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ESTIMATES FOR MIXED CHARACTER SUMS

NicuorLas M. KATz

Abstract. We give sharp estimates for certain families of exponential
sums in several variables over finite fields.

1 Introduction

Let k be a finite field, p its characteristic, and
%1 (k,+) - Z[G)* € C*

a nontrivial additive character of k. We are given a polynomial f =
f(z1,...,2,) in n > 1 variables over k of degree d > 1 which is a “Deligne
polynomial”, i.e. its degree d is prime to p and its highest degree term,
say fq4, is a homogeneous form of degree d in n variables which is nonzero,
and whose vanishing, if n > 2, defines a smooth hypersurface in the pro-
jective space P™ 1. For a Deligne polynomial f as above, one has Deligne’s
fundamental estimate [D2, 8.4]

Y v @) < @ mpm

TEL™

Suppose now that for each index 1 < i < n we are given a C-valued

function on k, x + G;(x), and we are interested in good (i.e. square root
cancellation) estimates for the sum

> ¢(f($1,---,wn))Hgi($i)-

(wl,...,wn)ek"
We will give such estimates if the Deligne polynomial f = f(z1,...,zy) is
nicely adapted to the particular choice of coordinates (x1,...,zy), and if

each of the functions = — G;(z) is suitably algebro-geometric in nature.
The relevant notion of f’s being nicely adapted to the particular choice

of coordinates is that f be Dwork-regular. We say that a Deligne poly-

nomial f = f(x1,...,2,) is Dwork-regular if, for every proper subset
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S C {1,2,...,n}, the polynomial obtained by specializing z; — 0 for
i € S is a Deligne polynomial of the same degree d in the remaining
variables z;,j ¢ S. The archetypical example of a Dwork-regular f is
f=3"z¢+ (terms of lower degree). The antithesis of a Dwork-regular
f 1is, in any odd characteristic, the split quadratic form in an even number
n = 2m of variables f = 37", z;xm ;.

Explaining in general what we require of the functions z — G;(z), and
stating the general result, will require familiarity with /-adic cohomology.
However, various special cases of our result can be formulated, if not proven,
in entirely elementary terms. As already these special cases may be useful
to number theorists, we first make explicit these elementary formulations
in three example situations.

We begin with the example of multiplicative characters. We adopt the
convention of extending multiplicative characters (even trivial ones) y of
k* to k by defining

x(0) =0.

Suppose for each index i we are given a multiplicative character x; : k*—C*,
and a non-zero one-variable polynomial p;(x) € k[z]. We suppose that the
following nondegeneracy condition holds for each i: for every zero o € k
of p;, denoting by ord,(p;) the multiplicity of a as a zero of p;, the mul-
tiplicative character X?Td“ ) is nontrivial. [For instance, this is automatic
if p; is a nonzero constant, or if x; is nontrivial and p; is squarefree.] Then
we take for x — G;(z) the function on k given by

T = Xi (pi(fc)) -
Theorem 1.1. Suppose the Deligne polynomial f = f(x1,...,2z,) of
prime-to-p degree d is Dwork-regular, and that the data (x;,p;); satisfies
the above nondegeneracy conditions. For each i, denote by e; the number

of distinct zeroes of p; in k. Then we have the estimate
n

‘ > v(f@n. ) ﬁm(m(xi))‘ < (H(d— 1 +6i)>#(k)”/2_
=1

(z1,eesn) EE™ =1

REMARK 1.2. Here is a simple example to show why we must assume the
Deligne polynomial f to be Dwork-regular, already with n = 2. Suppose
p is odd, and take d = 2, f = z1z2. Choose a nontrivial multiplicative
character x, and for both i = 1,2, take (x;,p;) = (X, ;). Then the sum in
question is

> pl@mima)x(mima) = (F#k— DG, x),

(z1,52)€R?
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with G(v, x) the Gauss sum ), 1(t)x(t). So for growing #k, the sum is
O(#k*/?) but is not the desired O(#k*/?).

We next consider the example of additive characters. We extend the
additive character 1 of k to P'(k) = k U {oo} by defining

P(o0) = 0.
Suppose that for each index ¢ we are given a one-variable rational function
ri(x) € k(z), which we assume satisfies the following two nondegeneracy
conditions, one on the finite poles, if any, of 7;, and one on the pole, if any,
of r; at oo:
(1) For each § € k, the multiplicity poleordg(r;) of 3 as a pole of r; is
either prime-to-p or 0.
(2) At oo, we require that either poleord(r;) < d or that poleord(7;)
be both prime-to-p and > d.

Then we take for z — G;(z) the function on k given by
z = P(ri(z)) .
Theorem 1.3. Suppose the Deligne polynomial f = f(x1,...,2z,) of

prime-to-p degree d is Dwork-regular, and the data (r;); satisfies the above
nondegeneracy conditions. For each i, denote by m; the sum

m; = Z (1+ poleordﬂ(ri)) ,
poles BEk of r;
and by d; the integer
d; = Max (d, poleord (r;)) .

