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1. Introduction, and Statement of the Main Result

Let k be a finite field, p its characteristic, and

ψ : (k,+)→ Z[ζp]× ⊂ C×

a nontrivial additive character of k. We are given a polynomial f in n > 1 variables
over k of degree d > 1 which is a “Deligne polynomial”, i.e. its degree d is prime to p
and its highest degree term, say fd, is a homogeneous form of degree d in n variables
which is nonzero, and whose vanishing, if n > 2, defines a smooth hypersurface in
the projective space Pn−1. For a Deligne polynomial f as above, one has Deligne’s
fundamental estimate [2, 8.4]∣∣∣∣∣∑

x∈kn

ψ(f(x))

∣∣∣∣∣ 6 (d− 1)n(#(k))n/2.

Suppose now that g is an arbitrary polynomial over k in n variables, of degree e < d.
Then for every t ∈ k×, the polynomial

tf(x) + g(x) +
1
t

is still a Deligne polynomial of degree d in n variables over k. Browning and Heath-Brown
[1] asked when one had cancellation in the sum∑

t∈k×

∑
x∈kn

ψ

(
tf(x) + g(x) +

1
t

)
,

whose absolute value is, in view of Deligne’s result, trivially bounded by

(d− 1)n(#(k))(n+2)/2.

In their application [1], d = 3, and g is linear, and so the following theorem applies.

Theorem 1.1. Let d > 3 be prime to p, f a Deligne polynomial of degree d in n variables
over k, and g an arbitrary polynomial over k in n variables. Suppose that p is odd, and
that g is of degree e < d/2. Then we have the estimate∣∣∣∣∣∑

t∈k×

∑
x∈kn

ψ

(
tf(x) + g(x) +

1
t

)∣∣∣∣∣ 6 2(d− 1)n(#(k))(n+1)/2.
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It will be useful, for certain inductive arguments, to say that a polynomial f in
n = 0 variables over k, i.e. a constant in k, is a “Deligne polynomial”, of any prime
to p degree one likes, if that constant is nonzero. With this interpretation, the theorem
above remains valid when n = 0; it becomes the usual estimate for classical Kloosterman
sums, proven by Weil [14] and foreseen by Hasse [7] as a consequence of the Riemann
hypothesis for curves over finite fields.

Our methods are cohomological, and allow us to treat some other sums “with the
same shape”, as well as “twists” by multiplicative characters χ, for example, sums of
the form ∑

t∈k×

∑
x∈kn

χ(t)ψ
(
tf(x) + g(x) +

1
t

)
,

cf. Section 8. We also give estimates for certain sums of the form∑
t∈k×

∑
x∈kn

ψ(tf(x) + g(x)),

cf. Section 5.

2. Cohomological Reformulation of the Main Result

In this section, we continue to work over the finite field k. We fix d > 2 prime to p, f a
Deligne polynomial of degree d in n > 0 variables over k, and g an arbitrary polynomial
over k in n variables of degree e < d. We also choose a prime number ` 6= p, and a group
isomorphism µp(C) ∼= µp(Q`), by means of which we view our chosen additive character
of k as now having values in Q`,

ψ : (k,+)→ Z[ζp]× ⊂ Q×` .

Henceforth, we work entirely with Q`-sheaves.
On A1/k we have the Artin–Schreier sheaf Lψ, and on the product space

An ×Gm/k,

with coordinates (x, t), we have the pulled back Artin–Schreier sheaf

Lψ(tf(x)+g(x)+1/t).

The fundamental object of interest to us is the sheaf F on Gm/k we obtain by projecting
An×Gm/k onto the second factor and taking compact cohomology of this Artin–Schreier
sheaf along the fibres. More precisely, we take

F := Rn(pr2)!Lψ(tf(x)+g(x)+1/t).

When n > 1,

t 7→ tf(x) + g(x) +
1
t

is a one-parameter family of Deligne polynomials over Gm/k, so we know [13, 3.5.11]
that F is lisse on Gm/k of rank (d− 1)n, and pure of weight n. Moreover, we know that
for i 6= n, the sheaves Ri(pr2)!Lψ(tf(x)+g(x)+1/t) all vanish.

In the case n = 0, f is a nonzero constant, g is an arbitrary constant, the projection
pr2 above is the identity, and the sheaf F on Gm/k, lisse of rank one and pure of weight
zero, is Lψ(tf+g+1/t).



ON A QUESTION OF BROWNING AND HEATH-BROWN 3

The trace function of F is given as follows. For a finite extension field E/k, denote by
ψE the additive character of E obtained by composition with the trace map TraceE/k.
For any such E/k, and for any point t ∈ E× = Gm(E), we have

Trace(FrobE,t |F) = (−1)n
∑
x∈En

ψE

(
tf(x) + g(x) +

1
t

)
.

By the Lefschetz trace formula applied to F , we have, for any finite extension E/k,
the identity∑

t∈E×
(−1)n

∑
x∈En

ψE

(
tf(x) + g(x) +

1
t

)
= Trace(FrobE |H2

c (Gm ⊗k k,F))− Trace(FrobE |H1
c (Gm ⊗k k,F)).

By Deligne’s main theorem [4, 3.3.1], the fact that F is lisse and pure of weight n
assures us that the cohomology group H1

c (Gm ⊗k k,F) is mixed of weight 6 n+ 1, i.e.
each eigenvalue α of FrobE is an algebraic number which is pure of some integer weight
w = w(α) 6 n + 1 (all of its complex absolute values are Card(E)w/2). On the other
hand, one knows that H2

c (Gm ⊗k k,F) is pure of weight n+ 2.
Thus Theorem 1.1 follows from the following results on the cohomology of F .

Theorem 2.1. If p is odd and deg(g) := e < d/2, then we have the following two results:
(i) H2

c (Gm ⊗k k,F) = 0.
(ii) dimH1

c (Gm ⊗k k,F) 6 2(d− 1)n.

Remark 2.2. Indeed, assertion (i) of the above theorem is equivalent to the statement
that there exists a constant C such that for every finite extension E/k, we have the
estimate ∣∣∣∣∣ ∑

t∈E×
(−1)n

∑
x∈En

ψE

(
tf(x) + g(x) +

1
t

)∣∣∣∣∣ 6 C(#(E))(n+1)/2.

That assertion (i) implies such an estimate, with C taken to be the dimension of
H1
c (Gm⊗k k,F), is obvious from the known weights of the compact cohomology groups

of F . Conversely, if such an estimate holds, then certainly the lim supE of the ratios∣∣∣∣∣ ∑
t∈E×

(−1)n
∑
x∈En

ψE

(
tf(x) + g(x) +

1
t

)∣∣∣∣∣
/

(#(E))(n+2)/2

vanishes. But in view of the fact that H2
c (Gm⊗k k,F) is pure of weight n+ 2, while the

H1 is mixed of lower weight, this lim supE is precisely the dimension of H2
c (Gm⊗k k,F),

cf. [8, 2.2.2.1].

3. Further Reductions, via Dwork-Regularity

The theorem of the last section is geometric, i.e. it concerns what happens after we
extend scalars from k to k. This allows us to pass from k to a finite extension E/k and
work instead with the sheaf F on Gm/E. The advantage of doing this is that we can
make a linear change of coordinates in An in which our Deligne polynomial f , and more
precisely its leading form fd, is particularly easy to work with.
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Let us say that a homogeneous form F in n > 1 variables X1, . . . , Xn over E is Dwork-
regular with respect to the coordinates X1, . . . , Xn if the subscheme of Pn−1 defined by
the vanishing of F and of all the Xi∂F/∂Xi is empty, cf. [5, Introduction and last 2
pages], where this notion plays an important role. When F has degree d prime to p,
it is the same to say that the Xi∂F/∂Xi define the empty subscheme of Pn−1, since
we have the Euler relation dF =

∑
iXi∂F/∂Xi. It is essentially tautologous that F is

Dwork-regular if and only if the following conditions hold: for every nonempty subset
S ⊂ {1, . . . , n}, the homogeneous form FS obtained from F by setting to zero the
variables Xi with i 6∈ S is a Deligne polynomial in the variables Xs, s ∈ S; i.e. FS is
nonzero, and, if #S > 2, its vanishing defines a smooth hypersurface in P#S−1.

