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1. Introduction, and statement of the main result

Let k be a finite field, p its characteristic, and

ψ : (k,+) → Z[ζp]
× ⊂ C×

a nontrivial additive character of k. We are given a polynomial f in
n ≥ 1 variables over k of degree d ≥ 1 which is a “Deligne polynomial”,
i.e., its degree d is prime to p and its highest degree term, say fd,
is a homogeneous form of degree d in n variables which is nonzero,
and whose vanishing, if n ≥ 2, defines a smooth hypersurface in the
projective space Pn−1. For a Deligne polynomial f as above, one has
Deligne’s fundamental estimate [De-Weil I, 8.4]

|
∑
x∈kn

ψ(f(x))| ≤ (d− 1)n#(k)n/2.

Suppose now that g is an arbitrary polynomial over k in n variables,
of degree e < d. Then for every t ∈ k×, the polynomial

tf(x) + g(x) + 1/t

is still a Deligne polynomial of degree d in n variables over k. Browning
and Heath-Brown [Br-HB] asked when one had cancellation in the sum∑

t∈k×

∑
x∈kn

ψ(tf(x) + g(x) + 1/t),

whose absolute value is, in view of Deligne’s result, trivially bounded
by (d − 1)n#(k)(n+2)/2. In their application [Br-HB], d = 3, and g is
linear, and so the following theorem applies.

Theorem 1.1. Let d ≥ 3 prime to p, f a Deligne polynomial of degree
d in n variables over k, and g an arbitrary polynomial over k in n
variables. Suppose that p is odd, and that g is of degree e < d/2. Then
we have the estimate

|
∑
t∈k×

∑
x∈kn

ψ(tf(x) + g(x) + 1/t)| ≤ 2(d− 1)n#(k)(n+1)/2.
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It will be useful, for certain inductive arguments, to say that a poly-
nomial f in n = 0 variables over k, i.e., a constant in k, is a “Deligne
polynomial”, of any prime to p degree one likes, if that constant is
nonzero. With this interpretation, the theorem above remains valid
when n = 0; it becomes the usual estimate for classical Kloosterman
sums, proven by Weil[We] and foreseen by Hasse[Ha] as a consequence
of the Riemann Hypothesis for curves over finite fields.

Our methods are cohomological, and allow us to treat some other
sums “with the same shape”, as well as “twists” by multiplicative char-
acters χ, e.g., sums of the form∑

t∈k×

∑
x∈kn

χ(t)ψ(tf(x) + g(x) + 1/t),

cf. the last section. We also give estimates for certain sums of the form∑
t∈k×

∑
x∈kn

ψ(tf(x) + g(x)),

cf. Section 5.

2. Cohomological reformulation of the main result

In this section, we continue to work over the finite field k. We fix
d ≥ 2 prime to p, f a Deligne polynomial of degree d in n ≥ 0 variables
over k, and g an arbitrary polynomial over k in n variables of degree
e < d. We also choose a prime number ` 6= p, and a group isomor-
phism µp(C) ∼= µp(Q`), by means of which we view our chosen additive

character of k as now having values in Q`,

ψ : (k,+) → Z[ζp]
× ⊂ Q×

` .

Henceforth, we work entirely with Q`-sheaves.
On A1/k we have the Artin-Schreier sheaf Lψ, and on the prod-

uct space An×Gm/k, with coordinates (x, t), we have the pulled back
Artin-Schreier sheaf Lψ(tf(x)+g(x)+1/t). The fundamental object of inter-
est to us is the sheaf F on Gm/k we obtain by projecting An ×Gm/k
onto the second factor and taking compact cohomology of this Artin-
Schreier sheaf along the fibres. More precisely, we take

F := Rn(pr2)!Lψ(tf(x)+g(x)+1/t).

When n ≥ 1,

t 7→ tf(x) + g(x) + 1/t

is a one-parameter family of Deligne polynomials over Gm/k, so we
know [Ka-MMP, 3.5.11] that F is lisse on Gm/k of rank (d− 1)n, and
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pure of weight n. Moreover, we know that for i 6= n, the sheaves
Ri(pr2)!Lψ(tf(x)+g(x)+1/t) all vanish.

In the case n = 0, f is a nonzero constant, g is an arbitrary constant,
the projection pr2 above is the identity, and the sheaf F on Gm/k, lisse
of rank one and pure of weight zero, is Lψ(tf+g+1/t).

