a
contradiction.
• S = L = Sp6(2). Again, since 15 is coprime to |Out(S)| and |Z(G)|, the element g0 of order 7

must lie in S, hence Ggeom = S by Theorem 5.1.

(ii) By Theorem 7.5, H1 has a descent H′1 = (H1)00 to F7, for which any element in Garith,k,H′1
still has trace in Q over any finite extension k of F7, with (H1)0 given in Table 4, line 19. Hence,
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Z(Ggeom,H1) ≤ Z(Garith,k,H′1) ≤ C2. Next, if g̃0 generates the image of I(0) in G1 := Ggeom,H1 , then

note that g̃15
0 acts as the scalar −1 on H1, whence we now have

Z(Ggeom,H1) = Z(Garith,k,H′1) = C2.

By Lemma 5.12, G1/Z(G1) ∼= G/Z(G) = S, and G
(∞)
1 = G(∞) ∼= S. Next, since S already induces

the full automorphism group of S CGarith,k,H′1 , we conclude that

Garith,k,H′1 = Ggeom,H1 = Z(Ggeom,H1)S = Sp6(2)× C2.

�

Theorem 22.3. The local system H2 := Hyp(Char×15;Char2) in characteristic p = 7 has geometric
monodromy group Ggeom,H2 = 2 · Sp6(2). Moreover, H2 has a descent H′2 to F7 with arithmetic
monodromy group Garith,k,H′2 = Ggeom,H2 over any finite extension k of F7.

Proof. (i) The sheaf H in Theorem 22.2 gives rise to a surjection φ : π1(Gm/Fp) � S = Sp6(2)

together with an irreducible representation Φ : S → GL6(Q`). Also, consider the surjection

π : Ŝ = 2 · Sp6(2)� S

with kernel Ker(π) ∼= C2. The obstruction to lifting φ to a homomorphism $ : π1(Gm/Fp) → Ŝ

lies in the group H2(Gm/Fp,Ker(π)) = 0, the vanishing because open curves have cohomological

dimension ≤ 1, cf. [SGA, Cor. 2.7, Exp. IX and Thm. 5.1, Exp. X]. Since Ŝ contains no subgroup

isomorphic to S, we conclude that $ is also surjective. Now we can inflate Φ to a representation Φ̂
of Ŝ with kernel C2. We also consider the faithful 8-dimensional representation Ψ : Ŝ → GL8(Q`)
and note that

Trace(Ψ(h)) = 1 + Trace(Φ̂(h))

for all 7-elements h ∈ Ŝ. Applying [KT5, Theorem 5.1], we now see that Ψ ◦ $ gives rise to a

hypergeometric sheaf H̃ of type (8, 2), still in characteristic p = 7, with C7 being the image of
P (∞), and with

(22.3.1) Ggeom,H̃
∼= Ψ(Ŝ) ∼= Ŝ.

Let g0 be a p′-generator of the image of I(0) in S and let g∞ be a p′-generator of I(∞) modulo

P (∞) in S. Also, let h0 ∈ Ŝ, respectively h∞ ∈ Ŝ be an inverse image of g0, respectively of g∞.

The shape of H tells us by Proposition 5.8 that the spectrum of Φ̂(h∞) = Φ(g∞) consists of all 6th

roots of some α ∈ C× and −1 (counting multiplicities). Thus 6|o(h∞) and it has trace −1 in Φ̂.
It follows that h∞ belongs to class 6g or 6h in the notation of [GAP]. Likewise, the spectrum of
Ψ(h∞) consists of all 6th roots of some β ∈ C× and two more roots of unity γ 6= δ ∈ C× (counting
multiplicities). Using [GAP] we can now see that β = 1 and {γ, δ} = {1,−1}, which means that

the two “downstairs” characters of H̃ are 1 and ξ2. Next, 15|o(h0), so h0 belongs to class 15a or
30a in the notation of [GAP], and so inspecting the spectrum of Ψ(h0) we see that the “upstairs”

characters of H̃ are either X1 := Char×15, or X2 := Char×30 = ξ2 ·X1. We conclude that either

(22.3.2) H̃ ∼= H2,

or

(22.3.3) H̃ ∼= H2 ⊗ Lξ2 .
Because of (22.3.1), we are certainly done in the case of (22.3.2). Suppose we are in the case of

(22.3.3) and thus Ggeom,H2⊗Lξ2 = Ŝ by (22.3.1). Now we consider H := Ggeom,H2 . By Lemma 5.12,

H/Z(H) ∼= Ŝ/Z(Ŝ) = S and H(∞) ∼= Ŝ(∞) = Ŝ. Also, the field of traces for H2 is again Q by
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Corollary 6.2(i), hence we have Z(H) ≤ C2. We conclude that H ∼= 2 ·Sp6(2), and so we again have
Ggeom,H2

∼= 2 · Sp6(2).

(ii) By Theorem 7.5, H2 has a descent H′2 = (H2)00 to F7, for which any element in Garith,k,H′2
still has trace in Q over any finite extension k of F7, with (H2)0 given in Table 4, line 20. Hence,
Z(Garith,k,H′2) = CGarith,k,H′2

(Ggeom,H2) = Z(Ggeom,H2) = C2. As Out(S) = 1 [Atlas], we conclude

that Garith,k,H′2 = Ggeom,H2 . �

23. The orthogonal group Ω+
8 (2)

Theorem 23.1. The local system Kl(Char×9 t Char2) in characteristic p = 5 has finite geometric
monodromy group.

Proof. We need to show:

V (2x) + V (9x)− V (3x) ≥ 0.

Using the fact that V ( i
18) = V ( 868i

56−1
) = 1

24 [868i] for 1 ≤ i ≤ 17 we check that the inequality holds

for 18x ∈ Z. For all other values of x we can rewrite it, using that V (x) +V (−x) = 1 for x 6= 0 and
V (3x) = V (x) + V (x+ 1

3) + V (x+ 2
3)− 1 [Ka7, §13], as

V (2x) + V (9x) ≤ V
(
x+

1

3

)
+ V

(
x+

2

3

)
+ V (x).

Following §9, it suffices to prove

[2x] + [9x] ≤
[
x+

5r − 1

3

]
+

[
3x+

2(5r − 1)

3

]
+ [x]

for every r ≥ 1 multiple of r0 = 2 and every 0 ≤ x ≤ 5r−1. Notice that, in this case, multiplication
by 5 permutes γ1 = 1

3 and γ2 = 2
3 and fixes γ3 = 0, so we can take r1 = 1. Then, with the notation

of §9, we have (52 − 1)γ1 = 135, h1 = 3, h2 = 1 and h2,j = 132, 312 for j = 1, 2 respectively. For
γ3 = 0 it is clear that h3 = hr,3 = 0 for every r. We will prove that

[2x] + [9x] ≤ [x+ hr,1] + [x+ hr,2] + [x]

for every r ≥ 1 and every 0 ≤ x ≤ 5r − 1. For r ≤ 3 we check it by computer. For r > 3 we proceed
by induction as described in §9, proving first the following cases by splitting off the last digits of x:

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 4
∑

j vj + 4
∑

i ui

0,1 1 0,1 ≥ 0 ≥ 0 0 ≥ 0
a2, a3; a 6= 3 1 2,3 0 ≥ 0 0 ≥ 0
a4; a 6= 1, 3 1 4 4 ≥ 0 0 ≥ 4

a32, a33, a34; a 6= 1, 3 2 32,33,34 8 ≥ 0 0 ≥ 8

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c3 = c′3 corresponding to γ3 = 0, since it is always 0).

z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 b2 = b′2 c1 = c′1 c2 = c′2
132,133,134 3 14 2 8 4 0 3 1 0
332,333,334 3 33 2 12 8 1 11 1 1

14 2 2 1 4 0 0 3 0 1

�
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Theorem 23.2. The local system Kl(Char7 t {ξ2}) in characteristic p = 5 has finite geometric
monodromy group.

Proof. We need to show:

V (2x) + V (7x)− V (x) ≥ 0.

Using the fact that V ( i
14) = V (1116i

56−1
) = 1

24 [1116i] for 1 ≤ i ≤ 13 we check that the inequality holds

for 14x ∈ Z. For all other values of x we can rewrite it, using that V (x) + V (−x) = 1 for x 6= 0, as

V (2x) + V (7x) ≤ V (x) + 1.

Following §9, it suffices to prove

[2x] + [7x] ≤ [x] + 4r + 4

for every r ≥ 1 and every 0 ≤ x ≤ 5r − 1. For r ≤ 5 we check it by computer. For r > 5 we proceed
by induction as described in §9, proving first the following cases by splitting off the last digits of x:

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 4
∑

j vj + 4
∑

i ui

0,1,3,4 1 0,1,3,4 ≥ 0 ≥ 0 0 ≥ 0
02,42 2 02,42 0 ≥ 0 0 ≥ 0
012 3 012 0 ≥ 0 0 ≥ 0

0412,3412 4 0412,3412 0 ≥ 0 0 ≥ 0
a2412; a 6= 3 5 a2412 0 ≥ 0 0 ≥ 0

04412,24412,34412 5 04412,24412,34412 0 ≥ 0 0 ≥ 0
22 1 2 −4 ≥ 1 0 ≥ 0
32 3 a32 ≥ 0 ≥ 0 0 ≥ 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c1 = c′1 corresponding to γ1 = 0, since it is always 0).

z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 b2 = b′2
112 3 12 2 −4 −4 0 1
212 3 22 2 −4 −4 0 3
312 3 32 2 −4 −4 1 4
1412 4 202 3 −4 −4 0 2
32412 5 3222 4 −4 −4 1 4
14412 5 1412 4 −4 −4 0 2
44412 5 4412 4 −4 −4 1 11

�

Theorem 23.3. Each of the two hypergeometric sheaves K1 := Kl(Char×9 t Char2) and K2 :=
Kl(Char7 t {ξ2}), both in characteristic p = 5, has geometric monodromy group Ggeom = 2·Ω+

8 (2)·2,
with Ggeom/Z(Ggeom) ∼= O+

8 (2). Furthermore, each Ki with i = 1, 2 has a descent K′i to F5 with
arithmetic monodromy group Garith,k = Ggeom over any finite extension k of F5.

Proof. (i) By Theorems 23.1 and 23.2, G = Ggeom is finite. Let ϕ denote the character of the
representation Φ : G → GL(V ) of G realizing Ki with i = 1 or 2. By the construction of H and
Corollary 6.2(i), the field of values Q(ϕ) := Q(ϕ(g) | g ∈ G) is precisely Q. It is clear that H
is not Kummer induced. Furthermore, since Ki is Kloosterman, it is not Belyi induced. Hence,
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by Theorem 3.3, (G,V ) satisfies (S+). Next, since the cyclic group Z(G) acts via scalars and
Q(ϕ) = Q, we have that

(23.3.1) Z(G) ↪→ C2.

Also, e := ō(g0) = 18, respectively 14, for a p′-generator g0 of the image of I(0) in G, and so
Ce ↪→ G/Z(G). Moreover, the image Q of P (∞) is elementary abelian of order 52 by Proposition
5.8(iv), and Q ↪→ G/Z(G) by Proposition 5.6(ii). Now, if we are in case (c) of Lemma 3.1, then
G contains an irreducible 2-subgroup E of order 27 with CG(E) = Z(G) and G/Z(G) embeds
in 26 · Sp6(2). It follows from (23.3.1) that 52 - |G|, a contradiction. Hence, G must be almost
quasisimple by Lemma 3.1.

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for L :=

E(G) = G(∞). Then V |L is irreducible by Lemma 3.1, and so CG(L) = Z(G) by Schur’s lemma,
and furthermore Z(G) ≤ C2 by (23.3.1). Now we can apply the main result of [HM] to arrive at the
only possibility (S,L) = (Ω+

8 (2), 2 · Ω+
8 (2)); in particular Z(G) = CG(L) = Z(L) = C2 by (23.3.1).

Using [GAP] we can now check that no element of central order divisible by 7 in L can have simple
spectrum in Φ. Hence, when i = 2 we must have that g0 /∈ L. Furthermore, if u ∈ L has central
order divisible by 9 and simple spectrum in Φ, then it has trace ±1. As Trace(Φ(g0)) = 0 for i = 1,
we also have g0 /∈ L when i = 1 as well. Thus in both cases, g0 /∈ L and so G > L. In particular, the
subgroup G/Z(G) of Aut(S) = S · S3 contains S properly. As the (unique) 8-dimensional faithful
representation of L is not invariant under an outer automorphism of order 3, we conclude that
G = L · 2, with G/Z(G) = S · 2 ∼= O+

8 (2), as stated.

(ii) By Theorem 7.5, Ki has a descent K′i = (Ki)00 to F5, for which any element in Garith,k,K′i
still has trace in Q over any finite extension k of F5, with (Ki)0 given in Table 4, line 21 (where
we can use either one of the two given choices) for i = 1 and line 22 for i = 2. Hence, we now
have Z(Garith,k,K′i) = CGarith,k,K′

i
(L) = Z(L) = C2. As Out(S) = S3 [Atlas] and the (unique) 8-

dimensional faithful representation of L is not invariant under any outer automorphism of order 3,
we have that Garith,k,K′i/Z(L) = S · 2 = Ggeom/Z(L), and so Garith,k,K′i = Ggeom. �

24. The exceptional group G2(3)

Theorem 24.1. The local system H := Hyp(Char18 r {1, ξ6, ξ
2
6 , ξ

3
6}; ξ4, ξ̄4) in characteristic p = 13

has finite geometric monodromy group.

Proof. We need to show:

V (18x)− V (x)− V
(
x+

1

6

)
− V

(
x+

2

6

)
− V

(
x+

3

6

)
+ V (−4x)− V (−2x) + 2 ≥ 0

and

V (18x)− V (x)− V
(
x− 1

6

)
− V

(
x− 2

6

)
− V

(
x− 3

6

)
+ V (−4x)− V (−2x) + 2 ≥ 0.

The change of variable x 7→ x + 1
2 interchanges both inequalities, so it is enough to prove the

second one. Using the fact that V ( i
18) = V ( 122i

133−1
) = 1

36 [122i] for 1 ≤ i ≤ 17 we check that the

inequality holds for 18x ∈ Z. For all other values of x we can rewrite it, using that V (x)+V (−x) = 1
for x 6= 0 and V (2x) = V (x) + V (x+ 1

2)− 1
2 [Ka7, §13], as

V (18x) ≤ V
(
x+

1

6

)
+ V

(
x+

2

6

)
+ V

(
x+

3

6

)
+ V

(
x+

1

4

)
+ V

(
x+

3

4

)
+ V (x)− 2
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and, following §9, it suffices to prove

[18x] ≤
[
x+

13r − 1

6

]
+

[
x+

2(13r − 1)

6

]
+

[
x+

3(13r − 1)

6

]
+

[
x+

13r − 1

4

]
+

[
x+

3(13r − 1)

4

]
+ [x]− 24r

for every r ≥ 1 and every 0 ≤ x ≤ 13r−1. For r ≤ 3 we check it by computer. For r > 3 we proceed
by induction as described in §9, proving first the following cases by splitting off the last digits of x.
We denote the 13-adic digits by 0,1,2,3,4,5,6,7,8,9,A,B,C.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 12
∑

j vj + 12
∑

i ui

0,1,2,3 1 0,1,2,3 ≥ 0 ≥ 0 0 ≥ 0
a4, a5, a6; a 6= 3 1 4,5,6 ≥ 0 ≥ 0 0 ≥ 0
a34; a 6= 3 2 34 0 ≥ 0 0 ≥ 0

a7, a8; a 6= 3, 6 1 7,8 ≥ 0 ≥ 0 0 ≥ 0
a9; a 6= 3, 6, 8 1 9 0 ≥ 0 0 ≥ 0
aA; a 6= 3, 6, 8, 9 1 A 0 ≥ 0 0 ≥ 0

aB, aC; a 6= 3, 6, 8, 9,A 1 B,C 0 ≥ 0 0 ≥ 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c6 = c′6 corresponding to γ3 = 6, since it is always 0; also we have
b1 = b′1, c1 = c′1, c2 = c′2, c3 = c′3, c4 = c′4, and c5 = c′5):

z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) b1 c1 c2 c3 c4 c5

334 3 34 2 0 0 4 0 0 0 0 1
35,36,37 2 34 2 ≥ 0 0 4 0 0 0 0 1

38,39,3A,3B,3C 2 4 1 ≥ 0 0 5 0 0 0 0 1
67,68,69,6A,6B,6C 2 7 1 ≥ 0 0 9 0 0 1 0 1

89,8A,8B,8C 2 9 1 ≥ 0 0 C 0 1 1 0 1
9A,9B,9C 2 A 1 0 0 10 0 1 1 1 1
AB,AC 2 B 1 0 0 12 1 1 1 1 1

�

Theorem 24.2. The local system H := Hyp(Char18 r {1, ξ6, ξ
2
6 , ξ

3
6}; ξ4, ξ̄4) in characteristic p = 13

has geometric monodromy group Ggeom = Aut(G2(3)) = G2(3) · 2. Furthermore, H has a descent
H′ to F13, which over any extension k of F134 has arithmetic monodromy group Garith,k = Ggeom.

Proof. (i) By Theorem 24.1, G = Ggeom is finite. Let ϕ denote the character of the representation
G→ GL(V ) of G realizing H. By the construction of H, the field of values Q(ϕ) := Q(ϕ(g) | g ∈ G)
contains

√
−3; indeed, a generator g0 of the image of I(0) in G has trace

ϕ(g0) = −(1 + ζ6 + ζ2
6 + ζ3

6 ) = −
√
−3.

In fact, applying Proposition 6.1(iii) we see that Q(ϕ) = Q(
√
−3). It is clear that H is not Kummer

induced. Furthermore, the shape of the “upstairs” and “downstairs” characters of H shows by
Proposition 3.7(ii) that it is not Belyi induced. Hence, by Theorem 3.5, (G,V ) satisfies (S+). As
D = dim(V ) = 14, G must be almost quasisimple by Lemma 3.1. Next, since the cyclic group Z(G)
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acts via scalars and Q(ϕ) = Q(
√
−3), we have that Z(G) ↪→ C6. In fact, as H has rank 14 and

geometric determinant Lξ2 , it follows that

(24.2.1) Z(G) ↪→ C2, and G 6= [G,G].

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for L :=

E(G) = G(∞). Then V |L is irreducible by Lemma 3.1, and so CG(L) = Z(G) by Schur’s lemma.
Furthermore, as ō(g0) = 18 we have C18 ↪→ G/Z(G) ≤ Aut(S). Moreover, the image Q of P (∞)
is cyclic of order 13 by Proposition 5.8(iv), and Q ↪→ G/Z(G) by Proposition 5.6(i). Now we can
apply the main result of [HM] to arrive at the following possibilities for (S,L).

• S = L = A15, and V |L is just the deleted permutation module S(14,1)|L. Since ϕ(g0) = −
√
−3,

not an integer multiple of a root of unity, this case is rule out by Lemma 3.8.
• S = PSL2(13) or PSL2(27). These two cases are impossible since Aut(S) contains no element

of order 18.
• S = L = 2B2(8). In this case, Q(ϕ) ⊇ Q(ϕ|L) = Q(i), again a contradiction.
• (S,L) = (PSp6(3), Sp6(3). Here we have that Z(L) = Z(G) = CG(L) = C2 by (24.2.1).

Furthermore, G/Z(G) = S since the outer automorphism of S does not fix the equivalence of any
irreducible Weil representation of degree 14 of L. Thus G = L. Now, using [GAP] we can check
that any element of order 18 in L with trace ±

√
−3 belongs to classes 18q, 18r, 18s, and 18t in the

notation of [GAP], and no such element can have simple spectrum in the underlying representation.
This contradicts the existence of the element g0.
• S = L = G2(3). Recall that we have Z(G) = CG(S) ≤ C2 by (24.2.1). Furthermore, the element

g0 of central order 18 does not lie in Z(G)SCG, hence G > L. Now S < G/Z(G) ≤ Aut(S) = S ·2,
and so G = (Z(G)× S) · 2. Now, Q ∼= C13 is contained in S, and so G/S is cyclic by Theorem 5.3.
It follows that Z(G) = 1 and Ggeom = G2(3) · 2.

(ii) For H′, by Theorem 7.5 we can take the sheaf listed in Table 4, line 23. Over any fi-
nite extension k of F132 , it has Q(

√
−3) as the field of traces, hence Z(Garith,k) ↪→ C6. Next,

CGarith,k
(S) = Z(Garith,k), and Ggeom already induces the full automorphism group of S and

has trivial center. Hence Garith,k/Z(Garith,k) ∼= Ggeom, and so Garith,k = Z(Garith,k)Ggeom and

Garith,k/Ggeom
∼= Z(Garith,k). Thus, modulo Ggeom, any element in Garith,k is zdeg(k/F132 ) for some

generator z of Z(Garith,F132
). In particular, if v ∈ F132 , then Frobv,F132

= zhv for some hv ∈ Ggeom.

Now, a computation using [Mag] reveals that, for some v ∈ F132 , Frobv,F132
has trace 2. On the

other hand, z acts on H′ as a 6th root of unity α ∈ C, and the only such α for which 2α−1 occurs
as the trace of hv ∈ Ggeom is ±1, see [GAP]. It follows that o(z) = o(α) ≤ 2. In particular,
Garith,k = Ggeom when k ⊇ F134 . �

25. The exceptional group G2(4) and its subgroup SU3(4)

Theorem 25.1. The local system Hyp(Char×13;Char×3 ) in characteristic p = 2 has finite geometric
monodromy group.

