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Abstract. We exhibit a rigid local system of rank six on the
affine line in characteristic p = 5 whose arithmetic and geometric
monodromy groups are the finite group 2.J2 (J2 the Hall-Janko
sporadic group) in one of its two (Galois-conjugate) irreducible
representation of degree six.
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1. Introduction: the general setting

We fix a prime number p, a prime number ` 6= p, and a nontrivial

Q`
×

-valued additive character ψ of Fp. For k/Fp a finite extension,
we denote by ψk the nontrivial additive character of k given by ψk :=
ψ ◦Tracek/Fp . In perhaps more down to earth terms, we fix a nontrivial
Q(µp)

×-valued additive character ψ of Fp, and a field embedding of

Q(µp) into Q` for some ` 6= p.
Given an integer D ≥ 3 which is prime to p, we form the local system

Fp,D on A1/Fp whose trace function, at k-valued points t ∈ A1(k) = k,
is given by

t 7→ −
∑
x∈k

ψk(x
D + tx).

This is a geometrically irreducible rigid local system, being the Fourier
Transform of the rank one local system Lψ(xD). It has rank D− 1, and
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each of its D − 1 I(∞)-slopes is D/(D − 1). It is pure of weight one.
[It is the local system F(Fp, ψ,1, D) of [Ka-RLSA].]

Let us further fix a choice of
√
p ∈ Q`

×
. For each finite extension

k/Fp, we then use this choice of
√
p to define

√
#k :=

√
pdeg(k/Fp). We

then define the “half”-Tate twisted local system

Gp,D := Fp,D(1/2)

whose trace function, at at k-valued points t ∈ A1(k) = k, is given by

t 7→ −
∑
x∈k

ψk(x
D + tx)/

√
#k

The local system Gp,D is pure of weight zero.

Lemma 1.1. The determinant det(Gp,D) is arithmetically of finite or-
der. More precisely, det(Gp,D)⊗4p is arithmetically trivial.

Proof. It suffices to show that after extension of scalars from Fp to its
quadratic extension Fp2 , the 2p’th power is trivial, i.e., that if k/Fp is
a finite extension of even degree 2d, then the determinant takes values
in µ2p.To see this, note that the twisting factor

√
p2d = pd ∈ Q, so

this determinant has values in Q(µp) which are units at all finite places
of residue characteristic not p (use the `-adic incarnations) and which
have absolute value 1 at all archimedean places of Q(µp). Because there
is a unique p-adic place of Q(µp), the product formula shows that the
determinant has values which are also units at p, and hence are roots
of unity in Q(µp), i.e., they are 2p’th roots of unity. �

When we view the local system Gp,D as a representation

ρGp,D : π1(A1/Fp)→ GL(D − 1,Q`),

the Zariski closure of the image of π1(A1/Fp) is defined to be the arith-
metic monodromy group Garith. The Zariski closure of the image of
the normal subgroup πgeom1 := π1(A1/Fp) is defined to be the geomet-
ric monodromy group Ggeom. Thus we have inclusions of algebraic

groups over Q`:
Ggeom CGarith ⊂ GL(D − 1).

Applying [Ka-ESDE, 8.14.5, (1) ⇐⇒ (2) ⇐⇒ (6)] in the particu-
lar case of Gp,D, we have

Proposition 1.2. The following conditions are equivalent.

(1) Gp,D has finite Ggeom.
(1bis) Fp,D has finite Ggeom.

(2) Gp,D has finite Garith.
(3) All traces of Gp,D are algebraic integers.
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When D ≥ 3 is odd (and prime to p), the local system Fp,D is
symplectically self-dual. As shown in [R-L, Proposition 4 and Corollary
6], its Ggeom is either finite or it is the full symplectic group Sp(D− 1).
When D ≥ 3 is even (and prime to p), the same reference shows that
Ggeom is either finite or is SL(D − 1). The proof of [R-L, Proposition
4 and Lemma 5] also shows that when D is not of the form 1 + q for
q a power of p, then Fp,D is not induced (i.e., the given representation
of its Ggeom is not induced). Indeed, by the result [Such, 11.1] of Šuch,
if the representation were induced, it would be Artin-Schreier induced,
and that is what is ruled out when D is not of the form 1 + q. [When
D = 1 + q, then Ggeom is, by Pink [Ka-RLSA, 20.3], a finite p-group,
and (hence) the representation is induced.]

