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ABSTRACT. We continue the program set up in [KT5H] to study the monodromy groups of hyper-
geometric and Kloosterman sheaves. We gave there easy to apply criteria on these sheaves that
their monodromy groups satisfy the group-theoretic condition (S+), and showed that many of the
finite almost quasisimple groups occur as monodromy groups of such sheaves. Here, we show that
precisely 12 of the 26 sporadic simple groups occur in this way (and explain why the others cannot
occur this way). We also treat some small rank finite groups of Lie type, as well as certain primitive
complex reflection groups.
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1. INTRODUCTION

Given a prime p, it was conjectured by Abhyankar [Abh1] and proven by Raynaud (see also
[Pop]) that any finite group G which is generated by its Sylow p-subgroups occurs as a quotient of
the fundamental group of the affine line A!/F,. The analogous result for the multiplicative group
Gy := A\ {0}, also conjectured by Abhyankar and proven by Harbater [Har] is that any finite
group G which, modulo the subgroup Op/(G) generated by its Sylow p-subgroups, is cyclic, occurs as
a quotient of the fundamental group of G,,/F,. In the ideal world, given such a finite group G, and
a complex representation V of G, we would be able, for any prime ¢ # p, to choose an embedding
of C into Qy, and to write down an explicit Q-local system on either A!/F, or on G,,/F, whose
geometric monodromy group is G, in the given representation.

In some earlier papers [KT1], [KT2], [KT3], [KT4], we have been able to do this for some
particular pairs (G, V). When we were able to do this on A!, it was through one-parameter families
of “simple to remember” exponential sums, often but not always rigid local systems on A'. When
we have been able to do this on G,,, it was through explicit irreducible hypergeometric sheaves of
type (D, m) with D > m (which include Kloosterman sheaves as the special case m = 0).

We took a new point of view in [KT5|], where we investigated what possible (G,V) can hy-
pergeometric sheaves of type (D, m) with D > m give rise to? We consider only those that are
geometrically irreducible, i.e., those that have no common character both “upstairs” and “down-
stairs”. These are precisely the hypergeometric sheaves of type (D, m) with D > m on which their
geometric monodromy groups Ggeom acts irreducibly. One also knows that if Gigeom is finite for a
hypergeometric sheaf of type (D, m) with D > m, then a generator of local monodromy at 0 is an
element of G which has all distinct eigenvalues in the given representation (a “simple spectrum”
element). And by Abhyankar, if Ggeom is finite, then G/ 0" (G) is cyclic.

To avoid confusion, let us explain the difference between hypergeometric sheaves of type (D, m)
with D > m, which we consider here, and hypergeometric sheaves of type (D, D). The latter
correspond to the classical hypergeometric equation pFp_1, which in the case D = 2 carries the
name of Gauss. They have been beautifully studied for general D by Beukers and Heckman [BH].
These hypergeometric sheaves are not lisse on G,,, but rather have nontrivial local monodromy at
the point 1 which is a pseudoreflection. Their monodromy groups have been completely classified
by Beukers and Heckman. When they are finite, they are only “interesting” in rank D < 8.
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As in [KT5], let us say that a triple (G,V,g) satisfies the Abhyankar condition at p if G is
a finite group such that G/ Op/(G) is cyclic, V' a faithful, irreducible, finite-dimensional complex
representation of GG, and g € GG is an element of order coprime to p that has simple spectrum on V.
The main objective of [KT5| was to study the natural question of which triples (G, V,g), with G
a finite group, either almost quasisimple or an extraspecial normalizer, that satisfy the Abhyankar
condition at p, occur “hypergeometrically”, that is, as (Ggeom, H,g) for a hypergeometric sheaf H
and a simple spectrum element g € Ggeom Which generates local monodromy around 0 on Gy, /IE‘T)
such that V realizes the action of G = Ggeom on H.

The main results of [KT5] essentially classify all such triples (G, V, g) that can possibly arise from
hypergeometric sheaves, and also determine the possible structure of geometric monodromy groups
of hypergeometric sheaves that satisfy the group-theoretic condition (S+). The converse problem
of determining whether such triples do indeed arise from hypergeometric sheaves is the subject
of [KT6], [KT7] (devoted to finite classical groups) and the present paper (dealing with sporadic
groups and small-rank groups of Lie type).

A natural question is which of the 26 sporadic groups, or more generally which almost quasisimple
groups G whose unique non-abelian composition factor is a sporadic group, can occur hypergeo-
metrically, say with a hypergeometric sheaf of type (D, m) with D > m. As mentioned above, the
first obstruction is that G must have a faithful irreducible D-dimensional representation in which
some element (the one that will provide local monodromy at 0 for the hypergeometric sheaf) has
simple spectrum, i..e. has D distinct eigenvalues in the representation. Such an element must have
order > D in G (for it has order d < D, all of its eigenvalues will be among the d' roots of unity).
In particular, G must have a conjugacy class of elements whose order is at least the dimension of
the lowest dimensional nontrivial irreducible representation of G. This kind of obstruction rather
dramatically shows that the Fischer—Griess Monster does not occur hypergeometrically: its lowest
dimensional nontrivial irreducible representation has dimension 196883, whereas the largest order
of any of its elements is 119. In fact, this “simple spectrum” obstruction rules out 12 of the sporadic
groups as well as any of the almost quasisimple groups in which these 12 sporadic groups occur.
The 14 “survivors” of this obstruction are listed in lines 2 through 15 in Table 1. Two of these
survivors, namely Mjs and HS, were shown in [KTH, Lemmas 9.6 and 9.7] not to occur hyper-
geometrically. What about the remaining 12 candidates? Earlier papers of ours, namely [KRL],
IKRLTT]-[KRLT3], showed that 2 - Jo and each of Cos, Cog, 6 - Suz, and 2 - Co; occurred. One of
the main results of this paper is to show that all the remaining candidates also occur, and to give
for each a hypergeometric sheaf whose monodromy group it is.

We also obtain some small groups of Lie type groups in “non-generic” situations, either via
a hypergeometric sheaf in the “wrong” characteristic, or a hypergeometric sheaf in the expected
characteristic but which is not (known to be) part of any “family”. It seems worth pointing out that
each of these groups displays a group-theoretically exceptional property: either it has exceptional
Schur multiplier (e.g. PSL3(4) with Schur multiplier Cy x C12 or Spg(2) with Schur multiplier Cs),
or it can be realized as an exceptional group of Lie type (e.g. G2(2) = SUj3(3) - 2 or G2(3) =
SL2(8) - C3). Furthermore, we also exhibit hypergeometric sheaves, which realize several primitive
complex reflection groups in dimension 2, 4, 6, and 8, in their reflection representations (these
“reflection sheaves” are marked by symbol ® in Table 2.) As shown in [KT9, Theorem 4.10],
primitive complex reflection groups in odd dimensions > 3 cannot occur this way. Finally, we
construct a few multi-parameter local systems on A" with finite monodromy, whose trace functions
are again some “simple” exponential character sums.

To identify candidate hypergeometric sheaves H for a given triple (G, V, g), we use the spectrum
of g on V to determine the shape of the set of “upstairs” characters of H. To control the shape of
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the set of “downstairs” characters, in particular the number of them, which is the dimension of the
tame part for the inertia group I(oc), we use local group theory to analyze possible candidates for
the image of I(o0) in G. Each such candidate can live in many different characteristics p, and a
priori there is no guarantee a given such candidate has finite geometric monodromy group Ggeom. A
key part of the proof is to use Kubert’s V-function [Kul, [KaT7, §13], to establish finite monodromy
for suitable candidates (and to quickly eliminate others). Once this is done, another key part of the
proof is to use representation theory to identify Ggeom (as well as the arithmetic monodromy groups
Garith Of suitable descents of H). All in all, we have been able to show that all pairs (G,V) that
are predicted in [KT5H)] to lead to hypergeometric sheaves with finite, almost quasisimple, geometric
monodromy groups satisfying condition (S+), do in fact occur hypergeometrically.

We recall from [KT5] some group-theoretic definitions that will be used throughout. For a finite
group G and a prime p, O,(G) denotes the largest normal subgroup of p-power order of G, O, (G)
denotes the largest normal subgroup of order coprime to p, Op/(G) denotes the normal subgroup of
G generated by all Sylow p-subgroups of G, Z(G) denotes the center of G, and G(*) denotes the
last term of the derived series of G. A finite group G is quasisimple if G = [G, G| and if G/Z(G) is
simple; it is almost quasisimple if S <1 G/Z(G) < Aut(S) for some finite non-abelian simple group
S. Let 9(S) denote the smallest degree of faithful projective irreducible complex representations of
a simple group S, and let 6(g) denote the order of the element ¢Z(G) in G/Z(G) for any g € G.
Adopting the notation of [GMPS], let meo(X) denote the largest order of elements in a finite group
X; also, by an outer automorphism of X we mean an automorphism of X which is not inner.

We also recall some basic algebro-geometric notions. A connected scheme X has (once cho-
sen a base point 77) a profinite fundamental group 7;(X,7), which up to inner automorphism is
independent of the auxiliary choice of base point. Given a topological ring R, a rank n R-local
system F on X, also called a lisse R-sheaf of rank n on X, is just a continuous homomorphism
pF : m(X,7) — GL,(R). When X is a connected scheme over a finite field k such that X ® k is
connected, we refer to w1 (X) as the arithmetic fundamental group of X, and we refer to 71 (X ® k)
as its geometric fundamental group. For brevity, we denote these groups w3 (X) and 7™ (X).
In this situation, for each finite extension field K /k, and each point x € X (K), the group 7{*ith(X)
contains a well-defined Frobenius conjugacy class Frob, . [When X/k is of finite type, these Frobe-
nius conjugacy classes are dense; this is the Chebotarev density theorem.] Given a rank n R-local
system F on X, with corresponding representation pr, the trace function of F is the rule which
attaches to each pair (K, z) with K/k a finite field extension and x € X (K) the trace of Frobenius,
ie.,

Trace(Froby k| F) := Trace(pr(Froby k)).

It is often useful to think of this trace function as providing, for each finite field extension K /k, the
R-valued function on the set X (k) given by

z € X(K) — Trace(Frobg i|F) := Trace(pr(Frobg i)).

A local system F on X is said to be geometrically irreducible, respectively arithmetically irreducible,
if it is irreducible as a representation of 7§ (X), respectively of 70 (X). Similarly, F is said to
be geometrically semisimple, respectively arithmetically semisimple, if it is completely reducible as
a representation of 7§ (X), respectively of 73#ith(X).

In this paper, we are typically concerned with the case when X/k is either Al JFq or Gy, /Fy,
with F, a finite extension of F,, the ring R is the field Q, for some prime ¢ # p, and F is a local
system whose trace function is given by a simple (in the sense of simple to remember) explicit
formula involving exponential sums. Our particular interest is in local systems JF for which the

images under pr of " (X) = m(X) and 7§*™(X) = m(X/k) are finite groups, which we call
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the arithmetic monodromy group, respectively, geometric monodromy group, of F. When F is a
hypergeometric sheaf on G,,/F,, we frequently work with its local monodromy groups at 0 and co:
its inertia subgroup I(0) with its wild inertia subgroup P(0), and its inertia subgroup I(co) with
its wild inertia subgroup P(oc0). We say that such an F has type (D, m), if it has rank D and,
furthermore, the I(co)-tame part has dimension m (so the I(oo)-wild part, usually referred to as
the wild part and denoted by Wild, has dimension W := D —m). Given a prime p and an integer

N > 1 coprime to p, un denotes the unique (cyclic) subgroup of order N of F;, Chary = Char(V)

denotes the set of all Q; -valued characters of (Fp(pn))* of order dividing N, Chary, denotes the
subset of all such characters of order exactly N, {5 denotes a fixed such character of exact order
N, 1 denotes the trivial character, and Charpgiy(N) := Char(N) ~ {1}.

2. ALMOST QUASISIMPLE GROUPS CONTAINING ELEMENTS WITH SIMPLE SPECTRA

One of the main results of [KT5] is the determination of all triples (G, V, g) subject to the following

condition:
(%): G is an almost quasisimple finite group, with S the unique non-abelian composition
" factor, V a faithful irreducible CG-module, and g € G has simple spectrum on V.

With G as in (x), G(*) is quasisimple and S = G(>)/Z(G(*)). On the other hand, G/Z(G) is
almost simple: S < G/Z(G) < Aut(S). We will frequently identify G with its image in GL(V).
An element g € G < GL(V) is called an ss-element, or an element with simple spectrum, if the
multiplicity of any eigenvalue of g acting on V is 1.

Recall [Is-FGT) 9A, pp. 273-274] that for a finite group G, E(G) denotes the layer of G, the
subgroup of G generated by its subnormal quasisimple subgroups. These subgroups, the components
of G, commute with each other, and thus E(G) is the product, inside G, of its components. Under
the assumption that G is almost quasisimple, E(G) coincides with G().

Table 1, taken from [KT5], summarizes the classification of ss-elements in the non-generic cases
of sporadic groups and A7 and some small rank Lie-type groups, under the additional condition
that V|g(q) is irreducible. For each V', we list all almost quasisimple groups G with common E(G)
that act on V, and we list the number of isomorphism classes of such representations in a given
dimension, for a largest possible G up to scalars (if no number is given, it means the representation
is unique up to equivalence in given dimension). For each representation, we list the names of
conjugacy classes of ss-elements in a largest possible G, as listed in [GAP], and/or the total number
of them. [Let us clarify the notion of “a largest possible G”. For a pair (L, x) in question, where L
is quasisimple and x is a faithful irreducible character of L, we list an almost quasisimple group G
such that E(G) = L, x extends to G, and G/Z(G) (which is a subgroup of Aut(L) containing L)
is maximal (with respect to inclusion). Modulo its center, such a group G is well-defined, but not
unique a priori. However, in the cases under consideration, G/Z(G) turns out to be unique.]

We also give a reference where a local system realizing the given representation is constructed.
The indicator ? signifies that we have a local system conjectured to realize the given representation,
whereas (-) means that no hypergeometric sheaf with G' as monodromy group can exist, as shown
in [KT5, §9].

Theorem 2.1. [KT5, Theorem 6.4] In the situation of (x), assume that S is one of 26 sporadic
simple groups, or Az, and that V|g(q) is irreducible. Then (S,G,V,g) is as listed in Table 1.

Table 2, also (almost entirely) reproduced from [KT5, Table 3], lists certain hypergeometric

sheaves

Hypy (X1, - XD5 P15 -5 Pm)
in characteristic p that were conjectured to produce G as geometric monodromy groups.
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] S | meo(Aut(S)) [2(9) | G \ dim(V) \ ss-classes ‘
A7 12 4 2A7 4 (2 reps) * 9 classes
S, 6 (2 reps) [KTH, 9.3] | TA, 6C, 104, 12A (4 classes)
3A7 6 (2 reps) 6 classes
6A7 6 (4 reps) * 15 classes
My 11 10 Mg 10 (3 reps) * 11AB (2 classes)
1114 11AB (2 classes)
M2 12 10 | 2Mj2 -2 10 (4 reps) (-) 11 classes
Mo 11 (2 reps) (-) 11AB (2 classes)
2Myo - 2 12 (2 reps) (-) 24AB (2 classes)
Moo 14 10 2Mo - 2 10 (4 reps) * 10 classes
Mas 23 22 Mos 22 F 23AB (2 classes)
Moy 23 23 Moy 23 ¢ 23AB (2 classes)
Ja 24 6 2J9 6 (2 reps) [KRL] 17 classes
2]y -2 14 (2 reps) * 28AB, 24CDEF (6 classes)
J3 34 18 3J3 18 (4 reps) * 19AB, 5TABCD (6 classes)
HS 30 22 HS -2 22 (2 reps) (-) 304
McL 30 22 McL - 2 22 (2 reps) 304, 22AB (3 classes)
Ru 29 28 2Ru 28 f 20AB, 58 AB (4 classes)
Suz 40 12 6Suz 12 (2 reps) [KRLT3] 57 classes
Coy 60 24 2Co, 24 [KRLT3] 17 classes
Coy 30 23 Coy 23 [KRLT?2] 23AB, 30AB (4 classes)
Cos 30 23 Cos 23 [KRLT1I] 23AB, 30A (3 classes)
PSL3(4) 21 6 6S - 21 6 (4 reps) many classes
4523 8 (8 reps) * 12 classes
25 -2 10 (4 reps) * 14CDEF (4 classes)
PSU4(3) 28 6 615 - 29 6 (4 reps) many classes
Spg(2) 15 7 Spg(2) 71 7A, 8B, 94, 12C, 15A
2Spg(2) 8 f 8 classes
Spg(2) 15 () 154
Q7 (2) 30 8 [207(2)-2 8 ¥ 22 classes
’By(8) 15 14 | ?B2(8)-3 14 (6 reps) * 15AB (2 classes)
G1(3) 18 14 | G2(3)-2 14 (2 reps) F 144, 18ABC (4 classes)
G2(4) 24 12 | 2G2(4) -2 12 (2 reps) * 20 classes

TABLE 1. Elements with simple spectra in non-generic cases

In Table 2, we fix a nontrivial additive character 1) of the prime field IF,,, and for each integer
N > 1 coprime to p we fix a multiplicative character £y of order N. The last column indicates the
conjectured image of I(oc0). The shape of these sheaves was predicted using the spectrum of the
ss-elements g on V' as classified in Theorem and p-local subgroups of the hypothetical group G
and their possible action on V. We have also included certain local systems for the exceptional cover
3 Ag, and for the two “exceptional” groups of Lie type SU3(3) - 2 =2 Go(2) and SLa(8) - 3 = G4 (3),
as well as certain cross-characteristic sheaves for some finite groups of Lie type (that is, when the
characteristics of the sheaf and the group are unequal; this must be the case unless the rank of the
sheaf is small, see [KT5H, Theorem 7.3]). Furthermore, we have added local systems that realize
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S ‘ G | p | rank | X1s-++y XD | p1,---pm | Image of I(c0) |
Ag 35 3] 3 1,6,6 " 0 3142 .2
(2x38)-23 | 5| 6 | Charg~ {&,&"} €12, &7, 5:4
A; 2S5 3| 4 1,&,82,63 0 324
25 5| 4 1,&7,62,62 0 5:4
35 ) 6 fg . Char? ]1,52 5:4
65 5| 6 & - Chary £s, 85" 5:8
My S 3] 10 Charyy Chary 32:8
S 3] 10 Charyy &g, &8 32:8
S 3| 11 Charqy Charg ~ {1} 32:8
Moo 25 2 | 10 Charyy &r,62,67 23:7
Mos S 2 | 22 Charzy Charys ~ Chargs 2115
Moy S 2 | 23 Chargs Char} 26.21
McL S-2 3] 22 Charg, Char} 3120
S-2 5| 22 Chary Char} 51224
Jo 28 5 6 Char7, U Char 0 52:12
25 -2 5| 14 | Chargg ~ Chariy £s, 65! 5224
J3 39 2 | 18 & - Charyy 18,65 21115
Ru 25 5| 28 Charg, €12, &3y, €79, &5 52 :24
PSL3(4) 65 2| 6 Char &3 215
4,5 -2, - 8 £%(,)3,5,7,9,13,15,17 &, §§ 7.6
25 - 2 3| 10 | Charyy ~ {€21%7) Char 32:8
PSU4(3) 61-S 3| 6 Char & 31:10
6,-S 3] 6 Char> €9,84,6; 377204
Spg(2) S TT Chars U Chary & 7:6
28 7 8 Charj Chars 7:6
Q7 (2) 25 -2 5] 8 Chary U Chary 0 52: 8
25 -2 5| 8 Char; U {&} 0 52:8
G (3) S -2 13| 14 | Charig ~ {€07%°) Char} 13: 12
Ga(4) 2.5 2| 12 Charyy Char; 2-group : 15
SU3(3) S -2 7|1 6 | CharjyU{&, &3} 0 7:6
S -2 TT7 Chary;, L Chars & 7:6
By (8) S-3 13] 14 Charys ~ {1} €12, &3y 13:12
SLo(8) S -3 T 7 Charg L {1} & 7:6
S-3 7] 8 Charg ~ {1} Chara 7:6
SU3(4) (2% 8)-4 5| 12 | Charge ~ {&27"7} 0 52:24
(2xS)-4 13| 12 | Charjg~ {€0*7} 0 13:24
Q7 (2) |W(Es)=2S-2]2 |84 Char Charg . Char} C1s
PSU,(3) 615 -2 264 Char o207 C1g
SU4(2) W(Eﬁ) =52 2 6 o Chal’é< Char5 010
=~ PSp,(3) 25 x 3 3144 Char’ Chary ~ {1} Cio
As 28 x 5 5|24 Char} & C1o
1 SLo(3) 324 Char} 1 Cs

TABLE 2. Hypergeometric sheaves in non-generic cases
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the Weyl groups W(Eg) = SU4(2) - 2 and W(Es) = 2 - QF (2) - 2, as well as the extended binary
icosahedral group 5 x SLa(5), the Witting group 3 x Sp4(3), and the Mitchell group 6; - PSU4(3) - 22,
in their reflection representations; these “reflection sheaves” are marked by symbol ® in the table.
The notation for outer automorphisms like 21, 29, etc. is taken from [Atlas].

Each of the local systems in Table 2 will be proved in this paper to have the conjectured group
G as its geometric monodromy group Ggeom (and to satisfy (S+)). In all cases, we also determine
the arithmetic monodromy groups of suitable descents of the constructed hypergeometric sheaves.

3. PRELIMINARY RESULTS ON CONDITION (S+)

We work over an algebraically closed field C of characteristic zero, which we will take to be Q; for
some prime ¢ in the rest of this paper. Given a finite-dimensional C-vector space V and a Zariski
closed subgroup G < GL(V), recall from [GT, 2.1] that G (or more precisely the pair (G,V)) is
said to satisfy (S) if each of the following four conditions is satisfied.

i) The G-module V is irreducible.
(ii) The G-module V is primitive.
(iii) The G-module V is tensor indecomposable.
(iv) The G-module V' is not tensor induced.

[Note that (ii) already implies (i), but we have stated condition (i) for clarity.] We will say that
(G,V) satisfies (S+) if in addition to satisfying (S), the center Z(G) is finite. More generally, if
I' is any group given with a finite-dimensional representation ® : I' — GL(V), then we say (I',V)
satisfies (S+), if (®(I"), V') satisfies the four conditions of (S) and, in addition, det(®(I")) is finite.
Roughly speaking, condition (S+) corresponds to Aschbacher’s class S of maximal subgroups of
classical groups [Aschl.

Lemma 3.1. [KT5 Lemmas 1.1, 1.4] Suppose (G,V) satisfies the condition (S+), dim(V) > 1,
and Z(G) is finite. Then we have three possibilities:

(a) The identity component G° is a simple algebraic group, and V|geo is irreducible.

(b) G is finite, and almost quasisimple, i.e. there is a finite non-abelian simple group S such
that S <1 G/Z(G) < Aut(S). Furthermore, V is irreducible over the last term G(>) of the
derived series of G.

(c) G is finite and it is an “extraspecial normalizer” (in characteristic r), that is, dim(V) = r"
is a power of a prime r, and G contains a normal r-subgroup R = Z(R)E, where E is
an extraspecial r-group E of order r'+?" that acts irreducibly on V, and either R = E or

Z(R) = Cy.

Lemma 3.2. [KT5, Lemma 1.6] Let T be a group, C an algebraically closed field of characteristic
zero, n € Z>1, ® : I' - GL,(C) = GL(V) a representation of I', and G < GL(V) the Zariski
closure of ®(T'). Then (I, V') satisfies (S+) if and only if (G, V') satisfies (S+). This equivalence
holds separately for each of the four conditions defining (S+).

We work in characteristic p, and use Q-coefficients for a chosen prime ¢ # p. We fix a nontrivial
additive character ¢ of F,,, with values in 1,(Q,). We will consider Kloosterman and hypergeometric
sheaves on G,,/F, as representations of 71 (G,,/F,), and prove that, under various hypotheses, they
satisfy (S+) as representations of (G, /F,). As noted in Lemma this is equivalent to their
satisfying (S+) as representations of their geometric monodromy groups.

On G, /F,, we consider a Kloosterman sheaf

Kl := Kly(x1,---,xD)
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of rank D > 2, defined by an unordered list of D not necessarily distinct multiplicative characters
of some finite subfield F, of IF,,. Recall [Kadl, 8.4.10.1] that any Kloosterman sheaf is geometrically
irreducible.

Theorem 3.3. [KT5H, Theorem 1.7] Let K be a Kloosterman sheaf of rank D > 2 in characteristic
p which is primitive. Suppose that D # 4. If p = 2, suppose also that D # 8. Then K satisfies
(S+).

There are certain cases in which a primitive Kloosterman sheaf of rank 4 satisfies (S+).

Lemma 3.4. Let K be a Kloosterman sheaf of rank D = 4 in characteristic p which is primitive.
Suppose that one of the following two conditions holds.

(i) p=2.

(ii) There exists an odd integer N prime to p such that K is of the form

’Cl(ala a2, (g, OL4)
with each afv =1 and a; # o for i # j. Suppose further that [[, o = 1, and that K is not

geometrically self-dual (i.e., the oy are not stable by complex conjugation).

Then K satisfies (S+).

Proof. From [KT5H, Lemma 2.2], I is tensor indecomposable. It remains to show that it is not
tensor induced. We argue by contradiction. Since D = 4, the only possibility is that it is 2-tensor
induced. By [KT5, Lemma 3.2], this forces 2 to be prime to p. Suppose now that (ii) holds. Then
[2]*K is tensor decomposable, say
2K = A® B,

with A, B local systems of rank 2 on G, /F,, cf. [KTH, Lemma 2.1 (i)]. Moreover, by [KT5, Lemma
2.1 (ii)], we may assume both of A, B are tame at 0.

We now consider the I(0) representations. That of [2]*K is the direct sum of the characters

a?. Therefore the I(0) representations of each of A, B must be semisimple, say Aoy = A1+ Ao,

(2
Bry = As + A4. replacing A by £,5, ® A and replacing B by L, ® B, we may assume further
that
Aro) =1+ A2, By =As + A
Expanding their tensor product, we get that Az, A4 are each among the a7, so each have order
dividing N. This then forces As to have order dividing N. Fix a character p of order N, and write
A1 = pa, AQ = pb, A1 = ps.
Thus
(ﬂ_i_pa)@(pb_’_pC):pb+pc+pa+b+pa+c
is the sum of the a?. By assumption, the product of the «; is 1, so also the product of their squares.
Therefore the product of the four characters p, p, pt°, p+¢ is trivial. So we have
b+ct+a+b+a+c=0 (modN),

ie. 2(a+b+c¢) =0 (mod N). As N is odd, we have a + b+ ¢ = 0 (mod N). Thus the four
characters are p°, p¢, p~¢, p~?, which occur in complex conjugate pairs. Therefore the a? occur in
complex conjugate pairs, say a?a3 = 1, a%ai = 1. As N is odd, this forces a1ag = 1,a304 = 1. O

We next consider a hypergeometric sheaf H of type (D, m) with D > m > 0, thus

H = Hypy (X1, XD P1s- -+ Pm)-

Here the x; and p; are (possibly trivial) multiplicative characters of some finite subfield F,, with
the proviso that no x; is any p;. [The case m = 0 is precisely the Kloosterman case.]
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Theorem 3.5. [KT5, Theorem 1.9] Let H be a hypergeometric sheaf of type (D, m) with D > m > 0,
with D > 4. Suppose that H is primitive, p t D, and W > D/2. If p is odd and D = 8, suppose
W > 6. If p # 3, suppose that either D # 9, or that both D = 9 and W > 6. Then H satisfies
(S+).

In the case when p divides D, we need stronger hypotheses to show that (S+) holds.

Theorem 3.6. [KT5, Theorem 1.12] Let H be a hypergeometric of type (D, m) with D > m > 0,
with D > 4. Suppose that H is primitive. Suppose that p|D, and W > (2/3)(D —1). If p = 2,
suppose D # 8. If p =3, suppose (D, m) is not (9,1). Then H satisfies (S+).

To determine the primitivity of a sheaf H, we will use

Proposition 3.7. [KRLT3, Proposition 1.2] Suppose that H is geometrically induced, i.e. that
there exists a smooth connected curve U/]].Tq, a finite étale map ™ : U — Gm/E of degree d > 2, a
lisse sheaf G on U, and an isomorphism H = m,G. Then up to isomorphism we are in one of the
following situations.
(i) (Kummer induced) U = G,,, 7 is the N** power map x — xN for some N > 2 prime to
p with N|n and N|m, G is a hypergeometric sheaf of type (n/N,m/N), and the lists of x;
and of p; are each stable under multiplication by any character A of order dividing N .
(ii) (Belyi induced) U = G, ~ {1}, 7 is either x — z4(1 —2)B oris x +— =41 —2)" B, G is
LA(z) @ Lo(z—1) for some multiplicative characters A and o, and one of the following holds:
(a) Both A, B are prime to p, but A+ B = dop" with p { dy and r > 1. In this case 7 is
z— z4(1 — x)B, the x; are all the A™ roots of A and all B™ roots of o, and the Pj
are all the do'™ roots of (Ao)'/P".
(b) A is prime to p, B = dop” with ptdy and v > 1. In this case 7 is x +— x~4(1 — z)7 B,
the xi are all the (A4 B)™ roots of Ao, and the p; are all the A™ roots of A and all
the do™ roots of /7"
(c) B is prime to p, A= dop" with ptdy and v > 1. In this case 7 is x + x~4(1 — z)7 5,
the ;i are all the (A + B)™ roots of Ao, and the p; are all the B™ roots of o together
with all the do™ roots of AX/P".

B

The following two statements are useful in studying representations with irrational traces:

Lemma 3.8. [KT5, Lemma 6.3] Let ® : G — GL(V) = GL,,—1(C) be a faithful irreducible repre-
sentation of a finite almost quasisimple group G, which contains a normal subgroup S = A, with
n > 7. Suppose that

(a) Vg = SM=1LD|g, where S™=1Y) denotes the “deleted permutation representation” of S, and
(b) Q(¢) C K for some number field K, if ¢ denotes the character of ®.

Then Q(¢) C Ko, the subfield obtained by joining to Q all roots of unity that belong to K. In fact,
Q(¢) is some cyclotomic extension Q((y) contained in K, and Tr(®(g)) is an integer multiple of a
root of unity for any g € G.

Lemma 3.9. Let G and H be two finite, almost quasisimple groups with G = H() and
G/Z(G) = H/Z(H) (as subgroups of Aut(S) for S the unique non-abelian composition factor of
G). Let ¢ € Irr(G) and ¢ € Irr(H) be irreducible characters such that ¢\, = | € Irr(L). Then
there exists a root of unity v € C such that

(a) Q(p) € Q) (7) and Q(¥) € Q()(7), and

(b) If Q) € Q(y) in addition, then Q) = Q(¢)(7).

Under the extra assumption that Q(v) = Q, we also have that ¢(g) is an integer multiple of a root
of unity for any g € G.
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Proof. Let ¢ be afforded by a representation ® : G — GL(V') and let ¢ be afforded by a represen-
tation ¥ : H — GL(V), for a complex vector space V. Since | = ¢|r € Irr(L), we may assume
that ®|;, = V|;. Consider any g € G. Since G/Z(G) = H/Z(H), there is h € H such that ¢
and h induce the same automorphism of S = L/Z(L) via conjugations. Applying ® and ¥, we see
that o := U(h~1)®(g) centralizes ®(L) modulo scalars in GL(V), i.e. [z, ®(L)] < Z(GL(V)) and so
[z, ®(L)],®(L)] =1. But L = [L, L], so ®(L) = [®(L),P(L)] and [z, P(L)] = [z, [®(L), P(L)]] =1
by the Three Subgroups Lemma. Hence z = a4 - Id for some oy € C, i.e. ®(g) = ay¥(h). Since
both g and h are of finite order, in fact oy is a root of unity. Taking

N :=lem(o(ay) | ¢(g) #0).

and v := (v, we see that p(g) = ag(h) € Q(¢)(7) and ¥(h) = a;'v(g) € Q(p)(7), proving
the first two inclusions. Assume now that Q(¢)) C Q(¢). Then, when ¢(g) # 0, we have that

YP(h) # 0 and ag = ¢(g)/¥(h) € Q(p). This implies by the choice of N that v € Q(¢), and so

Q(p) = Q) ().
Under the extra assumption that Q(¢) = Q, we also see that ¢(g) = oy (h) € ayZ. O

4. Ggeom AND Garith

Let k be a finite field of characteristic p, X/k a geometrically connected smooth k-scheme of
dimension d > 1, £ # p a prime number, and F a lisse Qy-sheaf on X. We view F as a representation

of (X)) := m(X) and also as a representation of 73" (X) := 71(X ®}, k), a closed normal

subgroup of Tr‘{“"ith(X ) which sits in a short exact sequence

1 — 78(X) — 7t X) — Gal(k/k) — 1.

We define algebraic groups Ggeom <! Garith to be the Zariski closures of the images of Tr%eom(X ) and
of m3th(X) respectively.
For ease of later reference, we state a useful fact about the compatibility of the formation of

Zariski closure with group homomorphisms, cf. [Borl Chapter I, &2, 2.1(f)].

Lemma 4.1. Let G, H be linear algebraic groups over an algebraically closed field k, and f : G — H
a k-homomorphism of algebraic groups. Let I' C G(k) be a subgroup of the “abstract” group G(k).
Denote by T the Zariski closure of T in G, and by f(T') the Zariski closure of f(T) in H. Then

(L) = f(I).
Lemma 4.2. Suppose Guricn for F is finite. Then the quotient group Garith/Ggeom 1S @ finite cyclic

group. It is generated by the image in Garith/Ggeom Of any Frobenius element Frobyj, at any k
valued point x € X (k). Its order is the least integer N > 1 such that Frobi\fk lands in Ggeom-

Proof. If Gayitn is finite, then its quotient Garith/Ggeom is a finite quotient of the pro-cyclic group
Gal(k/k). In Gal(k/k), the image of any Frob,  is a topological generator. Thus Gayith/Ggeom 18
the finite cyclic group generated by the image of any Frob, . O

Corollary 4.3. In the situation of the lemma, let d > 1 be an integer, let kq/k denote the extension
of degree d, and let N := |Garith/Ggeom|- Then for the pullback Fy of F to X ®y kq, Geeom,7, =
Ggeom,F remains the same, but Gayith 7, < Garith, 7 s the subgroup of index ged(d, N). In particular,
Garith,]-'d = Ggeom if and only 7'f]\”d

Proof. The invariance of Ggeom is a tautology. Pick x € X (k). The quotient Garith 7,/Ggeom is the
subgroup of Gayith, 7/Ggeom generated by Froby y, = (Frobm,k)d. So this is the statement that the
subgroup of Z/NZ generated by the integer d is as asserted. O
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5. STRUCTURE OF Ggeom

First we recall several results concerning the structure of the geometric monodromy group Ggeom
of an irreducible hypergeometric sheaf, and the images of local monodromies I(0) and I(c0) in

Ggeom .

Theorem 5.1. [KTH, Theorem 4.1] Let H be an irreducible Qg-hypergeometric sheaf on Gy, /Fp,
with p # ¢, and of type (D, m) with wild part of dimension D —m > 2. Denote by Gy the Zariski
closure inside the geometric monodromy group Ggeom 0f the normal subgroup generated by all Ggeom-
conjugates of the image of 1(0). Then Go = Ggeom-. In particular, if Ggeom 1is finite then it is
generated by all Ggeom-conjugates of the image of 1(0), and Ggeom = OP(Ggeom)-

The next theorem is the D — m = 1 analogue of Theorem

Theorem 5.2. Let H = Hypy(X1,---,XD; P1,-- -, pD—1) be an irreducible Qq-hypergeometric sheaf
on Gm/FTJ, with p # ¢, and of type (D, m) with wild part of dimension D —m = 1. Denote by Gy the
Zariski closure inside the geometric monodromy group Ggeom Of the normal subgroup generated by
all Ggeom-conjugates of the image of 1(0). Then the quotient Ggeom/Go is the additive group Fp, and
the projection of Ggeom onto this I, viewed by composition as a homomorphism m (Gm/E) — Fp
is the geometric monodromy group of L.

Proof. Let K := Ggeom/Go. Because H is geometrically irreducible, Ggeom has a faithful irreducible
representation, and hence is reductive. Therefore its quotient K is reductive.

By the arithmetic determinant formula [Ka4, Theorem 8.12.2 (3)], a prime to p power of det(H)
is Ly(az) for some a € F), which is certainly trivial on the (pro) prime to p image of 7(0). So the
quotient K admits a nontrivial quotient L. So K is nontrivial.

Consider a nontrivial irreducible representation, say p, of K. View p as an irreducible represen-
tation of the reductive group Ggeom. Then p, indeed any irreducible representation of Ggeom, is a
direct summand of some

fH®a ® (HV)®b.

Consider now the P(oco)-representation of H. By hypothesis, it is of the form (Wildy) ® (D — 1)1,
with Wild; a one-dimensional representation with Swan,, = 1. From the arithmetic determinant
formula, we see that Wild; = L. From this retain only that the P(co)-representation of H is a
direct sum of various Ly qy) With a € Fp,. Therefore the P(oo)-representation of H** ® (HY)® is
also such a direct sum, and hence the P(oo)-representation of p is such a direct sum.

Now view p as a representation of 71(G,,/F,). So viewed, p is trivial on I(0), so may be viewed
as a lisse Qg-sheaf F, on the affine line A!'/F, which is irreducible and nontrivial. Therefore
H!(AY/F,,F,) =0 for i # 1. By the Euler-Poincare formula [Ka3| 2.3.1],

Xe(A /Ty, F,) = rank(F,) — Swans(F,),
and hence
hi(A'/F,, F,) = Swane(F,) — rank(F,).
As hl >0, we find that
Swane (F,) > rank(F,).
The P(oo)-representation of F, is a direct sum with multiplicities of various Ly (4,) With a € Fp.
Thus Swany(F)) is the total number of constituents Ly ,,) with a € F). In particular,
Swanes (F,) < rank(F,).

Therefore we have equality:
Swane (F,) = rank(F,),
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and the P(oco)-representation of F, is a direct sum

Folpioo) = B naLy(an)-

a€Fy

Because F, is lisse and geometrically irreducible on Al it is perverse irreducible. Therefore its
Fourier Transform FTy(F,) is perverse irreducible. But this F'T" has generic rank zero (indeed
vanishes outside F ;), and so is punctual. But the only punctual sheaf which is perverse irreducible
is a single delta sheaf. So our F'T must be §_, for some a € F;. By Fourier inversion, we find that
fp is [’7/)(—!17)‘

Here is another, more elementary, version of the argument of this last paragraph. We first show
that F, has rank one. Indeed, it is has rank 2 or more, and we choose an a € F); such that L)
occurs in the P(oo)-representation of F,, then F, ® Ly(_qy) remains geometrically irreducible and
nontrivial, and keeps the same rank, but its Swan., has decreased, which violates the inequality
Swany, > rank. Once F, has rank one, then F, ® L(_,,) is both lisse at 0 and tame at oo, so is
geometrically trivial, which is to say that F, = Ly 4z)-

Thus the only nontrivial irreducible representations of the reductive group K are the p — 1
characters of order p given by the Ly, as a ranges over . Therefore K is itself the additive
group of [F;,, and each nontrivial character of K is an Ly_qg).- g

Theorem 5.3. [KT5, Theorem 4.7] Let H be an irreducible Qp-hypergeometric sheaf on Gy, /F,
definable on Gy, /Fy for some finite extension Fy/F,, with p # ¢, and of type (D, m) with D > m.
Denote by Gp(o) the Zariski closure inside the geometric monodromy group Ggeom of the normal
subgroup generated by all Ggeom-conjugates of the image of the wild inertia group P(cc). Then
Ggeom/Gp(oo) is a finite cyclic p’-group.

We can be more specific about the order of the finite cyclic p’-group of Theorem m Recall that
G (F,) acts on itself via translations = +— az, a € EX. These translations fix each of the points
0 and oo, and hence yield outer automorphism (outer because of not fixing chosen base points)
on each of the groups m1(G,,/F,), I1(0), I(cc), P(c0). Because this action, for a fixed a € IFT,X,
is well-defined up to an inner automorphism on each of these groups, it has a well-defined action,
called multiplicative translation by a, on equivalence classes of irreducible Q-representations ® of
each of these groups, sending the equivalence class of ® to its multiplicative translate by a.

Corollary 5.4. Let H := Hypy(X1,---5XDiP1,-- -, pm) be an irreducible Qg-hypergeometric sheaf
on G, /Fp, definable on G,,/F, for some finite extension F,/Fp, with p # ¢ (i.e. all the characters
Xi, pj are of finite order). Suppose D > m. Write W := D —m, the dimension of Wild (the wild part
of the I(c0)-representation) as W = wop® with wg prime to p and a > 0. Define integers A, B,C, E
as follows.
(a) A :=lcm(orders of the ;).
(b) B :=lcm(orders of the p;) if m >0, B:=1if m =0.
(c) C:=wy ifa=0 (ie. if pfw), C:=wo(p®+1) ifa > 0.
(d) D is the order of any character A such that AP = det(Wild)P®£Ey !, with the understanding
that if p = 2 then & := 1, ¢f. for the explicit formula for det(Wild).
Then the order of the finite cyclic p'-group Ggeom/G p(oc) divides ged(A,lem(B,C, D)).

Proof. Let us denote by K the finite cyclic p’-group Ggeom/Gp(s0), and by K(0) and K(co) the

images of I(0) and I(00), respectively, in K. We know that the resulting map m1(G,/Fy) - K
corresponds to a Kummer sheaf £, for some character o of finite order, which is #K(0) = #K (o).
K(0) is a rank one quotient of the image of 1(0) on H, so has order dividing A. The group K (co)
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is a quotient of the image of I(c0) on H. Let us write this image as Wild + Tame (in the category
of I(oo)-representations). The image of I(co) on Wild + Tame is a subgroup of the product

(the image of I(co)|Tame) x (the image of I(co)|Wild).

Thus K(c0) is a subgroup of the product of a rank one quotient of I(cc)|Tame with a rank one
quotient of I(00)|Wild). The first factor has order dividing B.

It remains to explain that lem(C, D) is the order the quotient of I(co)|Wild by its p-Sylow
subgroup. [Note that while I(co)|Tame need not be a finite group, indeed will be finite precisely
when the p; are all distinct, the group I(oco0)|Wild is always finite, cf. [KT9, Proposition 5.2].]

Suppose first that W = 1. Then Wild is of the form Ly ® L;, and we recover 7 as the A in the
definition of D. So here C' =1 and D is the order of 7, so indeed lem(C, D) is as asserted in this
case.

Suppose next that W > 2, so that det(Wild) is tame (because all slopes of Wild are 1/ < 1, hence
det(Wild) has its unique slope, which is its Swan conductor, < 1 and hence, being a nonnegative
integer, is 0). Thus det(H) is tame at both 0 and co, and hence the determinants at both 0 and
oo are the same Kummer sheaf £,. At 0, the determinant is [, x;. At oo, the determinant is
det(Wild) ® []; p;. Equating the two expressions, we see that

(5.4.1) det(Wild) = (H XW(H pj).

The idea now is to exploit the fact that the isomorphism class of Wild as an I(oo)-representation
is determined, up to a multiplicative translation, by its determinant, cf. [Kadl 8.6.3]. This allows
us to consider the canonical extension of a given I(oco)-representation: it is a lisse sheaf on Gy, /F,
with the imposed I(oo)-representation and which is tame at 0. It has the remarkable property that
If we form the canonical extension Fyiqg of Wild in the sense of [Ka2l §1.5], then by [Ka2, 1.4.12]
the quotient of I(oco)|Wild by its p-Sylow subgroup is precisely the image of I(0) on Fwigd-

In the case when W > 1 is prime to p, one knows [Ka2, 1.3.2, 4)] that KCl,;(Charyy) is a canonical
extension. Its determinant is 1 if W is odd, and is the quadratic character & if W is even (which
forces p to be odd), so its Wild has determinant 1 if W is odd, and & if is even. If we tensor
Kly(Charyy) with £4, then we have the canonical extension of the previous Wild tensored with Ly,
whose determinant is thus AW§¥V ~1. Thus lem(C, D) is as asserted in this case.

In the case when W = wop® with a > 1, we know, by a theorem of Pink, cf. [KTI] 20.3] and
[Ka2l, 1.3.2 (4)], that the Kummer direct image

[wo]«Klp,,, (Charngiv (p* 4 1)) 22 Kly (Char(wo(p® + 1)) \ Char(wy))

is a canonical extension. Its determinant, which is also det(Wild), is 1 if pwy is even, and is 1 if pwy
is odd. If we tensor with £, we change det(Wild) by a factor of A", and we now have characters of
the form A(a character of order dividing wo(p®+1)). Thus lem(C, D) is as asserted in this case. [

Remark 5.5. Here is an immediate application of Corollary Let ¢ = p* with a > 0, and
Kly(x1;---5Xq)- Suppose that [, xi = 2. Then the order of the finite cyclic p’-group Ggeom/G p(oo)
divides both lem(orders of the x;) and ¢+ 1. For an apparently more striking application, take the
Kloosterman sheaf of any rank n > 2 with all its characters 1, i.e. the “classical” rank n Kloosterman
sheaf Kl,, studied in [Kad) 11.0.1]. Here we have A = 1, and hence Ggeom = G p(0) for Kiy.

As another application, take any (irreducible) hypergeometric of type (D, m) with D > m and
all “upstairs” characters 1. Again here we have A = 1, and hence Ggeom = Gp(o). But there is
a simpler explanation. The action of I(0) is unipotent, and so the group Gy of Theorem is
connected. If D —m > 2, then Ggeom = Go by Theorem hence Ggeom is connected, so has
no nontrivial finite quotient. If D — m = 1, then by Theorem the quotient Ggeom/Go has
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order p. So in this W = 1 case, Ggeom has no finite quotient of order prime to p, and once again
Ggeom = GP(oo)

Proposition 5.6. [KT5, Proposition 4.8] Let H be an (irreducible) hypergeometric sheaf of type
(D,m) in characteristic p, with D > m and with geometric monodromy group G = Ggeom. Then
the following statements hold for the image Q of P(c0) in G:
(i) If H is not Kloosterman, i.e. if m >0, then Q NZ(G) = 1.
(ii) Suppose H is Kloosterman and D > 1. Then Q £ Z(G). If pt D, then QN Z(G) = 1. If p|D
then either QNZ(G) =1 or QNZ(G) = C,,.
(iii) If D > 1, then 1 # Q/(Q NZ(G)) — G/Z(G) and p divides |G/Z(G)].
(iv) If D —m > 2, the determinant of G is a p'-group. If moreover pt D, then Z(QG) is a p'-group.
(v) Suppose that p = 2 and G is finite. Then the trace of any element g € G on H is 2-rational
(i.e. lies in a cyclotomic field Q((y) for some odd integer N); in particular, the 2-part of
|Z(G)| is at most 2.

Remark 5.7. If the rank D of a hypergeometric sheaf H is divisible by its characteristic p, then,
even when the sheaf has trivial geometric determinant, the center of its geometric monodromy
group can still have order divisible by p — see e.g. Theorems and as well as the sheaves
of rank 24 with geometric monodromy group 2 - Co; and of rank 12 with geometric monodromy
group 6 - Suz in [KRLT3|. Moreover, if D —m = 1, then the determinant of G has order divisible
by p, simply because a nontrivial element in the image of P(co) acts as a complex reflection, i.e., a
pseudoreflection, of p-power order; see Theorem (below) for examples of such sheaves.

Proposition 5.8. [KT5, Proposition 4.10] Let H be an irreducible hypergeometric sheaf on Gm/E
of type (D, m) with W := D—m > 0 the dimension of the wild part Wild of the I(oco)-representation.
If pt W, then we have the following results.
(i) Wild is the Kummer direct image [W].(L) of some linear character L of Swan conductor 1.
(ii) Wild as a P(00) representation is the direct sum of the W multiplicative translates of L|p(oo)
by pw (with pw acting through its translation action on Gy, ).
(iii) Any element of I(c0) of pro-order prime to p which maps onto a generator of I(c0)/P(00)
acts on the set of the W irreducible constituents of Wild|p() through the quotient puw of
I(c0), cyclically permuting these irreducible constituents.
(iv) The image of P(o0) is isomorphic to the additive group of the finite field Fp(puw ).

Next is an analogue of Proposition in the case p|dim Wild.

Proposition 5.9. Let H be an irreducible hypergeometric sheaf on G, /F, of type (D, m) with
W := D—m > 0 the dimension of the wild part Wild of the I(c0)-representation. Suppose W = p*Wy
with a > 1 and pt Wy. Let v € I(00) be an element of of pro-order prime to p which maps onto a
generator of I(00)/P(c0). Then we have the following results.

(i) Wild is the Kummer direct image [Wyl«(P) of an irreducible I(oco)-representation P of di-
mension p®, all of whose slopes are 1/p®, and whose restriction to P(c0) is irreducible.

(ii) Wild as a P(00) representation is the direct sum of the Wo multiplicative translates of P|p(«)
by pw .

(iii) The action of v on the set of the Wy idrreducible constituents of Wild|p() factors through
the quotient pw of 1(o0), cyclically permuting these multiplicative translates of P|p(oc)-

(iv) The action of ¥"'Yo on Wild maps each of the Wy multiplicative translates of P|p(co) to itself.

(v) There exists a root of unity ¢ of order prime to p such that the spectrum of ¥'V° on each
multiplicative translates of P|p(s) is the set (- (ppat1~{1}) of multiples by ¢ of the nontrivial
roots of unity of order dividing p® + 1.
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Proof. The first three assertions are proven in [Ka3l 1.14], and the fourth follows formally from the
third. To deal with (v), we will reduce to the case when Wy = 1. For this, we must distinguish
the group I(o0), to which = belongs, from its normal subgroup of cyclic index Wy from which P
is induced. We will denote this subgroup situation as I(Wy) < I(1). Then "o € I(W;). The

pullback to I(Wp) of Wild = Ind%‘l,[),o)(P) is the direct sum of the representations

9~ P9
of I(Wy), indexed by i (mod Wp). Thus for g := y"°, the spectrum of v"V0 is the same in each
of these W summands. So we must understand the spectrum of y¥° on P. But in I(Wj), "0
is an element of pro-order prime to p which maps onto a generator of I(Wy)/P(Wp), and P is
an irreducible I(Wj)-representation P of dimension p®, all of whose slopes are 1/p®. Thus we are
reduced to treating the case Wy = 1.

According to [Kadl 8.6.3]. for any d > 2, the isomorphism class of any I(co)-representation of
dimension d with all slopes 1/d is determined, up to multiplicative translation, by its determinant,
which is necessarily tame. Applying this to our Wild of dimension p%, we see that we by replacing
Wild with Wild ® L, which changes the determinant by a factor xP“, we can achieve any tame
determinant we like, while the effect of replacing Wild with Wild ® £, on the spectrum of ~|wiq is
simply to multiply every eigenvalue by the scalar x(7).

We now reduce further to the case D = p®, m = 0, so that Wild is the entire (co)-representation.
Consider the Kloosterman sheaf

K(p® + 1) := Ki(Charpeq1 ~ {1}).

It suffices to show that on its Wild, v has spectrum pipeqq N {1}. The Kummer pullback [p® +
1]*K(p®+1) is (visibly) lisse on Al and up to a multiplicative translate is isomorphic to the Fourier
Transform FT'(Lype+1)), cf. [Kadl 9.2.3]. According to a result [KTT, 20.1] of Pink, this Kummer
pullback has geometric monodromy group a finite p-group. It then follows from [Kall, 1.3.2] that
K(p®+1) defines a “special” covering of G,,,, which means that IC(p® + 1) is the canonical extension
[Kall, 1.5.7] of its Wild. By [Kal, 1.4.12], the group Ggeomx for K(p® + 1) is equal to the image
Goo c Of I(00)|wild- Moreover, the quotient of Ggeomx = Gooc by its unique p-Sylow subgroup
P x is cyclic of order p® 4+ 1, and a prime to p element of G x which generates Goo x/Poc k., €.8-
the image of v, is a generator of the image Go x of I(0) on K(p® +1)|1(0), and G i is the semidirect
product
Ggeomk = Goox = Pooc X Go -

Let us denote by p the representation of Ggeomx = Goox defined by IC(p® 4 1). If we view the
image of v as lying in G «, then p(v) is the action of v on Wild. If we view the image of v as lying
in Ggeom,k, then p(7) is the action of v on the I(0)-representation K(p® + 1)1y of K(p®+1). Thus
the spectrum of |l is equal to the spectrum of v on K(p® + 1)[7(g). This I(0)-representation is
the direct sum of all the nontrivial characters of order dividing p® + 1, and thus the spectrum of ~
on it consists of pyeq1 \ {1}, as asserted. O

Lemma 5.10. Let H be a geometrically irreducible hypergeometric sheaf of type (D, m) in charac-
teristic p with D > m which is definable on some Gy, /F,. Suppose that on Gm/IFip, the dual H"
is geometrically isomorphic to H ® L for some L which is lisse of rank one. Suppose that either
D > 3 or that (D,m) = (2,0). Then there exists a multiplicative character p of finite order such
that H ® L, is geometrically self-dual.