Let us recall from [5, last 2 pages] the following lemma, whose elementary proof we
include for the convenience of the reader.

Lemma 3.1. Let F be a nonzero homogeneous form in n > 1 variables X1, . . . , Xn

of some degree d > 1, over an algebraically closed field E. If n > 2, assume that the
vanishing of F defines a smooth hypersurface in Pn−1. Then there exist new coordinates
Y1, . . . , Yn, i.e.

Xi =
∑
j

ai,jYj , (ai,j) ∈ GL(n,E),

such that F , written as a homogeneous form in the Yi, is Dwork-regular with respect to
Y1, . . . , Yn.

Proof. If n = 1, F is already Dwork-regular. If n > 2, we argue as follows. The key
fact is that given a finite list of smooth connected closed subschemes Zν ⊂ Pn−1, there
exists an E-rational hyperplane, say H ⊂ Pn−1, which is transverse to each Zν , i.e. if
dim(Zν) = 0, then Zν ∩H = ∅; if dim(Zν) > 1, then Zν ∩H is smooth of dimension one
less; and if Zν is empty, there is no condition. We apply this first to find a hyperplane
H1 ⊂ Pn−1 transverse to each member of our first list, which we define to be Pn−1 and
Var(F ) (which is the hypersurface in Pn−1 defined by the vanishing of F ). We then
apply it to find a hyperplane H2 ⊂ Pn−1 which is transverse to each member of our
second list, which we define to consist of the first list together with the intersections
of H1 with each member of the first list. At the (i + 1)-st stage, we find a hyperplane
Hi+1 ⊂ Pn−1 which is transverse to each member of our (i+ 1)-st list, which we define
to consist of the i-th list together with the intersections of Hi with each member of the
i-th list.

In this way, we obtain a transverse system of hyperplanes H1, . . . ,Hn in Pn−1. Taking
Yi to be a linear form whose vanishing defines Hi, we obtain the required coordinate
system Y1, . . . , Yn. �

Now let us return to the situation of the theorem. Thus f is a Deligne polynomial of
degree d prime to p in n > 1 variables over the finite field k. After possibly extending
scalars from k to a finite extension, we use the above lemma to reduce to the case
where the leading form fd in f is Dwork-regular with respect to the given coordinates
X1, . . . , Xn. Let us say that the polynomial f itself is affine-Dwork-regular if the form
F of degree d in n+ 1 variables X0, . . . , Xn obtained from f by homogenization,

F (X0, . . . , Xn) := Xd
0f

(
X1

X0
, . . . ,

Xn

X0

)
,
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is Dwork-regular with respect to X0, . . . , Xn. Of course, if a Deligne polynomial of
degree d prime to p in n variables is affine-Dwork-regular, then its leading form fd is
Dwork-regular, simply because fd is F |X0=0.

Lemma 3.2. Let f be a Deligne polynomial of degree d prime to p in n > 1 variables
over the finite field k, whose leading form fd in f is Dwork-regular with respect to the
given coordinates X1, . . . , Xn. Then for all but at most dn elements a ∈ k, the polynomial
f(x) + a is affine-Dwork-regular.

Proof. By hypothesis, fd is Dwork-regular with respect toX1, . . . , Xn. As d is prime to p,
this means simply that in Pn−1, the n forms of degree d, Xi∂fd/∂Xi for i = 1, . . . , n,
define the empty subscheme. As fd is F‖X0=0, and the formation of Xi∂F/∂Xi for
i = 1, . . . , n commutes with putting X0 to zero, the subscheme J ⊂ Pn defined by
the vanishing of the n forms of degree d, Xi∂fd/∂Xi, has empty intersection with the
hyperplane X0 = 0. Therefore by Bertini this subscheme must be finite over k. As it is
defined by the vanishing of n forms, each of degree d, it has at most dn k-valued points,
and each of these points has X0 invertible. Now consider the function

φ :=
(
X0

∂F

∂X0

)/
Xd

0

on J . We claim that so long as a ∈ k is not of the form −φ(j)/d for any j ∈ J (k), then
f + a is affine-Dwork-regular, i.e. the form F + aXd

0 is Dwork-regular with respect to
X0, . . . , Xn. Because d is prime to p, this amounts to showing that the subscheme K of
Pn defined by the vanishing of the n+ 1 forms

Xi
∂(F + aXd

0 )
∂Xi

, i = 0, . . . , n,

is empty, so long as a ∈ k is not of the form −φ(j)/d for some j ∈ J (k). These forms
are

X0
∂F

∂X0
+ daXd

0

for i = 0, and Xi∂F/∂Xi for i = 1, . . . , n. Thus a point of K is a point of J (from the
vanishing of these last n forms) at which

∂F

∂X0
+ daXd

0

also vanishes. But as X0 is invertible at every point of J , it is the same to say that a
point of K(k) is a point j ∈ J (k) at which φ(j) + da = 0. For the allowed values of a,
the function φ+da is invertible on J , and hence the scheme K is empty, as required. �

Remark 3.3. The reader should be cautioned that if a Deligne polynomial f has its
leading form fd Dwork-regular, f itself need not be affine-Dwork-regular, even if the
affine hypersurface f = 0 is smooth. The simplest example is

xd1 + x1 +
n∑
i=2

xdi ,

for any degree d > 2 prime to p, and any n > 1. Indeed, f cannot be affine-Dwork-regular
unless its constant term f(0) 6= 0; if f(0) = 0 then the homogenization F (X0, X1, . . . , Xn)
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will vanish when we set Xi to 0 for i = 1, . . . , n, rather than being a Deligne polynomial
in the remaining variable X0.

Lemma 3.4. Let f be a Deligne polynomial of degree d prime to p in n > 1 variables
over the finite field k, which is affine-Dwork-regular. Then for any integer r > 1 prime
to p, the polynomial f(Xr) := f(Xr

1 , . . . , X
r
n) is a Deligne polynomial of degree dr prime

to p in n variables over the finite field k, which is affine-Dwork-regular. Equivalently,
if F (X0, . . . , Xn) is a homogeneous form of degree d prime to p in n+ 1 variables over
the finite field k which is Dwork-regular, then for any integer r > 1 prime to p, the form
F (Xr) := F (Xr

0 , . . . , X
r
n) is a form of degree dr prime to p in n + 1 variables over the

finite field k, which is Dwork-regular.

Proof. We will prove the assertion in its homogeneous version. Let us put

Fi := Xi
∂F

∂Xi
, G := F (Xr), Gi := Xi

∂G

∂Xi
.

Then we have the identities
Gi(X) = rFi(Xr).

As r is prime to p, if x ∈ Pn(k) is a common zero of the Gi, then xr is a common zero of
the Fi. But the Fi have no common zero in Pn(k). Thus the Gi have no common zero
in Pn(k). �

In the case when f is a Deligne polynomial of degree d prime to p in n variables
over the finite field k, which is affine-Dwork-regular, we have the following more precise
“purity theorem” concerning the cohomology of the sheaf F .