Proof. We need to show:

V (13x) + V (−3x) ≥ 1

2

Using the fact that V ( i
39) = V ( 105i

212−1
) = 1

12 [105i] for 1 ≤ i ≤ 38 we check that the inequality holds
for 39x ∈ Z. For all other values of x, we can rewrite it as

V (13x) ≤ V
(
x+

1

3

)
+ V

(
x+

2

3

)
+ V (x)− 1

2
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and, following §9, it suffices to prove

[13x] ≤
[
x+

2r − 1

3

]
+

[
x+

2(2r − 1)

3

]
+ [x]− r

2
+

3

2

for every r ≥ 1 divisible by r0 = 2 and every 0 ≤ x ≤ 2r−1. Notice that, in this case, multiplication
by 2 permutes γ1 = 1

3 and γ2 = 2
3 and fixes γ3 = 0, so we can take r1 = 1. Then, with the notation

of §9, we have (22 − 1)γ1 = 012, hj = 1, 0 and h2,j = 01, 10 for j = 1, 2 respectively. We will prove
that

[13x] ≤ [x+ hr,1] + [x+ hr,2] + [x]− r

2
+

3

2
for every r ≥ 1 and every 0 ≤ x ≤ 2r − 1. For r ≤ 12 we check it by computer. For r > 12 we
proceed by induction as described in §9, proving first the following cases by splitting off the last
digits of x.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)−
∑

j vj +
∑

i ui

0 1 0 1/2 0 0 ≥ 1/2
01 2 01 0 ≥ 0 0 ≥ 0

0011 4 0011 0 ≥ 0 0 ≥ 0
00011011 8 00011011 0 ≥ 0 0 ≥ 0

0010011011 10 0010011011 0 ≥ 0 0 ≥ 0
1010011011 8 10011011 −1 ≥ 2 0 ≥ 1

1011011 2 11 0 ≥ 2 2 ≥ 0
0000111011 10 0000111011 0 ≥ 0 0 ≥ 0

1000111011,1100111011 8 00111011 −1 ≥ 1 0 ≥ 0
000100111011 12 000100111011 0 ≥ 0 0 ≥ 0

ab0100111011; ab 6= 00 10 0100111011 −1 ≥ 3 0 ≥ 2
10111011,11111011 4 1011 0 ≥ 1 1 ≥ 0

00111 5 00111 1/2 ≥ 0 0 ≥ 1/2
1111 2 11 0 ≥ 2 1 ≥ 1

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c3 = c′3 corresponding to γ3 = 0, since it is always 0):

z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 = c′1 c2 = c′2
01011 5 011 3 −1/2 −1/2 100 1 0

110011011 9 1101011 7 3/2 −1/2 1010 1 1
01111011 8 1000011 7 1 1/2 110 0 1
010111 6 011 3 1 −1/2 100 0 1
110111 6 111 3 2 1/2 1011 1 1

�

Theorem 25.2. The local system H := Hyp(Char×13;Char×3 ) in characteristic p = 2 has geometric
monodromy group Ggeom = 2 ·G2(4). Moreover, over any finite extension k of F4, the descent S13,3

of H has arithmetic monodromy group Garith,k = Ggeom.

Proof. (i) By Theorem 25.1, G = Ggeom is finite. Let ϕ denote the character of the representation
G → GL(V ) of G realizing H. By the construction of H and Corollary 6.2(ii), the field of values
Q(ϕ) := Q(ϕ(g) | g ∈ G) is Q, and ϕ has Frobenius-Schur indicator −1 by [Ka4, 8.8.1, 8.8.2] (i.e.
H is symplectically self-dual). It is clear that H is not Kummer induced. Furthermore, the shape
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of the “upstairs” and “downstairs” characters of H shows by Proposition 3.7(ii) that it is not Belyi
induced. Hence, by Theorem 3.6, (G,V ) satisfies (S+). As D = dim(V ) = 12, G must be almost
quasisimple by Lemma 3.1. Next, since the cyclic group Z(G) acts via scalars and Q(ϕ) = Q, we
have that

(25.2.1) Z(G) ↪→ C2.

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for L :=

E(G) = G(∞). Then V |L is irreducible by Lemma 3.1, and so CG(L) = Z(G) by Schur’s lemma.
Furthermore, for a generator g0 of the image of I(0) in G we have ō(g0) = 13, and so C13 ↪→
G/Z(G) ≤ Aut(S). Moreover, the image Q of P (∞) is elementary abelian of order 24 by Proposition
5.8(iv), and a p′-generator g∞ of the image of I(∞) modulo P (∞) in G has central order divisible
by 5 by Proposition 5.9(iii). In fact, since g∞ has eigenvalues ζ3 and ζ̄3 on the tame part Tame,
we have that ō(g∞) = 15. Furthermore, ϕ|L is irreducible, rational-valued, and of Frobenius-Schur
indicator −1. Now we can apply the main result of [HM] to arrive at the following possibilities for
(S,L).

• S = L = A13, and V |L is just the deleted permutation module S(12,1)|L. This case is however
impossible, since ϕ|L has Frobenius-Schur indicator 1. Likewise, we can rule out the cases of
L = 6 · Suz and Sp4(5).
• (S,L) = (PSL2(25),SL2(25)). In this case, Z(L) = Z(G) = CG(L) = C2 by (25.2.1). Since

G/Z(G) ≤ Aut(S) = S · 22, we see that the element g∞ of order 15 lies in L. But this is a
contradiction, since SL2(25) contains no element of order 15.
• S = L = SU3(4). Here, since S has index 4 in Aut(S) and Z(G) = CG(S) ≤ C2 by (25.2.1),

G/S is a 2-group, and so the element g0 of order 13 lies in S. It follows from Theorem 5.1 that
G = S. Now, using [GAP] we can check that any element of order divisible by 15 in S has trace 0,
whereas the element g∞ has trace 0 on Wild and −1 on Tame, i.e. ϕ(g∞) = −1, a contradiction.
• (S,L) = (G2(4), 2 · G2(4)). Recall that we have Z(L) = Z(G) = CG(L) = C2 by (24.2.1). As

G/Z(G) ≤ Aut(S) = S · 2, we see that the element g0 of order 13 lies in L. It follows from Theorem
5.1 that Ggeom = L = 2 ·G2(4).

(ii) Next, by Proposition 7.2, S13,3 is a descent of H to F2 (see also Table 4, line 24), and
over any finite extension k of F4, any element in Garith,k still has trace in Q. Since any element
in CGarith,k

(L) = Z(Garith,k) acts via scalars, which are then roots of unity in Q, we see that
CGarith,k

(L) = C2 = Z(L). Hence, if Garith,k > L = Ggeom, we see that some element of Garith,k

must induce an outer automorphism of L. In particular, some element g ∈ Garith,k induces the
same automorphism as an element h of class 16a of L · 2 (as listed in [GAP]). Let Φ denote the

representation of Garith,k on V , and extend Φ|L to a representation Φ̃ of L · 2. Then Φ̃(h−1)Φ(g)

centralizes Φ(L), whence Φ(g) = αΦ̃(h) for some α ∈ C×. As both g and h have finite order, α is

a root of unity. Hence |Trace(Φ(g))| = |Trace(Φ̃(h))| =
√

2, contradicting the fact that ϕ(g) ∈ Q.
Therefore we must have that Garith,k = L = Ggeom. �

Theorem 25.3. The local system K5 = Kl(Char16 r {1, ξ4
8 , ξ8, ξ

−1
8 }) in characteristic p = 5 has

finite monodromy.

Proof. We need to show:

V (16x)− V (x)− V
(
x+

1

2

)
− V

(
x+

1

8

)
− V

(
x− 1

8

)
≥ −2

and

V (16x)− V (x)− V
(
x+

1

2

)
− V

(
x+

3

8

)
− V

(
x− 3

8

)
≥ −2.
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These inequalities are equivalent via the change of variable x 7→ 5x, so we will focus on the first
one.

Using the fact that V ( i
16) = V ( 39i

54−1
) = 1

16 [39i] for 1 ≤ i ≤ 15 we check that the inequality holds
for 16x ∈ Z. For all other values of x, we can rewrite it as

V (16x) ≤ V
(
x+

1

2

)
+ V

(
x+

1

8

)
+ V

(
x− 1

8

)
+ V (x)− 1

and, via the change of variable x 7→ x+ 1
8 , as

V (16x) ≤ V
(
x+

1

8

)
+ V

(
x+

5

8

)
+ V

(
x+

1

4

)
+ V (x)− 1.

Following §9, it suffices to prove

[16x] ≤
[
x+

5r − 1

8

]
+

[
x+

5(5r − 1)

8

]
+

[
x+

5r − 1

4

]
+ [x]− 4r

for every r ≥ 1 divisible by r0 = 2 and every 0 ≤ x ≤ 5r−1. Notice that, in this case, multiplication
by 5 permutes γ1 = 1

8 and γ2 = 5
8 and fixes γ3 = 1

4 and γ4 = 0, so we can take r1 = 1. Then, with

the notation of §9, we have (52 − 1)γ1 = 035, (52 − 1)γ3 = 115, hj = 3, 0, 1 and h2,j = 035, 305, 115

for j = 1, 2, 3 respectively. We will prove that

[16x] ≤ [x+ hr,1] + [x+ hr,2] + [x+ hr,3] + [x]− 4r

for every r ≥ 1 and every 0 ≤ x ≤ 5r − 1. For r ≤ 3 we check it by computer. For r > 3 we proceed
by induction as described in §9, proving first the following cases by splitting off the last digits of x.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 4
∑

j vj + 4
∑

i ui

0,1 1 0,1 0 ≥ 0 0 ≥ 0
a2, a3; a 6= 4 1 2,3 0 ≥ 0 0 ≥ 0
a4; a 6= 3, 4 1 4 0 ≥ 0 0 ≥ 0

042,242 2 42 0 ≥ 0 0 ≥ 0
044,244 2 44 4 ≥ 0 0 ≥ 4

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c4 = c′4 corresponding to γ4 = 0, since it is always 0):

z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 = c′1 c2 = c′2 c3 = c′3
142,144 3 20 2 4 0 11 1 0 0
342,344 3 40 2 4 0 22 1 0 1
442,444 3 44 2 4 4 30 1 1 1

43 2 42 2 0 0 24 1 1 1
34 2 4 1 4 0 22 0 1 1

�

Theorem 25.4. The local system K13 = Kl(Char16 r {1, ξ4
8 , ξ8, ξ

−1
8 }) in characteristic p = 13 has

finite monodromy.

Proof. We need to show:

V (16x)− V (x)− V
(
x+

1

2

)
− V

(
x+

1

8

)
− V

(
x− 1

8

)
≥ −2

and

V (16x)− V (x)− V
(
x+

1

2

)
− V

(
x+

3

8

)
− V

(
x− 3

8

)
≥ −2.
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These inequalities are equivalent via the change of variable x 7→ 13x, so we will focus on the first
one.

Using the fact that V ( i
16) = V ( 1785i

134−1
) = 1

48 [1785i] for 1 ≤ i ≤ 15 we check that the inequality
holds for 16x ∈ Z. For all other values of x, we can rewrite it as

V (16x) ≤ V
(
x+

1

2

)
+ V

(
x+

1

8

)
+ V

(
x− 1

8

)
+ V (x)− 1

and, via the change of variable x 7→ x+ 1
8 , as

V (16x) ≤ V
(
x+

1

8

)
+ V

(
x+

5

8

)
+ V

(
x+

1

4

)
+ V (x)− 1.

Let us denote the 13-adic digits by 0,1,2,3,4,5,6,7,8,9,A,B,C. Following §9, it suffices to prove

[16x] ≤
[
x+

13r − 1

8

]
+

[
x+

5(13r − 1)

8

]
+

[
x+

13r − 1

4

]
+ [x]− 12r

for every r ≥ 1 divisible by r0 = 2 and every 0 ≤ x ≤ 13r − 1. Notice that, in this case,
multiplication by 13 permutes γ1 = 1

8 and γ2 = 5
8 and fixes γ3 = 1

4 and γ4 = 0, so we can take

r1 = 1. Then, with the notation of §9, we have (132 − 1)γ1 = 1813, (132 − 1)γ3 = 3313, hj = 8, 1, 3
and h2,j = 1813, 8113, 3313 for j = 1, 2, 3 respectively. We will prove that

[16x] ≤ [x+ hr,1] + [x+ hr,2] + [x+ hr,3] + [x]− 12r

for every r ≥ 1 and every 0 ≤ x ≤ 13r−1. For r ≤ 2 we check it by computer. For r > 2 we proceed
by induction as described in §9, proving first the following cases by splitting off the last digits of x.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 12
∑

j vj + 12
∑

i ui

0,1,2,3,4 1 0,1,2,3,4 0 ≥ 0 0 ≥ 0
a5, a6, a7, a8, a9; a 6=B 1 5,6,7,8,9 ≥ 0 ≥ 0 0 ≥ 0

aA, aB; a 6= 9,B 1 A,B ≥ 0 ≥ 0 0 ≥ 0
aC; a 6= 4,9,B 1 C 0 ≥ 0 0 ≥ 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c4 = c′4 corresponding to γ4 = 0, since it is always 0):

z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 = c′1 c2 = c′2 c3 = c′3
B5, . . . ,BC 2 C 1 ≥ 0 0 11 1 1 1
9A,9B,9C 2 A 1 ≥ 0 0 C 0 1 1

4C 2 5 1 0 0 6 0 1 0
�

Theorem 25.5. For p = 5 and p = 13, the local system Kp = Kl(Char16 r {1, ξ4
8 , ξ8, ξ

−1
8 }) in

characteristic p has Ggeom = (2 × SU3(4)) · 4, a maximal subgroup of 2 · G2(4) · 2. Furthermore,
Kp has a descent K′p to Fp2, which over any extension k of Fp2 has arithmetic monodromy group
Garith,k = Ggeom.

Proof. Because K = Kp is Kloosterman, it is not Belyi induced, and it is visibly not Kummer
induced. Hence, it is (S+) by Theorem 3.3. By Theorems 25.3 and 25.4, G = Ggeom is finite. Let ϕ
denote the character of the representation Φ : G→ GL(V ) of G realizing K. By the construction of
H and Corollary 6.2(i), the field of values Q(ϕ) := Q(ϕ(g) | g ∈ G) is precisely Q(

√
2). Moreover,

the representation is symplectic by [Ka4, 8.8.2], and

(25.5.1) Z(G) ↪→ C2.
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Also, ō(g0) = 16 for a p′-generator g0 of the image of I(0) in G, and so

(25.5.2) C16 ↪→ G/Z(G).

As dim(V ) = 12, G is almost quasisimple by Lemma 3.1. Let S denote the unique non-abelian

composition factor of G, so that S = L/Z(L) for L := E(G) = G(∞). Then V |L is irreducible by
Lemma 3.1, and so CG(L) = Z(G) by Schur’s lemma, and furthermore Z(G) ≤ C2 by (25.5.1).
Using (25.5.2), we can apply the main result of [HM] to arrive at the following two possibilities.
• (S,L) = (G2(4), 2 · G2(4)) and Z(G) = C2. Since L contains no element of central order 16,

(25.5.2) implies that G/Z(G) ∼= Aut(S), and so G = L · 2; in paricular, G has no subgroup of index
4. On the other hand, Theorem 6.10(e) and Corollary 6.11 (with (N,D) = (4, 3)), shows that G
has a subgroup of index 4, a contradiction.
• S = L = SU3(4). Since G/Z(G) contains elements of order 16 by (25.5.1), G/Z(G) ∼= Aut(S) ∼=

S · 4. If Z(G) = 1, then G ∼= Aut(S) has no symplectic irreducible representation of degree 12. So
Z(G) ∼= C2, and G ∼= (2× SU3(4)) · 4, which is a maximal subgroup of 2 ·G2(4) · 2.

A descent K′p of Kp over Fp2 is constructed using Theorem 7.7(i), and listed on line 40 for p = 5

and line 41 for p = 13 in Table 4. By Theorem 7.7(ii), the field of traces is still Q(
√

2); hence (25.5.1)
also holds for Garith,k. Thus Z(Garith,k) = C2 = Z(Ggeom) over any extension k of Fp2 . Since Ggeom

already induces the full automorphism group of L = SU3(4), we conclude that Garith,k = Ggeom. �

In light of Theorem 25.2, one may wonder if finite almost quasisimple groups with S = G2(4) can
admit hypergeometric sheaves in characteristic 6= 2. Our next result shows that this is impossible,
and thus [KT5, Theorem 7.3] holds for these groups.

Theorem 25.6. Let H be hypergeometric sheaf of type (D,m) with D > m in characteristic p, with
finite geometric monodromy group G = Ggeom. Suppose G is almost quasisimple, with S = G2(4)
as the unique non-abelian composition factor. Then p = 2 and D = 12.

Proof. (i) Let V = CD denote the representation realizing H, with G-character ϕ. By [KT5,

Theorem 6.6], D = 12, and ϕ is irreducible over L := G(∞) ∼= 2S. This implies that CG(L) = Z(G),
and G/Z(G) ↪→ Aut(S) = S · 2. As usual, let Q denote the image of P (∞) in G, and let g0 be a
generator of the image of I(0) in G.

Assume now that p 6= 2, 5, 13. By Proposition 5.6(iii), p divides |G/Z(G)|, hence p = 3 or p = 7.
Now, Z(G)L is a normal subgroup of index ≤ 2 in G (as |Out(S)| = 2), so we may assume that

(25.6.1) Q ≤ C ×R,
where C = Op(Z(G)) and R is a Sylow p-subgroup of L. Note that Q 6≤ Z(G) by Proposition 5.6,
hence Q contains some element g = zh with z ∈ C and 1 6= h ∈ R.

Consider the case p = 7. Then R = 〈h〉 ∼= C7, and the spectrum of h on V consists of all
nontrivial 7th roots of unity, each with multiplicity 2, see [GAP]. It follows that the tame part has
dimension m ≤ 2. This implies by Proposition 5.6(iv) that p - |Z(G)|, i.e. C = 1, and Q ∼= C7. But
this is a contradiction, because Q admits W = D −m ≥ 10 distinct linear characters on Wild by
Proposition 5.8.

Assume now that p = 3. Note that R ∼= 31+2
+ (see [Atlas]), and V |R is the sum of the two faithful

irreducible representations of R, each with multiplicity 2. As C acts via scalars on V , the same is
true for C ×R. Restricting further down to Q, we see that each irreducible constituent of V |Q has
even multiplicity. On the other hand, the Q-module Wild is multiplicity-free by Propositions 5.8
and 5.9, a contradiction.

(ii) The rest of the proof is to deal with the case where p ∈ {5, 13}. First we show that Q < L
and that H must be Kloosterman. Indeed, Q 6≤ Z(G) by Proposition 5.6. Next, CG(L) = Z(G) as
L is irreducible on V , and so G/Z(G)L ↪→ Out(L) ∼= C2 and henc Q ≤ Z(G)L. Using [GAP] we can
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check that any nontrivial p-element in L admits all p− 1 nontrivial pth roots of unity as eigenvalues
on V . This implies that any g ∈ Q r Z(G) admits at least p − 2 ≥ 3 distinct eigenvalues on Wild,
and so D −m ≥ 3. Hence p - |Z(G)| by Proposition 5.6(iv), implying Q ≤ L. Now, if p = 13, then
Q ∼= C13 and W = 12, meaning H is Kloosterman. Suppose p = 5, so that |Q| = 5 or 52. If Q
contains an element g belonging to class 5C or 5D (in the notation of [Atlas]), then g has no fixed
point on V , again showing W = 12. If Q contains no such elements, then Q cannot be a full Sylow
5-subgroup of L, whence Q ∼= C5 is generated by an element of class 5A or 5B. In this case, W = 8,
which contradicts Proposition 5.8, since Q cannot admit 8 distinct linear characters on Wild.

Now we will determine the set of 12 “upstairs” characters χ1, . . . , χ12 of the Kloosterman sheaf
H, by inspecting possible ss-elements in G. Note that Sp(V ) contains a finite group H ∼= L · 2
(the one listed in [Atlas] and [GAP]), and G < Z(GL(V ))H. We note that the representation of
L on V is (S+), whence H is (S+) as well; in particular, it is primitive. Next, using [GAP], we
find 20 conjugate classes of ss-elements in H. Two of them (classes 15b and 30b in [GAP]) has
spectrum ε(µ15 r µ3) with ε = ± on V , which is invariant under multiplication by ζ3 and so H
would be Kummer induced, a contradiction. The four classes 24ab and 14bc are ruled out for the
same reason, since their spectra are µ24 r µ12, respectively µ14 r µ2. The two classes 24cd are also
ruled out, since they have spectrum invariant under multiplication by −1.