The trace function of F is given as follows. For a finite extension field
E/k, denote by ψE the additive character of E obtained by composition
with the trace map TraceE/k. For any such E/k, and for any point
t ∈ E× = Gm(E), we have

Trace(FrobE,t|F) = (−1)n
∑
x∈En

ψE(tf(x) + g(x) + 1/t).

By the Lefschetz Trace Formula applied to F , we have, for any finite
extension E/k, the identity∑

t∈E×
(−1)n

∑
x∈En

ψE(tf(x) + g(x) + 1/t)

= Trace(FrobE|H2
c (Gm ⊗k k,F))− Trace(FrobE|H1

c (Gm ⊗k k,F)).

By Deligne’s Main Theorem [De-Weil II, 3.3.1], the fact that F
is lisse and pure of weight n assures us that the cohomology group
H1
c (Gm ⊗k k,F) is mixed of weight ≤ n + 1, i.e., each eigenvalue

α of FrobE is an algebraic number which is pure of some integer
weight w = w(α) ≤ n + 1 (:= all of its complex absolute values are
Card(E)w/2). On the other hand, one knows that H2

c (Gm ⊗k k,F) is
pure of weight n+ 2.

Thus the theorem of the introduction follows from the following re-
sults on the cohomology of F .

Theorem 2.1. If p is odd and deg(g) := e < d/2, then we have the
following two results.

(1) H2
c (Gm ⊗k k,F) = 0.

(2) dimH1
c (Gm ⊗k k,F) ≤ 2(d− 1)n.

Remark 2.2. Indeed, assertion (1) of the above theorem is equivalent
to the statement that there exists a constant C such that for every
finite extension E/k, we have the estimate

|
∑
t∈E×

(−1)n
∑
x∈En

ψE(tf(x) + g(x) + 1/t)| ≤ C#(E)(n+1)/2.

That assertion (1) implies such an estimate, with C taken to be the
dimension of H1

c (Gm ⊗k k,F), is obvious from the known weights of
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the compact cohomology groups of F . Conversely, if such an estimate
holds, then certainly the limsupE of the ratios

|
∑
t∈E×

(−1)n
∑
x∈En

ψE(tf(x) + g(x) + 1/t)|/#(E)(n+2/2

vanishes. But in view of the fact that H2
c (Gm⊗k k,F) is pure of weight

n+ 2, while the H1 is mixed of lower weight, this limsupE is precisely
the dimension of H2

c (Gm ⊗k k,F), cf. [Ka-SE, 2.2.2.1].

3. Further reductions, via Dwork-regularity

The theorem of the last section is geometric, i.e., it concerns what
happens after we extend scalars from k to k. This allows us to pass
from k to a finite extension E/k and work instead with the sheaf F
on Gm/E. The advantage of doing this is that we can make a linear
change of coordinates in An in which our Deligne polynomial f , and
more precisely its leading form fd, is particularly easy to work with.

Let us say that a homogeneous form F in n ≥ 1 variables X1, ..., Xn

over E is Dwork-regular with respect to the coordinates X1, ..., Xn if
the subscheme of Pn−1defined by the vanishing of F and of all the
Xi∂F/∂Xi is empty, cf.[Dw, Introduction and last 2 pages], where this
notion plays an important role. When F has degree d prime to p, it
is the same to say that the Xi∂F/∂Xi define the empty subscheme of
Pn−1, since we have the Euler relation dF =

∑
iXi∂F/∂Xi. It is essen-

tially tautologous that F is Dwork-regular if and only if the following
conditions hold: for every nonempty subset S ⊂ {1, 2, ...n}, the homo-
geneous form FS obtained from F by setting to zero the variables Xi

with i /∈ S is a Deligne polynomial in the variables Xs, s ∈ S (i.e., FS
is nonzero, and, if #S ≥ 2, its vanishing defines a smooth hypersurface
in P#S−1).

Let us recall from [Dw, last 2 pages] the following lemma, whose
elementary proof we include for the convenience of the reader.

Lemma 3.1. Let F be a nonzero homogeneous form F in n ≥ 1 vari-
ables X1, ..., Xn of some degree d ≥ 1, over an algebraically closed field
E. If n ≥ 2, assume that the vanishing of F defines a smooth hy-
persurface in Pn−1. Then there exist new coordinates Y1, ..., Yn (i.e.,
Xi =

∑
j ai,jYj, with (ai,j) ∈ GL(n,E)) such that F , written as a

homogeneous form in the Yi, is Dwork-regular with respect to Y1, ..., Yn.