Then we have the estimate
n

‘ 2. w(f(xl""’xn))ﬁwi(”(wi))‘S(H(di—l-f—mi))#(k‘)n/z.
=1

(wl,...,wn)ek" =1

REMARK 1.4. The reason we don’t allow poleord (r;) = d is that already
in one variable, we have ) . ¥(f(x))G(x) = #k for G(z) = ¥(—f(x)).

As our final example situation, we take a mixture of additive and multi-
plicative characters, which includes both of the previous example situations
as special cases. For each index 7 we are given a multiplicative character y;,
a one-variable polynomial p;, and a one-variable rational function r;. We
suppose that for each i the triple (x;,pi,r;) satisfies the following non-
degeneracy conditions: the rational function r; satisfies the nondegeneracy
conditions given in the additive character example, and for every zero o € k
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of p; which is not a pole of r;, X;)Td" P9) is nontrivial. [But there is no con-
dition imposed at zeros of p; which are also poles of r;.] Then we take for
x +— G;(x) the function on k given by
= ¢ (ri(x)) xi (pi(2)) -

Theorem 1.5. Suppose the Deligne polynomial f = f(x1,...,z,) of
prime-to-p degree d is Dwork-regular, and the data (x;, p;, r;); satisfies the
above nondegeneracy conditions. For each i, denote by m; the sum

m; 1= Z (1 + poleordﬂ(ri)) ,
poles B€k ofr;
denote by d; the integer
d; = Max (d, poleord,, (r;)) ,
and denote by e; nopole the number of distinct zeroes of p; in k which are

not poles of ;. Then we have the estimate
n

Y (@) [ @@ xpie) |

(wl,...,wn)ek" =1

n
< (H(dz —1+m; + ei,nopole)) 3'5#(]{5)”/2

i=1
REMARK 1.6. Here is a useful mnemonic to remember the statement of
the theorem; it is as though the variables in the Dwork-regular f separate
completely. Indeed, if f(z1,...,2,) = Y ;—, fi(x;), for one-variable polyno-
mials f;, each of degree d, then the sum being estimated is the product of
one-variable sums, and the asserted estimate is the product of the standard
estimates for such one-variable sums, which go back to Weil [W], along lines
foreseen by Hasse [H].

Here is slight variant on the previous theorem, where we weaken slightly
the hypothesis on f, but strengthen slightly the hypotheses on the G;.

Theorem 1.7. Suppose f = f(z1,...,2,) is a polynomial of prime-to-p
degree < d in n variables (not necessarily a Deligne polynomial). If n > 2,
suppose that the polynomial f(x1,...,zn—1,0), obtained by specializing
zn +— 0, is a Deligne polynomial of degree d in n — 1 variables which
is Dwork-regular (as a polynomial in n — 1 variables). Suppose that the
data (x;,pi, )i satisfies the above nondegeneracy conditions. Suppose in
addition that the data (xp,Pn, 7 n) attached to the last variable satisfies the
following additional condition: either poleord,,(ry) is both prime-to-p and

> d, or r, has a pole in k, or p, has a zero in k. Then the estimate of the
previous theorem,
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n

Y wUenw) [ @) xeie)|

(:L‘l,...,SL‘n)Ek” =1

< (H(dz —1+m; + ei,nopole)) #(k)n/Qa

=1
remains valid.

REMARK 1.8. Let us explain why we need the extra condition imposed

on the n’th datum (xn,pn,7). The “worst case” of the above theorem

is arguably when f(z1,...,2,) = F(z1,...,2,-1) does not involve the

variable z, at all, and where F' is a Dwork-regular Deligne polynomial in

n — 1 variables. Then our sum is the product of the n — 1 variable sum
n—1

Z ¢(F($1;---a$n 1) H )X ( pz(xz)))

(z1,--yTn—1)EL™1 =1

with the sum
Zd) (T Xz pn( )) .

zek
So here we must rule out the case when both p, and r, are constant, in
order to have a good estimate for this last sum. And if, say, f(x1,...,2,) =

F(z1,...,2n-1) + fn(zy), with f, of some lower, prime-to-p degree d,, < d,
then our sum is the product of the n — 1 variable sum above with the
one-variable sum

Zd’ fn +Tn( ))Xz( n(x))a
€k
and we must rule out the case when p,, is constant and r,, is —f,.

2 Statement of the Main Results

In this section, we continue to work over the finite field k, with the chosen
nontrivial C-valued additive character 1, extended by zero to P'(k) =
k U {oc}. We choose a prime number ¢ # p, and an isomorphism of fields
1 : C = Q. This allows us to view C-valued additive and multiplicative
characters of k as having values in Q,, and to speak of the complex absolute
values of elements in Q,. Henceforth, we work entirely with Q,-sheaves.
Given any separated scheme X/k of finite type, any constructible Q-
sheaf F on X/k, any finite extension field E/k, and any point z € X (E),

we denote by
HObE,x |.7:
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the action of the geometric Frobenius element (inverse of the standard

generator) Frobg € Gal(E/E) on the pullback of F to Spec(E) by the

point z € X (FE), viewed as a morphism z : Spec(E) — X. We write
F(E,z) := Trace(Frobg 4 | F) .