When D ≥ 3 is prime to p, the trace function of Gp,D takes values in
Z[µp]. If moreover p is 1 mod 4, then we can choose either quadratic
Gauss sum, a quantity which itself lies in Z[µp], as our

√
p, and hence

all traces of Gp,D lie in Z[µp][1/p]. If p is not 1 mod 4, this remains true
for traces of the pullback of Gp,D to A1/Fp2 . In either case, the traces
of Gp,D in question are algebraic integers if and only if they all have
ordp ≥ 0.

Remark 1.3. When D ≥ 3 is prime to p and odd, then the traces of
Fp,D lie in the real subfield Q(µp)

+. If in addition p is 1 mod 4, then
either quadratic gauss sum is ±√p and also lies in this field, and hence
Gp,D has traces in Q(µp)

+.

Results of Kubert, explained in [Ka-RLSA, 4.1,4.2,4.3] and discov-
ered independently in [R-L, Cor. 4, Cor. 5], show that Ggeom and
Garith for Gp,D are finite when q is a power of p and D is any of

q + 1,
q + 1

2
with odd q,

qn + 1

q + 1
with odd n.

Let us call these the Kubert cases. In [Ka-RLSA, 17.1, 17.2] and
[Ka-Ti-RLSMFUG, 3.4] their Ggeom groups are determined for all odd
q.

Both authors have given numerical criteria for Gp,D to have finite
Ggeom and Garith, cf. [Ka-RLSA, first paragraph after 5.1] and [R-L,
Thm. 1]. The second author did extensive computer experiments to
find other (p,D) than the Kubert cases for which Gp,D seemed to have
finite Ggeom (i.e., where many many traces were all algebraic integers).
For primes p ≤ 11 and D ≤ 106, there was only one non-Kubert
candidate, the case p = 5, D = 7.

In the first part of this paper, we prove that F5,7 has finite Ggeom

(and hence, by Proposition 1.2, that G5,7 has finite Ggeom and finite
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Garith). In the second part, we show that Ggeom = Garith = 2.J2 in
one of its two six-dimensional irreducible representations. These two
representations are symplectic. Their character values lie in Z[

√
5]

and are Galois-conjugates of each other. As Guralnick and Tiep point
out [G-T, Table 1], the group 2.J2, sitting inside Sp(6,C), has the
exotic property that it has the same moments Mn (dimension of the
space of invariants in the n’th tensor power of the given six-dimensional
representation) as the ambient group Sp(6,C) for M1 through M11; one
needs M12 to distinguish them.

It is not clear whether there “should” be infinitely many (p,D) other
than the Kubert cases for which Gp,D has finite Garith, or finitely many,
or just this one (5, 7) case. Much remains to be done.

2. Finiteness of the monodromy

In this section we will prove that the sheaf F5,7 has finite geometric
monodromy. We will do so by applying the numerical criterion proven
in [R-L, Theorem 1], which we recall here. For a prime p and an integer
x ≥ 0, we define

[x]p,∞ := the sum of the digits of the p−adic expansion of x,

using the usual digits {0, 1, 2, ..., p− 1}.
For every r ≥ 1 we define [x]p,r = [x]p,∞ if 1 ≤ x ≤ pr − 1, and we

extend the definition to every integer x by imposing that [x]p,r = [y]p,r if
x ≡ y (mod pr−1).[Thus we are using {1, 2, ..., pr−1} as representatives
of Z/(pr − 1)Z.]