Proof. If n = 1, F is already Dwork-regular. If n ≥ 2, we argue as
follows. The key fact is that given a finite list of smooth connected
closed subschemes Zν ⊂ Pn−1, there exists an E-rational hyperplane,
say H ⊂ Pn−1, which is transverse to each Zν , i.e., if dim(Zν) = 0,



ON A QUESTION OF BROWNING AND HEATH-BROWN 5

then Zν ∩H = ∅, if dim(Zν) ≥ 1, then Zν ∩H is smooth of dimension
one less, and if Zν is empty, there is no condition. We apply this first
to find a hyperplane H1 ⊂ Pn−1 transverse to each member of our first
list, which we define to be Pn−1 and V ar(F ):= the hypersurface in Pn−1

defined by the vanishing of F . We then apply it to find a hyperplane
H2 ⊂ Pn−1 which is transverse to each member of our second list, which
we define to consist of the first list together with the intersections of
H1 with each member of the first list. At the i + 1’st stage, we find
a hyperplane Hi+1 ⊂ Pn−1 which is transverse to each member of our
i+1’st list, which we define to consist of the i’th list together with the
intersections of Hi with each member of the i’th list.

In this way, we obtain a transverse system of hyperplanes H1, ..., Hn

in Pn−1. Taking Yi to be a linear form whose vanishing defines Hi, we
obtain the required coordinate system Y1, ..., Yn. �

Now let us return to the situation of the theorem. Thus f is a Deligne
polynomial of degree d prime to p in n ≥ 1 variables over the finite field
k. After possibly extending scalars from k to a finite extension, we use
the above lemma to reduce to the case where the leading form fd is
f is Dwork-regular with respect to the given coordinates X1, ..., Xn.
Let us say that the polynomial f itself is affine-Dwork-regular if the
form F of degree d in n + 1 variables X0, ..., Xn obtained from f by
homogenization,

F (X0, ..., Xn) := Xd
0f(X1/X0, ...., Xn/X0)

is Dwork-regular with respect to X0, ..., Xn. Of course, if a Deligne
polynomial of degree d prime to p in n variables is affine-Dwork-regular,
then its leading form fd is Dwork-regular, simply because fd is F|X0=0.

Lemma 3.2. Let f be a Deligne polynomial of degree d prime to p in
n ≥ 1 variables over the finite field k, whose leading form fd is f is
Dwork-regular with respect to the given coordinates X1, ..., Xn. Then
for all but at most dn elements a ∈ k, the polynomial f(x)+a is affine-
Dwork-regular.

Proof. By hypothesis, fd is Dwork-regular with respect to X1, ..., Xn.
As d is prime to p, this means simply that in Pn−1, the n forms of degree
d, Xi∂fd/∂Xi for i = 1, ..., n define the empty subscheme. As fd is
F|X0=0, and the formation of Xi∂F/∂Xi for i = 1, ..., n commutes with
putting X0 to zero, the subscheme J ⊂ Pn defined by the vanishing
of the n forms of degree d, Xi∂fd/∂Xi has empty intersection with the
hyperplane X0 = 0. Therefore by Bertini this subscheme must be finite
over k. As it is defined by the vanishing of n forms, each of degree d,
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it has at most dn k-valued points, and each of these points has X0

invertible. Now consider the function

φ := (X0∂F/∂X0)/X
d
0

on J . We claim that so long as a ∈ k is not of the form −φ(j)/d for
any j ∈ J (k), then f+a is affine-Dwork-regular, i.e., the form F+aXd

0

is Dwork-regular with respect to X0, ..., Xn. Because d is prime to p,
this amounts to showing that the subscheme K of Pn defined by the
vanishing of the n+1 forms Xi∂(F+aXd

0 )/∂Xi for i = 0, ..., n is empty,
so long as a ∈ k is not of the form −φ(j)/d for some j ∈ J (k). These
forms are X0∂F/∂X0 + daXd

0 for i = 0, and Xi∂F/∂Xi for i = 1, ..., n.
Thus a point of K is a point of J (from the vanishing of these last n
forms) at which ∂F/∂X0 + daXd