This leaves 12 classes. Two of them have representatives x13 and zx13, with x13 in class 13a and
Z(L) = 〈z〉. Now, if g0 is a scalar multiple of one of them, then p = 5 and, after tensoring, we may
assume that H = Kl(Char×13). However, as shown in [KT1, Theorem 17.1], the Kummer pullback
by [13]? of the latter sheaf has Ggeom = SL2(25). The next two have representatives x21 and zx21,
with x21 in class 21a. If g0 is a scalar multiple of one of them, then, after tensoring, we may assume
that H = Kl(Char×21). However, the latter sheaf fails the V -test for both p = 5 and p = 13. The
next four are 24efgh, and a generator of a cyclic subgroup generated by any of their representatives
has spectrum

{ζj24 | j = 1, 2, 4, 7, 8, 10, 14, 16, 17, 20, 22, 23}
on V , Hence, if g0 is a scalar multiple of one of them, then, after tensoring and taking Galois
conjugate, we may assume that

H = Kl
(
ξj24 | j = 1, 2, 4, 7, 8, 10, 14, 16, 17, 20, 22, 23

)
.

Again, the latter sheaf fails the V -test for both p = 5 and p = 13.
The remaining four classes are 16abcd, and a generator of a cyclic subgroup generated by any

of their representatives has spectrum µ16 r {ζ0,1,4,7
8 } on V . Hence, if g0 is a scalar multiple of one

of them, then, after tensoring and taking Galois conjugate, we may assume that H = Kl
(
Char16 r

{ξ0,1,4,7
8 }

)
. As shown in Theorems 25.3 and 25.4, this sheaf has finite Ggeom for both p = 5 and

p = 13. However, Theorem 25.5 shows that this sheaf has Ggeom = (2× SU3(4)) · 4. �

Corollary 25.7. Let H be hypergeometric sheaf of type (D,m) with D > m in characteristic p, with
finite geometric monodromy group G = Ggeom. Suppose G is almost quasisimple, with S = SU3(4)
as the unique non-abelian composition factor. Then one of the following statements holds.

(i) D = 12, p = 2, 5, or 13, and all these cases occur.
(ii) D = 13, G = Z(G)S, and p = 2, and this case occurs.

Proof. Note that SU3(4) has trivial Schur multiplier and Out(S) = C4. Moreover, meo(Aut(S)) =
16 [Atlas]. Hence, checking [GAP], we see that either D = 12, or G = Z(G)S and D = 13. In
particular, Ggeom

∼= S is irreducible on the underlying representation VH ∼= CD, with character ϕ.

(i) Suppose D = 12. Then Aut(S) embeds in G2(4) · 2 = Aut(G2(4)), and the S-representation
on V extends to the subgroup H = (2 ·G2(4)) · 2 < Sp(V ) mentioned in the proof of Theorem 25.6.
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Now the analysis in part (i) of the proof of Theorem 25.6 rules out the case p = 3. The case p = 2 is
realized by the sheaf Kl(Char×13), whose Kummer pullback by [13]? has Ggeom = SU3(4), see [KT1,
Theorem 19.1] with q := 4 there. The cases p = 5 and p = 13 are shown to occur by Theorem 25.5.

(ii) Assume now that D = 13, so that G = Z(G)S, but p 6= 2. Then G� S and S = SU3(4) is an
irreducible subgroup of GL3(F2). Applying [KT5, Theorem 4.14], we see that D−m = dimWild ≤ 3.
On the other hand, since G = Z(G)S, it is easy to verify using [GAP] that any non-central p-element
g ∈ G can have a fixed point subspace of dimension at most 5 on VH, and thus D−m ≥ 13− 5 = 8,
a contradiction.

Finally, the case p = 2 is realized by a sheaf of type (13, 1), whose Kummer pullback by [13]? has
Ggeom = SU3(4), see [KT1, Theorem 19.1] again with q := 4. �

26. The “exceptional” group SU3(3) · 2 ∼= G2(2)

Theorem 26.1. The local system K := Kl(Char×12 ∪ {ξ6, ξ
3
6}) in characteristic p = 7 has finite

geometric monodromy group.

Proof. We need to show:

V

(
x+

1

12

)
+ V

(
x+

5

12

)
+ V

(
x+

7

12

)
+ V

(
x+

11

12

)
+ V

(
x+

1

6

)
+ V

(
x+

1

3

)
≥ 5

2
.

and

V

(
x+

1

12

)
+ V

(
x+

5

12

)
+ V

(
x+

7

12

)
+ V

(
x+

11

12

)
+ V

(
x+

5

6

)
+ V

(
x+

2

3

)
≥ 5

2
.

which are equivalent via the change of variable x 7→ x+ 1
2 . Using the fact that V ( i

12) = V ( 4i
72−1

) =
1
12 [4i] for 1 ≤ i ≤ 11 we check that the inequality holds for 12x ∈ Z. For all other values of x we

can rewrite it, using that V (x) + V (−x) = 1 for x 6= 0 and V (Nx) =
∑

i mod N V (x + i
N ) − N−1

2
[Ka7, §13], as

V

(
4x+

1

3

)
+ V

(
4x+

2

3

)
≤
(
x+

1

6

)
+ V

(
x+

1

3

)
+

1

2
.

Following §9, it suffices to prove[
4x+

7r − 1

3

]
+

[
4x+

2(7r − 1)

3

]
≤
[
x+

7r − 1

6

]
+

[
x+

7r − 1

3

]
+ 3r + 6

for every r ≥ 1 and every 0 ≤ x ≤ 7r − 1. For r ≤ 2 we check it by computer. For r > 2 we proceed
by induction as described in §9, proving first the following cases by splitting off the last digits of x:

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 6
∑

j vj + 6
∑

i ui

0,1,2,3,4 1 0,1,2,3,4 ≥ 0 ≥ 0 0 ≥ 0
a5; a 6= 4 1 5 0 ≥ 0 0 ≥ 0

06,16,26,66 1 6 −6 ≥ 1 0 ≥ 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table.

z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 b2 = b′2 c1 = c′1 c2 = c′2
45,46 2 5 1 ≥ 0 0 3 3 0 1

36 2 4 1 0 0 2 2 0 0
56 2 6 1 −6 −6 3 4 1 1

�
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Theorem 26.2. Each of the two local systems

K := Kl(Char×12 ∪ {ξ6, ξ
3
6}) and H := Hyp(Char×12 ∪ Char3; ξ2)

in characteristic p = 7 has geometric monodromy group Ggeom = SU3(3) · 2 ∼= G2(2). Furthermore,
H has a descent H′ to F49, such that over any finite extension k of F49, H′ has arithmetic monodromy
group Garith,k,H′ = G2(2). Also, K has a descent K′ to F7, which over any finite extension k of F736

has arithmetic monodromy group Garith,k,K′ = G2(2).

Proof. (i) By Theorem 26.1, G = Ggeom for K is finite. Let ϕ denote the character of the representa-
tion G→ GL(V ) of G realizing K. By the construction of K and Corollary 6.2(i), the field of values
Q(ϕ) := Q(ϕ(g) | g ∈ G) is Q(

√
−3). It is clear that H is not Kummer induced. Furthermore, since

it is Kloosterman, it is not Belyi induced. Hence (G,V ) satisfies (S+) by Theorem 3.3. Next, since
the cyclic group Z(G) acts via scalars, we have that

(26.2.1) Z(G) ↪→ C6.

As D = dim(V ) = 6, G must be almost quasisimple by Lemma 3.1. Let S denote the unique

non-abelian composition factor of G, so that S = L/Z(L) for L := E(G) = G(∞). Then V |L is
irreducible by Lemma 3.1, and so CG(L) = Z(G) by Schur’s lemma. Furthermore, ō(g0) = 12 for
a generator g0 of the image of I(0), whence C12 ↪→ G/Z(G) ≤ Aut(S). Moreover, the image Q of
P (∞) is cyclic of order 7 by Proposition 5.8(iv), and Q ↪→ G/Z(G) by Proposition 5.6(ii). Now we
can apply the main result of [HM] to arrive at the following possibilities for (S,L).
• S = PSL2(7). These two cases are ruled out since Aut(S) contains no element of order 12.
• (S,L) = (PSL2(13),SL2(13)). In this case, G can induce only inner automorphisms of L, and

this yields a contradiction since G/Z(G) ∼= S contains no element of order 12.

• S = A7. Here, if L = S, then V |L is just the deleted permutation module S(6,1)|S , and so by
Lemma 3.8, ϕ(g0) is an integer multiple of a a root of unity, contradicting the fact that ϕ(g0) =

√
−3.

Thus L 6= S, i.e. L = 3 ·S or 6 ·S. Since ϕ|L is not fixed by any outer automorphism of L, we have
that G/Z(G) ∼= S, which is again a contradiction since S contains no element of order 12.
• (S,L) = (PSL3(4), 6 ·PSL3(4)). Since 21 is the only outer automorphism that fixes ϕ|L, we now

have that G/Z(G) ≤ S · 21, which is a contradiction since S · 21 contains no element of order 12.
• (S,L) = (J2, 2 · J2). In this case, Q(ϕ) ⊇ Q(ϕ|L) = Q(

√
5), again a contradiction.

• (S,L) = (PSU4(3), 61 ·PSU4(3)). In this case, (ϕ+ ϕ̄)|L takes odd values ±1, ±3. On the other
hand, applying Proposition 6.3(ii) with r = 3, A = Char×12, B = ∅, we see that ϕ+ ϕ̄ can take only
even values, a contradiction.
• S = L = SU3(3). In this case, any element of central order 12 in Z(G)S has trace being a

root of unity, see [GAP]. On the other hand, ϕ(g0) =
√
−3, so G > Z(G)S and hence G/Z(G) ∼=

Aut(S) = S · 2 and G = (Z(G) × S) · 2. In fact, we may assume that g0 acts via conjugation as
some element h ∈ Aut(S), of class 12b or 12c in the notation of [GAP]. Note that Φ|S extends to a

representation Φ̃ of Aut(S). As Φ|S is irreducible, by Schur’s lemma we have that Φ(g0) = αΦ̃(h)
for some α ∈ C×. Now we have

√
−3 = ϕ(g0) = Trace(Φ(g0)) = α · Trace(Φ̃(h)) = ±α

√
−3,

i.e. α = ±1. Since |Aut(S)/S| = 2, it is now easy to see that

〈Φ(S),Φ(g0)〉 = 〈Φ(S), αΦ̃(h)〉
is isomorphic to Aut(S) and normalized by Φ(G) = 〈Φ(S),Φ(g0),Φ(Z(G))〉. It follows by Theorem
5.1 that G ∼= Φ(G) = 〈Φ(S),Φ(g0)〉 ∼= Aut(S).

(ii) Let G := Aut(S) ∼= G2(2) as in (i). As shown in (i), the Kloosterman sheaf K gives rise to a
surjection φ : π1(Gm/Fp)� G, together with a faithful irreducible representation Φ : G→ GL6(Q`).
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We also consider an irreducible representation Ψ : G → GL7(Q`). Note that, for any p-element
v ∈ G,

Trace(Ψ(v)) = Trace(Φ(v)) + 1.

It follows from [KT5, Theorem 5.1] that Ψ ◦φ gives rise to a hypergeometric sheaf H′, of type (7, 1)
and with geometric monodromy group Ggeom,H′ = Ψ(G) ∼= G. Furthermore, as shown above, g0 is
an element of order 12 and class 12b or 12c in G, hence the spectrum of Ψ(g0) is either

(26.2.2) X := {ζi12 | i = 1, 5, 7, 11, 0, 4, 8}
or

(26.2.3) −X = (−1) ·X = {ζi12 | i = 1, 5, 7, 11, 2, 6, 10}.
Let g∞ be a p′-generator of the image of I(∞) modulo P (∞) in Ggeom,H′ . By Proposition 5.8, the

spectra of g∞ on the wild part of H′ is {βζj6 | 0 ≤ j ≤ 5} and on the tame part is {γ} for some
β, γ ∈ C×.

Suppose we are in the case of (26.2.2). Using [GAP], we can check that the only elements (of
order divisible by 6) in G that can have the prescribed for g∞ spectrum in Ψ are the ones in class
6b (in the notation of [GAP]), and for them we have γ = −1. This implies that the “upstairs”
characters of H′ are Char×12 ∪ Char3 and the “downstairs” character is ξ2. In other words, H′ is
geometrically isomorphic to H, and we are done.

Suppose now that we are in the case of (26.2.3). Again using [GAP], we can check that the
only elements (of order divisible by 6) in G that can have the prescribed for g∞ spectrum in Ψ are
the ones in class 6b (in the notation of [GAP]), and for them we have γ = 1. This implies that
the “upstairs” characters of H′ are Char×12 ∪ Char6 and the “downstairs” character is 1. In other
words, H′ is geometrically isomorphic to H⊗Lξ2 . By Lemma 5.12, for H := Ggeom,H we now have

that H/Z(H) ∼= G/Z(G) ∼= Aut(S) and H(∞) ∼= G(∞) = S. Furthermore, the field of traces of all
elements in H is Q by Corollary 6.2(i), which implies that Z(H) ≤ C2. But rankH = 7 and H has
trivial geometric determinant, so in fact Z(H) = 1 and H ∼= Aut(S).

(iii) For K′, we can use K′ = K00 constructed by Theorem 7.5 and listed in Table 4, line 25. Over
any finite extension k of F76 , it still has Q(

√
−3) as the field of traces, and so Z(Garith,k,K′) ↪→ C6.

Now we can argue as in part (ii) of the proof of Theorem 24.2.
For H′, we can take H00, with H0 listed in Table 4, line 26. By [Ka4, 8.12.2], H′ has trivial

arithmetic determinant over any finite extension k of F49, and furthermore any element in Garith,k,H′
still has rational traces by Proposition 6.1. As rankH′ = 7, it follows that Z(Garith,k,H′) = 1, and
we obtain Garith,k,H′ ∼= H ∼= Aut(S) as above. �

Remark 26.3. The statements in Theorem 26.2 concerning H were established in [Ka7] in a
different way.

27. The Suzuki group 2B2(8)

Theorem 27.1. The local system H := Hyp(Char15 r {1}; ξ12, ξ
5
12) in characteristic p = 13 has

finite geometric monodromy group.

Proof. We need to show that

V (15x)− V (x) + V

(
−x+

1

12

)
+ V

(
−x+

5

12

)
≥ 1

2

and

V (15x)− V (x) + V

(
−x− 1

12

)
+ V

(
−x− 5

12

)
≥ 1

2
.
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Using the fact that V ( i
12) = i

12 for 1 ≤ i ≤ 11 and that V ( i
60) = V ( 476i

134−1
) = 1

48 [476i] for 1 ≤ i ≤ 59
we check that the inequalities hold for 12x ∈ Z and 15x ∈ Z. For all other values of x we can
rewrite the first inequality as

V (15x) ≤ V
(
x+

1

12

)
+ V

(
x+

5

12

)
+ V (x)− 1

2

and, following §9, it suffices to prove

[15x] ≤
[
x+

13r − 1

12

]
+

[
x+

5(13r − 1)

12

]
+ [x]− 6r

for every r ≥ 1 and every 0 ≤ x ≤ 13r−1. For r ≤ 3 we check it by computer. For r > 3 we proceed
by induction as described in §9, proving first the following cases by splitting off the last digits of x.
We denote the 13-adic digits by 0,1,2,3,4,5,6,7,8,9,A,B,C.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 12
∑

j vj + 12
∑

i ui

0,1,2,3,4,5,6,7 1 0,1,2,3,4,5,6,7 ≥ 0 ≥ 0 0 ≥ 0
a8, a9, aA, aB; a 6= 7 1 8,9,A,B 0 ≥ 0 0 ≥ 0

aC; a 6= 7,B 1 C 0 ≥ 0 0 ≥ 0
a78, a79, a7A; a 6= 7 2 78,79,7A 0 ≥ 0 0 ≥ 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c3 = c′3 corresponding to γ3 = 0, since it is always 0):

z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 = c′1 c2 = c′2
7B,7C 2 8 1 ≥ 0 0 9 0 1

778,779,77A 3 78 2 0 0 8 0 1
BC 2 C 1 0 0 10 1 1

The second inequality can be rewritten, for 12x /∈ Z and 15x /∈ Z, as

V (15x) ≤ V
(
x− 1

12

)
+ V

(
x− 5

12

)
+ V (x)− 1

2

which, via the change of variable x 7→ x+ 1
2 , is equivalent to

V

(
15x+

1

2

)
≤ V

(
x+

1

12

)
+ V

(
x+

5

12

)
+ V

(
x+

1

2

)
− 1

2

and, following §9, it suffices to prove[
15x+

13r − 1

2

]
≤
[
x+

13r − 1

12

]
+

[
x+

5(13r − 1)

12

]
+

[
x+

13r − 1

2

]
− 6r + 12

for every r ≥ 1 and every 0 ≤ x ≤ 13r−1. For r ≤ 3 we check it by computer. For r > 3 we proceed
by induction as described in §9, proving first the following cases by splitting off the last digits of x.



104 NICHOLAS M. KATZ, ANTONIO ROJAS-LEÓN, AND PHAM HUU TIEP

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 12
∑

j vj + 12
∑

i ui

0,1,2,3,4,5,6 1 0,1,2,3,4,5,6 ≥ 0 ≥ 0 0 ≥ 0
a7; a 6= 6 1 7 0 ≥ 0 0 ≥ 0

a8; a 6= 4, 5, 6, 7,A,B 1 8 −12 ≥ 1 0 ≥ 0
a9; a 6= 4, 6, 7,A,B 1 9 −12 ≥ 1 0 ≥ 0
aA, aB; a 6= 6, 7 1 A,B ≥ 0 ≥ 0 0 ≥ 0
aC; a 6= 6, 7,B 1 C 0 ≥ 0 0 ≥ 0

48,49,58 2 48,49,58 0 ≥ 0 0 ≥ 0
aA8; a 6= 6, 7,A 2 A8 −12 ≥ 1 0 ≥ 0
aB8; a 6= 6, 7 2 B8 0 ≥ 0 0 ≥ 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table:

z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 = c′1 c2 = c′2 c3 = c′3
67,68,69,6A,6B,6C 2 7 1 ≥ 0 0 8 0 0 1

78,79,7A,7B,7C 2 8 1 ≥ −12 −12 9 0 1 1
BC 2 C 1 0 0 11 1 1 1

6A8,6B8 3 69 2 0 0 8 0 0 1
7A8,7B8 3 79 2 −12 −12 9 0 1 1

AA8 3 A9 2 −12 −12 C 0 1 1
A9 2 A8 2 −12 −12 C 0 1 1
B9 2 B8 2 0 0 10 0 1 1

�

Theorem 27.2. The local system H := Hyp(Char15 r {1}; ξ12, ξ
5
12) in characteristic p = 13 has

geometric monodromy group Ggeom = Aut(2B2(8)) = 2B2(8) · 3. Furthermore, the local system

H ⊗ Lξ4 has a descent H̃ to F13, which over any finite extension k of F132 has geometric and

arithmetic monodromy group G̃arith,k = G̃geom = Aut(2B2(8))× C4.

Proof. (i) By Theorem 27.1, G = Ggeom is finite. Let ϕ denote the character of the representation
G→ GL(V ) of G realizing H. By the construction of H, the field of values Q(ϕ) := Q(ϕ(g) | g ∈ G)
contains i =

√
−1; indeed, a p′-generator g∞ of the image of I(∞) modulo P (∞) in G has trace

ζ12 + ζ̄125 = i on Tame and 0 on Wild, whence ϕ(g∞) = i. In fact, applying Proposition 6.1(iii)
we see that Q(ϕ) = Q(i). It is clear that H is not Kummer induced. Furthermore, the shape of
the “upstairs” and “downstairs” characters of H shows by Proposition 3.7(ii) that it is not Belyi
induced. Hence, by Theorem 3.5, (G,V ) satisfies (S+). As D = dim(V ) = 14, G must be almost
quasisimple by Lemma 3.1. Next, since the cyclic group Z(G) acts via scalars and Q(ϕ) = Q(i), we
have that Z(G) ↪→ C4. In fact, as H has rank 14 and trivial geometric determinant, it follows that

(27.2.1) Z(G) ↪→ C2.

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for L :=

E(G) = G(∞). Then V |L is irreducible by Lemma 3.1, and so CG(L) = Z(G) by Schur’s lemma.
Furthermore, ō(g0) = 15 for a generator g0 of the image of I(0), whence C15 ↪→ G/Z(G) ≤ Aut(S).
Moreover, the image Q of P (∞) is cyclic of order 13 by Proposition 5.8(iv), and Q ↪→ G/Z(G) by
Proposition 5.6(i). Now we can apply the main result of [HM] to arrive at the following possibilities
for (S,L).
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• S = L = A15, and V |L is just the deleted permutation module S(14,1)|L. In this case, since
SCG/Z(G) ≤ Aut(S) = S15, the element g0 of order 15 must belong to the inverse image S×Z(G)
of S in G. Using (27.2.1), we see that in fact g0 ∈ S, hence G = S by Theorem 5.1. But this is a
contradiction, since Q(ϕ) would have been equal to Q.
• (S,L) = (PSp6(3),Sp6(3). In this case, Q(ϕ) ⊇ Q(ϕ|L) = Q(

√
−3), again a contradiction.

• S = L = 2B2(8). Recall that we have Z(G) = CG(S) ≤ C2 by (27.2.1). Furthermore, the
element g0 of central order 15 does not lie in Z(G)SCG, hence G > S×Z(G). Now S < G/Z(G) ≤
Aut(S) = S · 3, and so G = (Z(G) × S) · 3. We also note that G/S contains the central subgroup
Z(G) of order ≤ 2 and of index 3, hence it is abelian. Thus G contains a subgroup H = S · 3 of
index ≤ 2, hence H CG and H contains the element g0 of order 15. It now follows from Theorem
5.1 that G = H, and we conclude that Ggeom = 2B2(8) · 3.