From [R-L, Thm. 1], we have

Theorem 2.1. The sheaf Fp,d has finite geometric monodromy if and
only if the inequality

[dx]p,r ≤ [x]p,r +
r(p− 1)

2

holds for every r ≥ 1 and every integer 0 < x < pr.

Let us enumerate some basic properties of the functions [−]p,∞ and
[−]p,r.

Proposition 2.2. For strictly positive integers x and y, and for r ∈
N ∪ {∞}, we have:

(1) [x+ y]p,r ≤ [x]p,r + [y]p,r
(2) [x]p,r ≤ [x]p,∞
(3) [px]p,r = [x]p,r
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Proof. We first prove (1) for r = ∞. Note that [x]p,∞ is the minimal
number of terms in any decomposition of x as a sum of powers of p.
By taking the sum of the p-adic expansions of x and y we see that
x + y can be written as a sum of [x]p,∞ + [y]p,∞ powers of p, and the
inequality follows.

For (2) we proceed by induction on x: for 0 < x < pr it is obvious
by definition. If x ≥ pr, let s be the largest integer such that ps ≤ x.
Then s ≥ r and [x− ps]p,∞ = [x]p,∞ − 1. Since x ≡ x− ps + ps−r (mod
pr − 1), while x > x − ps + ps−r > 0, we have, by induction on x and
(1)∞,

[x]p,r = [x− ps + ps−r]p,r ≤ [x− ps + ps−r]p,∞ ≤ [x− ps]p,∞+ [ps−r]p,∞ =

= [x]p,∞ − 1 + 1 = [x]p,∞.

In order to prove (1) for finite r we can assume that x, y < pr. Then
by (2) and (1)∞, we have

[x+ y]p,r ≤ [x+ y]p,∞ ≤ [x]p,∞ + [y]p,∞ = [x]p,r + [y]p,r.

Finally, (3) is obvious for r = ∞. For finite r, note that if x =
ar−1p

r−1 + · · ·+ a1p+ a0 is the p-adic expansion of x < pr, then px ≡
ar−2p

r−1 + · · · + a1p
2 + a0p + ar−1 (mod pr − 1), so [px]p,r = [x]p,r =

ar−1 + · · ·+ a1 + a0.
�

We now fix p = 5 and d = 7.

Lemma 2.3. Let r be a positive integer and 0 ≤ x < 5r an integer
such that x 6≡ 2 mod 5. Then [7x]5,∞ ≤ [x]5,∞ + 2r.

Proof. We proceed by induction on r. For r = 1 and r = 2 one checks
it by hand.

Now let r ≥ 3 and 0 ≤ x < 5r with x 6≡ 2 mod 5. If 0 ≤ x < 5r−1

the stronger inequality [7x]∞ ≤ [x]∞ + 2r − 2 holds by induction, so
we may assume that 5r−1 ≤ x < 5r. Consider the 5-adic expansion
of x, which has r digits, the last one being 6= 2 by hypothesis. We
distinguish two cases:

Case 1: The constant term is not 2, and there is some other digit
6= 2, say the one multiplying 5s, for some s with r > s > 0. Write
x = 5sy+ z, with 0 ≤ z < 5s, 0 ≤ y < 5r−s (that is, split the first r− s
and the last s 5-adic digits of x). Then by induction on r we get

[7x]5,∞ = [7 · 5sy + 7z]5,∞ ≤ [7 · 5sy]5,∞ + [7z]5,∞ =

= [7y]5,∞ + [7z]5,∞ ≤ [y]5,∞ + 2(r − s) + [z]5,∞ + 2s = [x]5,∞ + 2r.
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Case 2: All other digits are = 2, that is, x = (222...22a)5 with
a ∈ {0, 1, 3, 4}. Note that 7 · (222...220)5 = (322...2140)5 (where there
are two fewer 2’s on the right hand side). Then

[7x]5,∞ = [7 · (22...220)5 + 7a]5,∞ ≤ [7 · (22...220)5]5,∞ + [7a]5,∞ =

= [(322...2140)5]5,∞ + [7a]5,∞ = 2(r+ 1) + [7a]5,∞ ≤ 2(r+ 1) + a+ 2 =

= 2(r−1)+a+6 ≤ 2(r−1)+a+2r = |(222...22a)5]5,∞+2r = [x]5,∞+2r.