Notice that if W := D — m > 1, then all slopes of H at both 0 and oo are < 1, while if
W := D —m =1 then all slopes at 0 and all but one slope at oo are 0, and there is one slope 1 at
o0o. Thus Lemma is a special case of the following result.
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Lemma 5.11. Let F be a lisse sheaf on Gy, /F, which is definable on some Gy, /F,, whose dual F"
is (geometrically) isomorphic to F @ L for some L which is lisse of rank one. Suppose that at both 0
and 0o, F has strictly more than rank(F)/2 slopes which are < 1. Then there exists a multiplicative
character p of finite order such that H ® L, is geometrically self-dual.

Proof. The key point is to show that £ is tame at both 0 and oco. For then £ is of the form £, for
some character of ™ @ 0:50 . gtame(g, /F,). Both F and its dual have determinants which are
geometrically of finite order, because each of these determinants is definable on some G,,/F,: this
finiteness is Grothendieck’s local monodromy theorem in the form [De, 1.3.8], applied to det(F)
and its dual. Equating their determinants, we see that their ratio, £&""k(F) s geometrically of
finite order, which in turn forces y to be of finite order. Then we look for a tame character p of
finite order such that F ® L, is (geometrically) self-dual, i.e., we want (F ® £,)¥ = F ® L,. But

(FRL)is FY@ (L) 12 F@L,®(L,)* L. So p will work provided that
Ly® (L)% =L, ie., provided p* = y.

In odd characteristic p, x has two square roots, both tame, and we may take either one. In
characteristic 2, y has some odd order 2m + 1, and then x™*! is its unique tame square root.

To show that £ is tame at 0, we use the fact [Ka3, Lemma 1.3] that F and F" have the same
slopes as each other at 0. If £ is not tame at 0, then its Swan conductor rg at 0 is a strictly positive
integer 1o > 1. But then by [Ka3, Lemma 1.3], applied to £ and to the part of F|;( of slope
< 1, F ® £ will have strictly more than rank(F)/2 slopes equal to 7 at 0, and hence F" has these
same slopes. But then F" has strictly fewer than rank(F)/2 slopes which are < 1 at 0, contrary to
hypothesis. Therefore rg = 0. The same argument shows that ro, = 0, and thus £ is tame at both
0 and oo. O

Lemma 5.12. Let F be a lisse sheaf H on Gy, /F, of rank D > 1. Let x be any multiplicative
character of finite order and let Ggeom#, be the geometric monodromy group of Hy := H & L.

Then Ggeom,, 18 finite if and only if Ggeom is finite. Furthermore, denoting by Gy, C GLp(Qy)
the subgroup of scalars, we have

Ggeom,H/(Ggeom,'H N Gm) — Ggeom,HX/(Ggeomyﬂx N Gm), [Ggeom,’Ha Ggeom,H] = [Ggeom,HX7 Ggeom,?—[x].
Similarly, (Ggeom,ﬂ)(oo) = (Ggeomﬂx)(oo)‘

Proof. To say that H has finite Ggeom, % is to say that there exists a finite étale f : £ — G /F,
which trivializes H, i.e., such that f*# is constant. For N the (necessarily prime to p) order of y,
the Kummer covering [N] : G,,,/F, = Gy, /F, trivializes £,. Then any connected component of the
fibre product over G,,/F, of these two coverings is a finite etale covering which trivializes H ® L,
Since we obtain H from H ® L, by tensoring with Ly, the implication of finiteness goes both ways.
For the second statement, let

4 _
1 (Gm/]Fp) - Ggeom,?—[, 2} GLD (QE)

realize ‘H and let
T (Gm/ﬁp) —» Ggeom,HX E} GLD(@)

realize H,. Tensoring H with £, has the effect of changing (® o ¢)(g) for any g € 71(G,,/Fp) by
some scalar multiple of it, indeed, (® o ¢)(g) = x(9)(¥ o w)(g) as elements of GLp(Q,). Moreover,
if h € m1(G,,/F,) then

[(@0¢)(9), (®od)(h)] = [(Vow)(g), (Vow)(h)],
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again as elements in GLp(Qy). Thus the two subgroups
= &(¢(m1 (G /Fp)))

and
B Iy = U1 (G /F)))
of GLp(Qy) have the same image in PGLp(Qy). Passing to Zariski closures, and applying Lemma
to the canonical map f : GLp(Q,) — PGLp(Qy) and to each of the groups I' and T, we get
GgeomH/(Ggeomn N Gm) = GgeomH, /(Ggeom,y, N Gm)
as subgroups of PGLp(Qy). Hence we have
(G geom 1> Ggeom ] = [Ggeom,Hy » Ggeom 1,y ]
as subgroups of GLp(Qy). This last equality implies that
(Ggeom,’}-l)(oo) = (Ggeom,’}-lx)(oo)
as subgroups of GLp(Qy). O

Recall that we fix a nontrivial additive character ¢ of F,. For any finite extension F, of IF,, &2 is
the quadratic character of F, and 1y, is the composition of ¢ with the trace map Tr : F; — .

Proposition 5.13. [KT7, Cor.14.15] Suppose H is a geometrically irreducible hypergeometric sheaf
H of type (D, m) with D > m >0 on Gy, /Fy. Then Ggeom 15 finite if and only if for G the quadratic

Gauss sum over F,
G:= (—G3U55(¢Fq,€2))D+m_l,

the constant field twist H © G~98/Fa has finite Gaith-
Let us write explicitly the local system H of Proposition [5.13] as

H = Hyp(X1,- - XD; 1+ Pm)-

Here all the x; and p; have order dividing ¢ — 1. Choose an embedding of Z[j,—1] into the Witt
vectors W(F,), and write each x; and each p; as a power of the Teichmuller character Teich,, say

Xi = Teichgi(q_l), pj = Teichgj(q_l),
with fractions a;, b; € (Q/Z)prime to p Whose denominators divide ¢ — 1. [Recall that Teich, is the
unique multiplicative character of Fy with values in p;—1(W(F,)) which attaches to an element «
of F¢ the unique (g — 1)* root of unity in W (F,) which reduces mod pW (IF;) to cv. In other words,
Teich(«) is the “Teichmuller lifting” of «.]

As explained in [Ka7, §13], Kubert’s V-function is the Q-valued function on (Q/Z)prime to p
which attaches to an element a with denominator dividing ¢ — 1 the ord, of the Gauss sum

Gauss(@qu?Teichg(q*l)). It is given explicitly by Stickelberger’s formula, cf. [Ka7l 13.4].
Proposition 5.14. [Ka7, 13.2] In terms of Kubert’s V -function [KaT©, §13], the criterion for H to

have finite geometric monodromy group, or equivalently for

—deg /F
)D+m1> g /Fq

H® <(—Gauss(qu ,&2)

to have finite arithmetic monodromy group, is the following. For every x € (Q/Z)prime to p, and for
every N € (Z/(q — 1)Z)*, we have

Y V(Naj+2)+ Y V(-Nbj—z) > (D+m—1)/2.
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6. RATIONALITY, MOMENTS, AND REDUCTION MOD { OF HYPERGEOMETRIC SHEAVES
Proposition 6.1. Let H be a geometrically irreducible hypergeometric sheaf

H = Hypy(X1, - Xni P15 -+ -5 Pd)

of type (n,d) with n # d in characteristic p. Denote by A := ], xi/l]; pj, and by M the order of

A. Denote by N the lcm of the orders of the x; and the pj. Let F be a finite extension of Fp(pn)

in which every element of F becomes an M*™ power. Then we have the following results for every

finite extension E/F.

(i) For any u € E*, Trace(Frob, g|H) € Q(¢N,p)-
(i) Suppose that n =d (mod (p —1)). Then each Trace(Frob, g|H) € Q((N).

(ii-bis) Suppose that r|(p — 1), and rn = rd (mod (p — 1)). Let K C Q((p) be the extension K/Q
of degree r inside Q((p). Then each Trace(Frob, g|H) € K((n).

(iii) Suppose that L is an intermediate field Q C L C Q(¢n), and that each of the multisets {x;}i
and {pj}; is fized (as a multiset) by Gal(Q(C(n)/L). Then each Trace(Frob, g|H) € L((p).
If in addition n = d (mod (p — 1)), then each Trace(Frob, p|H) € L.

(iii-bis) Suppose that r|(p — 1), and rn = rd (mod (p — 1)). Suppose that L is an intermediate field
Q Cc L C Q(¢n), and that each of the multisets {x;}; and {p;}; is fized (as a multiset) by
Gal(Q(¢n)/L). Let K C Q((p) be the extension K/Q of degree r inside Q((,). Then each
Trace(Frob, g|H) € KL, KL denoting the compositum of K and L inside Q((p,(n)-

Moreover, if H has finite Ggeom, then the above statements hold for the traces Trace(y|H) of all

elements of Ggeom -

Proof. The first assertion is immediate from fact [Kadl 8.2.7] that the trace function of H is given
as follows.

(—=1)" T4 Trace(Frob, p|H) = Z wE(Z xi — Z Yj) H Xi () H;T](yj)
1y T Y1, Ya € E, i j i j

[T =ull;v;
To show (ii), (ii-bis), and (iii), we use the fact that = Gal(Q(¢n,(,)/Q) is the product group
Gal(Q(Cn)/Q) x Gal(Q(¢p)/Q).

For (ii), suppose that n = d (mod (p — 1)). The for each o € F}, the domain of summation is
invariant under the homothety multiplying each z; and each y; by a. So the trace is also equal to

> l/JE(Oé(Z%‘ - Zyj))HXi(axi)HFj(ayj)

Tlyeeey Ty Yly oo ya € E
I1; i ful_lj Yji
= > Ma)pp(ad xi= > y) [T xit) [T o5(ws)
Ty, Tn, Y1y, ya € E, i J ( J
Hi Ti =ull; Y5
= > Ye(a(Y wi =Y y)) [ [xit=) [ [75(w)),
i i Yi

simply because A(a) = 1. Thus the trace is invariant under Gal(Q(¢,)/Q) = Gal(Q(¢wv, ¢p)/Q(¢CN))-
For (ii-bis), repeat the same argument with o to see that the trace is invariant under

Gal(Q(¢p)/K) = Gal(Q(p, Cn) /K (Cn))-

For (iii), if o € Gal(Q(¢n)/Q) fixes each of the multisets {x;}; and {p;};, then the trace is
invariant under o, viewed now as lying in Gal(Q(¢n, ¢)/Q(p)), simply by making the corresponding
permutations of the z; and of the y;.
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For (iii-bis), the trace lies both in L((,) by (iii) and in K((n) by (ii-bis). The intersection of
these two fields is K'L. To see this, we use the fact that Gal(Q((n,(y)/Q) is the product group
Gal(Q(¢n)/Q) x Gal(Q(¢p)/Q). Denote by

A= Gal(Q(¢)/K) < Gal(Q(¢p)/Q), B := Gal(Q(¢w)/L) < Gal(Q(¢w)/Q)-

Then K ((y) is the fixed field of A x Gal(Q(¢n)/Q), and L((p) is the fixed field of Gal(Q((p)/Q) x B.
Therefore the intersection of these two fields is the fixed field of the intersection of A x Gal(Q({n)/Q)
with Gal(Q((p)/Q) x B (inside Gal(Q((p,(n)/Q)). This intersection is A x B, whose fixed field we
claim is K L. Indeed, K L certainly lies in the fixed field of A x B. But K and L are linearly disjoint,
being subfields of the linearly disjoint fields Q(¢,) and Q({n), so deg(K L/Q) = deg(K/Q) deg(L/Q).
But this is precisely the degree over Q of the fixed field of A x B.

If Ggeom for H is finite, then we argue as follows. At the expense of replacing IF by a quadratic
extension, we reduce to the case when the clearing factor —Gauss(¢y, §2) is a rational number, in
fact some choice of £/#F. So the sheaf

Ho = H @ (—Gauss(¢p, &)~ (1) des(E/E)

has the same trace field as . By Proposition Ho has finite Garith,1,- Thus Ggeom < Garith,Ho
and because Gyarith, 7, is finite, every element in Grith, 3, is some Frob,, g|Ho for some finite extension
E/F and some u € E*. O

Corollary 6.2. We have the following results.

(i) Suppose thatn = d (mod (p—1)). Let L C Q((n) be the fized field of those o € Gal(Q(¢n)/Q)
which fix both of the multisets {x;}; and {p;};. Then L is the field generated over Q by the
traces Trace(y|H) of the elements v € Ggeom-

(ii) Suppose that Gal(Q({n)/Q) fizes both the multisets {x;}i; and {p;};. Let r be the smallest
diwvisor of p—1 such that ((p—1)/r)|(n—d), i.e. gcd(n—d,p—1) = (p—1)/r. Let K C Q((p)
be the extension K/Q of degree r inside Q((,). Then K is the field generated over Q by the
traces Trace(y|H) of the elements v € Ggeom-

Proof. For (i), we know that the trace field lies in L, by the “moreover” statement of Theorem
Suppose that o € Gal(Q((x)/Q) fixes all traces Trace(y|H). We must show that o fixes both the
sets {xi}: and {p;};. Consider the hypergeometric sheaf

H = Hypy(XT, - X P15 P])

obtained using the characters xj := o o x; and p := o 0 p;. Then H and H? have the same trace
function on all Frob, g, and hence the same trace function on 7§°™. Therefore H and H°, being
geomerically irreducible, are geometrically isomorphic as local systems on G,,/F. But we recover
the multisets {x;}i, respectively {p;};, as the multiset of characters in the I(0)-representation, re-
spectively as the tame characters in the I(oo)-representation. Therefore o fixes both these multisets.

For (ii), we again know that the trace field lies in K, by the “moreover” statement of Theorem
Suppose that o € F = Gal(Q((p)/Q) fixes all traces Trace(y|H). We must show that a acts

as the identity on K, or equivalently that a®P=D/r =1 or equivalently that a”~¢ = 1. The effect
of replacing v by v, : x +— 1 (ax) is to replace H by its multiplicative translate by a"~%, but leave
the traces of all all Frob, g unchanged. Just as in the proof of (i) above, this implies a geometric
isomorphism between # and its multiplicative translate by o~?. This in turn implies a geometric
isomorphism between the wild part Wild of the I(oco)-representation of H and it multiplicative
translate by a”~?. By [Ka3l, 4.1.6 (3)], there is no such isomorphism unless a"~% = 1. O
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We now consider the following situation, in which the trace field of a hypergeometric sheaf H is a
quadratic extension Q(4/r) of Q, and we ask when the sum of the trace of H and its Gal(Q(/r/Q)-
conjugate takes only even integer values.

Proposition 6.3. Suppose p is an odd prime, r # p is another odd prime, & is a character of
order v, and N is an integer prime to p. Denote by & the quadratic character. Denote by Ty
the set of characters & as s runs over the squares in F)*, and by Tyhsq the set of characters &
as s runs over the nonsquares in F). Denote by §Thsq the set of characters ap with p € Thgq.
Let A and B be (possibly empty) Gal(Q/Q)-stable sets of characters of order dividing N. Suppose

#A+r—1=#B(mod (p—1)) but #A +r — 1 # #B. Define
N, :=lem(N, 7).
Suppose that the hypergeometric sheaf in characteristic p on Gy, /Fp(un,) given by
H = Hypy (A, Tsq, $2Thsq; B)

18 geometrically irreducible.

(i) Denote by € the choice of £1 for which er = 1(mod 4). For each finite extension k/Fp,(un,.)
such that k/IF, has even degree, and each u € k™, Trace(Frob, ;|H) is an algebraic integer

in Q(\er), i.e., lies in Z[(1 + /er)/2].

(ii) For each finite extension k/F,(un,) such that k/F, has even degree, and each u € k*,
Traceg /7 /o (Trace(Frob, r|H)) € 2Z.

(ili) Suppose in addition that H has finite Ggeom. Denote by Ho the constant field twist of H by
the correct power of —Gauss(v, &), cf. Pmposition so that Ho has finite Gaitn- Then
for each finite extension k/Fp(un,) such that k/F, has even degree,

Traceg /7 /o (Trace(Frob, x|Ho)) € 27.
In particular, each element v € Ggeom has

Traceg /7 /o (Trace(v|H)) € 2Z.

Proof. For (i), we apply Proposition The character A there is fér_l)/ 7 for a Gal(Q/Q)-invariant
character 7, so A itself is either 1 or &. That the traces are algebraic integers is obvious from the
explicit formula recalled there, and their being in Q(,/r) results from Proposition iii).

The first statement of (iii) follows from (ii), because the clearing factor is + a power of p, which
does not affect parity. The second statement follows from this one, simply because Ggeom is a
subgroup of Gguitn. To prove (ii), we argue as follows. The group Gal(Q(1/r)/Q) conjugates of
the traces of H are the traces of the “conjugate” hypergeometric sheaf H™  which is defined
exactly as H but using a choice &, which is £ for s any nonsquare in FX. The effect of this
choice is to interchange the two sets Ty and T,sq. We use the same v, because the condition that
#A+r—1=#DB (mod (p—1)) insures that the traces are independent of the choice of ¥. To show
that H ® H°™ has traces in 2Z, i.e., to show that H @ H°™ has all traces zero in Z/27Z, it suffices
to show that H @ H" has all traces zero in the larger finite ring

R := Z[Cprn]/2Z[Cprn]-

This will be trivially true if % and H®™ have equal traces in R. But mod 2, the quadratic character
becomes trivial, so each of the sheaves H and H"™ has traces in R equal to the traces in R of the
hypergeometric sheaf Hypy (A, Char.; B). O
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Remark 6.4. Thanks to Corollary there are other situations in which Frobenius traces a
priori lie in a quadratic extension of Q, and one can ask if there is any imposed congruence on the
trace down to Q of these Frobenius traces. The answer is no in general. Here are some examples.
Consider, for odd p > 5, the following one-parameter family: for variable finite extensions k/F),

t ek (1/Gauss(yp, &) Y (a2 4 ta).

xck
This is a descent to G, /I, of [(p + 1/2] Kummer pullback of the Kloosterman sheaf

Kl (Char 12 ~ (1)),

which naturally lives on G,,/F,2. By Corollary ﬂ, this Kloosterman sheaf has trace field the
quadratic field Q(,/€p) for € the choice of £1 for which ep = 1 (mod 4). So the trace field of the
descent must contain Q(,/ep), but it is obvious that our one parameter family has traces in this
field. For the descent, one knows [KT1, Theorem 17.2] that Garith = Ggeom is either SLo(p) (if p =1
(mod 4)) or PSLa(p) (if p = 3 (mod 4)). In both cases, from the character table of SLa(p) one
knows that among the traces that occur for Ggeom are both (—14,/€p)/2, each of which has trace
—1 down to Q. On the other hand, both 0, £1 and (p — 1)/2 occur as traces for Ggeom as well.

Next we turn to the consideration of moments. Recall that for a finite dimensional Q-repre-
sentation V' of a group G, the moment M,y of the pair (G,V) is the dimension of the space of
G-invariants in V@ (V*)®%. For an odd integer a, we write M, := M,¢. [For an even integer
2n, each of My, o and M, ,, is sometimes called Ms,,. The two can differ, unless V' is self-dual; e.g.
Ms 3 =6 but Mo = 2 for a faithful 6-dimensional complex representation of 6; - PSU4(3) [GAP] -
this has been exploited in part in the proof of Theorem to distinguish between 6 - PSL3(4) and
61 - PSU4(3).]

Theorem 6.5. Let H be a (geometrically irreducible) hypergeometric sheaf on Gy, /Fy of type (D, m)
with W := D —m > 0. Let a,b be nonnegative integers, and consider the moment M,y of the D-
dimensional representation of w1 (G, /F,) defined by H. Denote by Ho any lisse sheaf on G, /F,
which is pure of weight zero and which is geometrically isomorphic to H. Denote by

HE = HE @ (Hy)®P.
Denote by A, B,C the following constants.

C := dimension of the space of I(0)-invariants in Hg’b.

B := Swanu (HE?) + My,
A=B-C.
Then we have the following estimate.
1 A /q B
q—1 D Trace(Frobys, [H")| < 7 LMy + q St
ueFy
Proof. The key point is that M, is the dimension h2(G,,/F,, ’Hg’b) = h2(Gy, /Ty, HOP).

We first recall some facts about the hi(Gy,/F,, F) for lisse sheaves F on Gy, /F,. The Lefschetz
trace formula gives

Z Trace(F'rob,r,|F) = ﬂace(Froqu]Hf(Gm/E, F)) - Trace(Froqu|H§(Gm/E, F)).

xeF;
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If F is pure of weight zero, then H? is pure of weight 2, and H} is mixed of weight < 1, indeed
H! = H(wt =1) ® H}(wt <0).

Thus for F pure of weight zero, we have

| Z Trace(Frobu,]FqU:)’ < gh? 4 Jqhlt(wt. = 1) + hl(wt. < 0) < gh? + /ghl(wt. = 1) + hl.

z€Fy
When F is lisse on G, /E, the Euler-Poincaré formula is

Xe(Gp /Fp, F) = —Swang(F) — Swan s (F).
When F is tame at 0, this becomes
Swanu (F) = hl — b2

To compute the dimension of H!(wt = 1), we use the fact that for the inclusion j : G,, C P!, the
group HY(P!/F,, j,F) is pure of weight one. We exploit this by looking at the short exact sequence
of sheaves on P! /F, given by

0 = iF = juF — (FIO) @ (FICN) o, — 0,
where the last two summands are skyscraper sheaves at 0 and co. The group
H°(P!/Fy, juF) = H* (G [y, F)

is the space of 75°°™ invariants in F, so it injects into the space F!(*) of I(co)-invariants in F.
This injectivity, together with the long exact sequence

0 — HO(PY/F,, j,.F) — FIO ¢ FI) & HYG,,/F,, F) = HY(P*/F,, jxFo) — 0,
gives the inequality
hl(wt. = 1) = b} — dim F/© — (dim F*) — dim h%) < h! — dim F'©.

Apply this with F taken to be Hg’b. Then h? is M, p, and the Euler-Poincaré formula gives

hl = Swanoo(”z'-[g’b) + Mgy
Thus
h(wt. = 1) < h! — dim F1© = Swan., (HZ?) + M, — dim F©),
Then the estimate

| > Trace(Frobr,|F)| < gh? + /ghi(wt. = 1) + h}

z€Fy
becomes
| Z Trace(FrobyF, \Hgb)} < gMup+ (Swanoo(HS’b) + M, — dim ]-"I(O)) Va+ Swanoo(Hg’b) + M p.
z€Fy

]

To make this last result usable in practice, we need upper bounds for Swan conductors, and lower
bounds for dimensions of I(0)-invariants. For these tasks, we give the following lemmas.
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Lemma 6.6. Let H be a geometrically irreducible hypergeometric sheaf on G, /Fq of type (D, m)
with W := D —m > 0. Let a,b be nonnegative integers. Denote by

/Ha b /H®a (/HV)®b.
Then
Swanoo(’;'-[“’b) < (Da+b . maer)/W

Proof. The I(oo)-representation of both H and H" are of the form Tame,, ® Wildy, with Tame,,
tame of rank m and Wildy of rank W, with all slopes 1/W. Any multiple tensor product of such
Wildy’s has all slopes < 1/W. So expanding D*t® = (m 4 W)@ by the binomial theorem,

+b
Da+b _ aE: (a’ + b) Wz a—&-b—i’
7

i=0
we see that

a+b
) patb _ pppatd
b +b—1 __
Swan, (H*?) WZ( ) Wim® ’—T.

g

Lemma 6.7. Suppose M > 1 is an integer prime to p and V is an I(0)-representation which factors
through the ppr quotient of 1(0). Fix a character € := &y of order M, and write the characters in
V' as powers of &, say

V=@
Then the character of the I(0)-representation V&t := V& @ (VV)® takes value

ey
at ¢ € ppr- Furthermore,
dlm(V“ b)I(O) Z Z Cez ZC ez

CGuM i

Proof. By hypothesis, I(0) acts through its quotient pps, so this is just the calculation of the
dimension of invariants in a representation of a finite group as the integral of its trace over the
group. O

Remark 6.8. Here are two examples. When the I(0)-representation is the direct sum of the
characters in the set

(6.8.1) Charpgriv(M) := Char(M) ~ {1},
it is self-dual, and we are looking at the average over u,s of the restriction to pys of the function
(XM =1)/(X = 1) = 1),
At ¢ # 1, its value is (—1)%TP. At ¢ = 1, its value is (M — 1)**?. So in this case the dimension of
the space of I(0)-invariants is
M -1
M

a number familiar in Hodge theory as the dimension of the middle primitive Betti number of a
smooth hypersurface of degree M and dimension a + b — 2, cf. [KS| 11.4.1].

(1/M) (M —~ 1)aF (M — 1)(—1)a+b) _ (M - 1yatb-1 _ (_1)a+b,1)7
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When the I(0)-representation is the direct sum of the characters Char(M) \ {¢¢, &7}, then we are
looking at the average over ups of the restricion to puys of the function

(XM =1)/(X =1) = X = XXM - 1)/(X 1) =X =X T)".
So the dimension of the space of invariants is
(/M) (M =2)* + > (¢ + ¢+ ¢)h)
C#1
(1/M)(M — 2)2+b + (“error” term < ((M — 1)/M)2a+b)
Z(l/M)(M _ 2)a+b _ gatb

We now give a version of Theorem adapted to the situation on Al

Theorem 6.9. Let F be a lisse sheaf on A'/F, of rank D > 1 which is pure of weight zero. Let
a,b be nonnegative integers, and consider the moment Mgy, of the D-dimensional representation of
m1(AY/F,) given by F. Suppose that the I(co)-representation of F has a tame part of dimension

>m and has all I(c0) slopes < «. Denote by Hgy the constant
Hyp = Mup+ (. — 1) DT — am®*,

Then we have the following estimate.

1 H,
‘ Z Trace(Frobu,FqU:“’b) < Mgy + Zab
q u€lfy \/a

Proof. The Euler-Poincaré formula for a lisse G on A!/F,, is
Xe(A/Fp, G) == hi(A[Fp, G) — he(A!/Fp,G) = rank(G) — Swanoo(G).
We apply this to F»?. Its I(co)-representation has a tame part of dimension at least m®™ (namely
Tame®®), and so its wild part has dimension at most D*? — m%*+?. As all I(co) slopes of FP are
< «a, we get
Swane (F®?) < (Db — mat?),
and hence o
—X(AY/F,, F&P) = Swany (F*?) — DUt < (a — 1) D™ — ama+?.
On the other hand h2(A!/F,, F¢*) = M, , and so we get the inequality
h‘i(Al/FIH fa7b) < Ha,b-

Now we apply the Lefschetz trace formula:

> Trace(Froby,g,|F*?) = Trace(Frobs,|H2(A' /F,, F*) — Trace(Frobg, |H, (A' /F,, F*P).

u€lF,

Applying Deligne’s fundamental estimate [De, 3.3.4 and 3.2.3] that the H! is mixed of weight < 1
while the H? is pure of weight two, we divide through by ¢ and get the asserted inequality. O

We now turn to a discussion of hypergeometric sheaves “mod ¢”. We begin with the case of
Kloosterman sheaves.

Fix a prime ¢ # p, a finite extension ky/F, such that p|#k,, and denote by Ry the ring of Witt
vectors Witt(ky), and by Ry, the ring R¢[(s]. [Thus for £ a prime which is 1 (mod p) and k; = Fy,
Ry is just Zg, and Ry, is Z¢[Cea].] The ring Ry, is a discrete valuation ring, with uniformizing
parameter

Aﬂzgga—l
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and residue field k,. In [Ka3l 4.1.1, 4.1.2], the theory of Kloosterman sheaves is developed over Ry .
We may speak of Kly(x1,-..,Xn) for any choice of characters x; whose orders are prime to p and
divide £%# (k). It is a local system on G, /F, [W“#(’%‘gx)] (with the convention that F, [pn] := Fplun,]
for Ny the prime-to-p part of N) of free Ry, modules of rank n, which after extension of scalars
from Ry, to Qg is the Kloosterman sheaf we have been concerned with up to now. We will refer to
it as a Kloosterman sheaf over R, ,. For a shorthand, we will write

ICZ’!ZJ(Xla .. 7Xn)ke = ]Clw(Xh ey Xn) ®R£,a ]{Zg.
The key point is that KCly(x1, - .., Xn)k, depends only on the reductions mod X of the characters x;,
i.e., on the x; as characters with values in k;°. It is a local system on Gm/Fp[N#(k;)] of ky-spaces
of rank n.
Theorem 6.10. Let Kl := Kly(x1,---,XD)k, be a Kloosterman sheaf over Ry o, with reduction mod
¢ denoted Kly,. Then we have the following results.
(a) The I(oo)-representation of Kly, is totally wild, with Swan =1 and all slopes 1/D.

(b) The I(oc0)-representation of Kly, is absolutely irreducible as ko-representation.
(c) The 71 (G, /Fp)-representation of Kly, is absolutely irreducible as ky-representation.
(d) For any integer N > 1 which is prime to p, the Kummer direct image [N].(Kly,) is a

Kloosterman sheaf of rank ND. If Ry, is large enough to contain all the N™ roots of all the
R} -valued the characters x;, this direct image is geometrically isomorphic to the reduction
mod ¢ of the Kloosterman sheaf

Kly,  (all N roots of all the x;).

(e) Suppose that all the x; have order dividing a power of £. Then we have an isomorphism of
Kloosterman sheaves over ky

Kly(x1,---3xD)k, = Kly(1 repeated D times)y,.
(f) If N is a power of £ we have geometric isomorphisms of Kloosterman sheaves over ky
[N]«(Kly, (1 repeated D times)y,) = Kl (1 repeated ND times)y,.

Proof. Assertion (a) results from [Ka3l, 5.1, (1) and (5)], and (b) results from (a) and [Ka3|, 1.14].
Trivially we have (b)) = (c). For (d), [Ka3l 1.13.2] shows that [N],(Klj,) has all I(co) slopes
1/ND. As it is tame at 0, it is Kloosterman by [Ka3, 8.7.1]. The direct image formula [Ka3l
5.6.2] asserts that the direct image formula holds over Ry, if we do a constant field twist of the
source by a power of the product of minus the Gauss sums for all the nontrivial characters of
order dividing N. The square of this twisting factor is & a power of p. Thus if we work over a
large enough ground field F,/F,, this twisting factor reduces mod ¢ to 1 in ky. So when we reduce
mod ¢, this twisting factor disappears, yielding the asserted isomorphism as representations of
71 (G, /a sufficiently large extension of F,), so in particular as representations of 7§°". Assertion
(e) is a tautology, and (f) is immediate from (d) and (e). O

The following corollary is immediate from (f) of the above Theorem we state it for ease of
later reference.

Corollary 6.11. Let N be a power of £, and D > 1. Then we have a geometric isomorphism
Kly(1 repeated ND times)y, = [N].(Kly, ((1 repeated D times)y,.

geom

For G the image of w3 in GLyp(ke) under the representation given by the first factor, this
representation of G is induced from a D-dimensional representation of a normal subgroup H < G
with G/H cyclic of order N.



RIGID LOCAL SYSTEMS AND SPORADIC SIMPLE GROUPS 27

We now turn to the discusssion of general hypergeometric sheaves mod /.
Let K1 and K2 be Kloosterman sheaves over Ry ,, of ranks n and d respectively, and assume
n > d. Say

lCl = Klw(Xh s 7X7L)7 ICQ = Klw(plv v :Pd)'
We define the hypergeometric sheaf

Hypy (X155 Xni P15 -5 Pd)
as a local system on Gy, /Fp|1a #(k;)] of free Ry, modules of rank n as the ! multiplicative convolu-

tion of K1 := Kly(x1, - - -, Xn) With inv*Ky = inv*lClE(ﬁ, ..., pa). Concretely, for the multiplication
map mult : G, X G,,, = G,,, we define

K1 Hx 1 inv* Ko := R(mult), (K1 K inv*Ks).

In more down to earth terms, for the projection pry of G,, x G,, with coordinates (z,t) on the
second factor, this is

R(pry)i(K1(z) @ Ka(z/1)).
Each of the sheaves K1 ® ky and Ko ® kg is geometrically irreducible (because already I(o0o)-
irreducible), so fibre by fibre the R? vanishes, and the R' has rank n (because the tensor product
has all slopes 1/d). Moreover, by the long exact cohomology sequence attached to the universal
coefficient short exact sequence

0 — Ki(z) ® Ka(z/t) 2 Ki(z) @ Ka(z/t) = (Ki(z) ® ke) @ (Ka(z/t) @ k¢) — 0

one shows, fibre by fibre, that R! is a lisse sheaf of free Ry modules, and that its formation commutes
with extension of scalars either Ry — ky or Ry — Q. In particular, the reduction mod A,

Hypy (X1, -5 Xni P15+ -+ Pd )k,
is the hypergeometric sheaf over k¢ defined by the same convolution recipe applied to Kly (X1, - - -, Xn)k,
and Kl¢(p1, v ’pd)k[

Theorem 6.12. Consider a hypergeometric Hy, = Hypy(X1,-- - Xni P1,- - -+ Pd)k, 1 which no x;
is a p;j as a k; -valued character. Then M is absolutely (i.e., after extension of scalars from k; to
Fy) geometrically irreducible.

Proof. Repeat the proof [Kad, 8.4.2 (1)] given in the Qy case, using the mod A Fourier transform
here in place of the Q; Fourier transform used there. Il

We will also use the fact that when there is a common character upstairs and downstairs, the
mod A representation is always reducible.

Theorem 6.13. The hypergeometric sheaf
Hypy (L, X2, - Xni L, p25 -+, pa),
sits in a m (Gm/Fp[u#(ka)])—equivariant short exact sequence
0= U = Hypyp(L,x2, -, Xni L, p2, -, Pk, = Hypy(X2, - - Xni 25 -, Pa)k, (—1) = 0,
where U := H (G, /Fp, Hypy (X2, - - - X P25 - - -+ Pd)k,) S a Tank 1 constant sheaf.
Proof. We have the convolution formula

Hypy (L, x2, - s Xns Ly p2, - pa)k, = Hyp(Ls L)g, xt Hypy (X2s - -5 Xns P25+ - 5 Pd) kg -

Following the lines of the proof of the analogous result in [Kadl 8.4.7], we must analyze the object
Hyp(1;1)g,. It is R(pra)t)Lys—z/p)- 1t is clear that the R? vanishes outside ¢ = 1, and there is it
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81(—1). Fibre by fibre, one sees that the R" vanishes, and the R! has constant rank 1, and its trace
function is constant, equal to 1. Moreover, the R! is a sheaf of perverse origin, so it is lisse of rank
one. Having constant trace, it must be the constant sheaf ky. Thus the entire R is perverse (shifted
by 2 (its R® = 0, its R! is lisse, and its R? is punctual)). So we have a short exact sequence of
perverse sheaves

0— k‘g[l] — ’Hyp(]l; ]l)ké — (51(—1) — 0,
and the proof concludes exactly as in [Kadl, 8.4.7]. O

7. DESCENTS OF HYPERGEOMETRIC SHEAVES

There are a number of situations in which a hypergeometric sheaf has a “simple to remember”
descent to a lisse sheaf on G,,/F,. Here are three of them.

Proposition 7.1. Let A and B be prime to p positive integers with gcd(A, B) = 1. Then we have
the following results, in which we continue to use the notation Charyiv(A) of (6.8.1)).

(i) Choose integers o, f with «A — B = 1. Suppose (A, B) # (1,1) and p is odd. Then the
hypergeometric sheaf
Hypd)((:harntriv (A)7 Charntriv(B))a
which is pure of weight A+ B — 3, is geometrically isomorphic to the lisse sheaf on Gy, /F),
which is pure of weight one and whose trace function is as follows: for variable finite exten-
sions k /Ty,
uek—— Zi/)k(Auo‘xB — Buz?).
zek
(i-bis) Choose integers «, 8 with A — BB = 1. Suppose (A,B) # (1,1) and p = 2. Then the
hypergeometric sheaf
Hypw(Charntriv (A), Charntriv(B))a
which is pure of weight A+ B — 3, is geometrically isomorphic to the lisse sheaf on G, /Fy
which is pure of weight one and whose trace function is as follows: for variable finite exten-
sions k/Fy,
uek— — Zzpk(Auaa:B — BuPz?).
z€k
(ii) The hypergeometric sheaf Hypy(Char(A); Charyyiv(B)), which is pure of weight A+ B — 2,
is geometrically isomorphic to the lisse sheaf G p,.., on Gy, /F), which is pure of weight two
and whose trace function is as follows: for variable finite extensions k/Fp,

u€k— Z Y (uz? Jyt + Ay — Bz).
ek, yck>
(i) The hypergeometric sheaf Hypy(Charngiv(B); Char(A)), which is pure of weight A+ B — 2,
is geometrically isomorphic to the lisse sheaf Gg,,..,,.a on Gy, /F), which is pure of weight two
and whose trace function is as follows: for variable finite extensions k/F,,

u€ek— Z Ur(—u" 2Byt — Ay + Bz).
€k, yekX

Proof. The first statement is proven in [KT6, Lemma 3.9 (i)]. The second is proven in [KRLT2
Lemmas 1.3 and 1.4]. The third follows from the second and the fact [Ka4l, 8.2.14] that the sheaf
Hypy Charygiv (B); Char(A)) is just inv*Hyp;(Char(A); Charygiv(B)). O
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Proposition 7.2. Suppose A and B are prime to p positive integers with ged(A,B) = 1 and
A — B > 2. Suppose further that A is odd. Choose integers o, 8 with A — B = 1. If p is odd,
denote by Sa.p the local system on G, /F, whose trace function is given by

1
vwek/Fy— ——mM Au®z? — BuPz?).
/Fp Gauss(k, &2) %wk( )

If p =2, denote by Sa g the local system on Gy, /Fs4 whose trace function is given by

1 o B 5 A

z€k
If p is odd and either p or A is 1(mod 4), then the arithmetic determinant of Sap on Gy, /Fp
is trivial. If p = 2, the arithmetic determinant Sa p on Gy, /F4 is trivial. If both p and A are
3(mod 4), then the arithmetic determinant Sa g on G, /F, is (—1)9°.

Proof. In all cases S4 p is geometrically isomorphic to Hypy (Charygriv(A); Charpgiv(B)). Because A
is odd and A — B > 2, the geometric determinant of Hyp, (Charygriv(A); Charyyiv(B)), and hence of
S4a,B, is trivial. Therefore the arithmetic determinant is of the form §9¢8 and ¢ is the common value
of det(Frob,,|Sa,p) at points u € F; for p odd, and the common value of det(Frob,r,|Sa,5) at
points u € Fy if p = 2.

We take the point u = 1. Consider the Kummer pullback [A]*S4 g, whose trace function [KT6
Corollary 3.10(i)] is as follows: for p odd, it is

1
€ hfFy s — Auz® — Ba),
U E R/ sl &) 2 A~ B

and for p even it is
u e k/F4 — mzwk(Aung _ BxA).
zek
So the pullback local system is lisse on A!, and continues to have trivial geometric determinant.
Because 14 = 1, we have § = det(Froby g, |[A]*Sa,p) for p odd, and § = det(Froby g,|[A]*Sa,p) for
p even. Because [A]*Sa p is lisse on Al, the determinant at u = 1 is the same as the deterninant at
u=0. At u =0, we are looking at

Trace(Frobok|[A]*Sa B) = Gauss(lw <Z %(—390’4)) :
’ z€k

for p odd, and at
Trace(F'roby w,n |[A]*Sa,B) = 2% Z Y(—Bx?)
rEF n
for p = 2.
If p=2orif p = 1(mod 4), this is symplectic, so has determinant 1. If p = 3(mod 4), then
this i x symplectic (because we need to have cleared by +,/p to have been symplectic), so the
determinant is 41, g

There are further cases where a hypergeometric sheaf has a descent to G,, over a smaller field.
Some have been described in Proposition The key new input is the following. We have a finite
field F,s and a multiplicative character x of F;f such that the f characters x, x?,... ,pr_l are all
distinct. As explained in [Ka3, Section 8.8], the Kloosterman sheaf

f_
Kly(x, xPs - xP D)
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has a natural descent to a lisse sheaf on G, /IF,,, pure of weight f — 1, which we will denote

Kly(x, p7).

Let us briefly recall the overall set up. Given a field k, and a finite étale k-algebra K/k, we form
the “restriction of scalars” group scheme K* over k, defined as follows. For any k-algebra A, we
form the K-algebra A ®; K, and define

K> (A) := (A @y K)*.

When L/k is a finite extension, then L ®; K is finite flat over L, over K, and over k. So we have
two norm maps
Norm; : L ® K — L,
and
Normo : L ® K — K,
and we have an absolute trace map

Trace : L @, K — k.

When k is a finite field, ¢ is an additive character of k, and x is a multiplicative character of
K>, we can form the following sum: for each finite extension L/k, and each u € L*,

u s (—1)dims(K)—1 Z W (Trace(x))x(Norma(x)).
2€L® K, Norm; (z)=u
When the finite etale algebra K is the f-fold self product K = k7, this is the usual Kloosterman
sum. When k =F,, K =F,s, and x is a character of F;f with f distinct conjugates x, x?, ... ,pril,
this is the trace function of a lisse sheaf
Kly(x, p7)
on G,,/F,, which is pure of weight f — 1 and which, pulled back to G,,/F

f-1
ICZ¢(X,XP,...,XP )

At this point, the reader may wonder about the apparently arbitrary choice of x among the
various x? in the formula

w s (—1)dme(K)=1 Z ¥ (Trace(x))x(Normsg(x)).
z€L® K, Norm; (z)=u

Lemma 7.3. Let k =TF,, K/k and L/k finite extension fields, and x a character of K*. For any
u € L, we have the identity

Z W (Trace(x))x(Norma(x)) = Z ¥ (Trace(x))x? (Normay(z)).

2€L®K K, Norm; (z)=u z€L®, K, Norm (z)=u

»f, 18 isomorphic to

Proof. For an element Zl a; ® b; with the a; € L and the b; € K, we have

Norml(z a; ®b;) = H (Z a; @ o(b;)),

seGal(K/k) i
Normg(z a; ® bl) = H (Z ,O(CLZ‘) & bz)
i peGal(L/k) i

Thus for o € Gal(K/k), we have id;, ® o acting on L ®j K, and the equivariance formulas that for
re LK,

Norm; ((id; ® o)(z)) = Norm;(x), Norms((idy ® o)(z)) = o(Normga(x)).
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Apply this with o taken to be the Frobenius automorphism x + zP of K. O
Notice that when f =1, x is a character of F\, and Kl (x,p) is just L, @ Ly.

Lemma 7.4. Let x be a multiplicative character of of F;f. The character H{:_OI Xpi has order

dividing p — 1, so may be viewed as a character of F), call it (H{:_()l Xpi)]}?p. For a € F), we have
the identity

-1
x(a, viewed in F;f) = (H Xpl)]Fp(a)-
i=0

Proof. Because x as a character of F;f has finite order prime to p, we lose no information as
viewing x as having values in F;f (instead of in . Because the source group is cyclic, x is of the form

x(z) = 2" for some integer n, well defined mod p/ — 1. Viewing x this way, we have y(a) = a™.
The character H{;(} X" is then the character

N In(pf—l)/(P—l) = Normgp #/Fp (z)",

which is to say that Hf:ol Xpi, viewed as a character of IE‘;, is the character x — x". Il

Here are some further cases of descents of hypergeometric sheaves to G,,/F,. To describe them,

we use the symbol (Kl,) to denote a list of multiplicative characters of the form x, x?,..., !
consisting of f distinct characters of F;f, and by Kl (Kly) the descent Kly,(x, p!) described above.
Let us also denote by

(7.4.1) Ak

X

the character (H{;Ol Xpi)]]?p of ) described in Lemma attached to Kly(x,p/).
Let us denote by Known any of the sets of characters

Charpgriv(A), [M].Charpyiv(A), Char(4), (Kly),
and denote by
D(A)ntriv, D([M]«Charnuiv(A)), D(A), D(KIy)
their Kloosterman descents. One checks that D([M].Charpyiv(A)) is the [M], of the descent of

Charygyiv(A) formed using the additive character = — (M), i.e., D([M],Charpiv(A)) has trace
function

wel = Y ) g (~Mat/t + MAz).
tel, tM=y z€L
We will refer to these as “easy” Known’s, and their descents as “easy” descents. For each “easy”
descent D, we define
(7.4.2) Ap =1.

We then add to the list of Known’s any list of characters each of which has order dividing p — 1,
which we descend simply as the Kloosterman with these characters. For this descent D, we define
Ap to be the product of the occurring characters. For any single x of order dividing p — 1, we also
add to the list of Known’s any the lists

{xp : p in one of the lists Charpiy(A), [M],Charytiv(A), Char(A)}.
We descend these as
L, ® (the known descent of Charygriv(A), [M]«Charpgiv(A), Char(A)).
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For such a descent D := £, ® (an “easy” descent, of rank (D)), we define

(7.4.3)

A'D = XT(D)v

but cf. Remark We will refer to these descents, together with the (Kl ) cases, as the “hard”

Knowns.

For each Known, we must keep track of the “weight drop” it affords. This data is given in Table

3. In its first three rows, p is any character of order dividing p — 1.

’ input characters \ input weight \ Descent \ Descent weight \ weight loss ‘
pCharntriV (A) A—2 ,Cp ® D(A)ntriv 1 A— 3
p[M],Charpg,iv(A) M(A—-2) | L, ®D([M].Charyiv(A4)) 1 M(A-2)-1
pChar(A) A-1 L, D(A) 0 A-1
XoXPs o XP f-1 Kly (x: p7) f-1 0
list of f characters of FJ f—1 same list f—1 0

TABLE 3. Weight loss in passing to descent, p any character of order dividing p — 1

Theorem 7.5. Let H be an irreducible hypergeometric of type (n,m) with n # m, of the form

Hypy (U(various Known,'s) \ Li(various Knowny's); Li(various Knowns's)).

Denote by L the fized field of the subgroup of Gal(Q/Q) which fizes as a set each of the following

sets:

(a) For each Knowny, the set of characters occurring in Known.
(b) For each Knowng, the set of characters occurring in Knowns.
(c) For each Knowns, the set of characters occurring in Knowns.

[Here we understand that when (Kl ) is a list of ij, then all the ij are the “characters which
occur in” the corresponding KCly, (Kly).] Then we have the following results.

(i) H has a descent Hy to a lisse sheaf on Gy, /F), which is pure of integer weight w(Ho). If p
1 odd, then

Hoo := Ho @ (—Gauss(1, &)) W (Ho) deg /Fp
is pure of weight zero. If p =2 and the weight w(Ho) is even, then
Hoo := Ho ® 9—(w(Ho)/2) deg /F2

is pure of weight zero. If p =2 and the weight (w(Hy) is odd, then pulled back to Gy, /Fy,
Hoo := Ho ® 2_“1(7'[0) deg /F2

is pure of weight zero.

Define the character A of F)f using (7.4.2)), (7.4.3) as follows:

A::< I1 AKnown>/< 11 AKnown>-

Known1's Knowns’s and Knowns's

Supposen = m (mod (p—1)). If A is trivial, then for k/F, a finite extension, each Frobenius
trace Trace(Froby, | Ho), u € k™, lies in L. If either the weight w(Ho) is even or if k/F), is an
extension of even degree, the same is true for each Frobenius trace Trace(Frob, i|Hoo),u €
k*. More generally, if A has order d, then for k:/Ide a finite extension, each Frobenius trace
Trace(F'roby x|Ho),w € k*, lies in L. If either the product dw(Ho) is even, or if k/F,a has
even degree, the same is true is true for each Frobenius trace Trace(Frob, k|Hoo),w € K*.
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(iii) If we drop the hypothesis that n = m (mod (p—1)) in (ii) above, then for every finite exten-
sion k/F), of degree divisible by the order d of A, each Frobenius trace Trace(Frob, ;|Ho), v €
k>, lies in L(Cp). The same statement holds for Trace(Frob, k|Hoo) if either p is odd or if
in addition k/F, has even degree.

(iii-bis) Suppose that r|(p — 1), and rn = rd (mod (p — 1)). Suppose that L is an intermediate
field Q ¢ L C Q(Cn), and that each of the sets {x;}i and {p;}; is fived (as a set) by
Gal(Q(¢n)/L). Let K C Q((p) be the extension K/Q of degree r inside Q((p). Then for ev-
ery finite extension k/F), of degree divisible by the order d of A, each Trace(Frob, g|Ho),u €
k>, lies in KL. If either r is even or if the product dw(Ho) is even, or if k/F,a has even
degree, the same statement holds for Trace(Froby, k|Hoo),u € k*.

Proof. The case when there is a “subtraction” of Knownsy’s is handled moving them “downstairs”
and treating the (no longer irreducible) hypergeometric sheaf

Hypy (U(various Knowny's; Li(various Knowny's) LI (various Knowns's))

and then forming its Cancel, i.e., its highest weight quotient, cf. [KT7, Theorem 7.1 and Section
10]. To treat the case of

Hypy (L(various Knowny's); Li(various Knowns's)),

we form the ! multiplicative convolution of the descents D(Known) of the “upstairs” Known’s with
the inv*(D(Known) of the descents of the “downstairs” Known’s.
In either case, we end up with a (not necessarily irreducible) hypergeometric of some type (n,m)
of the form
Hypy (L(various Knowny's); Li(various Knowns's)).

The weight of Hg is then
w(Ho)=n+m—1— Z (weight loss in passing to D;),

“upstairs” and “downstairs” descents D;

with the weight losses tabulated in Table

From the explicit trace formulas of the descents of the Known’s, we see that the only multiplicative
characters that occur are those in the (KI) components. By insisting that either the weight w(#Hg)
is even or that k/F, has even degree, we insure that the clearing factor is + a power of p, so does
not alter the field of traces. If the integer r of (iii-bis) is even, then the quadratic Gauss sum which
enters into the clearing factor lies in the field K, so does not alter the fact that traces lie in K L.

It remains only to recall how the fact that n = m (mod (p — 1)) implies that the traces are
independent of the choice of 1. Let us illustrate in a special case, before treating the general case.
Consider a hypergeometric of the form

H == Hypy(Charnyiy (A); (K1), where (KI) = {x,x" .., " },

in which #A — 1= f (mod (p — 1)). Here the character A of I is just x, restricted to F; C F;f,

and is assumed trivial.
For L/F, a finite extension, and u € L, Trace(Frob, 1|Ho) is (—1)#A~1=/~1 times

> vn(—at/s + Ax) > Yr(Trace(y))x(Normy(y)) =

st=u zel y€L®r, K,Normi (y)=1/t

—1

(solve for t = 1/Norm; (y), then for s = u/t = uNorm;(y))

= Z W (—2? /(uNormy (y)) + Az) ¥ (Trace(y))X(Norma(y).
z€L, y€L®]FpK
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If we replace ¢ by = + t(ax) with a € F}, this expression changes to

= Z P, (—aq:A/(uNorml (y)) + aAz)y(Trace(ay))x(Norma(y).
z€L, y€L®]FpK

Making the substitutions x — x/a,y — y/a, this becomes

= Y. r(-a(z/a)?/(uNormy(y/a)) + Az)yy(Trace(y))x(Norms(y/a) =

zeL, y€L®]FpK

= Y du(-al@?/a®)/(uNormy(y)/af) + Az)yy(Trace(y))X(Normy(y)/atet/ ),

z€eL, yEL@FpK

In the first sum, the factor aa’ /a” is 1 by the imposed congruence #A — 1 = f (mod (p — 1)), so
this expression is just Y(1/a%8(/Fr)) = A(1/a%°8(L/Fp)) times the original sum.