Theorem 3.5 (Purity theorem). Suppose that f is a Deligne polynomial of degree d
prime to p in n > 1 variables over the finite field k, which is affine-Dwork-regular, and g
is an arbitrary polynomial. If p is odd and deg(g) := e < d/2, then we have the following
three results:

(i) H2
c (Gm ⊗k k,F) = 0.

(ii) dimH1
c (Gm ⊗k k,F) = 2(d− 1)n.

(iii) H1
c (Gm ⊗k k,F) is pure of weight n+ 1.

Once again, this theorem remains valid for n = 0 with the convention that a polyno-
mial f in n = 0 variables over k, i.e. a constant in k, is a Deligne polynomial which is
affine-Dwork-regular, of any prime to p degree one likes, if that constant is nonzero. It is
simply the (cohomological underpinning of the) usual estimate for classical Kloosterman
sums.

4. The Purity Theorem Implies Theorem 2.1

Let us put ourselves in the situation of Theorem 2.1. Thus f is a Deligne polynomial of
degree d prime to p in n variables over the finite field k, g is an arbitrary polynomial of
deg(g) := e < d/2, and p is odd. We denote by F the lisse sheaf

F := Rn(pr2)!Lψ(tf(x)+g(x)+1/t)

attached to this data.
At the expense of extending scalars from k to a finite extension, we may further

assume that fd is Dwork-regular, and that there exists an element a ∈ k such that
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the polynomial f + a is affine-Dwork-regular. The lisse sheaf Fa attached to the data
(f + a, g),

Fa := Rn(pr2)!Lψ(t(f(x)+a)+g(x)+1/t)

is related to the original sheaf F by

Fa = F ⊗ Lψ(at),

as is immediate from the projection formula.
Thus Fa = F ⊗ Lψ(at) is a lisse sheaf on Gm/k, pure of weight n, whose H1

c is pure
of weight n+ 1. We now apply the following lemma.

Lemma 4.1. Let k be a finite field, a ∈ k, and F a lisse sheaf on Gm/k which is pure
of weight n. Suppose that H1

c (Gm ⊗k k,F ⊗ Lψ(at)) is pure of weight n + 1. Then we
have the following results:

(i) Viewing F as a representation of π1(Gm), its restriction to the inertia group I(0)
at 0 ∈ A1 has no nonzero invariants or coinvariants, i.e. FI(0) = FI(0) = 0.

(ii) H2
c (Gm ⊗k k,F) = 0.

Proof. Denote by j : Gm ⊂ P1 the inclusion, and write Fa := F ⊗ Lψ(at). We have a
short exact excision sequence of sheaves on P1,

0→ j!Fa → j?Fa → (FI(0)a )pct at 0 ⊕ (FI(∞)
a )pct at ∞ → 0.

The long exact cohomology sequence gives an exact sequence

0→ H0(Gm ⊗k k,Fa)→ FI(0)a ⊕FI(∞)
a → H1

c (Gm ⊗k k,Fa).

By assumption the last term is pure of weight n+ 1. But as Fa is pure of weight n, we
know by [4, 1.8.1] that both FI(0)a and FI(∞)

a are mixed of weight at most n. So the last
arrow must be the zero map, and so we find an isomorphism

H0(Gm ⊗k k,Fa) ∼= FI(0)a ⊕FI(∞)
a .

But each of the two restriction maps

H0(Gm ⊗k k,Fa)→ FI(0)a , H0(Gm ⊗k k,Fa)→ FI(∞)
a

is injective. Thus we have

dimFI(0)a + dimFI(∞)
a = dimH0 6 dimFI(∞)

a ,

and hence FI(0)a = 0. [Similarly, we find FI(∞)
a = 0, but we will not use that fact here.]

The sheaf Lψ(at) is lisse on A1, so trivial as a representation of I(0), and hence F and
Fa := F⊗Lψ(at) are isomorphic as representations of I(0). So we have FI(0) ∼= FI(0)a = 0.
For any `-adic representation V of I(0), here F , one knows that dimV I(0) = dimVI(0).
This proves (i).

Once we have proven (i), (ii) follows. Indeed, the H2
c is the Tate-twisted group of

coinvariants under πgeom
1 (Gm),

H2
c (Gm ⊗k k,F)) ∼= Fπgeom

1 (Gm)(−1).

But this last group is a quotient of FI(0)(−1), hence vanishes. �
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To conclude the deduction of Theorem 2.1 from the Purity theorem, we argue as
follows. We know that for all but a set S of at most dn possible values of a ∈ k, f + a
is affine-Dwork-regular. So we look at the sheaf on Gm × A1, with coordinates (t, a),
which is F ⊗Lψ(at), and we take its H1

c along the fibres of the second projection. Thus
we consider the constructible sheaf G on A1 given by

G := R1(pr2)!(F ⊗ Lψ(at)).

Its stalk at a point a ∈ k is the group H1
c (Gm⊗k k,F ⊗Lψ(at)). By the Purity theorem,

this stalk has dimension 2(d− 1)n, for all but at most dn values of a. Thus the generic
rank of G is 2(d− 1)n. The sheaf G on A1 has no nonzero punctual sections, because it
is a sheaf of perverse origin, cf. [12]. In particular, its stalk at any point has dimension
at most the generic rank of G. As the stalk at 0 is H1

c (Gm⊗k k,F), we find the required
inequality

dimH1
c (Gm ⊗k k,F) 6 2(d− 1)n.

5. A Generalization: the (A,B) Purity Theorem

For later application, we first formulate a mild generalization of the Purity theorem.
Here f is a Deligne polynomial of degree d prime to p in n variables over the finite
field k, and g is an arbitrary polynomial of degree deg(g) := e < d. We are also given
two integers A > 1, B > 1, and a one-variable polynomial PB(t) over k of degree
deg(PB) 6 B. We consider the one-parameter family of Deligne polynomials

t 7→ tAf(x) + g(x) + PB

(
1
t

)
over Gm. On An ×Gm we have the lisse sheaf Lψ(tAf(x)+g(x)+PB(1/t)), and we form the
sheaf

F := Rn(pr2)!Lψ(tAf(x)+g(x)+PB(1/t))

on Gm. Again, F is lisse of rank (d− 1)n, and pure of weight n.

Theorem 5.1 ((A,B) purity theorem). In the above situation, suppose in addition that
f is affine-Dwork-regular, that p is prime to AB(A+B), that deg(PB) is exactly B, and
that deg(g) := e < (B/(A+B))d. Then we have the following three results:

(i) H2
c (Gm ⊗k k,F) = 0.

(ii) dimH1
c (Gm ⊗k k,F) = (A+B)(d− 1)n.

(iii) H1
c (Gm ⊗k k,F) is pure of weight n+ 1.

In the case (A,B) = (1, 1), this theorem gives back the Purity Theorem 3.5. It
perhaps clarifies the significance of the hypothesis that p be odd in that theorem.

Once again, this theorem remains valid for n = 0 with the convention that a polyno-
mial f in n = 0 variables over k, i.e. a constant in k, is a Deligne polynomial which is
affine-Dwork-regular, of any prime to p degree one likes, if that constant is nonzero. Now
it becomes the (cohomological underpinning of the) usual estimate for additive character
sums with one-variable Laurent polynomials. Exactly as in the previous section, we can
do a specialization argument to get information about what happens in either of two
mild degenerations.
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Corollary 5.2. If in the (A,B) Purity Theorem 5.1 we drop only the hypothesis that
the Deligne polynomial f be affine-Dwork-regular, or we drop only the hypothesis that
deg(PB) be exactly B, then we have the following results:

(i) In the first case, the inertial invariants of F at zero vanish, i.e. FI(0) = 0. In
the second case, the inertial invariants of F at ∞ vanish, i.e. FI(∞) = 0.