�

Remark 2.4. Although it will not be used, it follows from the lemma
that for every r ≥ 1 and for every integer x with 0 ≤ x < 5r, we have

[7x]5,∞ ≤ [x]5,∞ + 2r + 2.

Indeed, for 0 ≤ x < 5r, the quantity 5x is < 5r+1 and is not 2 mod 5.
So by the lemma applied to 5x with r + 1, we have

[7 · 5x]5,∞ ≤ [5x]5,∞ + 2r + 2.

But [7 · 5x]5,∞ = [7x]5,∞ and [5x]5,∞ = [x]5,∞.

Theorem 2.5. The geometric monodromy of F5,7 is finite.

Proof. By Theorem 2.1, we need to show that [7x]5,r ≤ [x]5,r + 2r for
r ≥ 1 and 0 < x < 5r.

If x = 5r−1
2

, then x = (22...22)5, so [x]5,r+2r = 4r and the inequality
is clear, since 4r is an absolute upper bound for the function [−]5,r.

Otherwise, some 5-adic digit of x is 6= 2. Since multiplying x by 5
cyclically permutes the digits of x modulo 5r − 1 and does not change
the values of [x]5,r or of [7x]5,r, we may assume that the last digit of x
is 6= 2. Then

[7x]5,r ≤ [7x]5,∞ ≤ [x]5,∞ + 2r = [x]5,r + 2r

by Lemma 2.3. �

3. Determination of the monodromy groups

We first give a general descent construction, valid for general Fp,D
with D ≥ 3 prime to p. On Gm/Fp, consider the rank D − 1 local
system Hp,D whose trace function, for k/Fp a finite extension, and
t ∈ Gm(k) = k×, is

t 7→ −
∑
x∈k

ψk(x
D/t+ x).

The pullback of Hp,D by the D’th power map [D] is (the restriction
to Gm of) the local system Fp,D: simply repace t by tD and make the
change of variable x 7→ tx inside the ψ.
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View Fp,D as the Fourier Transform FT ([D]?(Lψ(x)). Then we see
from [Ka-ESDE, 9.3.2], cf. also [Ka-RLSA, 2.1 (1)], that this Hp,D is
geometrically isomorphic to the Kloosterman sheaf formed with all the
nontrivial multiplicative characters of order dividing D.

Remark 3.1. Exactly as in Remark 1.3, when D ≥ 3 is odd and prime
to p, and p is 1 mod 4, the field of traces of Hp,D lies in Q(µp)

+.

This descent has all of its I(∞)-slopes equal to 1/(D−1) (either from
its identification with a Kloosterman sheaf of rank D − 1, or because
its [D]-pullback, Fp,D, has all its I(∞)-slopes equal to D/(D − 1)).

Either from the fact that its pullback is geometrically irreducible, or
from the Kloosterman description, or just from the fact of having all
I(∞)-slopes 1/(D − 1), we see that Hp,D is geometrically irreducible.

Lemma 3.2. Let d ≥ 2, ` 6= p, and M a d-dimensional continuous Q`-
representation ρM of I(∞) all of whose slopes are 1/d. Suppose that d
is not divisible by p2. Then there does not exist a factorization of d as
d = ab with a, b both < d, together with algebraic groups G1 ⊂ SL(a,Q`)
and G2 ⊂ SL(b,Q`) such that

Image(ρM) ⊂ the image G1 ⊗G2 of G1 ×G2 in SL(ab,Q`).