In the general case, the argument goes as follows. Fix a finite extension L/F,. For each known
descent D, with rank ’I“(D), view u € L™ — Trace(Frob,, 1,|D) as a function v — D(u) on L*, which
(L being fixed) we will refer to as “the trace function of D”. For a € F;, denote by D, (u) the trace
function we get by replacing ¢ by = +— 1 (ax). Equivalently, if we denote by o, the automorphism

of Q(Cp, Mprime to p)/Q(prime to p) Which maps (p to ¢, then Dy(u) = 04(D(u)). The key identity
is
Da(u) = D(ua™P))Ap(a~de8E/Fr)y,
When we form a multiple | multiplicative convolution of, say S various D’s and T various
inv*D0)’s, its trace function is (—1)5T7~1 times

> IIP% HD

[L;si=ull;t; ¢

When we replace each D@ by Déi) and each D) by D((lj ), this sum becomes A(1/a%&(L/Fr) times

S TP (sia"®) [ PG (8507 P).
[ si=u]l;t; ¢ J
Our assumption on the type (n, m) that n—m is divisble by p—1 means that >, r(D®) = > (DY)
(mod (p —1)). Thus in the above sum, the domain of summation

Hsi :thj
i J

is equal to the domain of summation

H(Siar(p( ) —u H (’D(]))

i
So if deg(L/F,) is divisible by the order d of A, trace function of this multiple convolution is

independent of the choice of nontrivial additive character ¢ of IF),.
To prove (iii-bis), repeat the proof of (iii-bis) given in Proposition O

Remark 7.6. In the above discussion, we focused on and used the additional descents of Kloost-
erman sheaves of the form

f_
KLy (6 -

Y
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in which the Xpi are f distinct characters of F;f. There is nothing special about F, here: we could
have descended Kloosterman sheaves

f—1
,Clib(Xan""?Xq )7
in which the xqi are f distinct characters of F;f, and used the same recipe to get a descent Ky, (, qf )

to Gy, /Fy. Let us allow these, and also as Known any list of characters each of which has order
dividing ¢ — 1. For any single y of order dividing ¢ — 1, we may also add to the list of Known’s any
the lists
{xp : p in one of the lists Charytriv(A), [M]«Charyeriv(A), Char(A4), (Kly)}.

Then the obvious reformulation of Theorem produces descents to G,,/F, with the same ratio-
nality properties when n = m (mod (p —1)). In this situation, the character A becomes a character
of F, but it is still the order d of its restriction to F,’, and not its order as a character of F, by
which the degrees of extensions L/F, must be divisible to have traces in L. One example of this
sort of descent situation is in characteristic p = 2, x of order 5, and Kly(x, x*), which is an F4
instance. Another is in characteristics p = 3,5, with x a character of order 7, and KCly(x, 2,
which is an > instance for p = 3,5 (but an F, instance for p = 2, 11).

To avoid any ambiguity, let us formulate explicitly the F4-version of Theorem We have the
“easy” descents as before. For each character p of order dividing ¢ — 1, we have objects

{xp : p in one of the lists Charpgiyv(A), [M],Charpgiv(A), Char(A)}.
We descend these as

L, ® (the known descent of Charpiv(A), [M],.Charpgiv(A), Char(A)).

For such a descent D := L, ® (an “easy” descent, of rank r(D)), , we define Ap as a character of
FX by
P

(7.6.1) Ap = x"P) restricted to Fy.
For each subfield Fy, C Fy, we may define the (Kl,) data over F,, i.e., a multiplicative character p
of some degree f > 2 extension of IFy, which has f distinct conjugates under p — p, which allows
us to form Kly(p, (90)7) on G, /Fy,. We then take the pull back of Kly(p, (¢0)7) to G, /F, to be
the descent D of this (Kl,) data, and define its Ap as a character of F; by
(7.6.2) Ap = p"P) restricted to F.

With these notions of what is a Known over F,, we may state the IF, version of Theorem
Theorem 7.7. Let H be an irreducible hypergeometric of type (n, m) with n # m, of the form

Hypy (L(various Known's) \ Li(various Knowny's); Li(various Knowns's)).

Denote by L the fived field of the subgroup of Gal(Q/Q) which fizes as a set each of the following
sets:

(a) For each Knowny, the set of characters occurring in Known;.
(b) For each Knowng, the set of characters occurring in Knowns.
(¢) For each Knowns, the set of characters occurring in Knowns.

[Here we understand that when (KIl,) is the list of p? , then all the p? are the “characters which
occur in” the corresponding KCly(Kl,).] Then we have the following results.
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(i) H has a descent Hg to a lisse sheaf on Gy, /F, which is pure of integer weight w(Ho). If p
is odd, then
Hoo := Ho ® (—Gauss(1), &)) (o) de& /Fa
is pure of weight zero.If p = 2 and either the weight w(Ho) is even or deg(F,/F,) is even,
then
Hoo := Ho ® 2~ deelFa/Fp)(w(to)/2) deg /Fq
is pure of weight zero. If p=2 and deg(F,/Fy)w(Ho) is odd, then pulled back to G, /Fp,
Hoo := Ho @ 9—w(Ho) deg /Fq

is pure of weight zero.

(ii) Define the character A of F) using (7.4.2), (7.4.3) as follows:

A::< I1 AKnown>/< 11 AKnown).

Known1’s Knownsa’s and Knowns's

Suppose n = m (mod (p — 1)). If A is trivial, then for k/F, a finite extension, each
Frobenius trace Trace(Frob, |Ho),u € k>, lies in L. If either the weight w(Ho) is even
or if k/F, is also an extension of even degree, the same is true for each Frobenius trace
Trace(Frob, ;| Hoo),u € k*. More generally, if A has order d, then for k/Fy a finite exten-
sion such that k/F, has degree divisible by d, each Frobenius trace Trace(Frob, ;|Ho),u €
k>, lies in L. If either the product dw(Ho) is even, or if k/IF, also has even degree, the
same is true is true for each Frobenius trace Trace(Frob,, k|Hoo),u € k>

(iii) If we drop the hypothesis that n = m (mod (p — 1)) in (ii) above, then for every finite
extension k/Fy such that k/F, has degree divisible by the order d of A, each Frobenius trace
Trace(Frob, |Ho),u € k*, lies in L((y). The same statement holds for Trace(Frob, ;| Hoo)
if either p is odd or if in addition k/F), has even degree.

(iii-bis) Suppose that r|(p — 1), and rn = rd (mod (p — 1)). Suppose that L is an intermediate
field @ € L C Q(¢n), and that each of the sets {x;}i and {p;}; is fized (as a set) by
Gal(Q(¢n)/L). Let K C Q((p) be the extension K/Q of degree r inside Q((p). Then for
every finite extension k/F, such that k/F, has degree divisible by the order d of A, each
Trace(Frob, g|Ho),u € k*, lies in K L. If either r is even or if the product dw(Ho) is even,
or if in addition k/IF, has even degree, the same statement holds for Trace(Frob, x|Hoo), u €

k*.
Proof. Repeat verbatim the proof of Theoreom replacing deg(L/F,) by deg(L/F,), and replacing
L®FpryL®[qu. ]

Remark 7.8. Even in the case of descents to G,,/Fp, there can be several ways to proceed, which
can give different descents D with different characters Ap. Here is a simple example. Fix p > 5, a
character p of order p — 1, and consider the Kloosterman sheaf

Kly(p, 0% 7).

We can recognize its list of its characters as being Char(p — 1), which provide one descent, call it D .
We might (foolishly) recognize the list of characters as being p - Char(p — 1), and form the descent
Dy := L, ® D;. Or we might simply descend this Kloosterman sheaf as itself; call this descent Ds.
Their associated characters A are succesively 1, p, and the quadratic character &, which are all
distinct (because p > 5, p cannot be &3). So a fortiori, these three descents are all distinct.

Here is another example. Fix an integer n > 3, and a prime p which is 1 (mod n(n 4 1)). Let p
be a character of order n, and consider the list of characters p - Charygiy(A) for A =n+ 1. We can
descend it as Dy := L, @D (A)ntriv, or we can form the Kloosterman sheaf with this list of characters
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and descend it as itself; call this descent Dy. Here the associated characters A are successively p
and &

8. THE NOTATIONAL SCHEME FOR DESCENTS

In each of the following sections, we will prove results in the following three part form.

(A) A certain hypergeometric sheaf H has a finite geometric monodromy group Ggeom,%. The
characters occurring in H will be listed either individually or in terms of the sets Chary and
Chary.

(B) The determination of the finite group Ggeom -

(C) Specifying a descent Hoo of H to Gy, over a small field, often F,, but in some cases 2, and
specifying its finite arithmetic group Garith 24-

For part (C), we will name the descents as H(D1; D2) or H(D; \ Da; D3) or as H (D1 L Dy; D) or
as H(D1; Dy LI D3), in this way specifying which descents D; are to be used in the construction of
Ho, by the operations of multiple | convolution, D + inv*D, and Cancel, as explained in the first
paragraph of the proof of Theorem Once we have this Hg, Hoo is then obtained by constant
field twisting by the appropriate power of the quadratic Gauss sum if p is odd, or by the appropriate
power of 2 if p = 2, see Theorems and The descents D; descending the sets Char(N) or
Charpgiv (V) will be denoted by those sets; the Kloosterman descents Kl (Klg) will be noted (Kl)g,q({'

We will also specify the character A of F.
The descents occurring in the paper are all listed in Table 4.

9. PROVING FINITENESS OF Ggeom

As already explained in Propositions and to prove finiteness of the geometric mon-
odromy group for a hypergeometric sheaf, one needs to prove an inequality for Kubert’s V-function
[Ka7, 13.2] of the following form. One is given positive integers n, m, a1, ..., ay,, one is given repre-
sentatives 51,..., Bny Y1, .., Ym in [0,1) of elements of (Q/Z)prime to p, and one is given a rational
number A € Q. What must be proved is the inequality

Vimz+ 1) + -+ V(apz 4+ Bn) V(e +71) 4+ +V(@z+ym) + A

for every x € (Q/Z)prime to p-

For the finitely many valuesx = —v; (j =1,...,m) and x = —Bitk (i=1,...,n,k=0,...,q;,—1)
the inequality can be checked directly.

Otherwise, we proceed as follows. For r > 1 and an integer x, define [z], to be the sum of the
p-adic digits of the representative in {1,...,p" — 1} of the congruence class of x modulo p" — 1. For
z € {l,...,p" — 2}, one has [KRL| §4]

V(51) = s

Denote by ro the smallest positive integer such that (p™ — 1)8;, (p™ — 1)vy; € Z for every 1, ;.
Then one needs to show that for every r € rpZy and every integer 1 < x < p" — 1 not equal to
(p" —1)(1 — ;) for any j, one has

m

(9.0.1) Y laiw+ (" = 1Bl < Y e+ 0" = Dygle + (0~ 1rA.

i—1 j=1
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’ No. \ P \ H \ Descent H on \ A ‘
1 3 ICl(]l,€5,£§) ’H(Char(l) (W (Kl)&))g%@) Gm/Fg 1
2 | 5 | Hyp(Chars ~ {&,&5 '} 62, &) Hyp(Chars \ {&s, &5 '} €12, €]5) G /Fos | 1
3 13 KI(1, &, 67, €7) H(Char(1) U (Kl)¢, 925 0) G /Fg | 1
BE Hyp(€o - Chars s &5, €]) H(Es © Charmon(7): 165, E01) G/ | 1
515 Hyp((&35 - Chary; 1, &s) H (&3 ® Charygiy (7); Char(2)) G /Fos | 1
6 |5 Ki(1, &, €,6) H(Char(1) U (KT)e, 25:0) G /Py | 1
7 3 Hyp(fg . Char?l;fg,gg) (52 X Charnmv(ll) ( ) s, 32), Gm/Fg 52
8 | 2 Hyp(Char; &7, €2, €3) H(Char iy (11); (KD 59) Gm/F2 | 1
9 |3 Hyp(Charag; Chary) G22 5,010 » H(Char(22); Charyyiy (5)) Gn/Fz | 1
10 |5 Hyp(Charag; Chary) G922 3,10 » H(Char(22); Charyyiv(3)) Gm/Fs | 1
11| 5 Hyp(Charag \ Chary; gsigg) H([14]«Charyeriv (2); {&s, €5 1) Gm/Fas | 1
12 | 2 Hyp(&s - Charyy; 1, &5, &5) H (€3 ® Charyeriy(19); (Kl)g, 42) Gn/Fs | 1
13 5 ,Hyp(Char;Q;gl?v5%275%255?2) H(Charntriv(29); {5%275?2} L (K|)£12,52) Gm/F5 52
| g | Hyp(Chariy AT, 67,867,647} H(Charyiiy (14) \ (Kl)g; 095 (K, 32), Go/Fo | 1
£4,863) H((K)e,, 30 U (KD gs g3 U Charngiy (2); (K, 32) m/ =9
1,3,5,7,9,13,15,17 H([10]«Charyriv(2) N (KDe11 4925 Charygiyv (3)),
15 | 7| Hyp(syp 6. 63) H((KDgy,7a U (KDgg 72 U (éog%g,w;Charnmv(g)) Cm/Fao | 1
16 | 2 Hyp(Char3; &) H(Charyeiy (7); {€3}) Gm/Fs | 1
17 | 3 Hyp(Chary; &) S7.2, H(Charptiv(7); Charpgiv(2)) Gm/F3 | 1
18 | 3 Hyp(Char; Chary ~ {1}) 874, H(Charpgiv(7); Charpgiv(4)) Gm/Fs3 | 1
19 | 7 Hyp(Chars LI Chary ; &) H(Char(5) U Charyriv(3); Charpgriv(2)) Gn/F; | 1
20 | 7 Hyp(Chary; Chary) H((KDg, 5,74 U (Kl)gz_ 745 Char(2)) Gn/F7 | 1
% H(Char(2) U [3],Charperiv(3); 0),
21 | 5 Ki(Charg U Chary) ( H(((K|))59,5E6]|—| Char(2);(®§ ) Gn/Fs | 1
22 | 5 Ki(Char; U {&}) H(Char(7) U Charperiy (2); 0) Gm/Fs | 1
7237,
2 | 13| Hr(Chens s Gt o) H(Char(18)\ {1, 66, 8, €2): {60,€1), G /Fis | 1
24 | 2 Hyp(Charyy; Chary) S13,3, H(Charygriv(13); Charpgiv(3)) Gm/Fs | 1
2% [ 7] Ki({Chark, U {6, &)) H(KDe.r2 U (Klgty 12 U {66, 81:0) G../Fr | &
26 7 'Hyp(Chaer UChar?»;gQ) ,H(]lvgl%5%275%2’5’{275?275%%;52) Gm/F49 1
27 13 Hyp(Char15 AN {1};612,5‘?2) H(Charnmv(15);{512,5?2}) Gm/FB fg
28 7 Hyp((:ha"; U {1}7 §2) ’H(Char(l), [3]*Charntriv (3)7 Charntriv(2)) Gm/F’? 1
29 | 7 Hyp(Charg ~ {1}; Chars) G9,iriv.2> H(Charygiv (9); Char(2)) Gn/F7 | 1
30 | 2 Hyp(Charzgy; 1) H((KDggo,212 U (Kl gz, 123 Char(1)) G, /Fy | 1
31 | 3 | Ttyp(Charzo (Chary U Cha“ﬂ)); H((K)gzo30 U (K)gz, 51 U (Kl)ess ga; Char(1)) Gm/Fs | 1
32 | 3 Hyp(Charg; 1) Hyp((KD)eyy 30 U (KD)es_g0: Char(1)) Gm/F; | 1
33 | 2 Hyp(Charjs; Charg \ Chary) H((KI)g,5,00 U (Kl)gr_ 913 Char(1), 3]« Charygiv (3)) Gn/Fy | 1
34 | 2 Hyp(Charg ; Chars) H([3]Charytriv(3); Char(5)) Gm/Fy | 1
35 | 2 | Hyp(Chars;Chary Uy, &2, 6]) H(Charyesiv (7); Charpey (3) U (KD, 47) Gm/Fs | 1
36 | 3 Hyp(CharZ; Chary . Chary) H(Charpiv(5); Charpgiy(4)) Gm/Fs | 1
37 | 5 Hyp(Chary ; Chary) H(Charpiriy (3); Charpgriy (2)) Gn/Fs | 1
38 | 3 Hyp(Chary; 1) H([2]«Charytiv(2); Char(1)) Gn/F3 | 1
39 | 5 Kl(Chary, L Chary) KI((€4)Charygriv(3), (£3)Charygriv (3), Charpriv (3)) Gn/Fs | 1
40 | 5 | Ki((Chary ~ Charg) LI £5>°0) KCL(([8] Charpneriv (2), £5°°°) Gm/Fs2 | 1
41 [ 13| Kli(Charg ~ Charg) L &3°) K1([8]xCharyiv (2), £575°°) Gm/Fi32 | 1
42 | 5 Hyp(Chary; £57°7°) H(Char(7), [3]«Charytiv(2)) Gn/Fs | 1
43 | 3 Hyp(Charr; £&2Chars) H(Char(7), [5]«Charyiv(2)) Gnm/Fs | 1
44 | 7 Hyp(Char'; &) H(Charpgiv(5), Charpgiv(2)) Gn/F7 | 1

TABLE 4. Descents of some hypergeometric sheaves
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Lemma 9.1. For a positive integer x, denote by x| the sum of its p-adic digits. Suppose that there
exists some B > 0 such that

[z +(p" = 1)B1]+ +[anr+ ("= 1)Bn] < [z + (" =D+ + 2+ (" =Dyl +(-1)rA+B

for every r € roZ4 and every 0 < x < p" — 1. Then (9.0.1) holds for every r € roZ4 and every
1 <2 <p"—1 not equal to (p" —1)(1 — ;) for any j.

Proof. For any such z, notice that each of the sums

a1z + (p —1)B1,...,anz+ (p" —1)B,
is strictly positive. Using the fact that [z], < [z] for z > 0 [KRL, Proposition 2.2] we get

[
[OéliL‘ + (pr - 1)51]r + -+ [anx + (pr - 1)/871}7“
[crz+ (p" = 1)B1] + -+ + [anz + (p" — 1)54)

<
<le+@ -]+ +[z+ @ =Dy +(p—-1)rA+ B.

If, for some j =1,...,m, x4+ (p" —1)y; < p"—1, then [x+ (p" —1)v;] = [+ (p" —1)7;]». Otherwise,
pr—1<az+(p"—1)y; <2(p" —1) and the representative in {1,...,p" — 1} of the congruence class
of x + (p" — 1)y; modulo p" — 1 is then x + (p" — 1)y; — p" + 1. Therefore
2+ @ =Dyl =lz+ 0" - 1)y —p" +1]

=[z+@" -Dy+1-1

=[z+ 0" =Dyl —ap-1)
where ¢ is the number of consecutive “p — 1”7 digits at the end of the p-adic digit expansion of
x4+ (p" —1)y;. Since z+ (p" —1)y; < 2(p" —1) and = + (p" — 1)y; # p" — 1 for every j, ¢ is at most
r—1, so
[all' + (pr - l)ﬁl]r +oe [Oénl‘ + (pr - 1)Bn]r
[+ @ —Unl+--+z+ @ = D]+ (-1rd+B

<
S+ —Onlr+-+z+ @ =Dyl + (- 1rd+(p—-1)(r —1)m+ B.

Furthermore, for every s > 1, the last r digits of 7;;5__113: + (™ -1y = 71’::7__11(33 + (p" — 1)v;) are
the same as the last 7 digits of  + (p” — 1), and, in particular, the last r digits are not all p — 1,

TS __ 1
I;r_l x):

so we get (letting y =
[aly + (prs - 1>/81]rs +ooet [any + (prs - 1)ﬁn]rs
<+ 0" =Dnles +---+ v+ @7 = Dymles + (0 = Drsd + (p = 1)(r = )m + B.
Using the Hasse-Davenport relation [y],s = s[z], [KRLTI, Lemma 2.10], we conclude that

[alx + (pr - 1)51]7" + o+ [Cknl' + (PT - 1)Bn]7‘
p—-1(r—-1)m+B

Sl+@ -Unlk+-+ 2+ 0 = Dymlr+ - DrAd+
and letting s — oo we obtain ((9.0.1)). 0

In order to prove the inequality

(9.1.1) [aqz+(p"=1)B1]+ - -+ [anz+(p"—1)5,] < [+ "—1)m]+ - -+[z+(p"—1)ym]+(p—1)rA+B
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for every r € rgZ4 and every 0 < x < p" —1 we proceed by induction on r. For a few small values of
r it is done by a computer check. Then we proceed as follows for a given r, assuming it has already
been proved for smaller r. Let

A(r,z) = [z+@" —Dnl+- - +[z+ " —Dym]+(p—DrA—|oaz+(p"—1)f1] =+ - —[onz+(p" —1)Bn],
we need to show that A(r,z) > —B.

We first prove a few cases of (9.1.1]), in the following way. For some small s < r which is also a
multiple of rg we split off the last s digits of x. That is, we write x = p°y + z with 0 < y < p"™*

and 0 < z < p®. For every ¢ = 1,...,n let u; be the number of digit carries in the sum
a + (p" = 1)Bi = p*(auy + (p"° = 1)Bi) + (aiz + (p° — 1)5s)
and for every j = 1,...,m let v; be the number of digit carries in the sum

z4+ (" =)y =p'(y+ @ ° = 1y) + (2 + (p° — 1))
then
[z + (" = 1)Bi] = [aay + (0" = 1)Bi] + [z + (p* = 1)Bi] — (p — Dwy
and
[+ @ = Dyl=y+ @ =Dyl + =+ (@ — Dyl = (p— 1.

Assume A(s,2) — (p—1) >, v+ (p—1) >, u; > 0. Then

A(r, z) :A(r—s,y)—l—A(s,z)—(p—l)Zvj—i-(p—l)Zui > A(r — s,y)
j i

and we conclude by induction.

For the remaining cases of , we use the following substitution method: for some small s < r
which is also a multiple of rg we write x = p’y + 2 with 0 <y < p"*and 0 < z < p°. Let s’ < s
and 0 < 2/ <p¥ —1, and let 2/ = p*y + 2/ and ' = r — s + 5. Assume that A(r',2') > —B has
already been proved (which is true by induction if s’ < s). For every i = 1,...,n let b; (respectively
b;) be the number obtained by removing the last s digits of a;z + (p® — 1)3; (resp. by removing the
last s digits of a2’ + (p* — 1)8;) and for every j = 1,...,m let ¢; (respectively c;) be the number
obtained by removing the last s digits of z 4+ (p® — 1)7; (resp. by removing the last s" digits of
2+ (p* — 1)v;), which is always 0 or 1. Assume that b; = b, for every i and ¢; = c; for every j,
and that A(s,z) > A(s',2’). Then the number of digit carries in the sum

air! +(p" = 1B =p” (ay+ (0"~ = 1)B) + (i + (p° —1)B)
is u;, and the number of digit carries in the sum
7 =)y ="+ 07 = D) + E + (0 = 1))
is v;. So we get
Alr,z) = A(r—s,9) + A(s,2) = (p = 1) D_vj+(p— 1)) w
7 %
> A =5 )+ A ) (-1 o+ -1 u

J

|
P>

(r',2")
-B.
For some local systems for which rq is large, it will me more convenient to use the following

variant of the previous procedure. Note that multiplication by p" fixes the «; modulo 1. Suppose
that there is some 7 such that p™ permutes the v; modulo 1, and assume that (p™ —1)8; € Z for

v
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every ¢ for simplicity (the argument could be extended to the case where multiplication by p™ also
permutes the f;, but we will not need this case here). Let 1 be the smallest positive integer with
such property, then r1|rg and ro/r; is the order of the permutation under which multiplying by p™
acts on the ;.

Suppose, after relabeling the v;, that v1,...,7. form a cycle for this action. Then e|(rg/r1), let
ro = ref. Splitting the p-adic digits of (p" — 1)v; in groups of r1, we can write

(0" = D)y = hegp™ 7 o hepap™ T e hgp™ By

with 0 < h; < p™ — 1. Since p™ (p"® —1)v; = (p"° —1)yj41 for j=1,...,e—1 and p" (p"* — 1), =
(p" —1)y1 (mod p™ — 1), we conclude that hey; = h; for 0 <i <e(f —1) and

(P = 1)y5 = hagg=p" D + " T o hg—p™

for 1 < j < e, where [ is the representative in {1,...,e} of the congruence class of [ modulo e.
Forevery k=1,...,ef and 1 < j <e, let

k—1

§ : l
th' = hj-Hp ,

=0

Roughly speaking, these are the numbers formed by taking k consecutive (from the cyclic point of
view) groups of 71 digits of (p"® —1)~1, the last of them being the j-th one (counting from the right).
Then 0 < th < pkrl, th = hj, and (pm — 1)’)/]' = hef,fj‘ Also, if & > 1, hk,j = pmhk—l,jﬁ + hj
and, more generally, hy ; = pi”hkftm + h;; for 0 <i < k. We use this last formula to extend the
definition of hy ; to every positive integer k. In particular, we have hepi ;j = phr hef,jﬂ +hg; =
pkn (pro _ 1)m + hkd'

Similarly, using the other cycles for the action of multiplication by p™ on the v;, we define h;
and hy ; for every j =1,...,mand k > 1.

In this situation, the inequality is a special case of the following inequality: for every
k>1and every 0 <z <p" — 1, where r = krq,

(9.1.2) [ouz+ (" —1)p1]+- -+ [amz+ (" —1)Bp] <[z +hp1]+-+ [+ hgm] +(p—1)rA+ B.

When £ is a multiple of ef (that is, when ro|r) this inequality reduces to (9.1.1]), since the hy ; are
a permutation of the (p" — 1)v;. We define

A(r,z) =[x+ bl + -+ [0+ hegm] + (p = DrA — [onz + (p" = 1)B1] — -+ — [anz + (p" — 1)Bn],
and want to show that A(r,x) > —B.

The induction step now works as follows. For some small [ < k we split off the last s := [ry digits
of x: we write x = p’y 4+ 2z with 0 <y < p" % and 0 < z < p®. For every i = 1,...,n let u; be the
number of digit carries in the sum

az + (p" = 1)Bi = p*(auy + (p"° = 1)Bi) + (aiz + (p* — 1)5s)
as before, and let v; be the number of digit carries in the sum
e+ heg=p Y+l 5m) + (2 + hey)
then
[z + (p" = 1] = [y + (0" = DBi] + [awz + (p° — 1)Bi] — (p — Duy
and
[z + hi gl = [y + hk,mm] + [z + hi gl = (p = Dvj.
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Assume A(s,z) — (p—1) > ;v + (p—1) 32, u; > 0. Then

A(r, o) = A(r—s,9) + Als,2) = (p— 1) D_vj+ (p—1) > _ui > Alr — 5,9)
7 )

and we conclude by induction.

For the remaining cases of we proceed by replacing the last digits as in the previous case:
let s =1Ir; and s’ = I'ry with I’ <1 < k, write z = py + 2z with 0 < y < p"* and 0 < z < p°®,
let 0 < 2/ <p’ —1land 2/ = pSy+ 2/, and define ' = r —s+ s, ¥ = k— 1+ I'. Assume that
A(r',z') > —B has already been proved. Let b; and b} be as above, and for every j = 1,...,m
let ¢; (respectively c;) be the number obtained by removing the last s digits of z 4+ hy; (resp. by
removing the last s’ digits of 2/ + hy 5777)- Assume that b; = b for every i and c¢; = ¢} for every
j, and that A(s, z) > A(s',2'). Then the number of digit carries in the sum

air’ + (p" = 1B =p* (aay + (0" = 1)B;) + (w2 + (p° = 1)B;)
is u;, and the number of digit carries in the sum
.'1’/'/ + hk’,j—l-ﬁ-l’ = ps (y + hk'*lyjm) + (Z, + hl’,j—l—l—l/)

is v;. So we get

Ar,z) = A(r — s,y) + A(s, 2) — (p—l)zvﬁr(p—l)zui

> A( — ) F A )~ (- DDyt DY u

A(r' 2"
—B.

Y

10. THE ALTERNATING GROUP Ag

We begin by noting that
S := Ag = PSL2(9) = PSU,(9),

and, in the notation of [Atlas], S -2; = Sg and S - 25 = PGL2(9) = PGU3(9). Hence, using results
of [KT1, Theorem 17.1] we can get hypergeometric sheaves in characteristic p = 3 which realize
the 4-dimensional faithful representations of 2A¢ = SL2(9). Likewise, using [KT5l Theorem 9.3] we
can get hypergeometric sheaves in characteristic p = 3 which realize the 5-dimensional irreducible
representations of Ag. Next, using [KT4, Corollary 8.2] we can get hypergeometric sheaves, still in
characteristic p = 3, which realize irreducible representations of 2 - Ag - 25 of degree 9 and 10 (that
are irreducible over 2 - Ag). Finally, using [KT7, Theorem 17.4] we can get hypergeometric sheaves,
again in characteristic p = 3, which realize irreducible representations of 2 - Ag - 25 of degree 8 (that
are irreducible over 2 - Ag).

Now we settle the question whether the exceptional covers 3 - Ag and 6 - Ag can occur as Ggeom
of some hypergeometric sheaves: the answer is “no” for 6 - Ag and “yes” for 3 - Ag.

Lemma 10.1. There are no hypergeometric sheaves of type (D, m) with D > m in characteristic p
that satisfy (S+) and have Ggeom > 6 - Ag.

Proof. Suppose such a sheaf #H exists and let gy be the image of a generator of 1(0) in G := Ggeom-
Then go has simple spectrum on H, and so D cannot exceed 6(gp). On the other hand, condition
(S+) and the hypothesis G > L := 6 - Ag imply by Lemma that G/Z(G) — Aut(Ag) and so
0(go) < 10 by [Atlas]. Thus D < 10. But L acts irreducibly and faithfully on #, so D = 6 by
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[Atlas]. Now, 6(go) > 6 implies go ¢ Z(G)L, and so G must induce an outer automorphism of L.
But this is impossible, because no outer automorphism of L can stabilize the equivalence class of a
faithful 6-dimensional representation of L (see [Atlas]). O

Theorem 10.2. The local system K := Kl(]l,£5,§§) in characteristic p = 3 has finite geometric
monodromy group.

Proof. We need to show:

V(x)—i—V(x—l—;)—i-V(x—i-;l) >1

V(x)+v<x+§>+v<x+§> >1,

which are equivalent via the change of variable z — 3z. Using the fact that V(£) = V( 34116_il) = £[16i]
for 1 <4 < 4 we check thate second inequality holds for 5x € Z. For all other values of x, following

it suffices to prove

0< [x+w]+[x+w}+[$]_2r

and

) )

for every r > 1 divisible by ry = 4 and every 0 < x < 3" — 1. Since multiplication by 3? permutes
Y1 = % and vy = % and fixes v3 = 0 modulo 1, we can take ;1 = 2. Then, with the notation of
we have (3% — 1)y; = 10125; h; = 125,103 and hg; = 10123, 12103 for j = 1,2 respectively. We will
prove that
0 <[z+ hgi]+ [z + hgo) + [z] —2r

for every r =2k > 2 and 0 < x < 3" — 1. For r < 6 we check it by computer. For » > 6 we proceed
by induction as described in proving first the following cases by splitting off the last digits of .
Here ), u; is always 0, since there are no terms on the left-hand side of the inequality.

’ last digits of x ‘s‘ z ‘A(s,z)‘ziui‘zjvj‘A(S,z)—22jvj—|—22iui‘
00,01,02,10 2100,01,02,10 | >0 0 0 >0
abll;ab#12 2| 11,12 > 9 0 | <1 >0
ab20;ab £ 10,12 [ 2| 202122 | >2 0 | <1 >0
al1020;a # 2 4 1020 1 0 0 1
021020 6 021020 3 0 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the ¢3 = ¢4 corresponding to 3 = 0, since it is always 0):

| z=last digitsof 2 [ s | 2/ [ &' [ A(s,2) [A(s, ) [er =] | ea = |
1211,1220 412012 3 2 1 1
12 21111 2 ) 2 1 0
121020,221020 6120 2 >2 2 1 1
21,22 21201 2 >3 2 1 1

O

Theorem 10.3. The local system K = ICl(]l,§5,£§) in characteristic p = 3 has geometric mon-
odromy group Ggeom = 3 - Ag. Moreover, H := K ® L¢, has a descent H' to Fg with arithmetic

~

monodromy group Garith k1 = Ggeom 2 = (3 - Ag) x Co over any finite extension k 2 Fy.
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Proof. (i) By Theorem G = Ggeom is finite. Let ¢ denote the character of the representation
G — GL(V) of G realizing K. Now, K is visibly not Kummer induced, so (being Kloosterman) it is
primitive. As dim(V) =3, (G, V) is tensor indecomposable, and not tensor induced. Hence (G, V)
satisfies (S+). Next, by the construction of #, the field of values Q(¢) := Q(¢(g) | g € G) contains
V5. Indeed, for a generator gy of the image I(0) in G we have (go) = (1++/5)/2 and moreover go
has central order 5. Furthermore, the image @) of P(c0) acts irreducibly on V' by Proposition
In particular, @ is a non-abelian 3-group, so of order at least 33. Moreover, Z(Q) # 1 acts faithfully,
as scalars, on V, hence ¢(2) = 3(3 for some z € Z(Q) of order 3. It follows that Q(¢) > /=3, and
so Q(¢) = Q(v/5,v/—3) by Proposition (iii). Now, since the cyclic group Z(G) acts via scalars,
we have that

(10.3.1) Z(G) < Ce.

Suppose G satisfies conclusion (c) of Lemma Then G contains an irreducible normal 3-
subgroup R, and

But this is a contradiction, since Cg(R) = Z(G) and 5 divides |G/Z(G)| but not |S4|.

Thus G is almost quasisimple. Let S denote the unique non-abelian composition factor of G,
so that S = L/Z(L) for L := E(G) = G(*). Then V|, is irreducible by Lemma and so
Cg(L) = Z(G) by Schur’s lemma. Furthermore, as 6(gy) = 5 and 3% divides |Q|, we have by
that 32 - 5 divides the order of G/Z(G) < Aut(S). Now we can apply the main result of
[HM] to see that S = Ag and L = 3- Ag. Since 51 |Out(S)|, go must lie in the inverse image Z(G)L
of S in G, whence gy € L <G because 51 |Z(G) by (10.3.1)). It now follows from Theorem [5.1] that
G=L=3"As.

(ii) By Theorem K has a descent Koo to Fg for which any element in Garith i ko, Still has trace
in Q(v/5,v/—3) when k D Fg, and with Ko given on line 1 of Table 4. Now we take H’ := Koo @ Le,,
and note that any element in Gayith k7 has trace in Q(v/5,v/=3), whence

(10.3.2) Z(Garith k1) < Cs.

Let H := Ggeom# = Ggeom,/- By Lemma we have that H/Z(H) = G/Z(G) = A¢ and
H(®) >~ G() = 3. Ag. In particular, H(®) acts irreducibly on H; and

Z(Garithe2) > Z(H) > Z(H(OO)) — Cs.

Next, a generator hg of the image of I(0) in H has eigenvalues —1, —(5, —C§ on H, whence hg acts
as the scalar —1 on H. It now follows from that Z(Garith x,2) = Z(H) = Cg. Now, since no
outer automorphism of H(*) fixes the equivalence class of the H(°*)-module H, we conclude that
Garithkr = H = Z(H)H®™) = (3 Ag) x Cs. a

Theorem 10.4. The local system Ha := Hyp(Charg \ {&s,&s}; €12, &]5) in characteristic p =5 has
finite geometric monodromy group.
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Proof. We need to show:

V(8x) -V

]
_l_
N— N—
| |
< <
7 N N N
= &
+ o+
|3 oolot 0|3
+
<
v
vO

V(8x) -V

|
<

V(8x) -V

V(8x)—V<x+z>—V<w+2>+V(—x+ll2>+V<—x+172> > 0.

The first two and the last two are equivalent via the change of variable x — = + %, and the change
of variable z + 5z interchanges the first and fourth ones, so they are all equivalent. Using the fact
that V(g;) = V(z5) = %[z] for 1 < i < 23 we check that the inequalities hold for 24x € Z. For all

other values of x we can rewrite the third inequality, using that V(z) + V(—z) =1 for = # 0, as

1 7 1 7
< - Z _ IR
V(8x)_V<x+8> +V<CC+8> +V<:1:+ 12) +V<a?+12> 1
and, following §9] it suffices to prove

<o R o B e ) 2

S
+
S
+
N—— ——— ~—
+ o+
< <
/\/T\/—\
8
|
=
|
8
+
v
==}
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A

for every r > 1 multiple of rp = 2 and every 0 < x < 5" — 1. For r < 4 we check it by computer.
For r > 4 we proceed by induction as described in proving first the following cases by splitting
off the last digits of z.

last digits of x ‘ s z ‘ A(s, z) ‘ > Ui ‘ 25U ‘ A(s,z) =43 v +4>ui ‘
00,01, 02,03 2| 00,01,02,03 >0 >0 0 >0
a04,...,a20;a #3 |2 04,...,20 >0 >0 0 >0
a2l,...,adl;a #£0,3 2| 21,...,41 >0 | >0 | 0 >0
242,442 2 42 8 >0 0 > 38
443,444 2 44 0 >0 0 >0
00ab, 01ab, 02ab 4| 00ab,01lab,02ab| >0 >0 0 >0

The remaining cases are proved by substitution of the last digits, as specified in the following

table:
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’z:lastdigitsofx\s \ z \5’ \ A(s, z) \ A(s', 2" \ by =V \clzc’l \czzc’2 \03205 \ 04202‘
0304, ...,0344 4104 2 >0 0 1 0 1 0 0
1304, ...,1344 4114 | 2 >0 0 2 0 1 0 0
2304, ...,2344 4124 2 >0 0 4 0 1 0 1
3304, ...,3333 4133 | 2 >4 4 10 0 1 0 1
3334, ...,3344 4134 2 >8 8 11 0 1 0 1
4304, ...,4344 4144 | 2 >0 0 12 1 1 1 1
1021,...,1044 4|11 2 >0 0 1 0 1 0 0
2021,...,2044 41211 2 >0 0 3 0 1 0 1
3021,...,3030 41241 2 >0 0 4 0 1 0 1
3031,...,3044 41311 2 >8 8 10 0 1 0 1
4021, ...,4044 41411 2 >8 8 11 0 1 0 1

1142,1143,1144 41121 2 >4 4 2 0 1 0 0
2142,2143,2144 41221 2 >0 0 3 0 1 0 1
3142, 3143, 3144 41321 2 >8 8 10 0 1 0 1
4142, 4143,4144 4142 2 >8 8 12 1 1 0 1
1243, 1244 41131 2 0 0 2 0 1 0 0
2243, 2244 41231 2 0 0 3 0 1 0 1
3243, 3244 413312 4 4 10 0 1 0 1
4243, 4244 41431 2 0 0 12 1 1 1 1
O

Theorem 10.5. The local system Ha := Hyp(Charg \ {€s,&s};€12,&]5) in characteristic p =5 has
geometric monodromy group Ggeom = (2 X 3A¢) - 23. Moreover, Hy is defined over Fas, and has
arithmetic monodromy group Garithk = Ggeom 0ver any finite extension k of Fos.

Proof. (i) By Theorem G = Ggeom is finite. Let ¢ denote the character of the representation
® : G — GL(V) of G realizing Ho. It is clear that H is not Kummer induced. Furthermore, the
shape of the “upstairs” and “downstairs” characters of Hy shows by Proposition [3.7(ii) that it is
not Belyi induced. Hence (G, V) satisfies (S+) by Theorem [3.5] Next, among the nontrivial Galois
automorphisms of Q((24)/Q, only (a4 + (4, fixes each of the set of “upstairs” characters and the
set of “downstairs” characters of Hs. Hence the field of values Q(¢) := Q(¢(g) | g € G) is

(10.5.1) Q) = Q(V2,V-3)
by Proposition [6.1](iii). Now, since the cyclic group Z(G) acts via scalars, we have that
(10.5.2) Z(G) < Cs.

We now have that G is almost quasisimple by Lemma Let S denote the unique non-abelian
composition factor of G, so that S = L/Z(L) for L := F(G) = G(*). Then V|, is irreducible by
Lemma [3.1] and so Cg(L) = Z(G) by Schur’s lemma. Furthermore, if gy denotes a generator of the
image of I(0) in G, then 6(go) = 8, and the image @ of P(c0) has order 5 by Proposition [.8[iv).
Hence, by we have that G/Z(G) < Aut(S) contains elements of order 8 and 5. Now we can
apply the main result of [HM]| to arrive at the following possibilities.

e S = As. In this case, G/Z(G) < S; cannot contain any element of order 8, a contradiction.

e (S,L) = (SU3(3),SU3(3)), (SU4(2),SU4(2)), or (PSU4(3),61 - PSU4(3)). In all these cases, we
can find an almost quasisimple group M < L -2 and an irreducible character ¢ of M such that
M) = [ = G%), M/Z(M) = G/Z(G), ¥|1. = ¢lr, and Q(¥) C Q(v=3) € Q(¢). By Lemma
3.9, we can find a root of unity v such that Q(yp) = Q(¢)(7), contrary to (10.5.1)).
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o (S,L) = (PSL3(4),6 - PSL3(4)). In this case, using [GAP] we can check that ® (in fact already
®|1,) has My 2 = 2. Now we apply Theorem|6.5, with (a,b) = (2,2), and C = 146, B < 322, A < 176
(according to Lemmas and Remark, which implies that the approximation of M 2 over
Fs6 is at most 3.43. However, a calculation with Mathematica yields an approximation of (at least)
4.24 over Fy6, a contradiction.

e (S,L) = (J2,2J2). In this case, Q(¢|z) = Q(V/5), contradicting (10.5.1).

e S=Agand L =6-Ag or 3-Ag. Note that the former possibility is ruled out by Lemma [10.1
Hence L = 3 - Ag. Since G/Z(G) < Aut(S) = S - 22 contains an element of order 6, G/Z(G) > S.
Next, ®|;, is irreducible, hence G/Z(G) cannot be S - 2; or S - 29 by [Atlas]. It follows that
G/Z(G) = S - 25. We also know that C3 = Z(L) < Cq(L) = Z(G) < Cs by (10.5.2). As gy has
central order 8, we can find an element h in the group H = 3523 listed in [GAP] and an irreducible
character ¢ of H, afforded by a representation ¥ : H — GL(V'), such that ¥|;, = ®|; and g and
h induce the same automorphism of L. Arguing as in the proof of Lemma we can find o € C*
such ®(gp) = a¥(h). Now we have

Trace(®(go)) = ¢(g0) = V2, Trace(¥(h)) = ¢(h) = +v/=2,
and so o = +4/—1. Also note that gg € G and h? € L. Tt follows that ggh_2 € G and
®(g5) = ®(go)* = —W(h?),
i.e. ®(gah2) = —Id. Thus g3h~2 is a central element of order 2, and we conclude that Z(G) = Cs
and G = (2 X 3A6) : 23.

(ii) The sheaf Ho is visibly defined over Fos. Furthermore, over any finite extension k of Fos,
by Proposition (iii), any element in Gy i still has trace in Q(v/2,1/=3). Since any element in
CGioni (L) = Z(Garith k) acts via scalars, which are then roots of unity in Q(v/2,v/—3), we see that
CGoimi (L) = Cs = Cg(L). Hence, if Gaitn ik > Ggeom, We see that some element of Grign,r must

induce an outer automorphism of S lying outside of S - 23, which is impossible under the condition
that it fixes L = 3-S5 and |1, see [Atlas|. Therefore we must have that Gayith k = Ggeom- O

11. THE ALTERNATING GROUP A7

Theorem 11.1. The Kloosterman sheaf lCl(ﬂ,&,ﬁ%,{?) in characteristic p = 3, where &7 is a
character of order 7, has finite geometric monodromy group.

Proof. We need to show:

Vo +v (s g)+v (a4 2) v (243) 23

v<x>+v<x—§)+v<x_§>+v<x_j> >3

depending on the choice of x. Note that these two inequalities are equivalent via the change of
variable z — 3z, since V(3z) = V(x), so we will consider only the first one. Using the fact that
V(L) = V(322) = L[1044] for 1 < i < 6 we check that the inequality holds for 72 € Z. For all
other values of x, following it suffices to prove

0< [m%—gr?—l}+[m+2(37“7_1)]+[90+4(37q7_1)]+[x}—3r

or

for every r > 1 divisible by ry = 6 and every 0 < x < 3" — 1. Since multiplication by 32 permutes
v = %, Yo = % and y3 = % cyclically modulo 1, we can take r1 = 2. Then, with the notation
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of we have (36 - 1)’)/1 = 0102123; hj = 123,023,013; hQJ == 02123,01023,12013 and hgyj ==
0102123, 1201023,0212013 for j = 1,2, 3 respectively. We will prove that

0 <[z+ hpi]+ [z+ hpo) + [z + hi 3] + [z] — 3r

for every r =2k > 2 and 0 < x < 3" — 1. For r < 4 we check it by computer. For r > 4 we proceed
by induction as described in proving first the following cases by splitting off the last digits of .
Here ), u; is always 0, since there are no terms on the left-hand side of the inequality.

‘ z ‘A(s,z)‘Eiui‘Zjvj‘A(s,z)—22jvj+22iui‘

’ last digits of x ‘

S
00,01,02,10 2100,01,02,10] >0 0 0 >0
abll,abl2,ab20;ab #20 | 2| 11,1220 | >2 0 <1 >0
ab21; ab # 20,21 2 21 4 0 <1 > 2
ab22;ab # 10,20,21 | 2 22 4 0 <2 >0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the ¢4 corresponding to 4 = 0, since it is always 0):

/

| z=lastdigitsof x  [s]| 2 [ [A(s,2) |[A(, ) [ai=d |ea=d [es=d |
2011,2012,2020,2021,2022 | 4 | 21 | 2 >4 4 1 1 0
2121,2122 412212 4 4 1 1 1
1022 4111 2 2 2 0 1 0

g

Theorem 11.2. The local system K = ICZ(]l,&,g%,f‘%) in characteristic p = 3 has geometric
monodromy group Ggeom = 2A7. Moreover, it has a descent K' to Fy with arithmetic monodromy
group Garith k. = Ggeom over any finite extension k 2O Fy.

Proof. By Theorem G = Ggeom is finite. Let ¢ denote the character of the representation
G — GL(V) of G realizing K. By the construction of #, the field of values

Qp) :==Q(p(9) | g € G)

contains v/—7. Indeed, for a generator go of the image I(0) in G we have ¢(go) = (1 + vV—7)/2
and moreover go has central order 7. Using Corollary (1) we see that Q(¢) = Q(v/—7). Now, K

is visibly not Kummer induced, so (being Kloosterman) it is primitive, whence it satisfies (S+) by
Lemma 3.4

We have shown that (G,V) satisfies (S+), and G contains go with 6(go) = 7. Next, since the
cyclic group Z(G) acts via scalars and Q(¢) = Q(+/—7), we have that
(11.2.1) Z(G) < (.

Furthermore, the image Q of P(00) is elementary abelian of order 32 by Proposition (iv), and
Q@ < G/Z(G) by Proposition [5.6(ii). Suppose G satisfies conclusion (c) of Lemma Then G

contains an irreducible normal 2-subgroup R, and
G/Ca(R)R — Out(R) — Spy(2) = S.

But this is a contradiction, since C¢(R) = Z(G) < Cy by (11.2.1)), and 7 divides |G| but not |Sg|.
Thus G is almost quasisimple. Let S denote the unique non-abelian composition factor of G,
so that S = L/Z(L) for L := E(G) = G(*). Then V| is irreducible by Lemma and so
Cg(L) = Z(G) by Schur’s lemma. Furthermore, as 6(gg) = 7 and |Q| = 3% we have that 3% -7
divides the order of G/Z(G) < Aut(S). Now we can apply the main result of [HM| to see that
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S = A7 and L = 2A;. In this case we also have that Z(G) = Z(L) = C3 by (11.2.1). Since
71]0ut(S)|, go must lie in the inverse image L of S in G, whence Ggeom = L by Theorem [5.1

By Theorem K has a descent K' = Ko to Fy for which any element in G still has
trace in Q(v/—7) whenever k O Fg, with Ky given on line 3 of Table 4. Since any element in
CGins (L) = Z(Garitn) acts via scalars, which are then roots of unity in Q(v/—7), we see that

CGarith,k (L) = CQ = Z(L)

Since no outer automorphism of L can fix the character o[z, we conclude that Garitgn iy = L =

G geom- g

Theorem 11.3. The local system Hyp(&e - Chars;&s, &) in characteristic p = 5, where & is a
character of order 6 and s a character of order 8, has finite geometric monodromy group.

Proof. Here the four inequalities to prove are, depending on the choice of £ and &g:

1 1 1 1 1

-} = z _ - —r_ 1>z
V<7x+6> V<x—|—6>+V< a:+8>+V< x 8)‘2’
1 1 1 1 1

— )= i — il —p— >z
V(7m 6) V<x 6>+V< :U+8>+V< T 8)_2,
1 1 3 3 1

i - _ el _r_Z) >z
V<7x+6> V<x+6>+V< :c+8>+V< z 8>_2

and

1 1 3 3 1

I _ = _ e —_r—Z) >
V<795 6) V(x 6>+V( $+8>+V<x 8>_2

The change of variable x +— 5x interchanges the first and fourth and the second and third inequali-
ties, so we will focus on the second and fourth ones. Using the fact that V(55) = V(ﬁ) = 2 [i]
for 1 < ¢ < 23 we check that the inequalities hold for 24x € Z. For all other values of z, using
that V(z) + V(—x) = 1 for x # 0, the second inequality is equivalent, via the change of variable

Tr— T+ %, to
V(?x—i-l) <V<:r—|—7> +V<£L‘+1> —|—V(a:)—1
24 ) — 24 4 2
and, following it suffices to prove

[7a:+5T2;1] < [m+7(5;4_1)] + [$+5r4_1] + [z] — 2r

for every r > 1 divisible by ro = 2 and every 0 < z < 5" — 1. For » < 4 we check it by computer.

For r > 4 we proceed by induction as described in proving first the following cases by splitting

off the last digits of z. Note that “& =1 = 1212...125 and 55 = 1111...115.

last digits of x ‘ s ‘ z ‘A(s,z) ‘ > Ui ‘ 2. ‘ As,z) =43 ;v +4> u ‘
00,....32 2100,....32] >0 | >0 | 0 >0
ab33; ab # 32 2 33 8 >0 <1 >4
add,...,add;a #2,3 |2 | 34,...,44 >0 >0 0 >0
ab34, abd4;ab < 31 | 4| ab34,abd4 >0 >0 0 >0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the c3 corresponding to 3 = 0, since it is always 0):



50 NICHOLAS M. KATZ, ANTONIO ROJAS-LEON, AND PHAM HUU TIEP

| z= lastdigitsof x | s |2/ || A(s,2) |[A(, ) [bi=b |[aa=d [ca=4d
3233,3234,3244 4133 | 2 >8 8 10 1 0
3334,3344 413412 >0 0 10 1 1
4234,4244 4143 | 2 >4 4 11 1 1
4334,4344 4144 | 2 >0 0 11 1 1
40,41 2134 |2 >0 0 10 1 1
42,43 21441 2 >4 0 11 1 1

For 24z ¢ 7Z the fourth inequality is equivalent, via the change of variable x — = + %, to

) 11 1
< — — —
V(?x)_V<x+24>+V(x+24>+V(ac) >

and, following §9| it suffices to prove

[72] < [w+5(5;4_1)} - {x+11(5;4_1)} + [z] — 2r

for every r > 1 divisible by 7o = 2 and every 0 < oz < 5" — 1. For » < 6 we check it by computer.
For r > 6 we proceed by induction as described in proving first the following cases by splitting

off the last digits of . Note that 21 —1010...105 and 2 =1 = 2121 ... 215; we also denote

Yi=A(s,2) 4350 45 .

last digits of x ‘ s ‘ z ‘ A(s, z) ‘ Do Ui ‘ > ‘ b)) ‘
00,...,23 2 00,...,23 >0 >0 0 >0
a24,... a34a43 |2 24,....34 >0 | >0 | 0 |>0
GA0,... addia£3,4 |2|  40,... 44 >0 | >0 | 0 |>0
ab24, ab40, abd2; ab < 22 | 4 | ab24, ab40, ab42 >0 >0 0 >0
a330;a # 2 2 30 0 >1 1 >0
a334;a # 2 2 34 8 >0 1 >4
04440,14440,24440 4 4440 0 >0 0 >0
034440,134440 6 | 034440,134440 4 >0 0 >4
044440,144440 6 | 044440,144440 0 >0 0 >0

The remaining cases are proved by substitution of the last digits, as specified in the following

table (we do not include the c3 corresponding to 3 = 0, since it is always 0):
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dZig;csl(?{?t:c s| 2 || As,2) | A, Z) [ by =b |1 =¢) | ca =6
2324,2330,2334,2340,2342 | 4| 24 | 2 >0 0 3 0 1
2440,2442 41 30 |2 >0 0 4 0 1
3324,3340,3342 4 34 |2 >8 8 10 0 1
3440,3442 4| 40 | 2 >0 0 10 1 1
4324,4340,4342,4442 4| 44 | 2 >4 4 11 1 1
234440 6| 24 |2 0 0 3 0 1
244440 6| 30 |2 0 0 4 0 1
334440 6| 34 |2 8 8 10 0 1
344440 6| 40 | 2 0 0 10 1 1
434440 6| 44 | 2 4 4 11 1 1
444440 6| 4440 | 4 0 0 11 1 1
31,32 21 30 |2 0 0 4 0 1
33 21 34 |2 12 8 10 0 1
41 2| 40 | 2 0 0 10 1 1
43,44 2| 42 | 2 >4 4 11 1 1

O

Theorem 11.4. The local system H := Hyp(&s - Chary; &s, &) in characteristic p = 5 has geometric
monodromy group Ggeom = 6A7. Moreover, H has a descent H' to Fos with arithmetic monodromy
group Garith k. = Ggeom 0over any finite extension k of Fos.

