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Introduction

This is an entirely expository paper. We explain some open questions about curves and abelian
varieties over finite fields, and about possible interrelations, or nonexistence thereof, among them.

1. the background

Fix an integer g ≥ 2, a prime p, and a finite extension Fq/Fp. We denote by Mg(Fq) the set
of Fq-isomorphism classes of projective, smooth, geometrically connected curves of genus g over
Fq, and by Ag(Fq) the set of Fq-isomorphism classes of principally polarized abelian varieties of
dimension g over Fq. We denote by SpWg(Fq) the set of symplectic q-Weil polynomials, i.e., the set
of integer polynomials

P (T ) =

2g∑
i=0

(−1)iaiT
i, ai ∈ Z, a0 = 1, ag+i = qiag−i for i = 0, ..., g,

for which

P (T ) =

2g∏
i=1

(1− αiT ) with |αi| =
√
q for all i.

We have natural maps of sets

Mg(Fq)→ SpWg(Fq), Ag(Fq)→ SpWg(Fq).

These maps attach to a curve C/Fq or to an abelian variety A/Fq the reversed characteristic
polynomial of Frobenius on its `-adic H1 for any ` - q:

C/Fq 7→ PC/Fq
:= det(1− TFrobq|H1(C ⊗Fq Fq,Q`)),

respectively
A/Fq 7→ PA/Fq

:= det(1− TFrobq|H1(A⊗Fq Fq,Q`)).

Recall the explicit relation between these polynomials and the point counts on the varieties that
gave rise to them. For A/Fq with

PA/Fq
(T ) =

2g∏
i=1

(1− αiT ),

we have, for each n ≥ 1,

#A(Fqn) =

2g∏
i=1

(1− αn
i ).
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For PC/Fq
(T ) =

∏2g
i=1(1− αiT ), we have, for each n ≥ 1,

#C(Fqn) = qn + 1−
2g∑
i=1

αn
i .

This second relation is more succinctly formulated as the statement that PC/Fq
(T ) is the numerator

of the zeta function of C/Fq.
One knows that Jac(C/Fq), the Jacobian of C/Fq, has the same characteristic polynomial over

Fq as does C/Fq.

PC/Fq
(T ) = PJac(C/Fq)(T ).

2. Questions about “square root cancellation”

For P (T ) ∈ SpWg(Fq), we have the estimates for the coefficients

|ai| ≤
(

2g

i

)
√
qi for i = 1, ..., g,

so we get the bound

#SpWg(Fq) ≤ (

g∏
i=1

(1 + 2

(
2g

i

)
))
√
q1+2+...+g.

See
So for fixed g and variable q, we have

#SpWg(Fq) = Og(qg(g+1)/4).

[In fact, by [DiPippo-Howe, Theorem 1.1], this is the correct order of magnitude.] On the other
hand,

#Ag(Fq) = qg(g+1)/2(2 +Og(1/
√
q)).

The perhaps unexpected factor 2 +Og(1/
√
q) instead of 1 +Og(1/

√
q) in the above estimate comes

from the fact that any abelian variety has automorphism group containing ±1, and generally no
more, cf. [Ka-Sar, Lemmas 11.2.5 and 11.2.6, and &11.3.3].

Thus there is at least “square root cancellation” in passing from abelian varieties over Fq to
their characteristic polynomials over Fq. We say “at least” because not every element of SpWg(Fq)
is a PA/Fq

, cf. [Howe, sections 12 and 13], so the size of the image may be even smaller than

Og(qg(g+1)/4). Additionally, one knows that the p-adic Newton polygon of any PA/Fq
, when com-

puted with respect to

ordq := (1/ordp(q))ordp,

has integer break-points.
By Tate [Tate66, section 3, Theorem 1 (c)], the characteristic polynomial of A/Fq determines

the isogeny class of A/Fq. Thus over a given Fq, we have square root cancellation in passing from
abelian varieties to their isogeny classes.

When we look instead at curves, we have

#Mg(Fq) = q3g−3(1 +Og(1/
√
q)),

cf. [Ka-Sar, Lemmas 10.6.8 and 10.6.13, and Theorem 10.6.14].
Let us denote by

CurvesSpWg(Fq) ⊂ SpWg(Fq)

the set of PC/Fq
as C/Fq runs over Mg(Fq).
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A natural question is to wonder if, in passing from genus g curves over Fq to their zeta functions,
or equivalently to their characteristic polynomials, there is a similar phenomenon of square root
cancellation.

