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Abstract. In this paper, in honor of the memory of Serge Lang,
we apply ideas of Chavdarov and work of Larsen to study the Q-
irreducibility, or lack thereof, of various orthogonal L-functions,
especially L-functions of elliptic curves over function fields in one
variable over finite fields. We also discuss two other approaches
to these questions, based on work of Matthews, Vaserstein, and
Weisfeller, and on work of Zalesskii-Serezkin.

1. Introduction

By the pioneering work of Dwork [Dw-Rat] and Grothendieck [Gr-Rat],
we know that zeta functions of varieties over finite fields, as well as L-
functions attached to quite general algebro-geometric situations over
finite fields, are rational functions. In many cases, either this func-
tion or its “interesting part” is a polynomial with Q-coefficients. In
such cases, it is natural to wonder about the factorization properties of
this Q-polynomial. This question was first investigated by Chavdarov
[Chav, Theorems 2.1, 2.3, 2.5], who used monodromy techniques to
show that for a fixed genus g ≥ 1, most genus g curves over a large
finite field Fq have the numerator of their zeta function Q-irreducible,
i.e., the fraction of the genus g curves over Fq with this irreducibility
property tends to 1 as q grows. [Strictly speaking, Chavdarov’s literal
result requires q to be a power of a fixed prime p.] Recently Kowal-
ski [Kow-LSM] combined Chavdarov’s monodromy methods with large
sieve techniques to give quantitative refinements of Chavdarov’s results.

It occurred to the author in the Fall of 2001 that one might apply
Chavdarov’s ideas to study the irreducibility properties of L-functions
of elliptic curves E over one-variable function fields K over finite fields
Fq. Here one knows that, so long as the j-invariant is non-constant,
the L-function is a polynomial with Z-coefficients, of known degree d,
of the form

L(T ) = det(1− qTA)
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for a (necessarily unique up to conjugacy) element A in the compact
real orthogonal group O(d,R). The unitarized L-function,

Lu(T ) := L(T/q) = det(1− TA)

thus has coefficients in Z[1/q]. Being the reversed characteristic poly-
nomial of an element A in O(d,R), it satisfies the functional equation

T dLu(1/T ) = det(−A)Lu(T ).

Here det(−A) = ±1 is the “sign in the functional equation”. With this
normalization, the point T = 1 is the Birch and Swinnerton-Dyer point.
The Birch and Swinnerton-Dyer conjecture states that the Mordell-
Weil rank of E/K, MWrk.(E/k), is equal to the multiplicity of T = 1
as a zero of Lu(T ) (which has come to be called the “analytic rank” of
E/K, an.rk.(E/k)). One has (in the function field case) the a priori
inequality

MWrk.(E/k) ≤ an.rk.(E/k).

The analytic rank is odd if and only if the sign in the functional equa-
tion is −1, in which case the analytic rank, being odd, is at least 1. On
the other hand, if the sign in the functional equation is +1, then the
analytic rank, being even, has “no reason” to be nonzero. There is a
general expectation that, in any reasonable enumeration sense, “most”
elliptic curves will have the lowest possible analytic rank, i.e. 0 or 1,
that is compatible with the sign in their functional equations. We refer
the reader to [deJ-Ka, 9.7], [Ka-TLFM, 8.3, 9.11, 10.3] and [Ka-MMP,
13.1.7] for one approach to this sort of question.

One knows that, depending on the parity of d and on the sign in the
functional equation, either 1 or −1 or both or neither necessarily occur
as “imposed” eigenvalues of an element A in O(d,R). More precisely,
for d odd, −det(−A) is always an eigenvalue of A. For d even and
det(−A) = −1, both ±1 are always eigenvalues of A. So it is natural
to introduce the “reduced” polynomial

Rdet(1− TA) := det(1− TA)/(1− T ); d odd, sign− 1,

Rdet(1− TA) := det(1− TA)/(1 + T ); d odd, sign + 1,

Rdet(1− TA) := det(1− TA)/(1− T 2); d even, sign− 1,

Rdet(1− TA) := det(1− TA); d even, sign + 1,

and the reduced (unitarized) L-function

Lu,red(T ) := Rdet(1− TA)

We propose to show that in various settings, “most” elliptic curves
have their reduced L-functions Q-irreducible. The relevance to the
Birch and Swinnerton-Dyer Conjecture is simply this: so long as the
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reduced L-function has degree ≥ 2, if it is Q-irreducible then it can-
not have T = 1 as a root, and hence its analytic rank is as low as
possible. This consequence for analytic rank gives nothing better than
the already cited results [deJ-Ka, 9.7], [Ka-TLFM, 8.3, 9.11, 10.3] and
[Ka-MMP, 13.1.7], the only interest is in the methods. [Work of Em-
manuel Kowalski [Kow-RQT], Chris Hall [Ha], and Florent Jouve [Jo],
using related ideas together with large sieve technology, allows one to
do better.] It would be interesting to understand what is the analogue,
if any, in the number field case, of the irreducibility of the reduced
L-function.

To end this introduction, let us mention briefly a natural question
that we do not discuss at all; given that “most” elliptic curves have
their reduced L-functions Q-irreducible, what are the galois groups (of
the splitting fields, over Q, of) the Q-irreducible polynomials which
arise? A natural guess is that for d odd, say d = 2n + 1, we should
“usually” get the Weyl group of the root system Bn, independent of the
sign in the functional equation. For d even and sign +1, say d = 2n,
we should “usually” get the Weyl group of the root system Dn. But
for d even and sign −1, say d = 2n + 2, we should “usually” get1 the
Weyl group of the root system Cn. The analogous question for families
of curves of genus g, where we have symplectic monodromy, was posed
and answered by Chavdarov [Chav] and made more quantitative by
Kowalski [Kow-LSM]; here the galois group is “usually” the Weyl group
of the root system Cg.

These results were worked out in the author’s Princeton graduate
courses of Fall, 2001 and of 2004-2005, and were presented in lectures at
the University of Minnesota (2001), NYU (2001), the Newton Institute
(2004), the University of Tokyo (2004), and Brown University (2005).
It is a pleasure to thank the listeners for their stimulating questions.

2. The general setup, and the basic examples

We work over an integral domain R which is normal, finitely gener-
ated as a Z-algebra, and whose fraction field has characteristic zero.
Typically, R will simply be Z[1/N ] for some integer N ≥ 1. Over R,
we are given a smooth R-scheme M/R of relative dimension ν ≥ 1 with
geometrically connected fibres. Over M , we are given a proper smooth

1The reason we expect this Weyl group is the fact [Weyl, (9.15) on p. 226] that
in the compact orthogonal group O(2n + 2, R), the space of conjugacy classes of
sign (here sign = determinant) −1 is, with its “Hermann Weyl measure” of total
mass one, isomorphic to the space of conjugacy classes in the compact symplectic
group USp(2n), with its “Hermann Weyl measure” of total mass one.
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curve C/M and a closed subscheme D ⊂ C which is finite etale over
M . We denote by U/M the open curve

U := C −D.

Finally, over U we are given a relative elliptic curve E/U .
Before going further, let us give the two basic examples we have in

mind.
The first example is the universal family of good degree d polynomial

twists of the Legendre curve. Here R is Z[1/2]. We fix an integer d ≥ 3,
and take for M the open set Twistd in the affine space Ad

R of all monic,
degree d polynomials in one variable λ consisting of those polynomials
f(λ) for which the product f(0)f(1)Discrim(f) is invertible. Over this
Twistd we have the universal such polynomial, funiv, and we have the
constant curve P1/Twistd, with coordinate λ, in which we take for D
the disjoint union of the sections∞, 0, 1 and the zero locus of funiv. So
D is finite etale over Twistd of degree d+3. Here we have

U = A1
Twistd

[1/λ(λ− 1)(funiv(λ)].

Over this U , we take for E/U the twisted Legendre curve in P2
U whose

affine equation is

y2 = funiv(λ)x(x− 1)(x− λ).

For each finite field k of odd characteristic, and for each k-valued point
f in Twistd(k), we obtain a relative elliptic curve Ek,f over the punc-
tured λ-line A1

k[1/λ(λ − 1)f(λ)], namely the twisted Legendre curve
y2 = f(λ)x(x − 1)(x − λ). Its L-function is a polynomial of degree 2d
if d is even, and of degree 2d − 1 if d is odd.We will show that as #k
grows, the fraction of twisting polynomials f in Twistd(k) for which
the reduced L-function of the twisted Legendre curve is Q-irreducible
tends to 1. On the other hand, we have at present no means of ad-
dressing the following extremely natural question. Fix a finite field k of
odd characteristic, and consider, as the integer d grows, the fraction of
twisting polynomials f in Twistd(k) for which the reduced L-function
of the twisted Legendre curve is Q-irreducible. Does this fraction tend
to 1 as d grows but k stays fixed? To some other nonzero limit (cf.
[Poonen] for an analogous situation)? To any limit?

The second example is the universal family of good Weierstrass
curves with g2 and g3 of at most specified degrees d2 and d3 respectively.
Here R is Z[1/6]. We fix integers d2 ≥ 3 and d3 ≥ 3, and we suppose
that either d2 ≥ 5 or that d3 ≥ 7. We take for M the open set W (d2, d3)
in the affine space A1+d2

R ×A1+d3
R consisting of those pairs of polynomials
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(g2(t), g3(t)) of degrees at most (d2, d3), for which the auxiliary poly-
nomial ∆(g2, g3) := g2(t)3 − 27g3(t)2 has degree exactly Max(3d2, 2d3)
and has its discriminant invertible. Over W (d2, d3) we have the uni-
versal pair (g2,univ(t), g3,univ(t)), the constant curve P1/W (d2, d3) with
coordinate t, and the divisor D which is the disjoint union of the sec-
tion∞ and the zero locus of ∆(g2,univ(t), g3,univ(t)). So D is finite etale
over W (d2, d3) of degree 1 +Max(3d2, 2d3). Here we have

U = A1
W (d2,d3)[1/∆(g2,univ(t), g3,univ(t))].