0 also vanishes. But as X0 is invertible
at every point of J , it is the same to say that a point of K(k) is a
point j ∈ J (k) at which φ(j)+da = 0. For the allowed values of a, the
function φ + da is invertible on J , and hence the scheme K is empty,
as required. �

Remark 3.3. The reader should be cautioned that if a Deligne poly-
nomial f has its leading form fd Dwork-regular, f itself need not be
affine-Dwork-regular, even if the affine hypersurface f = 0 is smooth.
The simplest example is xd1 + x1 +

∑n
i=2 x

d
i , for any degree d ≥ 2 prime

to p, and any n ≥ 1. Indeed, f cannot be affine-Dwork-regular un-
less its constant term f(0) 6= 0; if f(0) = 0 then the homogenization
F (X0, X1, ..., Xn) will vanish when we set Xi to 0 for i = 1, ..., n, rather
than being a Deligne polynomial in the remaining variable X0.

Lemma 3.4. Let f be a Deligne polynomial of degree d prime to p in
n ≥ 1 variables over the finite field k, which is affine-Dwork-regular.
Then for any integer r ≥ 1 prime to p, the polynomial f(Xr) :=
(Xr

1 , ..., X
r
n) is a Deligne polynomial of degree dr prime to p in n vari-

ables over the finite field k, which is affine-Dwork-regular. Equivalently,
if F (X0, ..., Xn) is a homogeneous form of degree d prime to p in n+ 1
variables over the finite field k which is Dwork-regular, then for any
integer r ≥ 1 prime to p, the form F (Xr) := F (Xr

0 , ..., X
r
n) is a form

of degree dr prime to p in n+ 1 variables over the finite field k, which
is Dwork-regular.

Proof. We will prove the assertion in its homogeneous version. Let us
put Fi := Xi∂F/∂Xi, G := F (Xr), and Gi := Xi∂G/∂Xi. Then we
have the identities

Gi(X) = rFi(X
r).
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As r is prime to p, if x ∈ Pn(k) is a common zero of the Gi, then xr is
a common zero of the Fi. But the Fi have no common zero in Pn(k).
Thus the Gi have no common zero in Pn(k). �

In the case when f is a Deligne polynomial of degree d prime to
p in n variables over the finite field k, which is affine-Dwork-regular,
we have the following more precise “Purity Theorem” concerning the
cohomology of the sheaf F .

Theorem 3.5 (Purity Theorem). Suppose that f is a Deligne polyno-
mial of degree d prime to p in n ≥ 1 variables over the finite field k,
which is affine-Dwork-regular, and g is an arbitrary polynomial. If p is
odd and deg(g) := e < d/2, then we have the following three results.

(1) H2
c (Gm ⊗k k,F) = 0.

(2) dimH1
c (Gm ⊗k k,F) = 2(d− 1)n.

(3) H1
c (Gm ⊗k k,F) is pure of weight n+ 1.

Once again, this theorem remains valid for n = 0 with the convention
that a polynomial f in n = 0 variables over k, i.e., a constant in k, is
a Deligne polynomial which is affine-Dwork-regular, of any prime to p
degree one likes, if that constant is nonzero. It is simply the (cohomo-
logical underpinning of the) usual estimate for classical Kloosterman
sums.

4. The Purity Theorem implies Theorem 2.1

Let us put ourselves in the situation of Theorem 2.1. Thus f is a
Deligne polynomial of degree d prime to p in n variables over the finite
field k, g is an arbitrary polynomial of deg(g) := e < d/2, and p is odd.
We denote by F the lisse sheaf

F := Rn(pr2)!Lψ(tf(x)+g(x)+1/t)

attached to this data.
At the expense of extending scalars from k to a finite extension, we

may further assume that fd is Dwork-regular, and that there exists an
element a ∈ k such that the polynomial f + a is affine-Dwork-regular.
The lisse sheaf Fa attached to the data (f + a, g),

Fa := Rn(pr2)!Lψ(tf((x)+a)+g(x)+1/t)

[decide if cap letters X and T should be the variables, throughout] is
related to the original sheaf F by

Fa = F ⊗ Lψ(at),

as is immediate from the projection formula.
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Thus Fa = F ⊗ Lψ(at) is a lisse sheaf on Gm/k, pure of weight n,
whose H1

c is pure of weight n+ 1. We now apply the following lemma.