Challenge 2.1. Fix g ≥ 2. Prove or disprove that, as q grows, #CurvesSpWg(Fq) = Og(q(3g−3)/2).

This is trivially true for g = 2, 3, as these are the genera for which

3g − 3 = g(g + 1)/2,

but already for g ≥ 4 it seems completely open.
Let us take the opposite point of view. For g ≥ 10, we have

3g − 3 < g(g + 1)/4.

So there would seem to be room for the map Mg(Fq) → SpWg(Fq) to be injective. However,
as a careful referee pointed out, when Fq is no longer the prime field, then curves over Fq which
are Gal(Fq/Fp)-conjugate have the same zeta function, so the mapMg(Fq)→ SpWg(Fq) cannot be
injective in general.

Challenge 2.2. Fix g ≥ 10. Prove or disprove the existence of a constant Dg such that the map
Mg(Fq)→ SpWg(Fq) is at most (#Gal(Fq/Fp))Dg to one.

There are obvious variants of the two challenges, where we replaceMg(Fq) by “natural” subsets.
For example, one might take

(1) Hg(Fq), the the set of Fq-isomorphism classes of hyperelliptic curves of genus g over Fq.
Here there are Og(q2g−1) points, so there is room for the existence of a constant Dhyp,g such
that the map Hg(Fq)→ SpWg(Fq) is at most (#Gal(Fq/Fp))Dhyp,g to one, if g ≥ 7. Or do
we have square root cancellation?

(2) Planed(Fq), the set of Fq-isomorphism classes of smooth plane curves of degree d over Fq.

Here there are on the order of q
(d+1)(d+2)

2
−9 points, the genus is (d− 1)(d− 2)/2, so there is

room for the existence of a constant Dplane,g such that the map Planed(Fq)→ SpWg(Fq) is
at most (#Gal(Fq/Fp))Dplane,g to one, if d ≥ 6. Or do we have square root cancellation?

3. The situation over F := Fq

Given an integer polynomial of degree d ≥ 1 with constant term 1,

P (T ) = 1 +
d∑

i=1

aiT
i =

d∏
i=1

(1− αiT ),

for each integer n ≥ 1 we denote by P (n)(T ) the polynomial

P (n)(T ) =
d∏

i=1

(1− αn
i T ).

This polynomial also lies in 1 + tZ[t], and its coefficients a
(n)
i are universal Z-polynomials in the

coefficients ai of P (t).
Notice that the Newton polygon of P (T ), computed using (1/ordp(q))ordp, is equal to the Newton

polygon of P (n)(T ), computed using (1/ordp(q
n))ordp.



4 NICHOLAS M. KATZ

If we start with A/Fq, we can extend scalars to obtain (A⊗Fqn)/Fqn . The reversed characteristic
polynomials of these abelian varietes are related by

P(A⊗Fqn )/Fqn
(T ) = P

(n)
A/Fq

(T ).

Similarly, if we start with C/Fq, we can extend scalars to obtain (C ⊗ Fqn)/Fqn . The reversed
characteristic polynomials of these curves are related by

P(C⊗Fqn )/Fqn
(T ) = P

(n)
C/Fq

(T ).

We follow Deligne’s convention and denote by F a chosen algebraic closure of Fq. Suppose now
we are given a point in Ag(F), i.e., an A/F. Then for some integer n ≥ 1, there exists a descent: an
An/Fqn which, after extension of scalars from Fqn to F, gives back A/F. But there is no uniqueness
in either n or the choice of An/Fqn . All that we can say is this. If we are also given m ≥ 1 and a
descent Am/Fqm of A/F, then for some integer multiple d of lcm(n,m), An⊗Fqn

Fqd and Am⊗Fqm
Fqd

become isomorphic over Fqd .
We repeat the above paragraph verbatim with Ag replaced by Mg and with A replaced by C.
With this in mind, we consider the set ⋃

n≥1

SpWg(Fqn)

of all degree 2g polynomials which are symplectic qn-Weil polynomials for some power qn of q. [We
can read the n from the coefficient qng of T 2g.]