(ii) H2
c (Gm ⊗k k,F) = 0.

(iii) dimH1
c (Gm ⊗k k,F) 6 (A+B)(d− 1)n.

(iv) We have the estimate∣∣∣∣∣∑
t∈k×

∑
x∈kn

ψ

(
tAf(x) + g(x) + PB

(
1
t

))∣∣∣∣∣ 6 (A+B)(d− 1)n(#(k))(n+1)/2.

Proof. Suppose first that we drop only the hypothesis that f be affine-Dwork-regular.
The question being geometric, we may make a finite extension of scalars and find a
coordinate system in which fd is Dwork-regular. Then for most a ∈ k, f + a is affine-
Dwork-regular, and we apply the (A,B) purity theorem to the sheaf Fa := F ⊗Lψ(atA).
Exactly as in Lemma 4.1 above, the purity implies the vanishing of FI(0)a . Again we
have FI(0)a

∼= FI(0), so we get the vanishing of H2
c (Gm ⊗k k,F) = 0. Assertion (iii)

follows by the “sheaf of perverse origin” argument. Assertion (iv) simply spells out the
diophantine consequence of parts (ii) and (iii).

Suppose now that we drop only the hypothesis that deg(PB) be exactly B. Then for
most b ∈ k, the polynomial PB+btB has exact degree B, and we apply the (A,B) purity
theorem to the sheaf Fb := F⊗Lψ(b/tB). Now we exploit the fact that the purity implies
the vanishing of FI(∞)

b . We have FI(∞)
b

∼= FI(∞), and we conclude as above. �

Let us make explicit two special cases of this corollary, when we drop only the hy-
pothesis that PB has exact degree B, and where we take A = 1.

Corollary 5.3. Suppose that f is an affine-Dwork-regular polynomial of degree d prime
to p in n variables over the finite field k, and g is an arbitrary polynomial of lower degree,
i.e. deg(g) := e < d. Suppose that p is odd. Denote by δ the least strictly positive integer
such that both e < (δ/(1 + δ))d and such that p does not divide δ(1 + δ) – thus δ can
always be taken to be d, unless p | d+ 1, in which case δ can be taken to be d+ 2. Then
we have the following estimates:

(i) We have the estimate∣∣∣∣∣∑
t∈k×

∑
x∈kn

ψ

(
tf(x) + g(x) +

1
t

)∣∣∣∣∣ 6 (1 + δ)(d− 1)n(#(k))(n+1)/2.

(ii) We have the estimate∣∣∣∣∣∑
t∈k×

∑
x∈kn

ψ(tf(x) + g(x))

∣∣∣∣∣ 6 (1 + δ)(d− 1)n(#(k))(n+1)/2.

(iii) We have the estimate∣∣∣∣∣∑
t∈k×

∑
x∈kn

ψ(tf(x))

∣∣∣∣∣ 6 2(d− 1)n(#(k))(n+1)/2.
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Proof. The first two assertions are instances of the case (A,B) = (1, δ) of the above
corollary, with PB taken successively to be t and 0. The third assertion is the special
case (A,B) = (1, 1), with g and PB both taken to be 0. �

Remark 5.4. Let us see how sharp the third estimate of this corollary is. Denote by
Vf ⊂ An the affine hypersurface defined by f = 0. If we add to the sum in question the
terms with t = 0, we get, writing q := #k, q#Vf (k). Thus we have∑

t∈k×

∑
x∈kn

ψ(tf(x)) = q#Vf (k)− qn.

So the third assertion of the corollary amounts to the estimate

|#Vf (k)− qn−1| 6 2(d− 1)nq(n−1)/2.

Denote by F = F (X0, . . . , Xn) the homogenization of f . Then Vf is the complement of
the projective hypersurface Zfd

⊂ Pn−1 defined by fd = 0 in the projective hypersurface
ZF ⊂ Pn defined by F = 0. Thus

#Vf (k) = #ZF (k)−#Zfd
(k).

Because f is affine-Dwork-regular, both ZF and Zfd
are smooth. From the excision

sequence and the known cohomological structure of smooth projective hypersurfaces,
one sees that the compact cohomology groups Hi

c(Vf ⊗k,Q`) vanish except for i = n−1
and for i = 2n− 2, and that for n > 2 we have

dimHn−1
c (Vf ⊗ k,Q`) = (d− 1)n,

and
H2n−2
c (Vf ⊗ k,Q`) ∼= Q`(−(n− 1)).

By Deligne’s fundamental estimate [4, 3.3.1], the group Hn−1
c is mixed of weight 6 n−1,

so for n > 2 we find
|#Vf (k)− qn−1| 6 (d− 1)nq(n−1)/2.

For n = 1, this is trivially true as well. Thus the estimate in part (iii) of the above
corollary is overly conservative, by a factor of 2.

Remark 5.5. It may also be worth pointing out that the second and third estimates
both become false if we allow f to be a Deligne polynomial whose leading form fd is
Dwork-regular, but such that f is not affine-Dwork-regular. To clarify the situation,
consider once again the lisse of rank (d− 1)n, pure of weight n sheaf F on Gm attached
to the one parameter family of Deligne polynomials over Gm,

t 7→ tf(x) + g(x).

The second and third estimates fail precisely when H2
c (Gm ⊗k k,F) 6= 0.

To quantify this failure, recall that two finite-dimensional Q`-representations of
Gal(k/k), say V and W , have isomorphic semisimplifications (as representations), writ-
ten V ss ∼= W ss, if and only if det(1 − Tγ|V ) = det(1 − Tγ|W ) for every element
γ ∈ Gal(k/k). As Gal(k/k) is pro-cyclic, generated by the geometric Frobenius element
Frobk, we have

V ss ∼= W ss ⇐⇒ det(1− T Frobk |V ) = det(1− T Frobk |W ).
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Consider first the third estimate. If we take f = fd, then Vf is the affine cone over
the projective smooth hypersurface Xf ⊂ Pn−1 defined by f = fd. Thus, again writing
q := #k,

#Vf (k) = 1 + (q − 1)#Xf (k)

= 1 + (q − 1)(#Pn−2(k) + (−1)n−2 Trace(Frobk |Primn−2(Xf )))

= qn−1 + (−1)n−2(q − 1) Trace(Frobk |Primn−2(Xf )).

Here Primn−2(Xf ), the primitive part of Hn−2(Xf ⊗ k,Q`), is pure of weight n− 2 and
of strictly positive dimension

d− 1
d

((d− 1)n−1 − (−1)n−1).

So the “error term” #Vf (k) − qn−1 is O((#(k))n/2), but it is not O((#(k))(n−1)/2).
Indeed, this identity, applied over all finite extensions of k (combined with the fact that
H2
c (Gm⊗kk,F) is pure of weight n+2, while H1

c (Gm⊗kk,F) is mixed of weight 6 n+1,
which allows us to ”separate terms”), shows that

H2
c (Gm ⊗k k,F)ss ∼= Primn−2(Xf )ss(−2)

and
H1
c (Gm ⊗k k,F)ss ∼= Primn−2(Xf )ss(−1).

Consider now the second estimate. Suppose n > 4. Given d > 3 prime to p, take

f = fd = xdn−1 − xdn +
n−2∑
i=1

xdi , g = xn−1 − xn.

Denote by Xf ⊂ Pn−1 the projective smooth hypersurface defined by f = 0, and by
H ⊂ Pn−1 the hyperplane defined by g = 0. Because g is a nontrivial linear form,∑
x∈kn ψ(g(x)) = 0, so we have∑

t∈k×

∑
x∈kn

ψ(tf(x) + g(x)) =
∑
t∈k

∑
x∈kn

ψ(tf(x) + g(x)) = q
∑

x∈Vf (k)

ψ(g(x)).