Attached to the constructible Q,-sheaf F on X/k are its compact co-
homology groups H!(X ®j k,F). These are finite-dimensional Q,-spaces,
endowed with an action of Frobg, which vanish except possibly for 0 <
i < 2dim(X). The Lefschetz trace formula [G] asserts that for any finite
extension field E/k, we have

Y F(B,x) =) (~1)"Trace (Frobg |HY(X &k, F)) .
z€X(E) i

We now turn to a more detailed discussion of the situation on A!/k.
For any constructible Q-sheaf G on Al/k, we denote by rk(G) the generic
rank of G. For each point a € k, we denote by G, its stalk at «, and by
drop,,(G) the nonnegative integer

drop,(9) :=rk(G) — dim(Gy) -
For each point @ € kU{0o}, we denote by Swan,(G) the nonnegative integer
which is the Swan conductor of G at « (i.e. as a representation of the inertia
group I(a), cf. [K1, 1.6]). For all but finitely many o € k, both drop,(G)
and Swan,(G) vanish. For each a € k, we define the total drop (i.e. the
Artin conductor) to be the sum
Totdrop, (G) := drop,(G) + Swan, (G).
The Euler-Poincaré formula, cf. [R], [K1, 2.3.1], for a constructible Q,-sheaf
G on Al/k asserts that
Xe(A' @1k, G) :=Y (—1)' dimH}(A" @4 F,G)
7
is given by
Xe(A' @k k,G) = rk(G) — ) _ Totdrop,(G) — Swans ().
ack

In general, the cohomology groups H:(A' ®; k, G) are finite dimensional
Qy-spaces, endowed with an action of Froby, which vanish except possibly
for 0 < i < 2. Moreover, if G is a middle extension (cf. below) then
HY(A' ® &, G) vanishes.

Given the additive character ¥ of k, we have the Artin—Schreier sheaf
Ly on Al/k, cf. D1, 1.4.2,1.7],[K1, 4.3]. For any regular function f on
X/k, viewed as a morphism f : X/k — A'/k, we have the pulled back
Artin—Schreier sheaf L) on X. For z € X(E), and F = Lyy), we have

F(E, ) = ¢(Traceg,(f(2))) -
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If r(z) is a one-variable rational function over k, we can view it as a mor-
phism to A'/k from the dense open set U C A'!/k where it is holomorphic,
then form the pullback sheaf L) on U, and extend it by direct image
to Al, still denoting this direct image Lyr)- If all the poles of r in k have
order prime to p, then for z € A'(F) = E, we have

‘Cw(r) (E"T) = w(TraceE/k(r(:E))) )
with the convention that 1(oc) = 0, Trace/x(00) = oc.

Similarly, if we are given a multiplicative character y of k, we have the
Kummer sheaf £, on G,,/k, cf. [D1, 1.4.3,1.7],[K1, 4.3]. Given a nonzero
k-polynomial in one variable g(x), we can view it as a morphism to G,,/k
from the open set A'[1/g]/k C A'/k where it is invertible, then form the
pullback sheaf £, on A'[1/g]/k, and extend it by direct image to A,
still denoting this direct image L, (4. If the data (x,g) satisfies the non-

degeneracy condition imposed in the first example of of the Introduction,
then for z € AY(E) = E, we have

Ex(g) (B,z) = X(NOTmE/k(g(I))) .

Suppose we are given data (x,r(x), g(z)), such that all the poles of r(x)

in k£ have order prime to p, and such that at every zero « of g(z) in k which
is not a pole of r(z), x°"%(9) is nontrivial. Denote by

= Ly(r) © Lx(g)
the tensor product sheaf on A'/k. Then for z € A'(E) = E, we have

H(E,z) = ¢ (Trace x(r(x))) x (Normp 4 (9(2))) -
Now fix an integer d > 1 prime to p, and consider the following two
conditions on a constructible Q-sheaf G on A'/k:

(1) There exists a dense open set U C A!/k, inclusion denoted j:U C A'/k,
such that G|U; is lisse and t-pure of weight 0, and such that G =
J«(G|U). [If this condition holds for one dense open U, it holds for
any dense open U on which G is lisse. When it holds, we say that G
is a middle extension which is t-pure of weight 0.]

(2) Viewing G as a representation of m (U), its restriction to the inertia
subgroup I(co) has all its oco-breaks # d.

For example, take the data (x,7(z),g(x)) as above, and again suppose
that all the poles of () in k have order prime to p, and that for every zero
a of g(x) in k which is not a pole of 7(z), x°"%(9) is nontrivial. Then the
sheaf

H = Ly @ L)
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is a middle extension which is ¢-pure of weight 0. If in addition the order of
pole at oo of r(z) is < d, or is > d and prime to p, then H has its co-break
# d as well.

Before stating the main result, we need one more definition. Given
a constructible Q,-sheaf G on Al /k, and an integer d > 1 prime to p,
we now define the nonnegative integer Diff Swang o (G) as follows. View
G as a representation of the inertia group I(oc), and denote by 1, ..., ¥,
r :=rk(G), its co-breaks. Then we define

T
Diff Swang,eo(G) == Y (Max(d, ;) — 1) .
i=1

In the third example of the introduction, the integers d; — 1 occuring there
are the integers Diff Swang . (G;).