Proof. We argue by contradiction. The map G1 × G2 → G1 ⊗ G2 has
finite kernel, K, which is a subgroup of the group µgcd(a,b) (this being the
kernel of SL(a)× SL(b)→ SL(ab)). Because I(∞) has cohomological
dimension one, the group H2(I(∞),K) = 0, and therefore there exists
a lift of ρM to a homomorphism

ρa,b : I(∞)→ G1 ×G2,

compare [Ka-ESDE, 7.2.5]. Because the kernel K has order prime to

p, the upper numbering subgroup I(∞)
1
d
+, which acts trivially on M ,

lies in the kernel of ρa,b (simply because I(∞)
1
d
+ is a pro-p group which

maps to the finite group K which has order prime to p, cf. [Ka-ESDE,
7.1.4]). Then the homomorphisms

ρa := pr1 ◦ ρa,b : I(∞)→ G1

and
ρb := pr2 ◦ ρa,b : I(∞)→ G2

are each trivial on I(∞)
1
d
+, i.e., each has all slopes ≤ 1/d. Therefore

their Swan conductors have Swan(ρa) ≤ a/d < 1 and Swan(ρb) ≤
b/d < 1. But Swan conductors are nonnegative integers. Therefore
both ρa and ρb have Swan = 0, i.e., both are tame. But then M is
tame, contradiction. �
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When D ≥ 3 is odd and prime to p, the half-Tate twist Hp,D(1/2) is
symplectically selfdual.

We now turn our attention to the particular case of H5,7 and its
half-Tate twist H5,7(1/2). We know from Theorem 2.5 that its Ggeom

(and hence also its Garith, by Proposition 1.2) is a finite irreducible
subgroup of Sp(6,Q`). By Remark 3.1, the field of traces of H5,7(1/2)

lies in Q(µ5)
+ = Q(

√
5). Computing the trace at t = 1 ∈ F×5 , we see

that its field of traces is in fact Q(
√

5) (and not just Q).

Lemma 3.3. The group Ggeom ⊂ Sp(6,Q`) is primitive, i.e., the given
six-dimensional representation is not induced.

Proof. By Pink’s theorem [Ka-MG, Lemma 12], if a Kloosterman sheaf
is (geometrically) induced, its list of characters is Kummer induced.
So for our Kloosterman sheaf, formed with the nontrivial characters of
order 7, being induced would imply that, for some divisor n ≥ 2 of 6,
its characters are all the n’th roots of some collection of 6/n characters.
In particular, some ratio of distinct characters of order 7 would be a
character of order dividing n, for some divisor n of 6, which is not the
case: all such ratios have order 7.

Another proof is to observe that if H5,7 were induced, then its pull-
back F5,7 would be induced (a system of imprimitivity for a group
remains one for any subgroup). But by [Such, 11.1], if F5,7 were in-
duced, it would be Artin-Schreier induced, so its rank, 6, would be a
multiple of p = 5. �

Theorem 3.4. The local system H5,7(1/2) has Ggeom = Garith = 2.J2.

Proof. Our situation now is that we have a primitive (by Lemma 3.2)
irreducible subgroup G (the Ggeom for H5,7(1/2)) in Sp(6,Q`) such that
the given six-dimensional representation is not contained in the tensor
product of two lower dimensional representations of G. Therefore the
larger finite group Garith is a fortiori itself primitive and irreducible
inside Sp(6).

We now appeal to the work [Lind, &3, Theorem] of Lindsey, as stated
in [C-S, Theorem 3.1]. This gives the list of irreducible primitive sub-
groups of SL(6,C). Those whose given six-dimensional representation
is not contained in a nontrivial tensor product are either

(1) 2.S5 or S7.
(2) a quasisimple group.
(3) a group containing a quasisimple group of index two on which

the representation remains irreducible.
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The first case is subsumed by the third, as 2.S5 = 2.A5.2 contains
2.A5, and S7 contains A7. The quasisimple groups in question are

2.A5 = SL(2, 5), 3.A6, 6.A6, A7, 3.A7, 6.A7, PSL(2, 7), SL(2, 7), SL(2, 11),

and

SL(2, 13), PSp(4, 3) ∼= PSU(4, 2), SU(3, 3), 6.PSU(4, 3), 2.J2, 6.PSL(3, 4).