Over this U , we take for E/U the relative elliptic curve given in P2
U

whose affine equation is the universal Weierstrass equation

y2 = 4x3 − g2,univ(t)x− g3,univ(t).

For each finite field k in which 6 is invertible, and for each k-valued
point (g2(t), g3(t)) in W (d2, d3)(k), we obtain the relative elliptic curve
Ek,g2,g3 over the punctured t-line A1

k[1/∆(g2, g3)], namely the Weier-
strass curve y2 = 4x3 − g2(t)x − g3(t). Its L-function is a polynomial
of degree Max(3d2, 2d3) − 2 if 12 divides Max(3d2, 2d3), otherwise of
degree Max(3d2, 2d3)−4. We will show that as #k grows, the fraction
of points (g2(t), g3(t)) in W (d2, d3)(k) for which the reduced L-function
of the corresponding Weierstrass curve is Q-irreducible tends to 1. Just
as in the first example, if we fix a finite field k in which 6 is invert-
ible, and vary the integers (d2, d3) in such a way that, say, Min(d2, d3)
grows, we have no understanding of the limiting behavior, if any, of
the fraction of of points in W (d2, d3)(k) whose reduced L-function is
Q-irreducible.

3. Back to the general setup; axiomatics

We return to the general setup. Thus R is an integral domain which
is normal, finitely generated as a Z-algebra, and whose fraction field
has characteristic zero, and M/R is smooth of relative dimension ν ≥ 1
with geometrically connected fibres. Over M , we are given a proper
smooth curve C/M and a closed subscheme D ⊂ C which is finite etale
over M . U/M is the open curve

U := C −D,
and over U we are given a relative elliptic curve E/U . So our picture
is

E → U ⊂ C →M → Spec(R).

Let us name these morphisms, say

f : E → U,



6 NICHOLAS M. KATZ

j : U ⊂ C,

π : C →M.

If k is a finite field and m ∈ M(k) is a k-valued point of M , then
by base change we obtain from E/U/M an open curve Uk,m/k and a
relative elliptic curve Ek,m/Uk,m/k. Let us recall the cohomological
genesis of its unitarized L-function.

For a prime number `, and A any of the rings F`, Z`, Q` or Q`,
consider the lisse sheaf on U [1/`] given by

FA := R1f?A.

It is a sheaf of free A-modules of rank 2, whose determinant is canon-
ically the Tate-twisted constant sheaf A(−1). So we have a canonical
symplectic autoduality paring

FA ×FA → A(−1).

Because R and hence M are normal and connected of generic charac-
teristic zero, any lisse A-sheaf on U [1/`] (here FA) is tamely ramified
along the finite etale divisor D[1/`]. We next consider its extension by
direct image,

GA := j?FA,
on C[1/`]. The autoduality pairing on FA extends by direct image to
a pairing

GA × GA → j?A(−1) ∼= A(−1).

The formation of GA on C[1/`] commutes with arbitrary base change on
M [1/`], and its restriction to D[1/`] is a lisse sheaf of free A-modules
on D[1/`]. We then form the Tate-twisted higher direct image sheaf

HA := R1π?GA(1)

on M [1/`]. This is a lisse sheaf of (not necessarily free, when A is Z`)
A-modules of finite type. Its formation commutes with arbitrary base
change on M [1/`]. It is endowed with an A-linear cup product pairing

HA ×HA → R2π?A(1) ∼= A.

When A is a field, this pairing makes HA orthogonally self-dual. When
A is Q` or Q`, then HA is, in addition, pure of weight zero. We view
the lisse sheaf HA as a representation of π1(M [1/`]).

Theorem 3.1. In the general setup E/U/M/R as above, there exist
integers d ≥ 0 and N ≥ 1 such that for ` not dividing N , HZ`

is a lisse
sheaf of free Z`-modules of rank d on M [1/`] which, by the cup product
pairing

HZ`
×HZ`

→ Z`,
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is orthogonally self dual over Z`.

Proof. Pick an embedding of R into C, and make the extension of
scalars from R to C. We denote the superscript an the corresponding
analytic objects. Thus we have the locally constant sheafHan

Z of finitely
generated abelian groups on Man, endowed with the cup product pair-
ing to Zan. If we tensor it with Q, we obtain the locally constant sheaf
Han

Q on Man, which by cup product is orthogonally self-dual. We take
for d the rank of Han

Q . If we invert a suitable integer N ≥ 1, and tensor
Han

Z with Z[1/N ] to obtain (by the flatness of Z[1/N ] over Z) Han
Z[1/N ],

we find thatHan
Z[1/N ] is a locally constant sheaf of free Z[1/N ]-modules of

rank d which under cup product is orthogonally self-dual over Z[1/N ].
We can take this N to be the N of the theorem. Indeed, for any ` not
dividing N , we can make the flat extension of scalars from Z[1/N ] to Z`

and infer that Han
Z`

is a lisse sheaf of free Z`-modules of rank d on Man

which is orthogonally self dual over Z`. By the comparison theorem,
the restriction to MC of HZ`

is therefore a lisse sheaf of free Z`-modules
on MC which is orthogonally self dual over Z`. It follows that the lisse
sheafHZ`

on M [1/`] itself is torsion-free and Z`-autodual under the cup
product pairing. Indeed, it suffices to check both the torsion-freeness
of the lisse sheaf in question, namely HZ`

, and the Z`-nondegeneracy
of the pairing, at a single geometric point of M [1/`]. �

We now consider two fibrewise conditions that may or may not hold
in our general setup. Both of these conditions do hold in both of the
examples given above (Legendre twists and Weierstrass families), cf.
[Ka-MMP, 8.2.3 and 10.2.13 ] respectively for these two cases.

(1) For every finite field k, and for every k-valued point m in
M(k), the relative elliptic curve Ek,m/Uk,m/k has non-constant
j-invariant.

(2strong) For every finite field k and every ring homomorphism φ : R→ k,
denote by Mk,φ/k the fibre of M/R above (k, φ). For every
` invertible in k, consider the restriction to Mk,φ of the lisse
sheaf HQ`

on M [1/`]. View this lisse sheaf as a representation
ρk,φ,` : π1(Mk,φ)→ O(d,Q`). Under every such homomorphism
ρk,φ,`, the image in O(d,Q`) of the geometric fundamental group

πgeom1 (Mk,φ) := π1(Mk,φ ⊗k k)C π1(Mk,φ)

is Zariski dense in O(d,Q`).

In certain applications, cf. [Ka-MMP, 7.2.7, 8.2.5, 10.2.15] and
[Ka-TLFM, 8.5.7, 8.6.7], one knows only that the following weaker
version of the second condition holds.
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(2weak) For every finite field k and every ring homomorphism φ : R→ k,
denote by Mk,φ/k the fibre of M/R above (k, φ). For every
` invertible in k, consider the restriction to Mk,φ of the lisse
sheaf HQ`

on M [1/`]. View this lisse sheaf as a representation
ρk,φ,` : π1(Mk,φ)→ O(d,Q`). Under each such homomorphisms
ρk,φ,`, the image in O(d,Q`) of the geometric fundamental group

πgeom1 (Mk,φ) := π1(Mk,φ ⊗k k)C π1(Mk,φ)

is Zariski dense in either SO(d,Q`) or in O(d,Q`).

If the first condition holds, then for every ` invertible in k, the lisse
sheaf FQ`

on Uk,m/k is geometrically irreducible, and (hence) the uni-
tarized L-function is given by the action of the Frobenius conjugacy
class Frobk,m in π1(M [1/`]) on the lisse sheaf HQ`

:

Lu(Ek,m/Uk,m, T ) = det(1− TFrobk,m|HQ`
).

[If we do not impose the first condition, the lisse sheaf FQ`
on Uk,m/k

could be geometrically constant (e.g., if E/U were a constant elliptic
curve), in which case the unitarized L-function would not be a poly-
nomial, but rather a rational function whose numerator is given by
the right hand side.] Since these unitarized L-function have rational
coefficients which “do not know about `”, we see that the sheaves HQ`

on M [1/`] form, as ` varies, a “compatible system of orthogonal `-
adic representations” on M . Moreover, and this is the import of the
previous theorem, there exists a single orthogonal group O(d)/Z[1/N ],
corresponding to a quadratic form over Z[1/N ] in d variables whose
discriminant is invertible in Z[1/N ], such that for every ` we land in
its Q`-points, and such that for ` prime to N , we land in its Z` points.
What is essential here is“only” the following (apparently weak) conse-
quence of this last fact: for almost all ` (namely those ` prime to N),
we are landing in the Z` points of an orthogonal group over Z` corre-
sponding to a quadratic form over Z` in d variables whose discriminant
is invertible in Z`.

For each finite field k and each homomorphism φ : R → k, denote
by IrrFrac(k, φ) ∈ Q the fraction of the k-valued points m in the fibre
Mk,φ/k for which the reduced unitarized L-function Lu,red(Ek,m/Uk,m, T )
is Q-irreducible.

4. Statement of the main theorem

Theorem 4.1. In the general setup E/U/M/R, suppose that the fibre-
wise conditions (1) and (2weak) of the previous section hold. Suppose
also that d, the common degree of the L-functions, is ≥ 3. Given a
real number ε > 0, there exists a real constant X = X(ε, E/U/M/R)
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such that for any finite field k with #k > X, and any homomorphism
φ : R→ k, we have

IrrFrac(k, φ) ≥ 1− ε.

5. Statement of an abstract version of the main theorem

Let us now consider an abstract version of our situation. We are given
a finitely generated Z-algebra R. Over R, we are given a smooth R-
scheme M/R of relative dimension ν ≥ 1 with geometrically connected
fibres. We are given an integer d ≥ 3. For every prime ` such that
M [1/`] is nonempty, we are given a lisse Q`-sheaf HQ`

on M [1/`] of
rank d, together with a symmetric autoduality pairing

HQ`
×HQ`

→ Q`.