Now for each point x ∈ Xf (k), choose a representative X ∈ Vf (k) lying over it. Then
the points, other than the origin, in Vf (k) are precisely the k×-multiples of the chosen
points X, so our sum is

q

1 +
∑

x∈Xf (k)

∑
λ∈k×

ψ(λg(X))

 = q

1−#Xf (k) +
∑

x∈Xf (k)

∑
λ∈k

ψ(λg(X))


= q(1−#Xf (k) + q#(Xf ∩H)(k)).

But the intersection Xf ∩H is the hypersurface in Pn−2, with homogeneous coordinates
(x1, . . . , xn−1), defined by the equation

∑n−2
i=1 x

d
i = 0, an equation which does not involve

the last variable xn−1. So if we denote by Z ⊂ Pn−3, with homogeneous coordinates
(x1, . . . , xn−1), the smooth hypersurface defined by this same equation, then we have

#(Xf ∩H)(k) = 1 + q#Z(k).
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So our sum is

q(1−#Xf (k) + q(1 + q#Z(k))) = q(1 + q)− q#Xf (k) + q3#Z(k).

But
#Xf (k) = #Pn−2(k) + (−1)n−2 Trace(Frobk |Primn−2(Xf ))

and
#Z(k) = #Pn−4(k) + (−1)n−4 Trace(Frobk |Primn−4(Z)),

and so our sum is (−1)n times

q3 Trace(Frobk |Primn−4(Z))− qTrace(Frobk |Primn−2(Xf )),

which, because of the first term, is O((#(k))(n+2)/2) but is not O((#(k))(n+1)/2). Once
again, we have the more precise result that

H2
c (Gm ⊗k k,F)ss ∼= Primn−4(Z)ss(−3)

and
H1
c (Gm ⊗k k,F)ss ∼= Primn−2(Xf )ss(−1).

Remark 5.6. As Browning and Heath-Brown [1] have noticed, there is something that
can be salvaged of the last corollary if we allow f to be “merely” a Deligne polynomial,
but now impose some transversality conditions on the interaction of g and f . To state
the result, let us define, given n, d, e strictly positive integers, the Bombieri constant

C(n, 1, d, e) := (4 max{d+ 1, e}+ 5)n+1,

cf. [11, page 877 and Theorem 4].

Theorem 5.7. Given integers n > 1, d > 1, e > 1, define

B(n, d, e) := C(n+ 1, 1, 1, e) + C(n, 1, d, e).

Suppose that f is a polynomial of degree d prime to p in n variables over the finite
field k, with leading form fd, and that g is a polynomial of degree e prime to p, with
leading form ge. Denote by Xfd

and Xge the projective hypersurfaces in Pn−1 defined by
the vanishing of fd and of ge respectively. We make the following assumptions:

(a) Xfd
⊂ Pn−1 is a smooth hypersurface, i.e. f is a Deligne polynomial.

(b) Xge
⊂ Pn−1 is a hypersurface which is either smooth, or has at worst isolated

singularities, i.e. dim Sing(Xge
) 6 0.

(c) The scheme-theoretic intersection Xfd
∩Xge ⊂ Pn−1 is smooth of codimension 2.

Then we have the following estimates:
(i) We have ∣∣∣∣∣∑

t∈k×

∑
x∈kn

ψ(tf(x) + g(x))

∣∣∣∣∣ 6 B(n, d, e)(#(k))(n+1)/2.

(ii) If e < d and p is odd, we can replace B(n, d, e) by the constant (1 + δ)(d− 1)n,
where δ is the least strictly positive integer such that both e < (δ/(1 + δ))d and
such that p does not divide δ(1 + δ).
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(iii) If g is a Deligne polynomial and e is arbitrary, we can replace B(n, d, e) by the
constant

(e− 1)n +
∣∣∣∣coeff of Ln−1 in

d(1 + L)n

(1 + dL)(1 + eL)

∣∣∣∣ .
Proof. Denote by F = Fd(X0, . . . , Xn) the degree d homogenization of f , by G =
Ge(X0, . . . , Xn) the degree e homogenization of g. Denote by XF ⊂ Pn the hypersurface
defined by F = 0, by H ⊂ Pn the hypersurface defined by G = 0, and by L ⊂ Pn the
hyperplane defined by X0. And denote by Vf ⊂ An the affine hypersurface defined by
f = 0.

We first show that the sum in question is O((#(k))(n+1)/2). To do this, we first
“complete” the sum by adding the t = 0 terms:∑

t∈k×

∑
x∈kn

ψ(tf(x) + g(x)) = −
∑
x∈kn

ψ(g(x)) +
∑
t∈k

∑
x∈kn

ψ(tf(x) + g(x))

= −
∑
x∈kn

ψ(g(x)) + (#k)
∑

x∈Vf (k)

ψ(g(x)).

The first term is (minus) the sum over Pn[1/X0](k) of ψ(G/Xe
0). Here Pn ∩ L is of

course smooth, being Pn−1, and Pn ∩ L ∩H is the hypersurface Xge
in that Pn−1. By

assumption, Xge
has at worst isolated singularities, so [11, Theorem 4], with ε = −1 and

δ 6 0, shows that the absolute value of this sum is 6 C(n+ 1, 1, 1, e)(#(k))(n+1)/2.
The second term is (#k times) the sum over XF [1/X0](k) of ψ(G/Xe

0). Here XF ∩L
is of smooth, being Xfd

, and XF ∩ L ∩G is smooth, being Xfd
∩Xge

⊂ Pn−1. So once
again [11, Theorem 4], with ε = −1 and δ = −1, shows that the absolute value of this
sum is 6 C(n, 1, d, e)(#(k))(n+1)/2.

It remains to get the asserted constants either if both e < d and p is odd, or if g
is a Deligne polynomial. Suppose first that e < d and p is odd. The question being
geometric, we may make a finite extension of scalars, and find new coordinates in which
fd is Dwork-regular. Then for all but at most dn values of a ∈ k, f + a is affine-Dwork-
regular. On the product space Gm ×A1, with coordinates (t, a), we have the lisse sheaf
(pr?1F)⊗ Lψ(at). So the sheaf

G := Rpr2!((pr
?
1F)⊗ Lψ(at))

on A1 is a sheaf of perverse origin, and hence its stalk G0 at a = 0, which is the group
H1
c (Gm ⊗k k,F), has rank at most equal to the generic rank of G. This generic rank

is attained at all but finitely many points, so certainly at some point a where f + a is
affine-Dwork-regular. Now apply Corollary 5.2(iii) to f + a and to g, with A = 1 and
B = δ.

Now suppose that g is a Deligne polynomial of arbritary degree e. Then the coho-
mology groups Hi

c(An⊗k,Lψ(g)) vanish for i 6= n, and Hn
c (An⊗k,Lψ(g)) has dimension

(e− 1)n. What about the groups Hi
c(Vf ⊗ k,Lψ(g))? A close reading of the proof of [11,

Theorem 4] shows that, under our hypotheses, these groups vanish for i > n. Because Vf
is a hypersurface, and so certainly locally a complete intersection, the lisse sheaf Lψ(g),
placed in degree 1− n, i.e. Lψ(g)[n− 1], is a perverse sheaf on Vf . Since Vf is affine, its
compact cohomology groups with perverse coefficients vanish in strictly negative degree.
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Thus we have

Hi
c(Vf ⊗ k,Lψ(g)[n− 1]) = Hn−1+i

c (Vf ⊗ k,Lψ(g)) = 0, i < 0.