Lemma 4.1. Let k be a finite field, a ∈ k, and F a lisse sheaf on Gm/k
which is pure of weight n. Suppose that H1

c (Gm ⊗k k,F ⊗ Lψ(at))) is
pure of weight n+ 1. Then we have the following results.

(1) Viewing F as a representation of π1(Gm), its restriction to the
inertia group I(0) at 0 ∈ A1 has no nonzero invariants or coin-
variants: F I(0) = FI(0) = 0.

(2) H2
c (Gm ⊗k k,F)) = 0.

Proof. Denote by j : Gm ⊂ P1 the inclusion, and write Fa := F⊗Lψ(at).
We have a short exact excision sequence of sheaves on P1,

0 → j!Fa → j?Fa → (F I(0)
a )pct. at 0 ⊕ (F I(∞)

a )pct. at ∞ → 0.

The long exact cohomology sequence gives an exact sequence

0 → H0(Gm ⊗k k,Fa) → F I(0)
a ⊕F I(∞)

a → H1
c (Gm ⊗k k,Fa).

By assumption the last term is pure of weight n+1. But as Fa is pure

of weight n, we know by [De-Weil II, 1.8.1] that both F I(0)
a and F I(∞)

a

are mixed of weight at most n. So the last arrow must be the zero
map, and so we find an isomorphism

H0(Gm ⊗k k,Fa) ∼= F I(0)
a ⊕F I(∞)

a .

But each of the two restriction maps

H0(Gm ⊗k k,Fa) → F I(0)
a ,

H0(Gm ⊗k k,Fa) → F I(∞)
a ,

is injective. Thus we have

dimF I(0)
a + dimF I(∞)

a = dimH0 ≤ dimF I(∞)
a ,

and hence F I(0)
a = 0. [Similarly, we find F I(∞)

a = 0, but we will not use
that fact here.]

The sheaf Lψ(at) is lisse on A1, so trivial as a representation of I(0),
and hence F and Fa := F ⊗ Lψ(at) are isomorphic as representations

of I(0). So we have F I(0) ∼= F I(0)
a = 0. For any `-adic representation V

of I(0), here F , one knows [find a reference for this] that dimV I(0) =
dimVI(0). This proves (1).

Once we have proven (1), (2) follows. Indeed, the H2
c is the Tate-

twisted group of coinvariants under πgeom1 (Gm),

H2
c (Gm ⊗k k,F)) ∼= Fπgeom

1 (Gm)(−1).

But this last group is a quotient of FI(0)(−1), hence vanishes. �
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To conclude the deduction of Theorem 2.1 from the Purity Theorem,
we argue as follows. We know that for all but a set S of at most dn

possible values of a ∈ k, f + a is affine-Dwork-regular. So we look
at the sheaf on Gm × A1, with coordinates (t, a), which is F ⊗ Lψ(at),
and we take its H1

c along the fibres of the second projection. Thus we
consider the constructible sheaf G on A1 given by

G := R1(pr2)!(F ⊗ Lψ(at)).

Its stalk at a point a ∈ k is the group H1
c (Gm ⊗k k,F ⊗ Lψ(at)). By

the Purity Theorem, this stalk has dimension 2(d− 1)n, for all but at
most dn values of a. Thus the generic rank of G is 2(d − 1)n. The
sheaf G on A1 has no nonzero punctual sections, because it is a sheaf
of perverse origin, cf. [Ka-SCMD]. In particular, its stalk at any point
has dimension at most the generic rank of G. As the stalk at 0 is
H1
c (Gm ⊗k k,F), we find the required inequality

dimH1
c (Gm ⊗k k,F) ≤ 2(d− 1)n.

5. A generalization: the (A,B) Purity Theorem

For later application, we first give formulate a mild generalization of
the Purity Theorem. Here f is a Deligne polynomial of degree d prime
to p in n variables over the finite field k, and g is an arbitrary polyno-
mial of degree deg(g) := e < d. We give also two integers A ≥ 1, B ≥ 1,
and a one-variable polynomial PB(t) over k of degree deg(PB) ≤ B. We
consider the one-parameter family of Deligne polynomials

t 7→ tAf(x) + g(x) + PB(1/t)

over Gm. On An × Gm we have the lisse sheaf Lψ(tAf(x)+g(x)+PB(1/t)),
and we form the sheaf

F := Rn(pr2)!Lψ(tAf(x)+g(x)+PB(1/t))

on Gm. Again, F is lisse of rank (d− 1)n, and pure of weight n.