Proof. By Theorem G = Ggeom is finite. Let ¢ denote the character of the representation
G — GL(V) of G realizing H. By the construction of H, the field of values Q(¢) := Q(¢(g9) | g € G)
contains both (g and v/2. Indeed, for a generator gy of the image I(0) in G we have (gg) = —(s
and moreover gg acts a central element of order 6. Furthermore, a p’-generator g, of the image of
I(00) modulo P(00) in G has trace 0 on Wild and (g + (s = v/2 on Tame, whence ¢(goo) = V2.
Now using Corollary [6.2(i) we see that Q(¢) = Q(v/—3,v/2). It is clear that H is not Kummer
induced. Furthermore, the shape of the “upstairs” and “downstairs” characters of H shows by
Proposition [3.7](ii) that it is not Belyi induced. Hence, by Theorem (G, V) satisfies (S+). As
D = dim(V) = 6, G must be almost quasisimple by Lemma Next, since the cyclic group Z(G)
acts via scalars and Q(y) = Q(v/—3,v2), but g} € Z(G) has order 6, we have that
(11.4.1) Z(G) = Cs.

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for

L:=E(G) =G,

Then V|1, is irreducible by Lemma and so Cg(L) = Z(G) by Schur’s lemma. Furthermore, as
0(go) = 7 we have C7 — G/Z(G) < Aut(S). Moreover, the image @ of P(c0) is cyclic of order 5
by Proposition [5.8[(iv), and Q — G/Z(G) by Proposition [5.6{(i). Now we can apply the main result
of [HM] to arrive at the following possibilities for (S, L).

e (S,L)= (PSL3(4),6 - PSL3(4)) or (PSU4(3),61 - PSU4(3)). In these two cases, Z(G) = Z(L) =
Cs. Next, since 7 1|Out(S)|, the element gg of central order 7 must lie in the inverse image L of S
in G, whence G = L by Theorem Now, using [GAP] we can check that no element of G has
trace of absolute value /2, contrary to ¢(geo) = v/2.

e (S,L) = (J2,2- J2). In this case, Q(¢) 2 Q(¢|1) = Q(v/5), a contradiction.

e S = A7. Again since 7 1 |Out(S)|, go must lie in the inverse image Z(G)L of S in G, whence
G = Z(G)L by Theorem Now, if L = A7 or 3 - A7, then according to [GAP], no element in
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Z(G)L can have trace v/2, contradicting the existence of the element g.,. Hence L = 6 - Az, in
which case we have Z(G) = Z(L) and Ggeom = L = 6A7.

By Theorem (7.7, H has a descent H' = Hog to Fas, for which any element in Gayith i still has
trace in Q(v/—3,v/2) when k D Fo5, with Ho given on line 4 of Table 4. Since any element in
CGini (L) = Z(Garith k) acts via scalars, which are then roots of unity in Q(v/=3,2), we see that
CGins (L) = Cs = Z(L). Since no outer automorphism of L fixes the character ¢|r, we conclude
that Garith,k =L= Ggeom-

For the next application, we identify g, in G. Since it has central order divisible by 4, it belongs
to class 44 in G/Z(G), in the notation of [Atlas]. Also, recall that g, permutes the 4 eigenspaces
for @ in Wild cyclically, and has eigenvalues (g and (g on Tame. It follows that the central element
g% acts as a scalar a on Wild for some a € C*, and as the scalar —1 on Tame. This implies that

a = —1 by Schur’s lemma, and thus o(g) = 8. Now, G = 6A; has two classes of elements of order
8, 8a and 8b in the notation of [GAP], and (modulo the central involution) we may assume go,
belongs to class 8a. O

Theorem 11.5. The following statements hold.

(i) The local system H1 := Hyp(&3-Chary; 1, &2) in characteristic p =5 has geometric monodromy

group Ggeom,;, = 3A7. Moreover, H1®Le¢, has a descent Ht} to Fo5 with arithmetic monodromy

group G = Ggeom,H‘} = (3A7) x Cy over any finite extension k 2 Fg.

arith,k, H%
(ii) The local system Ho := KI(1, &7, E2,£3) in characteristic p = 5 has geometric monodromy group
Ggeom, s = 2A7. Moreover, Ha has a descent (Ha)oo to Fos, with arithmetic monodromy group

Garith,k,(H2)00 = Ggeom over any finite extension k of Fos.

Proof. (i) Let G = 6A;. The hypergeometric sheaf H in Theorem gives rise to a surjection
¢ : (G /F,) - G, together with a faithful irreducible representation ® : G — GLg(Qy). We
also consider an irreducible representation ®; : G — GLg(Qy) with kernel Cy and an irreducible
representation @3 : G — GL4(Qy) with kernel Cs. Note that, for any p-element h € G,

Trace(®q(h)) = Trace(®(h)), Trace(Po(h)) = Trace(®(h)) — 2.

It follows from [KTH, Theorem 5.1] that ®; 0 ¢ gives rise to a hypergeometric sheaf H/, of type (6, 2)
and with geometric monodromy group G/Cs = 3A7 if i = 1, and of type (4,0) and with geometric
monodromy group G/Cs = 2A7 if i = 2. Furthermore, in the notation of the proof of Theoremm
go is an element of order 42 in G. Changing go to a suitable generator of (gg), we may assume that
the spectrum of ®1(go) consists of (¢¢2, 1 < j < 6, and thus the “upstairs” characters of ) match
the “upstairs” characters of H;. Next, the spectrum of any element of order 8, including g, in
®; consists of single eigenvalues (4 and ¢, ! and double eigenvalues 1 and —1. Since goo permutes
the 4 eigenspaces for P(co) on the wild part of #} cyclically by Proposition [5.8](iii), it must admit
cigenvalues 1 and —1 on the tame part Tame of #/, and thus the “downstairs” characters of H}
match the “downstairs” characters of H;. Consequently, H} is geometrically isomorphic to H1, and
the statement about Ggeom 7, is proved.

By Theorem 1 has a descent (H1)oo to Fos for which any element in Gayith ko, Still
has trace in Q(yv/—3) when k D Fa5, and with (H;)o given on line 5 of Table 4. Now we take
HE = (H1)oo © Le,, and note that any element in Garithk,Hﬁ has trace in Q(y/—3), whence

(11.5.1) Z(G ) < Ce.

arith,k,H?
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Let H := Ggeom,%’i
—Cg(%, 1<7<6,0on H’i, whence hg acts as the scalar —(3 on Hﬁ It now follows from that
(11.5.2) ZG )=Z(H) = Cs.

By Lemma we also have that

(11.5.3) H/Z(H) = Ggeomty /Z(Cgeomtt,) =S, and H®) = (Geom2, )™ = 3-8,

with S = A7. It now follow from (11.5.2) that H = Z(H)H) = (3-5) x Cy. Now, since no
outer automorphism of H(*) fixes the equivalence class of the H(>)-module ’Hﬁ, we conclude from

[I52) that G, ) ;5 = Z(H)H®™) = H = (3 Ag) x Ch.
vy 1
(ii) Likewise, changing g to a suitable generator of (gg), we may assume that the spectrum of
®y(go) consists of —1,—(7, —(%,—¢2. Tt follows that the Kloosterman sheaf M} is geometrically
isomorphic to K := Kl(&2,&&r, 262, 667), and thus Hy = K ® Le,. Applying Lemma to
H := Ggeom 1y, we have H/Z(H) = (G/C3)/Z(G/C3) = A7 and

H®) 2 (Ggeom i)™ = (B2(G)) () = 2A;.

By Corollary [6.2(i), the field of traces of Hs is Q(v/—7), which implies that Cy(H(®)) = Z(H) =
Cy=7Z(H (oo)). Also, since outer automorphisms of 2A7 do not preserve the equivalence class of any
4-dimensional irreducible representation of 2A7, H can only induce inner automorphisms of H (),
It follows that H = H(*) = 2A;. By Theorem Ho has a descent (Hz)oo to Fos, for which any
element in Gyt still has trace in Q(y/—7) when k D Fa5, with (Hz)o given on line 6 of Table 4.
The statement about Gyitn k,(72)0, €an now be proved using the same arguments as in the proof of
Theorem [11.41 O

= Glgeom, 0L, Lhen a generator ho of the image of I (0) in H has eigenvalues

arith,k,’Hg

12. THE MATHIEU GROUP My

Theorem 12.1. Consider the hypergeometric sheaves
H1 = Hyp(Char{y; Charg), Ha = Hyp(&s - Char((;&s, £3), Hs = Hyp(Charyy, Charg ~ {1})

in characteristic p = 3. Then each H; has a descent H} to F3, such that, over any finite extension
k of F3, which contains Fg when i = 2, for H; we have that Garith k = Ggeom, where Ggeom = Mi1
ZfZ = 1,3 and Ggeom = M11 X 02 ifi = 2.

Proof. (i) First we consider the case ¢ = 1,3. The statement about Ggeom was proved in [KT5),
Lemma 9.5]. As explained in [KT5, Lemma 9.2], the sheaf H; is Sawin-like, and so it has a descent
to F3 which is (1/f)«(Qy)/Qy, with f = 2%(1 — 2)2. Similarly, Hs3 is Sawin-like and has a descent
to F3 which is f,(Qr)/Qp, with f = 211(1 — x). Moreover, Gayitnk is contained in S,, with n = 11,
respectively n = 12, as a subgroup which contains S := Mj; as a normal subgroup and which acts
irreducibly on the deleted permutation module S(~11) of S,,. The centralizer of S in S,, consists
of permutations that act as scalars on the module, hence it is trivial. Since Aut(S) =5, see [GLS|
§5.3], it follows that Ns, (S) =S and so Garith k = S.

(ii) Consider the case i = 2. As shown in [KT5, Lemma 9.5, the sheaf Hy @ L¢, (and after
replacing &g by &) has geometric monodromy group Ggeom HawLe, = 5. Hence G/Z(G) = S for
G := Ggeom by Lemma Next we note that Hs has a descent Hf = (Ha)oo to F3 by Theorem
which has Q(y/—2) as the field of traces of elements in Glarith,ks When k D Fo, with (H2)o specified
in Table 4, line 7. Now G(® is a cover of S, and so G(>®) = S. Next, the centralizer C' of S in
Glarith,k < GL19(C) consists of scalar transformations, and since Z(S) = 1 and Aut(S) = S, we have
that Garith e = C x S with C < Cy. Moreover, if gg generates the image of I(0) in G, then gél acts
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as the scalar —1 on Hs, whence g(l]1 € C. Thus C' = Cy and Gyuith,r, = S x Ca. Since g(l]l eC NS,
we see that the normal closure of gg contains C' x S, and so Ggeom = Glarith,x by Theorem O

13. THE MATHIEU GROUP Moo

Theorem 13.1. The local system Hyp(Chary;&7,€2,€3) in characteristic 2 has finite geometric
monodromy group.

Proof. For one of the possible choices of characters of order 7, we need to show

V(11x)—V(a;)+v(—m+;>+V<—x+§>+v<—x+‘;)—120

Using the fact that V(%) = %[z] fori =1,...,6 we get that V(%) =0, %, %, %, %, %, % fori =0,1,...,6

respectively, so the inequality holds for 7z € Z. Similarly, using that

i 13944699 1

— ) =V(——) = =—[13944699:

77 =V 1) = gl i

for ¢ = 1,...,10 we check that the inequality holds for 11z € Z. For all other values of x, using
that V(x) + V(—x) =1 if x # 0, we can rewrite the inequality as

V(llx)<V<3:—|—;>+V<x+§>+V<x+;l)+V(x)—1.

4

As described in §9] it suffices to prove

<o P B S

for every r > 1 divisible by rg = 3 and every 0 < x < 2" —1. Notice that, in this case, multiplication
by 2 permutes v; = %, Yo = % and v3 = % cyclically, so we can take r; = 1. Then, with the
notation of we have (23 — 1)y = 1 = 001a, hy = 1, hy = h3 = 0, ha; = 013,002,102 and
h3.j = 0012,1002,0102 for j = 1,2, 3 respectively. For 4 = 0, which is fixed by multiplication by 2,
it is clear that hy = hy,4 = 0 for every r. We will prove that

M1z] < [z + hpi1] + [ + hyo] + [ + hyg] + (2] — 7

for every r > 1 and every 0 < x < 2" — 1. For r < 6 we check it by computer. For r > 6 we proceed
by induction as described in First we prove some cases by splitting off the last digits of z. These
cases are enumerated in the following table, depending on the last 2-adic digits of x.

last digits of x ‘ s ‘ z ‘ A(s, z) ‘ > Ui ‘ >V ‘ A(s,2) =2 v+ ui ‘
0 1 0 0 0 0 0
01 2 01 0 >0 0 >0
011 3| 011 3 >0 0 >3
00111 5| 00111 1 >0 0 >1
010111 6 | 010111 0 >0 0 >0
001111 6 | 001111 2 >2 0 >2

For the remaining cases, we replace the last digits of x by different digits for which the inequality
is already proved, as described at the end of The substitutions are summarized in the following
table (we do not include the ¢4 corresponding to 4 = 0, since it is always 0):
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dig;csljstx s| 2 || A(s,2) | A ) [ bi=b |aa=d |ca=dy | ez =)
110111 6| 111 | 3 2 2 1001 1 1 1
101111 6| 11 | 2 ) 3 1000 0 1 1
11111 51111 | 4 3 3 1010 1 1 1

For the other possible choice of characters of order 7, we need to show

V(llx)—V(x)—i—V(—a?—;)—l—V(—w—?)—V(—x—i)—lzo

As in the previous case, we can check manually that the inequality holds for 7x € Z and 11z € Z.
For all other values of x, Using the fact that V(z) + V(—x) = 1 if x # 0, we can rewrite the
inequality as

Vamﬁgv<x+§>+V<x+$>+v<x+i>+vaﬂ,

and it suffices to prove

Hhﬂé[x+3@T_D]+[m+6@T_D]+[m+5@ﬁ_n]+hﬂ—r+1

7 7 7
for every r > 1 divisible by 79 = 3 and every 0 < x < 2" — 1. Again, multiplication by 2
permutes v; = %, Yo = g and 3 = % cyclically, so we can take r; = 1. In this case we have

(23 — 1)’)/1 =1= 0112, hl = hQ == 1, h3 = 0, h27j = 112,012,102 and hg.j == 0112,1012,1102 for
Jj = 1,2,3 respectively. For v4 =0, hy = h,4 = 0 for every r. We will prove that

11z] <[z + hra] + [ + hro] + [ + heg] + 2] — 7+ 1

for every r > 1 and every 0 < x < 2" — 1. For r < 7 we check it by computer. For r > 7 we proceed
by induction as before, proving first some cases by splitting off the last digits:

last digits of x ‘ s ‘ z ‘ A(s, z) ‘ DU ‘ 2.V ‘ A(s,2) =D v+ u ‘

0 1 0 1 0 0 1

001 3 001 1 >0 0 >0
000101 6 | 000101 0 0 0 0

10101 2 01 0 > 2 2 >0

0001101 710001101 2 >0 0 > 2

111101 4 1101 2 >0 1 >1

1011 1 1 0 >3 2 >1

111 1 1 0 >1 1 >0

For the remaining cases we apply the following substitutions:

d?g;usljﬁtx s 2 sSIA(s,2) | A Z) [ bi=b |aa=¢ |ca=dy | 3=
0100101 71 010101 | 6 -1 -1 11 1 1 0
1100101 7| 1101 4 2 2 1000 1 1 1
1001101 711001010 | 7 1 1 110 1 1 1
101101 6| 10101 | 5 0 0 111 1 1 1
011101 6| 01101 |5 1 1 100 0 1 1
0011 4 0100 4 2 2 10 0 1 0
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g

Theorem 13.2. The local system H := Hyp(Char{; &7, &2, €%) in characteristic p = 2 has geometric
monodromy group Ggeom = 2Ma2, the double cover of the Mathieu group Mas. The sheaf H has a
descent H' to Fa, such that, over any finite extension k of Fy, H' has Garith k = Ggeom-

Proof. By Theorem G = Ggeom is finite. Let ¢ denote the character of the representation
G — GL(V) of G realizing H. By the construction of H, the field of values Q(¢) := Q(¢(g) | g € G)
contains y/—7; indeed, a p’-generator g., of the image of I(0o) modulo P(0o) in G has trace
G+ + ¢ = (—1++/=7)/2 on Tame and 0 on Wild, whence ¢(goo) = (=1 + +/=7)/2. In fact, by
Corollary [6.2(i) we have Q(¢) = Q(+/—7). It is clear that # is not Kummer induced. Furthermore,
the shape of the “upstairs” and “downstairs” characters of ‘H shows by Proposition ii) that it is
not Belyi induced. Hence, by Theorem (G, V) satisfies (S+). As D = dim(V) = 10, G must be
almost quasisimple by Lemma Furthermore, since the cyclic group Z(G) acts via scalars and

Q(p) = Q(/—7), we have that
(13.2.1) 2(G) = O,

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for L :=
E(G) = G, Then V| is irreducible by Lemma and so Cg(L) = Z(G) by Schur’s lemma.
Furthermore, 6(gp) = 11 for a generator gy of the image of I(0), and 7|6(¢0), Whence both cyclic
groups C1; and C7 embed in G/Z(G) < Aut(S). Now we can apply the main result of [HM] to
arrive at the following two possibilities for (.5, L).

e S = Aj1, and V| is just the deleted permutation module S(IO’I)IL. In this case, since S <
G/Z(G) < Aut(S) = Syi, the element gy of order 11 must belong to the inverse image S x Z(G)
of S in G. Using , we see that in fact go € S, hence G = S by Theorem But this is a
contradiction, since Q(¢) would have been equal to Q.

e (S,L) = (Ma2,2-22). Now we have Z(G) = Z(L) = C; by (13.2.1). Furthermore, the element
go lies in L < G, hence Ggeom = L by Theorem

We now use H' = Hog as constructed in Theorem (where H indicated in Table 4, line 8, has
weight 4 in this case), for which the field of traces of elements in Gayitn x is still Q(v/—7). Hence,
analogously to , we still have Z(Garith k) = Caopin (L) = Z(L) = Ca. Now, if Guritnr, = L
then we are done. Consider the case GarithF, > L. As Garith,F,/Z(L) embeds in Aut(S) = S -2, we
must then have that Guithy = L -2 = (L, h). Thus modulo L = Ggeom, any element in Gygith  is
hd& with h? € L. Hence Gayitnx = L when k D Fy. O

14. THE MATHIEU GROUP Mg
In this section, we work with the hypergeometric sheaf
H = Hyp(Chary3; 1, &3, €3, 65, €3, €63, €5)
in characteristic p = 2.
Lemma 14.1. For f(X) := X?9(X — 1)3 € Fy[X], there exists a geometric isomorphism
H = (1/1)<Qe/Qs.

Proof. This is a particular case of Sawin’s result [KTH, Lemma 9.2 (ii)], applied with A = 20, B =3
in characteristic p = 2. O

Theorem 14.2. The geometric monodromy group Ggeom of H is the Mathieu group Mag in its
22-dimensional irreducible representation.
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Proof. From the (1/f), description, Ggeom,% is a subgroup of the Galois group of the equation
XO(x -1 =1/,

in Fo(#)[X]. This Galois group is a subgroup of the symmetric group Sas.
We now pass to the Kummer pullback [23]*H and see that

Ggeorn,[QiS}*H < Ggeom,?—[
is a normal subgroup (of index dividing 23), which is the Galois group of the polynomial
XX —1)% =1/t%.

Next we show that the Galois group of X2°(X — 1)3 = 1/t?3 is Ma3, by making use of a result
[Abh2, Theorem 2], according to which Mag is the Galois group of the equation

Y#4ty?—1=0
in F2(¢)[Y]. Since the derivative of this polynomial is Y22+ ¢Y?, this equation has 23 distinct roots
a1,y...,023. o
Let us write K := Fy(t), and L/K the Galois extension
L := K (all roots a; of Y3 +tY3 —1=0).
Let us denote by Lo C L the subfield
Lo := K(the cubes of the roots of Y23 +tY? — 1 =0).

We claim that Ly = L. Indeed, if Ly were a proper subfield of L, there would exist nontrivial
elements o € Gal(L/K) which fix the cubes of all roots. But if o(a?) = a3, then o(a;) = w;a; for
some w; € pg. If wia; and «; are both roots of Y23 4+1Y3 —1 = 0, then as they have the same cubes,
we infer that

23

;" = (wiv)

23
As a; # 0, this implies that w?® = 1. As w? = 1, we get w; = 1, and hence o is the identity.

The same argument shows that the 23 cubes ag’ are pairwise distinct.

So it suffices to compute the polynomial f(X) satisfied by the 23 cubes of the roots of Y23 +
tY3 —1 = 0, or equivalently the polynomial satisfied by the quantities 1/ ta?, 1 <4 <23, for the
Galois group of that polynomial will be Gal(L/K) = Ma3. We write the equation as

Y=yt
Thus
YO = (Y2 —1)’.
Write
X :=1/(tY?),
so that Y2 = ¢tX. Then in terms of X this equation becomes
(1/tX)2 = (tX —1)3, ie tBXV(X -1 =1, ie XXX -1)3=1/t3.

Since the latter polynomial has degree 23 in X, this must be f(X).

We have shown that S := Ma3z = Ggeom, 2311 < Ggeomn < Sos. Note that Aut(Msag) = Mag
IGLS|, §5.3] and Cs,,(M23) = 1. [Indeed, M3 is a double transitive subgroup of Si3, hence it
acts irreducibly on the deleted permutation module of So3, and so its centralizer must act via
scalars on the module and therefore must be trivial.] It follows that Ns,,(Mas) = Mas and so
Ggeom,H = Moas. 0
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Corollary 14.3. For f(X) := X?(X — 1)3 € Fo[X], the lisse sheaf
Ho = (1/£)+Qe/Qe
on Gm/FQ has Ggeom = Garith = M23-

Proof. We have Moz = Ggeom < Garith < S23, and Mag is its own normalizer in So3. O

15. THE MATHIEU GROUP Mgy
In this section, we consider the hypergeometric sheaf
H := Hyp(Chargg; Chary)
in characteristic p = 2.
Lemma 15.1. For f(X) := X?(X — 1) € F3[X], there exists a geometric isomorphism
H = f,Q0/Q.

Proof. This is a particular case of Sawin’s result [KT5, Lemma 9.2 (i)], applied with A =23, B =1
in characteristic p = 2. O

Theorem 15.2. The geometric monodromy group Ggeom of H is the Mathieu group Moy in its
23-dimensional irreducible representation.

Proof. Exactly as in the proof of Theorem we see that Ggeom, is the Galois group of the
equation
XB(X-1)=t

in F5(#)[X], and that it is a subgroup of So4. We again pass to the Kummer pullback [23]*H to see
that Geeom,23*1 < Ggeom, - NOW Ggeom [23]+3 i the Galois group of

XB(X -1)=t*.
Divide through by 23, and write Y := X/t. Then our equation becomes

YB(tY —1) = 1.
Now write Z := 1/Y. The equation becomes

(1/2)B(t)Z —1) = 1.
Multiply through by Z?4, the equation becomes
t— 7 =27,
which Abhyankar and Yie [AY] Theorem (1.1)] proved has Galois group Mas. Thus
Mas = Ggeom, (231 < Ggeom,n < S2-

As in the proof of Theorem we also have Cs,,(May4) = 1 and Aut(May) = May. It follows that
NS24 (M24) = M24 and SO Ggeom,?—[ = M24. [l

Corollary 15.3. For f(X) := X?(X — 1) € Fo[X], the lisse sheaf
Ho = f*@/@
on Gm/FQ has Ggeom = Glarith = May.

Proof. We have Moy = Ggeom < Garith < S24, and May is its own normalizer in So4. O
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16. THE MACLAUGHLIN GROUP McL

Theorem 16.1. The local system H(22,5) = Hyp(Chargg; Charl) in characteristic 3 has finite
momnodromy.

Proof. We need to show:

V(22z) + V(=bz) — V(—z) > 0.
Using the fact that V(g5) = V(35Y5) = 75[114] for 1 < i < 21 and that V(%) = V(51%;) = §[164]
we check that the inequality holds for 22z € Z and for 5z € Z. For all other values of z, using

that V(z) +V(—2) =1ifz #0 and V(52) = 3, Loq 5 V(z + &) — 2 [KaTl, §13], we can rewrite the

inequality as
1 3 4 2
V(22z) SV<96+5> +V<x+5> +V(1:+5> +V<x+5> —1
and, following it suffices to prove

AN SN S AR

for every r > 1 divisible by rg = 4 and every 0 < x < 3" — 1. Since multiplication by 3 permutes
M = éa Y2 = %, Y3 = % and y4 = % cyclically modulo 1, we can take rq1 = 1. Then, with the
notation of we have (34 — 1)y = 01213; hj = 1,2,1,0; ha; = 213,123,013,103 and h3; =
1213,0123,1013,2103 for j = 1,2, 3,4 respectively. We will prove that

[222] < [z + hy1] + [ + hyo] + [ + hyg) + (2 + hpa) — 7+ 1

for every r > 1 and 0 < a < 3" — 1. For » < 5 we check it by computer. For » > 5 we proceed by
induction as described in proving first the following cases by splitting off the last digits of x.

lastdigitsofx‘s‘ z ‘A(s,z)‘Ziui‘zjvj‘A(s,z)—szvj—i-QZiui‘
0 1 3 0 0 3

01,21 1 1 1 >0 0 >1
011 2 11 4 >0 0 >4
111 1 1 1 >1 1 >1
0211,2211 2 11 4 >0 1 >2
002,202 21 02 0 >0 0 >0
0102 4| 0102 2 >0 0 > 2
1102 21 02 0 >1 1 >0
02102,22102 | 3| 102 -1 >2 1 >1
012 2 12 4 >0 0 >4
112,022,222 |1| 2 1 >2 | 1 >1
2212 2| 12 4 >0 1 >2
00122,20122 | 4 | 0122 2 >1 0 >4
01122 5| 01122 ) >0 0 >95
11122,21122 | 2| 22 2 >1 2 >0

The remaining cases are proved by substitution of the last digits, as specified in the following
table.
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dzivg;cslsfStx s| 2 || As,2) | A Z) [ bi=b) |[aa=d |ca=dy |es=dy | eca=C)
1211 41122 3 4 1 111 0 1 1 1
12102 51122 | 3 3 1 111 1 1 1 0
0212 41022 3 6 3 20 0 0 1 0
1212 41122 3 4 1 111 0 1 1 1
10122 51102 | 3 1 -1 22 0 1 1 0
2122 4122 |2 4 2 201 1 1 1 1

0

Theorem 16.2. The local system H(22,3) = Hyp(Chargg; Chary) in characteristic 5 has finite
monodromy.

Proof. We need to show:
V(22z) + V(—=3z) = V(—z) > 0.

Using the fact that V(55) = V(;ffﬁ) = 5[142¢] for 1 < i < 21 and that V(%) = V(528i1) = £[84]

for i = 1,2 we check that the inequality holds for 22z € Z and for 3z € Z. For all other values of
z, using that V(z) + V(—z) = 1if x # 0 and V(3z) = >, o4 3V (z + §) — 1 [Ka7, §13], we can

rewrite the inequality as
1 2
V(22$) §V<1‘+3) +V<$+3)

and, after a change of variable x — z + %, as

% (22:1:+§) <v <x+ ;) +V(@).

Following §9] it suffices to prove

3

[22:p + 3

W] < [x+5r_1] +[z] +4

for every r > 1 divisible by 719 = 2 and every 0 < o < 5" — 1. For r < 6 we check it by
computer. For r > 6 we proceed by induction as described in proving first the following cases
by splitting off the last digits of x. Note that 5T§ L — 1313...135. We also use the notation
Y= A(s,2) 4350 45w

’ last digits of x ‘ s ‘ z ‘ A(s, z) ‘ DU ‘ 2 ‘ X ‘
00,...,31 2 00,...,31 >0 | >0 0 [>0
232, xdd, £ 1 |2 32,...,44 >0 | >0 | 0 |>0
x132, ..., 2144, ¢ # 3,4 |4 x132,...,2144 >0 >0 0 >0
04132,24132,34132,44132 | 4 4132 -4 >1 0 >0
014132,114132,214132 | 6 | 014132,114132,214132 >0 >0 0 >0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the ¢y corresponding to v, = 0, since it is always 0):
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d?g;uslgstx s| 2 || A(s,2) | A Y) [ b =b |aa=d
3132,...,3144 | 4| 32 | 2 >0 0 30 1
314132 63133 | 4 0 0 30 1
414132 64133 | 4 -4 -4 34 1
4133,...,4144 | 4 (4132 | 4| > -4 -4 34 1

O

Theorem 16.3. Each of the two hypergeometric sheaves H(22,3) = Hyp(Charaa; Chary ) in charac-
teristic p =5 and H(22,5) = Hyp(Chargy; Char:') in characteristic p = 3 has geometric monodromy
group Ggeom = McL-2, the full automorphism group of the MacLaughlin sporadic simple group McL.
Each of these sheaves H has a descent H' to Fp, such that, over any finite extension k of Fp2, H'
has arithmetic monodromy group Garithk = Ggeom-

Proof. (i) By Theorems and G = Ggeom is finite. Let ¢ denote the character of the
representation ® : G — GL(V) of G realizing . By the construction of % and Corollary [6.2{1i), the
field of values Q(¢) := Q(¢(g) | g € G) is precisely Q. It is clear that H is not Kummer induced.
Furthermore, the shape of the “downstairs” characters of H shows by Proposition (ii) that it is
not Belyi induced. Hence, by Theorem (G, V) satisfies (S+). As D = dim(V) = 22, G must be
almost quasisimple by Lemma |3.1]

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for L :=
E(G) = G(®). Then V|, is irreducible by Lemma and so Cg(L) = Z(G) by Schur’s lemma,
and furthermore Z(G) < Cy since Q(¢) = Q. Furthermore, 6(gg) = 22 for a generator gy of the
image of I(0), whence 22 divides the order of G/Z(G) < Aut(S). If p = 3, then dim Wild = 18,
and so the image @ of P(co) must admit an irreducible complex representation of dimension 9,
whence 3° divides |Q|, and so also divides |G//Z(G)| by Proposition [5.6{i). Likewise, if p = 5, then
dim Wild = 20, and so the image @ of P(c0) must admit an irreducible complex representation of
dimension 5, whence 5% divides |Q|, and so also divides |G /Z(G)|.

In the case p = 3, by Proposition a p'-generator go, must interchange the two simple P(00)-
submodules in Wild, each of dimension 9, and there is some root of unity ¢ such that the spectrum
of g2, on each summand is ¢ - (410 ~ {1}). Besides, go has all four nontrivial 5'" roots of unity as
eigenvalues on Tame. It follows that 20[6(ge). Next, if we write o(¢) = 2° - m with a € Z> and

2 tm, then @(ggzﬁ) has spectrum
ﬂ : (/'65 ~ {1})? B?ﬂnuf) N {1}7
—_——

4 times
where f := CQbH has odd order m. It follows that
(16.3.1) (g2 = —1-128.

Now we can apply the main result of [HM)] to arrive at the following possibilities for (S, L).

e S = PSILy(23), PSLy3, or Mag. This is impossible, since Aut(S) = PGL2(23), PGL2(43), or
Mas does not have order divisible by 3° or 55.

e S = HS. This case is ruled by [KT5, Lemma 9.7].

e S = PSUg(2). Since 5% does not divide |Aut(S)|, we must have that p = 3. In the latter case,
as 20|0(goc), Coo embeds in Aut(S), which is impossible.

e S =L = Ay3, and V| is just the deleted permutation module 8(22’1)\,;. In this case, the Sylow
5-subgroups of Aut(S) = Sa3 are elementary abelian of order 5. Now if p = 5, then by Proposition
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5.6(i), @ embeds in Aut(S) and so is abelian, contradicting dimWild = 20. Hence p = 3. As
Z(G) < Oy and Aut(S)/S = Cy, the element ggZH must belong to O?(G) = S = Agz, and so
cp(g%i”), the trace of ggff2 on S21) must be an integer > —1. By , this means that the
root of unity [ satisfies 8 € Z<(. But this is impossible, since o(f) = m is odd.

e S = L = McL. Since meo(S) = 11 but 6(gg) = 22, we must have that
G/Z(G) = Aut(S) = S - Cs.

If Z(G) = 1, then G = McL - 2 as stated. Otherwise we have Z(G) = O3, and S = O%(G). In this
case, S contains the p-subgroup @, and so G/S is cyclic by Theorem of order 4. Recall [Atlas]
that Aut(S) is a split extension of S by Cy. Hence we can find an element x € G such that z2,
but not x, centralizes S; say x induces the outer automorphism xg of S of class 2b in the notation
of [GAP]. If 22 = 1, then (S, x) = Aut(S) and Z(G) N (S,x) = 1, whence G = Z(G) x (S, x) and
G/S = C2, a contradiction. Thus 1 # 22 € Cg(S) = Z(G), whence ®(x?) = —Id.

Consider an extension of ®|g to Aut(S) which we also denote by ®. Since z and z¢ induce the
same automorphism on S, ®(z) = a®(xg) for some o € C*. As o(xg) = 2, we then have

—Id = ®(2?) = &®®(23) = o? - 1d,

whence o = £i. The coset Sz also contains an element szg that belongs to class 4b in the notation
of [GAP], for some s € S, and Tr(®(szp)) = +4 (see [GAP]). It follows that

o(sx) = Tr(P(sz)) = Tr(P(s)P(x)) = aTr(P(s)P(x0)) = aTr(P(szg)) = £44,
with sz € G, contradicting Q(¢) = Q.

(ii) We use H' = Hoo as constructed in Theorem (with Hg given in Table 4, lines 9 and 10),
for which, over any finite extension k of )2, the field of traces of elements in Garitn,k is still Q, and
so we still have

Z(Garith,k) - CGarith,k (S) < (.

Now, if GaiithF, = Ggeom then we are done. Consider the case where GarithF, > Ggeom- AS
Garith,F,/ Z(Garith,r,) embeds in Aut(S) = S+ 2 = Ggeom, we must then have that Z(Garitnr,) = C2
and GarithF, = (Ggeom, h) with h? e Ggeom- Thus modulo Ggeom, any element in Gaigh i 1S pdes /Fp,
Hence Garith,k = Ggeom When k 2D F . O

17. THE JANKO GROUP Jg

Theorem 17.1. The local system H := Hyp(Charag . Charyy; s, &) in characteristic p = 5 has
finite geometric monodromy group.

Proof. We need to show that

V(28z) — V(14a) + V <—a: + é) LV (_;,; _ é) > %
) V(28z) — V(14z) + V <—g; + 2) Vv (_x _ 2) > %

depending on the choice of x. These inequalities are equivalent via the change of variable x — 5z,
so it suffices to prove the first one. Using the fact that

i 279i 1
V(=) =V(o0—

(s—7) = ;2794
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for 1 < ¢ < 55, we check that the inequality holds for 28z € Z and for 8x € Z. For all other values
of z, using that V(z) + V(—z) = 1 if z # 0 and V(28z) = V(14z) + V(1dz + 1) — 5 [KaT, §13], we

can rewrite the inequality via the change of variable z — = + % as
1 1
V(14m+4> §V<:L“+4> + V(x)

and, following it suffices to prove

[14x+5r4_1] < [az+5T_1] + [x]

4

for every r > 1 and every 0 < x < 5" — 1. For r < 3 we check it by computer. For r > 3 we proceed
by induction as described in proving first the following cases by splitting off the last digits of x.

last digitsofac‘s‘ z ‘A(s,z)‘ziui‘xjvj‘A(s,z)—42jvj+42iui‘
0,1,2,3 1 0,1,2,3 0 >0 0 >0
04,14,24.44 | 1 4 0 >0 | 0 >0
034,134,234 |3 |034,134,234| >0 >0 0 >0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the ¢y = ¢ corresponding to v2 = 0, since it is always 0):

| z= lastdigitsof x | s |2/ || A(s,2) [A(,2) [ bi=b) a1 =]
334 3134 2 0 0 20 1
434 3144 2 0 0 23 1

O

Theorem 17.2. The local system H := Hyp(Charog . Charyy; s, &g) in characteristic p = 5 has
geometric monodromy group Ggeom = 2J2-2. Furthermore, H has a descent H' to Fa5 with arithmetic
monodromy group Garithk = Ggeom over any finite extension k of Fos.

Proof. By Theorem G = Ggeom is finite. Let ¢ denote the character of the representation
G — GL(V) of G realizing H. By the construction of H, the field of values Q(p) := Q(¢(g) |
g € G) contains v/2; indeed, a p’-generator g, of the image of I(oc) modulo P(cco) in G has trace
(s 4+ (s = V2 on Tame and 0 on Wild, whence ¢(gos) = v/2. In fact, by Corollary [6.2{i) we have
Q(p) = Q(v/2). It is clear that H is not Kummer induced. Furthermore, the shape of the “upstairs”
and “downstairs” characters of H shows by Proposition (ii) that it is not Belyi induced. Hence,
by Theorem (G,V) satisfies (S+). As D = dim(V) = 14, G must be almost quasisimple by
Lemma Furthermore, since the cyclic group Z(G) acts via scalars and Q(¢) = Q(v/2), we have
that

(17.2.1) Z(G) = Cb.

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for L :=
E(G) = G(*®). Then V|, is irreducible by Lemma and so Cg(L) = Z(G) by Schur’s lemma.
Furthermore, 6(gg) = 14 for a generator go of the image of I(0), whence C14 — G/Z(G) < Aut(S).
Moreover, the image @ of P(c0) is elementary abelian of order 25 by Proposition [5.8)iv), and
Q < G/Z(G) by Proposition [5.6(i). Now we can apply the main result of [HM] to arrive at the
following possibilities for (S, L).

e S =L = A, and V| is just the deleted permutation module SU4D|z. In this case, Q()
would have been equal to Q by Lemma [3.8] a contradiction.
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e S =L =Jy. In this case, Q(¢) 2 Q(¢|r) = Q(V5), again a contradiction.

o (S,L) = (J2,2-J2). Now we have Z(G) = Z(L) = Cg(L) = Cy by (17.2.1). Furthermore, the
element gg of central order 14 does not lie in L <1 G, hence G > L. Now

S®L/Z(L) < G/Z(G) < Aut(S) =S5 -2,
and we conclude that Ggeom = 2J2 - 2.

By Theorem H has a descent H' = Hgg to Fas for which any element in Gyyith i still has trace
in Q(v/2) when k 2 Fa5, with H given on line 11 of Table 4. Since any element in Cg L)=
Z(Garith, k) acts via scalars, which are then roots of unity in Q(v/2), we see that

CGarith,k (L) = 02 = Z(L)
Since Ggeom already induces the full automorphism group Jo - 2 of L, we conclude that Garith i =

Ggeom- O

Theorem 17.3. The local system K := KI(Char{y, U Char}'}) in characteristic p = 5 has finite
monodromy.

arith,k:(

Proof. We need to show:

1 5) 7 11 1 2 5
_ - Z2) > 2
V(x+12>+V<x+12>+V<a:+12>+V(x+12>+V<m+3>+V<:U+3> Z 3

Following it suffices to prove

o< o+ T+ [or 2] 4 [ TE2A]

12 12 12
11(5" =1 5" —1 2(5" -1
+[w+(12)]++[:§+ 3 ]—F[aﬂ—(g)]—mr

for every r > 1 divisible by 1o = 2 and every 0 < & < 5" — 1. Notice that, in this case, multiplication
by 5 permutes y; = 1—12 and yp = %, Y3 = % and y4 = 1112; and v5 = % and vg = %, so we can take
r1 = 1. Then, with the notation of §9, we have (52 — 1)y, = 025, (5% — 1)y3 = 245, (52 — 1)7y5 = 135,
hj =2,0,4,2,3,1 and ho; = 025,205, 245,425, 135,315 for j = 1,...,6 respectively. We will prove
that
0 <[z 4 het] + [z + hro] + [2 4 he 3] 4+ [2 4+ hya] + [2+ By 5] + [2 4 hyg] — 127

for every r > 1 and every 0 < x < 5" — 1. For r < 4 we check it by computer. For r > 4 we proceed
by induction as described in proving first the following cases by splitting off the last digits of x.
We don’t write the )" u; since there are none in this case.

last digits of x ‘ s ‘ z ‘ A(s, 2) ‘ 2oV ‘ A(s,z) =43, v; ‘
0 11 0 2 0 > 2
al;a # 2 1] 1 4 0 >4
a2l;a #0 1] 1 4 1 >0
a2;a #2,3 1] 2 6 0 > 6
a22;a # 0 1] 2 6 1 > 2
a32;a # 1 1] 2 6 1 > 2
13 1] 3 4 0 >4
ab3; ab # 02,13, 20, 24 1| 4 6 1 > 2
1203,4203 3 (203 4 0 >4
al33;a # 3 21 33 4 1 >0
abd; ab # 02,13,20,24,31 [ 1| 3 4 1 >0
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The remaining cases are proved by substitution of the last digits, as specified in the following
table:

[z=lastdigitsof x [ s | 2/ [ [A(s,2) [A(E ) [aa=d[a=d|a=d]a=dc=d]cw=c]
021,022,023,024 ]3] 03 | 2| >4 2 0 0 1 0 0 0
132,134 3114 12 6 6 0 0 1 0 1 0
3133,3203,3243 4133313 4 4 0 1 1 1 1 1
0203,0243 410331 3 2 2 0 0 0 1 0 0
2203 412041 3 6 6 0 0 1 1 0 1
1243 411031 3 8 6 0 0 0 1 0 0
2243 412331 3 6 6 0 0 1 1 0 1
4243 41433 3 6 6 1 1 1 1 1 1
204 3121 |2 6 6 0 0 1 1 0 1
244 3] 3 1 6 4 0 1 1 1 0 1
314 313212 6 6 0 1 1 1 1 1

O

Theorem 17.4. The local system K := Kl(Char{,UChars) in characteristic p = 5 has Ggeom = 2-Ja.
Furthermore, K has a descent K' to F),, which over any extension k of F,, has arithmetic monodromy
group Garith,k = Ggeom-

Proof. Because K is Kloosterman, it is not Belyi induced, and it is visibly not Kummer induced.
Hence, it is (S+) by Theorem By Theorem G = Ggeom s finite. Let ¢ denote the character
of the representation ® : G — GL(V) of G realizing K. By the construction of H and Corollary
(ii), the field of values Q(¢) := Q(¢(g) | g € G) is precisely Q(1/5). Moreover, the representation
is symplectic by [Kadl 8.8.2], and

(17.4.1) Z(G) = Cb.

As dim(V) = 6, G is almost quasisimple by Lemma Let S denote the unique non-abelian
composition factor of G, so that S = L/Z(L) for L := F(G) = G(*). Then V|, is irreducible by
Lemma and so Cg(L) = Z(G) by Schur’s lemma, and furthermore Z(G) < Cy by (25.5.1).
Moreover, the image @ of P(cc) is elementary abelian of order 25 by Proposition [5.§[iv), and
Q — G/Z(G) by Proposition [5.6{i). Now we can apply the main result of [HM] to see that S = Jo
and L = 2-S; in particular, Z(G) = Z(L) = C, by (17.4.1). Note that |z, is not fixed by any outer
automorphism of L. Hence G = L.

A descent K’ of K over I, is constructed using Theorem [7.5(i), and listed on line 39 in Table 4.
By Theorem (iii), the field of traces is still Q(v/5); hence also holds for Gayith k. Thus
Z(Garith ;) = C2 = Z(Ggeom) over any extension k of F,. Since |, is not invariant under any
automorphism of L, we conclude that Gtk = Ggeom- Il

18. THE JANKO GROUP Jg

In this section, let H := Hyp(&s - Charjy; 1,&5,&5) be the hypergeometric sheaf in characteristic
p =2, with 18 “upstairs” characters &3 - Charjy, and 3 “downstairs” characters 1, &, and 5.

Theorem 18.1. The hypergeometric sheaf H = Hyp(&3 - Charyy; 1,&5,&5) in characteristic p = 2
has finite geometric monodromy group Ggeom-

Proof. We need to show:

(i s 1) v (o) ovm v (o D) v (e D) o
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(102 v (o DY evicarev (e ) v (s Do
V<19x+;>—V(m+;>+V(—x)+v<—x—§)+v(—x+§> >1
V<19x—:1))>—V(m—;)+V(—x)+V<—x—§>+V<—a:+§) > 1.

The change of variable z — 2z interchanges the first and fourth and the second and third inequali-
ties, so it suffices to prove the last two. Using the fact that V(i5) = V(515) = i for1<i<14
we check that the inequalities hold for 3x € Z and for 5z € Z. For all other values of z, using that

V(z)+ V(—z) =1 if z # 0 we can rewrite the fourth inequality as

V<19x+;> §V<a:+;>+V<x+§>+v<a:—§)+‘/(x)—l

and, via the change of variable = — x + %, this is equivalent to

2 1 4
1 < — — — — 1.
V(19x) _V(x—i— 3> —I—V(x—i— 15) +V<x+ 15) + V(x)
Following §9] it suffices to prove

[192] < [$+2(2T3_1)] + [$+2T1;1] + [m+4(215_1)} +[z] =7

for every r > 1 divisible by ro = 4 and every 0 < x < 2" —1. Notice that, in this case, multiplication
by 22 fixes 71 = 2 and 4 = 0 and permutes vy, = 1—15 and 3 = %, so we can take r; = 2. Then, with
the notation of §9 we have (2* — 1)y; = 10109, (2* — 1)y2 = 00015, hy = 109, hy = 0la, hz = 00,
and hg ; = 10102,00012,01002 for j = 1,2,3 respectively. For 74 = 0 it is clear that hy = h, 4 = 0
for every r. We will prove that

192] < [z 4 hp1] + [ + hio) + [ + hi ) + 2] — 7

for every r = 2k > 1 and every 0 < x < 2" — 1. For r < 10 we check it by computer. For r > 10
we proceed by induction as described in proving first the following cases by splitting off the last
digits of z.

and

last digits of = | s | z [A(Gs,2) [ Doui | 20505 [ Als, 2) =05 + D ui |

00,01 2 00,01 0 >0 0 >0
010,011 2 11 1 >0 0 >1
1110 2 10 0 >1 1 >0
00110,00111 | 4 | 0110,0111 >0 >0 0 >0
0010111 6| 010111 0 >0 0 >0
011010111 8 | 11010111 0 >0 0 >0
110111 4 0111 2 >0 1 >1
001111 4 1111 2 >0 1 >1
0101111 6| 101111 0 >0 0 >0
111111 2 11 1 >2 3 >0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the ¢4 = ¢ corresponding to 4 = 0, since it is always 0):



RIGID LOCAL SYSTEMS AND SPORADIC SIMPLE GROUPS 67

d?g;cslc?i?tx s 4 s IA(s,2) | A, ) [ bi=b |aa=d |ca=dy | ez =
01010111 8 | 010111 |6 0 0 110 1 0 0
0111010111 | 10 | 01110010 | 8 2 2 1000 1 0 0
1111010111 | 10 | 11111000 | 8 4 4 10010 1 1 1
010110 6 | 010111 |6 1 0 110 1 0 0
110110 6 1110 4 6 4 10000 1 1 0
01101111 8 | 011100 |6 2 2 1000 1 0 0
11101111 8 111100 | 6 2 2 10001 1 1 1
011111 6 1000 4 2 0 1001 1 0 0

The third inequality can be rewritten as

V(19x+§> §V<$+§>+V<a:+§>+V<x+§)+V(x)—1

and following it suffices to prove

[19x+2(2r3_1)] < [:c+2(2r3_1)] + [w+2(2r5_1)] + [:c+3(2r5_1)] +z] —r+1

for every r > 1 divisible by g = 4 and every 0 < x < 2" —1. Notice that, in this case, multiplication
by 22 fixes 71 = 2 and 74 = 0 and permutes vy = % and vy3 = %, so we can take r; = 2. Then, with
the notation of §9| we have (2* — 1)y; = 10102, (2* — 1)y = 01102, hy = hy = 102, hg = 013 and
ha j = 10102,01102, 10013 for j = 1, 2,3 respectively. For 74 = 0 it is clear that hy = h,4 = 0 for
every r. We will prove that

2(2" — 1)

19
[ T+ 3

} <[z +hpa] + (24 hgo] + [2+ heg] + [z] =7 + 1

for every r = 2k > 1 and every 0 < x < 2" — 1. For r < 8 we check it by computer. For r > 8
we proceed by induction as described in proving first the following cases by splitting off the last
digits of . In fact, we will prove the following sharper inequality:

2(2"

[19x + 3_1)] <[z +hgi]+ [z +hpo) + [+ his] + ] —r

whenever, if we split the r digits of  in k£ blocks of 2, the last block different from 00 is not 11. If
we split x as p®y + z then, for the induction step to work in the proof of the sharper inequality, we
need A(s,z) — > ;v;+>_;ui > 1 instead of 0 if the last two-digit block of y different from 00 is 11,
unless the same is true for z (or z = 0). Moreover, if the last two-digit block of z different from 00
is 11 but it is not the case for y, then it suffices with A(s,2) = > ;vj + >, u; > —1.
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last digits of x

|

\ z

‘A(s,z) ‘ R ‘ >,V ‘ A(s,z)—zjvj—l-ziui‘

00
01
0010
000110
100110
110110
01001010,10001010
00001010,00111010
11001010,1111010
1110
0011,1111
00000111,01000111
10000111
11000111
00110111
11110111

s
2
2
4
6
4
4
6
8
4
2
2
8
6
6
8
6

00
01
0010
000110
0110
0110
001010
00001010,00111010
1010
10
11
00000111,01000111
000111
000111
00110111
110111

SO R FPF P OOONRFF=O

[
= =

N -

0

MOOOO'[/\\DHK\DOOHOOOOO

>

>0
> 1
> 1
> 2
>0
> 2
>0
> 1
> 1
> 1
> 1
>0
—1
>0
> 1
>0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the ¢4 = ¢/ corresponding to v4 = 0, since it is always 0). Here, in order
to prove the sharper inequality, if the last two-digit block of z different from 00 is 11 but that of 2’
is not 11, we need A(s, 2’) < A(s, z) + 1. If the last two-digit block of 2’ different from 00 is 11 but
that of z is not 11, we need A(s',2') < A(s,2) — 1.

z = last

digits of = | ° 4 STA(s,2) | A, Z) [ bi=b |ca=¢) |ca=¢h | s =04
010110 6 0110 4 2 0 111 1 0 0
011010 6 0111 4 1 0 1000 1 1 0
101010 6 1011 4 1 0 1101 1 1 1
10111010 | 8| 110000 | 6 1 0 1110 1 1 1
010111 6| 011000 | 6 -1 0 111 1 0 0
100111 6 1010 4 0 1 1100 1 1 1
01110111 | 801111010 | 8 0 1 1001 1 0 1
10110111 | 8| 10111010 | 8 1 1 1110 1 1 1
001011 6| 001010 | 6 -1 0 11 0 0 0
011011 6| 011100 | 6 1 0 1000 1 1 0
101011 6| 101100 | 6 0 0 1101 1 1 1
111011 6| 111100 | 6 4 3 10010 1 1 1

g

Theorem 18.2. The hypergeometric sheaf H = Hyp(&3 - Charyy; 1,&5,&5) in characteristic p = 2
has geometric monodromy group Ggeom = 3 - J3, the triple cover of the third Janko sporadic simple
group Js3. Conversely, if H' is an irreducible hypergeometric sheaf in some characteristic r with
finite geometric monodromy group H which is almost quasisimple with S = J3 as its non-abelian
composition factor, then rank(H') = 18, r = 2, and the 18 “upstairs” characters of H' are x - Charjy
for some multiplicative character x.
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Proof. (i) By Theorem G = Ggeom is finite. Let ¢ denote the character of the representation
G — GL(V) of G realizing H. By the construction of # and Corollary [6.2f1i), the field of values
Qp) = Qp(g) | g € G) is precisely Q(v/5,¢3). It is clear that H is not Kummer induced.
Furthermore, the shape of the “downstairs” characters of H shows by Proposition (ii) that it is
not Belyi induced. Hence, by Theorem (G, V) satisfies (S+). As D = dim(V) = 18, G must be
almost quasisimple by Lemma |3.1]

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for L :=
E(G) = G(*®). Then V| is irreducible by Lemma and so Cg(L) = Z(G) by Schur’s lemma.
Furthermore, 6(gp) = 19 for a generator gy of the image of I(0), and 5|6(¢g~) for a p’-element goo
that generates I(oo0) modulo P(c0), whence 19 - 5 divides the order of G/Z(G) < Aut(S). Now we
can apply the main result of [HM] to arrive at the following possibilities for (S, L).

e S =L =Ay, and V| is just the deleted permutation module S8V |;. In this case, Q(y)
must be Q(¢3) by Lemma which is a contradiction since v/5 € Q().

e S = PSLy(19). Since p = 2 and dimWild = 15, by Proposition [5.§(iv) the image @ of P(co)
in G is an elementary abelian 2-group of order 2%; furthermore, Q — G/Z(G) < Aut(S). This is
impossible, since Aut(S) = PGL2(19).

e (S,L) = (J3,3-J3). Since any outer automorphism of L does not preserve ¢|r,, we have that
G = Z(G)L. Note that any element of Z(G) must act on V' as a scalar z which is a root of unity
in Q(y), whence 2° = 1 and |Z(G)| divides 6. In particular, L is a normal subgroup of index < 2
in G. As o(gog) = 57, L contains both g and its normal closure in G. Hence Ggeom = G = L by
Theorem [5.1]

(ii) For the converse, let (hg) be the image of I(0) in H. Then S < H/Z(H) < Aut(S). As hg
has simple spectrum on H’, D := rankH' < 6(hg) < meo(Aut(S)) = 34. Using [GAP], we can
see that D = 18 and H/Z(H) = S, and furthermore H = Z(H)L with L := H(>®) = 3.5, Let ¢
denote the character of the representation of H underlying H’. Again using [GAP] we can check
that |c(h)|/s(1) < 1/6 for all h € H \ Z(H). Assume now that r # 2. Then the image @ of P(c0)
has order at least 3. Applying [KT5, (7.2.2)], we get that W > 18- (1 —1/6) - (1 —1/3) = 10 for
the dimension of the wild part of H’. On the other hand, note that L = 3 - J3 has an irreducible
9-dimensional representation over Fy which certainly extends to an irreducible representation A :
H — GLg(F3). Hence, by [KT5, Theorem 4.14], A(H) is cyclic, a contradiction. Thus r = 2.
Finally, as hg has simple spectrum on #, it must have order 19 modulo Z(H) [GAP], and we can
then read off the “upstairs” characters of H' by inspecting the eigenvalues of such an element on
H. O
Corollary 18.3. The hypergeometric sheaf H = Hyp(&s - Chariy; 1,&5,&5) in characteristic p = 2
has a descent H* to Fy, with arithmetic monodromy group Garith,i; = 3+ J3 over any finite extension
k of Fig.