So the groups Hi
c(Vf ⊗ k,Lψ(g)) vanish for i 6= n− 1. Thus our sum is given by∑

t∈k×

∑
x∈kn

ψ(tf(x) + g(x)) = −(−1)n Trace(Frobk |Hn
c (An ⊗ k,Lψ(g)))

+ (−1)n−1(#k) Trace(Frob |Hn−1
c (Vf ⊗ k,Lψ(g))).

It remains to bound the dimension of Hn−1
c (Vf ⊗ k,Lψ(g)). Again, the question is

geometric, so we may make a finite extension of scalars and find coordinates such that fd
is Dwork-regular. Once again, f+a is affine-Dwork-regular for all but at most dn values
of a ∈ k. Now we consider the smooth hypersurface V ⊂ An × A1, with coordinates
(x, a), of equation f(x)+a = 0. We have the lisse sheaf pr?1Lψ(g) on V , and the morphism
pr2 : V → A1, which is a complete intersection morphism of relative dimension n − 1.
So the sheaf

G := Rn−1pr2!(pr
?
1Lψ(g))

on A1 is a sheaf of perverse origin. Its stalk G0 at a = 0, which is the group

Hn−1
c (Vf ⊗ k,Lψ(g)),

has rank at most equal to the generic rank of G. This generic rank is attained at all but
finitely many points, so certainly at some point a where f + a is affine-Dwork-regular.
Pick such a point a. Then Ga is the group Hn−1

c (Vf+a⊗k,Lψ(g)). By the “nonsingular”
case [8, 5.1.1, applied to X ⊂ Pn there defined by F +aXd

0 = 0 and the function G/Xe
0 ],

we know that this group is pure of weight n− 1, and its dimension is given by

(−1)n−1 dimHn−1
c (Vf+a ⊗ k,Lψ(g)) = coeff of Ln in

dL(1 + L)n+1

(1 + dL)(1 + L)(1 + eL)
. �

6. Proof of the (A,B) Purity Theorem when A+B = d

Let us recall the situation. We are given
(a) an affine-Dwork-regular Deligne polynomial f of degree d prime to p in n > 1

variables over the finite field k,
(b) a partition d = A+B with A > 1, B > 1, and both A,B prime to p,
(c) a polynomial g(x) in n variables over the finite field k, of degree deg(g) := e <

B = (B/(A+B))d,
(d) a one-variable polynomial PB(t) over k of degree B without constant term, so

that PB(0) = 0.
We consider the one-parameter family of Deligne polynomials

t 7→ tAf(x) + g(x) + PB

(
1
t

)
over Gm. On An ×Gm we have the lisse sheaf Lψ(tAf(x)+g(x)+PB(1/t)), and we form the
sheaf

F := Rn(pr2)!Lψ(tAf(x)+g(x)+PB(1/t))
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on Gm. Again, F is lisse of rank (d− 1)n, and pure of weight n. Because F is the only
one of the Ri(pr2)!Lψ(tAf(x)+g(x)+PB(1/t)) which is nonzero, the Leray spectral sequence
degenerates at E2, and gives isomorphisms

H2
c (Gm ⊗k k,F) ∼= Hn+2

c ((An ×Gm)⊗ k,Lψ(tAf(x)+g(x)+PB(1/t)))

and

H1
c (Gm ⊗k k,F) ∼= Hn+1

c ((An ×Gm)⊗ k,Lψ(tAf(x)+g(x)+PB(1/t))).

What we must prove, then, is that the groups

Hi
c((An ×Gm)⊗ k,Lψ(tAf(x)+g(x)+PB(1/t)))

vanish for i 6= n + 1, and that the Hn+1
c is pure of weight n + 1, and has dimension

(A+B)(d− 1)n = d(d− 1)n.
We apply the automorphism t 7→ 1/t, x 7→ x to our situation. Then we must prove

that the groups

Hi
c((An ×Gm)⊗ k,Lψ(t−Af(x)+g(x)+PB(t)))

vanish for i 6= n + 1, and that the Hn+1
c is pure of weight n + 1, and has dimension

(A+B)(d− 1)n = d(d− 1)n.
This statement is a special case of a result proven in [8, 5.4.1] and amplified in [13,

4.1.12, but note that here the earlier condition 4.1.3 is assumed to remain in force]. Let
us state that result in the case when the ambient space X there is Pn+1 (here the case
n = 0 is perfectly fine), with coordinates (T,X0, X1, . . . , Xn), the integer r there is 2, the
integers d1, d2 there are both 1, and the prime to p integers b1, b2 of [8, 5.4.1], denoted by
e1, e2 in [13, 4.1.12], are A,B. We take for Z1 and Z2 there the transverse hyperplanes
of equation T = 0 and X0 = 0 respectively. We are given a degree d hypersurface of
equation H(T,X0, X1, . . . , Xn) = 0. We assume the following:

(a) The intersection (H = 0) ∩ (T = 0) is smooth of codimension 2 in Pn+1.
(b) The intersection (H = 0) ∩ (X0 = 0) is smooth of codimension 2 in Pn+1.
(c) The intersection (H = 0) ∩ (X0 = 0) ∩ (T = 0) is smooth of codimension 3

in Pn+1.

On the the open set V := Pn+1[1/TX0] ⊂ Pn+1 where both T and X0 are invertible, we
have the function H/TAXB

0 , and we form the Artin–Schreier sheaf Lψ(H/TAXB
0 ). The

theorem asserts that:

(i) The groups Hi
c(V ⊗ k,Lψ(H/TAXB

0 )) vanish for i 6= n+ 1.
(ii) The remaining group Hn+1

c is pure of weight n+ 1.
(iii) Denote by L the class of a hyperplane, and by c(Pn+1) = (1 + L)n+2 the total

Chern class of Pn+1. The dimension of the group Hn+1
c is given by the formula

(−1)n+1 dimHn+1
c = χ(V ⊗ k,Lψ(H/TAXB

0 )) =
∫

Pn+1

c(Pn+1)
(1 + dL)(1 + L)2

= coeff of Ln+1 in
(1 + L)n

1 + dL
=

n∑
i=0

(
n

i

)
(−d)n+1−i

= (−d)(1− d)n = (−1)n+1d(d− 1)n.
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In order to apply this result, let us denote by

F (X) := F (X0, . . . , Xn) := Xd
0f

(
X1

X0
, . . . ,

Xn

X0

)
the degree d homogenization of f , by

Ge(X) := Ge(X0, . . . , Xn) := Xe
0g

(
X1

X0
, . . . ,

Xn

X0

)
the degree e homogenization of g, and by

Pd(T,X0) := TAXB
0 PB

(
T

X0

)
the degree d homogenization of tAPB(t).

We then apply the cited result with

H(T,X0, X1, . . . , Xn) := F (X) + TAXB−e
0 Ge(X) + Pd(T,X0).

The space Pn+1[1/TX0] is just the product An × Gm, with coordinates xi := Xi/X0,
i = 1, . . . , n, and t = T/X0. The function H/TAXB

0 on this space is just the function

t−Af(x) + g(x) + PB(t).

The intersection (H = 0) ∩ (T = 0) is the hypersurface F = 0 in Pn, which is smooth
because f is affine-Dwork-regular. The intersection (H = 0) ∩ (X0 = 0) is the smooth
hypersurface in the Pn with homogeneous coordinates (X1, . . . , Xn, T ) of equation

fd(X1, . . . , Xn) + (leading coeff of PB(t))T d = 0,

which is again smooth because d is prime to p, and because fd defines a smooth hy-
persurface in Pn−1. [It is the degree restriction on g which ensures that the term
TAXB−e

0 Ge(X) vanishes when we set either T or X0 to 0.] Finally, the intersection
(H = 0) ∩ (X0 = 0) ∩ (T = 0) is the smooth hypersurface in Pn−1 defined by fd. This
concludes the proof of the case A+B = d of the (A,B) purity theorem.