Theorem 5.1 ((A,B) Purity Theorem). In the above situation, suppose
in addition that f is affine-Dwork-regular, that p is prime to AB(A +
B), that deg(PB) is exactly B, and that deg(g) := e < (B/(A + B))d.
Then we have the following three results.

(1) H2
c (Gm ⊗k k,F) = 0.

(2) dimH1
c (Gm ⊗k k,F) = (A+B)(d− 1)n.

(3) H1
c (Gm ⊗k k,F) is pure of weight n+ 1.
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In the case when (A,B) = (1, 1), this theorem gives back the Purity
Theorem 3.5. It perhaps clarifies the significance of the hypothesis that
p be odd in that theorem.

Once again, this theorem remains valid for n = 0 with the conven-
tion that a polynomial f in n = 0 variables over k, i.e., a constant in k,
is a Deligne polynomial which is affine-Dwork-regular, of any prime to
p degree one likes, if that constant is nonzero.Now it become the (co-
homological underpinning of the) usual estimate for additive character
sums with one-variable Laurent polynomials.

Exactly as in the previous section, we can do a specialization ar-
gument to get information about what happens in either of two mild
degenerations.

Corollary 5.2. If in the (A,B) Purity Theorem 5.1 we drop only the
hypothesis that the Deligne polynomial f be affine-Dwork-regular, or if
we drop only the hypothesis that deg(PB) be exactly B, then we have
the following results.

(1) In the first case, the inertial invariants of F at zero vanish:
F I(0) = 0. In the second case, the inertial invariants of F at
∞ vanish: F I(∞) = 0.

(2) H2
c (Gm ⊗k k,F) = 0.

(3) dimH1
c (Gm ⊗k k,F) ≤ (A+B)(d− 1)n.

(4) We have the estimate

|
∑
t∈k×

∑
x∈kn

ψ(tAf(x) + g(x) + PB(1/t))| ≤ (A+B)(d− 1)n#(k)(n+1)/2.

Proof. Suppose first that we drop only the hypothesis that f be affine-
Dwork-regular. The question being geometric, we may make a finite
extension of scalars and find a coordinate system in which fd is Dwork-
regular. Then for most a ∈ k, f+a is affine- Dwork-regular, and we ap-
ply the (A,B) Purity Theorem to the sheaf Fa := F ⊗Lψ(atA). Exactly

as in Lemma 4.1 above, the purity implies the vanishing of F I(0)
a . Again

we have F I(0)
a

∼= F I(0), so we get the vanishing of H2
c (Gm⊗k k,F) = 0.

Assertion (3) follows by the “sheaf of perverse origin” argument. As-
sertion (4) is just the spelling out of the diophantine consequence of
parts (2) and (3).

Suppose now that we drop only the hypothesis that deg(PB) be
exactly B. Then for most b ∈ k, the polynomial PB + btB has ex-
act degree B, and we apply the (A,B) Purity Theorem to the sheaf
Fb := F ⊗ Lψ(b/tB). Now we exploit the fact that the purity implies

the vanishing of F I(∞)
b . We have F I(∞)

b
∼= F I(∞), and we conclude as

above. �
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Let us make explicit two special cases of this corollary, when we drop
only the hypothesis that PB have exact degree B, and where we take
A = 1.

Corollary 5.3. Suppose that f is an affine-Dwork-regular polynomial
of degree d prime to p in n variables over the finite field k, and g is
an arbitrary polynomial of lower degree, i.e., deg(g) := e < d. Suppose
that p is odd. Denote by δ the least strictly positive integer such that
both e < (δ/(1 + δ))d and such that p does not divide δ(1 + δ). [Thus
δ can always be taken to be d, unless p|d + 1, in which case δ can be
taken to be d+ 2.] Then we have the following estimates.

(1) We have the estimate

|
∑
t∈k×

∑
x∈kn

ψ(tf(x) + g(x) + 1/t)| ≤ (1 + δ)(d− 1)n#(k)(n+1)/2.

(2) We have the estimate

|
∑
t∈k×

∑
x∈kn

ψ(tf(x) + g(x))| ≤ (1 + δ)(d− 1)n#(k)(n+1)/2.