These sheaves are assumed to form a compatible system of `-adic rep-
resentations on M (in the sense that each characteristic polynomial of
Frobenius has rational coefficients which are independent of the aux-
iliary choice of allowed `). Each sheaf HQ`

is assumed pure of weight
zero. For all but finitely many `, say for all ` outside a finite set S of
primes, we are given a lisse Z`-sheaf HZ`

on M [1/`] of free Z` modules
of rank d, together with a symmetric autoduality pairing over Z`,

HZ`
×HZ`

→ Z`,

which is an integral form of HQ`
with its autoduality pairing.

For each finite field k and each homomorphism φ : R → k, denote
by IrrFrac(k, φ) ∈ Q the fraction of the k-valued points m in the
fibre Mk,φ/k for which the reduced characteristic polynomial Rdet(1−
TFrobk,m|H) is Q-irreducible.

Theorem 5.1. In the abstract version given above, with d ≥ 3, suppose
that the fibrewise condition (2weak) of the previous section holds. Given
a real number ε > 0, there exists a real constant X = X(ε, R) such that
for any finite field k with #k > X, and any homomorphism φ : R→ k,
we have

IrrFrac(k, φ) ≥ 1− ε.

We will fix ε > 0, and prove the theorem for this value of ε. We
reduce immediately to the case when R is reduced. If we have a finite
decomposition of Spec(R) as the disjoint union of finitely many locally
closed, reduced affine subschemes Spec(Ri), it suffices to prove the
theorem (for our fixed ε > 0), over each Spec(Ri) separately. Indeed,
then we can take X(ε, R) to be Maxi(X(ε, Ri)). So by noetherian
induction on Spec(R), it suffices to prove that the theorem holds, for
our fixed ε > 0, in some affine open neighborhood of some maximal
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point of Spec(R). Any sufficiently small such open neighborhood is
of the form Spec(R1), with R1 a normal integral domain which is a
finitely generated Z-algebra. Making the extension of scalars from R
to R1, we are reduced to proving the following “generic” version of the
theorem.

Theorem 5.2. In the abstract version given above, with d ≥ 3, suppose
that the fibrewise condition (2weak) of the previous section holds. Sup-
pose in addition that R is a normal integral domain which is a finitely
generated Z-algebra. Given a real number ε > 0, there exists a real
constant X = X(ε, R) and a nonzero element r = r(ε) ∈ R, such that
for any finite field k with #k > X, and any homomorphism φ : R→ k
for which φ(r) 6= 0, we have

IrrFrac(k, φ) ≥ 1− ε.

6. Interlude: Review of orthogonal groups over finite
fields of odd characteristic

In this section, we fix an integer d ≥ 1, a finite field E = Fq of odd
characteristic, and a nondegenerate quadratic form in d variables over
E, i.e., a d-dimensional E vector space V endowed with a symmetric
E-bilinear form Ψ : V × V → E which makes V autodual. We denote
by O(V,Ψ) := AutE(V,Ψ) the corresponding finite orthogonal group.

One knows that for fixed d and E, there are precisely two iso-
morphism classes of nondegenerate quadratic form, distinguished by
whether or not the discriminant is a square in E×. When d is odd, the
two isomorphism classes give rise to the same orthogonal group; indeed
if (V,Ψ) represents one class, then for any nonsquare α ∈ E×, (V, αΨ)
represents the other, while visibly their orthogonal groups coincide. So
we may speak unambiguously of the group O(d,E) when d is odd.

When d = 2n is even, then the two cases are called the split case
and the nonsplit case. The standard model for the split case is given
by the quadratic form

∑n
i=1 xixn+i (so here (−1)nDiscriminant is a

square), which we will denote (split2n, std). A convenient model for
the nonsplit case is to take V := Fq2n as our Fq vector space, endowed
with the symmetric bilinear form

Ψ(x, y) := (1/2)TraceFq2n/Fq(xyq
n

),

and quadratic form

Ψ(x, x) = TraceFqn/Fq(NormFq2n/Fqn (x)).
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For ease of later reference, we will refer to this model as the standard
nonsplit model, and denote it (Fq2n , std). The split and nonsplit or-
thogonal groups are not isomorphic, they even have different orders.
We will denote them Ospl(d,E) and Ononspl(d,E) respectively when we
need to distinguish them.

On the Clifford algebra Cl := Cl(V,Ψ) attached to (V,Ψ), we have
the E-algebra involution I which is v 7→ −v on V , and the E-algebra
anti-automorphism x 7→ t(x) which is the identity on V . We have its
unit group Cl×. The unit group acts on the Clifford algebra by the
sign-twisted conjugation action: u ∈ Cl× acts as x 7→ I(u)xu−1. Inside
Cl× we have the (twisted) Clifford group, namely the subgroup C×

consisting of those elements which map V to itself. Every nonisotropic
v ∈ V lies in C×, for the map x 7→ I(v)xv−1 is then, for x ∈ V ,
reflection in v. Moreover, one knows that every element of C× is a
nonzero scalar times a (possibly empty) product of nonisotropic vec-
tors v ∈ V ; this corresponds to the fact that in the orthogonal group
O(V,Ψ), every element is a product of reflections in nonisotropic vec-
tors. For u ∈ C×, its “norm” N(u) := t(u)u lies in E×, and x 7→ N(x)
is a group homomorphism. Its kernel is the group Pin(V,Ψ):

Pin(V,Ψ) := Ker(N : C× → E×).

The subgroup of Pin(V,Ψ) consisting of the elements fixed by the
involution I is the group Spin(V,Ψ).

Remark 6.1. The reader should be warned of a possible source of se-
rious confusion. In the older literature, e.g., [Artin-GA], [Bour-AlgIX]
and [Chev-Spin], the unit group is made to act on the Clifford alge-
bra by the literal conjugation action: u ∈ Cl× acts as x 7→ uxu−1,
and one takes the (untwisted) Clifford group, denoted Γ in [Chev-Spin,
2.3], accordingly. This leads to unpleasant difficulties, centered on the
fact that when V is odd-dimensional, there are nonscalar elements of Γ
which act trivially on V , and the “norm” of an element of Γ need not be
a scalar. Contorsions are adopted to get around these difficulties; one
obtains the group Spin(V,Ψ), but there is no Pin(V,Ψ) in the older
theory. The sign-twisted approach, and the group Pin, first appeared
in [AtBS-Clif, 1.7, 3.1], cf. also [Kar-Clif, 1.1.4-8].

We have an exact sequence

{1} → ±1→ Pin(V,Ψ)→ O(V,Ψ)→ ±1,

in which the last map is the spinor norm, denoted

sp : O(V,Ψ)→ ±1.
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The spinor norm is determined by its value on reflections Rflv in non-
isotropic vectors v ∈ V (since these elements generate O(V,Ψ)). For
these, we have the explicit formula

sp(Rflv) = the class of Ψ(v, v) in E×/(E×)2 ∼= ±1.

If d ≥ 2, the spinor norm is surjective, and we have a short exact
sequence

{1} → ±1→ Pin(V,Ψ)→ O(V,Ψ)→ ±1→ {1},
under which the inverse image of SO(V,Ψ) in Pin(V,Ψ) is Spin(V,Ψ).
So we also have the more standard short exact sequence

{1} → ±1→ Spin(V,Ψ)→ SO(V,Ψ)→ ±1→ {1}.
We also have the determinant homomorphism

det : O(V,Ψ)→ ±1.

The simultaneous kernel of these two homomorphisms, sp and det, is
denoted Ω(V,Ψ).

When d ≥ 5, or when d = 4 and we are in the nonsplit case, or
when d = 3 and the characteristic is ≥ 5, the group Ω(V,Ψ) is, modulo
its center, a nonabelian simple group, cf. [Artin-GA, Theorems 4.9,
5.20, 5.21, 5.27]. Moreover, in these cases, the only proper normal
subgroups of Ω(V,Ψ) are subgroups of its center, and consequently
Ω(V,Ψ) is its own commutator subgroup. The center of Ω(V,Ψ) is
trivial if either d is odd or if the discriminant is a nonsquare, otherwise
it is ±1. When d = 4 and the characteristic is ≥ 5 and we are in the
split case, then Ω(V,Ψ)/ ± 1 is the product PSL(2, E) × PSL(2, E)
of the simple group PSL(2, E) with itself, cf. [Artin-GA, Theorem
5.22], and Ω(V,Ψ) is its own commutator subgroup [being a quotient
of Spin(V,Ψ) ∼= SL(2, E) × SL(2, E), which is its own commutator
subgroup].

One knows [Artin-GA, Theorems 5.14, 5.17] that Ω(V,Ψ) is the
commutator subgroup of O(V,Ψ), indeed this was its definition be-
fore Chevalley introduced the use of Clifford algebras in these ques-
tions, cf. [Die-GC, Chpt. III, section 12, p. 23]. For d ≥ 2, the
quotient group O(V,Ψ)/Ω(V,Ψ) is, by the pair of maps (det, sp) the
group {±1} × {±1}. We will need to know, in each of the four cosets
of Ω(V,Ψ) in O(V,Ψ), lower bounds for the numbers of elements A
whose reduced reversed characteristic polynomials Rdet(1−TA) have,
as E-polynomials, certain imposed factorization patterns. For each
(α, β) ∈ {±1} × {±1}, we denote by

O(V,Ψ)(det = α, sp = β)
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the corresponding coset.
There is a further cautionary remark we need to make at this point.

Suppose d ≥ 2, we are given a subgroup H of GL(V ) := AutE(V ),
and we are told that H = O(V,Ψ) for some symmetric autoduality Ψ.
Then the subgroup Ω(V,Ψ) is an intrinsic subgroup of H, namely its
commutator subgroup. The det homomorphism

det : H → ±1

is intrinsic on H as a subgroup of GL(V ). However, the spinor norm
homomorphism

sp : H → ±1

depends on the choice of Ψ. Indeed, if we replace Ψ by a nonzero
scalar multiple αΨ with α a nonsquare, the orthogonal group does not
change, but the two spinor norms are related by

sp(V,αΨ)(h) = det(h)sp(V,Ψ)(h).