Proof. By Theorem M has a descent Hf = Hoo to Fy for which any element in Garith,F, still

has trace in Q(v/5, (3) for any finite extension k of Fy, with Hg given on line 12 of Table 4. Recall
from Theorem m that L := Ggeom = 3 - J3. Since any element in Cg, .\, (L) = Z(Garith k) acts

via scalars, which are then roots of unity in Q(v/5,(3), we see that

C3 = Z(L) S CGarith,k’ (L) = Z(Garith7k) S CG
Since no outer automorphism of L can preserve the equivalence class of the representation of L
on H, we must have that Gaith ke = Z(Garithk)L. Now if Z(Garitn7,) = Z(L) then Gaithy = L
and we are done. Consider the case Z(Garith 7,) = Cs. In this case Garithr, = Ggeom X (z) for

some central involution z, and so modulo Ggeom every element in Garith F, iS zdeg/Fa Tp particular,
Garith,k = Ggeom when k O Fyg. O
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19. THE RUDVALIS GROUP Ru

In this section, let H := Hyp(Charjy; &12, 35,635, £95) be the hypergeometric sheaf in characteristic
p =5, with 28 “upstairs” characters Charj,, and 4 “downstairs” characters &2, £3,,625, &35

Theorem 19.1. The hypergeometric sheaf H = Hyp(Charjg; &12, 35,635, €35 in characteristicp =5
has finite geometric monodromy group Ggeom-

Proof. We need to show:

| W

V(29x)—V(x)+V<—:c+112>—|—V<—:c+152>+v<—x+i>+V(—x—i> >

or

| W

V(zgl’)—v(l’)JrV(—iv—112>+V<—:c—152>+V<—:c+i>+V(—x—i> .

depending on the choice of x. Using the fact that

i 17538838 1 .
V<%)— (W)—%[175388381]

for 1 < ¢ < 347, we check that the inequality holds for 29z € Z and for 12z € Z. For all other
values of z, using that V(x) + V(—x) =1 for x # 0, we can rewrite the first inequality as

V(29x)§V($C)+V(x+112>—|—V<x—|—152)+V(a:+i)+V(:c+Z>—g

and, following §9] it suffices to prove

[292] < [a:+5T1;1] + [3:—1—5(57112_1)} + [x+5r4_1} + [x+3(5r4_1)} + 2] —6r

for every r > 1 divisible by 9 = 2 and every 0 < & < 2" —1. Notice that, in this case, multiplication
by 5 permutes v = 1—12 and 2 = % and fixes y3 = %, Y4 = % and v5 = 0, so we can take r; = 1.
Then, with the notation of we have (52 — 1)y1 = 025, (5% — 1)y3 = 115,(5% — 1)y = 335,

hj =2,0,1,3 and ho ; = 02,20,11, 33 for j = 1,2, 3,4 respectively. We will prove that
[292] < [z + hpa] + [x + hpo) + [T+ heg] + [+ By g] + [2] — 67

for every r > 1 and every 0 < x < 2" — 1. For r < 5 we check it by computer. For r > 5 we proceed
by induction as described in proving first the following cases by splitting off the last digits of x.
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last digits of x ‘ s ‘ z ‘ A(s, z) ‘ > Ui ‘ > ‘ Als,z) =43 v +43 ‘
0.1 1 0.1 0 >0 | 0 >0
a2a# 1 1 2 0 >0 | 0 >0
03,23,33 1 3 0 >0 | 0 >0
04,24 1 4 0 >0 0 >0
al2,al3,ald;a#1 | 2| 12,1314 | >0 | >0 | 0 >0
al12,al13,all4;a #1| 3 | 112,113,114 | 0 >0 | 0 >0
043 2 43 4 >0 0 >4
0243,2243,3243 | 3 243 0 >0 | 0 >0
0343,2343 3 343 0 >0 0 >0
0443 3 443 1 >4 0 >4
034,234 2 34 4 >0 0 >4
0334,2334 3 334 4 >0 0 >4
044 2 44 4 >0 0 >4
03343,23343 4 3343 0 >0 0 >0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the ¢5 = ¢§ corresponding to 5 = 0, since it is always 0):

z = last ,

digitsof 2 |°| ? S 1A(s,2) |A, ) [ bi=b |aa=d |ca=dy |es=dy | eca=¢)

1112,1113,1114 | 4 | 112 | 3 0 0 12 0 0 0 1
143,144 31 20 |2 4 0 21 0 0 0 1
1243 41130 | 3 0 0 14 0 0 0 1
4243 4| 430 | 3 4 4 101 1 1 1 1
1343 4| 140 | 3 4 4 20 0 0 0 1
13343 51343 | 4 4 4 20 0 0 0 1
33343 513343 | 4 0 0 41 1 0 1 1
43343 04343 | 4 4 4 102 1 1 1 1
4343 41440 | 3 4 4 102 1 1 1 1
1443 41200 | 3 4 0 21 0 0 0 1
2443 41300 | 3 4 0 32 0 1 0 1
3443 4| 400 | 3 4 0 43 0 1 1 1
4443 41 444 | 3 4 4 103 1 1 1 1
134 31 14 |2 8 4 20 0 0 0 1
1334 41134 | 3 8 8 20 0 0 0 1
3334 41334 |3 4 4 41 0 1 1 1
4334 4| 434 | 3 8 8 102 1 1 1 1
434 3| 44 |2 8 4 102 1 1 1 1
244 31 30 |2 4 0 32 1 0 0 1
344 3| 343 | 3 0 0 42 1 0 1 1
444 3| 443 | 3 4 4 103 1 1 1 1

For 29z ¢ 7 and 12x ¢ 7Z, the second inequality can be rewritten as

V(29$)§V(1‘)+V<33—112>—I—V<x—152>+V<x+i>+V<x+z>—;)
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and, via the change of variable z — x + %, as

1 1 5 1 3 1 3
2 Z) < — — - ° )
V( 9x+2> V(Jc—i—m)—i-V(x—i-lz)—I—V<x+4>+V<:r—|—4>+V<x+2) 2

Following §9] it suffices to prove

5" —1 5 —1 505" —1) 5" —1
2 < b SV
|:9$—‘r 5 ]_[:p—i— 2 ]—i—[:r—i— 2 ]—i—[:):—l- 1 ]

3(5" -1 5 —1
—|—|:£L'+(4):|—|-|:l'+ 5 ]—67“4—4

for every r > 1 divisible by g = 2 and every 0 < z < 2" — 1. Again, multiplication by 5 permutes
v = 1—12 and o = 15—2 and fixes v3 = %, V4 = % and v5 = %, so we can take r; = 1. Then, with
the notation of §9 we have (52 — 1)y = 025, (5% — 1)y3 = 115, (5% — 1)y4 = 335, (5% — 1)y5 = 225,

hj =2,0,1,3,2 and hy; = 02,20,11, 33,22 for j = 1,...,5 respectively. We will prove that

T

[29x + ] <[z+ha]+[x+he2] + [+ he 3]+ @+ hpal + [x+ hys] —6r +4

for every r > 1 and every 0 < x < 2" — 1. For r < 5 we check it by computer. For r > 5 we proceed
by induction as described in proving first the following cases by splitting off the last digits of x.

last digits of x ‘ s ‘ z ‘A(s,z) ‘Zluz ‘Z]’"Uj ‘A(s,z)—llzjvj—i—llziui‘
0,1 1] 0,1 >0 | >0 ] 0 >0
a2;a # 1 1 2 4 >0 0 >4
al2;a # 1 2 12 4 >0 0 >4
all2;a #1 3 112 4 >0 0 >4
003,303,403 2 03 —4 >1 0 >0
103 3 103 0 >0 0 >0
a203;a # 1 3 203 0 >0 0 >0
013,313,413 |2| 13 4 | >1 ] 0 >0
all3,a213;a # 1| 3| 113,213 0 >0 0 >0
alll3;a #1 4| 1113 0 >0 0 >0
023,323,423 2 23 0 >0 0 >0
33 1 3 —4 >1 0 >0
043 2 43 1 >0 0 >0
ald3;a # 1 3] 143 0 >0 0 >0
443 1 3 —4 >2 1 >0
04 2 04 4 >0 0 >4
aldia#1 |2| 14 0 >0 | 0 >0
a4a#1,2 |2 24 0 >0 | 0 >0
034 1 4 —4 > 2 1 >0
044 2 44 0 >0 0 >0
444 1 4 —4 > 2 1 >0

The remaining cases are proved by substitution of the last digits, as specified in the following
table, in which we have by =V, c1 = ¢}, ca = ¢, c3 = ¢, ca = ¢y, and ¢5 = .
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| z= lastdigitsof x [s| 2/ [&[A(s,2) |[A(S,2) ] b1 [er|ea]es]ea]es]

1112 4| 112 | 3 4 4 12000 |1]0
1203,1213,1143 4| 114 | 3 0 0 13,0010 11]0
11113 511113 | 4 0 0 12 1070]0]1/0
123,124 3| 13 |2 0 —4 141000 1]0
223,224 3| 23 |2 4 0 3000|011
243,244 31 30 |2 —4 —4 32 11|0]0|1]1
343,344 3| 40 |2 —4 —4 43 |10 |1 1|1
114 31 113 | 3 0 0 137]0(0]0]1/0

134 3| 14 |2 0 0 201010101110

234 3| 24 |2 0 0 3100|011

334 3| 34 |2 —4 —4 42 11101 ]1]1

434 3| 44 | 2 0 0 103117111

144 3| 143 | 3 0 0 21 |0|0]0O0|11/0

O

Theorem 19.2. The following statements hold.

(i) The hypergeometric sheaf H = Hyp(Charly; &12, &8y, £09,&Yy) in characteristic p = 5 has geo-
metric monodromy group Ggeom = 2 - Ru, the double cover of the Rudvalis sporadic simple
group Ru. .

(ii) The sheaf H = H ® L¢, has geometric monodromy group Ggeom = Ggeom © C4, the central
product of Ggeom = 2-Ru with the cyclic scalar subgroup Cy. Furthermore, H has a descent H'
to F5 with arithmetic monodromy group éarith,k = Ggeom over any finite extension k of Fos.

Proof. (i) By Theorem G := Ggeom is finite. Let ¢ denote the character of the representation
G — GL(V) of G realizing H. By the construction of H and Corollary [6.2{i), the field of values
Q) := Q(p(g) | g € G) is precisely Q(i) with ¢ = (4. It is clear that H is not Kummer induced.
Furthermore, the shape of the “upstairs” and “downstairs” characters of H shows by Proposition
[3.7(ii) that it is not Belyi induced. Hence, by Theorem[3.5] (G, V) satisfies (S+). As D = dim(V) =
28, G must be almost quasisimple by Lemma Furthermore, since the cyclic group Z(G) acts
via scalars and Q(¢) = Q(7), we have that

(19.2.1) Z(G) < Cy.

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for L :=
E(G) = G(*®), Then V| is irreducible by Lemma, and so Cg(L) = Z(G) by Schur’s lemma.
Furthermore, 6(go) = 29 for a generator gy of the image of 1(0), and 24|6(g~) for a p’-element goo
that generates I(o0) modulo P(oc0), whence both cyclic groups Cag and Coy embed in G/Z(G) <
Aut(S). Now we can apply the main result of [HM] to arrive at the following possibilities for (S, L).

e S =L = Ay, and V| is just the deleted permutation module 5(28’1)|L. In this case, since
S<G/ZL(G) < Aut(S) = Sag, the element gy of order 29 must belong to the inverse image S x Z(G)
of S in G. Using , we see that in fact gy € S, hence G = S by Theorem But this is a
contradiction, since Q(¢) would have been equal to Q.

e S = PSLy(29). This is impossible, since Ca4 does not embed in Aut(S) = PGL2(29).

e (S,L) = (Ru,2- Ru). Since Aut(L) = L, we have that G = Z(G)L. Again using we
see that go € L, whence Ggeom = G = L by Theorem

(ii) By Theorem H has a descent H' = (7—2)00 to F5, for which any element in éarith’k still

has trace in Q(¢) over any finite extension k of Fa5, with (#)o given in Table 4, line 13. It follows
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that Z(égeom) < Z(éarith,k) < Cy. Next, if go generates the image of 1(0) in G = Ggeom, then note
that §2% acts as the scalar i on H, whence we now have

(19.2.2) Z(égeom) = Z(Garith,k) = 04-

By Lemma G/Z(G) = G/Z(G) = S, and G(®) = () = [, Next, since L already induces
the full automorphism group Ru of L < Gyusith i, we conclude that

Garith,k = Ggeom = Z(Ggeom)L = (2 . Ru) o Cy.

[Note that (2-Ru) o Cy is the automorphism group of a certain 28-dimensional lattice over Gaussian
integers, see [Atlas]]. O

20. THE SPECIAL LINEAR GROUP PSL3(4)

Theorem 20.1. The local system H := Hyp(Charyy ~ {1,&7,€2,€3}: €4, €4) in characteristic p = 3
has finite geometric monodromy group.

Proof. We need to show:

V(14x)—V(a:)—V(x+1) —V(x+2) —V(x—i—;l)+V(—4x)—V(—2x)+220

7 7
and
1 2 4
V(14a:)—V(:c)—V<a;—7> —V<a;—7> —V(:U—7> +V(—4z)-V(-22)+2>0
which are equivalent via the change of variable xz — 3z. Using the fact that
i 261 1 .
Vigg) =Vige—7) = ;31261

for 1 <4 < 13, we check that the first inequality holds for 28x € Z. For all other values of = we can
rewrite it, using that V(z)+ V(—z) =1 for x # 0 and V(22) = V(z) + V(2 + 3) — 3 [KaT, §13], as

V(14m)§V<x—;>+V<x—i>+V<x—j>+V<x+i>+v<x+i>+1/(a:)—2

and, via the change of variable z — x + i, as

1 3 27 19 1 1
— < - - - — — —
1% <14$+2) <V (x+28>+V <x+28>+V <x+28>+V <x+4>+V <x+2>+V(x) 2

Following §9] it suffices to prove

{14x+3r2_1] < [az+3(3r_1)} + [x+27(37"—1)] + [a:+19(3r_1)]

28 28 28

3 -1 3 -1
—i—[w—i— 1 ]—i—[m—i— 5 ]—i—[m]—élr
for every r > 1 multiple of rp = 6 and every 0 < z < 3" — 1. Notice that, in this case, multiplication
by 32 permutes y; = %, Yo = g—g and y3 = % cyclically and fixes y4 = %, v5 = % and v = 0, so we can
take r1 = 2. Then, with the notation of §9| we have (3°—1)y; = 0022203, h; = 203, 223, 003, 023, 113,
ho ; = 22203,00223, 20003, 02023,11113 and h3; = 0022203,2000223,2220003,0202023,1111113 for
j=1,...,5 respectively. We will prove that

T

[1495 + ] <[z +hpa)+ @+ hpo] + (@ + his] + [©+ hya] + [z 4+ hyp 5] + [2] — 47
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for every r = 2k > 2 and every 0 < x < 2" — 1. For r < 6 we check it by computer. For r > 6
we proceed by induction as described in proving first the following cases by splitting off the last

digits of x.

last digits of x

z

[A(s,2) [ Soui [0 [Als,2) =25 v+ 23 u4 |

00
a01,a02;a # 2
a201;a # 2
a202; a # 2
012201,102201,122201,212201
110,111
0210,1010,1210,2010
0211,1011,1211,2011
00010,10010
020010,120010
abl2, ab20; ab #£ 00,11, 22
abl112;ab # 00, 11, 22
ab21, ab22; ab # 00, 11, 20, 22
ab2221; ab # 00, 11, 20, 22

00
01,02
01
02
2201
10,11
10
11
0010
0010
12,20
1112
21,22
2221

N RN R RN NN R DNDDNDDNDN®

<

<1
<1
<1
<1

0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the ¢g = ¢ corresponding to s = 0, since it is always 0):

’ z = last digits of x \s\ z \s’\A(s,z)\A(s’,z’)\blzb’l\cl\cﬂc?, 64‘65‘
002201 60022 | 4 0 0 1 0(0]1]0/|0
022201 6| 1000 | 4 6 0 12 O(1]1]0/0
112201 61122 | 4 6 6 22 oj(1]1]0]|1
202201 62022 | 4 6 6 102 oj(1]1]1]1
222201,222221 62222 | 4 > 10 10 112 111 1]1
2202,2210,2211 4122011 4 6 6 111 111 1]1
220010 62201 | 4 6 6 111 1171 1]1
0011,0012,0020,0021,0022 | 4 | 0010 | 4 >0 0 1 170]0]0]0
001112 60011 | 4 0 0 1 0Oj011101]0
111112 61112 | 4 2 2 21 O(1]1]0]|1
221112 62212 | 4 8 8 111 11 (1]1]1
2212,2220 412211 | 4 >6 6 111 1171 1]1
1120,1121 411112 | 4 2 2 21 1{0]1|0]|1
1122 41 12 2 6 2 22 1{0]1|0]|1
2021,2022 41 21 2 6 4 102 1{0]1|1]1
002221 6| 01 2 8 0 2 0011010
112221 6 12 2 10 2 22 Ooj(1]1]0]|1
202221 6] 21 2 12 4 102 o(1]1]1]|1
2222 412221 | 4 10 10 112 1,11 (1]1

O

Theorem 20.2. The local system H := Hyp(Chariy \ {1, &7, E2,£3;€4,€4) in characteristic p = 3
has geometric monodromy group Ggeom = 2-PSL3(4)-22. Moreover, H has a descent H' to Fy, with

arithmetic monodromy group Garithiz = Ggeom for any finite extension k of Fy.
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Proof. (i) By Theorem G = Ggeom is finite. Let ¢ denote the character of the representation
G — GL(V) of G realizing H. By the construction of H and Corollary [6.2{ii), the field of values
Q(p) == Q(p(g) | g € G) is Q(/=T7). 1t is clear that H is not Kummer induced. Furthermore,
the shape of the “upstairs” and “downstairs” characters of H shows by Proposition (ii) that it
is not Belyi induced. Hence, by Theorem (G,V) satisfies (S+). As D = dim(V) = 10, G
must be almost quasisimple by Lemma Next, since the cyclic group Z(G) acts via scalars and
Q(p) = Q(+/—=7), we have that

(20.2.1) Z(G) = Cb.

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for L :=
E(G) = G(*®). Then V| is irreducible by Lemma and so Cg(L) = Z(G) by Schur’s lemma.
Furthermore, for a generator go of the image of I(0) in G we have 0(g9) = 14, and so C14 —
G/Z(G) < Aut(S). Moreover, the image Q of P(c0) is elementary abelian of order 3% by Proposition
5.8(iv), and a p’-generator g of the image of I(c0) modulo P(oo) in G has central order divisible
by 8 by Proposition [5.9[(iii). Now we can apply the main result of [HM] to arrive at the following
possibilities for (S, L).

e S =L =Aq, and V| is just the deleted permutation module S
impossible, since otherwise we would have Q(¢) = Q by Lemma

e S =L = A;. Since p|g is not stable under outer automorphisms of S, we have that G =
Z(G) x S. But this is a contradiction, since S contains no element of order 8.

e (S, L) = (Mg, 2Mag2). Using [GAP] we can check that the restriction of |z, to 2'-elements yields
an irreducible 2-Brauer character of L. In other words, a reduction modulo 2 of ® is an absolutely
irreducible 2-modular representation of G. However, this is impossible: applying Theorem [6.13 with
¢ = 2 we see that such a reduction of ® must admit a trivial composition factor over G.

e (S,L) = (PSL3(4),2 - PSL3(4)). Now we have Z(L) = Z(G) = C¢(L) = C3 by (20.2.1)). Recall
that G/Z(G) < Aut(S) = S - (Cq x S3), G admits an irreducible representation of degree 10, and
contains the go element of central order 14. Hence we see by [Atlas| that G/Z(G) = S-22. It follows
that Ggeom =L-29=2- PSL3(4) - 29.

(ii) By Theorem ‘H has a descent H' = Hgg to Fyg, for which any element in éarith7k still has
trace in Q(1/—7) over any finite extension k of Fg, with H, either of the two choices given in Table
4, line 14. Since any element in Cg,,, (L) = Z(Garith ;) acts via scalars, which are then roots of
unity in Q(y/—7), we see that CGoin (L) = Co = Z(L). Hence, if Garighr > Ggeom, We see that
some element of Gyyith r must induce an outer automorphism of L lying outside of S - 25, which is

impossible under the condition that it acts on L = 2 - S, see [Atlas|. Therefore we must have that
Garith,k =L= Ggeom' O

(10.1)], . This case is however

Theorem 20.3. The local system Ha := Hyp({&y | i = 1,3,5,7,9,13,15,17}; €3, £3) in character-
istic p =7 has finite geometric monodromy group.

Proof. We need to show:

1 11 19 1
V<10x+2>—V<:IJ+20)—V(:E+2()>+V<—:E+3



RIGID LOCAL SYSTEMS AND SPORADIC SIMPLE GROUPS 7

1 3 7 1 2
) =) - — R —z+ =) >0.
V(10x+2> V<x+20> V(x+20>+v< x—|—3>+V< x+3>_0
The first two and the last two are equivalent via the change of variable x — 7z. Using the fact

that V(&) = V(;ﬂil) = 5[40i] for 1 < i < 59 we check that the inequalities hold for 20z € Z and

for 3z € Z. For all other values of = we can rewrite the first inequality, using that V(z)+V(—x) =1
for x #£ 0, as

1 1 9 1 2
) < _ - _ Z) -
V<10m+2)_V<x+20>+V<:1:+20>+V<a:+3>+v<x+3> 1

and, following it suffices to prove

-1 T -1 9(7" — 1) -1 2(7m —1)
< R A
[10:6—1— 5 }_{x—l— 20 }—i—{x—i— 20 ]—F{x—i— 3 ]—F{x—i— 3 6r

and

for every » > 1 multiple of rp = 4 and every 0 < z < 7" — 1. Notice that, in this case, mul-
tiplication by 72 permutes y; = % and o = % and fixes v3 = % and v4 = %, so we can take
r1 = 2. Then, with the notation of we have (74 — 1)y; = 02317, hj = 317,027,227,447,

ha; = 02317,31027,22227, 44447 for j = 1,...,4 respectively. We will prove that

-1

{10:1: + ] <[z +hpa)+ (@ + hio] + [z + his] + [z + hya] — 67

for every r = 2k > 2 and every 0 < z < 7" — 1. For r < 4 we check it by computer. For r > 4
we proceed by induction as described in proving first the following cases by splitting off the last
digits of x.

last digits of x ‘ s ‘ z ‘ A(s, 2) ‘ > U ‘ > ‘ As,2) =63 v +6> ‘

00,...,22 2100,...,22] >0 | >0 | 0 >0
a23,....a35a#2 |2(23,....35| >0 | >0 | 0 >0
a36,...,a64;a #2,42(36,...,44| >0 >0 0 >0
a65,a66:a #2,4,5 | 2| 65,66 >0 | >0 | 0 >0

Oabc, Llabe 4 | Oabe, labe >0 >0 0 >0
ad36,...,a443;a £ 6| 2136,....43| >0 | >1 | 1 >0
abdd; ab # 22,64 2 44 18 >0 1 > 12

The remaining cases are proved by substitution of the last digits, as specified in the following
table:
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’z:lastdigitsofx\s \ z \3’ \ A(s, z) \ A(s', 2" \ blzb’l\clzc’l\Q:c’z\c;g:cg \ 04202‘
2223, ...,2266 41231 2 >0 0 3 0 0 0 1
3223, ...,3266 4133 | 2 >6 6 5 0 0 0 1
4223, ...,4266 4143 | 2 >0 0 6 0 1 0 1
5223, ...,5266 4153 2 >6 6 11 0 1 1 1
6223, ...,6266 4163 2 >6 6 12 0 1 1 1
2445, . .. ,2466 4125 2 >0 0 4 0 0 0 1
3445,...,3466 |4(35]2| >0 0 5 0 0 0 1
4445, . .., 4466 41451 2 >0 0 10 0 1 1 1
5445, ... ,5466 41551 2 >0 0 11 0 1 1 1
6436, . ..,6466 4165 2 >0 0 13 1 1 1 1

2565 2566 4126 2 >0 0 4 0 0 0 1
3565, 3566 4136 2 >0 0 6 0 1 0 1
4565, 4566 4146 | 2 >0 0 10 0 1 1 1
95565, 5566 4156 | 2 >0 0 11 0 1 1 1
6565, 6566 4166 | 2 >0 0 13 1 1 1 1

The third inequality can be rewritten, using that V (x)

(v (B2
2

and, via the change of variable z — x + l as
9
— v
(a: + 0) +

1 1
1 — ] < —
V( Ox+2> _V<x+20)
Following §9} it suffices to prove
1 97" — 1) 1 577 — 1)
] +—[w<+iﬂ)] +—[m«+ ; ] +—[x—+(3 — 6r

7 —1 <oy 7 —
x
2 - 20
for every » > 1 multiple of 79 = 4 and every 0 < z < 7" — 1. Notice that, in this case, mul-
tiplication by 7% permutes 7; = % and v = 2% and fixes 3 = % and y4 = %, so we can take
r1 = 2. Then, with the notation of we have (74 — 1)y =

02317, h; = 317,027,117, 557,
ha; = 02317,31027,11117,55557 for j = 1,...,4 respectively. We will prove that

x)=1for x #0, as

)
v (erd) o

[\~

[10x +

T

{mm% ]Sh+%ﬂ+h+%ﬂ+h+%d+h+%4—w

for every r = 2k > 2 and every 0 < & < 7" — 1. For r < 6 we check it by computer. For r > 6
we proceed by induction as described in proving first the following cases by splitting off the last
digits of x.

last digits of x ‘ s ‘ z ‘ A(s, z) ‘ Do Ui ‘ > ‘ A(s,2) =6 ;v +6>u ‘
00,...,11 2700,...,11] >0 | >0 | 0 >0
al2,...,a35;a # 1 2112,...,35 >0 >0 0 >0
a36,...,ab5a#1,4 |2|36,...,55| >0 >0 0 >0
ab6,...,a66;a # 1,4,5 |2 |56,...,66 | >0 >0 0 >0
Oabc 4 Oabc >0 >0 0 >0
a3556;a # 1 4 3556 0 >0 0 >0
013556 6| 013556 0 >0 0 >0
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The remaining cases are proved by substitution of the last digits, as specified in the following
table:

| z=lastdigitsof x [ s | 2/ [ [A(s,2) A, ) [h=W |aa = [ea=da=d]u=7]

1112,...,1166 4112 2 >0 0 2 0 0 0 1
2112,...,2166 |4 |22|2| >0 0 3 0 0 0 1
3112,...,3166 |4(32|2| >6 6 5 0 0 0 1
A112,...,4166 |4 42| 2| >0 0 6 0 1 0 1
5112,...,5151 415112 >6 6 10 0 1 0 1
5152,...,5166 41522 >12 12 11 0 1 0 1
6112, ...,6166 4162 2 >6 6 12 0 1 1 1
1436, . ..,1466 4115 2 >0 0 2 0 0 0 1
2436, . .., 2466 41251 2 >6 6 4 0 0 0 1
3436, . .., 3466 41352 >6 6 ) 0 0 0 1
4436, . . .,4466 41452 | >12 12 10 0 1 0 1
5436, . .., 5466 415512 >12 12 11 0 1 0 1
6436, . . ., 6466 4165 | 2 >6 6 13 1 1 1 1
1556, ...,1566 4116 | 2 >0 0 3 0 0 0 1
2556, . ..,2566 4126 2 >0 0 4 0 0 0 1
113556 612 2 0 0 2 0 0 0 1
213556 61222 0 0 3 0 0 0 1
313556 6322 6 6 ) 0 0 0 1
413556 6142 | 2 0 0 6 0 1 0 1
513556 6512 6 6 10 0 1 0 1
613556 6162 2 6 6 12 0 1 1 1
3560, ...,3564 4135 2 > 6 6 ) 0 0 0 1
3565, 3566 4136 2 >0 0 6 0 1 0 1
4556, . .., 4566 4146 | 2 > 6 6 10 0 1 0 1
5556,...,5566 | 4|56 |2 | >0 0 11 0 1 1 1
6556, ...,6566 4166 | 2 >0 0 13 1 1 1 1

g

Theorem 20.4. The local system Ha := Hyp(Ly, i =1,3,5,7,9,13,15, 17;€3,&3) in characteristic
p =T has geometric monodromy group Ggeom = 41 - PSL3(4) - 23. Moreover, Ha has a descent H
to Fyg, with arithmetic monodromy group Garith k = Ggeom for any finite extension k of Fag.

Proof. (i) By Theorem G = Ggeom is finite. Let ¢ denote the character of the representation
® : G — GL(V) of G realizing Ho, and let gy denote a generator of the image of I(0) in G.
By the construction of H, we may assume that the spectrum of gy on V consists of Céo, 1 =
1,3,5,7,9,13,15,17. In particular, ¢(g3) = 2¢/—1 and

(20.4.1) 0(g0) = —(C5 + Gs),
and thus the field of traces Q(¢) contains both v/—1 and /5. On the other hand, each of the
set of “upstairs” characters and the set of “downstairs” characters of Hs is fixed by the Galois
automorphisms Cgo — ¢4t and (o — ¢4 of Q(Ceo)/Q. It follows from Corollary[6.2ii) that Q(¢p) :=
@( V _17 \/5)

It is clear that H is not Kummer induced. Furthermore, the shape of the “upstairs” and
“downstairs” characters of H shows by Proposition (ii) that it is not Belyi induced. Also, it
is tensor indecomposable by [KRLTS, Corollary 10.4]. Now, if it is tensor induced, then, since
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D = dim(V) = 8, it is 3-tensor induced, and G acts transitively on the 3 tensor factors of a de-
composition V = V) ® Vo ® V3 with dim(V;) = 2, with kernel say K. By Proposition the image
Q of P(oc0) in G has order 7, which is coprime to [S3|, and so @ and its normal closure G p(.) are
contained in K. By Theorem G /G p(s), hence G/ K, is cyclic, and thus G/K = C3. (Alterna-
tively, we can also use [KTH, Corollary 3.3] to deduce that G/K = C5.) As o(gg) = 20 is coprime
to 3, go € K, and so the normal closure of the image (go) of I(0) is contained in K, contradicting
Theorem [5.1] Hence, (G, V) satisfies (S+).

Next, since the cyclic group Z(G) acts via scalars and Q(p) = Q(v/—1,/5), we have that
(20.4.2) Z(G) < Cy.

Suppose we are in the extraspecial case (c¢) of Lemma Then G has a normal 2-subgroup R
which acts irreducibly on V, and Z(R) < Cg(R) = Z(G) < 4. Furthermore, R = Z(R)E with
E =276 for some € = 4, and, using ® to identify R and G with their images under ®, we have

R <G < Ney)(R) < Z(GL(V)) o (Cy 0 249) - Spg(2)

(cf. [KTS, §8] and [NRS| §6]). Now, the element g¢ of order 5 cannot centralize R and so induces
a nontrivial automorphism of R, where Aut(R) = 26 . (2 x Spg(2)) by [Gri, Corollary 2]. As the
Sylow 5-subgroups of (Cy o 2176) - Sps(2) > 217% . QF(2) are of order 5, we can find an element
h € 2?6 - Q¢ (2) of order 5 and a scalar a € C* such that g = ah. It follows that a® = 1. On the
other hand, Trace(h) € Z[v/2] by [NRS, Theorem 2.2], and this contradicts (20.4.1)).

We have shown that G is almost quasisimple. Let S denote the unique non-abelian composition
factor of G, so that S = L/Z(L) for L := E(G) = G(*). Then V|, is irreducible by Lemma and
so Cg(L) = Z(G) by Schur’s lemma. Furthermore, since 6(gg) = 10, we have C19p — G/Z(G) <
Aut(S). Moreover, the image @ of P(co) has order 7 as mentioned above, and so C7 — Aut(S) by
Proposition [5.6(i). Now we can apply the main result of [HM] to arrive at the following possibilities
for (S, L).

o (S,L) = (Ag,2A9) or (Spg(2),2 - Spg(2)). In these cases, we can check using [Atlas] that
G/Z(G) = L)Z(L), G = L = L) and Q(p|;) = Q, which is a contradiction by Lemma
since Q(p) = Q(v/~T, V5).

o (S,L) = (As, 2As), (Ag, Ag), (4 (2),2- Q7 (2)). In these two cases, we can find using [GAP] an
almost quasisimple group L -2 and a faithful character ¢ of L -2 such that (L-2)/Z(L) > G/Z(G),
(L-2)) =L =G, ¢l = o[, but Q) € Q(v~1) € Q(v=1,v5) = Q(¢). The latter again
contradicts Lemma [3.91

e (S,L) = (PSL3(4), 41 - PSL3(4)). Now we have Cy = Z(L) = Z(G) = C¢(L) by (20.4.2). Recall
that G/Z(G) < Aut(S) = S - (Cy x S3), G > L admits an irreducible representation of degree 8,
and contains the g element of central order 10. Hence we see by [Atlas| that G/Z(G) = S - 23. It
follows that Ggeom =L- 23 = 41 . PSL3<4) . 23.

(ii) By Theorem M2 has a descent H)y = (Ha)oo to Fag, for which any element in Gayith i
still has trace in Q(v/—1,+/5) over any finite extension k of Fyg, with (H2)o given in Table 4, line
15. Since any element in Cg,,, . (L) = Z(Gayith,;) acts via scalars, which are then roots of unity
in Q(v/—1,v5), we see that CGimn (L) = Cy = Z(L). Hence, if Garithk > Ggeom, We see that
some element of Gyrith r must induce an outer automorphism of S lying outside of S - 23, which is
impossible under the condition that it fixes L = 4; - S and |1, see [Atlas]. Therefore we must have
that Garith,k = Ggeom' 0

Theorem 20.5. The local system H3 := Hyp(Char'; &) in characteristic p = 2 has finite geometric
monodromy group.
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Proof. We need to show:
1
V(Tx) = V(z)+V <—x + 3> >0

and

V(Tz) - V(z) + V (—x - ;) >0

which are equivalent via the change of variable z — 2z. Using the fact that V(55) = V(5251) = [31]

for 1 <4 < 20 we check that the first inequality holds for 7z € Z and for 3z € Z. For all other
values of  we can rewrite it, using that V(z) + V(—z) =1 for x # 0, as

V(Tz) <V <x + ;) +V(x)

and, following it suffices to prove
2" —1

[7x]§[m—|— ]4—[1:]4—1

for every r > 1 multiple of rp = 2 and every 0 < x < 2" — 1. For r < 6 we check it by computer.
For r > 6 we proceed by induction as described in proving first the following cases by splitting
off the last digits of .

last digits of x ‘ B ‘ z ‘ A(s, z) ‘ > U ‘ > ‘ A(s,2) =D v+ u ‘
00,10 2 00,10 >0 >0 0 >0
0001,0011 4 0001,0011 0 >0 0 >0
001001,001011 | 6 | 001001,001011 >0 >0 0 >0
101001 4 1001 -1 >1 0 >0
11001 4 1001 -1 >2 0 >1
101 2 01 -1 >1 0 >0
11011 4 1011 0 >0 0 >0
111 2 11 0 >0 0 >0

The remaining case is proved by substitution of the last digits, as specified in the following table
(we do not include the co = ¢, corresponding to v = 0, since it is always 0):

| z= lastdigitsof z [s| 2/ [&[A(s,2) |[A(S,2) [bi=b]|c1=d ]
y 101011 [6/1011]4] o [ 0 [ 100 | 1 |

g

Theorem 20.6. The local system Hs := Hyp(Chary;&3) in characteristic p = 2, has geometric
monodromy group Ggeom = 6 - PSL3(4). Moreover, H3 has a descent H5 to Fy, with arithmetic
monodromy group Garith k = Ggeom for any finite extension k of Fy.

Proof. (i) By Theorem G = Ggeom is finite. Let ¢ denote the character of the representation
® : G — GL(V) of G realizing Hg. It is clear that A is not Kummer induced. Furthermore, the
shape of the “downstairs” characters of H shows by Proposition (ii) that it is not Belyi induced.

Hence, (G,V) satisfies (S+) by Theorem Next, Q(¢) := Q(v/—3) by Corollary (1) By
Theorem 3 has a descent Hf = (H3)oo to Fy, for which any element in Gy 1 still has trace
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in Q(v/—3) over any finite extension k of Fy, with (H3)o given in Table 4, line 16. Since the cyclic
group Z(Gaith F,) acts via scalars and Q(¢) = Q(v/—3), we have that

(20.6.1) Z(G) < Z(Garithrs) — Co.

As D = dim(V) = 6, G is almost quasisimple by Lemma Let S denote the unique non-abelian
composition factor of G, so that S = L/Z(L) for L := E(G) = G(*). Then V|, is irreducible by
Lemma [3.1] and so Cg(L) = Z(G) by Schur’s lemma. Furthermore, since 6(go) = 7 for a generator
go of the image of I(0) in G, we have C7 — G/Z(G) < Aut(S). Moreover, the image @ of P(c0) is
an elementary abelian group of order 2¢ by Proposition whence 2* < Aut(S) by Proposition
[5.6(i). Also, a p’-generator g, of the image of I(co) modulo P(cc) has trace 0 on the wild part Wild
and eigenvalue of the tame part Tame of dimension 1; in particular, 6(gs) = 5 and C5 — Aut(S).
Now we can apply the main result of [HM] to arrive at the following possibilities for (S, L).

e S = A;. This is impossible, since 2* does not embed in Aut(S) = S7.

e (S, L) = (Ja,2J5). This case is rule out since otherwise we would have that Q(¢|z) = Q(v/5).

e (S,L) = (PSU4(3),61 - PSU4(3)). In this case, using [GAP] we can check that ¢|;, has Mg =
2, and so ¢ has Mgo < 2. Now we apply Theorem with (a,b) = (6,0), and C' = 6666,
B <9333, A < 2667 (according to Lemmas and Remark , which implies that the
approximation of Mg o at most 4.6135 over Foz2o. However, a calculation with [Mag], for which we
thank Andrew Sutherland, yields an approximation of (at least) 6.8996 over Fy20, a contradiction.
[In this calculation, we use the trace function of H% ® Lg¢,, which has the same (6,0) moment as 3,

1 x’ t
u € EX »—>—#E g ¢(7+x+a)§3(t)
zeF, 0#4teE

for any finite extension E of Fy.]

e (S,L) = (PSL3(4),6 - PSL3(4)). Now we have Cs = Z(L) = Z(G) = Cg(L) by (20.6.1). As
Out(S) = Cy x Sz (see [Atlas|) and 6(gg) = 7, we see that gy € L and so Ggeom = L by Theorem
GBI

(ii) Since any element in Cg, ., (L) = Z(Garitnk) acts via scalars, we see by that
Clitn (L) = C¢ = Z(L). Let ¢ also denote the character of Gyith r, on the representation realizing

5, and assume that Gayith 7, > Ggeom. Then the outer automorphism of L induced by any element
in Garith x ~ L must fix o[z, and so it belongs to S - 2, see [Atlas|. Therefore we must have that
Glarith,k = 6-PSL3(4) - 2;. One such extension, call it H, is given in [GAP], with a faithful character
s : H — GL(V) and an element h (of class 8c), where ¢|;, = ¢|z and Q(s) = Q(v/—=3,v2) 2 Q(p).
By Lemma there is a root of unity v € C such that Q(c) = Q(¢)(7). Clearly, v ¢ Q(v/—3)
and Q(s) has degree 2 over Q(v/—3). It follows that Q(s) = Q(v/—3,7) is a cyclotomic extension
of degree 4 over Q, and so it must be either Q((s) or Q(¢12). Both of these cases are however
impossible since Q(s) contains both V2 and v/—3. Consequently, Garith,F, = Ggeom- O

21. THE SPECIAL UNITARY GROUP PSUy4(3)

Theorem 21.1. The local system Hyp(Chary; &) in characteristic p = 3 has finite geometric
monodromy group.

Proof. We need to show:

1
V(7z) +V(—2z) > 3
Using the fact that V() = V(3(133j1) = L[13i] for 1 < i < 27 we check that the inequality holds

for 282 € 7. For all other values of x we can rewrite it, using that V(z) + V(—xz) =1 for  # 0 and
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V(2z) =V(z)+ V(z+ 1) — 1 [KaT, §13], as
1
V(7)) <V (x + 2) +V(x).

Following §9] it suffices to prove
3r—1

[7x]<[3:—|— ]+[:v]+2

for every r > 1 and every 0 < x < 3" — 1. For r < 6 we check it by computer. For r > 6 we proceed
by induction as described in proving first the following cases by splitting off the last digits of .

1astdigitsofa:‘s‘ z ‘A(s,z)‘ziui‘zjvj‘A(s,z)—QZjvj+2Ziui‘

0,1 1] 01 >0 | >0 | 0 >0

02 2 02 0 >0 0 >0

012,022 3| 012,022 1 >0 0 >0
00212 5| 00212 0 0 0 0
010212 6 | 010212 0 0 0 0

110212,210212 | 5| 10212 —1 >1 0 >0

020212,220212 | 5 | 20212 0 >0 0 >0

02212,22212 | 4| 2212 1 >0 0 >1

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the ¢y = ¢ corresponding to v2 = 0, since it is always 0).

| z= lastdigitsof x |s| 2/ [s|A(s,2) [A(,2) [ bi=0b]|c1=d]
112 3 12 2 -1 —1 10 1
120212 6| 12112 | 5 2 0 11 1
1212 41 201 |3 0 0 11 1
12212 5| 1212 | 4 1 0 11 1
122 3 20 2 2 0 11 1
222 3 22 2 3 2 20 1

g

Theorem 21.2. The local system H = Hyp(Chary; &) in characteristic p = 3 has geometric
monodromy group Ggeom = 61 - PSU4(3). Furthermore, over any finite extension k of Fs, the
descent S72 of H, see Proposition has arithmetic monodromy group Garith . equal to Ggeom if
2| deg(k/F3) and Ggeom - 22 if 21 deg(k/F3).

Proof. (i) By Theorem G = Ggeom is finite. Let ¢ denote the character of the representation
G — GL(V) of G realizing H. By the construction of % and Corollary [6.2{ii), the field of values
Q(p) := Q(p(g) | g € G) is Q(v/=3). Tt is clear that H is not Kummer induced. Furthermore,
the shape of the “upstairs” and “downstairs” characters of H shows by Proposition (ii) that
it is not Belyi induced. Hence, by Theorem 3.6, (G, V) satisfies (S+). As D = dim(V) = 6, G
must be almost quasisimple by Lemma Next, since the cyclic group Z(G) acts via scalars and
Q(p) = Q(v/=3), we have that

(21.2.1) Z(G) < Cg.

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for L :=
E(G) = G, Then V| is irreducible by Lemma [3.1] and so C¢(L) = Z(G) by Schur’s lemma.
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Furthermore, as 6(gp) = 7 for a p’-generator gy of the image of I(0) in G, we have C7 — G/Z(G) <
Aut(S). Moreover, the image @ of P(co) is elementary abelian of order 3* by Proposition (iv),
and Q — G/Z(G) by Proposition (1) Also by Proposition (iii), a p/-generator go, of the
image of I(0co) modulo P(c0) in G has central order divisible by 5, i.e. C5 — G/Z(G). Now we can
apply the main result of [HM] to arrive at the following possibilities for (S, L).

e S = A7 or PSLy(7). This case is ruled out since Aut(S) =S - 2 contains no subgroup of order
34,

e (S,L) = (PSL3(4),6-PSL3(4)). This case is again ruled out since Aut(S) contains no subgroup
of order 3%.

e (S,L) = (J2,2-J5). In this case, Q(¢) 2 Q(¢|r) = Q(v/5), a contradiction.

e (S,L) = (PSU4(3),61 - PSU4(3)). In this case, we have Z(G) = Z(L) = Cs by (21.2.1)). Since
71 |Out(S)|, the element gy of order 7 lies in the inverse image L of S in G, hence Ggeom = L by
Theorem [5.1]

(i) Now we turn our attention to H := Gayith k 0f S7.2 (also see line 17 of Table 4). By Proposition
(i), the field of traces for elements in H is still Q(v/=3) and so Z(H) = Cy(G) = Z(G) = Cs.
Recall that H/Z(H) < Aut(S) = S - Dg. Furthermore, if H > G then H = G - 25 since the
central involution 21 of Out(S) = Dg does not preserve ¢|g, see [Atlas], and any subgroup of order
4 of Out(S) must contain 2;. Thus H/G < C3. Next, Proposition shows that Gaithr has
determinant (—1)4°8 while acting on S7o. It follows that H = G if 2|deg(k/F3) and H = G - 23
otherwise. n

Theorem 21.3. The local system H := Hyp(Char:'; Chary \ {1}) in characteristic p = 3 has finite
geometric monodromy group.

Proof. We need to show:

—_

V(Tx) + V(—4x) > 7
Using the fact that V(55) = V(3%6_il) = L1[26i] for 1 < i < 27 we check that the inequality holds
for 28z € 7Z. For all other values of x we can rewrite it, using that V(x) +V(—z) = 1 for x # 0 and

V(2z) =V(z)+ V(z+ 1) — 1 [KaT7l §13], as

1 1
V(?x)§V<x+4)+V<x+i>+V<x+2>+V(x)—1.
Following §9] it suffices to prove
3 -1 33" -1 3 -1
[7$]§[$+ 1 ]+[x+(zl)}+[x+ 7 }4—[3&]—27“—1—1

for every r > 1 multiple of rg = 2 and every 0 < x < 3" — 1. Notice that, in this case, multiplication
by 3 permutes y; = % and yo = % and fixes v3 = % and y4 = 0, so we can take r; = 1. Then, with
the notation of we have (32 — 1)y, = 023, hj = 23,03,13 and hg ; = 023,203,113 for j =1,2,3

respectively. We will prove that
[7z] <[z + hp1] + [@ + hyo] + [z + hpg] + [2] — 2r + 1

for every r = 2k > 2 and every 0 < z < 2" — 1. For » < 6 we check it by computer. For r > 6
we proceed by induction as described in proving first the following cases by splitting off the last
digits of z. We will actually prove the following sharper inequality

[7z] <[z + he1] + [@ + heo] + (@ + hpg] + [2] — 27

as long as the last two digits of x are not 12. If we split x as 3°y + z then, for the induction step to
work in the proof of the sharper inequality, we need A(s,z) — 23" U+ 2 >, u; > 1 instead of 0 if
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the last two digits of y are 12 but the last two digits of x are not. Moreover, if the last two digits
of x are 12 but those of y are not, then it suffices with A(s, z) — ZZj v +2) ,u; > —1

last digits of x ‘s‘ z ‘A(s,z) ‘zluz ‘Zjvj ‘A(s,z)—QZjvj—i-QZiui ‘

0 1 0 1 0 0 1

01,11 1 1 0 >0 0 >0

02 1 2 1 >0 0 >1

0021,1021 3| 021 0 >0 0 >0

012 3| 012 2 >0 0 > 2

0112 3 112 1 >0 0 >1

01212,12212,21212,22212 | 3 212 0 >1 <1 >0
00212 5| 00212 0 0 0 0
010212 6 | 010212 0 0 0 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the ¢4 = ¢ corresponding to v = 0, since it is always 0). Here, in
order to prove the sharper inequality, if the last two digits of z are 12 but those of 2z’ are not, we
need A(s',2') < A(s,z) + 1. If the last two digits of 2’ are 12 but those of z are not, we need
A(s,2) < A(s,z) — 1.

| z= lastdigitsof x [s| 2/ [|&[A(s,2) [A(E ) |[bi=b|a=d]ca=d]a=d]
2021 41 212 | 3 1 0 12 1 1 1
121 31 20 2 3 2 11 1 0 1
0221 4 1 1 3 0 2 0 1 0
1221 41 20 2 4 2 11 0 1 1
2221 41 221 |3 ) 4 20 1 1 1
1112 41 112 | 3 1 1 10 0 1 1
2112 41 212 |3 0 0 12 1 1 1
110212 6| 11021 | 5 3 4 10 0 1 0
210212 6| 21021 | 5 0 1 12 1 1 1
20212 51 2021 |4 0 1 12 1 1 1
11212 5| 1120 | 4 2 2 10 1 0 1
02212 5| 1000 | 4 2 3 2 1 0 0
022 3 10 2 3 1 2 1 0 0
122 3|1 20 2 4 2 11 1 0 1
222 31 221 |3 ) 4 20 1 1 1
U

Theorem 21.4. The local system H = Hyp(Char; Chary \ {1}) in characteristic p = 3 has geo-
metric monodromy group Ggeom = 61-PSU4(3). Furthermore, over any finite extension k of F3, the
descent 874 of H, see Proposition has arithmetic monodromy group Garitn equal to Ggeom if
2| deg(k/F3) and Ggeom - 22 if 21 deg(k/F3).

Proof. (i) By Theorem G = Ggeom is finite. Let ¢ denote the character of the representation
® : G — GL(V) of G realizing H. By the construction of # and Corollary [6.2(ii), the field of values
Q(p) == Q(p(g) | g € G) is Q(v/=3). 1t is clear that H is not Kummer induced. Furthermore,
the shape of the “upstairs” and “downstairs” characters of A shows by Proposition (ii) that
it is not Belyi induced. Hence, by Theorem (G,V) satisfies (S+). As D = dim(V) =6, G
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must be almost quasisimple by Lemma Next, since the cyclic group Z(G) acts via scalars and
Q(p) = Q(/—3), we have that

(21.4.1) Z(G) < Cg.