(ii) First we note by Theorem 7.5 that H has a descent H00 (listed in Table 4, line 27) to F13, for
which over any extension k ⊇ F132 , any element in its arithmetic monodromy groups still has trace
in Q(i). Now we can take H̃ = H00 ⊗ Lξ4 and have that every element in G̃arith,k has trace in Q(i)

whenever k ⊇ F132 . It follows for H̃ that Z(G̃geom) ≤ Z(G̃arith,k) ≤ C4. Next, if g̃0 generates the

image of I(0) in G̃ := G̃geom, then note that g̃15
0 acts as the scalar −i on H̃, whence we now have

(27.2.2) Z(G̃geom) = Z(G̃arith,k) = C4.

By Lemma 5.12,

(27.2.3) G̃/Z(G̃) ∼= G/Z(G) = Aut(S) and G̃(∞) ∼= G(∞) = S.

Together with (27.2.2), we now have that G̃/S is C4 o C3, with C4 being central. Hence G̃/S =

C4 × C3, and so G̃ contains a normal subgroup N with N/S ∼= C3. Note that Z(G̃)N = G̃,

Z(G̃) ∩ N = 1, and so N ∼= G̃/Z(G̃) ∼= Aut(S) by (27.2.3). Thus G̃ = N × Z(G̃) = Aut(S) × C4.

Finally, as CG̃arith,k
(S) = Z(G̃arith,k) = Z(G̃) and G̃ already induces the full automorphism group

of S, we also have that G̃arith,k = G̃. �

28. The “exceptional” group SL2(8) · 3 ∼= 2G2(3)

Theorem 28.1. The local system H := Hyp(Char×9 t {1}; ξ2) in characteristic p = 7 has finite
geometric monodromy group.

Proof. We need to show:

V (9x) + V (x)− V (3x) + V (−2x)− V (−x) ≥ 0.

Using the fact that V ( i
18) = V ( 19i

73−1
) = 1

18 [19i] for 1 ≤ i ≤ 17 we check that the inequality holds

for 18x ∈ Z. For all other values of x we can rewrite it, using that V (x) + V (−x) = 1 for x 6= 0,
V (2x) = V (x) + V (x+ 1

2)− 1
2 and V (3x) = V (x) + V (x+ 1

3) + V (x+ 2
3)− 1 [Ka7, §13], as

V

(
3x+

1

3

)
+ V

(
3x+

2

3

)
+ V (x) ≤ V

(
x+

1

2

)
+

3

2

and, via the change of variable x 7→ x+ 1
2 , this is equivalent to

V

(
3x+

1

6

)
+ V

(
3x+

5

6

)
+ V

(
x+

1

2

)
≤ V (x) +

3

2
.

Following §9, it suffices to prove[
3x+

7r − 1

6

]
+

[
3x+

5(7r − 1)

6

]
+

[
x+

7r − 1

2

]
≤ [x] + 9r
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for every r ≥ 1 and every 0 ≤ x ≤ 7r − 1. For r = 1 we check it by hand. For r > 1 we proceed by
induction as described in §9, by splitting off the last digit of x. In this case, since ∆(1, z) = 0 for
every z = 0, . . . , 6 and

∑
j vj is always 0, the induction step is automatically true. �

Lemma 28.2. The local system H′ := Hyp(Char9r{1};Char2) in characteristic p = 7 has geometric
third moment M3 ≥ 1.

Proof. First we note that H′ is Sawin-like by [KT5, Lemma 9.2(ii)] (with A = 7 and B = 2). Hence
its geometric monodromy group Ggeom is contained in S9 in its deleted natural permutation module

S(8,1). Since the latter has nontrivial determinant, but H′ has trivial geometric determinant, we
have Ggeom ≤ A9. Now, using [GAP] we can check that A7 has M3 = 1 on S(8,1), whence the
statement follows. �

Theorem 28.3. The following statements hold.

(a) The local systems H := Hyp(Char×9 t{1}; ξ2) and H′ := Hyp(Char9r{1};Char2) in characteristic
p = 7 both have geometric monodromy group

Ggeom,H ∼= Ggeom,H′ ∼= SL2(8) · 3 ∼= 2G2(3).

(b) H ⊗ Lξ2 has a descent H] to F7, which over any finite extension k of F49 has arithmetic and
geometric monodromy groups Garith,k,H] = Ggeom,H] = 2G2(3)× C2.

(c) H′ ⊗ Lξ2 has a descent H′] to F7, which over any finite extension k of F49 has arithmetic and

geometric monodromy groups Garith,k,H′] = Ggeom,H′] = 2G2(3)× C2.

Proof. (i) By Theorem 28.1, G = Ggeom,H is finite. Let ϕ denote the character of the representation
G → GL(V ) of G realizing H. By the construction of H and Corollary 6.2(i), the field of values
Q(ϕ) := Q(ϕ(g) | g ∈ G) is Q. It is clear that H is not Kummer induced. Furthermore, the shape
of the “upstairs” and “downstairs” characters of H shows by Proposition 3.7(ii) that it is not Belyi
induced. Hence, by Theorem 3.5, (G,V ) satisfies (S+). Furthermore, o(g0) = ō(g0) = 9 for a
generator g0 of the image of I(0), whence 9 divides |G/Z(G)|. We also note by Proposition 5.6(iii)
that p = 7 also divides |G/Z(G)|. Next, since the cyclic group Z(G) acts via scalars and Q(ϕ) = Q,
we have that

(28.3.1) Z(G) ↪→ C2.

Suppose that G satisfies condition (c) of Lemma 3.1. Then GCR ∼= 71+2, and G/Z(G) embeds in
C2

7 o Sp2(7), whence 9 - |G/Z(G)|, a contradiction.

(ii) We have therefore shown that G is almost quasisimple by Lemma 3.1. Let S denote the

unique non-abelian composition factor of G, so that S = L/Z(L) for L := E(G) = G(∞). Then
V |L is irreducible by Lemma 3.1, and so CG(L) = Z(G) by Schur’s lemma. Hence, both C9 and C7

embed in G/Z(G) ≤ Aut(S). Now we can apply the main result of [HM] to arrive at the following
possibilities for (S,L).

• S = L = A8, and V |L is just the deleted permutation module S(7,1)|L. In this case, since
SCG/Z(G) ≤ Aut(S) = S8, the element g0 of order 9 must belong to the inverse image S×Z(G) of
S in G. Using (28.3.1), we see that in fact g0 ∈ S, hence G = S by Theorem 5.1. Now G ∼= SL4(2)
admits a faithful representation of degree 4 over F2. It follows from [KT5, Theorem 4.14] that
dimWild ≤ 4, a contradiction.
• S = L = Sp6(2). As in the previous case, we see that the element g0 of order 9 must belong

to the inverse image S × Z(G) of S in G, and using (28.3.1), we then see that g0 ∈ S, and so
G = S by Theorem 5.1. Now, the sheaf H gives rise to a surjection φ : π1(Gm/Fp) � S. Also,

consider the surjection π : Ŝ = 2Sp6(2)� S with kernel Ker(π) ∼= C2. The obstruction to lifting φ
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to a homomorphism $ : π1(Gm/Fp) → Ŝ lies in the group H2(Gm/Fp,Ker(π)) = 0, the vanishing
because open curves have cohomological dimension ≤ 1, cf. [SGA, Cor. 2.7, Exp. IX and Thm.

5.1, Exp. X]. Since Ŝ contains no subgroup isomorphic to S, we conclude that $ is also surjective.

Now we can inflate Φ to a representation Φ̂ of Ŝ with kernel C2. We also consider the faithful
8-dimensional representation Ψ : Ŝ → GL8(C) and note that

Trace(Ψ(h)) = 1 + Trace(Φ̂(h))

for all 7-elements h ∈ Ŝ. Applying [KT5, Theorem 5.1], we now see that Ψ ◦ $ gives rise to a

hypergeometric sheaf H̃ of type (8, 2), still in characteristic p = 7 and with C7 being the image

of P (∞). Let g∞ be a p′-generator of I(∞) modulo P (∞) in S, and let h0 ∈ Ŝ, respectively

h∞ ∈ Ŝ be an inverse image of g0, respectively of g∞. The shape of H tells us by Proposition 5.8
that the spectrum of Φ̂(h∞) = Φ(g∞) consists of all 6th roots of some α ∈ C× and −1 (counting

multiplicities). Thus 6|o(h∞) and it has trace −1 in Φ̂. It follows that h∞ belongs to class 6g or 6h
in the notation of [GAP]. Likewise, the spectrum of Ψ(h∞) consists of all 6th roots of some β ∈ C×
and two more roots of unity γ 6= δ ∈ C× (counting multiplicities). Using [GAP] we can now see

that β = 1 and {γ, δ} = {1,−1}, which means that the two “downstairs” characters of H̃ are 1

and ξ2. Next, 9|o(h0), so h0 belongs to class 9a or 18a in the notation of [GAP], and so inspecting

the spectrum of Ψ(h0) we see that the “upstairs” characters of H̃ are either X1 := Char9 r {1}, or
X2 := ξ2 ·X1. We conclude that either

(28.3.2) H̃ ∼= H′,

or

(28.3.3) H̃ ∼= H′ ⊗ Lξ2 .

In the case of (28.3.2), Lemma 28.2 tells us that H̃ = H′ has M3 ≥ 1, whereas Ψ has M3 = 0

(indeed, Z(Ŝ) ∼= C2 acts faithfully in Ψ), a contradiction. Hence (28.3.3) must occur, and thus

Ggeom,H′⊗Lξ2 = Ŝ. Now we consider H := Ggeom,H′ . By Lemma 5.12, H/Z(H) ∼= Ŝ/Z(Ŝ) = S and

H(∞) ∼= Ŝ(∞) ∼= Ŝ. In particular, Z(H) ≥ Z(H(∞)) = C2, and so H has M3 = 0, again contradicting
Lemma 28.2.
• S = L = SL2(8). Recall that we have Z(G) = CG(S) ≤ C2 by (28.3.1). We again look at

a p′-generator g∞ of I(∞) modulo P (∞) in G, and note by Proposition 5.8(iii) that 6|ō(g∞). As
SZ(G) does not contain any element of order 6, we have that G > Z(G)× S. Now S < G/Z(G) ≤
Aut(S) = S · 3, and so G = (Z(G) × S) · 3. We also note that G/S contains the central subgroup
Z(G) of order ≤ 2 and of index 3, hence it is abelian. Thus G contains a subgroup H = S · 3 of
index ≤ 2, hence H C G and H contains the element g0 of order 9. It now follows from Theorem
5.1 that G = H, and we conclude that Ggeom,H = SL2(8) · 3.

(iii) The result of (ii) yields a surjection φ : π1(Gm/Fp)� G with G = Ggeom,H = SL2(8) ·3. Note
that G admits a unique 8-dimensional irreducible representation Θ with rational-valued character,
and moreover

Trace(Θ(v)) = 1 + Trace(Φ(v))

for all 7-elements v ∈ G. Applying [KT5, Theorem 5.1], we again see that Θ ◦ φ gives rise to a
hypergeometric sheaf H′′ of type (8, 2), still in characteristic p = 7 and with C7 being the image
of P (∞). By Theorem 5.1, the normal closure of g0 in G equals G, so g0 /∈ SL2(8), and thus the
element g0 must belong to class 9b or 9c in the notation of [GAP]. Inspecting the spectrum of Θ(g0),
we see that the “upstairs” characters of H′′ are Char9 r {1}. Likewise, a p′-generator g∞ of I(∞)
modulo P (∞) in G has order divisible by 6, and so must belong to class 6a or 6b in the notation
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of [GAP]. Inspecting the spectrum of Θ(g∞), we see that the “downstairs” characters of H′′ are
Char2. Thus H′′ ∼= H′, and so Ggeom,H′ ∼= Θ(G) ∼= G.

(iv) Now we note by Theorem 7.5 that H has a descent H00 (listed in Table 4, line 28) to F7,
for which over any extension k ⊇ F49, any element in its arithmetic monodromy groups still has
rational trace. Now we can take H] = H00⊗Lξ2 and have that every element in G̃arith,k has trace in
Q whenever k ⊇ F49. It follows for H] that Z(Ggeom,H]) ≤ Z(Garith,k,H]) ≤ C2. Next, if v0 generates

the image of I(0) in Ggeom,H] , then note that v9
0 acts as the scalar −1 on H], whence we now have

(28.3.4) Z(Ggeom,H]) = Z(Garith,k,H]) = C2 = 〈v9
0〉.

By Lemma 5.12,

(28.3.5) Ggeom,H]/Z(Ggeom,H])
∼= G/Z(G) = Aut(S) and (Ggeom,H])

(∞) ∼= G(∞) = S.

Together with (28.3.4), we now have that Ggeom,H]/S is C2 o C3, with C2 being central. Hence
Ggeom,H]/S = C2 ×C3, and so Ggeom,H] contains a normal subgroup N with N/S ∼= C3. Note that
Z(Ggeom,H])N = Ggeom,H] , Z(Ggeom,H]) ∩N = 1, and so N ∼= Ggeom,H]/Z(Ggeom,H])

∼= Aut(S) by
(28.3.4). Thus Ggeom,H] = N × Z(Ggeom,H]) = Aut(S)× C2. Finally, as

CGarith,k,H]
(S) = Z(Garith,k,H]) = Z(Ggeom,H])

and Ggeom,H] already induces the full automorphism group of S, we also have that

Garith,k,H] = Ggeom,H] .

The same arguments apply to the case of H′, by taking H′] = (H′)00 ⊗ Lξ2 , with (H′)00 either
one of the two sheaves given in Table 4, line 29. �

Remark 28.4. Given a finite group G and a finite-dimensional CG-module V , even in the case
(G,V ) satisfies (S+) and V is orthogonally self-dual, the third moment M3(G,V ) can be 0 (as in
the case of the 8-dimensional faithful module for 2 · Sp6(2) as we saw above), 1 (as in the case of
the 8-dimensional faithful module for A9-module), 2 (as in the case of the 12-dimensional module
for SL3(3)), or even 35 (as in the case of the 189-dimensional faithful module for A9-module). Note
that, in addition to (S+), the first three cases share the common property of having an element
with a simple spectrum.

29. The Conway group Co1 and the Suzuki group Suz

Theorem 29.1. The local system H := Hyp(Char×39;1) in characteristic p = 2 has a descent H′
to F2 which over any finite extension k of F2 has geometric and arithmetic monodromy groups
Ggeom = Garith,k = 2 · Co1, the double cover of the Conway sporadic simple group Co1.

Proof. The statement about Ggeom is [KRLT3, Theorem 8.1]. We will use the descent H′ = H00

constructed in Theorem 7.5 and listed in Table 4, line 30, which also has Q as the field of traces of
all elements in Garith,k, whence

Z(Garith,k) = CGarith,k
(Ggeom) = Z(Ggeom) = C2.

Now,

S CGarith,k/Z(Garith,k) ≤ Aut(S) = S

for S := Ggeom/Z(Ggeom) = Co1, and so Garith,k = Ggeom. �
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Theorem 29.2. Each of the two local systems

H1 := Hyp(Char20 r (Char4 ∪ Char5);1) and H2 := Hyp(Char×28;1)

in characteristic p = 3 has a descent H′ to F3, which over any finite extension k of F3 has geometric
and arithmetic monodromy groups Ggeom = Garith,k = 6 · Suz, the sixth cover of the Suzuki sporadic
simple group Suz.

Proof. The statement about Ggeom is [KRLT3, Theorem 8.2]. We will use the descent H′ = H00

constructed in Theorem 7.5 and listed in Table 4, lines 31 and 32, which also has Q(
√
−3) as the

field of traces of all elements in Garith, whence

Z(Garith,k) = CGarith,k
(Ggeom) = Z(Ggeom) = C6.

Now,

S CGarith,k/Z(Garith,k) ≤ Aut(S) = S · 2
for S := Ggeom/Z(Ggeom) = Suz, and no outer automorphism of S can fix the equivalence class of
a 12-dimensional faithful complex representation of Ggeom. It follows that Garith,k = Ggeom. �

30. Complex reflection groups

Theorem 30.1. The local system Hyp(Char×15;Char9 r Char×3 ) in characteristic 2 has finite mon-
odromy.

Proof. We need to show:

V (15x)− V (3x)− V (5x) + V (x) + V (−9x)− V (−3x) + V (−x) ≥ 0.

Using the fact that V ( i9) = V ( 7i
26−1

) = 1
6 [7i] for 1 ≤ i ≤ 8 we check that the inequality holds

for 9x ∈ Z. For all other values of x, using that V (x) + V (−x) = 1 if x 6= 0 and V (Nx) =∑
i mod N V (x+ i

N )− N−1
2 [Ka7, §13], we can rewrite the inequality as

V (9x) ≤ V
(
x+

1

15

)
+V

(
x+

2

15

)
+V

(
x+

4

15

)
+V

(
x+

8

15

)
+V

(
x+

5

15

)
+V

(
x+

10

15

)
+

+V

(
x+

7

15

)
+ V

(
x+

14

15

)
+ V

(
x+

13

15

)
+ V

(
x+

11

15

)
− 4

and, following §9, it suffices to prove

[9x] ≤
[
x+

2r − 1

15

]
+

[
x+

2(2r − 1)

15

]
+

[
x+

4(2r − 1)

15

]
+

[
x+

8(2r − 1)

15

]
+

[
x+

5(2r − 1)

15

]
[
x+

10(2r − 1)

15

]
+

[
x+

7(2r − 1)

15

]
+

[
x+

14(2r − 1)

15

]
+

[
x+

13(2r − 1)

15

]
+

[
x+

11(2r − 1)

15

]
− 4r

for every r ≥ 1 divisible by r0 = 4 and every 0 ≤ x ≤ 2r − 1. Since multiplication by 2 permutes
γ1 = 1

15 , γ2 = 2
15 , γ3 = 4

15 and γ4 = 8
15 ; γ5 = 5

15 and γ6 = 10
15 ; and γ7 = 7

15 , γ8 = 14
15 , γ9 = 13

15 and

γ10 = 11
15 cyclically modulo 1, we can take r1 = 1. Then, with the notation of §9, we have

(24 − 1)γ1 = 00012, (24 − 1)γ5 = 01012, (24 − 1)γ7 = 01112;

hj = 1, 0, 0, 0, 1, 0, 1, 1, 1, 0; h2,j = 012, 002, 002, 102, 012, 102, 112, 112, 012, 102;

h3,j = 0012, 0002, 1002, 0102, 1012, 0102, 1112, 0112, 1012, 1102;

and

h4,j = 00012, 10002, 01002, 00102, 01012, 10102, 01112, 10112, 11012, 11102
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for j = 1, . . . , 10 respectively. We will prove that

[9x] ≤
10∑
i=1

[x+ hr,i]− 4r

for every r ≥ 1 and 0 ≤ x ≤ 2r − 1. For r ≤ 8 we check it by computer. For r > 8 we proceed by
induction as described in §9, proving first the following cases by splitting off the last digits of x.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)−
∑

j vj +
∑

i ui

0 1 0 1 0 0 1
0001,1101,0111 1 1 4 ≥ 0 ≤ 4 ≥ 0
000011,110011 4 0011 1 ≥ 0 ≤ 1 ≥ 0

11011 3 011 2 ≥ 2 2 ≥ 2
00001111 8 00001111 4 0 0 4

The remaining cases are proved by substitution of the last digits, as specified in the following
table:

z = last
digits of x

s z′ s′ ∆(s, z) ∆(s′, z′) b1 c1 c2 c3 c4 c5 c6 c7 c8 c9 c10

1001 4 101 3 7 6 101 0 0 0 1 0 1 1 1 1 1
10101 5 1010 4 7 7 101 1 0 0 0 1 0 1 1 1 1
00101 5 0011 4 3 1 1 0 0 0 0 0 0 0 0 1 1

0010011 7 001011 6 2 2 1 0 0 0 0 0 0 1 1 0 0
1010011 7 100111 6 6 5 101 0 0 1 0 1 0 1 1 1 1{
00100011,
00101111

8 0011 4 1 1 1 0 0 0 0 0 0 0 1 1 0

10100011 8 100111 6 5 5 101 0 0 0 1 0 1 1 1 1 1
1100011 7 101111 6 5 5 110 0 1 1 0 1 1 1 1 1 1
01011 5 0110 4 3 3 11 0 0 0 0 1 0 1 0 1 1

10001111 8 1001011 7 7 6 101 0 0 0 1 0 1 1 1 1 1
1001111 7 100111 6 6 5 101 0 0 1 0 1 0 1 1 1 1
10101111 8 10111 5 6 6 110 0 0 0 1 1 1 1 1 1 1
01101111 8 0101111 7 2 2 11 0 0 0 0 0 1 0 1 1 1
11101111 8 1111111 7 8 8 1000 1 1 1 1 1 1 1 1 1 1

11111 5 1111 4 8 8 1000 1 1 1 1 1 1 1 1 1 1

�

Theorem 30.2. The local system Hyp(Char×9 ;Char5) in characteristic 2 has finite monodromy.

Proof. We need to show:

V (9x)− V (3x) + V (−5x) ≥ 0.