On the other hand, since the quotient group H/Ω(V,Ψ) is of type (2, 2),
with det and sp(V,Ψ) an F2-basis of its character group, we see that for
any Ψ1 on V with O(V,Ψ) = O(V,Ψ1), we have either sp(V,Ψ1)(h) =
sp(V,Ψ)(h) for every h ∈ H, or we have sp(V,Ψ1)(h) = det(h)sp(V,Ψ)(h) for
every h ∈ H. Thus each of the two cosets of Ω(V,Ψ) in H ∩ SL(V ) =
SO(V,Ψ) is intrinsic, e.g., one is a subgroup and one isn’t, but the
two cosets of Ω(V,Ψ) in H \ H ∩ SL(V ) = O(V,Ψ) \ SO(V,Ψ) may
be interchanged by different choices of Ψ. In the discussion below, we
work with particular models of our orthogonal groups, i.e., we make
specific choices of Ψ. But we prove only statements which are invariant
under replacing sp by det× sp.

Lemma 6.2. Fix d = 2n ≥ 2. Suppose q := #E ≥ 7. In each of the
two cosets of Ω(d,E) in SOnonspl(d,E), the fraction of elements A for
which Rdet(1− TA) is E-irreducible is at least 1/2n.

Proof. In the standard nonsplit model (Fq2n , std), the group µ1+qn :=
µ1+qn(Fq2n), acting by homothety on Fq2n , lies in SOnonspl(2n,E). More-
over, we know [Saito-sign, Lemma 1, parts 4 and 5] that the spinor
norm, restricted to µ1+qn , is trivial precisely on the subgroup µ(1+qn)/2

of squares. We also remark that every Fq2n-homothety which lies in
the orthogonal group lies in µ1+qn . It follows that if ζ ∈ µ1+qn is an
element such that the field Fq(ζ) is Fq2n , then its characteristic poly-
nomial is an Fq-irreducible palindromic polynomial, and its centralizer
in Ononspl(2n,E) is the subgroup µ1+qn [simply because any Fq-linear
endomorphism A of Fq2n which commutes with ζ is Fq2n-linear, so an
Fq2n-homothety]. So for any such ζ, its conjugacy class inOnonspl(2n,E)
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contains #Ononspl(2n,E)/(1 + qn) elements, all of which have the same
Fq-irreducible palindromic characteristic polynomial as ζ, as well as
the same spinor norm and determinant as ζ. If we take a second
such element ζ1 which is not one of the 2n Galois conjugates of ζ,
then its characteristic polynomial is a different Fq-irreducible palin-
dromic polynomial, so certainly its conjugacy class in Ononspl(2n,E)
is disjoint from that of ζ. [Conversely, Galois conjugate elements of
µ1+qn are Ononspl(2n,E)-conjugate, since the Galois automorphisms of
Fq2n/Fq lie in the orthogonal group, and their conjugation action on
elements of µ1+qn is the same as their Galois action.] Denote tem-
porarily by N± the number of elements ζ ∈ µ1+qn of spinor norm
±1 such that the field Fq(ζ) is Fq2n . Taking the union of their con-
jugacy classes, we obtain #Ononspl(2n,E)N±/2n(1 + qn) elements in
Ononspl(2n,E)(det = 1, sp = ±1) with an E-irreducible palindromic
characteristic polynomial.

One sees easily if ζ ∈ µ1+qn is such that Fq(ζ) is a proper subfield of
of Fq2n , then either ζ = ±1, or Fq(ζ) is Fq2a for some divisor a < n of
n, ζ ∈ µ1+qa and n/a is odd. Thus, denoting [x] := Floor(x), at most
2 + [n/3]q[n/3] of the elements in µ1+qn fail to generate Fq2n over Fq. So
we have the estimates

N± ≥ (1 + qn)/2− 2− [n/3]q[n/3].

Treating separately the cases [n/3] = 0 and [n/3] ≥ 1, we see that so
long as q ≥ 7, we have

N± ≥ (1 + qn)/4.

Thus we obtain at least

#Ononspl(2n,E)/8n = #Ononspl(2n,E)(det = 1, sp = ±1)/2n

elements in Ononspl(2n,E)(det = 1, sp = ±1) with an E-irreducible
palindromic characteristic polynomial. �

Lemma 6.3. Fix d = 2n ≥ 4. Suppose q := #E ≥ 7. In each of the
two cosets O(d,E)(det = −1, sp = ±1), the fraction of elements A for
which Rdet(1− TA) is E-irreducible is at least 1/4(2n− 2).

Proof. We take as model of our quadratic space

(Fq2n−2 , std)⊕ (Fq2 , std)

in the split case, and

(Fq2n−2 , std)⊕ (split2, std)
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in the nonsplit case. Corresponding to these direct sum decompositions,
we have inclusions of the corresponding orthogonal groups

O(2n− 2, E)×O(2, E) ⊂ O(2n,E).

In the orthogonal group of the first factor, take an element ζ ∈
µ1+qn−1 which generates Fq2n−2 over Fq. In the orthogonal group of the
second factor, take a reflection R of spinor norm one, e.g., take the
reflection in a vector of square length one. The centralizer in O(2n,E)
of the element (ζ, R) is the product group µ1+qn−1×{±1,±R}. [Indeed,
if an element A in an orthogonal group over a field of characteristic
not 2 has a (reversed or not, the two agree up to sign) characteristic
polynomial which is a product

∏
i fi(T ) of pairwise prime polynomials,

each of which has its roots stable by x 7→ 1/x, then the decomposition
of the ambient vector space V as the direct sum of the spaces Vi :=
Ker(fi(A)) is an orthogonal decomposition. Any endomorphism B
of V which commutes with A preserves this decomposition, say B =
⊕i(Bi on Vi), and on each Vi, Bi commutes with A|Vi. Moreover, if
B is orthogonal, then so is each Bi.] The counting argument used to
prove the lemma above then gives the asserted result. �

Lemma 6.4. Fix d = 2n + 1 ≥ 3. Suppose q := #E ≥ 7. In each of
the four cosets O(d,E)(det = ±1, sp = ±1), the fraction of elements A
for which Rdet(1− TA) is E-irreducible is at least 1/4n.

Proof. We take as model of our quadratic space

(Fq2n , std)⊕ (Fq, x2),

and repeat the previous argument, now using elements of the form
(ζ,±1). �

Lemma 6.5. Fix d = 2n ≥ 6. Suppose q := #E ≥ 7. Fix a partition
of n as n = a+ b with 1 ≤ a < b. In each of the two cosets of Ω(d,E)
in SOspl(d,E), the fraction of elements A for which Rdet(1 − TA) is
of the form

(E− irreducible of degree 2a)(E− irreducible of degree 2b)

is at least 1/32ab.

Proof. We take as model of our quadratic space

(Fq2a , std)⊕ (Fq2b , std),

and repeat the previous argument, now using elements of the form
(ζa ∈ µ1+qa , ζb ∈ µ1+qb). If ζa (respectively ζb) has full degree 2a
(respectively 2b) over Fq, the centralizer of this element in O(2n,E)
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is the product group µ1+qa × µ1+qb , and the argument concludes as
before. �

Lemma 6.6. Fix d = 2n ≥ 4. Suppose q := #E ≥ 7. In each of
the two cosets of Ω(d,E) in SOspl(d,E), the fraction of elements A for
which Rdet(1− TA) is of the form

(E− irreducible P (T ) of degree n)(E− irreducible Q(T ) of degree n),

with P and Q relatively prime, and with

Q(T ) = (some constant in E×)T nP (1/T ),

is at least 1/2n.

Proof. We take as model

V := Fqn ⊕ Fqn ,

with the split quadratic form

Ψ(x⊕ y, x⊕ y) := TraceFqn/Fq(xy).

The group F×qn is then a subgroup of SO(V,Ψ), with ζ ∈ F×qn acting as

(ζ, ζ−1) : x⊕ y 7→ ζx⊕ ζ−1y.

By [Saito-sign, Lemma 1.1, part 2], the spinor norm, restricted to this
F×qn subgroup, is trivial precisely on the squares. Take an element
(ζ, ζ−1) such that ζ has full degree n over Fq, and such that ζ and ζ−1

have different irreducible polynomials over Fq (i.e., such that ζ and ζ−1

are not Galois conjugate). Then the centralizer of (ζ, ζ−1) in O(V,Ψ)
is precisely the subgroup F×qn . Moreover, knowing the characteristic
polynomial of (ζ, ζ−1) determines ζ up to replacing it by either one of
its n conjugates or by one of the n conjugates of ζ−1.

The ζ’s which fail the first condition are those which lie in a proper
subfield Fqa for some divisor a < n of n. Those which fail the second
condition are those which lie in some subgroup µ1+qa , with 2a|n. For
q ≥ 7, a routine counting shows that the number of ζ’s which fail one
or both of the two conditions is at most (qn−1)/4. The argument now
concludes as before. �

With these preliminary lemmas established, we get the following
product theorems.

Theorem 6.7. Fix an odd integer d = 2n + 1 ≥ 3, an integer r ≥ 1,
and a list of r primes

7 ≤ `1 < `2 < ... < `r.
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Denote by G the subgroup of the product group
∏

iO(d,F`i) consisting
of those elements (A1, ..., Ar) all of whose determinants, viewed in ±1,
coincide. In any coset of

∏
i Ω(d,F`i) in G, the fraction of elements

(A1, ..., Ar) such that Rdet(1− TAi) is F`i-irreducible for some i is at
least

1− (1− 1/4n)r.

Proof. The point is that the quotient G/
∏

i Ω(d,F`i) is naturally the
product of r + 1 copies of ±1, by means of the common value of the
determinant and the spinor norms of the factors. So any coset is a
product, either of cosets O(d,F`i)(det = 1, sp = αi), or of cosets
O(d,F`i)(det = −1, sp = αi). The assertion is now immediate from
Lemma 6.4. �

Theorem 6.8. Fix an even integer d = 2n ≥ 4, an integer r ≥ 1, and
a list of r primes

7 ≤ `1 < `2 < ... < `r.