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for L :=
E(G) = G, Then V|, is irreducible by Lemma and so Cg(L) = Z(G) by Schur’s lemma.
Furthermore, as 6(go) = 7 for a p’-generator gy of the image of 1(0) in G, we have C7 — G/Z(G) <
Aut(S). Moreover, the image Q of P(00) is non-abelian of order divisible by 3% by Proposition
5.9(ii), and @ — G/Z(G) by Proposition [5.6(i). Now we can apply the main result of [HM] to
arrive at the following possibilities for (S, L).

e S = A7 or PSLy(7). This case is ruled out since Aut(S) = S -2 contains no subgroup of order
33,

e S =L =SU3(3). Since 71 |Out(S)|, the element gy of order 7 lies in the inverse image S x Z(Q)
of § in G, whence gg € S by . It follows that Ggeom = S by Theorem But this is a
contradiction since Q(¢) would have been Q in this case.

e (S,L) = (PSL3(4),6 - PSL3(4)). In this case, we have Z(G) = Z(L) = Cs by (21.4.1). Since
71 |Out(S)|, the element gy of order 7 lies in the inverse image L of S in G, hence Ggeom = L by
Theorem Now using [GAP] we can check that the restriction of ¢ to 2'-elements of G yields
a reducible 2-Brauer character. But this is a contradiction, since a reduction modulo ¢ = 2 of the
representation @ is absolutely irreducible by Theorem [6.12

e (S,L) = (J,2-J5). In this case, Q() 2 Q(¢|r) = Q(v/5), a contradiction.

e (S,L) = (PSU4(3),61 - PSU4(3)). In this case, we have Z(G) = Z(L) = Cs by (21.4.1)). Since
71 |Out(S)|, the element gy of order 7 lies in the inverse image L of S in G, hence Ggeom = L by
Theorem [5.1]

(ii) To determine Gtk We can use the same arguments of the final paragraph of Theorem
with either one of the two descents listed in Table 4, line 18. O

22. THE SYMPLECTIC GROUP Spg(2)

Theorem 22.1. The local system H := Hyp(Chars L Char3'; &) in characteristic p = 7 has finite
geometric monodromy group.

Proof. We need to show:

V(32) 4+ V(5x) — V(z) + V (—x - ;) > %

Using the fact that V() = V(%) = 5[80i] for 1 < i < 29 we check that the inequality holds
for 30z € Z. For all other values of 2 we can rewrite it, using that V(z) + V(—z) =1 for = # 0, as

V(32) + V(5z) <V (a: + ;) F V() + %

Following it suffices to prove

T

[3x]+[5az]§[m+ ]+[ﬂc]+3r+6

for every r > 1 and every 0 < x < 7" — 1. For r < 3 we check it by computer. For r > 3 we proceed
by induction as described in §9] proving first the following cases by splitting off the last digits of :



RIGID LOCAL SYSTEMS AND SPORADIC SIMPLE GROUPS 87

last digits of x ‘ s ‘ z ‘A(s,z) ‘Ziui‘Zjvj ‘A(s,z)—GZjvj—FGZiui ‘
01,23 1] 0123 | >0 | >0 ] 0 >0
a4,ad,a6;a=0,1,2 | 2 | a4, ad, ab >0 >0 0 >0
44 1 4 —6 >1 0 >0
a4, abd;a=0,1,2 | 3| abd,a64 | >0 | >0 | 0 >0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the ¢y = ¢, corresponding to v2 = 0, since it is always 0).

]z:last digits of x \ s \ z \s' \ A(s, 2) \ A(s',2") \ by = b} \ by = b, \ cq=d ‘
34.35.36 214 1] >—6] —6 1 2 1
354,364 313412 —6 —6 1 2 1
454,464 31512 0 0 2 3 1

554,564,654,664 |3|64|2| >—6 | —6 2 4 1
45,46 215 |1 6 0 2 3 1
59,96,65,66 2161 >0 0 2 4 1

O

Theorem 22.2. (i) The local system H = Hyp(Chars U Charj;&2) in characteristic p = 7 has
geometric monodromy group Ggeom = Spg(2).
(ii) The sheaf Hy :=H @ L¢, has geometric monodromy group Ggeomn, = Spg(2) x Ca. Further-
more, H1 has a descent H to F7 with arithmetic monodromy group Garith,k,?—l’l = Ggeom H;
over any finite extension k of Fr.

Proof. (i) By Theorem G = Ggeom is finite. Let ¢ denote the character of the representation
G — GL(V) of G realizing . By the construction of H and Corollary [6.2{i), the field of values
Q(¢) :=Q(¢(9) | g € G) is Q. It is clear that #H is not Kummer induced. Furthermore, the shape
of the “upstairs” and “downstairs” characters of H shows by Proposition (ii) that it is not Belyi
induced. Hence, by Theorem [3.6] (G, V) satisfies (S+). Next, since the cyclic group Z(G) acts via
scalars and Q(¢) = Q, we have that

(22.2.1) Z(G) < Cs.

Also, o(go) = 15 for a p’-generator go of the image of I(0) in G, and so C15 — G/Z(G). Now,
if we are in case (c) of Lemma then G contains an irreducible 7-subgroup E of order 73
with Cg(E) = Z(G) and G/Z(G) embeds in 72 - SLy(7). It follows from that 5 1 |G|, a
contradiction. Hence, G must be almost quasisimple by Lemma [3.1

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for L :=
E(G) = G, Then V|g is irreducible by Lemma and so Cg(L) = Z(G) by Schur’s lemma.
Now we can apply the main result of [HM]| to arrive at the following two possibilities for (S, L).

e S =L = Ag. Since G/Z(G) — Aut(S) and 15 is coprime to |Out(S)|, the element gy of order
15 must belong to the inverse image S x Z(G) of S in G. Using (22.2.1]), we then see that gy € S,
and so G = S by Theorem Thus G = SL4(2), and so dim Wild < 4 by [KT5L Theorem 4.14], a
contradiction.

e S =L = Spg(2). Again, since 15 is coprime to |Out(S)| and |Z(G)|, the element gy of order 7
must lie in S, hence Ggeom = S by Theorem

(ii) By Theorem Hi has a descent H{ = (H1)oo to F7, for which any element in Goien k3
still has trace in QQ over any finite extension k of F7, with (H;)o given in Table 4, line 19. Hence,
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Z(Ggeom ;) < Z(Garith,kz,H’l) < Cy. Next, if gy generates the image of 1(0) in G := Ggeom,x,, then
note that §(1)5 acts as the scalar —1 on 1, whence we now have

Z(Ggeom,?-h) = Z(Garith,k,H’l) = Ca.

By Lemma G1/Z(G,) = G/Z(G) = S, and Ggoo) = G(*®) = §. Next, since S already induces
the full automorphism group of S < Garith,k,?—[’l , we conclude that

Garith,k,'H’l = Ggeom,H; = Z(Ggeomﬂﬁ)s = Spg(2) x Ca.
O

Theorem 22.3. The local system Ho := Hyp(Chars; Charg) in characteristic p =7 has geometric
monodromy group Ggeomm, = 2 - Spg(2). Moreover, Ha has a descent Hby to Fy with arithmetic
monodromy group Gmth’k’% = Glgeom,H, Over any finite extension k of Fr.

Proof. (i) The sheaf H in Theorem gives rise to a surjection ¢ : m (G, /F,) - S = Spg(2)
together with an irreducible representation ® : S — GLg(Q). Also, consider the surjection

7:8 =2 Spg(2) » S

with kernel Ker(r) 2 Cy. The obstruction to lifting ¢ to a homomorphism @ : m1(G,,/F,) — S
lies in the group H?*(G,,/F,, Ker(r)) = 0, the vanishing because open curves have cohomological
dimension < 1, cf. [SGA| Cor. 2.7, Exp. IX and Thm. 5.1, Exp. X]. Since S contains no subgroup
isomorphic to S, we conclude that w is also surjective. Now we can inflate ® to a representation P
of S with kernel Cy. We also consider the faithful 8-dimensional representation ¥ : S — GLg(Qy)
and note that
Trace(¥(h)) = 1 + Trace(®(h))

for all 7-elements h € S. Applying [KT5L Theorem 5.1], we now see that ¥ o w gives rise to a
hypergeometric sheaf H of type (8,2), still in characteristic p = 7, with C7 being the image of
P(00), and with

(22.3.1) Ggoomar = ¥(9) = S.

Let gg be a p’-generator of the image of I(0) in S and let g be a p’-generator of I(occ) modulo
P(00) in S. Also, let hy € S, respectively hoo € S be an inverse image of go, respectively of goo.
The shape of H tells us by Proposition [5.8] that the spectrum of ®(hs) = ®(goo) consists of all 6"
roots of some o € C* and —1 (counting multiplicities). Thus 6|o(hs) and it has trace —1 in ®.
It follows that ho belongs to class 6g or 6h in the notation of [GAP]. Likewise, the spectrum of
U (hoo) consists of all 6™ roots of some 8 € C* and two more roots of unity v # 6 € C* (counting
multiplicities). Using [GAP] we can now see that § = 1 and {v,d} = {1,—1}, which means that
the two “downstairs” characters of H are 1 and &. Next, 15]o(hg), so ho belongs to class 15a or
30a in the notation of [GAP], and so inspecting the spectrum of W(hg) we see that the “upstairs”
characters of H are either X = Charf57 or Xg := Char?f0 = &9 - X1. We conclude that either

(22.3.2) H = Hy,
or
(22.3.3) H=Hy @ Lo,

Because of (22.3.1]), we are certainly done in the case of (22.3.2)). Suppose we are in the case of

(22.3.3]) and thus Ggeom”}.[2®£€2 =3 by (22.3.1). Now we consider H := Ggeom,#,- By Lemma
H/Z(H) = S/Z(S) = S and H(>) = §(®) = S Also, the field of traces for M, is again Q by
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Corollary [6.2(i), hence we have Z(H) < Cs. We conclude that H = 2-Spg(2), and so we again have
Ggeom,?—[z =2 SpG(Z)'

(ii) By Theorem Ho has a descent Hy = (Ha)oo to Fr, for which any element in Garith k1,
still has trace in QQ over any finite extension k of F7, with (Hz2)o given in Table 4, line 20. Hence,
Z(Garith k1) = Cgmmykﬂ,2 (Ggeom,Ho) = Z(Ggeom,,) = Ca. As Out(S) = 1 [Atlas], we conclude
that Garith,k,’;‘-{’2 = Ggeom,?—[z- 0

23. THE ORTHOGONAL GROUP 93(2)

Theorem 23.1. The local system Kl(Chary U Charg) in characteristic p = 5 has finite geometric
monodromy group.

Proof. We need to show:
V(2x) + V(9x) — V(3x) > 0.
Using the fact that V(%) = V(ggf’i) = 5,[868i] for 1 < i < 17 we check that the inequality holds

for 182z € Z. For all other values of x we can rewrite it, using that V(z) + V(—xz) =1 for  # 0 and
V(@Bz)=V(z)+V(z+31)+V(z+2) -1 [KaT, §13], as

V(22) + V(92) <V (x + ;) +V <x + g) +V(2).

Following it suffices to prove

3

for every r > 1 multiple of rp = 2 and every 0 < z < 5" — 1. Notice that, in this case, multiplication
by 5 permutes y; = % and o = % and fixes y3 = 0, so we can take vy = 1. Then, with the notation
of we have (52 — 1)y; = 135, hy = 3, he = 1 and hg; = 139,31, for j = 1,2 respectively. For
v3 = 0 it is clear that hz = h, 3 = 0 for every r. We will prove that

22] + [92] < [z + hra] + [z + By 2] + [2]

for every r > 1 and every 0 < x < 5" — 1. For r < 3 we check it by computer. For r > 3 we proceed
by induction as described in proving first the following cases by splitting off the last digits of x:

2¢] + [92] < [33—1— 57"3_ 1] + [3x+ 2(5_1)] 4[]

last digits of x ‘8‘ z ‘A(s,z) ‘Zzuz ‘Zj“j ‘A(s,z)—42jvj+4ziui ‘
0,1 1 0,1 >0 >0 0 >0
a2,a3;a # 3 1 2,3 0 >0 0 >0
adia#1,3 1| 4 4 >0 | 0 > 4
a32,a33,a34;a # 1,3 | 2 | 32,33,34 8 >0 0 > 8

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the ¢3 = ¢ corresponding to v3 = 0, since it is always 0).

| z=last digitsof o | s | 2/ [ &' | A(s,2) | A(s,2) [bi=b] [by=by [ecr =) [ ca =ch |
132,133,134 311412 8 4 0 3 1 0
332,333,334 31332 12 8 1 11 1 1
14 21211 4 0 0 3 0 1
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Theorem 23.2. The local system KI(Chary U {&2}) in characteristic p = 5 has finite geometric
monodromy group.
Proof. We need to show:

V(2z)+V(7x) — V(x) > 0.
Using the fact that V() = V(é%l_fill) = 5;[11164] for 1 < i < 13 we check that the inequality holds
for 14z € Z. For all other values of 2 we can rewrite it, using that V(z) + V(—z) =1 for z # 0, as

V(2x)+ V(Tx) < V(x)+ 1.

Following §9] it suffices to prove
2z] 4 [Tx] < [z] +4r +4

for every r > 1 and every 0 < x < 5" — 1. For r < 5 we check it by computer. For r > 5 we proceed
by induction as described in proving first the following cases by splitting off the last digits of x:

last digits of x ‘s‘ z ‘A(s,z) ‘Zzuz ‘Zjvj ‘A(s,z)—élzjvj—i-élziui ‘
0,134 1 0,134 >0 | >0 ] 0 >0
02,42 2 02,42 0 >0 | 0 >0
012 3 012 0 >0 0 >0
0412,3412 4 0412,3412 0 >0 0 >0
a2412;a # 3 ) a2412 0 >0 0 >0
04412,24412,34412 | 5 | 04412,24412,34412 0 >0 0 >0
22 1 2 —4 >1 0 >0
32 3 a32 >0 >0 0 >0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the ¢; = ¢} corresponding to v; = 0, since it is always 0).

| z=last digitsof & [ s | 2/ |5 [A(s,2) [A(s,2)) [ b1 =0 [ba =10 |
112 3] 12 |2 —4 —4 0 1
212 3] 22 |2 —4 —4 0 3
312 3] 32 |2 —4 —4 1 4
1412 41202 | 3 —4 —4 0 2
32412 513222 | 4 —4 —4 1 4
14412 511412 | 4 —4 —4 0 2
44412 514412 | 4 —4 —4 1 11

Theorem 23.3. Each of the two hypergeometric sheaves Ky := Kl(Chargy U Chary) and Ky :=
Kl(Chary U {&2}), both in characteristic p = 5, has geometric monodromy group Ggeom = 2-Qg (2)-2,
with Ggeom/Z(Ggeom) = Og‘(2). Furthermore, each K; with i = 1,2 has a descent K to Fs with
arithmetic monodromy group Garithx = Ggeom over any finite extension k of Fs.

Proof. (i) By Theorems and G = Ggeom is finite. Let ¢ denote the character of the
representation ® : G — GL(V) of G realizing KC; with i« = 1 or 2. By the construction of H and
Corollary [6.2]1i), the field of values Q(¢) := Q(¢(g) | g € G) is precisely Q. It is clear that H
is not Kummer induced. Furthermore, since IC; is Kloosterman, it is not Belyi induced. Hence,
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by Theorem (G,V) satisfies (S+). Next, since the cyclic group Z(G) acts via scalars and
Q(¢) = Q, we have that

(23.3.1) Z(G) — Cs.

Also, e := 0(go) = 18, respectively 14, for a p’-generator gy of the image of I(0) in G, and so
Ce — G/Z(G). Moreover, the image @ of P(00) is elementary abelian of order 52 by Proposition
5.8(iv), and @ — G/Z(G) by Proposition [5.6{ii). Now, if we are in case (c) of Lemma then
G contains an irreducible 2-subgroup E of order 27 with Cg(E) = Z(G) and G/Z(G) embeds
in 26 . Spg(2). It follows from that 52 { |G|, a contradiction. Hence, G must be almost
quasisimple by Lemma |3.1

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for L :=
E(G) = G(*®), Then V|, is irreducible by Lemma, and so Cg(L) = Z(G) by Schur’s lemma,
and furthermore Z(G) < C3 by (23.3.1)). Now we can apply the main result of [HM] to arrive at the
only possibility (S, L) = (4 (2),2- Q4 (2)); in particular Z(G) = C¢(L) = Z(L) = C» by (23.3.1).
Using [GAP] we can now check that no element of central order divisible by 7 in L can have simple
spectrum in ®. Hence, when ¢ = 2 we must have that go ¢ L. Furthermore, if u € L has central
order divisible by 9 and simple spectrum in ®, then it has trace 1. As Trace(®(go)) = 0 for i =1,
we also have gg ¢ L when i = 1 as well. Thus in both cases, g9 ¢ L and so G > L. In particular, the
subgroup G/Z(G) of Aut(S) = S - Sz contains S properly. As the (unique) 8-dimensional faithful
representation of L is not invariant under an outer automorphism of order 3, we conclude that
G =L-2, with G/Z(G) = S -2 = 0f (2), as stated.

(ii) By Theorem ICi has a descent K, = (K;)oo to Fs, for which any element in Garith kK

still has trace in Q over any finite extension k of 5, with (KC;)o given in Table 4, line 21 (where
we can use either one of the two given choices) for ¢ = 1 and line 22 for i = 2. Hence, we now

have Z(Garith ki) = Ca, e (L) = Z(L) = C2. As Out(S) = Sz [Atlas] and the (unique) 8-
dimensional faithful representation of L is not invariant under any outer automorphism of order 3,
we have that Gamh,k’,q/Z(L) =52 = Ggeom/Z(L), and so Garith,k,ic; = Ggeom- O

24. THE EXCEPTIONAL GROUP G3(3)

Theorem 24.1. The local system H := Hyp(Charig ~ {1, &, 3, £8}; €4, E4) in characteristic p = 13
has finite geometric monodromy group.

Proof. We need to show:

V(18x)—V(x)—V<:c+é> —V(x+2> —V<x+2> +V(—4z) = V(=22) +2 >0

and

V(18z) - V(z) - V (x— é) v (x— 2) v (m— 2) +V(—dz) — V(—22) +2 > 0.

The change of variable x — = + % interchanges both inequalities, so it is enough to prove the
second one. Using the fact that V(%) = V(3525) = 3(122i] for 1 < i < 17 we check that the
inequality holds for 182 € Z. For all other values of 2 we can rewrite it, using that V(z)+V(—x) =1
for z #0 and V(2z) = V(z) + V(z + 3) — 3 [KaT, §13], as

V(le)ﬁV(x—i—é)—|—V<;U+2>—|—V<;U—|—2>+V<:U+i>+V<m+i>+V(x)—2
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and, following §9| it suffices to prove

o) o 1) 4 [ 20720) T, 30720

6 6 6
13" -1 3(13" -1
+|:$—|— 1 :|—|—|:£L‘+(4):|—|—[l‘]—24’l“

for every r > 1 and every 0 < z < 13" — 1. For r < 3 we check it by computer. For r > 3 we proceed
by induction as described in proving first the following cases by splitting off the last digits of x.
We denote the 13-adic digits by 0,1,2,3,4,5,6,7,8,9,A B,C.

last digits of x ‘ s ‘ z ‘ A(s, z) ‘ > Ui ‘ >V ‘ A(s,2) =123 v, +123 7w ‘
01,23 110123] >0 | >0 ] 0 >0
ad,ab,a6;a 43 |1| 456 | >0 | >0 | 0 >0
a3d;a # 3 2 34 0 >0 0 >0
a7,a8:a # 3,6 1| 78 | >0 | >0 | o >0
a9:a # 3,6,8 1] 9 0 >0 | 0 >0
aAia#3,6,89 |1| A 0 >0 | 0 >0
aB,aC:a #3,6,8,9,A | 1| B,C 0 >0 | 0 >0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the ¢g = ¢ corresponding to v3 = 6, since it is always 0; also we have
by =b),c1=dc), co=1¢hy, c3 =0, ca =¢), and c5 = ¢):

’ z = last digits of z \ s \ 2 \ s’ \ A(s, z) \ A(s',2) \ by \ c1 \ co \ c3 \ c4 \ cs ‘
334 31341 2 0 0 4010001
35,36,37 21341 2 >0 0 4010001
38,39,3A,3B,3C 214 |1 >0 0 510010011
67,68,69,6A,6B,6C 217 |1 >0 0 9001|011
89,8A.8B,8C 21911 >0 0 cio|111101|1
9A,9B,9C 21 A1 0 0 10(01]1]1]|1
AB,AC 2/ B |1 0 0 1211|111

0

Theorem 24.2. The local system H := Hyp(Charis \ {1, &, &2, 63}; €4, €4) in characteristic p = 13
has geometric monodromy group Ggeom = Aut(G2(3)) = G2(3) - 2. Furthermore, H has a descent
H' to Fi3, which over any extension k of Fi3a has arithmetic monodromy group Garith,k = Ggeom -

Proof. (i) By Theorem G = Ggeom is finite. Let ¢ denote the character of the representation
G — GL(V) of G realizing H. By the construction of H, the field of values Q(¢) := Q(¢(9) | g € G)
contains y/—3; indeed, a generator gg of the image of I(0) in G has trace

o(go) = —(1+Cs+ G +¢2) = —vV/=3.

In fact, applying Proposition (iii) we see that Q(¢) = Q(v/—3). It is clear that H is not Kummer
induced. Furthermore, the shape of the “upstairs” and “downstairs” characters of H shows by
Proposition [3.7](ii) that it is not Belyi induced. Hence, by Theorem [3.5] (G, V) satisfies (S+). As
D = dim(V) = 14, G must be almost quasisimple by Lemma[3.1] Next, since the cyclic group Z(G)
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acts via scalars and Q(¢) = Q(v/—3), we have that Z(G) — Cg. In fact, as H has rank 14 and
geometric determinant Ly, , it follows that

(24.2.1) Z(G) — Cy, and G # [G, G].

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for L :=
E(G) = G(*®). Then V|, is irreducible by Lemma, and so Cg(L) = Z(G) by Schur’s lemma.
Furthermore, as 6(gg) = 18 we have C1g3 — G/Z(G) < Aut(S). Moreover, the image @ of P(c0)
is cyclic of order 13 by Proposition [5.8(iv), and @ — G/Z(G) by Proposition i). Now we can
apply the main result of [HM] to arrive at the following possibilities for (.S, L).

e S =L=A5,and V|, is just the deleted permutation module S(41 |, . Since ¢(gg) = —v/—3,
not an integer multiple of a root of unity, this case is rule out by Lemma [3.8

e S = PSLy(13) or PSLy(27). These two cases are impossible since Aut(S) contains no element
of order 18.

e S =L =2By(8). In this case, Q() D Q(¢|z) = Q(i), again a contradiction.

e (S,L) = (PSpg(3),Sps(3). Here we have that Z(L) = Z(G) = Cg(L) = Cy by (24.2.1).
Furthermore, G/Z(G) = S since the outer automorphism of S does not fix the equivalence of any
irreducible Weil representation of degree 14 of L. Thus G = L. Now, using [GAP] we can check
that any element of order 18 in L with trace ++/—3 belongs to classes 18¢, 18, 18s, and 18t in the
notation of [GAP], and no such element can have simple spectrum in the underlying representation.
This contradicts the existence of the element gg.

e S =L = (G5(3). Recall that we have Z(G) = C¢(S) < O3 by (24.2.1). Furthermore, the element
go of central order 18 does not lie in Z(G)S <G, hence G > L. Now S < G/Z(G) < Aut(S) = S-2,
and so G = (Z(G) x S) - 2. Now, @ = (3 is contained in S, and so G/S is cyclic by Theorem [5.3
It follows that Z(G) = 1 and Ggeom = G2(3) - 2.

(ii) For H', by Theorem we can take the sheaf listed in Table 4, line 23. Over any fi-
nite extension k of Fy32, it has Q(v/—3) as the field of traces, hence Z(Gasitnr) < Cs. Next,
CGoins (5) = Z(Garithk), and Ggeom already induces the full automorphism group of S and
has trivial center. Hence Garith k/Z(Garith,k) = Ggeom, and s0 Garith x = Z(Garith k) Ggeom and
Glarith k/Ggeom = Z(Garith k). Thus, modulo Ggeom, any element in Gayith 1S 2deg(k/F132) for some
generator z of Z(Garith,IF132)- In particular, if v € Fy32, then Frob,r ,, = zhy for some hy € Ggeom-
Now, a computation using [Mag] reveals that, for some v € Fy32, Froby, ,, has trace 2. On the
other hand, z acts on H' as a 6" root of unity a € C, and the only such « for which 2a~! occurs
as the trace of hy, € Ggeom is 1, see [GAP]. It follows that o(z) = o(e) < 2. In particular,
Garith,k = Ggeom When k D [Fyza. O

25. THE EXCEPTIONAL GROUP (G3(4) AND ITS SUBGROUP SUj3(4)

Theorem 25.1. The local system Hyp(Charyy; Chary) in characteristic p = 2 has finite geometric
monodromy group.

Proof. We need to show:
V(13z) + V(-3z) >

IN N =

Using the fact that V(55) = V(51925) = 75[105i] for 1 <

for 39z € Z. For all other values of z, we can rewrite it as

V(13fv)§V<x+;)+V<a:+§)+V(x)—

38 we check that the inequality holds
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and, following §9| it suffices to prove

3 3 2 2

for every r > 1 divisible by 7o = 2 and every 0 < z < 2" —1. Notice that, in this case, multiplication
by 2 permutes v; = % and o = % and fixes y3 = 0, so we can take r; = 1. Then, with the notation
of §9) we have (22 — 1)y = 0la, h; = 1,0 and hg; = 01,10 for j = 1,2 respectively. We will prove
that 3

[13z] < [z + hpa] + [z + hyo] + 2] — g +3

for every » > 1 and every 0 < & < 2" — 1. For r < 12 we check it by computer. For r > 12 we
proceed by induction as described in §9, proving first the following cases by splitting off the last
digits of x.

[13z] < [$+2r_1]+[$+2(27»_1)]+[x]_T+3

last digits of x ‘ s ‘ z ‘ A(s, z) ‘ Do Ui ‘ 2.V ‘ Als,z) =D v+ u ‘

0 1 0 1/2 0 0 >1/2
01 2 01 0 >0 0 >0
0011 4 0011 0 >0 0 >0
00011011 8 00011011 0 >0 0 >0
0010011011 10 | 0010011011 0 >0 0 >0
1010011011 8 10011011 -1 >2 0 >1
1011011 2 11 0 >2 2 >0
0000111011 10 | 0000111011 0 >0 0 >0
1000111011,1100111011 | 8 00111011 -1 >1 0 >0
000100111011 12| 000100111011 0 >0 0 >0
ab0100111011;ab # 00 | 10 | 0100111011 -1 >3 0 > 2
10111011,11111011 4 1011 0 >1 1 >0

00111 ) 00111 1/2 >0 0 >1/2
1111 2 11 0 > 2 1 >1

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the ¢3 = ¢4 corresponding to 3 = 0, since it is always 0):

] z = last digits of x \s\ 2 \s’\A(s,z)\A(s’,z’)\blzb’l\0120’1\0220’2‘
01011 5 011 3 f1/2 f1/2 100 1 0
110011011 91101011 | 7 3/2 f1/2 1010 1 1
01111011 8 | 1000011 | 7 1 1/2 110 0 1
010111 6 011 3 1 -1/2 100 0 1
110111 6 111 3 2 1/2 1011 1 1

O

Theorem 25.2. The local system H := Hyp(Charyy; Chary) in characteristic p = 2 has geometric
monodromy group Ggeom = 2 - G2(4). Moreover, over any finite extension k of F4, the descent S133
of H has arithmetic monodromy group Garith k = Ggeom-

Proof. (i) By Theorem G = Ggeom is finite. Let ¢ denote the character of the representation
G — GL(V) of G realizing . By the construction of H# and Corollary [6.2(ii), the field of values
Q(e) == Q(p(g) | g € G) is Q, and ¢ has Frobenius-Schur indicator —1 by [Kadl 8.8.1, 8.8.2] (i.e.
‘H is symplectically self-dual). It is clear that H is not Kummer induced. Furthermore, the shape
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of the “upstairs” and “downstairs” characters of H shows by Proposition (ii) that it is not Belyi
induced. Hence, by Theorem (G, V) satisfies (S+). As D = dim(V) = 12, G must be almost
quasisimple by Lemma Next, since the cyclic group Z(G) acts via scalars and Q(¢) = Q, we
have that

(25.2.1) Z(G) < Cb.

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for L :=
EG) = G(®), Then V| is irreducible by Lemma and so Cg(L) = Z(G) by Schur’s lemma.
Furthermore, for a generator go of the image of I(0) in G we have 0(g9) = 13, and so Cy3 —
G/Z(G) < Aut(S). Moreover, the image Q of P(00) is elementary abelian of order 2* by Proposition
5.8(iv), and a p’-generator g of the image of I(c0) modulo P(oo) in G has central order divisible
by 5 by Proposition [5.9((iii). In fact, since g, has eigenvalues (3 and 53 on the tame part Tame,
we have that 6(go,) = 15. Furthermore, |z, is irreducible, rational-valued, and of Frobenius-Schur
indicator —1. Now we can apply the main result of [HM] to arrive at the following possibilities for
(S, L).

e S =1L=A;3, and V| is just the deleted permutation module S5(12.1) |L This case is however
impossible, since ¢|; has Frobenius-Schur indicator 1. Likewise, we can rule out the cases of
L =6-Suz and Sp,(5).

e (S,L) = (PSLy(25),SLy(25)). In this case, Z(L) = Z(G) = Cg(L) = C» by (25.2.1)). Since
G/Z(G) < Aut(S) = S - 22, we see that the element g, of order 15 lies in L. But this is a
contradiction, since SL2(25) contains no element of order 15.

e S = L = SU3(4). Here, since S has index 4 in Aut(S) and Z(G) = Cg(S) < Cy by r,
G/S is a 2-group, and so the element gy of order 13 lies in S. It follows from Theorem that
G = S. Now, using [GAP] we can check that any element of order divisible by 15 in S has trace 0,

whereas the element g, has trace 0 on Wild and —1 on Tame, i.e. ¢(gs) = —1, a contradiction.
e (5,L) = (G2(4),2 - G2(4)). Recall that we have Z(L) = Z(G) = C¢(L) = C> by (24.2.1)). As

G/Z(G) < Aut(S) = S -2, we see that the element gy of order 13 lies in L. It follows from Theorem
B.1] that Ggeom = L = 2- Ga(4).

(ii) Next, by Proposition Si33 is a descent of H to Fy (see also Table 4, line 24), and
over any finite extension k of F4, any element in Gyt still has trace in Q. Since any element
in Cq,im (L) = Z(Garithk) acts via scalars, which are then roots of unity in Q, we see that
CGoitn (L) = Cy = Z(L). Hence, if Garithy > L = Ggeom, We see that some element of Garith k
must induce an outer automorphism of L. In particular, some element g € Gayithk induces the
same automorphism as an element h of class 16a of L - 2 (as listed in [GAP]). Let ® denote the
representation of Gyyith,r on V, and extend ®|r, to a representation ® of L-2. Then CI)(h Ho(g)
centralizes ®(L), whence ®(g) = a®(h) for some a € C*. As both g and h have finite order, a is
a root of unity. Hence |Trace(®(g))| = |Trace(®(h))| = v/2, contradicting the fact that ¢(g) € Q.
Therefore we must have that Garithr = L = Ggeom- O

Theorem 25.3. The local system Ks = KI(Charyg ~ {1,£3,&s,65'}) in characteristic p = 5 has
finite monodromy.

Proof. We need to show:

V(lGx)—V(x)—V<:r—|—;>—V(x—i—l)—V(m—;) > 9

and
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These inequalities are equivalent via the change of variable x — 5z, so we will focus on the first
one.

Using the fact that V(&) = V(%) = =[394] for 1 < i < 15 we check that the inequality holds
for 16z € Z. For all other values of x, we can rewrite it as

V(16:E)§V<1:+;>+V<x+;>+1/<x;>+V(az)1

and, via the change of variable z — x + % as

V(16x)§V<w+;) +7V (m—I—Z) +V<x+jl> +V(x)—1.

Following §9] it suffices to prove
5 —1 5(b" —1 5" —1
[162] < |z + + l’—i-! + |z + + [x] — 4r
8 8 4
for every r > 1 divisible by 7o = 2 and every 0 < z < 5" —1. Notice that, in this case, multiplication
by 5 permutes v; = % and vy = % and fixes v3 = i and y4 = 0, so we can take r; = 1. Then, with
the notation of §9| we have (5% — 1)y; = 035, (52 — 1)y3 = 115, h; = 3,0,1 and ho j; = 035,305, 115
for j = 1,2, 3 respectively. We will prove that
[162] < [z + hra] + [2 + hro] + [2 4 heg] + [2] — 47

for every r > 1 and every 0 < x < 5" — 1. For r < 3 we check it by computer. For r > 3 we proceed
by induction as described in proving first the following cases by splitting off the last digits of .

llast digits of = ‘ s ‘ z ‘A(s,z) ‘ > Ui ‘ 2.V ‘ A(s,2) =4 v +43 ‘

0,1 1/0,1 0 >0 0 >0
a2,a3;a#4 | 1123 0 >0 0 >0
ad;a#3,4 |1] 4 0 >0 0 >0

042,242 21 42 0 >0 0 >0
044,244 2| 44 4 >0 0 >4

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the ¢4 = ¢ corresponding to v4 = 0, since it is always 0):

| z=last digits of x [ s | 2/ [ &' [A(s,2) |A(S, ) [bi=b |[a=d [ea=ch | es=ch |
142,144 3120 2 4 0 11 1 0 0
342,344 3140 | 2 4 0 22 1 0 1
442,444 3144 | 2 4 4 30 1 1 1
43 2142 | 2 0 0 24 1 1 1
34 214 |1 4 0 22 0 1 1

Theorem 25.4. The local system K13 = KI(Charig {]l,ﬁgl,fg,fg_l}) in characteristic p = 13 has
finite monodromy.

Proof. We need to show:
1 1 1
V(lGx)—V(x)—V<:c+2> —V<a:+8> —V<:U—> > -2

and
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These inequalities are equivalent via the change of variable z — 13z, so we will focus on the first

one.

Using the fact that V(i) = V(11328Ei1) = £[1785i] for 1 < i < 15 we check that the inequality

holds for 16z € Z. For all other values of x, we can rewrite it as
1 1 1
V(16x) §V<x+2> +V<:c+8> +V<a:—8> +V(z)—-1

and, via the change of variable z — x + %, as

8 8 4
Let us denote the 13-adic digits by 0,1,2,3,4,5,6,7,8,9,A,B,C. Following it suffices to prove

[162] < [m+13T_1] + [:L’+5(13T_1)] + [a:+13r_1} + [z] — 12r

V(163:)<V<x—|—1>+V<m+5)+V<x+1>+V(x)—l.

8 8 4

for every r > 1 divisible by 79 = 2 and every 0 < z < 13" — 1. Notice that, in this case,
multiplication by 13 permutes v = z and v = % and fixes 3 = % and v4 = 0, so we can take
r1 = 1. Then, with the notation of §9, we have (13% — 1)y = 1813, (132 — 1)y3 = 3313, h; = 8,1,3
and hg ; = 1813,8113, 3313 for j = 1,2, 3 respectively. We will prove that

[16z] < [z + hy1] + [z + hy2] + [ + hy 3] + [2] — 127
for every r > 1 and every 0 < x < 13" — 1. For r < 2 we check it by computer. For » > 2 we proceed
by induction as described in proving first the following cases by splitting off the last digits of .

last digits of x ‘ s ‘ z ‘ A(s, 2) ‘ Do Ui ‘ 2.V ‘ A(s,2) =123 v +123 7w ‘

0,1,2,34 1(0,1,2,34 0 >0 0 >0
ab,ab,a7,a8,a9;a #B | 1] 5,6,789 | >0 >0 0 >0
aA,aB;a # 9,B 1 AB >0 >0 0 >0
aC;a # 4,9,B 1 C 0 >0 0 >0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the ¢4 = ¢ corresponding to v4 = 0, since it is always 0):

|z =last digits of 2 | s [ 2/ [ ' [ A(s,2) [A(s,2) [bi =V [ea = [ea = [es =4 ]
B5,...,BC 2|C |1 >0 0 11 1 1 1
9A,9B,9C 21A 1 >0 0 C 0 1 1
4C 2151 0 0 6 0 1 0

O

Theorem 25.5. For p = 5 and p = 13, the local system K, = Kl(Chari {]l,ﬁél,gg,fgl}) in
characteristic p has Ggeom = (2 X SU3(4)) - 4, a mazimal subgroup of 2 - G2(4) - 2. Furthermore,
Kp has a descent IC;, to Fp2, which over any extension k of Fp2 has arithmetic monodromy group

Garith,k = Ggeom .

p2>

Proof. Because K = K, is Kloosterman, it is not Belyi induced, and it is visibly not Kummer

induced. Hence, it is (S+) by Theorem [3.3} By Theorems and G = Ggeom is finite. Let ¢
denote the character of the representation ® : G — GL(V) of G realizing K. By the construction of

‘H and Corollary (i), the field of values Q(¢) := Q(¢(g) | g € G) is precisely Q(v/2). Moreover,
the representation is symplectic by [Ka4l, 8.8.2], and

(25.5.1) Z(G) = Cs.
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Also, 6(gp) = 16 for a p’-generator gg of the image of I(0) in G, and so
(25.5.2) 016 — G/Z(G)

As dim(V') = 12, G is almost quasisimple by Lemma Let S denote the unique non-abelian
composition factor of G, so that S = L/Z(L) for L := E(G) = G(*). Then V|, is irreducible by
Lemma and so Cg(L) = Z(G) by Schur’s lemma, and furthermore Z(G) < C3 by (25.5.1).
Using , we can apply the main result of [HM] to arrive at the following two possibilities.

e (S,L) = (G2(4),2 - G2(4)) and Z(G) = Cy. Since L contains no element of central order 16,
implies that G/Z(G) = Aut(S), and so G = L - 2; in paricular, G has no subgroup of index
4. On the other hand, Theorem [6.10(e) and Corollary (with (N, D) = (4,3)), shows that G
has a subgroup of index 4, a contradiction.

e S =L =SU3(4). Since G/Z(G) contains elements of order 16 by (25.5.1)), G/Z(G) = Aut(S) =
S-4. If Z(G) = 1, then G = Aut(S) has no symplectic irreducible representation of degree 12. So
Z(G) = Cy, and G = (2 x SU3(4)) - 4, which is a maximal subgroup of 2 - G2(4) - 2.

A descent ), of K, over T2 is constructed using Theorem (i), and listed on line 40 for p =5
and line 41 for p = 13 in Table 4. By Theorem (ii), the field of traces is still Q(1/2); hence ([25.5.1))
also holds for Gaithk- Thus Z(Garith,k) = C2 = Z(Ggeom) over any extension k of 2. Since Ggeom
already induces the full automorphism group of L = SU3(4), we conclude that Gayith k = Ggeom. U

In light of Theorem one may wonder if finite almost quasisimple groups with S = G2(4) can
admit hypergeometric sheaves in characteristic # 2. Our next result shows that this is impossible,
and thus [KT5, Theorem 7.3] holds for these groups.

Theorem 25.6. Let H be hypergeometric sheaf of type (D, m) with D > m in characteristic p, with
finite geometric monodromy group G = Ggeom. Suppose G is almost quasisimple, with S = G2(4)
as the unique non-abelian composition factor. Then p =2 and D = 12.

Proof. (i) Let V = CP denote the representation realizing H, with G-character ¢. By [KT5,
Theorem 6.6], D = 12, and ¢ is irreducible over L := G(*°) 22 28 This implies that Cg(L) = Z(G),
and G/Z(G) — Aut(S) = S - 2. As usual, let ) denote the image of P(o0) in G, and let gy be a
generator of the image of 7(0) in G.

Assume now that p # 2,5,13. By Proposition (iii), p divides |G/Z(G)|, hence p=3 or p=T.
Now, Z(G)L is a normal subgroup of index < 2 in G (as |Out(S)| = 2), so we may assume that

(25.6.1) Q<CxR,

where C'= O,(Z(G)) and R is a Sylow p-subgroup of L. Note that @ £ Z(G) by Proposition
hence ) contains some element g = zh with z € C and 1 # h € R.

Consider the case p = 7. Then R = (h) = C7, and the spectrum of h on V consists of all
nontrivial 7*" roots of unity, each with multiplicity 2, see [GAP]. It follows that the tame part has
dimension m < 2. This implies by Proposition [5.6{iv) that p{|Z(G)|, i.e. C =1, and Q = C7. But
this is a contradiction, because Q admits W = D — m > 10 distinct linear characters on Wild by
Proposition [5.8]

Assume now that p = 3. Note that R = 3172 (see [Atlas]), and V| is the sum of the two faithful
irreducible representations of R, each with multiplicity 2. As C acts via scalars on V, the same is
true for C' x R. Restricting further down to @, we see that each irreducible constituent of V'|g has
even multiplicity. On the other hand, the @Q-module Wild is multiplicity-free by Propositions [5.8
and a contradiction.

(ii) The rest of the proof is to deal with the case where p € {5,13}. First we show that Q < L
and that H must be Kloosterman. Indeed, @ £ Z(G) by Proposition Next, Cq(L) = Z(G) as
L is irreducible on V', and so G/Z(G)L — Out(L) = Cy and henc @) < Z(G)L. Using [GAP] we can
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check that any nontrivial p-element in L admits all p— 1 nontrivial p'* roots of unity as eigenvalues
on V. This implies that any g € @ \ Z(G) admits at least p — 2 > 3 distinct eigenvalues on Wild,
and so D —m > 3. Hence p 1 |Z(G)| by Proposition (iv), implying @ < L. Now, if p = 13, then
Q = C13 and W = 12, meaning H is Kloosterman. Suppose p = 5, so that |Q| = 5 or 52. If Q
contains an element g belonging to class 5C or 5D (in the notation of [Atlas|), then g has no fixed
point on V, again showing W = 12. If ) contains no such elements, then @ cannot be a full Sylow
5-subgroup of L, whence Q = (5 is generated by an element of class 54 or 5B. In this case, W = 8,
which contradicts Proposition [5.8] since ) cannot admit 8 distinct linear characters on Wild.

Now we will determine the set of 12 “upstairs” characters x1,..., x12 of the Kloosterman sheaf
‘H, by inspecting possible ss-elements in G. Note that Sp(V) contains a finite group H = L - 2
(the one listed in [Atlas] and [GAP]), and G < Z(GL(V))H. We note that the representation of
L on V is (S+), whence H is (S+) as well; in particular, it is primitive. Next, using [GAP], we
find 20 conjugate classes of ss-elements in H. Two of them (classes 15b and 300 in [GAP]) has
spectrum €(u15 ~ p3) with € = £+ on V| which is invariant under multiplication by (3 and so H
would be Kummer induced, a contradiction. The four classes 24ab and 14bc are ruled out for the
same reason, since their spectra are pog4 \ p12, respectively pi4 \ po. The two classes 24cd are also
ruled out, since they have spectrum invariant under multiplication by —1.

This leaves 12 classes. Two of them have representatives x13 and zx13, with x13 in class 13a and
Z(L) = (z). Now, if go is a scalar multiple of one of them, then p = 5 and, after tensoring, we may
assume that H = KI(Charyy). However, as shown in [KTT, Theorem 17.1], the Kummer pullback
by [13]* of the latter sheaf has Ggeom = SL2(25). The next two have representatives xo; and zwo1,
with x91 in class 21a. If gy is a scalar multiple of one of them, then, after tensoring, we may assume
that H = Kl(Char|). However, the latter sheaf fails the V-test for both p = 5 and p = 13. The
next four are 24efgh, and a generator of a cyclic subgroup generated by any of their representatives
has spectrum

{15 =1,2,4,7,8,10,14,16,17,20,22, 23}

on V', Hence, if gy is a scalar multiple of one of them, then, after tensoring and taking Galois
conjugate, we may assume that

H= Kl(§§4 |j=1,2,4,7,8,10,14,16,17, 20,22, 23).

Again, the latter sheaf fails the V-test for both p =5 and p = 13.
The remaining four classes are 16abcd, and a generator of a cyclic subgroup generated by any
of their representatives has spectrum pig {Cg ’1’4’7} on V. Hence, if gy is a scalar multiple of one

of them, then, after tensoring and taking Galois conjugate, we may assume that H = lCl(Char16 ~

{52’1’4’7}). As shown in Theorems [25.3) and [25.4] this sheaf has finite Ggeom for both p = 5 and
p = 13. However, Theorem [25.5 shows that this sheaf has Ggeom = (2 X SU3(4)) - 4. O

Corollary 25.7. Let H be hypergeometric sheaf of type (D, m) with D > m in characteristic p, with
finite geometric monodromy group G = Ggeom. Suppose G is almost quasisimple, with S = SU3(4)
as the unique non-abelian composition factor. Then one of the following statements holds.

(i) D =12, p=2, 5, or 13, and all these cases occur.
(ii) D =13, G =Z(G)S, and p = 2, and this case occurs.

Proof. Note that SU3(4) has trivial Schur multiplier and Out(S) = C4. Moreover, meo(Aut(S)) =
16 [Atlas|. Hence, checking |[GAP|, we see that either D = 12, or G = Z(G)S and D = 13. In
particular, Ggeom = S is irreducible on the underlying representation V3; = CP, with character ¢.

(i) Suppose D = 12. Then Aut(S) embeds in G2(4) - 2 = Aut(G2(4)), and the S-representation
on V extends to the subgroup H = (2-G2(4)) -2 < Sp(V) mentioned in the proof of Theorem
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Now the analysis in part (i) of the proof of Theorem rules out the case p = 3. The case p = 2 is
realized by the sheaf KI(Char;3), whose Kummer pullback by [13]* has Ggeom = SU3(4), see [KTT,
Theorem 19.1] with ¢ := 4 there. The cases p = 5 and p = 13 are shown to occur by Theorem

(ii) Assume now that D = 13, so that G = Z(G)S, but p # 2. Then G — S and S = SU3(4) is an
irreducible subgroup of GL3(F2). Applying [KT5, Theorem 4.14], we see that D—m = dim Wild < 3.
On the other hand, since G = Z(G)S, it is easy to verify using [GAP] that any non-central p-element
g € G can have a fixed point subspace of dimension at most 5 on Vy, and thus D —m > 13 -5 =8,
a contradiction.

Finally, the case p = 2 is realized by a sheaf of type (13

, 1), whose Kummer pullback by [13]* has
Ggeom = SU3(4), see [KTI, Theorem 19.1] again with ¢ := 4.

g

26. THE “EXCEPTIONAL” GROUP SUj3(3) -2 = G2(2)

Theorem 26.1. The local system K := Kl(Char}, U {&,&8}) in characteristic p = 7 has finite
geometric monodromy group.

Proof. We need to show:

1 5 7 11 1 1 5
_ il - - - 2> =
V(m+12>+V<x+12>+V<az+12)—I—V<£+12>+V<a:+6>+‘/<x+3> Z 3

and

1 5 7 11 5 2 5
— = — — = Z) >
V<x+12>+V<w+12>+V<x+12>+V<x+12)+V(m+6)+V(m+3) Z 5

which are equivalent via the change of variable z — z + 1. Using the fact that V(i5) = V(%) =

+[44] for 1 < i < 11 we check that the inequality holds for 12z € Z. For all other values of = we
can rewrite it, using that V(z) + V(—z) = 1 for £ # 0 and V(Nz) = 3, 1oq 8 V(@ + %) — 52

2
[KaT7, §13], as
1 2 1 1 1
— — | < — — —.
V<4:E+3>—|—V<4I+3> < (z—|—6> +V<$+3>+2

Following it suffices to prove

-1 2(7m -1 -1 -1
[4x—|— 3 }+[4x+()]§[m+ 5 ]—}—[m—{— 3 ]—}—37“—}—6

3

for every r > 1 and every 0 < x < 7" — 1. For r < 2 we check it by computer. For r > 2 we proceed
by induction as described in proving first the following cases by splitting off the last digits of x:

’lastdigitsof:z‘s‘ z ‘A(s,z)‘ziui‘zjvj‘A(s,z)—GZjvj—FGZiui‘
01234 |1]01234] >0 | >0 | 0 >0
ab;a # 4 1 ) 0 >0 0 >0
06,16,26,66 | 1| 6 6 | >1 ] 0 >0

The remaining cases are proved by substitution of the last digits, as specified in the following
table.

| z=last digits of & [ s | 2/ [ &/ [ A(s,2) | A(s,2) [br=b] [ by =V [er =] [ ca = b |
45,46 2151 >0 0 3 3 0 1
36 2141 0 0 2 2 0 0
56 2161 —6 —6 3 4 1 1
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Theorem 26.2. Each of the two local systems
K := KI(Chary, U {&, &2}) and H := Hyp(Char, U Chars; &)

in characteristic p =T has geometric monodromy group Ggeom = SU3(3) - 2 =2 G2(2). Furthermore,
H has a descent H' to Fag, such that over any finite extension k of Fag, H' has arithmetic monodromy
group Gayith 3 = G2(2). Also, K has a descent K' to Fr, which over any finite extension k of Frss
has arithmetic monodromy group Gaith ik = G2(2).

Proof. (i) By Theorem[26.1, G = Ggeom for K is finite. Let ¢ denote the character of the representa-
tion G — GL(V) of G reahzlng K. By the construction of K and Corollary[6.2(i), the field of values
Q(p) :=Q(¢(9) | g € G) is Q(v/=3). It is clear that H is not Kummer induced. Furthermore, since
it is Kloosterman, it is not Belyi induced. Hence (G, V) satisfies (S+) by Theorem [3.3] Next, since
the cyclic group Z(G) acts via scalars, we have that

(26.2.1) Z(G) = Cs.

As D = dim(V) = 6, G must be almost quasisimple by Lemma Let S denote the unique
non-abelian composition factor of G, so that S = L/Z(L) for L := FE(G) = G(*). Then V| is
irreducible by Lemma and so Cg(L) = Z(G) by Schur’s lemma. Furthermore, 6(go) = 12 for
a generator go of the image of 1(0), whence Ci2 — G/Z(G) < Aut(S). Moreover, the image @ of
P(o0) is cyclic of order 7 by Proposition [5.8|(iv), and Q < G/Z(G) by Proposition [5.6(ii). Now we
can apply the main result of [HM] to arrive at the following possibilities for (S, L).

e S = PSLy(7). These two cases are ruled out since Aut(S) contains no element of order 12.

e (S, L) = (PSLy(13),SL2(13)). In this case, G can induce only inner automorphisms of L, and
this yields a contradiction since G/Z(G) = S contains no element of order 12.

e S = A;. Here, if L =S, then V|, is just the deleted permutation module 5(6’1)|g, and so by
Lemma ©(go) is an integer multiple of a a root of unity, contradicting the fact that ¢(go) = v/—3.
Thus L # S,ie. L=3-S or 6-5. Since ¢|r, is not fixed by any outer automorphism of L, we have
that G/Z(G) = S, which is again a contradiction since S contains no element of order 12.

o (S,L) = (PSL3(4),6-PSL3(4)). Since 2; is the only outer automorphism that fixes |1, we now
have that G/Z(G) < S - 21, which is a contradiction since .S - 2; contains no element of order 12.

e (S,L) = (J2,2-J5). In this case, Q() D Q(¢|1) = Q(v/5), again a contradiction.

e (S,L) = (PSU4(3),61-PSU4(3)). In this case, (p+¢)|r takes odd values £1, £3. On the other
hand, applying Proposition (ii) with » = 3, A = Charj,,, B = (), we see that ¢ + ¢ can take only
even values, a contradiction.

e S = L = SU3(3). In this case, any element of central order 12 in Z(G)S has trace being a
root of unity, see [GAP]. On the other hand, ¢(gy) = v/—3, so G > Z(G)S and hence G/Z(G) =
Aut(S) = 5-2and G = (Z(G) x S) - 2. In fact, we may assume that go acts via conjugation as
some element h € Aut(S), of class 12b or 12¢ in the notation of [GAP]. Note that ®|s extends to a
representation ® of Aut(S). As ®|g is irreducible, by Schur’s lemma we have that ®(go) = a®(h)
for some a € C*. Now we have

V=3 = ¢(go) = Trace(®(go)) = a - Trace(®(h)) = £av/—3,
i.e. a = =+1. Since |[Aut(S)/S| = 2, it is now easy to see that
((S). D(g0)) = (2(S), ad(h))

rmalized by ®(G) = (®(S), ®(g0), (Z(G))). It follows by Theorem
0) = Aut(S).

no
®(g

(2) as in (i). As shown in (i), the Kloosterman sheaf K gives rise to a
G, together with a faithful irreducible representation ® : G — GLg(Qy).

is isomorphic to Aut(S)

5.1 that G = &(G) = (@
(ii) Let G := Aut(S)
surjection ¢ : 71 (G, /Fp) —

and
(),
= Gy
) =
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We also consider an irreducible representation ¥ : G — GL7(Qy). Note that, for any p-element
vEQG,

Trace(¥(v)) = Trace(®(v)) + 1.
It follows from [KTH, Theorem 5.1] that W o ¢ gives rise to a hypergeometric sheaf H', of type (7,1)
and with geometric monodromy group Ggeom,2r = Y(G) = G. Furthermore, as shown above, gg is
an element of order 12 and class 12b or 12¢ in G, hence the spectrum of ¥(go) is either

(26.2.2) X :={c¢,]i=1,5,7,11,0,4,8}
or
(26.2.3) ~X=(-1)-X={¢,y|i=1,57"7,11,2,6,10}.