Using the fact that V ( i9) = V ( 7i
26−1

) = 1
6 [7i] for 1 ≤ i ≤ 8 we check that the inequality holds

for 9x ∈ Z. For all other values of x, using that V (x) + V (−x) = 1 if x 6= 0 and V (Nx) =∑
i mod N V (x+ i

N )− N−1
2 [Ka7, §13], we can rewrite the inequality as

V

(
3x+

1

3

)
+ V

(
3x+

2

3

)
≤ V (5x) + 1

= V

(
x+

1

5

)
+ V

(
x+

4

5

)
+ V

(
x+

2

5

)
+ V

(
x+

3

5

)
+ V (x)− 1
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and, following §9, it suffices to prove[
3x+

2r − 1

3

]
+

[
3x+

2(2r − 1)

3

]
≤
[
x+

2r − 1

5

]
+

[
x+

4(2r − 1)

5

]
+

+

[
x+

2(2r − 1)

5

]
+

[
x+

3(2r − 1)

5

]
+ [x]− r

for every r ≥ 1 divisible by r0 = 4 and every 0 ≤ x ≤ 2r − 1. Since multiplication by 22 permutes
γ1 = 1

5 and γ2 = 4
5 , and γ3 = 2

5 and γ4 = 3
5 cyclically modulo 1, we can take r1 = 2. Then, with

the notation of §9, we have (24 − 1)γ1 = 00112; h1 = 112, h2 = 0; h2,j = 00112, 11002 for j = 1, 2
respectively. We will prove that[

3x+
2r − 1

3

]
+

[
3x+

2(2r − 1)

3

]
≤ [x+ hr,1] + [x+ hr,2] + [x+ hr,3] + [x+ hr,4] + [x]− r

for every r = 2k ≥ 1 and 0 ≤ x ≤ 2r − 1. For r ≤ 8 we check it by computer. For r > 8 we proceed
by induction as described in §9, proving first the following cases by splitting off the last digits of x.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)−
∑

j vj +
∑

i ui

00 2 00 0 0 0 0
0001,1001,0101 2 01 1 ≥ 0 ≤ 1 ≥ 0

0010,0110 2 10 1 ≥ 0 ≤ 1 ≥ 0
0001110 6 001110 0 ≥ 0 0 ≥ 0
01001110 6 001110 0 1 1 0

0011 2 11 2 ≥ 0 1 ≥ 1
000111 6 000111 0 0 0 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c5 = c′5 corresponding to γ5 = 0, since it is always 0):

z = last
digits of x

s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 b2 = b′2 c1 = c′1 c2 = c′2 c3 = c′3 c4 = c′4

1010 4 11 2 3 2 10 10 0 1 1 1
11001110 8 110111 6 2 2 10 11 1 1 1 1

101110,100111 6 1100 4 2 2 10 10 1 0 1 1
011110 6 1000 4 3 1 1 10 1 0 1 0

111110,111111 6 1111 4 ≥ 4 3 11 11 1 1 1 1
1101 4 1110 4 3 2 10 11 1 1 1 1

010111 6 0110 4 1 1 1 1 1 0 0 0
110111 6 1110 4 2 2 10 11 1 1 1 1
1011 4 11 2 3 2 10 10 0 1 1 1

001111 6 01 2 3 1 1 1 1 0 0 0
101111 6 11 2 4 2 10 10 1 0 1 1
011111 6 10 2 4 1 1 10 1 0 1 0

�

Theorem 30.3. The local system Hyp(Char×7 ;Char×3 t {ξ9, ξ
4
9 , ξ

7
9}) in characteristic 2 has finite

monodromy.
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Proof. We need to show:

V (7x)− V (x) + V (−3x)− V (−x) + V

(
−x+

1

9

)
+ V

(
−x+

4

9

)
+ V

(
−x+

7

9

)
≥ 1

and

V (7x)− V (x) + V (−3x)− V (−x) + V

(
−x+

2

9

)
+ V

(
−x+

8

9

)
+ V

(
−x+

5

9

)
≥ 1.

Since these inequalities are equivalent via the change of variable x 7→ 2x, we will focus on the first
one. Using the fact that V ( i

63) = V ( i
26−1

) = 1
6 [i] for 1 ≤ i ≤ 62 we check that the inequality

holds for 7x ∈ Z. For all other values of x, using that V (x) + V (−x) = 1 if x 6= 0 and V (3x) =
V (x) + V (x+ 1

3) + V (x+ 2
3)− 1 [Ka7, §13], we can rewrite the inequality as

V (7x) ≤ V
(
x+

1

3

)
+ V

(
x+

2

3

)
+ V

(
x+

1

9

)
+ V

(
x+

4

9

)
+ V

(
x+

7

9

)
+ V (x)− 2

and, following §9, it suffices to prove

[7x] ≤
[
x+

2r − 1

3

]
+

[
x+

2(2r − 1)

3

]
+

[
x+

2r − 1

9

]
+

[
x+

4(2r − 1)

9

]
+

[
x+

7(2r − 1)

9

]
+[x]−2r

for every r ≥ 1 divisible by r0 = 6 and every 0 ≤ x ≤ 2r− 1. Since multiplication by 22 fixes γ1 = 1
3

and γ2 = 2
3 and permutes γ3 = 1

9 , γ4 = 4
9 and γ5 = 7

9 cyclically modulo 1, we can take r1 = 2. Then,

with the notation of §9, we have (24 − 1)γ1 = 00012, (26 − 1)γ1 = 0101012, (26 − 1)γ2 = 1010102,
(26−1)γ3 = 0001112; hj = 012, 102, 112, 012, 002; h2,j = 01012, 10102, 01112, 00012, 11002 and h3,j =
0101012, 1010102, 0001112, 1100012, 0111002 for j = 1, . . . , 5 respectively. We will prove that

0 ≤ [x+ hk,1] + [x+ hk,2] + [x+ hk,3] + [x+ hk,4] + [x+ hk,5] + [x]− 2r

for every r = 2k ≥ 1 and 0 ≤ x ≤ 2r − 1. For r ≤ 12 we check it by computer. For r > 12 we
proceed by induction as described in §9, proving first the following cases by splitting off the last
digits of x.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)−
∑

j vj +
∑

i ui

00 2 00 1 0 0 1
101 2 01 0 ≥ 0 0 ≥ 0
0001 4 0001 0 0 0 0

001001 6 001001 0 0 0 0
00101001 8 00101001 3 ≥ 0 0 ≥ 3
00011001 8 00011001 0 0 0 ≥ 0

0011011001 10 0011011001 1 ≥ 0 0 ≥ 1
001011011001 12 001011011001 1 ≥ 0 0 ≥ 1

0010,1110,01010,00110 2 10 2 ≥ 0 ≤ 2 ≥ 0
0011,00111,11111 2 11 3 ≥ 0 ≤ 3 ≥ 0

001011 6 001011 2 ≥ 0 0 ≥ 2

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c6 = c′6 corresponding to γ6 = 0, since it is always 0):
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z = last
digits of x

s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 c2 c3 c4 c5

10101001 8 101001 6 5 3 100 0 1 1 0 1
01101001 8 011011 6 1 1 10 0 1 1 0 1
11101001 8 111011 6 4 4 110 1 1 1 1 1
01011001 8 011001 6 0 0 10 0 1 1 0 0
10011001 8 101001 6 3 3 100 0 1 1 0 1

101011011001 12 1011011001 10 2 2 100 1 1 0 1 1
011011011001 12 011001001 10 0 0 10 0 1 0 0 1
111011011001 12 1110010001 10 3 3 110 1 1 1 1 1
0111011001 10 01111001 8 2 2 11 0 1 0 1 0
1111011001 10 11111001 8 4 4 110 1 1 1 1 1
00111001 8 010001 6 0 0 1 0 0 1 0 0
10111001 8 110001 6 3 3 101 1 1 1 0 1
01111001 8 100001 6 2 2 11 0 1 1 0 0
11111001 8 111011 6 4 4 110 1 1 1 1 1

011010,010110,010111 6 0110 4 ≥ 3 3 10 0 1 0 0 1
111010 6 1111 4 6 5 110 1 1 1 1 1
110110 6 1101 4 5 4 101 1 1 0 1 1
110111 6 1110 4 8 7 110 1 1 0 1 1
011011 6 011001 6 1 0 10 0 1 0 0 1
101011 6 1011 4 3 3 100 1 1 0 1 1
111011 6 111001 6 4 3 110 1 1 1 1 1
001111 6 0100 4 2 1 1 0 0 0 0 1
101111 6 1100 4 5 4 101 1 1 0 1 1

�

Theorem 30.4. The local system Hyp(Char×5 ;Char4r{1}) in characteristic 3 has finite monodromy.

Proof. We need to show:

V (5x)− V (x) + V

(
−x+

1

4

)
+ V

(
−x+

1

2

)
+ V

(
−x+

3

4

)
≥ 1.

Using the fact that V ( i
20) = V ( 4i

34−1
) = 1

8 [4i] for 1 ≤ i ≤ 19 we check that the inequality holds for

5x ∈ Z. For other values of x, using that V (x) + V (−x) = 1 if x 6= 0, we can rewrite the inequality
as

V (5x) ≤ V
(
x+

1

4

)
+ V

(
x+

1

2

)
+ V

(
x+

3

4

)
+ V (x)− 1

and, following §9, it suffices to prove

[5x] ≤
[
x+

3r − 1

4

]
+

[
x+

3(3r − 1)

4

]
+

[
x+

3r − 1

2

]
+ [x]− 2r + 1

for every r ≥ 1 divisible by r0 = 2 and every 0 ≤ x ≤ 3r − 1. Since multiplication by 3 permutes
γ1 = 1

4 and γ2 = 3
4 and fixes γ3 = 1

2 modulo 1, we can take r1 = 1. Then, with the notation of

§9, we have (32 − 1)γ1 = 023, (32 − 1)γ3 = 113, hi = 2, 0, 1 and h2,i = 023, 203, 113 for i = 1, 2, 3
respectively. We will prove that

[x] ≤ [x+ hr,1] + [x+ hr,2] + [x+ hr,3] + [x]− 2r + 1
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for every r ≥ 1 and 0 ≤ x ≤ 3r − 1. For r ≤ 6 we check it by computer. For r > 6 we proceed by
induction as described in §9, proving first the following cases by splitting off the last digits of x.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 2
∑

j vj + 2
∑

i ui

0 1 0 1 0 0 1
01,11 1 1 0 ≥ 0 0 ≥ 0

a021, a 6= 2 3 021 0 ≥ 0 0 ≥ 0
a02021, a 6= 2 5 02021 0 ≥ 0 0 ≥ 0

0121 4 0121 0 ≥ 0 0 ≥ 0
02 2 02 4 ≥ 0 0 ≥ 4
012 3 012 2 ≥ 0 0 ≥ 2

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c4 = c′4 corresponding to γ5 = 0, since it is always 0):

z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 = c′1 c2 = c′2 c3 = c′3
202021 6 2021 4 1 1 10 1 1 1
12021 5 1121 4 −1 −1 2 1 0 1
22021 5 2121 4 2 2 11 1 1 1
1121 4 121 3 −1 −1 2 0 1 1
2121 4 221 3 2 2 11 1 1 1
0221 4 021 3 1 0 1 0 1 0
1221 4 201 3 4 4 10 0 1 1
2221 4 221 3 3 2 11 1 1 1
112 3 12 2 1 1 2 1 0 1

212,222 3 22 2 ≥ 4 4 11 1 1 1
022 3 10 2 3 1 1 1 0 0
122 3 20 2 6 4 10 1 0 1

�

Theorem 30.5. The local system Hyp(Char×3 ; ξ2) in characteristic 5 has finite monodromy.

Proof. We need to show:

V (3x)− V (x) + V

(
−x+

1

2

)
≥ 0.

For 3x ∈ Z it is clearly true, since V ( i6) = 1
2 for i = 1, . . . , 5. For other values of x, Using the fact

that V (x) + V (−x) = 1 if x 6= 0, we can rewrite the inequality as

V (3x) ≤ V
(
x+

1

2

)
+ V (x)

and, following §9, it suffices to prove

[3x] ≤
[
x+

5r − 1

2

]
+ [x] + 1

for every r ≥ 1 and every 0 ≤ x ≤ 5r − 1. For r ≤ 2 we check it by computer. For r > 2 we proceed
by induction as described in §9, proving first the following cases by splitting off the last digits of x.
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last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 4
∑

j vj + 4
∑

i ui

0,1,2 1 0,1,2 ≥ 1 ≥ 0 0 ≥ 1
03,13 2 03,13 ≥ 0 ≥ 0 0 ≥ 0

a43, a 6= 2 2 43 1 ≥ 0 0 ≥ 1
04,14 2 04,14 ≥ 4 ≥ 0 0 ≥ 4

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c2 = c′2 corresponding to γ2 = 0, since it is always 0):

z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 = c′1
23,24 2 3 1 ≥ −1 −1 1 1

33,34,44 2 4 1 ≥ 2 2 2 1
243 3 30 2 1 1 1 1

�

Theorem 30.6. The local system Hyp(Char×4 ;1) in characteristic 3 has finite monodromy.

Proof. We need to show:

V

(
x+

1

4

)
+ V

(
x+

3

4

)
+ V (−x) ≥ 1.

Using the fact that V (x) + V (−x) = 1 if x 6= 0, we can rewrite the inequality as

V (x) ≤ V
(
x+

1

4

)
+ V

(
x+

3

4

)
and, following §9, it suffices to prove

[x] ≤
[
x+

3r − 1

4

]
+

[
x+

3(3r − 1)

4

]
for every r ≥ 1 divisible by r0 = 2 and every 0 ≤ x ≤ 3r − 1. Since multiplication by 3 permutes
γ1 = 1

4 and γ2 = 3
4 modulo 1, we can take r1 = 1. Then, with the notation of §9, we have

(32 − 1)γ1 = 023, h1 = 2, h2 = 0, h2,1 = 023, h2,2 = 203. We will prove that

[x] ≤ [x+ hr,1] + [x+ hr,2]

for every r ≥ 1 and 0 ≤ x ≤ 3r − 1. For r ≤ 4 we check it by computer. For r > 4 we proceed by
induction as described in §9, proving first the following cases by splitting off the last digits of x.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 2
∑

j vj + 2
∑

i ui

0 1 0 2 0 0 2
01,11 1 1 1 0 0 1

0021,1021 3 021 1 0 0 1
02,12 1 2 2 0 0 2

122,222 1 2 2 0 1 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table:
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z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 = c′1 c2 = c′2
2021 4 221 3 1 1 0 1 1

121,022 3 11 2 2 2 0 1 0
221 3 21 2 1 1 0 1 1

�

Theorem 30.7. The following statements hold.

(i) The sheaf H8 := Hyp(Char×15;Char9rChar×3 ) in characteristic 2 has G = Ggeom = W (E8) in its
reflection representation. Conversely, if H is a geometrically irreducible hypergeometric sheaf
of type (8, 7) in some characteristic p with Ggeom = W (E8) in its reflection representation,
then p = 2 and H′ ∼= H8.

(ii) The sheaf H6 := Hyp(Char×9 ;Char5) in characteristic 2 has G = Ggeom = W (E6) ∼= SU4(2) · 2
in its reflection representation. Conversely, if H′ is a geometrically irreducible hypergeometric
sheaf of type (6, 5) in some characteristic p with Ggeom = W (E6) in its reflection representa-
tion, then p = 2 and H′ ∼= H6.

(iii) The sheaf H′6 := Hyp(Char×7 ; ξ1,3,4,6,7
9 ) in characteristic 2 has G = Ggeom

∼= 61 · PSU4(3) · 22,
the Mitchell group, in its reflection representation.

(iv) The sheaf H4 := Hyp(Char×5 ;Char4 r {1}) in characteristic 3 has G = Ggeom
∼= 3× Sp4(3) in

its reflection representation.
(v) The sheaf H2 := Hyp(Char×3 ; ξ2) in characteristic 5 has G = Ggeom

∼= SL2(5)×5 in its reflection
representation.

(vi) The sheaf H′2 := Hyp(Char×4 ;1) in characteristic 3 has G = Ggeom
∼= SL2(3) in its reflection

representation.

Proof. (i) By Theorem 30.1, G is finite. Moreover, the shape of H8 shows by Proposition 3.7 that
it is primitive, and the field of traces is Q by Proposition 6.1(iii). In particular, Z(G) ≤ C2. Next,
by [KT9, Theorem 5.6], G = Z(G)G0, where G0 = W (E8) in its reflection representation. As
Z(G0) = C2 is central in G, we conclude that Z(G) ≤ G0 and hence G = G0, as stated.

Conversely, we considerH with geometric monodromy groupH = Ggeom
∼= W (E8) in its reflection

representation. Every complex reflection in H has order 2. Hence any non-identity element h in
the image of P (∞) in H has order 2, and thus p = 2. Next, h is a 2F -involution, in the notation of
[GAP]. As usual, let h0 generate the image of I(0) in H, and let h∞, of p′-order, generate the image
of I(∞) modulo P (∞) in H. As 2 - o(h∞) ,h∞ has simple spectrum on Tame (of dimension 7) and
centralizes h, we see using [GAP] that h∞ has order 7 (of class 7A), 9 (of class 9A), or 15 (of class
15A). Inspecting the spectrum of h∞, we see that in each of these three cases, 1 is an eigenvalue of
multiplicity 2, hence it must occur on both Wild and Tame. It follows that the set of “downstairs”
characters of H is

(30.7.1) Char(7), {ξi9 | i = 0, 1, 2, 4, 5, 7, 8}, Charntriv(3) t Char(5),

respectively. On the other hand, h0 can belong to either class 9B or 15B, and so the set of “upstairs”
characters of H is Charntriv(9) or Char×(15), respectively. If the “upstairs” set is Charntriv(9), then
the “downstairs” set must be Char(7), in which case Ggeom = S9 by [KT5, Theorem 9.3]. Hence the
“upstairs” set is Char×(15). The first and the third of the three possibilities listed in (30.7.1) for
the “downstairs” set lead to local systems that fail the V -test and thus have infinite Ggeom. The
middle candidate gives rise to H ∼= H8.

(ii) By Theorem 30.2, G is finite. Moreover, the shape of H6 shows by Proposition 3.7 that it is
primitive, and the field of traces is Q by Proposition 6.1(iii). In particular, Z(G) ≤ C2. Next, by
[KT9, Theorem 4.8], G = Z(G)G0 where G0 is the normal closure of the image of P (∞) in G and
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G0 = W (E6) in its reflection representation (note that G0 cannot be the Mitchell group because
Z(G) ≤ C2). As Z(G0) ≤ C2, G/G0 is a 2-group. On the other hand, G/G0 has odd order by
Theorem 5.3. Hence G = G0, as stated.

Conversely, we considerH with geometric monodromy groupH = Ggeom
∼= W (E6) in its reflection

representation. Every complex reflection in H has order 2. Hence any non-identity element h in
the image of P (∞) in H has order 2, and thus p = 2. Next, h is a 2C-involution, in the notation
of [GAP]. With h0 and h∞ as defined in (i), 2 - o(h∞), h∞ has simple spectrum on Tame (of
dimension 5) and centralizes h. Using [GAP] we see that h∞ belongs to class 5A, and so the set
of “downstairs” characters of H is Char5. On the other hand, as h0 has odd order and has simple
spectrum on H, it can belong to class 9A, and so the set of “upstairs” characters of H is Char×9 ,
showing H ∼= H6.

(iii) By Theorem 30.3, G is finite. Moreover, the shape of H′6 shows by Proposition 3.7 that
it is primitive, and the field of traces is contained in Q(ζ3) by Proposition 6.1(iii). In particular,
Z(G) ≤ C6. Next, by [KT9, Theorem 4.8], G = Z(G)G0 where G0 is the normal closure of the
image of P (∞) in G, and G0 is either W (E6) or the Mitchell group in their reflection representations.
Since g0 has central order 7, G0 6= W (E6), and thus G0 = 61 · PSU4(3) · 22, the Mitchell group. As
Z(G0) = C6 centralizes G, we conclude that Z(G) ≤ G and G = G0, as stated.

(iv) By Theorem 30.4, G is finite. Moreover, the shape of H4 shows by Proposition 3.7 that it
is primitive, and the field of traces is Q(ζ3) by Corollary 6.2(ii). In particular, Z(G) ≤ C6. Recall
that any element 1 6= h in the image of P (∞) in G acts a complex reflection of order 3. Hence,
by Bagnera’s theorem, see [Mit, Theorem 2], G/Z(G) ∼= S = PSp4(3). Since irreducible projective
representations of degree 4 of S can only lift to linear representations of L = Sp4(3), which are not
stable under outer automorphisms of L, we have that G = Z(G)L. Now Z(G) ≥ Z(L) ∼= C2. But
L does not contain complex reflections (of order 3), we must have Z(G) = C6 and thus G = 3× L,
as stated.

(v) By Theorem 30.5, G is finite. Moreover, the shape of H2 shows by Proposition 3.7 that
it is primitive, and the field of traces is contained in Q(ζ5) by Proposition 6.1(iii). In particular,
Z(G) ≤ C10. Since D = 2, G satisfies (S+), and the existence of a non-trivial element h in the image
of P (∞), which acts as the scalar ζ5 on Wild and 1 on Tame rules out the extraspecial normalizer
case of Lemma 3.1. Thus G is almost quasisimple, and one quickly deduces that G = Z(G)SL2(5);
in particular 2||Z(G)|. The existence of h now implies that in fact |Z(G)| = 10 and G = SL2(5)× 5.