We fix an integer d > 1 prime to p, and a Deligne polynomial f of degree
d in n > 1 variables over k. On A'/k we have the Artin-Schreier sheaf £,
and on A", with coordinates (x1,...,2,), we have the pulled back Artin-
Schreier sheaf Ly (t(z,,. . 2,))- For i =1 to n, we give ourselves a nonzero
@e-sheaf G; on Al /k. We assume that each G; is a middle extension which
is t-pure of weight 0, all of whose co-breaks are # d. On A" /k we consider
the tensor product sheaf

Ly(farrman) © (@ Gilwi))
where we denote by G;(z;) the sheaf on A"/k which is the pullback of G;
by the i’th projection pr; : A" — Al.
Theorem 2.1. Hypotheses as in the preceding paragraph, we have the
following results:
(1) The cohomology groups H(A"™ ®p k, Ly(f(z1,...0n)) @ (@F1Gi(zs)))
vanish for i # n.
(2) The dimension of H(A™ ®y k, Lop(f(z1,an)) @ (®F=1Gi())) is given
by

n
dimH" = H(Diff Swangeo(Gi) + > Totdropa(g,-)) .
i=1 ack
(3) The cohomology group H*(A™ ®y k, Loy(f(@1,mzn)) @ (@71 Gi(2:))) is
t-pure of weight n; i.e. via ¢, all the eigenvalues of Froby acting on
this cohomology group have complex absolute value (#k)"/?.

By the Lefschetz trace formula, we immediately get the following corol-
lary, which includes the three examples of the introduction as particular
cases.
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COROLLARY 2.2. For any finite extension field E/k, we have the estimate

Z w(’I‘raceE/lc(f(ﬁcla'“,xn))) HgZ(E"TZ)

(z1,...,2n)EA™(E)=E"™

n
<T1I (Diff Swang,eo(Gs) + Y Totdrop, (g,-)) ()2,
i=1 ack
To conclude this section, we now state a variant of the main result where
we weaken slightly the hypotheses on f, but strengthen slightly those on
the Qi’s.

Theorem 2.3. Let d > 1 be an integer which is prime to p. Suppose
f = f(z1,...,2,) is a polynomial of degree < d in n variables (not nec-
essarily a Deligne polynomial). If n > 2, suppose that the polynomial
f(x1,...,2n—1,0) obtained by specializing x,, — 0, is a Deligne polynomial
of degree d in m — 1 variables which is Dwork-regular (as a polynomial
in n — 1 variables). Assume as above that each G; is a middle extension
which is t-pure of weight 0, all of whose co-breaks are # d. Assume in
addition that either all the co-breaks of G,, are > d, or that at some point
o € Al(k) =k, the inertia group I(a) has no nonzero invariants acting on
(the geometric generic fibre of ) G,,. [Because G, is a middle extension, this
second condition is the same as the condition that the stalk G, = 0.] Then
we have the following results:

(1) The cohomology groups H:(A"™ ® k, Lop(f(@1,mmn)) @ (®721Gi(i)))
vanish for i # n.

(2) The dimension of H := H(A" ®g k, Ly(f(z1,....)) @ (®7=1Gi(7:)))
is bounded above by

n
dimH? < [ (Diff Swangeo(Gi) + 3 Totdropa(gi)).
i=1 ack
(3) The cohomology group H? (A" ® k, Lp(f(z1,an)) @ (®721Gi(2:))) is
t-mixed of weight < n; i.e. via ¢, all the eigenvalues of Froby, acting
on this cohomology group have complex absolute value < (#k)”/ 2,
(4) If the inequality in (2) is an equality, then the cohomology group
H A" ®p ky Ly(f(a1,.zn)) @ (®F1Gi(x:))) is t-pure of weight n.
Again from the Lefschetz trace formula, we get the following corollary.

COROLLARY 2.4. In the situation of the theorem above, for any finite
extension field E [k, we have the estimate
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n

Z w(T.raceE/k(f(xl,...,acn)))Hgi(E,aci)

(z1,....xn)EA™(E)=E"™ =1

n

<11 (Diﬁ” Swangeo(Gi) + > Totdrop, (gz-)) (#E)"/2.

i=1 ack

3 Proof of Theorem 2.1

There are two cases where the theorem is already known. The case n =1
with arbitrary G = G satisfying the imposed conditions (middle extension,
t-pure of weight 0, all co-breaks # d) is an instance of [D3, 3.2.3], with
X, there taken to be P!. The hypothesis on co-breaks of G insures that
the middle extension sheaf L r) ® G on Al is totally wildly ramified at oo,
with Euler Poincaré characteristic given by

xe(Al @y , Lypy ® G) = Diff Swang o (G) + Z Totdrop, (G) -
ack
The total wildness at oo implies that H!(A' ® k, Ly(ry ® G) vanishes for
i # 1, and that for j : A' C P! the inclusion, we have

3Ly ®G) = Ju(Lyr) ®G),
which in turn implies that
Hz(Al Q k, Ly ® g) = Hé(IF’l 1) E,j*(ﬁ,/,(f) ® g)) ,
to which [D3, 3.2.3] applies.