Let goo be a p/-generator of the image of I(0o) modulo P(00) in Ggeom 2. By Proposition the
spectra of g on the wild part of #' is {8¢] | 0 < j < 5} and on the tame part is {y} for some
B,y € Cx.

Suppose we are in the case of . Using |[GAP], we can check that the only elements (of
order divisible by 6) in G that can have the prescribed for g, spectrum in ¥ are the ones in class
6b (in the notation of [GAP]), and for them we have v = —1. This implies that the “upstairs”
characters of H' are Charlx2 U Charg and the “downstairs” character is &. In other words, H' is
geometrically isomorphic to H, and we are done.

Suppose now that we are in the case of . Again using [GAP], we can check that the
only elements (of order divisible by 6) in G that can have the prescribed for g, spectrum in ¥ are
the ones in class 6b (in the notation of [GAP]), and for them we have v = 1. This implies that
the “upstairs” characters of H' are Chary, U Charg and the “downstairs” character is 1. In other
words, H' is geometrically isomorphic to H ® L¢,. By Lemma for H := Ggeom,2 We now have
that H/Z(H) = G/Z(G) = Aut(S) and H(>) = G(*) = §. Furthermore, the field of traces of all
elements in H is Q by Corollary [6.2{i), which implies that Z(H) < C5. But rankH = 7 and H has
trivial geometric determinant, so in fact Z(H) = 1 and H = Aut(S).

(iii) For K', we can use K' = K constructed by Theorem and listed in Table 4, line 25. Over
any finite extension k of Fys, it still has Q(v/—3) as the field of traces, and s0 Z(Gaith k. k7) < Cé-
Now we can argue as in part (ii) of the proof of Theorem

For H', we can take Hog, with Hg listed in Table 4, line 26. By [Ka4, 8.12.2], H' has trivial
arithmetic determinant over any finite extension k of [F49, and furthermore any element in Gayith k77
still has rational traces by Proposition As rankH’ = 7, it follows that Z(Garithk,n) = 1, and
we obtain Gaith k3 = H = Aut(S) as above. d

Remark 26.3. The statements in Theorem concerning ‘H were established in [Ka7] in a
different way.

27. THE SUZUKI GROUP %By(8)

Theorem 27.1. The local system H = Hyp(Charis ~ {1};&12,&)5) in characteristic p = 13 has
finite geometric monodromy group.

Proof. We need to show that

V)~ Vi) +V (<ot 5 ) +V (-a+ ) 2 3
and V(15z) = V(z) +V <—x - 112> +V <—$ - 152> > %
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Using the fact that V({5) = &5 for 1 <4 < 11 and that V(&) = V(éZ%) = [476i] for 1 < i < 59

we check that the inequalities hold for 12z € Z and 15z € Z. For all other values of z we can
rewrite the first inequality as

V(15w)§V(x+112>+V<x+152>+V(m)—;

and, following §9] it suffices to prove

[152] < [w+13¢_1] + [:c+5(13_1)] + [] — 6r

12 12

for every r > 1 and every 0 < x < 13" — 1. For r < 3 we check it by computer. For » > 3 we proceed
by induction as described in proving first the following cases by splitting off the last digits of x.
We denote the 13-adic digits by 0,1,2,3,4,5,6,7,8,9,A,B,C.

last digits of x ‘ s ‘ z ‘ A(s, z) ‘ > Ui ‘ 2. ‘ Als,z) =123 50, + 123 ‘
0,1,23456,7 ]1]101234567] >0 | >0 | 0 >0
a8,a9,aA,aB;a # 7| 1 8,9,A.B 0 >0 0 >0
aC;a # 7,B 1 C 0 >0 0 >0
a78,a79,a7A;a #7 | 2 78,79,7A 0 >0 0 >0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the ¢3 = 4 corresponding to 3 = 0, since it is always 0):

| z= lastdigitsof o [s]| 2 || A(s,2) [A(, ) [ b=V [ei=d [ca =7 ]
7B,7C 218 |1 >0 0 9 0 1
778,779,77TA 31782 0 0 8 0 1
BC 2|1 C |1 0 0 10 1 1

The second inequality can be rewritten, for 12z ¢ Z and 15z ¢ Z, as

V(1537)§V<JJ—112>+V<x—152>+V(a:)—;

which, via the change of variable x — x + %, is equivalent to

1 1 ) 1 1
Vil — | < — V — — | -
<5£U—|—2>_V<$+12)—|— <$+12>+V<$+2> 5

and, following it suffices to prove

13" — 1 13" —1 5(13" — 1) 13" -1
1 < R S — — 12
[5:13+ 5 ]_[az+ 19 }+[m+ D :|+|:l‘+ 5 ] 6r +

for every r > 1 and every 0 < x < 13" — 1. For r < 3 we check it by computer. For r > 3 we proceed
by induction as described in proving first the following cases by splitting off the last digits of .
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’ last digits of x ‘ s ‘ z ‘ A(s, 2) ‘ > Ui ‘ 2. Y ‘ A(s,2) =123 50, +123 7, u ‘
0,1,2,3,4,5,6 1]01,23456] >0 | >0 | 0 >0
a7;a # 6 1 7 0 >0 0 >0
a8;a £ 4,5,6,7,AB | 1 8 12 | >1 | 0 >0
a%a#4,6,7,AB |1 9 12 | >1 | 0 >0
al,aB;a # 6,7 1 AB >0 >0 0 >0
aCia #£6,7B |1 C 0 >0 | 0 >0
48,49,58 2| 48,49,58 0 >0 0 >0
aAS;a £ 6,7A |2 A8 12 | >1 | o0 >0
aB8;a # 6,7 2 BS 0 >0 | 0 >0

The remaining cases are proved by substitution of the last digits, as specified in the following
table:

| z= lastdigitsof 2 [s] 2 |s'[A(s,2) [A(S,2) [bh =V [aa=c |ca=d [es =4 |
67,68,69,6A,6B,6C |2| 7 |1 >0 0 8 0 0 1
78,79,7A,7B,7C 21 8|1 |>-12 —12 9 0 1 1
BC 21 C |1 0 0 11 1 1 1
6A8,6B8 3169 |2 0 0 8 0 0 1
7TA8,7B8 31712 —12 —12 9 0 1 1
AAS 31A9 2| —12 —12 C 0 1 1
A9 21A8 2| —12 —12 C 0 1 1
B9 21 B8] 2 0 0 10 0 1 1

O

Theorem 27.2. The local system H = Hyp(Charis ~ {1};&12,&)5) in characteristic p = 13 has

geometric monodromy group Ggeom = Aut(*Ba(8)) = 2Ba(8) - 3. Furthermore, the local system
H @ Le, has a descent H to Fi3, which over any finite extension k of Fy32 has geometric and

arithmetic monodromy group Garith k = Ggeom = Aut(?B2(8)) x Cy.

Proof. (i) By Theorem G = Ggeom is finite. Let ¢ denote the character of the representation
G — GL(V) of G realizing H. By the construction of H, the field of values Q(¢) := Q(¢(g) | g € G)
contains i = \/—1; indeed, a p/-generator g, of the image of I(co) modulo P(co) in G has trace
(12 + (12° = i on Tame and 0 on Wild, whence ¢(goo) = i. In fact, applying Proposition (iii)
we see that Q(¢) = Q(7). It is clear that #H is not Kummer induced. Furthermore, the shape of
the “upstairs” and “downstairs” characters of H shows by Proposition (ii) that it is not Belyi
induced. Hence, by Theorem [3.5, (G, V) satisfies (S+). As D = dim(V) = 14, G must be almost
quasisimple by Lemma Next, since the cyclic group Z(G) acts via scalars and Q(p) = Q(i), we
have that Z(G) — C4. In fact, as H has rank 14 and trivial geometric determinant, it follows that

(27.2.1) Z(G) = Cs.

Let S denote the unique non-abelian composition factor of G, so that S = L/Z(L) for L :=
E(G) = G, Then V|y is irreducible by Lemma and so Cg(L) = Z(G) by Schur’s lemma.
Furthermore, 6(gg) = 15 for a generator gg of the image of I(0), whence C15 — G/Z(G) < Aut(S).
Moreover, the image @ of P(o00) is cyclic of order 13 by Proposition [5.§[iv), and Q < G/Z(G) by
Proposition [5.6(i). Now we can apply the main result of [HM] to arrive at the following possibilities
for (S, L).
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e S =L =As, and V| is just the deleted permutation module SU4V)|;. In this case, since
S<AG/Z(G) < Aut(S) = Sis, the element go of order 15 must belong to the inverse image S x Z(G)
of S in G. Using , we see that in fact g9 € S, hence G = S by Theorem But this is a
contradiction, since Q(¢) would have been equal to Q.

e (S,L) = (PSps(3), Spg(3). In this case, Q(¢) 2 Q(¢|) = Q(v/—3), again a contradiction.

e S = L = ?By(8). Recall that we have Z(G) = C¢(S) < Cy by (27.2.1). Furthermore, the
element go of central order 15 does not lie in Z(G)S <G, hence G > S X Z(G). Now S < G/Z(G) <
Aut(S) = S -3, and so G = (Z(G) x S) - 3. We also note that G/S contains the central subgroup
Z(G) of order < 2 and of index 3, hence it is abelian. Thus G contains a subgroup H = S - 3 of
index < 2, hence H << G and H contains the element gy of order 15. It now follows from Theorem
that G = H, and we conclude that Ggeom = ?B2(8) - 3.

(ii) First we note by Theorem [7.5(that H has a descent Hgg (listed in Table 4, line 27) to Fy3, for
which over any extension k O 32, any element in its arithmetic monodromy groups still has trace
in Q(7). Now we can take H = Ho ® Le, and have that every element in éarith,k has trace in Q(¢)
whenever k O Fy52. It follows for H that Z(égeom) < Z(éarith’k) < Cy. Next, if gy generates the
image of 1(0) in G = G'geom, then note that §(1)5 acts as the scalar —i on H, whence we now have

(27.2.2) Z(Ggeom) = Z(Garitn k) = Ca.
By Lemma
(27.2.3) G/Z(G) = G/Z(G) = Aut(S) and G(™) = G(>) = 5.

Together with (27.2.2), we now have that G/S is Cy x C3, with Cy being central. Hence G/S =

C4 x C3, and so G contains a normal subgroup N with N/S = C3. Note that Z(G)N = G,
Z(G)NN =1, and so N = G/Z(G) = Aut(S) by (27.2.3). Thus G = N x Z(G) = Aut(S) x Cy.

Finally, as Cx (S) = Z(Garitn k) = Z(G) and G already induces the full automorphism group

arith,k _
of S, we also have that Garith i = G. O
28. THE “EXCEPTIONAL” GROUP SLo(8) -3 =2 %G5(3)

Theorem 28.1. The local system H := Hyp(Chary U {1};&) in characteristic p = 7 has finite
geometric monodromy group.

Proof. We need to show:
V(9z)+ V(x) = V(3z) + V(—2z) — V(—z) > 0.

Using the fact that V(%) = V(=2%) = 5[19i] for 1 < i < 17 we check that the inequality holds

for 18z € 7Z. For all other values of z we can rewrite it, using that V(z) + V(—z) = 1 for x # 0,
V(z)=V()+V(@+3)—2and V3z) =V(2) + V(z + 1) + V(z + %) — 1 [KaT, §13], as

1 2 1 3
- Z < i Z
V<395+ 3) +V<3x+ 3> +V(z) < V<x+2> + 5
and, via the change of variable = — x + %, this is equivalent to
1 5 1 3
- = )< =
V(Sx—i— 6) +V<3:r—|—6> —l-V(:E—I— 2) <V(x)+ 5
Following §9] it suffices to prove
=1

5(7" — 1)
6

[3x+ }+[3$—|— }+[w+7r;1}§[:v]+9r
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for every r > 1 and every 0 <z < 7" — 1. For » = 1 we check it by hand. For r > 1 we proceed by
induction as described in by splitting off the last digit of z. In this case, since A(1,z) = 0 for
every z=0,...,6 and ) ;Ui 18 always 0, the induction step is automatically true. O

Lemma 28.2. The local system H' := Hyp(Charg~{1}; Chary) in characteristic p = 7 has geometric
third moment M3 > 1.

Proof. First we note that H’ is Sawin-like by [KT5H, Lemma 9.2(ii)] (with A =7 and B = 2). Hence
its geometric monodromy group Ggeom is contained in Sg in its deleted natural permutation module
S(&1)  Since the latter has nontrivial determinant, but #’ has trivial geometric determinant, we
have Ggeom < Ag. Now, using [GAP] we can check that A7 has M3 = 1 on SG61L  whence the
statement follows. O

Theorem 28.3. The following statements hold.

(a) The local systems H := Hyp(Charg U{1}; &) and H' := Hyp(Charg~{1}; Chary) in characteristic
p =T both have geometric monodromy group

Ggeom,’H = Ggeom,’H’ = SL2(8) 3= 2G2(3)'

(b) H ® Le¢, has a descent Hy to Fz, which over any finite extension k of Fag9 has arithmetic and
geometric monodromy groups Gayith k1, = Ggeom M, = G2 (3) x O.

(c) "' ® Le, has a descent ’Hé to F7, which over any finite extension k of Fy9 has arithmetic and
geometric monodromy groups Garith,k,?—[j’j = Ggeom,Hé =2G5(3) x Cs.

Proof. (i) By Theorem G = Ggeom,# is finite. Let ¢ denote the character of the representation
G — GL(V) of G realizing H. By the construction of # and Corollary [6.2{i), the field of values
Qe) :=Q(e(g) | g € G) is Q. It is clear that H is not Kummer induced. Furthermore, the shape
of the “upstairs” and “downstairs” characters of H shows by Proposition (ii) that it is not Belyi
induced. Hence, by Theorem (G,V) satisfies (S+). Furthermore, o(gg) = 6(go) = 9 for a
generator gy of the image of 1(0), whence 9 divides |G/Z(G)|. We also note by Proposition [5.6{iii)
that p = 7 also divides |G/Z(G)|. Next, since the cyclic group Z(G) acts via scalars and Q(¢) = Q,
we have that

(28.3.1) Z(G) = Cb.

Suppose that G satisfies condition (c¢) of Lemma Then G <1 R 2 772 and G/Z(G) embeds in
C2 1 Spy(7), whence 91 |G/Z(G)|, a contradiction.

(ii) We have therefore shown that G is almost quasisimple by Lemma . Let S denote the
unique non-abelian composition factor of G, so that S = L/Z(L) for L := E(G) = G(>). Then
V|1, is irreducible by Lemma [3.1] and so C¢ (L) = Z(G) by Schur’s lemma. Hence, both Cy and C7
embed in G/Z(G) < Aut(S). Now we can apply the main result of [HM] to arrive at the following
possibilities for (S, L).

e S = L = Ag, and V| is just the deleted permutation module 5(7’1)\L. In this case, since
S<AG/Z(G) < Aut(S) = Sg, the element gy of order 9 must belong to the inverse image S x Z(G) of
S in G. Using (28.3.1]), we see that in fact go € S, hence G = S by Theorem Now G = SL4(2)
admits a faithful representation of degree 4 over Fo. It follows from [KT5, Theorem 4.14] that
dim Wild < 4, a contradiction.

e S = L = Spg(2). As in the previous case, we see that the element gy of order 9 must belong
to the inverse image S x Z(G) of S in G, and using ([28.3.1), we then see that gy € S, and so
G = S by Theorem Now, the sheaf H gives rise to a surjection ¢ : m1 (G, /Fp) — S. Also,
consider the surjection 7 : § = 2Sp4(2) — S with kernel Ker () 2 Cy. The obstruction to lifting ¢
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to a homomorphism @ : 71 (G,,/F,) — S lies in the group H*(G,,/F,, Ker(r)) = 0, the vanishing
because open curves have cohomological dimension < 1, cf. [SGAlL Cor. 2.7, Exp. IX and Thm.
5.1, Exp. X]. Since S contains no subgroup isomorphic to S, we conclude that w is also surjective.
Now we can inflate @ to a representation ® of S with kernel Cy. We also consider the faithful
8-dimensional representation ¥ : § — GLg(C) and note that

Trace(¥(h)) = 1 + Trace(®(h))
for all 7-elements h € S. Applying [KT5, Theorem 5.1], we now see that ¥ o w gives rise to a
hypergeometric sheaf H of type (8,2), still in characteristic p = 7 and with C7 being the image
of P(c0). Let goo be a p/-generator of I(oo) modulo P(c0) in S, and let hy € S, respectively
hso € S be an inverse image of gg, respectively of g». The shape of H tells us by Proposition
that the spectrum of ®(hs) = P(goo) consists of all 6™ roots of some o € C* and —1 (counting
multiplicities). Thus 6]o(hs) and it has trace —1 in ®. It follows that he belongs to class 6g or 6k
in the notation of [GAP]. Likewise, the spectrum of W(hs,) consists of all 6" roots of some 3 € C*
and two more roots of unity v # 6 € C* (counting multiplicities). Using [GAP] we can now see
that 8 = 1 and {v,0} = {1, —1}, which means that the two “downstairs” characters of # are 1
and &». Next, 9Jo(hg), so hg belongs to class 9a or 18a in the notation of |[GAP|, and so inspecting

the spectrum of W(hg) we see that the “upstairs” characters of H are either X; := Charg ~ {1}, or
Xo := & - X7. We conclude that either

(28.3.2) H=H,
or
(28.3.3) H=H @ L,

In the case of , Lemma tells us that H = H’ has M3 > 1, whereas ¥ has M3 = 0
(indeed, Z(S) = Cj acts faithfully in ¥), a contradiction. Hence (28.3.3) must occur, and thus
Ggeom’y.[/@[;gz = S. Now we consider H := Goeom /- By Lemma [5.12) H/Z(H) = S'/Z(S') =S and
H(*) = §(0) >~ § In particular, Z(H) > Z(H()) = Cy, and so H has M3 = 0, again contradicting
Lemma

e S = L = SLy(8). Recall that we have Z(G) = Cg(S) < Cs by ' We again look at
a p/-generator g, of I(co) modulo P(c0) in G, and note by Proposition [5.8(iii) that 6/6(gs0). As
SZ(G) does not contain any element of order 6, we have that G > Z(G) x S. Now S < G/Z(G) <
Aut(S) =5 -3, and so G = (Z(G) x S) - 3. We also note that G/S contains the central subgroup
Z(G) of order < 2 and of index 3, hence it is abelian. Thus G contains a subgroup H = S - 3 of
index < 2, hence H << G and H contains the element gg of order 9. It now follows from Theorem
that G = H, and we conclude that Ggeom, ¢ = SL2(8) - 3.

(iii) The result of (ii) yields a surjection ¢ : 11 (G, /Fp) = G with G = Ggeom,n = SL2(8)-3. Note
that G admits a unique 8-dimensional irreducible representation © with rational-valued character,
and moreover

Trace(O(v)) = 1 + Trace(®(v))

for all 7-elements v € G. Applying [KT5, Theorem 5.1], we again see that © o ¢ gives rise to a
hypergeometric sheaf H” of type (8,2), still in characteristic p = 7 and with C7; being the image
of P(c0). By Theorem the normal closure of gy in G equals G, so gg ¢ SL2(8), and thus the
element gp must belong to class 9b or 9¢ in the notation of [GAP]. Inspecting the spectrum of ©(gp),
we see that the “upstairs” characters of H” are Charg \ {1}. Likewise, a p’-generator g, of I(o0)
modulo P(c0) in G has order divisible by 6, and so must belong to class 6a or 6b in the notation
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of [GAP]. Inspecting the spectrum of ©(g.,), we see that the “downstairs” characters of H” are
Chary. Thus H” = H’, and so Ggeom 1 = O(G) = G.

(iv) Now we note by Theorem that H has a descent Hop (listed in Table 4, line 28) to Fr,
for which over any extension k O 49, any element in its arithmetic monodromy groups still has
rational trace. Now we can take Hy = Hoo ® L¢, and have that every element in C;'arith,k has trace in
Q whenever k 2 Fyg. It follows for H; that Z(Ggeom ) < Z(Garith,k,Hu) < (C5. Next, if vy generates
the image of 1(0) in Ggeom,m, then note that vg acts as the scalar —1 on Hy, whence we now have

(2834) Z(Ggeom,’Hn) = Z(Garith,k}{,ﬁ) =0y = <09>'
By Lemma [5.12]
(28.3.5) Ggeom,t; /Z(Ggeomp,) = G/Z(G) = Aut(S) and (Ggeomﬂﬁ)(oo) ~ () — g

Together with (28.3.4]), we now have that Ggeom,ﬂﬁ/S is Cy x Cs, with Cs being central. Hence
Ggeom,Hu/S = (9 x (3, and so Ggeom,?—[n contains a normal subgroup N with N/S = C5. Note that
Z<Ggeom,’Hu)N = Ggeom,?—iua Z(Ggeom,Hu) NN =1, and so N = Ggeom,Hﬁ/Z(Ggeom,Hu) = Aut(S) by
(28.3.4). Thus Ggeomﬂu =N X Z(Ggeomﬂu) = Aut(S) x Cy. Finally, as

CGarith,k,’Hu (S) = Z(Garith,k,Hﬁ) = Z(Ggeomﬂu)
and Ggeom,#, already induces the full automorphism group of S, we also have that
Garith,k,?—[ﬁ = Ggeom,?-ln‘
The same arguments apply to the case of #', by taking Hj = (H')oo ® Le,, with (}')oo either
one of the two sheaves given in Table 4, line 29. O

Remark 28.4. Given a finite group G and a finite-dimensional CG-module V', even in the case
(G, V) satisfies (S+) and V is orthogonally self-dual, the third moment M3(G,V') can be 0 (as in
the case of the 8-dimensional faithful module for 2 - Sps(2) as we saw above), 1 (as in the case of
the 8-dimensional faithful module for Ag-module), 2 (as in the case of the 12-dimensional module
for SL3(3)), or even 35 (as in the case of the 189-dimensional faithful module for Ag-module). Note
that, in addition to (S+), the first three cases share the common property of having an element
with a simple spectrum.

29. THE CONWAY GROUP Co; AND THE SUZUKI GROUP Suz

Theorem 29.1. The local system H := Hyp(Charly; 1) in characteristic p = 2 has a descent H'
to Fo which over any finite extension k of Fo has geometric and arithmetic monodromy groups
Ggeom = Garith . = 2 - Co1, the double cover of the Conway sporadic simple group Co.

Proof. The statement about Ggeom is [KRLT3, Theorem 8.1]. We will use the descent H' = Hoo
constructed in Theorem [7.5 and listed in Table 4, line 30, which also has Q as the field of traces of
all elements in Garign i, Whence

Z(Garith,k) = CGarith,k(GgeOm) = Z(Ggeom) = Ch.
Now,
S < Gaith i/ Z(Garith ) < Aut(S) =S
for S := Ggeom/Z(Ggeom) = Co1, and 50 Garith k = Ggeom- O
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Theorem 29.2. Each of the two local systems
M1 = Hyp(Charyo \ (Chary U Chars); 1) and Ha := Hyp(Charjg; 1)

in characteristic p = 3 has a descent H' to Fs, which over any finite extension k of F3 has geometric
and arithmetic monodromy groups Ggeom = Garith,k = 6 - Suz, the sixth cover of the Suzuki sporadic
simple group Suz.

Proof. The statement about Ggeom is [KRLTS, Theorem 8.2]. We will use the descent H' = Hog
constructed in Theorem and listed in Table 4, lines 31 and 32, which also has Q(v/—3) as the
field of traces of all elements in Gitn, whence

Z(Garith,k) = CGamh’k(Ggeom) = Z(Ggeom) = CG-
Now,
S <A Garith b/ Z(Garith k) < Aut(S) =S -2

for S := Ggeom/Z(Ggeom) = Suz, and no outer automorphism of S can fix the equivalence class of
a 12-dimensional faithful complex representation of Ggeom. It follows that Garith k = Ggeom- O
30. COMPLEX REFLECTION GROUPS

Theorem 30.1. The local system Hyp(Charys; Charg \ Char}) in characteristic 2 has finite mon-
odromy.

Proof. We need to show:
V(15z) = V(3z) = V(5z) + V(z) + V(—9z) — V(=3z) + V(—z) > 0.

Using the fact that V($) = V(5y) = g[74) for 1 < i < 8 we check that the inequality holds

for 9z € Z. For all other values of z, using that V(z) + V(-z) = 1 if  # 0 and V(Nz) =
>imod v V(@ + %) — 5L [KaTl §13], we can rewrite the inequality as

1 2 4 8 ) 10
< — — — — — —
V(9z) <V <:c+15>+V <x+15>+V <x+15>+V <x+15>+v <x+15>+V (x+15>+

7 14 13 11
- — = =) -4
+V<:U+15>+V(ac+15)+V(m+15>+V<x+15>

and, following it suffices to prove

[9$}S[w+2r_l} + {aﬂrm_l)} + [az+4(2r_1)] + [m+8(2r_1)} + {x+5<2_1>}

15 15 15 15 15
10(2" — 1) 7(27 — 1) 14(2" — 1) 1327 — 1) 11(2" — 1)
for every r > 1 divisible by r9 = 4 and every 0 < x < 2" — 1. Since multiplication by 2 permutes

1 2 4 8 . _ 5 __10. _ 7 __ 14 _ 13
M=1 "2 =151 =1 and 74 = {3; 5 = 35 and 96 = 15; and 17 = 15, 8 = 15, Y9 = 1z and

Y10 = % cyclically modulo 1, we can take r; = 1. Then, with the notation of we have
(2% — 1)y, = 00012, (2* —1)y5 = 0101y, (2* — 1)y7 = 0111;
h; =1,0,0,0,1,0,1,1,1,0; ho; = 012,009,002, 102,012,102, 112,115,015, 100;
hs; = 0012, 0002, 1002, 0102, 1012, 0102, 1115, 0115, 1015, 1102;

and
ha,; = 00012,10002,01002,00102,01012,10102,01115,10115, 11015, 11104
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for 5 =1,...,10 respectively. We will prove that
10
[9z] < Z[w + hy ] — 4r
i=1
for every r > 1 and 0 < & < 2" — 1. For r < 8 we check it by computer. For r» > 8 we proceed by
induction as described in proving first the following cases by splitting off the last digits of x.

last digits of x ‘ s ‘ z ‘ A(s, z) ‘ > Ui ‘ 2.5 ‘ Als,z) =D v+ ‘
0 1 0 1 0 0 1
0001,1101,0111 | 1 1 4 >0 <4 >0
000011,110011 | 4 0011 1 >0 <1 >0
11011 3 011 2 >2 2 >2
00001111 8 | 00001111 4 0 0 4

The remaining cases are proved by substitution of the last digits, as specified in the following
table:

z = last ,

digits of s z s A(s,2) | A(s',2) | b1 |e1|ca|ces|ca|es|cs|er|es|eolcio
1001 4 101 3 7 6 101 {00 j0]1 0|1 |1]|1]|1 1
10101 5 1010 4 7 7 101 10| 0]O0O]1T|O0|1]1]1 1
00101 5 0011 4 3 1 1 0/0(0]j]0OJO]O]O]O0O]|1 1
0010011 71 001011 | 6 2 2 1 0/0(0jO0J0O}]O0O]|1T]|1|0]0
1010011 71 100111 | 6 6 5 0100|1010 1]1]1 1
00100011,

{ 00101111 8 0011 4 1 1 1 o/,0j0j0J0}j0jO|1T 1] 0
10100011 8| 100111 | 6 5 5 101 f0jO0jO0O]1]0|1|1]1]1 1
1100011 71 101111 | 6 5 5 110011011 |1]1]1 1

01011 5 0110 4 3 3 11 0/0(0]O0O11T]0]1]0]|1 1
10001111 8 | 1001011 | 7 7 6 1010 {00 jO0O]1T 01T |1]|1]|1 1
1001111 71 100111 | 6 6 5 101 {00101 ]0]1]|1]|1 1
10101111 8| 10111 5 6 6 110 /00|01 |11 |1]1]1 1
01101111 8| 0101111 | 7 2 2 11 Oo(jojofojoj1j01]1 1
11101111 8| 1111111 | 7 8 8 0001 (1|11 1|11 ]1]|1 1

11111 5 1111 4 8 8 0001 (1|1 (11|11 ]1]|1 1

Theorem 30.2. The local system Hyp(Charg; Chars) in characteristic 2 has finite monodromy.

Proof. We need to show:

V(9x) — V(3x) + V(=bx) > 0.
Using the fact that V(§) = V(5g) = §[7] for 1 < i < 8 we check that the inequality holds
for 92 € Z. For all other values of x, using that V(z) + V(—z) = 1 if x # 0 and V(Nz) =
> imod v V(@ + %) — 251 [KaTl §13], we can rewrite the inequality as

1 2
V<3x+3>+V<3$+3) <V(5z)+1

:V<m+;)>+v<x+§)+V<x+§>+v<m+§>+1/(m)—1
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and, following 9| it suffices to prove
o s 271y (5 2@ D) [ 2] [ A2 D]
x 3 x 3 < |z - x 5
T

L) A ) T

for every r > 1 divisible by rg = 4 and every 0 < x < 2" — 1. Since multiplication by 22 permutes
v = % and 2 = %, and y3 = % and y4 = % cyclically modulo 1, we can take r; = 2. Then, with
the notation of we have (24 — 1)y; = 0011g; hy = 11a, hy = 0; ha; = 00112,11004 for j = 1,2
respectively. We will prove that

3o 2 [+ 2] <l bl ol ot bl b ] 4 o]

3

forevery r =2k > 1 and 0 < x < 2" — 1. For r < 8 we check it by computer. For r > 8 we proceed
by induction as described in proving first the following cases by splitting off the last digits of x.

last digits of x ‘ s ‘ z ‘ A(s, z) ‘ Do Ui ‘ 2.V ‘ A(s,2) =2 v+ ui ‘
00 2 00 0 0 0 0
0001,1001,0101 | 2 01 1 >0 <1 >0
0010,0110 2 10 1 >0 <1 >0
0001110 6 | 001110 0 >0 0 >0
01001110 6 | 001110 0 1 1 0
0011 2 11 2 >0 1 >1
000111 6| 000111 0 0 0 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the ¢5 = ¢§ corresponding to 5 = 0, since it is always 0):

d?gi_ts 12;27 s ' s A(s,2) | A(s,2) | by =b) | ba=by |c1=¢) |ca=ch | ecs=c | eca=C)
1010 4 11 2 3 2 10 10 0 1 1 1
11001110 8| 110111 | 6 2 2 10 11 1 1 1 1
101110,100111 | 6 | 1100 | 4 2 2 10 10 1 0 1 1
011110 6| 1000 | 4 3 1 1 10 1 0 1 0
111110,111111 | 6 | 1111 | 4 >4 3 11 11 1 1 1 1
1101 4] 1110 | 4 3 2 10 11 1 1 1 1
010111 6| 0110 | 4 1 1 1 1 1 0 0 0
110111 6| 1110 | 4 2 2 10 11 1 1 1 1
1011 4 11 2 3 2 10 10 0 1 1 1
001111 6 01 2 3 1 1 1 1 0 0 0
101111 6 11 2 4 2 10 10 1 0 1 1
011111 6 10 2 4 1 1 10 1 0 1 0

O

Theorem 30.3. The local system Hyp(Chary;Chary U {&9,&5,€3}) in characteristic 2 has finite
monodromy.
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Proof. We need to show:

V(72) — V(z) + V(=32) — V(=) + V <—x + ;) LV (—x + 3) LV (—x + g) >1

and

V(7z) = V(x)+V(=3z) = V(-2)+V (—x + ;) +V (—a: + S) +V <—:1; + g) > 1.

Since these inequalities are equivalent via the change of variable z — 2z, we will focus on the first

one. Using the fact that V(&) = V(ﬁ) = £[i] for 1 < i < 62 we check that the inequality

holds for 7z € Z. For all other values of z, using that V(z) + V(—z) = 1 if x # 0 and V(3z) =
V(z)+V(z+3)+V(z+3)—1 [KaT §13], we can rewrite the inequality as

V(7x)§V<x+;>+V<x+§>+v<x+;>+V<a:+;l>+V<x+g)+V(:c)—2

and, following it suffices to prove

R R N R

for every r > 1 divisible by ry = 6 and every 0 < x < 2" — 1. Since multiplication by 22 fixes y; = %
and 7o = % and permutes 3 = %, Y4 = % and v5 = g cyclically modulo 1, we can take 71 = 2. Then,
with the notation of §9| we have (2% — 1)y; = 00013, (2° — 1)y = 0101012, (2% — 1)72 = 101010,
(26 — 1)’}/3 = 0001112; hj = 012, 102, 112, 012, 002; hQJ‘ = 01012, 10102, 01112, 00012, 11002 and h37j =
0101015,1010102,0001115,1100012,0111004 for 7 = 1,...,5 respectively. We will prove that

0<[z+hgi]+ [z + hia] + [+ hgs) + @+ hga) + [z + his) + [2] — 2

forevery r =2k > 1and 0 < z < 2" — 1. For r < 12 we check it by computer. For r > 12 we
proceed by induction as described in proving first the following cases by splitting off the last
digits of x.

last digits of x | s | z [AGs,2) [ Doui | 20505 [ Als,2) =05 + >0 ui |
00 2 00 1 0 0 1
101 2 01 0 >0 0 >0
0001 4 0001 0 0 0 0
001001 6 001001 0 0 0 0
00101001 8 00101001 3 >0 0 >3
00011001 8 00011001 0 0 0 >0
0011011001 10 | 0011011001 1 >0 0 >1
001011011001 12 |1 001011011001 1 >0 0 >1
0010,1110,01010,00110 | 2 10 2 >0 <2 >0
0011,00111,11111 2 11 3 >0 <3 >0
001011 6 001011 2 >0 0 > 2

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the ¢g = ¢ corresponding to s = 0, since it is always 0):
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d?g;cslji?ta: S z s A(s,z) | A(s,2) | by =b) |e1|ea|es|ca|es
10101001 8 101001 6 5 3 100 oO(1(110}1
01101001 8 011011 6 1 1 10 Oj(111]0/|1
11101001 8 111011 6 4 4 110 1171111
01011001 8 011001 6 0 0 10 0110710
10011001 8 101001 6 3 3 100 O(1(110(1
101011011001 1211011011001 | 10 2 2 100 111011
011011011001 12| 011001001 | 10 0 0 10 0j110]0]|1
111011011001 1211110010001 | 10 3 3 110 1 ({1111
0111011001 10| 01111001 8 2 2 11 O|1]10]11]0
1111011001 10| 11111001 8 4 4 110 1 (11|11
00111001 8 010001 6 0 0 1 0011010
10111001 8 110001 6 3 3 101 1({1]1(0]1
01111001 8 100001 6 2 2 11 Oj1]1]01]0
11111001 8 111011 6 4 4 110 1 (1111
011010,010110,010111 | 6 0110 4 >3 3 10 oj110]0]|1
111010 6 1111 4 6 5 110 1 (1 ]1|1]1
110110 6 1101 4 5 4 101 1({1]0(1]1
110111 6 1110 4 8 7 110 1({1]0(1]1
011011 6 011001 6 1 0 10 0j110]0/|1
101011 6 1011 4 3 3 100 1({1]0(1]1
111011 6 111001 6 4 3 110 1 (1|1 |1]1
001111 6 0100 4 2 1 1 oOj]0|10]0]|1
101111 6 1100 4 5 4 101 1 ({1011

[l
Theorem 30.4. The local system Hyp(Char;; Chary~{1}) in characteristic 3 has finite monodromy.
Proof. We need to show:

V(5:c)—V(a:)+V<—x ) < ) <—$+z>>1.

Using the fact that V() = V(%) = 1[4d] for 1 < i < 19 we check that the inequality holds for

5x € Z. For other values of x, using that V( )+ V(- ) = 1 if x # 0, we can rewrite the inequality

) V(5J;)§V<x+1>+V<$+;>+V<x+?l>+V(x)_

and, following it suffices to prove

5] < [x+37~4_1] + [a;+3(321_1)] + [a:+3r2_1} +la]—2r+1

for every r > 1 divisible by 19 = 2 and every 0 < x < 3" — 1. Since multiplication by 3 permutes
v = i and o = % and fixes v3 = % modulo 1, we can take r; = 1. Then, with the notation of
we have (32 — 1)y, = 023, (3% — 1)y3 = 113, h; = 2,0,1 and hs,; = 023,203,113 for ¢ = 1,2,3
respectively. We will prove that

[z] <[z + hei]+ [+ heo] + [@+ hys] + [2] — 2r + 1
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for every r > 1 and 0 < o < 3" — 1. For » < 6 we check it by computer. For » > 6 we proceed by
induction as described in proving first the following cases by splitting off the last digits of x.

lastdigitsof:v‘s‘ z ‘A(s,z)‘ziui‘zjvj‘A(s,z)—QZjUijQZiui‘
0 1 0 1 0 0 1

01,11 1 1 0 >0 0 >0
a021, a2 |3| 021 0o | >0 o >0
a02021, a # 2 | 5 | 02021 0 >0 0 >0
0121 41 0121 0 >0 0 >0
02 21 02 4 >0 0 >4
012 3| 012 2 >0 0 > 2

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the ¢4 = ¢ corresponding to v5 = 0, since it is always 0):

| z= lastdigitsof z [s]| 2/ [ [A(s,2) [A(,2) [ bi=b |a=d[ca=d]|ca=d]

202021 6120214 1 1 10 1 1 1
12021 51121 | 4 -1 -1 2 1 0 1
22021 512121 | 4 2 2 11 1 1 1
1121 41 121 | 3 -1 -1 2 0 1 1
2121 41 221 | 3 2 2 11 1 1 1
0221 41 021 | 3 1 0 1 0 1 0
1221 41 201 | 3 4 4 10 0 1 1
2221 41 221 | 3 3 2 11 1 1 1
112 3 12 |2 1 1 2 1 0 1
212,222 3| 22 |2 >4 4 11 1 1 1
022 3| 10 |2 3 1 1 1 0 0
122 31 20 |2 6 4 10 1 0 1

O
Theorem 30.5. The local system Hyp(Charj'; &) in characteristic 5 has finite monodromy.

Proof. We need to show:
1
VBz)—-V(x)+V (9: + 2) > 0.
For 3x € 7Z it is clearly true, since V(%) = % for i = 1,...,5. For other values of x, Using the fact

that V(z) + V(—z) = 1 if = # 0, we can rewrite the inequality as
1
V(3z) <V (m + 2) + V(z)

and, following it suffices to prove
5" —1

[3x]§[az+ }+[a:]+1

for every r > 1 and every 0 < x < 5" — 1. For r < 2 we check it by computer. For r > 2 we proceed
by induction as described in proving first the following cases by splitting off the last digits of .
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last digitsofa:‘s‘ z ‘A(s,z)‘Ziui‘zjvj‘A(s,z)—llzjvj—kllziui‘
0,1,2 1]012] >1 | >0 ] 0 >1
03,13 2 103,13 >0 >0 0 >0
ad3, a#£2 |2| 43 1 >0 | 0 >1
04,14 21 04,14 >4 >0 0 >4

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the ¢o = ¢, corresponding to v, = 0, since it is always 0):

| z= lastdigitsof x |s |2 |¢|A(s,2) [A(,2) [ bi=b] | a1 =]
23,24 213 |1 >-1 —1 1 1
33,34,44 214 |1 > 2 2 2 1
243 3130 2 1 1 1 1
O
Theorem 30.6. The local system Hyp(Char} ;1) in characteristic 3 has finite monodromy.
Proof. We need to show:
1 3
V<x+4> +V<x+4> +V(—z)> 1
Using the fact that V(z) + V(—z) = 1 if  # 0, we can rewrite the inequality as
V(i) <V |xz+ ! +Vix+ 5
x T+ — x+ -
- 4 4
and, following §9] it suffices to prove
2] < +37“—1 n +3(37"—1)
x x x4+ —-=
- 4 4
for every r > 1 divisible by 9 = 2 and every 0 < x < 3" — 1. Since multiplication by 3 permutes
v o= L and Yo = % modulo 1, we can take iy = 1. Then, with the notation of we have

1
(32 - )'Yl =023, h1 = 2, hy =0, h271 = 023, h272 = 203. We will prove that
[z] < &+ hea] + [2 4 hrg]

for every r > 1 and 0 < x < 3" — 1. For r < 4 we check it by computer. For r» > 4 we proceed by
induction as described in proving first the following cases by splitting off the last digits of x.

lastdigitsofx‘s‘ z ‘A(s,z)‘ziui‘zjvj‘A(s,z)—QZjvj—FQZiui‘
0 11 0 2 0 0 2
01,11 1] 1 1 0 0 1
0021,1021 31021 1 0 0 1
02,12 1] 2 2 0 0 2
122,222 1] 2 2 0 1 0

The remaining cases are proved by substitution of the last digits, as specified in the following
table:
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| z= lastdigitsof z [s] 2/ [s'[A(s,2) [A(,Z) b=V ]eaa=c |aa=d)
2021 4122113 1 1 0 1 1
121,022 3| 11 | 2 2 2 0 1 0
221 3] 21 |2 1 1 0 1 1

O

Theorem 30.7. The following statements hold.

(i) The sheaf Hg := Hyp(Charys; Charg~ Chary) in characteristic 2 has G = Ggeom = W (E3) in its
reflection representation. Conversely, if H is a geometrically irreducible hypergeometric sheaf
of type (8,7) in some characteristic p with Ggeom = W (Eg) in its reflection representation,
then p =2 and H' = Hy.

(ii) The sheaf He := Hyp(Charg'; Chars) in characteristic 2 has G = Ggeom = W (Eg) = SU4(2) - 2
in its reflection representation. Conversely, if H' is a geometrically irreducible hypergeometric
sheaf of type (6,5) in some characteristic p with Ggeom = W (Eg) in its reflection representa-
tion, then p = 2 and H' = Hs.

(ili) The sheaf Hj := Hyp(CharX; &y A48Ty Gn characteristic 2 has G = Ggeom = 61 - PSU4(3) - 2,
the Mitchell group, in its reflection representation.

(iv) The sheaf Ha := Hyp(CharZ; Chary \ {1}) in characteristic 3 has G = Ggeom = 3 X Spy(3) in
its reflection representation.

(v) The sheaf Ha := Hyp(Chary ;&) in characteristic 5 has G = Ggeom = SLa(5) x5 in its reflection
representation.

(vi) The sheaf HYy := Hyp(Char};1) in characteristic 3 has G = Ggeom = SL2(3) in its reflection
representation.

Proof. (i) By Theorem G is finite. Moreover, the shape of Hg shows by Proposition [3.7] that
it is primitive, and the ﬁeld of traces is Q by Proposition (111) In particular, Z(G) < Cj. Next,
by [KT9, Theorem 5.6], G = Z(G)Gp, where Gy = W(Eg) in its reflection representation. As
Z(Gy) = Cy is central in G, we conclude that Z(G) < G and hence G = Gj, as stated.

Conversely, we consider H with geometric monodromy group H = Ggeom = W (Eg) in its reflection
representation. Every complex reflection in H has order 2. Hence any non-identity element h in
the image of P(o0) in H has order 2, and thus p = 2. Next, h is a 2F-involution, in the notation of
[GAP]. As usual, let hg generate the image of 1(0) in H, and let ho, of p’-order, generate the image
of I(c0) modulo P(o0) in H. As 21 0(hwo) ,hoo has simple spectrum on Tame (of dimension 7) and
centralizes h, we see using [GAP] that ho, has order 7 (of class 7A), 9 (of class 9A), or 15 (of class
15A). Inspecting the spectrum of ho, we see that in each of these three cases, 1 is an eigenvalue of
multiplicity 2, hence it must occur on both Wild and Tame. It follows that the set of “downstairs”
characters of H is

(30.7.1) Char(7), {€|i=0,1,2,4,5,7,8}, Charyyiy(3) U Char(5),

respectively. On the other hand, hg can belong to either class 9B or 155, and so the set of “upstairs”
characters of H is Charygyiv(9) or Char™(15), respectively. If the “upstairs” set is Charpgiv(9), then
the “downstairs” set must be Char(7), in which case Ggeom = Sg by [KT5, Theorem 9.3]. Hence the
“upstairs” set is Char*(15). The first and the third of the three possibilities listed in for
the “downstairs” set lead to local systems that fail the V-test and thus have infinite Ggeom. The
middle candidate gives rise to H = Hs.

(ii) By Theorem G is finite. Moreover, the shape of Hg shows by Proposition [3.7| that it is
primitive, and the field of traces is Q by Proposition (iii). In particular, Z(G) < Cs. Next, by
[KT9, Theorem 4.8, G = Z(G)Gy where G is the normal closure of the image of P(c0) in G and
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Go = W (Es) in its reflection representation (note that Gy cannot be the Mitchell group because
Z(G) < Cy). As Z(Gy) < Cy, G/Gp is a 2-group. On the other hand, G/Go has odd order by
Theorem Hence G = G, as stated.

Conversely, we consider H with geometric monodromy group H = Ggeom = W (FEg) in its reflection
representation. Every complex reflection in H has order 2. Hence any non-identity element h in
the image of P(0c0) in H has order 2, and thus p = 2. Next, h is a 2C-involution, in the notation
of [GAP]. With hy and hs as defined in (i), 2 1 o(hs), hoo has simple spectrum on Tame (of
dimension 5) and centralizes h. Using [GAP] we see that ho belongs to class 54, and so the set
of “downstairs” characters of H is Chars. On the other hand, as hg has odd order and has simple
spectrum on 7, it can belong to class 94, and so the set of “upstairs” characters of H is Charg,
showing H = Hs.

(iii) By Theorem m G is finite. Moreover, the shape of Hf shows by Proposition that
it is primitive, and the field of traces is contained in Q({3) by Proposition (iii). In particular,
Z(G) < Cs. Next, by [KT9, Theorem 4.8], G = Z(G)Go where Gy is the normal closure of the
image of P(oc0) in G, and Gy is either W (Ejg) or the Mitchell group in their reflection representations.
Since go has central order 7, Go # W (Eg), and thus Gy = 61 - PSU4(3) - 29, the Mitchell group. As
Z(Go) = Cs centralizes G, we conclude that Z(G) < G and G = Gy, as stated.

(iv) By Theorem G is finite. Moreover, the shape of H4 shows by Proposition that it
is primitive, and the field of traces is Q((3) by Corollary (ii). In particular, Z(G) < Cg. Recall
that any element 1 # h in the image of P(c0) in G acts a complex reflection of order 3. Hence,
by Bagnera’s theorem, see [Mitl Theorem 2], G/Z(G) = S = PSp,(3). Since irreducible projective
representations of degree 4 of S can only lift to linear representations of L = Sp,(3), which are not
stable under outer automorphisms of L, we have that G = Z(G)L. Now Z(G) > Z(L) = C3. But
L does not contain complex reflections (of order 3), we must have Z(G) = Cs and thus G =3 x L,
as stated.

(v) By Theorem G is finite. Moreover, the shape of Hs shows by Proposition that
it is primitive, and the field of traces is contained in Q({5) by Proposition (iii). In particular,
Z(G) < Cyp. Since D = 2, G satisfies (S+), and the existence of a non-trivial element h in the image
of P(00), which acts as the scalar (5 on Wild and 1 on Tame rules out the extraspecial normalizer
case of Lemma Thus G is almost quasisimple, and one quickly deduces that G = Z(G)SLa(5);
in particular 2||Z(G)|. The existence of h now implies that in fact |Z(G)| = 10 and G = SLy(5) x 5.

(vi) By Theorem G is finite. Moreover, the shape of H/, shows by Proposition that it is
primitive, and the field of traces is Q((3) by Corollary [6.2(ii). In particular,

(30.7.2) Z(G) < Cs.

Since D = 2, G satisfies (S+), and the trace field Q((3) rules out the almost quasisimple extraspecial
case of Lemma (which would imply G > SLa(5) with Q(+/5) contained in the trace field), as well
as the case of R = E * Cy in the extraspecial normalizer case (which would imply the existence of
a trace 2¢/—1). Thus R <G < Ngpv)(R), where V = C? and R~ Dg = 21+Jr2 or R Qg =212
Next, a nontrivial element h in the image of P(o0) acts on V' with eigenvalues 1 and (3, hence
inducing an automorphism of order 3 of R. As Aut(Dg) is a 2-group, it follows that R = @Qs. Since
R is irreducible on V', we have that Cq(R) = Z(G), and so G/Z(G) — Aut(R) = Sy.

Suppose that G/Z(G) =2 S4. Then the representation ® of G on V' gives a degree 2 irreducible
projective representation of Sy, which is realized by a degree 2 irreducible representation ¥ of a
double cover H = 2 -S4. Furthermore, the induced projective representation ® : G — PGL(V) is
faithful on R/Z(R) = C2. Hence, ¥ cannot be a linear representation of Sy (otherwise its image
would be 22 S3), and so it must be a faithful representation of H. Using the character table of H given
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in [GAP], we can find an element g € G and a root of unity v with Tr(y®(g)) = v/—2. On the other
hand, Tr(®(g)) = a+b(s for some a,b € Z. It follows that 2 = |Tr(y®(g))|> = |Tr(g)|> = a® —ab+b?,
i.e. (2a —b)? + 3b? = 8, a contradiction.

As both R/Z(R) = C2 and Cj inject in G/Z(G), we conclude that G/Z(G) = A4. Suppose
Z(G) > Z(R). Then implies that Z(G) = C3 x Z(R). It follows that R is a normal subgroup
of index 9 in G. As a generator gy of the image of I(0) in G has order 4, the normal closure Gy
of the image of I(0) in G is contained in R, and so 9 divides |G/Gy|, contradicting Theorem
Thus Z(G) = Z(R) = C3. Note that the representation ®|r : R — GL(V') extends to a symplectic,
faithful representation © : L — GL(V), with R < L = SLy(3) = 2 - A4. In particular, an element
t € L of order 3 induces on R the same automorphism as the one induced by h, and Tr(0O(h)) = —1.
Thus ®(g) = £€O(h) for some root of unity &, and, since 1 + (3 = Tr(®(g)) = £Tr(O(h)), we get
€ =(2, ie. ®(g9) = (30(h). Now we have

G =(R,g) = (2(R), ®(g)) = (O(R),O(h)) = SLa(3).
[In fact, ® is © tensored with the faithful linear character of L/R sending h to (3.] O

Theorem 30.8. For the hypergeometric sheaves listed in Theorem the following statements
hold.
(i) H = Hg in Theorem [30.7(i) has a descent Hy to Fo, which over any finite extension k of Fy
has arithmetic and geometric monodromy groups Garith,k’%u = Ggeomﬂﬁ =W (Ejg).
(i) H = Hg in Theorem B0.7(ii) has a descent Hy to Fa, which over any finite extension k of Fy
has arithmetic and geometric monodromy groups Garith,k,%n = Ggeom,?—lu = W(Es).
(i) H = Hg in Theorem W(iii) has a descent Hy to Fy, which over any finite extension k of Fy
has arithmetic and geometric monodromy groups Garith,k,Hﬁ = Ggeom,?{u =61 - PSU4(3) - 25.
(iv) H = Ha in Theorem W(iv) has a descent Hy to Fs, which over any finite extension k of I3
has arithmetic and geometric monodromy groups Garith,k,?—[u = GgeomH; = 3 X Sp4(3).
(v) H = Hy in Theorem [30.7(v) has a descent Hy to Fs, which over any finite extension k of Fs
has arithmetic and geometric monodromy groups Garith,k’%u = GgeomH; = D X SLa(5).
(vi) H = HY in Theorem W(Vi) has a descent Hy to F3, which over any finite extension k of 3
has arithmetic and geometric monodromy groups G&I‘ith,k,%n = Ggeom,?—lu = SLa(3).

Proof. (i) Note by Theorem that H has a descent Hy = Hoo (listed in Table 4, line 33) to Fo,
for which over any extension k£ O o, any element in its arithmetic monodromy group still has
rational trace. It follows for Hy that Z(Ggeom3,) < Z(Garith k,,) < C2. Since Ggeom3, = W (Eg)
by Theorem (i), we have Z(Garith,k,;{u) = Cy. Next, Ggeom 3, induces a subgroup Cs of Out(L)
for L := [W(Eg), W(Eg)] = 2 - Q"8(2), and the representation of L on C® is not stable under any
outer automorphism of order 3 in Out(L). As CGarith,k,’Hn (L) = Z(Garith,k,;.,gu), we conclude that
Garith k31, = W (Es).