(vi) By Theorem 30.6, G is finite. Moreover, the shape of H′2 shows by Proposition 3.7 that it is
primitive, and the field of traces is Q(ζ3) by Corollary 6.2(ii). In particular,

(30.7.2) Z(G) ≤ C6.

Since D = 2, G satisfies (S+), and the trace field Q(ζ3) rules out the almost quasisimple extraspecial
case of Lemma 3.1 (which would imply GBSL2(5) with Q(

√
5) contained in the trace field), as well

as the case of R = E ∗ C4 in the extraspecial normalizer case (which would imply the existence of
a trace 2

√
−1). Thus R CG ≤ NGL(V )(R), where V = C2, and R ∼= D8 = 21+2

+ or R ∼= Q8 = 21+2
− .

Next, a nontrivial element h in the image of P (∞) acts on V with eigenvalues 1 and ζ3, hence
inducing an automorphism of order 3 of R. As Aut(D8) is a 2-group, it follows that R ∼= Q8. Since
R is irreducible on V , we have that CG(R) = Z(G), and so G/Z(G) ↪→ Aut(R) ∼= S4.

Suppose that G/Z(G) ∼= S4. Then the representation Φ of G on V gives a degree 2 irreducible
projective representation of S4, which is realized by a degree 2 irreducible representation Ψ of a
double cover H = 2 · S4. Furthermore, the induced projective representation Φ : G → PGL(V ) is
faithful on R/Z(R) ∼= C2

2 . Hence, Ψ cannot be a linear representation of S4 (otherwise its image
would be∼= S3), and so it must be a faithful representation ofH. Using the character table ofH given
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in [GAP], we can find an element g ∈ G and a root of unity γ with Tr(γΦ(g)) =
√
−2. On the other

hand, Tr(Φ(g)) = a+bζ3 for some a, b ∈ Z. It follows that 2 = |Tr(γΦ(g))|2 = |Tr(g)|2 = a2−ab+b2,
i.e. (2a− b)2 + 3b2 = 8, a contradiction.

As both R/Z(R) ∼= C2
2 and C3 inject in G/Z(G), we conclude that G/Z(G) ∼= A4. Suppose

Z(G) > Z(R). Then (30.7.2) implies that Z(G) = C3×Z(R). It follows that R is a normal subgroup
of index 9 in G. As a generator g0 of the image of I(0) in G has order 4, the normal closure G0

of the image of I(0) in G is contained in R, and so 9 divides |G/G0|, contradicting Theorem 5.2.
Thus Z(G) = Z(R) ∼= C2. Note that the representation Φ|R : R→ GL(V ) extends to a symplectic,
faithful representation Θ : L → GL(V ), with R C L ∼= SL2(3) ∼= 2 · A4. In particular, an element
t ∈ L of order 3 induces on R the same automorphism as the one induced by h, and Tr(Θ(h)) = −1.
Thus Φ(g) = ξΘ(h) for some root of unity ξ, and, since 1 + ζ3 = Tr(Φ(g)) = ξTr(Θ(h)), we get
ξ = ζ2

3 , i.e. Φ(g) = ζ2
3Θ(h). Now we have

G = 〈R, g〉 ∼= 〈Φ(R),Φ(g)〉 ∼= 〈Θ(R),Θ(h)〉 ∼= SL2(3).

[In fact, Φ is Θ tensored with the faithful linear character of L/R sending h to ζ2
3 .] �

Theorem 30.8. For the hypergeometric sheaves listed in Theorem 30.7, the following statements
hold.

(i) H = H8 in Theorem 30.7(i) has a descent H] to F2, which over any finite extension k of F2

has arithmetic and geometric monodromy groups Garith,k,H] = Ggeom,H] = W (E8).
(ii) H = H6 in Theorem 30.7(ii) has a descent H] to F2, which over any finite extension k of F4

has arithmetic and geometric monodromy groups Garith,k,H] = Ggeom,H] = W (E6).

(iii) H = H′6 in Theorem 30.7(iii) has a descent H] to F4, which over any finite extension k of F4

has arithmetic and geometric monodromy groups Garith,k,H] = Ggeom,H] = 61 · PSU4(3) · 22.
(iv) H = H4 in Theorem 30.7(iv) has a descent H] to F3, which over any finite extension k of F3

has arithmetic and geometric monodromy groups Garith,k,H] = Ggeom,H] = 3× Sp4(3).
(v) H = H2 in Theorem 30.7(v) has a descent H] to F5, which over any finite extension k of F5

has arithmetic and geometric monodromy groups Garith,k,H] = Ggeom,H] = 5× SL2(5).

(vi) H = H′2 in Theorem 30.7(vi) has a descent H] to F3, which over any finite extension k of F3

has arithmetic and geometric monodromy groups Garith,k,H] = Ggeom,H] = SL2(3).

Proof. (i) Note by Theorem 7.5 that H has a descent H] = H00 (listed in Table 4, line 33) to F2,
for which over any extension k ⊇ F2, any element in its arithmetic monodromy group still has
rational trace. It follows for H] that Z(Ggeom,H]) ≤ Z(Garith,k,H]) ≤ C2. Since Ggeom,H] = W (E8)
by Theorem 30.7(i), we have Z(Garith,k,H]) = C2. Next, Ggeom,H] induces a subgroup C2 of Out(L)

for L := [W (E8),W (E8)] ∼= 2 · Ω+8(2), and the representation of L on C8 is not stable under any
outer automorphism of order 3 in Out(L). As CGarith,k,H]

(L) = Z(Garith,k,H]), we conclude that

Garith,k,H] = W (E8).

(ii) Note by Theorem 7.5 thatH has a descentH] = H00 (listed in Table 4, line 34) to F2, for which
over any extension k ⊇ F2, any element in its arithmetic monodromy group still has rational trace.
It follows for H] that Z(Ggeom,H]) ≤ Z(Garith,k,H]) ≤ C2. Next, Ggeom,H] = W (E6) induces the
full group Out(L) ∼= C2 for L := [W (E6),W (E6)] ∼= SU4(2), and CGarith,k,H]

(L) = Z(Garith,k,H]).

Hence, we conclude that Garith,k,H] = W (E6)Z(Garith,k,H]), and W (E6) has index ≤ 2 in it. In
particular, if k ⊇ F4, then Garith,k,H] = W (E6).

(iii) Note by Theorem 7.7 that H has a descent H] = H00 (listed in Table 4, line 35) to F4, for
which over any extension k ⊇ F4, any element in its arithmetic monodromy group still has trace in
Q(ζ3). It follows for H] that Z(Ggeom,H]) ≤ Z(Garith,k,H]) ≤ C6. Since Ggeom,H] = 61 ·PSU4(3) · 22,
the Mitchell group, by Theorem 30.7(iii), we have Z(Garith,k,H]) = C6. Next, Ggeom,H] induces a
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subgroup 22 of Out(L) for L := [Ggeom,H] , Ggeom,H] ]
∼= 61 · PSU4(3), and the representation of L

on C6 is not stable under any larger subgroup of Out(L). As CGarith,k,H]
(L) = Z(Garith,k,H]), we

conclude that Garith,k,H] = Ggeom,H] .

(iv) By Theorem 7.5,H has a descentH] = H00 (listed in Table 4, line 36) to F3, for which over any
extension k ⊇ F3, any element in its arithmetic monodromy group still has trace in Q(ζ3). It follows
for H] that Z(Ggeom,H]) ≤ Z(Garith,k,H]) ≤ C6. Since Ggeom,H] = 3 × Sp4(3) by Theorem 30.7(iv),

we have Z(Garith,k,H]) = C6. Next, the representation of L := [Ggeom,H] , Ggeom,H] ]
∼= Sp4(3) on C4

is not stable under any outer automorphism of L, and CGarith,k,H]
(L) = Z(Garith,k,H]). We conclude

that Garith,k,H] = Ggeom,H] .

(v) By Theorem 7.5, H has a descentH] = H00 (listed in Table 4, line 37) to F5, for which over any
extension k ⊇ F5, any element in its arithmetic monodromy group still has trace in Q(ζ5). It follows
for H] that Z(Ggeom,H]) ≤ Z(Garith,k,H]) ≤ C10. Since Ggeom,H] = 5× SL2(5) by Theorem 30.7(v),

we have Z(Garith,k,H]) = C10. Next, the representation of L := [Ggeom,H] , Ggeom,H] ]
∼= SL2(5) on C2

is not stable under any outer automorphism of L, and CGarith,k,H]
(L) = Z(Garith,k,H]). We conclude

that Garith,k,H] = Ggeom,H] .

(vi) By Theorem 7.5, H has a descent H] = H00 (listed in Table 4, line 38) to F3, for which
over any extension k ⊇ F3, any element in its arithmetic monodromy group still has trace in Q(ζ3).
It follows for H] that Z(Ggeom,H]) ≤ Z(Garith,k,H]) ≤ C6. Since Ggeom,H] = SL2(3) by Theorem
30.7(v), we have

(30.8.1) C2 = Z(Ggeom,H]) ≤ Z(Garith,k,H]) ≤ C6.

Let R := O2(Ggeom,H])
∼= Q8. Then Ggeom,H] induces the subgroup A4 of Aut(R) ∼= S4, and

CGarith,k,H]
(R) = Z(Garith,k,H]). If Garith,k,H]/Z(Garith,k,H]) induces the full group Aut(R), then the

automorphisms of R outside of A4 fuse the two conjugacy classes of elements of order 3 in SL2(3)
and force them to have the same rational trace −1, which is a contradiction since they actually
have traces 1 + ζ3 and 1 + ζ2

3 on C2. Hence we must have that

(30.8.2) Garith,k,H] = Z(Garith,k,H])Ggeom,H] .

Suppose Z(Garith,F3,H]) 6= Z(Ggeom,H]). It follows from (30.8.1) and (30.8.2) that

Garith,F3,H] = 〈z〉 ×Ggeom,H] ,

where z acts via scalar ζ3 on C2. In this case, we may assume that modulo Ggeom,H] = SL2(3),

any element in Garith,F3,H] is zdeg. Recall from Theorem 30.7(vi) that Ggeom,H] acts on C2 via one
of its non-self-dual irreducible representations of degree 2. Hence, any element Frobu,F81 has trace
±2ζ3 or of absolute value 0 or 1. However, a computation using [Mag] shows that some elements
Frobu,F81 have trace 2 and −2, a contradiction. We conclude that Garith,k,H] = Ggeom,H] . �

31. Further local systems for Sp6(2), SU3(3), 2G2(3), and 2A7

In this section, we obtain new local systems realizing Sp6(2) and its subgroups G2(2)′ ∼= SU3(3)
and 2G2(3) ∼= SL2(8) o C2. We also obtain new local systems realizing 2A7. These are “exotic”
exponential sums with finite monodromy, exotic in the sense that the finiteness of their monodromy
does not result from van der Geer-van der Vlugt, cf. [KT9].

Theorem 31.1. The local system H(Char7; ξ6, ξ
5
6 , ξ2) in characteristic p = 5 has finite monodromy.
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Proof. We need to show:

V (7x) + V

(
−x+

1

2

)
+ V

(
−x+

1

6

)
+ V

(
−x− 1

6

)
≥ 3

2
.

Using the fact that V ( i
42) = V ( 372i

56−1
) = 1

24 [372i] for 1 ≤ i ≤ 41 we check that the inequality holds

for 7x ∈ Z. For all other values of x, using that V (x) + V (−x) = 1 if x 6= 0, we can rewrite the
inequality as

V (7x) ≤ V
(
x+

1

2

)
+ V

(
x+

5

6

)
+ V

(
x+

1

6

)
− 1

2

and, via the change of variable x 7→ x+ 1
2 , as

V

(
7x+

1

2

)
≤ V

(
x+

1

3

)
+ V

(
x+

2

3

)
+ V (x)− 1

2
.

Following §9, it suffices to prove[
7x+

5r − 1

2

]
≤
[
x+

5r − 1

3

]
+

[
x+

2(5r − 1)

3

]
+ [x]− 2r

for every r ≥ 1 divisible by r0 = 2 and every 0 ≤ x ≤ 5r−1. Notice that, in this case, multiplication
by 5 permutes γ1 = 1

3 and γ2 = 2
3 , so we can take r1 = 1. Then, with the notation of §9, we have

(52 − 1)γ1 = 135, h1 = 3, h2 = 1. We will prove that[
7x+

5r − 1

2

]
≤ [x+ hr,1] + [x+ hr,2] + [x]− 2r

for every r ≥ 1 and every 0 ≤ x ≤ 5r − 1. For r ≤ 4 we check it by computer. For r > 4 we proceed
by induction as described in §9, proving first the following cases by splitting off the last digits of x.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 4
∑

j vj + 4
∑

i ui

0,1 1 0,1 0 ≥ 0 0 ≥ 0
a2, a3; a 6= 3 1 2,3 0 ≥ 0 0 ≥ 0
a4; a 6= 1, 3 1 4 4 ≥ 0 0 ≥ 4
a32; a 6= 1, 3 2 32 4 ≥ 0 0 ≥ 4
a132; a 6= 3 3 132 0 ≥ 0 0 ≥ 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c3 = c′3 corresponding to γ3 = 0, since it is always 0):

z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 = c′1 c2 = c′2
3132 4 320 3 4 4 10 1 1
332 3 33 2 4 4 10 1 1

33,34 2 32 2 4 4 10 1 1
14 2 2 1 4 0 3 0 1

�

Theorem 31.2. (a) The local system H := H(Char7; ξ6, ξ
5
6 , ξ2) in characteristic p = 5 has geomet-

ric monodromy group Ggeom = Sp6(2). Furthermore, H has a descent H00 to F5, whose arith-
metic monodromy group Garith,k over any finite extension k of F5 is 2 × Sp6(2) if 2 - [k : F5]
and Sp6(2) is 2|[k : F5].
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(b) The local system F on A1 with trace function t 7→ −
∑

x ψ(x7 + tx3)ξ2(x) in characteristic
p = 5 has geometric monodromy group Ggeom,F = Sp6(2). Over a finite extension k of F5, the

arithmetic monodromy group Garith,k,G of G := F ⊗ (−Gauss)− deg is 2 × Sp6(2) if 2 - [k : F5]
and Sp6(2) is 2|[k : F5].

Proof. (a) By Theorem 31.1, G = Ggeom is finite. Furthermore, G is primitive by [KT9, Lemma
12.8], but the rank is 7, so it satisfies (S+). Let ϕ denote the character of the representation
G → GL(V ) of G underlying H. By the construction of H and Corollary 6.2(i), the field of values
Q(ϕ) := Q(ϕ(g) | g ∈ G) is Q. Moreover, a generator g0 of the image I(0) in G has central order
7, and the image Q of P (∞) is of order 5 by Proposition 5.8(iv), and Q ↪→ G/Z(G) by Proposition
5.6(ii). Next, since the cyclic group Z(G) acts via scalars, Q(ϕ) = Q, and the geometric determinant
is trivial [Ka4, Lemma 8.11.6], we have that

(31.2.1) Z(G) = 1.

Suppose G satisfies conclusion (c) of Lemma 3.1. Then G contains an irreducible normal 7-
subgroup R, and

G/CG(R)R ↪→ Out(R) ↪→ Sp2(7).

But this is a contradiction, since CG(R) = Z(G) = 1 by (31.2.1), and 5 divides |G| but not |Sp2(7)|.
Thus G is almost quasisimple. Let S denote the unique non-abelian composition factor of G,

so that S = L/Z(L) for L := E(G) = G(∞). Then V |L is irreducible by Lemma 3.1, and so
CG(L) = Z(G) = 1 by Schur’s lemma. Furthermore, as ō(g0) = 7 and |Q| = 5 we have that 5 · 7
divides the order of G/Z(G) ≤ Aut(S). Now we can apply the main result of [HM] to see that
either S = L = A8 or S = L = Sp6(2). In either case, since 7 - |Out(S)|, g0 must lie in S, whence
Ggeom = S by Theorem 5.1. We also note that a generator g∞ of the image of I(∞) modulo P (∞)
in G has central order divisible by 4 while acting on Wild, see Proposition 5.8(iii), and by 3 while
acting on Tame, hence 12|ō(g∞). This rules out the possibility G = A8, and we conclude that
G = Sp6(2).

Next we consider H00, with H0 given on line 42 of Table 4. To identify Garith,k, since the
representation is orthogonal and the geometric determinant is trivial, we know that the arithmetic
determinant is either trivial or (−1)deg. Note G (with ψ replaced by x 7→ ψ(−7x)) is the [7]?

Kummer pullback of H00 by [KT6, Corollary 3.10]. By [KT1, Theorem 2.5(4)], G has arithmetic
determinant (−1)deg, therefore the same holds for H00. On the other hand, Z(Garith,k) ≤ C2, so
Sp6(2) = Ggeom CGarith,k ≤ 2× Sp6(2), and the statement for Garith,k follows.

(b) Since G is the [7]? Kummer pullback of H00 by [KT6, Corollary 3.10], we have that 1 6=
Ggeom,F CGgeom = Sp6(2), whence Ggeom,F = Sp6(2). Now,

Sp6(2) = Ggeom,F CGarith,k,G ≤ Garith,k ≤ 2× Sp6(2),

and, as mentioned above, the arithmetic determinant of G is (−1)deg. Hence we conclude that
Garith,k,G = Garith,k. �

Remark 31.3. Let us consider the local system on A2/F5 with coordinates (t, u)

Ft,u : (t, u) 7→ −
∑
x

ψ(x7 + tx3 + ux)ξ2(x).

By Theorem 31.2, the pullback Ft,0 has Ggeom = Sp6(2). One knows [Ka5, Theorem 4.12] that the
pullback F0,u has Ggeom = G2(C). The group Ggeom for Ft,u on A2 lies in SO7 (it a priori lies in
O7, but its geometric determinant, having order dividing 2, is geometrically constant on A2; being
trivial on the line u = 0, it is trivial). It follows that the group Ggeom for Ft,u on A2 is all of SO7,
as it lies in SO7 and contains both Sp6(2) and G2(C). We now apply Pink’s specialization theorem
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[Ka4, Theorem 8.18.2] to Ft,u and the projections onto the t and u lines respectively. We find that

for all but finitely many t0 ∈ F5, Ft0,u on the u line has group SO7, but that at time t0 = 0 it has

group G2(C). Similarly, we find that for all but finitely many u0 ∈ F5, Ft,u0 on the t line has group
SO7, but that at time u0 = 0 it has group Sp6(2). Are there other curves in (t, u) space along which
F has group G2? Along which F has group Sp6(2)?

Theorem 31.4. The local system F on A2 with trace function (s, t) 7→ −
∑

x ψ(x7 + sx5 + tx)ξ2(x)
in characteristic p = 3 has finite monodromy.

Proof. By [KRLT1, Theorem 2.12], it suffices to prove[
7a+ 5b+

3r − 1

2

]
≤ [a] + [b] + r + 2

for every r ≥ 1 and every a, b ∈ {0, 1, . . . , 3r − 1}, where [x] := [x]3 denotes the sum of the 3-adic
digits of x. We proceed by induction on r. For r ≤ 3, we check it by computer. For r > 3 we
distinguish the following cases (where, for each case, it is implicitly assumed that the previous cases
do not apply).

Case 1: The last (3-adic) digits of a and b are not (1, 0). Write a = 3·a1+a0 and b = 3·b1+b0 with
(a0, b0) ∈ {0, 1, 2}2r{(1, 0)}. Then it is easily checked by computer that [7a0+5b0+1] ≤ [a0]+[b0]+1,
so [

7a+ 5b+
3r − 1

2

]
=

[
3 ·
(

7a1 + 5b1 +
3r−1 − 1

2

)
+ (7a0 + 5b0 + 1)

]
≤
[
7a1 + 5b1 +

3r−1 − 1

2

]
+ [7a0 + 5b0 + 1]

≤ [a1] + [b1] + (r − 1) + 2 + [a0] + [b0] + 1

= [a] + [b] + r + 2

by induction hypothesis.

Case 2: The last two digits of a and b are not (013, 103) or (213, 003). Write a = 32 · a1 + a0 and
b = 32 · b1 + b0 with a0, b0 < 32 and (a0, b0) 6∈ {(013, 103), (213, 003)}. Then it is easily checked by
computer that [7a0 + 5b0 + 4] ≤ [a0] + [b0] + 2, so[

7a+ 5b+
3r − 1

2

]
=

[
32 ·

(
7a1 + 5b1 +

3r−2 − 1

2

)
+ (7a0 + 5b0 + 4)

]
≤
[
7a1 + 5b1 +

3r−2 − 1

2

]
+ [7a0 + 5b0 + 4]

≤ [a1] + [b1] + (r − 2) + 2 + [a0] + [b0] + 2

= [a] + [b] + r + 2

by induction hypothesis.

Case 3: The last three digits of a and b are not (0013, 1103) or (2013, 0103). Write a = 33 ·a1 +a0

and b = 33 · b1 + b0 with a0, b0 < 33 and (a0, b0) 6∈ {(0013, 1103), (2013, 0103)}. Then it is easily
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checked by computer that [7a0 + 5b0 + 13] ≤ [a0] + [b0] + 3, so[
7a+ 5b+

3r − 1

2

]
=

[
33 ·

(
7a1 + 5b1 +

3r−3 − 1

2

)
+ (7a0 + 5b0 + 13)

]
≤
[
7a1 + 5b1 +

3r−3 − 1

2

]
+ [7a0 + 5b0 + 13]

≤ [a1] + [b1] + (r − 3) + 2 + [a0] + [b0] + 3

= [a] + [b] + r + 2

by induction hypothesis.