The case when n is arbitrary, but every G; is the constant sheaf Q; is
Deligne’s theorem [D2, 8.4 and its proof], cited in the Introduction. We
should emphasize here that we are not giving a new proof of that theorem,
but rather using it as an essential input.

In order to prove the theorem in general, we will proceed by induction
on how many of the sheaves G; are possibly not the constant sheaf. Given
integers r > 0 and n > Max(1,r), we denote by *(n,r) the statement that
the theorem holds universally in n variables, so long as all but at most r of
the sheaves G; are the constant sheaf.

As noted above, we know that x(n,0) holds for all » > 1, and that
*(1,1) holds.

Suppose by induction that for some r > 0, %(n,r) holds for all n >
Max(1,7). We must show that x(n + 1,7 + 1) holds for all n > r. When
we start with » = 0, it suffices to show that x(n + 1,1) holds for all n > 1,
since %(1,1) holds. So whatever the starting value of r, it suffices to show
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that x(n+1,7+1) holds for all n > Max(1,r). Renumbering the variables,
we may assume that one of the r + 1 possibly nontrivial G; is the last one,
Gn+1- Thus among the n sheaves G; with ¢ < n, at most r of them are
nonconstant.
We will proceed by a sheaf-theoretic incarnation of the following “finite
sum” procedure. We write our n + 1 variable sum as
n+1

> P (f (21, Tn41)) H Gi(xi)

(ml,...,mn+1)6k”+1

with n
Fla):= Y (fl@s,...,zn,0) [[Gilz:) .
(Z1y0esr ) ERT i=1
The point of this expression is that each sum F(«) is covered by the x(n,r)
induction hypothesis, as results from the first part of the following elemen-
tary lemma.

LEmMMmA 3.1. Let f = f(z1,...,Zn+1) be a k-polynomial of prime to p
degree d inn+1 > 2 variables. Suppose that the polynomial f(z1,...,%y,,0)
in n variables is a Deligne polynomial which is Dwork-regular. Then we
have the following results.
(1) For any « in k, the polynomial f(x1,...,%,,) in n variables is a
Deligne polynomial of degree d which is Dwork-regular.
(2) For all but at most finitely many values of A € k, the polynomial fy :=
f(@1,...,2p41) + Az, in n + 1 variables is a Deligne polynomial
which is Dwork-regular.

Proof. The notion of being a Deligne polynomial, or of being a Dwork-
regular Deligne polynomial, concerns only the leading form of the polyno-
mial in question. So (1) holds because the leading form of f(z1,..., Ty, @) is
equal to the leading form of f(z1,...,zn,0). For (2), it suffices to treat the
case when f is homogeneous of degree d. Because d is prime to p, the hy-
pothesis that f(z1,...,z,,0) is a Dwork-regular Deligne polynomial means
precisely that the n partial derivatives z;0f(z1,...,%n,0)/0z;,i =1,...,n,
have no common zeroes in P"~!(k), or equivalently that the common zeros,
call them Z, in P"(k) of the n partial derivatives z;0f/0z;,i = 1,...,n are
disjoint from the hyperplane z,.1 = 0. Therefore the set Z of common
zeroes is finite, and each of its finitely many points has a unique represen-
tative of the form (ai,...,an,1). We must show that for all but finitely
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many \ € k, the n + 1 partial derivatives x;0fy/0z;,i = 1,...,n + 1 have

no common zero in P"(k). Now the first n of these partials are equal
to the z;0f/0z;, i = 1,...,n. So their common zeroes in P™(k) are pre-
cisely the finite set Z. At each point (a1,...,a,,1) of Z, the value of
Tn410f3/0Tn i1 = Tp10f /Oxpi1+dAzd  is Tn10f [ 0%nt1(q, ... a0, 1) TN,
so the only bad \'s are the #Z (not necessarily distinct) quantities
~Tn410f [0Tn11)(ay.....a,1)/ & O

We now give the sheaf-theoretic interpretation of the sums F(«). For
ease of later reference, we state a slightly more general result.

LEMMA 3.2. Suppose given an integer n > 1, and n sheaves G;,i =1,...,n
on A'/k, each of which is a middle extension. On A", form their ex-
ternal tensor product, G(z) = [[;-, Gi(z;).Let d > 1 be an integer, and
Poly(n, d)/k the affine space of polynomials of degree < d inn variables. On
A" xi Poly(n,d) with coordinates (z, f), we have the universal polynomial
funiv In n variables of degree < d,

funiv(x’f) = f(l') )
and the corresponding Artin-Schreier sheaf Ly, ..)- We also have the
pullback of the sheaf G(x) on A™ by the first projection. We form their
tensor product, Ly, .y ®G. By the second projection
pro : A" xi, Poly(n,d) — Poly(n,d),
we form the sheaves
R := Ripm,(ﬁw(funiu) ®G)

on the base Poly(n,d). Let U C Poly(n,d) be a dense open set, and N an
integer. Suppose that for every f € U(k), we have