Remark 6.1. The case n = 0 of the underlying result we have cited gives the case
n = 0 of the (A,B) purity theorem.

7. Proof of the (A,B) Purity Theorem in the General Case

We begin by recalling two general principles. Let X and Y be two separated k-schemes
of finite type.

Suppose we are given a morphism π : X → Y which is finite and flat of some rank
n > 1. Then for any constructible Q`-sheaf F on Y , F is a direct summand of π?π?F ,
a retraction being furnished by (1/n)Trπ, cf. [16, Exposé XVII, 6.2.3, (Var 4)]. For G
any constructible Q`-sheaf on X, we have

Hi
c(X ⊗ k,G) ∼= Hi

c(Y ⊗ k, π?G).

Taking G := π?F , we get

Hi
c(X ⊗ k, π?F) ∼= Hi

c(Y ⊗ k, π?π?F).

Thus Hi
c(Y ⊗ k,F) is a direct summand of Hi

c(X ⊗ k, π?F).
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Suppose now that G is a finite group of order n prime to p := char(k), and that
π : X → Y is a finite étale G-covering. Then for any constructible Q`-sheaf F on Y , its
compact Euler characteristic

χc(Y ⊗ k,F) :=
∑
i

(−1)i dimHi
c(Y ⊗ k,F)

obeys the Riemann–Hurwitz formula for this covering:

χc(Y ⊗ k,F) =
1

#G
χc(X ⊗ k, π?F),

cf. [8, 5.5.2, Corollary 1].
We now are in a position to prove the (A,B) purity theorem. Let us recall the

situation: We are given two integers A > 1, B > 1, such that p is prime to AB(A+B).
We are also given an integer d > 1 prime to p and an affine-Dwork-regular Deligne
polynomial f of degree d in n > 1 variables over the finite field k, and an arbitrary
polynomial g of degree deg(g) := e < (B/(A+B))d. Finally, we are given a one-variable
polynomial PB(t) over k of degree B. We consider the one-parameter family of Deligne
polynomials

t 7→ tAf(x) + g(x) + PB

(
1
t

)
over Gm. On An ×Gm we have the lisse sheaf Lψ(tAf(x)+g(x)+PB(1/t)), and we form the
sheaf

F := Rn(pr2)!Lψ(tAf(x)+g(x)+PB(1/t))

on Gm. Again, F is lisse of rank (d − 1)n, and pure of weight n. Inverting t, what we
must prove is that the groups

Hi
c((An ×Gm)⊗ k,Lψ(t−Af(x)+g(x)+PB(t)))

vanish for i 6= n + 1, and that the Hn+1
c is pure of weight n + 1, and has dimension

(A+B)(d− 1)n.
We first consider the finite flat morphism

π : An ×Gm → An ×Gm, (x1, . . . , xn, t) 7→ (xA+B
1 , . . . , xA+B

n , td),

of rank d(A+B)n. Visibly, we have

π?Lψ(t−Af(x)+g(x)+PB(t)) = Lψ(t−dAf(xA+B)+g(xA+B)+PB(td)).

But the data
(Ad,Bd, (A+B)d, f(xA+B), g(xA+B), PB(td))

is input for the case Ad+Bd = (A+B)d of the theorem proven in the last section. So
we know that the the groups

Hi
c((An ×Gm)⊗ k,Lψ(t−dAf(xA+B)+g(xA+B)+PB(td)))

vanish for i 6= n+1, and that the group Hn+1
c is pure of weight n+1, and has dimension

(Ad+Bd)(d(A+B)− 1)n. Therefore the “downstairs” groups

Hi
c((An ×Gm)⊗ k,Lψ(t−Af(x)+g(x)+PB(t))),

which are subgroups of these “upstairs” groups, themselves vanish for i 6= n + 1, and
the group Hn+1

c is pure of weight n+ 1.
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It remains only to compute the compact Euler characteristic. The question is geo-
metric, so we may assume k contains all the roots of unity of order dividing (A+ B)d.
We decompose An × Gm set-theoretically as a finite disjoint union of locally closed
subschemes ZS , indexed by subsets S ⊆ {1, . . . , n}, as follows. We define

ZS := {(x1, . . . , xn, t) : xi 6= 0 if i ∈ S, xi = 0 otherwise}.
The merit of this stratification is that under the map π, we have π−1ZS = ZS for each S,
and π makes ZS into a finite étale Galois covering of itself, with Galois group µSA+B×µd.
Let us also introduce the closed subschemes WS ⊂ An ×Gm defined by

WS := {(x1, . . . , xn, t) : xi = 0 if i 6∈ S}.
Thus WS

∼= AS ×Gm. Because f is affine-Dwork-regular, if we take the data

(A,B, d, f, g, PB)

and set the variables xi with i 6∈ S to zero, we get data on WS
∼= AS × Gm which is

input for the (A,B) purity theorem. Similarly, if we take the data

(Ad,Bd, (A+B)d, f(xA+B), g(xA+B), PB(td))

and set the variables xi with i 6∈ S to zero, we get data on WS
∼= AS × Gm which is

input for the (Ad,Bd) purity theorem in the proven case Ad+Bd = (A+B)d.
For ease of notation in the combinatorics to follow, let us define

χ(WS ,down) := χc(WS ⊗ k,Lψ(t−Af(x)+g(x)+PB(t))|WS),

χ(ZS ,down) := χc(WS ⊗ k,Lψ(t−Af(x)+g(x)+PB(t))|ZS),

χ(WS ,up) := χc(WS ⊗ k,Lψ(t−dAf(xA+B)+g(xA+B)+PB(td))|WS),

χ(ZS ,up) := χc(WS ⊗ k,Lψ(t−dAf(xA+B)+g(xA+B)+PB(td))|ZS).

What we must show is that χ(WS ,down) = (−A − B)(1 − d)S , for S the entire set
{1, . . . , n}, where we write rS as a shorthand for r#S . In fact, we will show it for all S
at once.

For each S, we have a disjoint union decomposition

WS =
⊔
T⊆S

ZT .

Since compact Euler characteristic is additive, we have

χ(WS ,down) =
∑
T⊆S

χ(ZT ,down) and χ(WS ,up) =
∑
T⊆S

χ(ZT ,up),

for every S ⊆ {1, . . . , n}. By Riemann–Hurwitz, we have

χ(ZT ,down) =
χ(ZT ,up)
(A+B)T d

,

for every T ⊆ {1, . . . , n}.
What remains is straightforward combinatorics. For each T ⊆ {1, . . . , n}, we have

χ(WT ,up) = (−d(A+B))(1− d(A+B))T ,

by the case dA+dB = d(A+B) of the (dA, dB) purity theorem. This allows us to solve
for the numbers χ(ZT ,up), using Möbius inversion. From these, we get the numbers
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χ(ZT ,down) by Riemann–Hurwitz. Then we add the χ(ZT ,down), over all T ⊆ S, to
get χ(WS ,down).

Writing

D := (A+B)d,

Möbius inversion upstairs gives

χ(ZS ,up) = (−1)S
∑
T⊆S

(−1)Tχ(WT ,up)

= (−1)S
∑
T⊆S

(−1)T (−D)(1−D)T = (−D)(−D)S ,

the last identity being the binomial theorem for (1 + (D − 1))S . Now using Riemann–
Hurwitz, we have

χ(ZS ,down) =
χ(ZS ,up)
(A+B)Sd

=
(−D)(−D)S

(A+B)Sd
= (−A−B)(−d)S .