Denote by G the subgroup of the product group
∏

iOnonspl(d,F`i) con-
sisting of those elements (A1, ..., Ar) all of whose determinants, viewed
in ±1, coincide. In any coset of

∏
i Ω(d,F`i) in G, the fraction of ele-

ments (A1, ..., Ar) such that Rdet(1− TAi) is F`i-irrreducible for some
i is at least

1− (1− 1/8n)r.

Proof. By the product structure of the coset, the assertion is immediate
from Lemmas 6.2 and 6.3. �

Theorem 6.9. Fix an even integer d = 2n ≥ 4, an integer r ≥ 1, and
a list of r primes

7 ≤ `1 < `2 < ... < `r.

Denote by G the subgroup of the product group
∏

iO(d,F`i) consist-
ing of those elements (A1, ..., Ar) all of whose determinants, viewed in
±1, coincide; the factor groups may be separately split or nonsplit at
will. In any coset of

∏
i Ω(d,F`i) in G for which the common value of

the determinant is −1, the fraction of elements (A1, ..., Ar) such that
Rdet(1− TAi) is F`i-irrreducible for some i is at least

1− (1− 1/8n)r.

Proof. By the product structure of the coset, the assertion is immediate
from Lemma 6.3. �

Theorem 6.10. Fix an even integer d = 2n ≥ 6, an integer r ≥ 1,
and a list of r primes

7 ≤ `1 < `2 < ... < `r.
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Choose a partition of n, say n = a + b with 1 ≤ a < b. Denote
by G the subgroup of the product group

∏
iOspl(d,F`i) consisting of

those elements (A1, ..., Ar) all of whose determinants, viewed in ±1,
coincide. In any coset of

∏
i Ω(d,F`i) in G for which the common value

of the determinant is +1, the fraction of elements (A1, ..., Ar) such that
Rdet(1− TAi) is of the form

(E− irreducible of degree 2a)(E− irreducible of degree 2b)

for some i, AND such that Rdet(1− TAj) is of the form

(E− irreducible of degree n)(a different E− irreducible of degree n)

for some j, is at least

1− (1− 1/32ab)r − (1− 1/2n)r.

Proof. By the product structure of the coset, the assertion is immediate
from Lemmas 6.5 and 6.6 �

Theorem 6.11. Fix d = 4, an integer r ≥ 1, and a list of r primes

7 ≤ `1 < `2 < ... < `r.

Denote by G the subgroup of the product group
∏

iOspl(4,F`i) consisting
of those elements (A1, ..., Ar) all of whose determinants, viewed in ±1,
coincide. In any coset of

∏
i Ω(4,F`i) in G for which the common value

of the determinant is +1, the fraction of elements (A1, ..., Ar) such that
Rdet(1− TAi) is, for some i, of the form

P (T )Q(T )

with P (T ) and Q(T ) relatively prime F`i-irreducibles of degree 2, nei-
ther of which is palindromic, and such that

Q(T ) = (some constant in E×)T 2P (1/T ),

is at least
1− (1− 1/4)r.

Proof. If we omitted the requirement that neither P (T ) nor Q(T ) be
palindromic, the assertion would be immediate from the product struc-
ture of the coset, and Lemma 6.6. But the nonpalindromicity is auto-
matic. Indeed, the fact that

Q(T ) = (some constant in E×)T 2P (1/T ),

tells us that if ζ ∈ F×
`2i

is a root of P (T ), then 1/ζ is a root of Q(T ),

hence cannot be a root of P (T ), since P (T ) and Q(T ) are relatively
prime. But the two roots of a palindromic polynomial of degree two are
reciprocals. Thus P (T ) is not palindromic, and similarly for Q(T ) �
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7. Proof of Theorem 5.2, via a theorem of Larsen

Let us put ourselves in the situation which Theorem 5.2 purports to
treat. Choose a finite field k and a ring homomorphism φ : R → k
(for instance, take a maximal ideal I of R, take k to be R/I, and
take φ to be canonical map of R onto R/I). Making the extension
of scalars φ : R → k, we get the space Mk,φ. On Mk,φ, we have the
restrictions of the sheaves HQ`

, for all ` invertible in k, as well as of
the restrictions of the sheaves HZ`

, for all such ` not in the finite set S.
For each ` invertible in k, let us denote by Γ` the image in O(d,Q`) of
the arithmetic fundamental group π1(Mk,φ) under the homomorphism
which “is” HQ`

|Mk,φ. Meanwhile, consider the composite map

Spin(d,Q`)→ SO(d,Q`) ⊂ O(d,Q`).

According to a striking theorem of Larsen [Lar-Max, 3.17], the inverse
image of Γ` in Spin(d,Q`) is, for a set of primes ` of Dirichlet density
one, a “hyperspecial” maximal compact subgroup of Spin(d,Q`). Now
for all ` invertible in k and not in S, Γ` lies in O(d,Z`), and so its
inverse image lies in Spin(d,Z`). Whenever this inverse image is a
maximal compact subgroup of Spin(d,Q`), it must, by its maximality,
be equal to the possibly larger compact subgroup Spin(d,Z`). Thus
we infer that among the primes ` invertible in k and not in S, there is
a set of Dirichlet density one, the “good primes” over (k, φ), for which
the inverse image of Γ` in Spin(d,Z`) is the entire group Spin(d,Z`).

For each of these good `, which we may take to all be ≥ 5, let us
denote by Γmod ` the image in O(d,F`) of the arithmetic fundamental
group π1(Mk,φ) under the homomorphism which “is” HZ`

⊗Z`
F`|Mk,φ.

Then by Larsen’s theorem, Γmod ` contains Ω(d,F`) for these good `.
Thus we have

Ω(d,F`) ⊂ Γmod ` ⊂ O(d,F`).

Let us denote by Γgeom,mod ` the image in O(d,F`) of the geometric
fundamental group πgeom1 (Mk,φ). Then

Γgeom,mod ` C Γmod `,

and the quotient is cyclic, being a quotient of Gal(k/k). We claim that
for each good `, we have

Ω(d,F`) ⊂ Γgeom,mod `.

Indeed, the intersection Ω(d,F`)∩ Γgeom,mod ` inside Γmod ` is a normal
subgroup of Ω(d,F`) with cyclic quotient. As d ≥ 3, Ω(d,F`) is its own
commutator subgroup, so it has no proper normal subgroup which gives



20 NICHOLAS M. KATZ

a cyclic quotient. Thus for each good ` we have

Ω(d,F`) ⊂ Γgeom,mod ` ⊂ Γmod ` ⊂ O(d,F`).

Suppose we are given an integer r ≥ 1, and a list of r good primes

7 ≤ `1 < `2 < ... < `r.

Denote by G the subgroup of the product group
∏

iO(d,F`i) consisting
of those elements (A1, ..., Ar) all of whose determinants, viewed in ±1,
coincide. Denote by

Γgeom,mod `1,`2,...`r ⊂ G ⊂
∏
i

O(d,F`i)

the image of the geometric fundamental group πgeom1 (Mk,φ) under the
direct sum of the various mod `i representations.

A key point is the following result of Goursat-Ribet type, cf. [Ribet-Gal,
5.2.2].

Lemma 7.1. The group Γgeom,mod `1,`2,...`r contains
∏

i Ω(d,F`i):∏
i

Ω(d,F`i) ⊂ Γgeom,mod `1,`2,...`r ⊂ G ⊂
∏
i

O(d,F`i).

Proof. The projection of Γgeom,mod `1,`2,...`r ⊂
∏

iO(d,F`i) to eachO(d,F`i)
factor contains Ω(d,F`i), as we have noted above. Now consider the
commutator subgroupD := DΓgeom,mod `1,`2,...`r of Γgeom,mod `1,`2,...`r . As
each group Ω(d,F`i) is its own commutator subgroup, D is a subgroup
of

∏
i Ω(d,F`i) which maps onto each factor.

Suppose first that either d 6= 4, or that d = 4 and all our groups
are nonsplit. Then the individual groups Ω(d,F`i) are simple modulo
their centers, and the corresponding simple groups are pairwise non-
isomorphic. So by Goursat’s Lemma [Ribet-Gal, 5.2.1], D maps onto
each pair of factors Ω(d,F`i) × Ω(d,F`j ), i < j. Since each Ω(d,F`i)
has no nontrivial abelian quotients, Ribet’s Lemma [Ribet-Gal, 5.2.2]
shows that D is the full product

∏
i Ω(d,F`i).

In the remaining case, when d = 4 and all the groups are split,
each Ω(4,F`i)/ ± 1 is PSL(2,F`i) × PSL(2,F`i). We first note that
as PSL(2,F`i) is simple and nonabelian, the only quotient groups of
Ω(4,F`i)/± ∼= PSL(2,F`i) × PSL(2,F`i) are the four obvious ones
({1}×{1}, {1}×PSL(2,F`i), PSL(2,F`i)×{1},PSL(2,F`i)×PSL(2,F`i)).
So the only quotient groups of Ω(4,F`i) are either these groups or, pos-
sibly, double covers of them. There is no quotient of order 2, since
Ω(4,F`i) is its own commutator subgroup. Thus the only quotient
groups Hi 6= {1} of Ω(4,F`i) have the property that `i is the largest
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prime dividing the order of Hi (since `i is the largest prime divid-
ing the order of PSL(2,F`i)). Therefore if `i 6= `j, then no quo-
tient Hi 6= {1} of Ω(4,F`i) is isomorphic to any quotient Hj 6= {1}
of Ω(4,F`j ), simply because these quotients have different orders. So
by Goursat’s Lemma [Ribet-Gal, 5.2.1], D maps onto each pair of fac-
tors Ω(4,F`i)×Ω(4,F`j ), i < j, and the proof then concludes as before,
by invoking Ribet’s Lemma [Ribet-Gal, 5.2.2]. �

We now make a choice of the integer r ≥ 1, and of the list of r good
primes

7 ≤ `1 < `2 < ... < `r.