HYA" @k, Ly(py ®G) =0 fori#n
and _
Then the sheaves R'|U vanish for i # n, and the sheaf R*|U is lisse on U

of rank N, with trace function on U given by
n

R™(E, f) = (-1)" Y ¢(Traceg(f(x))) [[ Gi(B, ).
TEE™ =1
Proof. That the sheaves R’|U vanish for i # n may be checked point by
point, where, by proper base change, it is the hypothesis. Once R"|U
is the only nonvanishing cohomology sheaf, the assertion about its trace
function is just the Lefschetz Trace formula (again by proper base change).
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It remains to explain why R"|U is lisse. Let m := dimPoly(n,d). Then the
shifted sheaf
£¢(funzv) ® g[n + m]

on A" xj Poly(n,d) is perverse, and the morphism pr9 is affine. Therefore
the sheaf ™™ (Rpra) (LY ( funiv) @G[n+m])) on Poly(n, d), which is precisely
the sheaf R™, is a sheaf of perverse origin, cf. [K2, Intro.& Cor.5]. One
knows cf [K2, Prop. 11] that a sheaf of perverse origin (on any geometrically
connected smooth k-scheme) is lisse on any open set where its stalks have
constant rank. O

We now return to the proof of the theorem. Thus d is fixed, and we
assume that for a given r > 0, x(n,r) holds for all n > Max(r,1). We must
show that x(n + 1,7 + 1) holds for all n > Max(1,r). We are given n + 1
middle extension sheaves G; on A! /k, each of which is pure of weight zero,
with no co-break = d. Among the first n sheaves G; with i < n, at most r
of them are nonconstant.

Fix a k-polynomial f(z1,...,z,41) of degree < d such that
f(z1,...,2,,0) as a polynomial in n variables is a Deligne polynomial of
degree d which is Dwork-regular. On A™*!/k, form the sheaf Ly ®
(®7_,Gi(x;)). Map A" /k to A'/k by the projection pry11 onto xy41. We
claim that the sheaves

Ripras (Ly(p) © (97=1Gi(:)))
on A! vanish for i # n, and the remaining sheaf
Fn = Rpro1y(Lyp) ® (RF1Gi(x:)))
is lisse of rank

n
N = H (Diff Swang o (G;) + Z Totdrop,, (gz)) .
i=1 ack

Indeed, this follows from the previous lemma, and the induction hypoth-
esis *(n,r); we take for U in that lemma the dense open set of Poly(n,d)
consisting of Dwork-regular Deligne polynomials, and then we pull back by
the map A'/k — U given by a + f(z1,...,T,,a) to obtain the situation
under discussion.

We now study the ramification at oo of the lisse sheaf F,, on A'/k. For
any constructible Q-sheaf # on A'!/k, we can form the sheaf

Ly @ (@1 Gi(w:)) @ H(zni1)

on A"l By the projection formula for pr,,;, we have

Ripro1y (Lo ® (R721Gi(xi)) @ H(zns1))
= R'pro1 (Lyp) @ (R71Gi(zi)) @ H.
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So the only nonvanishing such R’ is R", and this R" is just the tensor
product F, ® H. So, in the Leray spectral sequence for Rpry,1,, only the
terms Ey b with b = n are possibly nonzero, and they are given by

EY" = HY(A' @p k, F, @ H) .
Therefore this spectral sequence degenerates at Es. It shows that the
groups

H; := H{(A"" @ &, Lyp) © (97-1Gi(2:)) @ H(wn+1))

vanish except possibly for i € {n,n+ 1,n + 2}, and it shows that for these
values of ¢ we have

H'* > HYA' @k, F, @ H) .
Passing to Euler characteristics, we obtain
()" xc(A' @kk, Fn @ M) = X (A" @k, Ly @ (971 Gi(2:)) @ H(2p41))-
LEMMA 3.3. For f as above (i.e. a k-polynomial f(z1,...,x, 1) of degree
< d such that f(z1,...,%,,0) as a polynomial in n variables is a Deligne
polynomial of degree d which is Dwork-regular), the lisse sheaf F,, has all its
oo-breaks < d. If f is itself a Dwork-regular Deligne polynomial of degree
d in n + 1 variables, then F,, has all its co-breaks = d.

Proof. In either case, we know that for all but finitely many A € k, the
polynomial fy := f(z1,...,Zp41) + )\xgﬂ in n 4 1 variables is a Deligne
polynomial which is Dwork-regular. For any such good A, replacing if
necessary k by a finite extension field containing A, use the auxiliary sheaf
H := Lyrg4)- The sheaf on A" simplifies

Ly @ (©721Gi(xi) @ Lyoat, ) = Ly @ (®F1Gi(w:))
and this last sheaf comes under the aegis of the induction hypothesis
*(n + 1,r) applied to fy, since for it the last G,1 is the trivial sheaf.