(ii) Note by Theoremthat H has a descent Hy = Hoo (listed in Table 4, line 34) to Fo, for which
over any extension k O o9, any element in its arithmetic monodromy group still has rational trace.
It follows for Hy that Z(Ggeomn,) < Z(Garithk31,) < C2. Next, Ggeomn, = W(Es) induces the
full group Out(L) = Cy for L := [W(Eg), W(Eg)] = SU4(2), and CGarith,k,Hn (L) = Z(Garith k. 31,)-
Hence, we conclude that Gayithkn, = W(E@Z(Garith,kﬂﬁ), and W (Eg) has index < 2 in it. In
particular, if & 2 Fy, then Gayith k., = W (Eg).

(iii) Note by Theorem that H has a descent Hy = Hoo (listed in Table 4, line 35) to Fy, for
which over any extension k 2 4, any element in its arithmetic monodromy group still has trace in
Q(¢3). It follows for Hy that Z(Ggeom,’Hu) < Z(Garith,k‘,'Hﬂ) < (. Since Ggeom}[ﬁ =67 - PSU4(3) - 29,
the Mitchell group, by Theorem W(iii), we have Z(Garith,k,%u) = Cg. Next, Ggeom,n, induces a
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subgroup 29 of Out(L) for L := [Ggeom,Hqugeom,Hu] = 6; - PSU4(3), and the representation of L
on CY is not stable under any larger subgroup of Out(L). As CGamh‘k’Hii (L) = Z(Garith,k,m), we
conclude that Garith,k,Hﬁ = Ggeom,?—lu-

(iv) By Theorem H has a descent Hy = Hoo (listed in Table 4, line 36) to F'3, for which over any
extension k O F3, any element in its arithmetic monodromy group still has trace in Q((3). It follows
for Hy that Z(Ggeom ;) < Z(Garith,k,%u) < Cg. Since Ggeom 1, = 3 X Spy(3) by Theorem W(iv),
we have Z(Garith,k,m) = Cp. Next, the representation of L := [Ggeom,#,, Ggeom ;] = Spy(3) on Cc4
is not stable under any outer automorphism of L, and CGarith,k,Hu (L) = Z(Garith k., )- We conclude
that Garith,k,?—[ﬁ = Ggeom,'Hﬁ-

(v) By Theorem (7.5, H has a descent Hy = Hqo (listed in Table 4, line 37) to Fs, for which over any
extension k O Fj5, any element in its arithmetic monodromy group still has trace in Q((5). It follows
for Hy that Z(Ggeom,m) < Z(Garith,k,m) < Cho- Since Ggeom,, = 5 x SL2(5) by Theorem [30.7(v),
we have Z(Garith,k,”;'-[u) = (9. Next, the representation of L := [Ggeomﬂu, Ggeom,’Hu] = SLy(5) on C?
is not stable under any outer automorphism of L, and CGarith,k,’Hu (L) = Z(Garith k,n,)- We conclude
that Garith,k,?—[u = Ggeom,?-[ﬁ-

(vi) By Theorem H has a descent Hy = Hoo (listed in Table 4, line 38) to F3, for which

over any extension k O 3, any element in its arithmetic monodromy group still has trace in Q((3).
It follows for Hy that Z(Ggeomn,) < Z(Garithkn,) < Co. Since Ggeomn, = SLa(3) by Theorem

v), we have

(30-8-1) 02 = Z(Ggeom,’r’-[ﬁ) < Z(Garith,k7,}‘[ﬁ) < 06-

Let R := OQ(Ggeom,Hn) & @s. Then Ggeomn, induces the subgroup A4 of Aut(R) = Sy, and
Cgmth’hHN (R) = Z(Garith,kﬁ-{ﬁ)- If Garith,k,?—[u/Z(Garith,k,’Hn) induces the full group Aut(R), then the
automorphisms of R outside of A4 fuse the two conjugacy classes of elements of order 3 in SLy(3)

and force them to have the same rational trace —1, which is a contradiction since they actually
have traces 1+ (3 and 1+ ¢3 on C2. Hence we must have that

(30.8.2) Garith k,Hy = Z(Garith k1, ) Ggeom H, -
Suppose Z(Garith’]}?&’}{n) # Z(Ggeom,n,)- It follows from (30.8.1)) and (30.8.2) that
GarithJFg,Hﬁ = <Z> X Ggeom,’Hﬁa

where z acts via scalar (3 on C2. In this case, we may assume that modulo Ggeom,Hm = SLa(3),
any element in GarithFs 3, 18 zd°8 . Recall from Theorem W(Vi) that Ggeom 3, acts on C? via one
of its non-self-dual irreducible representations of degree 2. Hence, any element F'rob, r,, has trace
+2(3 or of absolute value 0 or 1. However, a computation using [Mag] shows that some elements
Froby, gy, have trace 2 and —2, a contradiction. We conclude that Garith7k7}[u = Ggoom,’Hn- O

31. FURTHER LOCAL SYSTEMS FOR Spg(2), SU3(3), XG2(3), AND 2A;

In this section, we obtain new local systems realizing Spg(2) and its subgroups Ga(2)" = SU3(3)
and %G2(3) = SL2(8) x Cy. We also obtain new local systems realizing 2A;. These are “exotic”
exponential sums with finite monodromy, exotic in the sense that the finiteness of their monodromy
does not result from van der Geer-van der Vlugt, cf. [KT9].

Theorem 31.1. The local system H(Charry; &g, fg, &) in characteristic p =5 has finite monodromy.
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Proof. We need to show:

V(7:L‘)+V<—x+;)+V<—x+é>+v<—x—é> zg.

Using the fact that V() = V(;G?il) = 5;[372i] for 1 < i < 41 we check that the inequality holds
for 7Tx € Z. For all other values of x, using that V(z) + V(—z) = 1 if x # 0, we can rewrite the

inequality as
Ve <v (s ) ov (s 7Y g (s 1) !
V=YY TG TT6) T2

and, via the change of variable z — x + %, as

V<790—|—;> §V<x+;>+v<x+§>+1/(x)—;

Following it suffices to prove

[7w+5r_1] < [$+5r_1] + [m+w] +[2] —2r

2 3 3

for every r > 1 divisible by o = 2 and every 0 < & < 5" —1. Notice that, in this case, multiplication
by 5 permutes vy, = % and yo = %, so we can take 71 = 1. Then, with the notation of we have
(52 — 1)y1 = 135, hy = 3, hy = 1. We will prove that

r

[73: + ] <[z +hea] + [x + hyo) + (2] — 2r

for every r > 1 and every 0 < x < 5" — 1. For r < 4 we check it by computer. For r > 4 we proceed
by induction as described in proving first the following cases by splitting off the last digits of .

’last digitsofm‘s‘ z ‘A(s,z)‘ziui‘zjvj‘A(s,z)—élzjvj—l—élziui‘
0,1 1]0,1 0 >0 0 >0
a2,a3;a#3 |11 2,3 0 >0 0 >0
ad;a # 1,3 1] 4 4 >0 0 >4
a32;a#1,3 | 2| 32 4 >0 0 >4
al32;a#3 | 3132 0 >0 0 >0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the ¢3 = ¢4 corresponding to 3 = 0, since it is always 0):

]z:lastdigitsofx\s\ P4 ‘S,‘A(S,Z)‘A(S/,Z/)‘blzbll‘6126/1‘6226/2‘
3132 413201 3 4 4 10 1 1
332 3133 |2 4 4 10 1 1
33,34 213212 4 4 10 1 1
14 210 2 1 4 0 3 0 1

g

Theorem 31.2. (a) The local system H := H(Charr; &, €3, &2) in characteristic p =5 has geomet-
ric monodromy group Ggeom = Spg(2). Furthermore, H has a descent Hoo to Fs, whose arith-
metic monodromy group Gaith i over any finite extension k of Fs is 2 x Spg(2) if 2 1 [k : Fs]
and Spg(2) is 2|[k : Fs).
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(b) The local system F on Al with trace function t — — (z7 + ta3)&(x) in characteristic
p =5 has geometric monodromy group Ggeeom,7 = Spg(2). Over a finite extension k of Fs, the
arithmetic monodromy group Garth g of G := F @ (—Gauss)™ 98 is 2 x Spg(2) if 2 1 [k : F]
and Spg(2) is 2|[k : Fs).

Proof. (a) By Theorem G = Ggeom is finite. Furthermore, G is primitive by [KT9, Lemma
12.8], but the rank is 7, so it satisfies (S+). Let ¢ denote the character of the representation
G — GL(V) of G underlying H. By the construction of # and Corollary [6.2(i), the field of values
Q) == Q(p(g9) | g € G) is Q. Moreover, a generator gy of the image I(0) in G has central order
7, and the image @ of P(0c0) is of order 5 by Proposition [5.§[iv), and @ < G/Z(G) by Proposition
5.6((ii). Next, since the cyclic group Z(G) acts via scalars, Q(¢) = Q, and the geometric determinant
is trivial [Kad, Lemma 8.11.6], we have that

(31.2.1) Z(G) =1.

Suppose G satisfies conclusion (c) of Lemma Then G contains an irreducible normal 7-

subgroup R, and
G/Cg(R)R < Out(R) < Spy(7).
But this is a contradiction, since C¢(R) = Z(G) = 1 by (31.2.1)), and 5 divides |G| but not [Spy(7)|.

Thus G is almost quasisimple. Let S denote the unique non-abelian composition factor of G,
so that S = L/Z(L) for L := E(G) = G*). Then V|, is irreducible by Lemma and so
Ca(L) = Z(G) = 1 by Schur’s lemma. Furthermore, as 6(go) = 7 and |Q| = 5 we have that 5-7
divides the order of G/Z(G) < Aut(S). Now we can apply the main result of [HM]| to see that
either S = L = Ag or S = L = Spg(2). In either case, since 7 1 |Out(S)|, go must lie in S, whence
Ggeom = S by Theorem We also note that a generator g, of the image of I(co) modulo P(c0)
in G has central order divisible by 4 while acting on Wild, see Proposition (iii), and by 3 while
acting on Tame, hence 12|6(go). This rules out the possibility G = Ag, and we conclude that
G = Spg(2).

Next we consider Hgp, with Hy given on line 42 of Table 4. To identify Gaitnk, since the
representation is orthogonal and the geometric determinant is trivial, we know that the arithmetic
determinant is either trivial or (—1)°&. Note G (with 9 replaced by x + (—T7z)) is the [7]*
Kummer pullback of Hog by [KT6, Corollary 3.10]. By [KT1, Theorem 2.5(4)], G has arithmetic
determinant (—1)9¢8, therefore the same holds for Hgg. On the other hand, Z(Garithk) < Co, s0
SPs(2) = Ggeom < Garith ik < 2 X Spg(2), and the statement for Gyyith r follows.

(b) Since G is the [7]* Kummer pullback of Hoo by [KT6L Corollary 3.10], we have that 1 #
Ggeom,F < Ggeom = Spg(2), whence Ggeom,7 = Spg(2). Now,

SPG(Q) = Ggeom,}' < Garith,k,g < Garith,k <2x Sp6(2)7

deg

and, as mentioned above, the arithmetic determinant of G is (—1) Hence we conclude that

Garith,k,g = Garith,k . O

Remark 31.3. Let us consider the local system on A?/F5 with coordinates (¢,u)
Fea: (tu) = =Y ap(a” +ta® + uz)éo(2).
x

By Theorem the pullback F; ¢ has Ggeom = Spg(2). One knows [Ka5, Theorem 4.12] that the
pullback Fp, has Ggeom = G2(C). The group Ggeom for Fi, on A? lies in SOy (it a priori lies in
Oz, but its geometric determinant, having order dividing 2, is geometrically constant on A?; being
trivial on the line w = 0, it is trivial). It follows that the group Ggeom for Fi, on A? is all of SO7,
as it lies in SO7 and contains both Spg(2) and G2(C). We now apply Pink’s specialization theorem
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[Kadl Theorem 8.18.2] to F;,, and the projections onto the ¢ and w lines respectively. We find that
for all but finitely many ¢y € Fs, Fio,u o0 the u line has group SO7, but that at time ¢y = 0 it has
group Ga(C). Similarly, we find that for all but finitely many ug € Fs, F.4, on the ¢ line has group
SO7, but that at time ug = 0 it has group Spg(2). Are there other curves in (¢, u) space along which
F has group G2? Along which F has group Spg(2)?

Theorem 31.4. The local system F on A% with trace function (s,t) — — > (x" + sz’ +tz)&a(z)
in characteristic p = 3 has finite monodromy.

Proof. By [KRLT1T), Theorem 2.12], it suffices to prove

3" -1
Ta + 5b +

<[a]+ [b]+7+2

for every r > 1 and every a,b € {0,1,...,3" — 1}, where [z] := [z]3 denotes the sum of the 3-adic
digits of x. We proceed by induction on r. For r < 3, we check it by computer. For r > 3 we
distinguish the following cases (where, for each case, it is implicitly assumed that the previous cases
do not apply).

Case 1: The last (3-adic) digits of a and b are not (1,0). Write a = 3-a1+ag and b = 3-b; +by with
(ao,bo) € {0,1,2}2~{(1,0)}. Then it is easily checked by computer that [Tao+5by+1] < [ag]+[bo]+1,
SO

] 3t-1

2) + (Tap + 5by + 1)

|: <7a1 + 5b1 +

< [7a1+5bl+ _12_1} + [Tag + 5bo + 1]
< [aa] + [b1] + (r — 1) 4+ 2+ [ao] + [bo] + 1
=la] +[b]+r+2

by induction hypothesis.

Case 2: The last two digits of a and b are not (013,103) or (213,003). Write a = 3% - a3 + ag and
b= 32-by + by with ag, by < 32 and (ag, bo) & {(013,103),(213,003)}. Then it is easily checked by
computer that [Tag + bbg + 4] < [ag] + [bo] + 2, so

3r—1 9 3r—2-1
Ta + 5b + 5 = |37 7a1+5b1+T + (Tag + 5bo + 4)

-1
< |:7a1 + 5b1 + 2:| + [7&0 + 5by + 4}
< a1] + [b1] + (r — 2) + 2 + [ao] + [bo] + 2

= [a] + [}] 47 +2

by induction hypothesis.

Case 3: The last three digits of a and b are not (0013, 1103) or (2013,0103). Write a = 3% - a1 + ag
and b = 33 - b1 4+ by with ag, by < 33 and (ao,bo) ¢ {(0013, 1103), (2013,0103)}. Then it is easily
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checked by computer that [Tag + 5bg + 13] < [ag] + [bo] + 3, so

T _1 'r—3_1
3 ] = [33~ <7a1—|—5b1+3> + (Tagp + 5bo + 13)

Ta + 5b + 5

r—3

3 1
2:| + [7&0 + 5bg + 13]

< la1] + [b1] + (r — 3) + 2 + [ao] + [bo] + 3
=[a] +[p]+7+2

< |:7CL1 + 5b1 +

by induction hypothesis.

Case 4: The last three digits of a and b are (0013,1103) or (2013,0103). Write a = 3%-a; + 1 and
b=32-by+3,and let ¢/ =3-a;+1 and &’ = 3 - by. Then the last digit of 7a; + 5b1 + 3#22*1 is 0,
and 7~1+5-3—1—% = 26 = 2223 and 7-1+5-0+32;1 = 8 = 223, so there are no digit carries in
either of the sums

3r—1 3r—2-1 32 -1
Ta + 5b + :32-<7a1+5b1+2>+(7-1+5-3+ 5 )
and ) ) )
3 -1 37 -1 3 —1
7a’+5b’+2:3-(7a1+5b1+2>+<7-1+5-0+ 5 )
Therefore,
3r—1 [ 3r—2-1
{7a+5b+ 2 ]: 7a1+5b1+2]+[26]
[ 32-1
= 7al+5bl+T +[8] +2
r , , 37“—1_1
<[d]+[p]+(r—1)+2+2
=la]+ [b] +7+2
by induction hypothesis. O

Theorem 31.5. The local system Fl|s——1 on A with trace function t — — Y (27 — 25 +tz)&s(2)
in characteristic p = 3, has fifth moment Mso # 0 and third moment Mz o # 1.

Proof. We apply Theorem with (a,b) := (5,0), and ¢ = 3!, to
G == Flse—1 ® (—Gaussg, (¢, &)~ 48 /Fs.
A calculation by Magma shows that the traces attained, with their multiplicities, are
(=2, mult. 6534), (—1, mult. 66430), (0, mult. 25411), (1, mult. 78651), (7, mult. 121).

Thus the empirical M5 computed over Fsi1 is approximately 10.3686768615895273416992667107.
On the other hand, G has highest oo-slope 7/6, cf. [KRLTT §1]. So if M5 were 0, then (conser-
vatively) taking m := 0 in Theorem we would have its Hs g = 75/6, so that the empirical Ms o
computed over Fs11 would be

< 7°/(6 - 3'1/2) = 6.65536760923871071612157994094.
This contradiction shows that Ms # 0.
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We now show that Msy # 1. We argue by contradiction. Because G has integer traces, if M3 g
were one, then det(1—T Froby,|H2(A!/F3,G®3)) is an integer polynomial (being the denominator of
the L function) of degree one which, by purity, is either 1—37" or 1+37". Thus the empirical third mo-
ment Mj o over Fgu is within Hzo/3'%/2 = (14 73/6)/3"/2 = 0.138199755793675851724069221121
of either 1 or —1. But this empirical moment is 0.00819658249928025876814171281478, contradic-
tion. O

Theorem 31.6. For the local system G on A?/k with trace function

1 7 5
(s,t) € k — G gwk(x + sa® + ta)éo(x)

in characteristic p = 3, we have the following results.

(a) The system Gli—o and the system H := H(Chary; {aChars) both have geometric monodromy group
Gi=0,geom = Spg(2). Next, H has a descent Hog, whose arithmetic monodromy group Gi=o arith,k
over any finite extension k of Fg is 2 x Spg(2) when 2 1 [k : F3] and Spg(2) when 2|[k : Fs).
Furthermore, over any finite extension k of Fs, the arithmetic monodromy group of Gli—o is
equal to Gt:O,arith,k-

(b) The system G has geometric monodromy group Ga_param.geom = SPg(2). Over any finite extension
k of Fs, it has the same arithmetic monodromy group as Gli—o.

(c) The system Gls—o has geometric monodromy group Gs—ggeom = SU3(3). Over any finite ex-
tension k of Fg, it has arithmetic monodromy group Gs—oarithx = SU3(3). Over Fs, it has
arithmetic monodromy group Gs=o arith,rs = SU3(3) - 2 = G2(2).

(d) The system G|s——1 has geometric monodromy group Gs—_1 geom = %G2(3) =2 SLy(8) x C3. Over
any finite extension k of F3, it has arithmetic monodromy group Gs—_1 arith,x = 2 X Gs=_1 geom
ZfQJf [k‘ : Fg] and Gs:fl,geom Zf 2‘[/{ : Fg].

Proof. (a) By Theorem Glt=0 has finite monodromy, and it is the [7]* Kummer pullback of
‘H by [KT6, Corollary 3.10]. Hence H also has finite geometric monodromy group H, which is
primitive by [KT9, Lemma 12.8]. But the rank is 7, so H satisfies (S+). Let ¢ denote the character
of the representation H — GL(V) of H underlying H. By the construction of % and Corollary
[6.2(i), the field of values Q(¢) := Q(¢(g) | g € G) is Q. Next, a generator go of the image I(0)
in H has central order 7. Moreover, a generator g, of the image of I(oc0) modulo P(c0) in G has
central order divisible by 2 while acting on Wild, see Proposition (iii), and by 5 while acting on
Tame, hence 10|6(gso). Since the cyclic group Z(H) acts via scalars, Q(¢) = Q, and the geometric
determinant is trivial [Ka4, Lemma 8.11.6], we have that

(31.6.1) Z(H) = 1.

Suppose H satisfies conclusion (c¢) of Lemma Then H contains an irreducible normal 7-

subgroup R, and
H/Cu(R)R — Out(R) — Spy(7).

But this is a contradiction, since Cy(R) = Z(H) = 1 by (31.6.1)), and 5 divides |H| but not [Spy(7)|.

Thus H is almost quasisimple. Let S denote the unique non-abelian composition factor of H,
so that S = L/Z(L) for L := E(H) = H). Then V| is irreducible by Lemma and so
Cu(L) = Z(H) = 1 by Schur’s lemma. Furthermore, as 6(gs) = 10, we have that 10 divides
the order of H/Z(H) < Aut(S). Now we can apply the main result of [HM| to see that either
S =L=AgorS=L=_Spg(2). In either case, since 71 |Out(S)|, go must lie in S, whence H = §
by Theorem Noting that Ag contains no element of order 10, we conclude that H = Spg(2).
Now, the geometric monodromy group Gi—g geom Of G|i=o is a normal subgroup of index dividing 7
in H, hence it must be equal to H.
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Next we identify the arithmetic monodromy group Harithr of Hoo (note Hg is listed on line 43
of Table 4). Since the representation is orthogonal and the geometric determinant is trivial, we
know that the arithmetic determinant of # is either trivial or (—1)4°8. Note G (with 1 replaced
by x +— 1(—7x)) is the [7]* Kummer pullback of Hgg by [KT6, Corollary 3.10]. By [KT1, Theorem
2.5(4)], G has arithmetic determinant (—1)9°8, therefore the same holds for Hgp. On the other hand,
Z(Hritnk) < C2, 50 Spg(2) = H << Hapigh i < 2% Spg(2), and the stated structure for Hyyign i, follows.

Since G is the [7]* Kummer pullback of Hyo by [KT6, Corollary 3.10], we have

Sp6(2) = Gt:(],geom < Gt:O,arith,k < Harith,k <2x Sp6(2)7

deg  Hence we conclude that

and, as mentioned above, the arithmetic determinant of G is (—1)
Gi=0,arith,k = Harith k-

(b) By Theorem G has finite geometric monodromy group G = G2_param,geom- We first note
that its field of traces is QQ; indeed over any extension of F3, the substitution x — —x shows that the
traces of G, a priori in Q((3), are real. Thus the traces lie in Z; and furthermore G is arithmetically
orthogonal. We next note that det(G) is geometrically trivial. Indeed, the geometric determinant
has order dividing 2, but G lives over A2, so any such character of G is geometrically trivial. Hence,
in parallel to now we have Z(G) = 1. Furthermore, G contains Gi=ggeom = Spg(2), so
it also satisfies (S+), and, as in (a), it cannot satisfy Lemma [3.1|c) since 5 divides |H|. Again
applying [HM] and using Spg(2) < G, we see that G > S = Spg(2), and Cg(S) = Z(G) = 1. It
follows that G = S.

Now, the arithmetic determinant of G is either trivial, or (—1)¢& by arithmetic orthogonality.
According to (a), G|;=o already has arithmetic determinant (—1)9%, so the same holds for G. Note
that the arithmetic monodromy group G2 param,arith,k 0f G has center of order < 2 (again by orthog-
onality), we have

Sp6(2) < G2—param,arith,k S 2 x Sp6(2)
Using the determined arithmetic determinant, we conclude that Go pavam arith,k = Ge=0 arith, k-

(c) It was shown in [KTI, Theorem 19.1] that the geometric monodromy group, as well as the
arithmetic monodromy group of G|s—¢ over any finite extension k of Fg, is SU3(3). Also, [KT8|
Theorem 7.9] shows that the arithmetic monodromy group of G|s—o over Fg is SU3(3) - 2.

(d) Part (c) implies by specializing s = —1 that G|s—_; has finite geometric monodromy group
K := Gs—_1 geom Wwhich is a subgroup of G = G2 param,geom = Spg(2). Note that, since the wild
part has dimension 6, the image of P(oc0) is non-abelian, and so the Sylow 3-subgroups of K are
also non-abelian, hence of order at least 33, and certainly 7 = rank(G|s—_1) divides |K|. Thus
33 . 7 divides |K|, and, furthermore, K = O3 (K) as G|s—_; lives on A!. Checking the subgroups
of Spe(2) [Atlas] that satisfy these conditions, we now see that either K = G, or K < SU3(3), or
K < G5(3) = SLy(8) x Cs. Since M5 = 0 for Spg(2), Theoremshows K # G. Again checking
these conditions on the subgroups of SU3(3) and %G2(3), we see that K = SU3(3) or K = %G(3).
Since M3 = 1 for SU3(3), Theorem implies that K = G2 (3).

To determine Gs—_1 arith k, We note that K <t Gs=_1 arith k < G2-param,arith k. < 2 X Spg(2), and K
is maximal in Spg(2). By [Ka5, Theorem 1.7], G|s—_1 has arithmetic determinant (—1)9°8. Hence
Gs—_1,arith,k has the described structure. [l

As a consequence of Theorem we now prove Conjectures 7.2 and 7.3 of [Ka9l:

Corollary 31.7. The local system Gz on A'/F3 with trace function
1

Gaussy,

tek—

Z Ui ((x7 + 225 + 223 + 22) + tz)&a(z)
z€k
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has geometric and arithmetic monodromy groups Ggeom,g; = Glarith,gs = 2GQ(B). Furthermore, the
pullback Hs of G by t — t3 —t has geometric monodromy group Ggeom,#; = SLa(8). Ower any
finite extension k of F3, Hs has arithmetic monodromy group Gaith ks = G2(3) if 31 [k : F3] and
SLo(8) if 3|[k : F3].

Proof. In characteristic p = 3, the above trace function reduces to

LS (0 — 2 + (t + 1)) o),

Gaussy, vt

tekw—

hence G3 is the pullback by ¢ — ¢ + 1 of the system G|s—_; considered in Theorem but with
Gaussy, replaced by Gauss;. By this replacement, Gs has arithmetically trivial determinant, cf.
[Kabl Theorem 1.7]; in particular, Z(Gaitn) = 1. Now the proof of Theorem [31.6(d) shows that
Ggeom,gg = Garith,g3 = 2G2(3)

We next show that Ggeom,1; = SL2(8). Consider the quotient Ggeom,gs/SL2(8) = Garith,gs/SL2(8).
This is a cyclic group of order 3, given by a lisse rank one sheaf £ on A! /F3 which is a quotient of Gs.
The oco-slopes of G3 are 0 once and 7/6 with multiplicity 6. Therefore our £, whose integer oo-slope
is < 7/6, is either tame at oo, in which case it is geometrically trivial, or it has co-slope 1. Our L is
not geometrically trivial, as it is a nontrivial quotient of Ggeom,g,- Therefore our £ is geometrically
of the form L4441 for some a € F5~ and some b € F5. But this £ lives on Al /F3 (being a quotient
of Garith,gs)- S0 its arithmetic isomorphism class is Gal(F3/F3)-invariant. This forces a € FY = +1
and b € F3. The t — t3 — t pullback trivializes both Ly and Ly_y. Thus after this pullback the
group Ggeom,2; has indeed shrunk to SLa(8). Moreover, the group Garith,gs/Ggeom, 1 15 now the
geometrically trivial rank one sheaf ()4, of order either 1 (if b = 0) or 3 (if b = £1).

A calculation using Magma shows that F'robgr, has order 6 and trace —1, and no such element
exists in SLa(8) [GAP]. As SL2(8) < GarithFs 75 < Garith = G2(3), we conclude that Gaith Fs 35 =

Go(3). O

Remark 31.8. It would be interesting to have a conceptual proof of part (d) of Theorem The
argument above shows that for any given specializations s = sg, the resulting monodromy group
K, is one of the three groups Spg(2), SU3(3), %G2(3). So far we have shown that Ko = SUj3(3)
and K_; = XG5(3). A Magma calculation over Fgs for s = 1 shows that both 3 and —3 occur as
traces; this eliminates both SU3(3) and %G2(3), and hence K; = Spg(2). What about other values
of sg € F3?

There is one general statement we can make along these lines. By Pink’s specialization theorem
[Ka4, Theorem 8.18.2], applied to F on X := A2 the (s,t)-plane, S = A! the s-line, and X — S
the map (s,t) — s, we see that K, = Spg(2) for all but finitely many values of of sy € Fs.

Theorem 31.9. The local system H(Char;&2) in characteristic p =7 has finite monodromy.
Proof. We need to show:
1
V(bz) = V(x)+V (—x + 2) > 0.

Using the fact that V() = V(7244E§) = 5[2404] for 1 < i < 9 we check that the inequality holds

for bz € Z. For all other values of x, using that V(x) + V(—z) = 1 if x # 0, we can rewrite the
inequality as

V(sa) <V (:c + ;) V().
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Following §9] it suffices to prove
-1

[5x]§[w+ ]—i—[x]—i-?)

for every r > 1 and every 0 < x < 7" — 1. For r < 3 we check it by computer. For r > 3 we proceed
by induction as described in proving first the following cases by splitting off the last digits of .

lastdigitsofx‘s‘ z ‘A(s,z)‘ziui‘zjvj‘A(s,z)—62j0j+62iui‘
0,1,2,3 1] 0123 >0 | >0 ] 0 >0
04,1424 |2| 041424 | >0 | >0 | o0 >0
ad4, ab4d;a # 3 | 2 44,64 0 >0 0 >0
054,154,254 | 3| 054,154,254 >0 >0 0 >0
ab,ab;a #3 |1 5,6 >0 >0 0 >0

The remaining cases are proved by substitution of the last digits, as specified in the following
table (we do not include the ¢2 = ¢, corresponding to v, = 0, since it is always 0):

| z=last digits of & | s | 2/ [ &/ | A(s,2) | A(s,2) [ by =b] | c1 = |
34,35,36 21411 >2-3 -3 2 1
344 3135 2 0 0 2 1
354 313412 -3 -3 2 1
454 31441 2 0 0 3 1
554 31612 3 3 4 1
654 316412 0 0 4 1
364 31401 2 0 0 2 1

O

Theorem 31.10. (a) The local system H = H(CharZ';&2) in characteristic p = 7 has geometric
monodromy group Ggeom = 2A7. Furthermore, H has a descent Hoo to F7, whose arithmetic
monodromy group Garith k. over any finite extension k of Fr is equal to Ggeom-

(b) The local system F on Al with trace function

1
tek 5 4 tz?
ckw— Gausskxzekwx + tx*)

in characteristic p = 7 has geometric monodromy group Ggeom = 2A7, which is also its arith-
metic monodromy group over any finite extension k of Fr.

Proof. By Theorem G = Gygeom is finite. Furthermore, G satisfies (S+) by [KT5, Theorem
1.9]. Let ¢ denote the character of the representation G — GL(V') of G underlying H. By the
construction of H and Proposition [6.1](iii-bis), the field of values Q(y) := Q(¢(g) | g € G) is
Q(+/—7). Moreover, a generator go of the image I(0) in G has central order 5, and the image Q of
P(00) is of order 7 by Proposition [5.8(iv), and @ — G/Z(G) by Proposition [5.6{ii). Next, since
the cyclic group Z(G) acts via scalars and Q(¢) = Q(v/—7), we have that

(31.10.1) Z(G) < Cs.

Suppose G satisfies conclusion (c) of Lemma Then G contains an irreducible normal 2-
subgroup R, and
G/Cg(R)R < Out(R) < Sp4(2) = S¢.
But this is a contradiction, since Cg(R) = Z(G) < Cy by (31.10.1)), and 7 divides |G| but not |Sg|.
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Thus G is almost quasisimple. Let S denote the unique non-abelian composition factor of G,
so that S = L/Z(L) for L := E(G) = G*). Then V| is irreducible by Lemma and so
Ca(L) = Z(G) by Schur’s lemma. Furthermore, as 6(go) = 5 and |Q| = 7 we have that 5- 7 divides
the order of G/Z(G) < Aut(S). Now we can apply the main result of [HM] to see that S = A7 and
L = 2A;7. In this case we also have that Z(G) = Z(L) = Cs by (31.10.1)). Since 7 { [Out(S)], go
must lie in the inverse image L of S in G, whence Ggeom = L by Theorem

By Theorem H has a descent Hop to F7 for which any element in Gaign e still has trace in
Q(v/—7) whenever k D F;, with Hg given on line 44 of Table 4. Since any element in Cg L)=

Z(G aritn) acts via scalars, which are then roots of unity in Q(v/—7), we see that
CGarith,k (L) = CQ - Z(L)

Since no outer automorphism of L can fix the character ¢|r, we conclude that Garithk = L = Ggeom-
The statements in (b) now follow, since F is the [5]* Kummer pullback of H by [KT6, Corollary
3.10). O

arith,k (

32. FURTHER MULTI-PARAMETER LOCAL SYSTEMS

Theorem 32.1. The local system on A% with trace function (s, t,u) — — > (27 + szt +tx? + uz)
in characteristic p = 3 has finite monodromy.

Proof. By [KRLT1T), Theorem 2.12], it suffices to prove
[Ta+4b+2c) <[a]+[b]+[c]+r+1

for every r > 1 and every a,b € {0,1,...,3" — 1}, where [x] := [z]3 denotes the sum of the 3-adic
digits of x. We proceed by induction on r. For r < 3, we check it by computer. For r > 3 we
distinguish the following cases.

Case 1: The last (3-adic) digits of a, b and ¢ are not (0,2,0), (1,0,0) or (2,0,0). Write a =
3-a;+ag,b=3-b; +bgand c = 3-¢; + ¢y with (ag, by, o) € {0, 1,2}3 {(0,2,0),(1,0,0),(2,0,0)}.

Then it is easily checked by computer that [Tag + 4by + 2¢o] < [ao] + [bo] + [co] + (1, SO
[Ta +4b + 2c] = [3 - (Tay + 4by + 2¢1) + (Tag + 4by + 2¢0)]
< [Tai + 4by + 2¢1] + [Tag + 4by + 2¢0]
< [aa] + [b1] + [e1] + (r = 1) + 1 + [ao] + [bo] + [co] +1
=[a] +[b] +[c]+r+1

by induction hypothesis.

Case 2: The last digits of a, b and ¢ are (0,2,0), (1,0,0) or (2,0,0), except if the last two digits
are (02,10,00). Write a = 3% -a; +ag, b = 3%2-b; + by and ¢ = 3% - ¢ + ¢p with ag,bg,co < 3°
and (ag, bo,co) # (023,103,003). Then it is easily checked by computer that [Tag + 4bg + 2¢o] <
[ao] + [bo] + [Co] + 2, so

[7a + 4b + 2¢] = [3% - (Tay + 4by + 2¢1) + (Tag + 4by + 2c0)]
< [Tai + 4by + 2¢1] + [Tag + 4bo + 2¢o]
< laa] + [ba] + [ea] + (r = 2) + 1 + [ao] + [bo] + [co] + 2
=[a+ Bl +[]+r+1

by induction hypothesis.
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Case 3: The last two digits of a, b and c are (023, 103,003). Write a = 33 - a1 +ag, b = 3% - by + bg
and ¢ = 3% - ¢; + ¢ with ag, b, co < 3% and (ag, by, co) = (023,103,003) mod 9. Then it is easily
checked by computer that [Tag + 4bg + 2¢o] < [ao] + [bo] + [co] + 3, so

[Ta + 4b + 2¢] = [3% - (Tay + 4by + 2¢1) + (Tag + 4by + 2c0))
< [Tay + 4by + 2¢1] + [Tag + 4bg + 2¢]
< [ar] + [b] + [e1] + (r = 3) + 1 + [ao] + [bo] + [co] + 3
= la] +[0] + [ +7r+1
by induction hypothesis. O

Theorem 32.2. The local system G on A® with trace function

(s,t,u) € k> — wa + sat + tz? + ux)

Gaussk

in characteristic p = 3 has geometric monodromy group G = Ggeom = 61 - PSU4(3). Over any finite
extension k of Fs, the arithmetic monodromy group Gaith gk of G is (61 - PSU4(3)) 220 =G -2 1if
24 [k :F3] and G if 2|[k : F3].

Proof. By Theorem G is finite. Next, the sheaf G|i—y—¢ is the [7]* Kummer pullback of the
sheaf Hyp(Charytiv(7), Charpiv(4)), and so it has geometric monodromy group H = 61-PSU4(3) by
Theorem [21.4] Since H < G and H is (S+), G is also (S+), and therefore it is almost quasisimple
by Lemma [3.1} also, |G/Z(G)| is divisible by |H/Z(H)| = |PSU4(3)|. Using this information and
[HM], we see that the only non-abelian composition factor S of G is S = PSU4(3) and G(*®) =
61 - PSU4(3) = H. Since the field of traces is Q((3), |Z(G)| < 6, and so Z(G) = Z(H). Finally,
G = 0% (G) and Out(S) is a 3'-group, implying G/Cq(H) = G/Z(G) = S, and hence G = H.

To determine the arithmetic monodromy group over any finite extension k of Fg, it suffices by
Lemma to show that G := Garith,rs = (61 - PSU4(3)) - 29. Note that the field of traces is still
Q(¢3), so Cx(G) = Z(G) has order at most 6, and so Ca(G) = Z(G). Next, the only nontrivial
element of Out(G) = Dg that preserves the character of G on G is 29, see [Atlas|; hence either
G =G or G =G -25. Suppose we are in the former case. Then the arithmetic monodromy group
of Gls—¢—o over k is contained in G. This specialization is just the local system W30 in [KTS,
Corollary 7.10], according to which it has arithmetic monodromy group SUs(3) - 2 = G2(2). The
latter group is not a subgroup of G = 6; - PSU4(3), see [Aflas], a contradiction. Hence G = G - 25
as stated. O

Theorem 32.3. The local system on A% with trace function (s,t) — — Y ¢(z'3 + s23 + tx) in
characteristic p = 2 has finite monodromy.

Proof. By [KRLT1T), Theorem 2.12], it suffices to prove

3
[13a + 3b] < [a] + [b]+g+5
for every » > 1 and every a,b € {0,1,...,2" — 1}, where [z] := [z]2 denotes the sum of the 2-adic

digits of x. We proceed by induction on r. For r < 4, we check it by computer. For r > 4 we
distinguish the following cases (where, for each case, it is implicitly assumed that the previous cases
do not apply).

Case 1: The last (2-adic) digits of a and b are not (1,0) or (0,1). Write a = 2 - a1 + ag
and b = 2 - by + by with (aop,bo) € {(0,0),(1,1)}. Then it is easily checked by computer that
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[13ap + 3bo] < [ao] + [bo] + %, SO
[13& + 3b] = [2 - (13a1 + 3b1) + (13ap + Sbo)]

< [13a1 + 3b1] + [13ag + 3bo]

-1 3 1
r +*+[a0]+[bo]+§

< a1] + [b1] + 5

=[a] +[b] + = +

2
r,3
2 2
by induction hypothesis.

Case 2: The last two digits of a and b are not (01g,002), (102,012) or (112,002). Write a =
22-a1+a0 andb:22-b1—|—bo with

ag, by < 22, (ag,bg) & {(013,003), (102,015), (112,002)}.
Then it is easily checked by computer that [13ag + 3bo] < [ao] + [bo] + 1, so
[13a + 3b] = [2% - (13a; + 3b1) + (13ag + 3bo)]
< [13a1 + 3b1] + [13ap + 3bg]

S[CLl]‘F[bl]+g+§+[ao]+[bo]+l

2 2
:myum+g+g

by induction hypothesis.

Case 3: The last three digits of a and b are not (0012,0002), (0102,0012), (0112,0002) or
(1112,0005). Write a = 23 - a1 + ag and b = 23 - by + by with

ao,bo < 23, (ao, bo) & {(0012,0005), (010, 0015), (0112, 000s), (1115, 0002)}.
Then it is easily checked by computer that [13ag + 3bo] < [ao] + [bo] + 3, so
[13a + 3b] = [2% - (13a1 + 3b1) + (13ag + 3bo)]

< [13&1 + 3b1] + [13&0 + 3[)0]

< far] + [b] + =3

3 3
5 +§+[ao]+[bo]+§
3
2

= [a] + o]+ & +

r
2
by induction hypothesis.

Case 4: The last four digits of @ and b are not (00115, 10002) or (10013, 00003). Write a = 2*-a;+aq
and b = 2% by + by with ag, by < 2* and (ag, bg) ¢ {(00112,10003), (10012,00002)}. Then it is easily
checked by computer that [13ag + 3bo] < [ag] + [bo] + 2, so

[13a + 3b] = [2* - (13a; + 3b1) + (13ag + 3bo)]
< [13&1 + 3()1] + [13&0 + 350]

r—4

< a1] + [b1] + 2 +g+[a0]+[bo]+2
:myum+g+g

by induction hypothesis.
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Case 5: The last four digits of a and b are (00112, 10002). Write a = 2*-a; +3 and b = 2*-b; +8,
and let @’ = 2%-a; +1 and b’ = 2%-b;. Since 13-3+3-8 = 1111115 and 13-1+3-0 = 11015 have the
same first two digits, the number of digit carries in the sums 13a+3b = 2*-(13a; +3b1)+(13-3+3-8)
and 13a’ + 30" = 22 - (13a; + 3b1) + (13- 1+ 3 - 0) is the same. In particular,

[13a + 3b] — [13a; + 3b1] — [13-3 +3-8] = [13d’ + 3V'] — [13a; + 3b1] — [13-1+3-0].
Therefore,
[13a + 3b] = [13a1 + 3b1] + [13 -3+ 3 - 8] + ([13a + 3b] — [13a; + 3b1] — [13-3 + 3 - 8)])
= [13a; + 3b1] + [13 -3+ 3 - 8] + ([13a’ + 3V'] — [13ay + 3by] — [13 -1+ 3-0])

2
:[13a’+3b']—|—3§[a’]—l—[b’]—i—TQ +g+3
r—2 3
= _9 d
o+ B -2+ 24D 8
r 3

—[a}+[b]+§+§

by induction hypothesis.

Case 6: The last four digits of @ and b are (10013, 00003). Write a = 2%-a;4+9 and b = 2*-b;, and
let o/ =22-a;+2 and b’ = 2%-b; +1. Since 13-9+43-0 = 11101013 and 13-2+43-1 = 111015 have the
same first three digits, the number of digit carries in the sums 13a+3b = 2*-(13a;+3b;)+(13-9+3-0)
and 13a’ + 30" = 22 - (13a; + 3b1) + (13 -2+ 3 - 1) is the same. In particular,

[13a + 3b] — [13a1 + 3b1] — [13-9+3-0] = [13a" + 3V'] — [13ay + 3b1] — [13-2+ 3 - 1].
Therefore,
[13a + 3b] = [13a1 + 3b1] + [13-9+ 3 - 0] + ([13a + 3b] — [13a1 + 3b1] — [13-9+ 3 - 0])
= [13a; + 3b1] + [13-9+ 3 - 0] + ([13a’ + 3V'] — [13a; + 3by] — [13-2+ 3 - 1])

-2
= 130/ + 3] + 1< [o] + )+ +g+1
r—2 3
= b —+1
la] + [b] + 5 t5t
r 3
—[a}+[b]+§+§
by induction hypothesis. O

Theorem 32.4. The local system F on A% with trace function
-1
(S,t) € k’ —> m Z¢($13 + S.fL'g + t.%')
ﬁ z€k

in characteristic p = 2 has geometric monodromy group G = Ggeom = 2 - G2(4). Over any finite
extension k of Fa, the arithmetic monodromy group Gayigni of F is (2~G2(4)) 2=G-2if 2t [k : Fy
and G if 2|[k : Fa].

Proof. By Theorem G is finite. Next, the sheaf G|;—¢ is the [13]* Kummer pullback of the
sheaf Hyp(Charpgyiv(13), Charpgiv(3)), and so it has geometric monodromy group H = 2 - G2(4) by
Theorem Since H < G and H is (S+), G is also (S+), and therefore it is almost quasisimple
by Lemm also, |G/Z(G)| is divisible by |H/Z(H)| = |G2(4)|, and the field of traces is Q. Using
this information and [HM], we see that the only non-abelian composition factor S of G is § = G»(4)
and G(®) = 2.G9(4) = H. Since the field of traces over any finite extension of Fy is Q, |Z(G)| < 2,
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and so Z(G) = Z(H). Next, G/Cq(H) = G/Z(G) < Aut(S) = 5 -2, but 2- .5 - 2 does not rational
characters of degree 12 [Atlas|, so G = H.

To determine the arithmetic monodromy group over any finite extension k of Fa, it suffices to
show that G := GarithF, = (2 G2(4)) - 2. Note that the field of traces over Fy is contained in

Q(V2), so C(G) = Z(G) has order at most 2, and so C5(G) = Z(G). Since Out(G) = C» [Atlas],
either G = G or G = G - 2. Suppose we are in the former case. Then the trace of any Frobgs ),
with s,t € Fy is rational. On the other hand, Frob( o), has trace —+/2, a contradiction. Hence
G = G - 2 as stated. O

Theorem 32.5. The local system on A% with trace function (s, t,u) — — > (x° + szt +t2? +ux)
in characteristic p = 3 has finite monodromy.

Proof. By [KRLT1, Theorem 2.12], it suffices to prove
[ba+4b+2c <a]+[b]+[c] +7r+1

for every » > 1 and every a,b,c € {0,1,...,3" — 1}, where [z] := [z]3 denotes the sum of the 3-adic
digits of x. We proceed by induction on r. For r < 2, we check it by computer. For r > 3 we
distinguish the following cases.

Case 1: The last (3-adic) digits of a, b and ¢ are not (0,2,0) or (1,0,0). Write a = 3 - a1 + ao,
b=3-b1+byand c =3¢ + ¢o with (ag, by, co) € {(0,2,0),(1,0,0)}. Then it is easily checked by
computer that [5ag + 4bg + 2¢o] < [ao] + [bo] + [co] + 1, so

[5& + 4b + 26] =3 (5@1 + 4b1 + 261) + (5@0 + 4by + 260)]
5ay 4 4by + 2¢1] + [bag + 4by + 2¢o]
ar] + [b1] + [e1] + (r — 1) + 1 + [ao] + [bo] + [co] + 1
al +[b] +[+r+1

by induction hypothesis.

Case 2: The last digits of a, b and ¢ are (0,2,0) or (1,0,0), except when their last two digits are
(013,103,003) or (113,003,103). Write a = 3% - a3 + ag, b = 3% - by + by and ¢ = 3% - ¢; + ¢y with
(ao, bo, co) = (0,2,0) or (1,0,0) mod 3 but (ag, by, co) & {(013,103,003), (113,003,103)}. Then it is
easily checked by computer that [5ag + 4by + 2co] < [ao] + [bo] + [co] + 2, so

[5a 4+ 4b + 2¢] = [3% - (5ay + 4by + 2¢1) + (5ag + 4by + 2c0)]
< [Bay + 4b1 + 2¢1] + [Bag + 4by + 2¢0)
< lar] + [ba] + [ea] + (r = 2) + 1+ [ao] + [bo] + [co] + 2
=lal + ] +[]+7r+1

by induction hypothesis.

Case 3: The last two digits of a, b and ¢ are (013,103,003). Write a =3%-a; +1,b=3%2-b; + 3
andc=3%-¢;,andleta’ =3-a1+1,¥ =3-byand ¢ =3-¢;. Since 5-1+4-3+2-0= 1225 and
5:14+4-0+2-0 = 129 have the same first digit, the number of digit carries in the sums 5a+4b+2¢c =
32 (5a1 +4by +2¢1) +(5-14+4-3+2-0) and 5a’ +4V +2¢ = 3+ (5a1 +4b1 +2c1)+ (5-1+4-0+2-0)
is the same. In particular,

[Ba+4b+2c] — [Bay +4by +2¢1] — [5-1+4-342-0] = [5a’+4b +2¢/] — [5ay +4by +2¢1]—[5-1+4-0+2-0].
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Therefore,

[ba + 4b + 2]

= [Ba; +4by +2c1] +[5-1+4-3+2-0]+ ([pa+4b+2c] — [ba; +4b1 +2¢1] = [5-1+4-3+2-0])
= [ba; +4b1 +2c1] + [5-14+4-3+2-0]+ ([5a’ + 40" +2¢'] — [Bay +4b1 +2c1] — [5-1+4-0+2-0])
= [5a’ + 40’ +2¢'] + 2

<[d]+ ]+ [T+ (r—1)+1+2

=[a] + b +[c]+7+1

by induction hypothesis.

Case 4: The last two digits of a, b and ¢ are (113,003, 103). Write a = 3% -a; +4, b = 3%-b; and
c=3%c;+3, andletd =3-a1, 0 =3-by+2and ¢ =3-¢;. Since 5-4+4-0+2-3 = 2223
and 5-0+4-24 2.0 = 229 have the same first digit, the number of digit carries in the sums
5a+4b+2c = 32 (5ay +4by +2c1) + (5-4+4-0+2-3) and 5a’ +4b +2¢ = 3- (5ay +4by +2¢1) +
(5-0+4-242-0) is the same. In particular, [5a+4b+ 2c| — [5a1 +4b1 +2¢1] — [5-4+4-04+2-3] =
[ba’ + 4V + 2¢] — [Bag + 4by + 2¢1] — [5-0+4 -2+ 2-0]. Therefore,

[ba + 4b + 2]
S5a; +4by +2¢1]+[5-4+4-0+2 3]+ ([Pa+4b+2¢] — [ba; +4b1 +2¢1] — [5-4+4-0+2- 3])
S5ai; +4by +2c1] +[5-4+4-0+2-3] + ([ba’ + 4V + 2] — [Ba; +4by +2¢1] —[5-0+4-2+2-0))

=
=
= [5a’ +4b' +2c] + 2
<la
=la

T+ b1+ [d]+(r—1)+1+2
]+ o]+ [ +r+1
by induction hypothesis. Il

Theorem 32.6. The local system F on A® with trace function

(s,t,u) =

5 4 2
"+ sx” +tx” +ux
Gaussy, Z ¥l )
z€k
in characteristic p = 3 has geometric monodromy group G = Ggeom = 3 X Sp4(3). Owver any finite
extension k of F3, F has arithmetic monodromy group Garith .k = Ggeom-

Proof. By Theorem G is finite. Next, the sheaf F|;—,—¢ is the [5]* Kummer pullback of
Hyp(Charptriv(5), Charntrw(4)), and so it has geometric monodromy group H = 3 x Sp,(3) by The-
orem [30.7(iv). Since H < G and H is (S+), G is also (S+), and in fact it is almost quasisimple;
also, |G/Z(G)| is divisible by |H/Z(H)| = |PSp4(3)|, and the field of traces is Q((3). Using this
information and [HM], we see that the only non-abelian composition factor S of G is S = PSp,(3)
and G(*) = Sp,(3). Since the field of traces is Q((3), |Z(G)| < 6, and so Z(G) = Z(H). Next,
G/Cq(H) = G/Z(G) < Aut(S) = S -2, but 2-S -2 does not irreducible characters of degree 4
[Atlas], so G = H.

To determine Grith i, We note that the field of traces is still Q((3), and repeat the above arguments
verbatim. g

Theorem 32.7. The local system F on A? with trace function (s,t) — — > (z® + sa? + tz) in
characteristic p =5 has finite monodromy.

Proof. By [KRLT1T), Theorem 2.12], it suffices to prove
[Ba + 2b] < [a] + [b] + 2r
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for every r > 1 and every a,b € {0,1,...,5" — 1}, where [z] := [z]5 denotes the sum of the 5-adic
digits of . We proceed by induction on r. For r = 1 we check it by computer.
For r > 1, write a = 5- a1 + ag and b =5 - by + by with (ag,bp) € {0,1,2,3,4}. Then

[Ba +2b] =[5 (3a1 + 2b1) + (3ap + 2bo)]
< [3ay + 2b1] + [3ao + 2bo]
< faa] + [ba] 4+ 2(r = 1) + [ao] + [bo] + 2
= [a] + [0] + 27
by induction hypothesis. 0

Theorem 32.8. The local system F on A2 with trace function
(s,t) — Zw:r + s2? + tx)

Gaussk

in characteristic p = 5 has finite geometric monodmmy group G = Ggeom = 5 X SLa(5). Over any
finite extension k of Fs, F has arithmetic monodromy group Garith k. = Ggeom -

Proof. By Theorem G is finite. Next, the sheaf Fl|;—p is the [3]* Kummer pullback of
Hyp(Chary,&2), and so it has geometric monodromy group H = 5 x SLy(5) by Theorem (v)
Since H < G and H is (S+), G is also (S+) and in fact it is almost quasisimple; also, the field
of traces is Q((s). Using this information and [HM], we see that the only non-abelian composition
factor S of G is S = Ay and G(*®) = SLy(5). Since the field of traces is Q(Cs), |Z(G)| < 10, and
so Z(G) = Z(H). Next, G/Cq(H) = G/Z(G) < Aut(S) = S -2, but 2- 5 -2 does not irreducible
characters of degree 2 [Atlas], so G = H.

To determine Gyyith i, We note that the field of traces is still Q((5), and repeat the above arguments
verbatim. O
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