Recall the real ε > 0 in the statement of the theorem we are to prove.
There are three separate cases to consider.

If d = 2n+ 1 is odd, we choose r large enough that

(1− 1/4n)r < ε/2,

and we take any list of r good primes

7 ≤ `1 < `2 < ... < `r.

If d = 2n is even, we first look to see whether or not there are
infinitely many good primes ` where our orthogonal group O(d,F`) is
nonsplit. If there are, we choose r large enough that

(1− 1/8n)r < ε/2,

and we take any list of r good primes

7 ≤ `1 < `2 < ... < `r

at which the corresponding orthogonal group is nonsplit.
If d = 2n is even, and there are at most finitely many good primes `

where our orthogonal group O(d,F`) is nonsplit, then we choose r large
enough that

(1− 1/32n)r < ε/4,

and we take any list of r good primes

7 ≤ `1 < `2 < ... < `r

at which the corresponding orthogonal group is split.
We now study what happens in the geometric generic fibre of M/R.

Denote by K the fraction field of R, by K an algebraic closure of K,
and by Mη the K-scheme obtained by the extension of scalars R ⊂ K.

Denote by

Γη,geom,mod `1,`2,...`r ⊂ G ⊂
∏
i

O(d,F`i)
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the image of the geometric fundamental group πgeom1 (Mη) under the
direct sum of the various mod `i representations. By a fundamental
specialization result of Pink [Ka-ESDE, 8.18.2, (1)], this group contains
(an

∏
iO(d,F`i)-conjugate of) the group Γgeom,mod `1,`2,...`r we obtained

by looking at the image of πgeom1 (Mk,φ). As
∏

i Ω(d,F`i) is a normal
subgroup of

∏
iO(d,F`i), being its commutator subgroup, we therefore

have ∏
i

Ω(d,F`i) ⊂ Γη,geom,mod `1,`2,...`r ⊂ G ⊂
∏
i

O(d,F`i).

By this same result of Pink [Ka-ESDE, 8.18.2, (2)], there is a dense
open set U in Spec(R) such that for any geometric point s in U , the
group

Γs,geom,mod `1,`2,...`r ⊂ G ⊂
∏
i

O(d,F`i),

obtained by looking at the image of πgeom1 (Ms), is equal to (an
∏

iO(d,F`i)-
conjugate of) Γη,geom,mod `1,`2,...`r . As every subgroup of

∏
iO(d,F`i)

containing
∏

i Ω(d,F`i) is normal, we therefore have equality:

Γs,geom,mod `1,`2,...`r = Γη,geom,mod `1,`2,...`r

for every geometric point s in U . Each of the primes `1, ..., `r is nonzero
in R (because each is invertible in k under φ), so by shrinking U we
may further assume that each of them is invertible on U .

We will show that the theorem holds, for the fixed ε > 0, if we take
for r ∈ R any nonzero element such that Spec(R[1/r]) ⊂ U . Denote
by

Γarith,mod `1,`2,...`r ⊂ G ⊂
∏
i

O(d,F`i)

the image of the arithmetic fundamental group π1(M [1/r]). We now
apply the Chebotarev density theorem in the uniform version given in
[Ka-Sar, 9.7.13] to this situation, our M [1/r]/R[1/r] taken as the X/S
there, and with our groups

Γη,geom,mod `1,`2,...`r ⊂ Γarith,mod `1,`2,...`r

taken as the groups K ⊂ Karith there. In our situation, the quotient
Karith/K is abelian, so the sets Karith,γ there are just the cosets of K
in Karith. For a given pair (k, φ) consisting of a finite field k and a ring
homomorphism φ : R[1/r] → k, all the Frobenius conjugacy classes
attached to the k-points of Mk,φ lie in a single coset of K in Karith, say
Karith,γ. Inside this coset Karith,γ, take the subset W which is defined
as follows.
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If d = 2n + 1 is odd, or if d = 2n and all the r orthogonal groups
O(d,F`i) are nonsplit, W consists of all elements (A1, ..., Ar) in the
coset Karith,γsuch that for some i, Rdet(1− TAi) is F`i-irreducible.

If d = 2n ≥ 6 and all the r orthogonal groups O(d,F`i) are split, then
W is the disjoint union of two sets, W− and W+, defined as follows. The
set W− consists of those elements (A1, ..., Ar) in the coset Karith,γ such
that the common value of their determinant is −1 and such that for
some i, Rdet(1− TAi) is F`i-irreducible. The set W+ consists of those
elements (A1, ..., Ar) in the coset Karith,γ such that the common value
of their determinant is +1 and such that for some i, Rdet(1− TAi) is
of the form

(F`i − irreducible of degree 2)(F`i − irreducible of degree 2n− 2),

AND such that for some j, Rdet(1− TAj) is of the form

(F`j−irreducible of degree n)(a different F`j−irreducible of degree n).

If d = 4 and all the r orthogonal groups O(4,F`i) are split, then
W is again the disjoint union of two sets, W− and W+. The set W− is
defined exactly as in the paragraph above. The set W+ consists of those
elements (A1, ..., Ar) in the coset Karith,γ such that the common value
of their determinant is +1 and such that for some i, Rdet(1− TAi) is
of the form

P (T )Q(T )

with P (T ) and Q(T ) relatively prime F`i-irreducibles of degree 2, nei-
ther of which is palindromic, and such that

Q(T ) = (some constant in F×`i )T
2P (1/T ).

Decompose the K-coset Karith,γ into cosets under the smaller group∏
i Ω(d,F`i), say

Karith,γ =
∐
a

Coseta.

In view of Theorems 6.7 through 6.10, we see that in each such coset,
we have

#(W ∩ Coseta)/#Coseta ≥ 1− ε/2.
Summing over the cosets, we find that

#W/#Karith,γ ≥ 1− ε/2.
By the Chebotarev density theorem in the uniform version given in
[Ka-Sar, 9.7.13], there exist constants C and A such that if #k ≥ 4A2,
then

|#W/#Karith,γ −#{m ∈Mk,φ(k)|Frobk,m ∈ W}/#Mk,φ(k)|
≤ 2C#Karith/Sqrt(#k).
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For #k sufficiently large, we obviously have

2C#Karith/Sqrt(#k) ≤ ε/2,

and hence for #k sufficiently large we have

#{m ∈Mk,φ(k)|Frobk,m ∈ W}/#Mk,φ(k) ≥ 1− ε.

It remains only to show that whenever Frobk,m lies in W , then
Rdet(1 − TFrobk,m) is Q-irreducible. To see this, we argue as fol-
lows. This polynomial has coefficients in Z[1/#k]. If either d is odd,
or d is even and each O(d,F`i) is nonsplit, or d is even and the sign in
the functional equation is −1, then for some i the reduction mod `i of
this polynomial Rdet(1 − TFrobk,m) is F`i-irreducible, this being the
defining property of W , and hence Rdet(1−TFrobk,m) is Q-irreducible.

It remains to treat the case in which d is even, each O(d,F`i) is split
and the sign in the functional equation is +1. Suppose first that d =
2n ≥ 6. Then for some i the reduction mod `i of Rdet(1− TFrobk,m)
is the product of two F`i-irreducibles, of degrees 2 and d− 2, while for
some j the reduction mod `j of Rdet(1−TFrobk,m) is the product of two
F`j -irreducibles, both of degree n, this being the defining property of W
in this case. So once again Rdet(1−TFrobk,m) must be Q-irreducible.
[For if it were Q-reducible, its Q-factorization would simultaneously
be of the form (degree 2 irred.)(degree d − 2 irred.) and of the form
(degree n irred.)(degree n irred.).] Suppose now that d = 4. Then for
some i, Rdet(1− TFrobk,m) is the product

P (T )Q(T )

with P (T ) and Q(T ) relatively prime F`i-irreducibles of degree 2, nei-
ther of which is palindromic, and such that

Q(T ) = (some constant in F×`i )T
2P (1/T ).

This implies that Rdet(1−TFrobk,m) is Q-irreducible. For if it were Q-
reducible, its Q-factorization would be as the product of two relatively
prime Q-irreducibles of degree 2, neither of which is palindromic. But
Rdet(1− TFrobk,m) has all its eigenvalues on the unit circle (because
pure of weight zero), hence both its Q-irreducible quadratic factors have
roots stable by inversion ζ 7→ 1/ζ. Since these Q-irreducible factors
have degree 2, none of their roots is fixed by inversion (i.e., no root is
±1), and hence each Q-irreducible factor has roots of the form (ζ, 1/ζ),
hence is palindromic.
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8. Another application of Theorem 5.1: Universal
families of hypersurface sections

Let R be a finitely generated Z-algebra, P = PN/R the projective
space of some dimension N , and X ⊂ P a closed subscheme which is
smooth over R with geometrically connected fibres, all of some com-
mon odd dimension ν = 2n + 1 ≥ 3. Fix an integer d ≥ 1. Denote by
M/R the parameter space for smooth, degree d hypersurfaces in the
ambient P which are transversal to X, by Hd/M ⊂ P/M the universal
family of these hypersurfaces, and by π : X ∩Hd →M the correspond-
ing universal family of smooth, degree d hypersurface sections of X.
Concretely, if k is a field and φ : R→ k is a ring homomorphism, then
Mk,φ is the parameter space for smooth, degree d hypersurfaces which
are transversal to Xk,φ. For each prime `, we have the lisse (but not
necessarily torsion-free) Z`-sheaf R2nπ?Z`(n) on M [1/`], together with
its cup product pairing

R2nπ?Z`(n)×R2nπ?Z`(n)→ R4nπ?Z`(2n) ∼= Z`,

which is an orthogonal autoduality modulo torsion. Let us denote by ρ :
X → Spec(R) the structural morphism of X/R. On Spec(R[1/`]), we
have the lisse Z`-sheaf R2nρ?Z`(n), and we denote by R2nρ?Z`(n)M [1/`]

its pullback to M [1/`]. The canonical restriction map on cohomology
gives an inclusion

R2nρ?Z`(n)M [1/`] ⊂ R2nπ?Z`(n).