Case 4: The last three digits of a and b are (0013, 1103) or (2013, 0103). Write a = 32 · a1 + 1 and

b = 32 · b1 + 3, and let a′ = 3 · a1 + 1 and b′ = 3 · b1. Then the last digit of 7a1 + 5b1 + 3r−2−1
2 is 0,

and 7 · 1 + 5 · 3 + 32−1
2 = 26 = 2223 and 7 · 1 + 5 · 0 + 3−1

2 = 8 = 223, so there are no digit carries in
either of the sums

7a+ 5b+
3r − 1

2
= 32 ·

(
7a1 + 5b1 +

3r−2 − 1

2

)
+

(
7 · 1 + 5 · 3 +

32 − 1

2

)
and

7a′ + 5b′ +
3r−1 − 1

2
= 3 ·

(
7a1 + 5b1 +

3r−2 − 1

2

)
+

(
7 · 1 + 5 · 0 +

31 − 1

2

)
.

Therefore, [
7a+ 5b+

3r − 1

2

]
=

[
7a1 + 5b1 +

3r−2 − 1

2

]
+ [26]

=

[
7a1 + 5b1 +

3r−2 − 1

2

]
+ [8] + 2

=

[
7a′ + 5b′ +

3r−1 − 1

2

]
+ 2

≤ [a′] + [b′] + (r − 1) + 2 + 2

= [a] + [b] + r + 2

by induction hypothesis. �

Theorem 31.5. The local system F|s=−1 on A1 with trace function t 7→ −
∑

x ψ(x7−x5 + tx)ξ2(x)
in characteristic p = 3, has fifth moment M5,0 6= 0 and third moment M3,0 6= 1.

Proof. We apply Theorem 6.9, with (a, b) := (5, 0), and q = 311, to

G := F|s=−1 ⊗ (−GaussF3(ψ, ξ2))− deg /F3 .

A calculation by Magma shows that the traces attained, with their multiplicities, are

(−2,mult. 6534), (−1,mult. 66430), (0,mult. 25411), (1,mult. 78651), (7,mult. 121).

Thus the empirical M5,0 computed over F311 is approximately 10.3686768615895273416992667107.
On the other hand, G has highest ∞-slope 7/6, cf. [KRLT1, §1]. So if M5,0 were 0, then (conser-
vatively) taking m := 0 in Theorem 6.9, we would have its H5,0 = 75/6, so that the empirical M5,0

computed over F311 would be

≤ 75/(6 · 311/2) = 6.65536760923871071612157994094.

This contradiction shows that M5,0 6= 0.
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We now show that M3,0 6= 1. We argue by contradiction. Because G has integer traces, if M3,0

were one, then det(1−TFrobF3 |H2
c (A1/F3,G⊗3)) is an integer polynomial (being the denominator of

the L function) of degree one which, by purity, is either 1−3T or 1+3T . Thus the empirical third mo-

ment M3,0 over F311 is within H3,0/3
11/2 = (1 + 73/6)/311/2 = 0.138199755793675851724069221121

of either 1 or −1. But this empirical moment is 0.00819658249928025876814171281478, contradic-
tion. �

Theorem 31.6. For the local system G on A2/k with trace function

(s, t) ∈ k 7→ 1

Gaussk

∑
x∈k

ψk(x
7 + sx5 + tx)ξ2(x)

in characteristic p = 3, we have the following results.

(a) The system G|t=0 and the system H := H(Char7; ξ2Char5) both have geometric monodromy group
Gt=0,geom = Sp6(2). Next, H has a descent H00, whose arithmetic monodromy group Gt=0,arith,k

over any finite extension k of F3 is 2 × Sp6(2) when 2 - [k : F3] and Sp6(2) when 2|[k : F3].
Furthermore, over any finite extension k of F3, the arithmetic monodromy group of G|t=0 is
equal to Gt=0,arith,k.

(b) The system G has geometric monodromy group G2-param,geom = Sp6(2). Over any finite extension
k of F3, it has the same arithmetic monodromy group as G|t=0.

(c) The system G|s=0 has geometric monodromy group Gs=0,geom = SU3(3). Over any finite ex-
tension k of F9, it has arithmetic monodromy group Gs=0,arith,k = SU3(3). Over F3, it has
arithmetic monodromy group Gs=0,arith,F3 = SU3(3) · 2 ∼= G2(2).

(d) The system G|s=−1 has geometric monodromy group Gs=−1,geom = 2G2(3) ∼= SL2(8) oC3. Over
any finite extension k of F3, it has arithmetic monodromy group Gs=−1,arith,k = 2×Gs=−1,geom

if 2 - [k : F3] and Gs=−1,geom if 2|[k : F3].

Proof. (a) By Theorem 31.4, G|t=0 has finite monodromy, and it is the [7]? Kummer pullback of
H by [KT6, Corollary 3.10]. Hence H also has finite geometric monodromy group H, which is
primitive by [KT9, Lemma 12.8]. But the rank is 7, so H satisfies (S+). Let ϕ denote the character
of the representation H → GL(V ) of H underlying H. By the construction of H and Corollary
6.2(i), the field of values Q(ϕ) := Q(ϕ(g) | g ∈ G) is Q. Next, a generator g0 of the image I(0)
in H has central order 7. Moreover, a generator g∞ of the image of I(∞) modulo P (∞) in G has
central order divisible by 2 while acting on Wild, see Proposition 5.8(iii), and by 5 while acting on
Tame, hence 10|ō(g∞). Since the cyclic group Z(H) acts via scalars, Q(ϕ) = Q, and the geometric
determinant is trivial [Ka4, Lemma 8.11.6], we have that

(31.6.1) Z(H) = 1.

Suppose H satisfies conclusion (c) of Lemma 3.1. Then H contains an irreducible normal 7-
subgroup R, and

H/CH(R)R ↪→ Out(R) ↪→ Sp2(7).

But this is a contradiction, since CH(R) = Z(H) = 1 by (31.6.1), and 5 divides |H| but not |Sp2(7)|.
Thus H is almost quasisimple. Let S denote the unique non-abelian composition factor of H,

so that S = L/Z(L) for L := E(H) = H(∞). Then V |L is irreducible by Lemma 3.1, and so
CH(L) = Z(H) = 1 by Schur’s lemma. Furthermore, as ō(g∞) = 10, we have that 10 divides
the order of H/Z(H) ≤ Aut(S). Now we can apply the main result of [HM] to see that either
S = L = A8 or S = L = Sp6(2). In either case, since 7 - |Out(S)|, g0 must lie in S, whence H = S
by Theorem 5.1. Noting that A8 contains no element of order 10, we conclude that H = Sp6(2).
Now, the geometric monodromy group Gt=0,geom of G|t=0 is a normal subgroup of index dividing 7
in H, hence it must be equal to H.
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Next we identify the arithmetic monodromy group Harith,k of H00 (note H0 is listed on line 43
of Table 4). Since the representation is orthogonal and the geometric determinant is trivial, we
know that the arithmetic determinant of H is either trivial or (−1)deg. Note G (with ψ replaced
by x 7→ ψ(−7x)) is the [7]? Kummer pullback of H00 by [KT6, Corollary 3.10]. By [KT1, Theorem
2.5(4)], G has arithmetic determinant (−1)deg, therefore the same holds for H00. On the other hand,
Z(Harith,k) ≤ C2, so Sp6(2) = HCHarith,k ≤ 2×Sp6(2), and the stated structure for Harith,k follows.

Since G is the [7]? Kummer pullback of H00 by [KT6, Corollary 3.10], we have

Sp6(2) = Gt=0,geom CGt=0,arith,k ≤ Harith,k ≤ 2× Sp6(2),

and, as mentioned above, the arithmetic determinant of G is (−1)deg. Hence we conclude that
Gt=0,arith,k = Harith,k.

(b) By Theorem 31.4, G has finite geometric monodromy group G = G2-param,geom. We first note
that its field of traces is Q; indeed over any extension of F3, the substitution x 7→ −x shows that the
traces of G, a priori in Q(ζ3), are real. Thus the traces lie in Z; and furthermore G is arithmetically
orthogonal. We next note that det(G) is geometrically trivial. Indeed, the geometric determinant
has order dividing 2, but G lives over A2, so any such character of G is geometrically trivial. Hence,
in parallel to (31.6.1) now we have Z(G) = 1. Furthermore, G contains Gt=0,geom = Sp6(2), so
it also satisfies (S+), and, as in (a), it cannot satisfy Lemma 3.1(c) since 5 divides |H|. Again
applying [HM] and using Sp6(2) ≤ G, we see that G B S ∼= Sp6(2), and CG(S) = Z(G) = 1. It
follows that G = S.

Now, the arithmetic determinant of G is either trivial, or (−1)deg by arithmetic orthogonality.
According to (a), G|t=0 already has arithmetic determinant (−1)deg, so the same holds for G. Note
that the arithmetic monodromy group G2-param,arith,k of G has center of order ≤ 2 (again by orthog-
onality), we have

Sp6(2)CG2-param,arith,k ≤ 2× Sp6(2).

Using the determined arithmetic determinant, we conclude that G2-param,arith,k = Gt=0,arith,k.

(c) It was shown in [KT1, Theorem 19.1] that the geometric monodromy group, as well as the
arithmetic monodromy group of G|s=0 over any finite extension k of F9, is SU3(3). Also, [KT8,
Theorem 7.9] shows that the arithmetic monodromy group of G|s=0 over F3 is SU3(3) · 2.

(d) Part (c) implies by specializing s = −1 that G|s=−1 has finite geometric monodromy group
K := Gs=−1,geom which is a subgroup of G = G2-param,geom = Sp6(2). Note that, since the wild
part has dimension 6, the image of P (∞) is non-abelian, and so the Sylow 3-subgroups of K are
also non-abelian, hence of order at least 33, and certainly 7 = rank(G|s=−1) divides |K|. Thus

33 · 7 divides |K|, and, furthermore, K = O3′(K) as G|s=−1 lives on A1. Checking the subgroups
of Sp6(2) [Atlas] that satisfy these conditions, we now see that either K = G, or K ≤ SU3(3), or
K ≤ 2G2(3) ∼= SL2(8)oC3. Since M5,0 = 0 for Sp6(2), Theorem 31.5 shows K 6= G. Again checking
these conditions on the subgroups of SU3(3) and 2G2(3), we see that K = SU3(3) or K = 2G2(3).
Since M3,0 = 1 for SU3(3), Theorem 31.5 implies that K = 2G2(3).

To determine Gs=−1,arith,k, we note that K CGs=−1,arith,k ≤ G2-param,arith,k ≤ 2× Sp6(2), and K

is maximal in Sp6(2). By [Ka5, Theorem 1.7], G|s=−1 has arithmetic determinant (−1)deg. Hence
Gs=−1,arith,k has the described structure. �

As a consequence of Theorem 31.6, we now prove Conjectures 7.2 and 7.3 of [Ka9]:

Corollary 31.7. The local system G3 on A1/F3 with trace function

t ∈ k 7→ 1

Gaussk

∑
x∈k

ψk
(
(x7 + 2x5 + 2x3 + 2x) + tx

)
ξ2(x)
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has geometric and arithmetic monodromy groups Ggeom,G3 = Garith,G3 = 2G2(3). Furthermore, the
pullback H3 of G3 by t 7→ t3 − t has geometric monodromy group Ggeom,H3 = SL2(8). Over any
finite extension k of F3, H3 has arithmetic monodromy group Garith,k,H3 = 2G2(3) if 3 - [k : F3] and
SL2(8) if 3|[k : F3].

Proof. In characteristic p = 3, the above trace function reduces to

t ∈ k 7→ 1

Gaussk

∑
x∈k

ψk
(
x7 − x5 + (t+ 1)x

)
ξ2(x),

hence G3 is the pullback by t 7→ t + 1 of the system G|s=−1 considered in Theorem 31.6, but with
Gaussk replaced by Gaussk. By this replacement, G3 has arithmetically trivial determinant, cf.
[Ka5, Theorem 1.7]; in particular, Z(Garith) = 1. Now the proof of Theorem 31.6(d) shows that
Ggeom,G3 = Garith,G3 = 2G2(3).

We next show thatGgeom,H3 = SL2(8). Consider the quotientGgeom,G3/SL2(8) = Garith,G3/SL2(8).
This is a cyclic group of order 3, given by a lisse rank one sheaf L on A1/F3 which is a quotient of G3.
The ∞-slopes of G3 are 0 once and 7/6 with multiplicity 6. Therefore our L, whose integer ∞-slope
is ≤ 7/6, is either tame at ∞, in which case it is geometrically trivial, or it has ∞-slope 1. Our L is
not geometrically trivial, as it is a nontrivial quotient of Ggeom,G3 . Therefore our L is geometrically

of the form Lψ(at+b) for some a ∈ F3
×

and some b ∈ F3. But this L lives on A1/F3 (being a quotient

of Garith,G3). So its arithmetic isomorphism class is Gal(F3/F3)-invariant. This forces a ∈ F×3 = ±1
and b ∈ F3. The t 7→ t3 − t pullback trivializes both Lψ(t) and Lψ(−t). Thus after this pullback the
group Ggeom,H3 has indeed shrunk to SL2(8). Moreover, the group Garith,G3/Ggeom,H3 is now the

geometrically trivial rank one sheaf ψ(b)deg, of order either 1 (if b = 0) or 3 (if b = ±1).
A calculation using Magma shows that Frob0,F3 has order 6 and trace −1, and no such element

exists in SL2(8) [GAP]. As SL2(8)CGarith,F3,H3 ≤ Garith = 2G2(3), we conclude that Garith,F3,H3 =
2G2(3). �

Remark 31.8. It would be interesting to have a conceptual proof of part (d) of Theorem 31.6. The
argument above shows that for any given specializations s = s0, the resulting monodromy group
Ks0 is one of the three groups Sp6(2), SU3(3), 2G2(3). So far we have shown that K0 = SU3(3)
and K−1 = 2G2(3). A Magma calculation over F38 for s = 1 shows that both 3 and −3 occur as
traces; this eliminates both SU3(3) and 2G2(3), and hence K1 = Sp6(2). What about other values
of s0 ∈ F3?

There is one general statement we can make along these lines. By Pink’s specialization theorem
[Ka4, Theorem 8.18.2], applied to F on X := A2 the (s, t)-plane, S = A1 the s-line, and X → S
the map (s, t) 7→ s, we see that Ks0 = Sp6(2) for all but finitely many values of of s0 ∈ F3.

Theorem 31.9. The local system H(Char×5 ; ξ2) in characteristic p = 7 has finite monodromy.

Proof. We need to show:

V (5x)− V (x) + V

(
−x+

1

2

)
≥ 0.

Using the fact that V ( i
10) = V ( 240i

74−1
) = 1

24 [240i] for 1 ≤ i ≤ 9 we check that the inequality holds

for 5x ∈ Z. For all other values of x, using that V (x) + V (−x) = 1 if x 6= 0, we can rewrite the
inequality as

V (5x) ≤ V
(
x+

1

2

)
+ V (x).
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Following §9, it suffices to prove

[5x] ≤
[
x+

7r − 1

2

]
+ [x] + 3

for every r ≥ 1 and every 0 ≤ x ≤ 7r − 1. For r ≤ 3 we check it by computer. For r > 3 we proceed
by induction as described in §9, proving first the following cases by splitting off the last digits of x.

last digits of x s z ∆(s, z)
∑

i ui
∑

j vj ∆(s, z)− 6
∑

j vj + 6
∑

i ui

0,1,2,3 1 0,1,2,3 ≥ 0 ≥ 0 0 ≥ 0
04,14,24 2 04,14,24 ≥ 0 ≥ 0 0 ≥ 0

a44, a64; a 6= 3 2 44,64 0 ≥ 0 0 ≥ 0
054,154,254 3 054,154,254 ≥ 0 ≥ 0 0 ≥ 0
a5, a6; a 6= 3 1 5,6 ≥ 0 ≥ 0 0 ≥ 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c2 = c′2 corresponding to γ2 = 0, since it is always 0):

z = last digits of x s z′ s′ ∆(s, z) ∆(s′, z′) b1 = b′1 c1 = c′1
34,35,36 2 4 1 ≥ −3 −3 2 1

344 3 35 2 0 0 2 1
354 3 34 2 −3 −3 2 1
454 3 44 2 0 0 3 1
554 3 61 2 3 3 4 1
654 3 64 2 0 0 4 1
364 3 40 2 0 0 2 1

�

Theorem 31.10. (a) The local system H = H(Char×5 ; ξ2) in characteristic p = 7 has geometric
monodromy group Ggeom = 2A7. Furthermore, H has a descent H00 to F7, whose arithmetic
monodromy group Garith,k over any finite extension k of F7 is equal to Ggeom.

(b) The local system F on A1 with trace function

t ∈ k 7→ 1

Gaussk

∑
x∈k

ψ(x5 + tx2)

in characteristic p = 7 has geometric monodromy group Ggeom = 2A7, which is also its arith-
metic monodromy group over any finite extension k of F7.

Proof. By Theorem 31.9, G = Ggeom is finite. Furthermore, G satisfies (S+) by [KT5, Theorem
1.9]. Let ϕ denote the character of the representation G → GL(V ) of G underlying H. By the
construction of H and Proposition 6.1(iii-bis), the field of values Q(ϕ) := Q(ϕ(g) | g ∈ G) is
Q(
√
−7). Moreover, a generator g0 of the image I(0) in G has central order 5, and the image Q of

P (∞) is of order 7 by Proposition 5.8(iv), and Q ↪→ G/Z(G) by Proposition 5.6(ii). Next, since
the cyclic group Z(G) acts via scalars and Q(ϕ) = Q(

√
−7), we have that

(31.10.1) Z(G) ≤ C2.

Suppose G satisfies conclusion (c) of Lemma 3.1. Then G contains an irreducible normal 2-
subgroup R, and

G/CG(R)R ↪→ Out(R) ↪→ Sp4(2) ∼= S6.

But this is a contradiction, since CG(R) = Z(G) ≤ C2 by (31.10.1), and 7 divides |G| but not |S6|.
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Thus G is almost quasisimple. Let S denote the unique non-abelian composition factor of G,
so that S = L/Z(L) for L := E(G) = G(∞). Then V |L is irreducible by Lemma 3.1, and so
CG(L) = Z(G) by Schur’s lemma. Furthermore, as ō(g0) = 5 and |Q| = 7 we have that 5 · 7 divides
the order of G/Z(G) ≤ Aut(S). Now we can apply the main result of [HM] to see that S = A7 and
L = 2A7. In this case we also have that Z(G) = Z(L) = C2 by (31.10.1). Since 7 - |Out(S)|, g0

must lie in the inverse image L of S in G, whence Ggeom = L by Theorem 5.1.
By Theorem 7.5, H has a descent H00 to F7 for which any element in Garith,k still has trace in

Q(
√
−7) whenever k ⊇ F7, with H0 given on line 44 of Table 4. Since any element in CGarith,k

(L) =

Z(Garith) acts via scalars, which are then roots of unity in Q(
√
−7), we see that

CGarith,k
(L) = C2 = Z(L).

Since no outer automorphism of L can fix the character ϕ|L, we conclude that Garith,k = L = Ggeom.
The statements in (b) now follow, since F is the [5]? Kummer pullback of H by [KT6, Corollary

3.10]. �

32. Further multi-parameter local systems

Theorem 32.1. The local system on A3 with trace function (s, t, u) 7→ −
∑

x ψ(x7 +sx4 + tx2 +ux)
in characteristic p = 3 has finite monodromy.

Proof. By [KRLT1, Theorem 2.12], it suffices to prove

[7a+ 4b+ 2c] ≤ [a] + [b] + [c] + r + 1

for every r ≥ 1 and every a, b ∈ {0, 1, . . . , 3r − 1}, where [x] := [x]3 denotes the sum of the 3-adic
digits of x. We proceed by induction on r. For r ≤ 3, we check it by computer. For r > 3 we
distinguish the following cases.

Case 1: The last (3-adic) digits of a, b and c are not (0, 2, 0), (1, 0, 0) or (2, 0, 0). Write a =
3 · a1 + a0, b = 3 · b1 + b0 and c = 3 · c1 + c0 with (a0, b0, c0) ∈ {0, 1, 2}3 r {(0, 2, 0), (1, 0, 0), (2, 0, 0)}.
Then it is easily checked by computer that [7a0 + 4b0 + 2c0] ≤ [a0] + [b0] + [c0] + 1, so

[7a+ 4b+ 2c] = [3 · (7a1 + 4b1 + 2c1) + (7a0 + 4b0 + 2c0)]

≤ [7a1 + 4b1 + 2c1] + [7a0 + 4b0 + 2c0]

≤ [a1] + [b1] + [c1] + (r − 1) + 1 + [a0] + [b0] + [c0] + 1

= [a] + [b] + [c] + r + 1

by induction hypothesis.