So we have the formula
Xe (A" @1k, Ly(sy) ® (9F1Gi(w:))) = (1)1 (d - )N,
and hence the formula
Xe(A! @k, Fr @ Lyrgay) = —(d—1)N
for each such good \. Now F,, is lisse of rank N on A'®,k, as is Fn®Ly(rza)

for every A. The Euler Poincaré formula for a lisse sheaf X on Al ®; k
(namely x.(K) = rk(K) — Swany, (K)) gives
XC(AI Rk E, fn & Ew()\wd)) =N — Swanoo(]:n & £¢(Az‘d)) -
Thus we find that for every good A, we have
Swaneo (Fn, ® Lyrge)) = AN = d X 7k(Fp) -
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Let Vi s IN be the oo-breaks of F,. Then for all but finitely many
A € k, the oo-breaks of Fy, ® Ly\z4) are Max(v1,d), ..., Max(yn,d), cf.
[K1, 8.5.7.1]. But the Swan conductor is the sum of the breaks, so for such

A which is also good, we find
N

dN = ZMax('YN, d),
and this equality shows that eaclzl éo-break v; of Fp is < d.
In case f itself is a Dwork-regular Deligne polynomial, then A = 0 is a
good A, and so we get
xe(A' @k, Fp) = —(d—1)N = N —dN.
But N = rk(F,), so we have Swany(F,) = dN = d x rk(F,). As each
oo-break ~; of F, is < d, we must have equality: every ~; is d. O

We can now conclude the proof of Theorem 2.1. Recall that d is fixed,
and we assume that for a given r > 0, x(n,r) holds for all n > Max(r,1).
We must show that x(n+ 1,7+ 1) holds for all n > Max(1,r). We are given
n + 1 middle extension sheaves G; on A' /k, each of which is pure of weight
zero, with no oo-break = d. Among the first n sheaves G; with ¢ < n, at
most r of them are nonconstant. Taking for A in the discussion preceding
the last lemma the sheaf G, 1, we know that the groups

H} = HI(A"™ @k &, Lyp) ® (@141 Gi(x:)))
vanish except possibly for i € {n,n+1,n+ 2}, and that for these values of
1 we have _
Hpte 2= HY(A' @ik, Fo ® Gnaa) -
Because G,,+1 is a middle extension, and F,, is lisse, F,, ® Gp,+1 is a middle
extension, and hence its H? vanishes. Because no co-break of G, .1 is d,
while every oo-break of F,, is d, it follows that all the co-breaks of F,, ®G,,+1
are nonzero. Indeed, if we denote g := 7k(Gp+1) the generic rank of G, 11,
and by pi1,...,p, its co-breaks, then the oo-breaks of F,, ® Gn11 are the
numbers Max(p;, d)i=1,... 4, €ach repeated
n

N = rk(Fn) = H(Diff Swangeo(Gi) + 3 Totdropa(gi))
i=1 ack
times. Because F,, ® G,41 has all its co-breaks nonzero, the inertia group
I(00) (and indeed its wild inertia subgroup P(cc)) acts with no nonzero
invariants or coinvariants, and its H2 vanishes. And we have the formula

SW&DOO(.F” 02 gn+1) - rk(]:n (29 gn+1)

g9
=N (Max(p;,d) — g) := NDiff Swang oo (Gn 11) -
=1
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The dimension of the remaining group H is then given by the Euler
Poincaré formula

— dimH} = y (A" @k k, Fr, ® Gnt1)
=rk(Fn ® Gnt1) — Z Totdrop,, (Fpn ® Gpt1) — Swanee (FpnFn @ Gpt1) -

ack
Because F, is lisse of rank IV, the Euler Poincaré formula simplifies to give

— dimH. = N7k(Gni1) — NZ Totdrop, (Gp+1) — NZ Max(p;, d)
ack =1

= —N(Diﬂ Swang o (Gnt1) + Z Totdrop,, (gn+1)).
ack
This shows that parts (1) and (2) of Theorem 2.1 hold. To establish (3),
we argue as follows. We now apply Lemma 3.2, but with n there re-
placed by n + 1, with our n + 1 sheaves G;, and with the dense open
set U C Poly(n + 1, d) taken to be the Dwork-regular Deligne polynomials,
and with its NV taken to be

n+1
N=T] (Diff Swang,o(Gi) + Y Totdropa(gi)).
=1 a€k

The sheaf R""!|U is then lisse of rank N. It remains to show that it is
t-pure of weight n + 1 (for then specialization to our particular f € U(k)
will give assertion (3)). The input sheaf
Lp(funin) @ (B2, Gil(1))

is certainly (-mixed, and hence by [D3, 3.3.1] the sheaf R"*! is (-mixed.
So R™!U is a lisse sheaf on U which is t-mixed, and hence, by [D3,
3.4.1], R"YU is a successive extension of lisse sheaves, each of which is
t-pure of some weight. So to determine which weights occur, and with what
multiplicities, it suffices to look at the stalk at a single point. But at any
point where the variables separate, e.g., at f = Z?:”Lll xf, the group H?!
is t-pure of weight n + 1, simply because here we have a product of n + 1
one-variable situations, each pure of weight 1.