(3) We have the estimate

|
∑
t∈k×

∑
x∈kn

ψ(tf(x))| ≤ 2(d− 1)n#(k)(n+1)/2.

Proof. The first two assertions are instances of the (A,B) = (1, δ) case
of the above corollary, with PB taken successively to be t and 0. The
third assertion is the special case (A,B) = (1, 1), with g and PB both
taken to be 0. �

Remark 5.4. Let us see how sharp the third estimate of this corollary
is. Denote by Vf ⊂ An the affine hypersurface defined by f = 0. If
we add to the sum in question the terms with t = 0, we get, writing
q := #k, q#Vf (k). Thus we have∑

t∈k×

∑
x∈kn

ψ(tf(x)) = q#Vf (k)− qn.

So the third assertion of the corollary amounts to the estimate

|#Vf (k)− qn−1| ≤ 2(d− 1)nq(n−1)/2.

Denote by F = F (x0, ..., xn) the homogenization of f . Then Vf is
the complement of the projective hypersurface Zfd

⊂ Pn−1 defined by
fd = 0 in the projective hypersurface ZF ⊂ Pn defined by F = 0. Thus

#Vf (k) = #ZF (k)−#Zfd
(k).
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Because f is affine-Dwork-regular, both ZF and Zfd
are smooth. From

the excision sequence and the known cohomological structure of smooth
projective hypersurfaces, one sees that the compact cohomology groups
H i
c(Vf ⊗ k,Q`) vanish for except for i = n− 1 and for i = 2n− 2, and

that for n ≥ 2 we have

dimHn−1
c (Vf ⊗ k,Q`) = (d− 1)n,

H2n−2
c (Vf ⊗ k,Q`) ∼= Q`(−(n− 1)).

By Deligne’s fundamental estimate [De-Weil II, 3.3.1], the group Hn−1
c

is mixed of weight ≤ n− 1, so for n ≥ 2 we find

|#Vf (k)− qn−1| ≤ (d− 1)nq(n−1)/2.

For n = 1, this is trivially true as well. Thus the estimate in part (3)
of the above corollary is overly conservative, by a factor of 2.

Remark 5.5. It may also be worth pointing out that the second and
third estimates both become false if we allow f to be a Deligne poly-
nomial whose leading form fd is Dwork-regular, but such that f is not
affine-Dwork-regular. To clarify the situation, consider once again the
lisse of rank (d− 1)n, pure of weight n sheaf F on Gm attached to the
one parameter family of Deligne polynomials over Gm

t 7→ tf(x) + g(x).

The second and third estimates fail precisely whenH2
c (Gm⊗kk,F) 6= 0.

To quantify this failure, recall that two finite-dimensional Q`-representations
of Gal(k/k), say V and W , have isomorphic semisimplifications (as
representations), written V ss ∼= W ss, if and only if for every element
γ ∈ Gal(k/k), det(1 − Tγ|V ) = det(1 − Tγ|W ). As Gal(k/k) is pro-
cyclic, generated by the geometric Frobenius element Frobk, we have

V ss ∼= W ss ⇐⇒ det(1− TFrobk|V ) = det(1− TFrobk|W ).

Consider first the third estimate. If take f = fd, then Vf is the affine
cone over the projective smooth hypersurface Xf ⊂ Pn−1 defined by
f = fd. Thus, again writing q := #k,

#Vf (k) = 1 + (q − 1)#Xf (k) =

= 1 + (q − 1)(#Pn−2(k) + (−1)n−2Trace(Frobk|Primn−2(Xf ))

= qn−1 + (−1)n−2(q − 1)Trace(Frobk|Primn−2(Xf )).

Here

Primn−2(Xf ) := primitive part of Hn−2(Xf ⊗ k,Q`)
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is pure of weight n− 2 (and of strictly positive dimension

((d− 1)/d)((d− 1)n−1 − (−1)n−1).

So the “error term” #Vf (k)−qn−1 isO(#(k)n/2), but it is notO(#(k)(n−1)/2).
Indeed, this identity, applied over all finite extensions of k (combined
with the fact that H2

c (Gm ⊗k k,F) is pure of weight n + 2, while
H1
c (Gm⊗kk,F) is mixed of weight ≤ n+1, which allows us to ”separate

terms”), shows that

H2
c (Gm ⊗k k,F)ss ∼= Primn−2(Xf )

ss(−2),

H1
c (Gm ⊗k k,F)ss ∼= Primn−2(Xf )

ss(−1).