We define an equivalence relation on this set as follows: given Pn(T ) ∈ SpWg(Fqn) and Pm(T ) ∈
SpWg(Fqm), we say that Pn ≡ Pm if, for some integer d ≥ 1, we have

P (md)
n = P (nd)

m .

Notice that “the Newton polygon” makes sense for an equivalence class.
We then define SpWg(F) to be the set of equivalence classes:

SpWg(F) := (
⋃
n≥1

SpWg(Fqn))/ ≡ .

In view of the behavior of reversed characteristic polynomials under extension of scalars, we get
well defined maps

Ag(F)→ SpWg(F), Mg(F)→ SpWg(F),

by taking an A/F, (respectively a C/F), descending it to an AnFqn , (respectively to a Cn/Fqn), and
attaching to it the equivalence class of PAn/Fqn

(respectively of PCn/Fqn
) in SpWg(F).

Thus two points A/F and B/F in Ag(F) are isogenous over F if and only if they have the same
image in SpWg(F).

4. The isogeny question

In 1996, Oort and I stumbled upon the following question, which remains open.

Question 4.1. Do the two maps

Ag(F)→ SpWg(F), Mg(F)→ SpWg(F),

have the same image? In other words, is every A/F ∈ Ag(F) isogenous over F to the Jacobian of
some curve C/F ∈Mg(F)?
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5. Evidence and heuristics

For each g ≥ 10, and large q, there are more Fq isogeny classes of g dimensional abelian varieties
over Fq than there are isomorphism classes of genus g curves over Fq: this is the inequality 3g−3 <
g(g + 1)/4 for g ≥ 10.

This inequality suggests, but sadly does not prove, that for g ≥ 10, there “should” be abelian
varieties over F of dimension g which are not isogenous to Jacobians. See also [Shan-Tsim, Conjec-
ture 2.1] for a heuristic discussion of this question, whereMg is replaced by any irreducible V ⊂ Ag

of dimension < g(g + 1)/4.
Over C, a Baire category argument, cf. [Chai-Oort, 3.11], shows that for any g ≥ 4 there are

abelian varieties which are not isogenous to Jacobians.
Of course no such argument exists if we replace C by a countable, but algebraically closed, field.

For the ground field Q, Chai and Oort [Chai-Oort] showed that for any g ≥ 4 there are abelian
varieties which are not isogenous to Jacobians, conditional on the André Oort conjecture for Ag.
Tsimerman gave an unconditional proof, see [Tsim1]. Masser and Zannier [Mas-Zan] gave another
proof. [Tsimerman later proved the André Oort conjecture for Ag, see [Tsim2].]

In the case of F, the question remains open. One approach, suggested by Oort, is through Newton
polygons. Can we exhibit Newton polygons which do not occur for curves? For example, fix a genus
g ≥ 3, and consider the polynomial

1− pT + pgT 2.

The slopes are 1/g and (g − 1)/g, and both reciprocal roots have absolute value
√
pg. The g’th

power

(1− pT + pgT 2)g

is the least power whose Newton polygon has integer break points. By [Honda] and [Tate68],
(1 − pT + pgT 2)g is the reversed characteristic polynomial of an A/Fpg , which is simple (because
its slopes have exact denominator g, and so (1− pT + pgT 2)g cannot be the product of two integer
polynomials, each of strictly positive degree, each of whose Newton polygons has integer break
points and slopes invariant by λ 7→ 1− λ.). If g is odd, then by Howe [Howe-Ker, Theorem1.2], the
isogeny class of this A/Fpg admits a principal polarization, and so gives an element of Ag(Fpg). If
g is even, the same is true over F, so we get an element of Ag(F) with these slopes as well.

Challenge 5.1. Prove or disprove that for every g ≥ 4, there exists no C/F of genus g whose
Newton polygon has slopes

{1/g repeated g times, (g − 1)/g repeated g times}.

Perhaps easier(?) is

Challenge 5.2. Prove or disprove that for every odd prime p ≥ 691, there exists no C/F of genus
p whose Newton polygon has slopes

{1/p repeated p times, (p− 1)/p repeated p times}.
Here 691 is Ramanujan’s prime, it could be replaced in the challenge by any any prime large enough
to eliminate “low genus accidents”, if in fact there are any.

Much remains to be done.
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