We denote by
EvZ`

⊂ R2nπ?Z`(n)

the orthogonal to R2nρ?Z`(n)M [1/`] under the cup product pairing. The
lisse sheaves EvZ`

on M [1/`],carry the induced cup product pairing

EvZ`
× EvZ`

→ Z`.

If we tensor this situation with Q`, the Hard Lefschetz Theorem [De-Weil II,
4.1.2] tells us that this pairing on EvQ`

:= EvZ`
⊗Z`

Q` is an orthog-
onal autoduality. By the Riemann Hypothesis for projective smooth
varieties over finite fields [De-Weil I, 1.6], we know that the sheaves
EvQ`

are pure of weight zero, and form a compatible system. By Gab-
ber’s theorem [Gab-Tors], for all but finitely many primes `, the sheaves
R2nρ?Z`(n), R2nρ?Z`(n)M [1/`], and EvZ`

are all torsion free, and the cup
product pairing makes EvZ`

orthogonally self dual over Z`. A funda-
mental result of Deligne [De-Weil II, 4.4.1,4.4.2s,and 4.4.9], amplified
by [Ka-LAMM, 2.2.4] and [Ka-Pan, Corollaries 2 and 3], tells us that
the condition (2strong) holds for the compatible system given by the
EvQ`

, provided that d ≥ 3 if 2n ≥ 4, or that d ≥ 4 if 2n = 2, and that,
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under these conditions, the common rank of the sheaves EvQ`
is ≥ 9.

So Theorem 5.1 applies to this situation.
Let us spell out the simplest case of this situation. We take R to

be Z, and we take X = P = P2n+1/Z, 2n ≥ 2, with the identical
embedding of P into itself. We fix an integer d with d ≥ 3 if 2n ≥ 4,
or that d ≥ 4 if 2n = 2. For a finite field k = Fq, and a smooth
hypersurface Hd/k of degree d and dimension 2n over k, we know that
its Zeta function is of the form

Zeta(Hd/k, T ) = 1/P (Hd/k, T )
2n∏
i=0

(1− qiT ).

Here P (Hd/k, T ) ∈ Z[T ] is the polynomial whose unitarization

Pu(Hd/k, T ) := P (Hd/k, T/q
n)

is given by

Pu(Hd/k, T ) = det((1− TFrobk,Hd
|EvQ`

),

for any prime ` invertible in k. The reduced unitarization Pu,red is
defined by

Pu,red(Hd/k, T ) := Rdet((1− TFrobk,Hd
|EvQ`

).

For each finite field k, we denote by IrrFrac(k, d, 2n) the fraction of
the smooth hypersurfaces Hd/k of degree d and dimension 2n over k for
which the polynomial Pu,red(Hd/k, T ) is Q-irreducible. Then Theorem
5.1 gives us the following result.

Theorem 8.1. In any sequence i 7→ ki of finite fields whose cardinali-
ties are strictly increasing, the sequence of fractions i 7→ IrrFrac(ki, d, 2n)
tend to 1.

9. Alternative approaches

The Chavdarov approach to studying irreducibility requires knowl-
edge of mod ` monodromy for infinitely many primes `. We have used
Larsen’s theorem [Lar-Max, 3.17] to infer, from information about the
`-adic monodromy for all (invertible on the base) `, information about
mod ` monodromy for a set of primes ` of Dirichlet density one.There
are two other approaches, which, when they apply, give information
about mod ` monodromy for all but finitely many primes `.

The first is based on the theorem of Mathews, Vaserstein, and Weis-
feller [MVW]2, which concerns a smooth groupscheme G/Z[1/N ] whose

2Unlike the Larsen result or the Zalesskii-Serezkin result to be discussed below,
this result [MVW] depends upon the classification of finite simple groups.
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complex fibre GC is a connected, semisimple, simply connected group,
and a finitely generated subgroup Γ ⊂ G(Z[1/N ]) which is Zariski dense
in GC. For any ` which is prime to N , we have a “reduction mod `”
homomorphism

Γ ⊂ G(Z[1/N ])→ G(F`).
The theorem asserts that Γ maps onto G(F`) for all sufficiently large `.

Let us explain an instance of when we can apply this method, and
what kind of result it gives. Let us put ourselves in the general setup
E/U/M/R of Section 3, and assume that conditions (1) and (2weak) of
that section hold, and that d ≥ 3. Pick an embedding of R into C, and
make the corresponding extension of scalars. As explained in the proof
of Theorem 3.1, we have, for some integer N ≥ 1, an orthogonally self-
dual lisse sheaf Han

Z[1/N ] on Man. Enlarging N , we will further suppose
that N is even. Let us denote by

ρanC : π1(Man)→ O(d,Z[1/N ])

the corresponding “transcendental” monodromy representation attached
to Han

Z[1/N ]. For every prime ` not dividing N , we also have the algebro-

geometric `-adic monodromy of HZ`
|MC,

ρC,` : π1(MC)→ O(d,Z`).

By the comparison theorem, the algebro-geometric fundamental group
π1(MC) is the profinite completion of π1(Man). For every ` not dividing
N , the `-adic image ρC,`(π1(MC)) ⊂ O(d,Z`) is the closure (in O(d,Z`)
with its profinite topology) of the topological image ρanC (π1(Man)) ⊂
O(d,Z[1/N ]). By Pink’s specialization theorem [Ka-ESDE, 8.18.2, (2)]
applied to HZ`

on M [1/`], we may infer from condition (2weak) that
the `-adic image ρC,`(π1(MC)) is Zariski dense in either O(d,Q`) or in

SO(d,Q`). By the `-adic continuity of polynomial functions, it then fol-
lows that the topological image ρanC (π1(Man)) ⊂ O(d,Z[1/N ]) is Zariski
dense in the same group, either O(d,Q`) or SO(d,Q`). Picking an em-
bedding of fields Q` ⊂ C, we see that the topological image is Zariski
dense in either O(d,C) or in SO(d,C). Since the topological funda-
mental group π1(Man) is finitely generated, its image

Γ1 := ρanC (π1(Man)) ⊂ O(d,Z[1/N ])

is a finitely generated subgroup of O(d,Z[1/N ]) which is Zariski dense
in either O(d) or SO(d). We cannot yet apply [MVW], because the
orthogonal group O(d) is not connected and its identity component
SO(d) is not simply connected. We get around this difficulty following
an argument of Ron Livne. First replace Γ1 by the subgroup Γ2 ⊂ Γ1

of index 1 or 2 consisting of the elements of determinant +1. Then Γ2
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is a finitely generated, Zariski dense subgroup of SO(d,Z[1/N ]). Next
consider the Spin group attached to our orthogonal group. The spinor
norm gives an exact sequence

{1} → ±1→ Spin(d,Z[1/N ])→ SO(d,Z[1/N ])→ Z[1/N ]×/(Z[1/N ]×)2,

in which the last term, Z[1/N ]×/(Z[1/N ]×)2, is finite, generated by −1
and by the primes dividing N . Now consider the composite homomor-
phism

Γ2 ⊂ SO(d,Z[1/N ])→ Z[1/N ]×/(Z[1/N ]×)2.

Its image is finite. So the subgroup

Γ3 := Ker(Γ2 → Z[1/N ]×/(Z[1/N ]×)2) ⊂ Γ2

is a subgroup of finite index in Γ2, so is still Zariski dense in SO, and
still finitely generated. Every element of Γ3 lifts, in two different ways,
to Spin(d,Z[1/N ]). Denote by

Γ ⊂ Spin(d,Z[1/N ])

the complete inverse image of Γ3. This group Γ is finitely generated
(because Γ3 is), and, as it maps onto Γ3, it is Zariski dense in Spin.
We may now apply the theorem of Mathews, Vaserstein, and Weisfeller
[MVW], to Γ ⊂ Spin(d,Z[1/N ]), to conclude that for all sufficiently
large ` prime to N , say for all ` not in the finite set S, Γ maps onto
Spin(d,F`). For any such `, Γ3 maps onto the image of Spin(d,F`) in
SO(d,F`), i.e., Γ3 maps onto Ω(d,F`). So for any such `, the image of
Γ1 in O(d,F`) contains Ω(d,F`). Because the algebro-geometric funda-
mental group π1(MC) is the profinite completion of π1(Man), this last
image is also the image of π1(MC) in O(d,F`). Thus we find that the
image of π1(MC) in O(d,F`) contains Ω(d,F`) for every ` not in S.

So far, all of this is taking place on the complex fibre of M/R. Let us
say that M/R is nicely compactifiable if there exists a proper smooth
R-scheme M∧/R and a divisor D ⊂ M∧ which has normal crossings
relative to R, such that M ∼= M∧ \ D. By resolution over the char-
acteristic zero fraction field of R, we know that there exists a nonzero
r ∈ R such that M [1/r]/R[1/r] is nicely compactifiable. [This passage,
from R to some R[1/r], is not entirely harmless. For instance, in the
second example, of Weierstrass families, where we start, for a given
(d2, d3), with R = Z[1/6] and the corresponding M = Md2,d3/Z[1/6],
we do not know which, if any, other primes p we need to invert to
get a nice compactification, nor do we know how this set of p depends
on (d2, d3). In our 2004-2005 course, we followed the [MVW] method
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when M/R was nicely compactifiable, as explained in the next para-
graph, but then invoked the Larsen method to handle separately each
of the finitely many unknown bad p.]

When M/R is nicely compactifiable, with R a normal integral do-
main whose fraction field has characteristic zero, Abhyankar’s Lemma
[SGA 1, XIII, 5.5] assures us that for any lisse sheaf on M [1/`], and
any geometric point s of Spec(R[1/`]), its restriction to the geometric
fibre Ms of M [1/`]/R[1/`] is tamely ramified at each maximal point of
Ds. We apply this to the lisse sheaf HZ`

⊗ F` on M [1/`], for each `
not in S. The Tame Specialization Theorem [Ka-ESDE, 8.17.14] then
tells us that for every ` not in S, and for every geometric point s of
Spec(R[1/`]), the image of π1(Ms) in O(d,F`) contains Ω(d,F`).