Summing downstairs, we get the asserted formula:

χ(WS ,down) =
∑
T⊆S

χ(ZT ,down) =
∑
T⊆S

(−A−B)(−d)S = (−A−B)(1− d)S .

8. Twists by Multiplicative Characters, and Ramification of F

In this section, we consider a slight variant on the set up of the (A,B) purity theorem,
where we introduce a (possibly trivial) multiplicative character

χ : k× → Q`

and its associated Kummer sheaf Lχ on Gm/k.
As before, we are given two integers A > 1, B > 1, such that p is prime to AB(A+B).

We are also given an integer d > 1 prime to p and an affine-Dwork-regular Deligne
polynomial f of degree d in n > 1 variables over the finite field k, and an arbitrary
polynomial g of degree deg(g) := e < (B/(A+B))d. Finally, we are given a one-variable
polynomial PB(t) over k of degree B. We consider the one-parameter family of Deligne
polynomials

t 7→ tAf(x) + g(x) + PB

(
1
t

)
over Gm. As before, we form the sheaf F on Gm given by

F := Rn(pr2)!Lψ(tAf(x)+g(x)+PB(1/t)),

which is lisse of rank (d− 1)n, and pure of weight n.
This time, we are interested in the χ-twisted sums∑

t∈k×

∑
x∈kn

χ(t)ψ
(
tAf(x) + g(x) + PB

(
1
t

))
.
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It is the lisse sheaf F⊗Lχ which governs these sums. Indeed, the Lefschetz trace formula
tells us that

(−1)n
∑
t∈k×

∑
x∈kn

χ(t)ψ
(
tAf(x) + g(x) + PB

(
1
t

))
= Trace(FrobE |H2

c (Gm ⊗k k,F ⊗ Lχ))− Trace(FrobE |H1
c (Gm ⊗k k,F ⊗ Lχ)).

Theorem 8.1 ((A,B, χ) purity theorem). In the above situation, we have the following
three results:

(i) H2
c (Gm ⊗k k,F ⊗ Lχ) = 0.

(ii) dimH1
c (Gm ⊗k k,F ⊗ Lχ) = (A+B)(d− 1)n.

(iii) H1
c (Gm ⊗k k,F ⊗ Lχ) is pure of weight n+ 1.

Proof. Denote by r the prime to p integer which is the order of the character χ, and by

[r] : Gm → Gm

the r-th power map. Then under pullback we have

[r]?(F ⊗ Lχ) ∼= [r]?F .

Hence Hi
c(Gm ⊗k k,F ⊗ Lχ) is a direct summand of Hi

c(Gm ⊗k k, [r]?F). Now the
sheaf [r]?F is precisely the sheaf attached to the data (Ar,Br, d, f, g, PB(tr)). So by the
(Ar,Br) purity theorem, the groups Hi

c(Gm⊗kk, [r]?F) vanish for i 6= 1, while the group
H1
c is pure of weight n+1, and has dimension (rA+rB)(d−1)n. This gives the vanishing

and purity assertions. The dimension formula then results from Riemann–Hurwitz:

χc(Gm ⊗k k,F ⊗ Lχ) =
1
r
χc(Gm ⊗k k, [r]?(F ⊗ Lχ)) =

1
r
χc(Gm ⊗k k, [r]?F)

= χc(Gm ⊗k k,F) = −(A+B)(d− 1)n. �

Corollary 8.2. If in the (A,B, χ) purity theorem we drop only the hypothesis that
the Deligne polynomial f be affine-Dwork-regular, or we drop only the hypothesis that
deg(PB) be exactly B, then we have the following results:

(i) In the first case, the inertial invariants of F⊗Lχ at zero vanish; in other words,
(F ⊗ Lχ)I(0) = 0. In the second case, the inertial invariants of F ⊗ Lχ at ∞
vanish; in other words, (F ⊗ Lχ)I(∞) = 0.

(ii) H2
c (Gm ⊗k k,F ⊗ Lχ) = 0.

(iii) dimH1
c (Gm ⊗k k,F ⊗ Lχ) 6 (A+B)(d− 1)n.

(iv) We have the estimate∣∣∣∣∣∑
t∈k×

∑
x∈kn

χ(t)ψ
(
tAf(x) + g(x) + PB

(
1
t

))∣∣∣∣∣ 6 (A+B)(d− 1)n(#(k))(n+1)/2.

Proof. The proof is identical to the proof of Corollary 5.2, everywhere replacing the
sheaf F there by the sheaf F ⊗ Lχ. �

Corollary 8.3. If in the (A,B) purity theorem we drop only the hypothesis that the
Deligne polynomial f be affine-Dwork-regular, i.e. if we allow f to be “only” a Deligne
polynomial, then the sheaf F is totally wildly ramified at zero, i.e. under the wild inertia
group P (0) ⊂ I(0), F has no nonzero invariants, i.e. FP (0) = 0.
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Proof. If not, then after some finite extension of the ground field, there will be a multi-
plicative character χ for which (F⊗Lχ)I(0) 6= 0, cf. [3, paragraph 7.12]. By the previous
corollary, no such χ exists. �

Corollary 8.4. If in the (A,B) purity theorem we drop only the hypothesis that the
Deligne polynomial f be affine-Dwork-regular, i.e. if we allow f to be “only” a Deligne
polynomial, then the sheaf F has all its ∞-slopes 6 A, and all its 0-slopes 6 B. More-
over, if f is affine-Dwork-regular, then all ∞-slopes of F are equal to A, and all 0-slopes
of F are equal to B.

Proof. The statement is geometric, so we may assume that fd is Dwork-regular. Then
for all but finitely many a ∈ k, f + a is affine-Dwork-regular. And for all but a single
b ∈ k, PB(t) + btB still has degree B. So by the (A,B) purity theorem, applied to the
situation (A,B, d, f + a, g, PB + btB), we conclude that we have

χc(Gm ⊗k k,F ⊗ Lψ(atA) ⊗ Lψ(b/tB)) = −(A+B)(d− 1)n = −(A+B) rank(F)

for all but a finite number of pairs (a, b) ∈ k2
. The effect of

F 7→ F ⊗ Lψ(atA) ⊗ Lψ(b/tB)

on 0-slopes and on ∞-slopes is known, cf. [9, 1.3 and 8.5.4–5]. For all but finitely many
pairs (a, b) ∈ k2

, this operation “promotes” all ∞-slopes of F which are 6 A to A, and
leaves unchanged all ∞-slopes of F which are > A. Similarly, it “promotes” all 0-slopes
of F which are 6 B to B, and leaves unchanged all 0-slopes of F which are > B. So
the Euler–Poincaré formula for the lisse sheaf F ⊗Lψ(atA)⊗Lψ(b/tB) on Gm shows that

(A+B) rank(F) = −χc(Gm ⊗k k,F ⊗ Lψ(atA) ⊗ Lψ(b/tB))

= Swan0(F ⊗ Lψ(atA) ⊗ Lψ(b/tB)) + Swan∞(F ⊗ Lψ(atA) ⊗ Lψ(b/tB))

=
∑

the rank(F) 0-slopes λi of F

max{B, λi}+
∑

the rank(F) ∞-slopes νi of F

smax{A, νi},

and so we get the asserted inequalities on the slopes of F at both 0 and ∞: all
max{B, λi} = B, and all max{A, νi} = A. In the case when f is affine-Dwork-regular,
we know that

(A+B) rank(F) = −χc(Gm ⊗k k,F)

=
∑

the rank(F) 0-slopes λi of F

λi +
∑

the rank(F) ∞-slopes νi of F

νi,

so the equalities are forced: all λi = B, and all νi = A. �
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