Case 2: The last digits of a, b and c are (0, 2, 0), (1, 0, 0) or (2, 0, 0), except if the last two digits
are (02, 10, 00). Write a = 32 · a1 + a0, b = 32 · b1 + b0 and c = 32 · c1 + c0 with a0, b0, c0 < 32

and (a0, b0, c0) 6= (023, 103, 003). Then it is easily checked by computer that [7a0 + 4b0 + 2c0] ≤
[a0] + [b0] + [c0] + 2, so

[7a+ 4b+ 2c] = [32 · (7a1 + 4b1 + 2c1) + (7a0 + 4b0 + 2c0)]

≤ [7a1 + 4b1 + 2c1] + [7a0 + 4b0 + 2c0]

≤ [a1] + [b1] + [c1] + (r − 2) + 1 + [a0] + [b0] + [c0] + 2

= [a] + [b] + [c] + r + 1

by induction hypothesis.
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Case 3: The last two digits of a, b and c are (023, 103, 003). Write a = 33 · a1 + a0, b = 33 · b1 + b0
and c = 33 · c1 + c0 with a0, b0, c0 < 33 and (a0, b0, c0) ≡ (023, 103, 003) mod 9. Then it is easily
checked by computer that [7a0 + 4b0 + 2c0] ≤ [a0] + [b0] + [c0] + 3, so

[7a+ 4b+ 2c] = [33 · (7a1 + 4b1 + 2c1) + (7a0 + 4b0 + 2c0)]

≤ [7a1 + 4b1 + 2c1] + [7a0 + 4b0 + 2c0]

≤ [a1] + [b1] + [c1] + (r − 3) + 1 + [a0] + [b0] + [c0] + 3

= [a] + [b] + [c] + r + 1

by induction hypothesis. �

Theorem 32.2. The local system G on A3 with trace function

(s, t, u) ∈ k3 7→ 1

Gaussk

∑
x∈k

ψ(x7 + sx4 + tx2 + ux)

in characteristic p = 3 has geometric monodromy group G = Ggeom = 61 ·PSU4(3). Over any finite
extension k of F3, the arithmetic monodromy group Garith,k of G is (61 · PSU4(3)

)
· 22 = G · 2 if

2 - [k : F3] and G if 2|[k : F3].

Proof. By Theorem 32.1, G is finite. Next, the sheaf G|t=u=0 is the [7]? Kummer pullback of the
sheaf Hyp(Charntriv(7),Charntriv(4)), and so it has geometric monodromy group H = 61 ·PSU4(3) by
Theorem 21.4. Since H ≤ G and H is (S+), G is also (S+), and therefore it is almost quasisimple
by Lemma 3.1; also, |G/Z(G)| is divisible by |H/Z(H)| = |PSU4(3)|. Using this information and

[HM], we see that the only non-abelian composition factor S of G is S ∼= PSU4(3) and G(∞) =
61 · PSU4(3) = H. Since the field of traces is Q(ζ3), |Z(G)| ≤ 6, and so Z(G) = Z(H). Finally,

G = O3′(G) and Out(S) is a 3′-group, implying G/CG(H) = G/Z(G) = S, and hence G = H.
To determine the arithmetic monodromy group over any finite extension k of F3, it suffices by

Lemma 4.2 to show that G̃ := Garith,F3 = (61 · PSU4(3)
)
· 22. Note that the field of traces is still

Q(ζ3), so CG̃(G) = Z(G̃) has order at most 6, and so CG̃(G) = Z(G). Next, the only nontrivial
element of Out(G) = D8 that preserves the character of G on G is 22, see [Atlas]; hence either

G̃ = G or G̃ = G · 22. Suppose we are in the former case. Then the arithmetic monodromy group
of G|s=t=0 over k is contained in G. This specialization is just the local system W3,1,0 in [KT8,
Corollary 7.10], according to which it has arithmetic monodromy group SU3(3) · 2 ∼= G2(2). The

latter group is not a subgroup of G = 61 · PSU4(3), see [Atlas], a contradiction. Hence G̃ = G · 22

as stated. �

Theorem 32.3. The local system on A2 with trace function (s, t) 7→ −
∑

x ψ(x13 + sx3 + tx) in
characteristic p = 2 has finite monodromy.

Proof. By [KRLT1, Theorem 2.12], it suffices to prove

[13a+ 3b] ≤ [a] + [b] +
r

2
+

3

2

for every r ≥ 1 and every a, b ∈ {0, 1, . . . , 2r − 1}, where [x] := [x]2 denotes the sum of the 2-adic
digits of x. We proceed by induction on r. For r ≤ 4, we check it by computer. For r > 4 we
distinguish the following cases (where, for each case, it is implicitly assumed that the previous cases
do not apply).

Case 1: The last (2-adic) digits of a and b are not (1, 0) or (0, 1). Write a = 2 · a1 + a0

and b = 2 · b1 + b0 with (a0, b0) ∈ {(0, 0), (1, 1)}. Then it is easily checked by computer that
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[13a0 + 3b0] ≤ [a0] + [b0] + 1
2 , so

[13a+ 3b] = [2 · (13a1 + 3b1) + (13a0 + 3b0)]

≤ [13a1 + 3b1] + [13a0 + 3b0]

≤ [a1] + [b1] +
r − 1

2
+

3

2
+ [a0] + [b0] +

1

2

= [a] + [b] +
r

2
+

3

2

by induction hypothesis.

Case 2: The last two digits of a and b are not (012, 002), (102, 012) or (112, 002). Write a =
22 · a1 + a0 and b = 22 · b1 + b0 with

a0, b0 < 22, (a0, b0) 6∈ {(012, 002), (102, 012), (112, 002)}.

Then it is easily checked by computer that [13a0 + 3b0] ≤ [a0] + [b0] + 1, so

[13a+ 3b] = [22 · (13a1 + 3b1) + (13a0 + 3b0)]

≤ [13a1 + 3b1] + [13a0 + 3b0]

≤ [a1] + [b1] +
r − 2

2
+

3

2
+ [a0] + [b0] + 1

= [a] + [b] +
r

2
+

3

2

by induction hypothesis.

Case 3: The last three digits of a and b are not (0012, 0002), (0102, 0012), (0112, 0002) or
(1112, 0002). Write a = 23 · a1 + a0 and b = 23 · b1 + b0 with

a0, b0 < 23, (a0, b0) 6∈ {(0012, 0002), (0102, 0012), (0112, 0002), (1112, 0002)}.

Then it is easily checked by computer that [13a0 + 3b0] ≤ [a0] + [b0] + 3
2 , so

[13a+ 3b] = [23 · (13a1 + 3b1) + (13a0 + 3b0)]

≤ [13a1 + 3b1] + [13a0 + 3b0]

≤ [a1] + [b1] +
r − 3

2
+

3

2
+ [a0] + [b0] +

3

2

= [a] + [b] +
r

2
+

3

2

by induction hypothesis.

Case 4: The last four digits of a and b are not (00112, 10002) or (10012, 00002). Write a = 24·a1+a0

and b = 24 · b1 + b0 with a0, b0 < 24 and (a0, b0) 6∈ {(00112, 10002), (10012, 00002)}. Then it is easily
checked by computer that [13a0 + 3b0] ≤ [a0] + [b0] + 2, so

[13a+ 3b] = [24 · (13a1 + 3b1) + (13a0 + 3b0)]

≤ [13a1 + 3b1] + [13a0 + 3b0]

≤ [a1] + [b1] +
r − 4

2
+

3

2
+ [a0] + [b0] + 2

= [a] + [b] +
r

2
+

3

2

by induction hypothesis.
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Case 5: The last four digits of a and b are (00112, 10002). Write a = 24 ·a1 + 3 and b = 24 · b1 + 8,
and let a′ = 22 ·a1 +1 and b′ = 22 · b1. Since 13 ·3+3 ·8 = 1111112 and 13 ·1+3 ·0 = 11012 have the
same first two digits, the number of digit carries in the sums 13a+3b = 24 ·(13a1+3b1)+(13·3+3·8)
and 13a′ + 3b′ = 22 · (13a1 + 3b1) + (13 · 1 + 3 · 0) is the same. In particular,

[13a+ 3b]− [13a1 + 3b1]− [13 · 3 + 3 · 8] = [13a′ + 3b′]− [13a1 + 3b1]− [13 · 1 + 3 · 0].

Therefore,

[13a+ 3b] = [13a1 + 3b1] + [13 · 3 + 3 · 8] + ([13a+ 3b]− [13a1 + 3b1]− [13 · 3 + 3 · 8])

= [13a1 + 3b1] + [13 · 3 + 3 · 8] + ([13a′ + 3b′]− [13a1 + 3b1]− [13 · 1 + 3 · 0])

= [13a′ + 3b′] + 3 ≤ [a′] + [b′] +
r − 2

2
+

3

2
+ 3

= [a] + [b]− 2 +
r − 2

2
+

3

2
+ 3

= [a] + [b] +
r

2
+

3

2

by induction hypothesis.

Case 6: The last four digits of a and b are (10012, 00002). Write a = 24 ·a1 +9 and b = 24 ·b1, and
let a′ = 22 ·a1 +2 and b′ = 22 ·b1 +1. Since 13 ·9+3 ·0 = 11101012 and 13 ·2+3 ·1 = 111012 have the
same first three digits, the number of digit carries in the sums 13a+3b = 24 ·(13a1+3b1)+(13·9+3·0)
and 13a′ + 3b′ = 22 · (13a1 + 3b1) + (13 · 2 + 3 · 1) is the same. In particular,

[13a+ 3b]− [13a1 + 3b1]− [13 · 9 + 3 · 0] = [13a′ + 3b′]− [13a1 + 3b1]− [13 · 2 + 3 · 1].

Therefore,

[13a+ 3b] = [13a1 + 3b1] + [13 · 9 + 3 · 0] + ([13a+ 3b]− [13a1 + 3b1]− [13 · 9 + 3 · 0])

= [13a1 + 3b1] + [13 · 9 + 3 · 0] + ([13a′ + 3b′]− [13a1 + 3b1]− [13 · 2 + 3 · 1])

= [13a′ + 3b′] + 1 ≤ [a′] + [b′] +
r − 2

2
+

3

2
+ 1

= [a] + [b] +
r − 2

2
+

3

2
+ 1

= [a] + [b] +
r

2
+

3

2

by induction hypothesis. �

Theorem 32.4. The local system F on A2 with trace function

(s, t) ∈ k 7→ −1
√

2
deg(k/F2)

∑
x∈k

ψ(x13 + sx3 + tx)

in characteristic p = 2 has geometric monodromy group G = Ggeom = 2 · G2(4). Over any finite
extension k of F2, the arithmetic monodromy group Garith,k of F is

(
2 ·G2(4)

)
·2 = G ·2 if 2 - [k : F2]

and G if 2|[k : F2].

Proof. By Theorem 32.3, G is finite. Next, the sheaf G|t=0 is the [13]? Kummer pullback of the
sheaf Hyp(Charntriv(13),Charntriv(3)), and so it has geometric monodromy group H = 2 ·G2(4) by
Theorem 25.2. Since H ≤ G and H is (S+), G is also (S+), and therefore it is almost quasisimple
by Lemma 3.1; also, |G/Z(G)| is divisible by |H/Z(H)| = |G2(4)|, and the field of traces is Q. Using
this information and [HM], we see that the only non-abelian composition factor S of G is S ∼= G2(4)

and G(∞) = 2 ·G2(4) = H. Since the field of traces over any finite extension of F4 is Q, |Z(G)| ≤ 2,
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and so Z(G) = Z(H). Next, G/CG(H) = G/Z(G) ≤ Aut(S) = S · 2, but 2 · S · 2 does not rational
characters of degree 12 [Atlas], so G = H.

To determine the arithmetic monodromy group over any finite extension k of F2, it suffices to
show that G̃ := Garith,F2 = (2 · G2(4)

)
· 2. Note that the field of traces over F2 is contained in

Q(
√

2), so CG̃(G) = Z(G̃) has order at most 2, and so CG̃(G) = Z(G). Since Out(G) = C2 [Atlas],

either G̃ = G or G̃ = G · 2. Suppose we are in the former case. Then the trace of any Frob(s,t),F2

with s, t ∈ F2 is rational. On the other hand, Frob(1,0),F2
has trace −

√
2, a contradiction. Hence

G̃ = G · 2 as stated. �

Theorem 32.5. The local system on A3 with trace function (s, t, u) 7→ −
∑

x ψ(x5 +sx4 + tx2 +ux)
in characteristic p = 3 has finite monodromy.

Proof. By [KRLT1, Theorem 2.12], it suffices to prove

[5a+ 4b+ 2c] ≤ [a] + [b] + [c] + r + 1

for every r ≥ 1 and every a, b, c ∈ {0, 1, . . . , 3r − 1}, where [x] := [x]3 denotes the sum of the 3-adic
digits of x. We proceed by induction on r. For r ≤ 2, we check it by computer. For r > 3 we
distinguish the following cases.

Case 1: The last (3-adic) digits of a, b and c are not (0, 2, 0) or (1, 0, 0). Write a = 3 · a1 + a0,
b = 3 · b1 + b0 and c = 3 · c1 + c0 with (a0, b0, c0) 6∈ {(0, 2, 0), (1, 0, 0)}. Then it is easily checked by
computer that [5a0 + 4b0 + 2c0] ≤ [a0] + [b0] + [c0] + 1, so

[5a+ 4b+ 2c] = [3 · (5a1 + 4b1 + 2c1) + (5a0 + 4b0 + 2c0)]

≤ [5a1 + 4b1 + 2c1] + [5a0 + 4b0 + 2c0]

≤ [a1] + [b1] + [c1] + (r − 1) + 1 + [a0] + [b0] + [c0] + 1

= [a] + [b] + [c] + r + 1

by induction hypothesis.

Case 2: The last digits of a, b and c are (0, 2, 0) or (1, 0, 0), except when their last two digits are
(013, 103, 003) or (113, 003, 103). Write a = 32 · a1 + a0, b = 32 · b1 + b0 and c = 32 · c1 + c0 with
(a0, b0, c0) ≡ (0, 2, 0) or (1, 0, 0) mod 3 but (a0, b0, c0) 6∈ {(013, 103, 003), (113, 003, 103)}. Then it is
easily checked by computer that [5a0 + 4b0 + 2c0] ≤ [a0] + [b0] + [c0] + 2, so

[5a+ 4b+ 2c] = [32 · (5a1 + 4b1 + 2c1) + (5a0 + 4b0 + 2c0)]

≤ [5a1 + 4b1 + 2c1] + [5a0 + 4b0 + 2c0]

≤ [a1] + [b1] + [c1] + (r − 2) + 1 + [a0] + [b0] + [c0] + 2

= [a] + [b] + [c] + r + 1

by induction hypothesis.

Case 3: The last two digits of a, b and c are (013, 103, 003). Write a = 32 · a1 + 1, b = 32 · b1 + 3
and c = 32 · c1, and let a′ = 3 · a1 + 1, b′ = 3 · b1 and c′ = 3 · c1. Since 5 · 1 + 4 · 3 + 2 · 0 = 1223 and
5 ·1+4 ·0+2 ·0 = 122 have the same first digit, the number of digit carries in the sums 5a+4b+2c =
32 · (5a1 +4b1 +2c1)+(5 ·1+4 ·3+2 ·0) and 5a′+4b′+2c′ = 3 · (5a1 +4b1 +2c1)+(5 ·1+4 ·0+2 ·0)
is the same. In particular,

[5a+4b+2c]−[5a1+4b1+2c1]−[5·1+4·3+2·0] = [5a′+4b′+2c′]−[5a1+4b1+2c1]−[5·1+4·0+2·0].
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Therefore,

[5a+ 4b+ 2c]

= [5a1 + 4b1 + 2c1] + [5 · 1 + 4 · 3 + 2 · 0] + ([5a+ 4b+ 2c]− [5a1 + 4b1 + 2c1]− [5 · 1 + 4 · 3 + 2 · 0])

= [5a1 + 4b1 + 2c1] + [5 · 1 + 4 · 3 + 2 · 0] + ([5a′ + 4b′ + 2c′]− [5a1 + 4b1 + 2c1]− [5 · 1 + 4 · 0 + 2 · 0])

= [5a′ + 4b′ + 2c′] + 2

≤ [a′] + [b′] + [c′] + (r − 1) + 1 + 2

= [a] + [b] + [c] + r + 1

by induction hypothesis.

Case 4: The last two digits of a, b and c are (113, 003, 103). Write a = 32 · a1 + 4, b = 32 · b1 and
c = 32 · c1 + 3, and let a′ = 3 · a1, b′ = 3 · b1 + 2 and c′ = 3 · c1. Since 5 · 4 + 4 · 0 + 2 · 3 = 2223

and 5 · 0 + 4 · 2 + 2 · 0 = 222 have the same first digit, the number of digit carries in the sums
5a+ 4b+ 2c = 32 · (5a1 + 4b1 + 2c1) + (5 · 4 + 4 · 0 + 2 · 3) and 5a′+ 4b′+ 2c′ = 3 · (5a1 + 4b1 + 2c1) +
(5 · 0 + 4 · 2 + 2 · 0) is the same. In particular, [5a+ 4b+ 2c]− [5a1 + 4b1 + 2c1]− [5 · 4 + 4 · 0 + 2 · 3] =
[5a′ + 4b′ + 2c′]− [5a1 + 4b1 + 2c1]− [5 · 0 + 4 · 2 + 2 · 0]. Therefore,

[5a+ 4b+ 2c]

= [5a1 + 4b1 + 2c1] + [5 · 4 + 4 · 0 + 2 · 3] + ([5a+ 4b+ 2c]− [5a1 + 4b1 + 2c1]− [5 · 4 + 4 · 0 + 2 · 3])

= [5a1 + 4b1 + 2c1] + [5 · 4 + 4 · 0 + 2 · 3] + ([5a′ + 4b′ + 2c′]− [5a1 + 4b1 + 2c1]− [5 · 0 + 4 · 2 + 2 · 0])

= [5a′ + 4b′ + 2c′] + 2

≤ [a′] + [b′] + [c′] + (r − 1) + 1 + 2

= [a] + [b] + [c] + r + 1

by induction hypothesis. �

Theorem 32.6. The local system F on A3 with trace function

(s, t, u) 7→ 1

Gaussk

∑
x∈k

ψ(x5 + sx4 + tx2 + ux)

in characteristic p = 3 has geometric monodromy group G = Ggeom = 3 × Sp4(3). Over any finite
extension k of F3, F has arithmetic monodromy group Garith,k = Ggeom.

Proof. By Theorem 32.5, G is finite. Next, the sheaf F|t=u=0 is the [5]? Kummer pullback of
Hyp(Charntriv(5),Charntriv(4)), and so it has geometric monodromy group H = 3× Sp4(3) by The-
orem 30.7(iv). Since H ≤ G and H is (S+), G is also (S+), and in fact it is almost quasisimple;
also, |G/Z(G)| is divisible by |H/Z(H)| = |PSp4(3)|, and the field of traces is Q(ζ3). Using this
information and [HM], we see that the only non-abelian composition factor S of G is S ∼= PSp4(3)

and G(∞) = Sp4(3). Since the field of traces is Q(ζ3), |Z(G)| ≤ 6, and so Z(G) = Z(H). Next,
G/CG(H) = G/Z(G) ≤ Aut(S) = S · 2, but 2 · S · 2 does not irreducible characters of degree 4
[Atlas], so G = H.

To determineGarith,k, we note that the field of traces is still Q(ζ3), and repeat the above arguments
verbatim. �

Theorem 32.7. The local system F on A2 with trace function (s, t) 7→ −
∑

x ψ(x3 + sx2 + tx) in
characteristic p = 5 has finite monodromy.

Proof. By [KRLT1, Theorem 2.12], it suffices to prove

[3a+ 2b] ≤ [a] + [b] + 2r
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for every r ≥ 1 and every a, b ∈ {0, 1, . . . , 5r − 1}, where [x] := [x]5 denotes the sum of the 5-adic
digits of x. We proceed by induction on r. For r = 1 we check it by computer.

For r > 1, write a = 5 · a1 + a0 and b = 5 · b1 + b0 with (a0, b0) ∈ {0, 1, 2, 3, 4}. Then

[3a+ 2b] = [5 · (3a1 + 2b1) + (3a0 + 2b0)]

≤ [3a1 + 2b1] + [3a0 + 2b0]

≤ [a1] + [b1] + 2(r − 1) + [a0] + [b0] + 2

= [a] + [b] + 2r

by induction hypothesis. �

Theorem 32.8. The local system F on A2 with trace function

(s, t) 7→ 1

Gaussk

∑
x∈k

ψ(x3 + sx2 + tx)

in characteristic p = 5 has finite geometric monodromy group G = Ggeom = 5 × SL2(5). Over any
finite extension k of F5, F has arithmetic monodromy group Garith,k = Ggeom.

Proof. By Theorem 32.7, G is finite. Next, the sheaf F|t=0 is the [3]? Kummer pullback of
Hyp(Char×3 , ξ2), and so it has geometric monodromy group H = 5 × SL2(5) by Theorem 30.7(v).
Since H ≤ G and H is (S+), G is also (S+) and in fact it is almost quasisimple; also, the field
of traces is Q(ζ5). Using this information and [HM], we see that the only non-abelian composition

factor S of G is S ∼= A5 and G(∞) = SL2(5). Since the field of traces is Q(ζ5), |Z(G)| ≤ 10, and
so Z(G) = Z(H). Next, G/CG(H) = G/Z(G) ≤ Aut(S) = S · 2, but 2 · S · 2 does not irreducible
characters of degree 2 [Atlas], so G = H.

To determineGarith,k, we note that the field of traces is still Q(ζ5), and repeat the above arguments
verbatim. �
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