We now turn to a second approach3 to controlling the mod ` mon-
odromy for all but finitely many `. This approach is based on the
Zalesskii-Serezkin classification [Zal-Ser, Theorem, page 478] of irre-
ducible subgroups of GL(n,F`), ` ≥ 3, n ≥ 3, which are generated by
reflections and which contain no transvections (:=unipotent pseudore-
flections). We can apply this to describe all irreducible subgroups of
orthogonal groups in odd characteristic generated by reflections be-
cause such orthogonal groups contain no transvections. Here is a baby
version of their result in this case.

Theorem 9.1. (Zalesskii-Serezkin) Given an integer n ≥ 3, there
exists a constant C(n) with the following property. Let ` ≥ 3, and
(V,Ψ) an n-dimensional F`-vector space with a symmetric autoduality
Ψ. Let G ⊂ O(V,Ψ) be an irreducible subgroup generated by reflec-
tions. Denote by NO(G) the normalizer of G in O(V,Ψ). Then ei-
ther Ω(V,Ψ) ⊂ G, or we have the divisibility estimate #NO(G)|C(n).
Moreover, if n ≥ 9, we can take C(n) = 2n(n+ 2)!.

Proof. We begin by recalling that if G ⊂ O(V,Ψ) is an irreducible
subgroup generated by reflections, then G is absolutely irreducible (i.e.,
G acts irreducibly after extending scalars from F` to F`). Now for any
absolutely irreducible subgroup G ⊂ O(V,Ψ), we have the divisibility
estimate

#NO(G)|2#Aut(G),

simply because the kernel of the conjugation action homomorphism

NO(G)→ Aut(G)

lies in the subgroup of scalars in O(V,Ψ), which is ±1.

3A third approach would be to appeal to the results of Hall [Ha].
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It is immediate from [Zal-Ser, Theorem, page 478] that for n ≥ 9,
there are at most two primitive such groups G which fail to contain
Ω(V,Ψ), namely the symmetric group Sn+1, if ` is prime to n+ 1, and
the symmetric group Sn+2, if ` divides n+ 2. For these G, every auto-
morphism is inner. For 3 ≤ n ≤ 8, there are finitely many more such
primitive G, and these we handle by the #NO(G)|2#Aut(G) divisibil-
ity.

We now consider the imprimitive such G. For n ≥ 5, any imprimitive
such group has a unique [Zal-Ser, 4.1] system of imprimitivity consisting
of the lines Li spanned by n linearly independent vectors ei, and the
induced homomorphism maps G onto the symmetric group Sn. For
each of n = 3 and n = 4, there is at most one imprimitive G for which
the system of imprimitivity is not unique [Zal-Ser, 4.1], and these cases
are handled by the #NO(G)|2#Aut(G) divisibility.

It remains to treat the case of an imprimitive such G which admits a
unique system of imprimitivity. By uniqueness, the system of imprimi-
tivity is respected by NO(G), so we have a homorphism of NO(G) onto
Sn. It remains only to show the following claim: in the basis given by
the vectors ei, any element g ∈ NO(G) which lies in the kernel of this
homomorphism, i.e., which is diagonal, has entries each ±1. Indeed,
we will show that any element g ∈ O(V,Ψ) which is diagonal in this
basis has entries ±1. Let us denote by λi the diagonal entries of g.

From the fact that G induces every possible permutation of the lines
Li, we see that

(1) Either all square lengths Ψ(ei, ei) are nonzero, or they are all
zero.

(2) Either all cross terms Ψ(ei, ej) are nonzero, for all i 6= j, or they
are all zero.

If all Ψ(ei, ei) are nonzero, our claim is obvious, since

λ2
iΨ(ei, ei) = Ψ(g(ei), g(ei)) = Ψ(ei, ei).

If all Ψ(ei, ei) vanish, then by nondegeneracy all Ψ(ei, ej) are nonzero,
for all i 6= j. From the identity

λiλjΨ(ei, ej) = Ψ(g(ei), g(ej)) = Ψ(ei, ej),

we then infer that for every i 6= j, we have λiλj = 1, which in turn
forces all λi to be equal to each other, with common value ±1. �

Armed with this result, we can prove an “almost all `” result about
the mod ` monodromy of Lefschetz pencil of even fibre dimension 2n ≥
2. Let us put ourselves in the situation of Section 8, but taking now
the base ring R to be a finite field k. We take the degree d of the
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hypersurface sections large enough that the common rank N of the
sheaves EvQ`

, for every ` invertible in k, is ≥ 3. We suppose that
the condition (2strong) holds, and that there exist, over k, Lefschetz
pencils on X of hypersurface sections of degree d for which (2strong)
holds as well. [As noted above, the first condition is automatic if d ≥ 3
and d + 2n ≥ 6, in which case we have N ≥ 9. Moreover, in this
case Lefschetz pencils exist, and sufficiently general ones will satisify
(2strong).]

Theorem 9.2. For all sufficiently large primes `, the image of the geo-
metric fundamental group π1(Mk) in O(N,F`) under the monodromy
representation of EvZ`

⊗F` contains Ω(N,F`). More precisely, it is the
following subgroup of O(N,F`): if (−1)n2 is a square in F`, it is the
subgroup of elements of spinor norm one. If not, it is the subgroup of
elements having sp = det. Moreover, for any (sufficiently general, if
char(k) = 2) Lefschetz pencil satisfying (2strong), we have the same
results for the image of its geometric monodromy, with a possibly larger
set of “bad” `.

Proof. By Gabber’s theorem [Gab-Tors], applied both to X and to
any single smooth hypersurface section X ∩ Hd of degree d, we know
that for all but finitely many `, both spaces have their Z`-cohomology
torsion free, and the hard Lefschetz theorem holds mod ` on both.
These are the “good `” for the theorem. Because the fibre dimension
2n is even, we know, by [SGA 7 II, XV 3.4, XVIII 6.2 and 6.3], that
“condition A” of [SGA 7 II, XVIII 5.3.5] holds for any Lefschetz pencil
on X. An attentive reading of the entire exposé [SGA 7 II, XVIII] then
shows that for all these good `, the mod ` geometric monodromy of any
(sufficiently general, if char(k) = 2) Lefschetz pencil is an irreducible
subgroup of O(N,F`) (this uses the conjugacy of the vanishing cycles
[De-Weil II, 4.2.7]) which is generated by reflections in various vectors
δi with square length δi · δi = (−1)n2 (this is the Picard Lefschetz
formula [SGA 7 II, XV 3.4]).

Let us begin with a Lefschetz pencil, defined over k and hence over
some finite extension E/k, for which (2strong) holds. Since the state-
ments to be proven are geometric, we may extend scalars, and reduce to
the case when our Lefschetz pencil satisfying (2strong) is defined over
k. From the theorem of Zalesskii-Serezkin above, we see for a given
good `, there are only two possibilities: either the image Γgeom,mod `
of the geometric monodromy group of our Lefschetz pencil is the as-
serted group, or its normalizer NO(Γgeom,mod `), which contains the mod
` image Γarith,mod ` of the arithmetic monodromy group, is a group
whose order divides C(N). We will show that this can happen for
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only finitely many good `. Indeed, we will show that the inequality
#Γarith,mod ` ≤ C(N) can hold for only finitely many good `. For this,
we argue as follows.

Because our pencil satisfies (2strong), we know by Deligne’s equidis-
tribution theorem, cf. [Ka-GKM, 3.6], that as we run over larger and
larger finite extensions E/k, and consider all the smooth, degree d
hypersurface sections X ∩ Hd defined over E, the (unique conjugacy
classes having) reversed characteristic polynomials

det(1− TFrobk,X∩Hd
|Evn) ∈ Z[1/#k][T ]

become equidistributed, for (the direct image of) Haar measure, in the
space O(N,R)# of conjugacy classes in the compact orthogonal group
O(N,R). The space O(N,R)# is a compact metric space [namely, the
set of all degree N polynomials in 1 + TR[T ] all of whose roots lie on
the unit circle], every nonempty open set has strictly positive measure,
and it is infinite. So if we take 1+C(N) distinct points Ai in O(N,R)#,
and tiny open balls Bi around Ai which are pairwise disjoint, then for
E sufficiently large, we can find 1 + C(N) different smooth, degree d
hypersurface sections X ∩ Hd,i defined over E such that the reversed
characteristic polynomial of Frobk,X∩Hd,i

lands in Bi. So these reversed
characteristic polynomials are pairwise distinct. Let us enumerate these
polynomials, say P0(T ), P1(T ), ..., PC(N)(T ). Now consider the product
polynomial

R(T ) :=
∏

0≤i<j≤C(N)

(Pi(T )− Pj(T )).

This is a nonzero polynomial in Z[1/#k][T ], hence it is nonzero mod
all sufficiently large primes `. For any good prime ` mod which it is
nonzero, the 1 + C(N) Frobenius conjugacy classes Frobk,X∩Hd,i

must
have distinct images in Γarith,mod`, since they have distinct mod ` char-
acteristic polynomials. So certainly we have #Γarith,mod` ≥ 1 + C(N)
for these good `.

To treat the situation over M itself, we note that our single Lefschetz
pencil above shows us for all sufficiently large good primes `, the im-
age of the geometric fundamental group π1(Mk) in O(N,F`) under the
monodromy representation of EvZ`

⊗F` contains the asserted subgroup
of O(N,F`). To see that this image can be no bigger, use the fact that
for any given good prime `, Bertini’s theorem says that already a suf-
ficiently general Lefschetz pencil will have the same mod ` geometric
monodromy as does M itself. Since other choices of Lefschetz pencils
may require omitting fewer good ` than did our initial choice, the result
over M may have fewer bad ` that the result for some particular choice
of Lefschetz pencil. �
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[Die-GC] Dieudonné, J. Sur les groupes classiques. Troisième édition revue et cor-
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