Of these, those which lie as an index two subgroup of a larger group
inside SL(6,C) are

SL(2, 5), 3.A6, A7, PSL(2, 7), PSp(4, 3),

SU(3, 3), 6.PSU(4, 3), 6.PSL(3, 4).

Of the listed quasisimple groups, the only ones with irreducible sym-
plectic representations of degree six are

SL(2, 5), SL(2, 7), SL(2, 13), SU(3, 3), 2.J2.

.
Of these, the only ones whose field of character values (for any of its

six-dimensional irreducible symplectic representations) lies in Q(
√

5)
are SL(2, 5), SU(3, 3) and 2.J2. For SL(2, 5) and SU(3, 3), the field of
traces is Q; for 2.J2 it is Q(

√
5). So the only possibilities for Garith other

than 2.J2 are the groups G.2 for G either SL(2, 5) or SU(3, 3). But for
neither of these two groups does the given representation extend to a
symplectic representation (or a selfdual one), as one checks by looking
in the Atlas [ATLAS].

Therefore Garith for H5,7(1/2) must be 2.J2. As Ggeom is a normal
subgroup of Garith with cyclic quotient (namely some finite quotient of
Gal(Fp/Fp)), we must also have Ggeom = Garith = 2.J2. �

Corollary 3.5. For the local system G5,7, we have Ggeom = Garith =
2.J2.

Proof. Neither Ggeom nor Garith changes when we pass from A1 to
the dense open set Gm. Restricted to Gm, G5,7 is the [7] pullback
of H5,7(1/2). This pullback replaces the Ggeom and Garith of H5,7(1/2)
by normal subgroups of themselves of index dividing 7. But 2.J2 has
no such proper subgroups. �

4. Appendix: Relation of [x]p,r to Kubert’s V function

We denote by (Q/Z)prime to p the subgroup of Q/Z consisting of those
elements whose order is prime to p. We denote by Qn.r.

p the fraction
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field of the Witt vectors of Fp. For Fq a finite extension of Fp, we have
the Teichmuller character

TeichFq : F×q ∼= µq−1(Qn.r.
p ),

whose reduction mod p is the identity map on F×q . For an integer d,
consider the Gauss sum over Fq,

G(ψFq , T eich
−d) :=

∑
x∈F×

q

ψFq(x)Teich−d(x).

If we write q = pr, then by Stickelberger’s theorem,

ordq(G(ψFq , T eich
−d)) = (1/r)

r−1∑
j=0

< pj
d

pr − 1
> .

As explained in [Ka-G2hyper, p. 206], standard properties of Gauss
sums show that there is a unique function

V : (Q/Z)prime to p → the real interval [0, 1)

such that for q = pr and d an integer, we have

V

(
d

pr − 1

)
= (1/r)

r−1∑
j=0

< pj
d

pr − 1
> .

As noted in [R-L, line before Theorem 1], we thus have the identity

V

(
d

pr − 1

)
=

1

r(p− 1)
[d]p,r

provided that 1 ≤ d ≤ pr − 2 (i.e., provided that d
pr−1 is nonzero in

(Q/Z)prime to p). However, for d = 0, V ( d
pr−1) = 0, while

1

r(p− 1)
[0]p,r = 1.

This “reversal” of the values at 0, together with the identity for
Kubert’s V function

V (x) + V (−x) = 1, for x 6= 0,

means precisely that for any integer d and any power pr of p, we have
the identity

1

r(p− 1)
[d]p,r = 1− V

(
−d

pr − 1

)
.

With this identity, one sees easily that the criterion [R-L, Theorem 1]
for Fp,D to have finite geometric monodromy, namely that

[Dx]p,r ≤ [x]p,r + r(p− 1)/2
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for all r ≥ 1 and all integers x, is equivalent to the criterion [Ka-RLSA,
first paragraph after 5.1] that for all y ∈ (Q/Z)prime to p, we have

V (Dy) + 1/2 ≥ V (y).
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