4 Proof of Theorem 2.3

Let us recall the situation: d > 1 is an integer which is prime to p, and
f = f(z1,...,2,) is a polynomial of degree < d in n variables. If n > 2,
we suppose that the polynomial f(z1,...,2,—1,0) obtained by specializing
zp — 0 is a Deligne polynomial of degree d in n — 1 variables which is
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Dwork-regular. Each G; is a middle extension which is ¢t-pure of weight 0,
all of whose oo-breaks are # d. We assume in addition that either all the
oo-breaks of G, are > d, or that at some point o € A'(k) = k, the inertia
group I(a) has no nonzero invariants acting on (the geometric generic fibre
of) Gp,.

We first treat the case n = 1. So f is a one-variable k-polynomial of de-
gree < d, G1 is a middle extension sheaf as above, and we are looking at the
middle extension sheaf L ;)®G1. The groups H:=H!(A'®4k, Lyr®G1)
vanish for i # 1. The group H? vanishes because we have a middle ex-
tension sheaf on an open curve. The group H? vanishes because of the
“extra” conditions imposed on Gi. If G; has all its oo-breaks > d, then
(as the oo-break of Ly is < d) the same holds for Lys) ® G1 (which
has the same oo-breaks as G; in this case) and hence the inertia group
I(o0) has no nonzero invariants or coinvariants on Ly ® Gi; this in turn
forces H? to vanish. If some inertia group at finite distance I() acts on
G1 with no nonzero invariants, then (as Lys) is lisse on A') it operates on
Ly(r) ®G1 with no nonzero invariants (and hence no nonzero coinvariants),
which again forces H? to vanish. That the remaining group H is (-mixed
of weight <1 is an instance of [D3, 3.3.1].

Now with Gy fixed, let us vary f. We consider the universal situa-
tion, with the sheaf Ly . .y ® G1(z) on the product space A! x Poly(1,d)
with coordinates (z, f), and the second projection pry : A x Poly(1,d) —
Poly(1,d). The sheaves

R := RipTQ!(ﬁfu"iu(x) ® Gi(z))
on Poly(1, d) vanish for i # 1, and R! is a sheaf of perverse origin, which by
[D3, 3.3.1] is t-mixed of weight < 1. The generic rank of R!, attained when-
ever f has degree d (i.e. is a one-variable Deligne polynomial of degree d),
is
N := Diff Swang,0(G1) + » _ Totdrop,(G1) .
ack

For a sheaf of perverse origin, one knows that the stalk at any point has
rank at most the generic rank, and that the open set U where the sheaf
is lisse consists precisely of the points where the stalk has this maximum
rank. This shows that for any particular f, we have dimH. < N. Moreover,
if dimH. = N, then f lies in U. The sheaf R'|U is then lisse and +-mixed,
S0 a successive extension of pure sheaves, and we read the weights which
occur from looking at any single point. Looking at f = z¢
Theorem 2.1 that H! is pure of weight 1, as required.

, we see from
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The general case is similar. For n = m+1 with m > 1, we proceed as in
the induction step of the proof of Theorem 2.1. We consider on A" = A™ 1
the sheaf Ly ;) ® (®i2Gi(xi)), and the projection pry 1 : A™FL 5 Al
onto ;1. Using Theorem 2.1 and the discussion following the proof of
Lemma 3.2, we see that the sheaves

Riprm 1y (Ly(p) ® (971Gi(x:)))
on A! vanish for ¢ # m, and the remaining sheaf
Fm = R™proy1y (Lo @ (O71Gi(:)))

is lisse of rank

m
N := H (Diff Swang o (G;) + Z Totdropa(gi)>.

i=1 ack
By Lemma 3.3 (applied with its n our m), all the oco-breaks of F,, are < d.
The groups . .

H!:= H/(A' ® k, Frmn @ Gm1)

vanish for ¢ # 1, by exactly the same argument as in the n = 1 case above;
indeed the sheaf Ly (f) in the n = 1 case plays the role of the sheaf 7,
with m = 0 in the present argument.

It remains to prove parts (2) and (4) of the theorem. The argument is
similar to that given in the n = 1 case. We fix the n sheaves G;, and vary f.
We consider the universal situation, with the sheaf L, . ) ® (®7;G1 (%))
on the product space A" xPoly(n, d) with coordinates (z, f), and the second
projection prg : A” x Poly(1,d) — Poly(1,d). The sheaves

R := Riprzg(ﬁfmw(w) ® (®7=1G1(%:)))
on Poly(n,d) vanish for 7 # n, and R" is a sheaf of perverse origin, which

by [D3, 3.3.1] is «-mixed of weight < n. The generic rank of R", attained
whenever f is a Dwork-regular Deligne polynomial of degree d, is

n
N = H (Diff Swang,(G:) + Z Totdropa(gi)).

=1 ack
So at any point f € Poly(n,d), the rank of H? is < N, and the largest
open set U C Poly(n,d) on which R" is lisse is precisely the set of points
f at which dimH? = N. Then R™|U is lisse and ¢-mixed, so a successive
extension of (-pure lisse sheaves, and now we use the particular point f =
Yoy a:;-i to see that R™|U is t-pure of weight n. This concludes the proof
of Theorem 2.3.
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