Consider now the second estimate. Suppose n ≥ 4. Given d ≥ 3
prime to p, take

f = fd = xdn−1 − xdn +
n−2∑
i=1

xdi , g = xn−1 − xn.

Denote by Xf ⊂ Pn−1 the projective smooth hypersurface defined by
f = 0, and by H ⊂ Pn−1 the hyperplane defined by g = 0. Because g
is a nontrivial linear form,

∑
x∈kn ψ(g(x)) = 0, so we have∑

t∈k×

∑
x∈kn

ψ(tf(x)+g(x)) ==
∑
t∈k

∑
x∈kn

ψ(tf(x)+g(x)) = q
∑

x∈Vf (k)

ψ(g(x)).

Now for each point x ∈ Xf (k), choose a representative X ∈ Vf (k) lying
over it. Then the points, other than the origin, in Vf (k) are precisely
the k×-multiples of the chosen points X, so our sum is

q(1 +
∑

x∈Xf (k)

∑
λ∈k×

ψ(λg(X))

= q(1−#Xf (k) +
∑

x∈Xf (k)

∑
λ∈k

ψ(λg(X))

= q(1−#Xf (k) + q#(Xf ∩H)(k)).

But the intersection Xf ∩H is the hypersurface in Pn−2, with homoge-

neous coordinates (x1, ..., xn−1), defined by the equation
∑n−2

i=1 x
d
i = 0,

an equation which does not involve the last variable xn−1. So if we
denote by Z ⊂ Pn−3, with homogeneous coordinates (x1, ..., xn−1) the
smooth hypersurface defined by this same equation, then we have

#(Xf ∩H)(k) = 1 + q#Z(k).

So our sum is

q(1−#Xf (k) + q(1 + q#Z(k))) = q(1 + q)− q#Xf (k) + q3#Z(k).
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But

#Xf (k) = #Pn−2(k) + (−1)n−2Trace(Frobk|Primn−2(Xf )),

#Z(k) = #Pn−4(k) + (−1)n−4Trace(Frobk|Primn−4(Z)),

and so our sum is (−1)n times

q3Trace(Frobk|Primn−4(Z))− qTrace(Frobk|Primn−2(Xf )),

which, because of the first term, isO(#(k)(n+2)/2) but is notO(#(k)(n+1)/2).
Once again, we have the more precise result that

H2
c (Gm ⊗k k,F)ss ∼= Primn−4(Z)ss(−3),

H1
c (Gm ⊗k k,F)ss ∼= Primn−2(Xf )

ss(−1).

Remark 5.6. As Browning and Heath-Brown [Br-HB] have noticed,
there is something that can be salvaged of the last corollary if we
allow f to be “merely” a Deligne polynomial, but now impose some
transversality conditions on the interaction of g and f . To state the
result, let us define, given n, d, e strictly positive integers, the Bombieri
constant

C(n, 1, d, e) := (4Max(d+ 1, e) + 5)n+1,

cf. [Ka-ESES, [page 877 and Theorem 4].

Theorem 5.7. Given integers n ≥ 1, d ≥ 1, e ≥ 1, define

B(n, d, e) := C(n+ 1, 1, 1, e) + C(n, 1, d, e).

Suppose that f is a polynomial of degree d prime to p in n variables
over the finite field k, with leading form fd, and that g is a polynomial
of degree e prime to p, with leading form ge. Denote by Xfd

and Xge

the projective hypersurfaces in Pn−1 defined by the vanishing of fd and
of ge respectively. We make the following assumptions.

(1) Xfd
⊂ Pn−1 is a smooth hypersurface, i.e., f is a Deligne poly-

nomial.
(2) Xge ⊂ Pn−1 is a hypersurface which is either smooth, or has at

worst isolated singularities, i.e., dimSing(Xge) ≤ 0.
(3) The scheme-theoretic intersection Xfd

∩Xge ⊂ Pn−1 is smooth
of codimension 2.

Then we have the following estimates.

(1)

|
∑
t∈k×

∑
x∈kn

ψ(tf(x) + g(x))| ≤ B(n, d, e)#(k)(n+1)/2.
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(2) If e < d and p is odd, we can replace B(n, d, e) by the constant
(1 + δ)(d − 1)n, where δ is the least strictly positive integer
such that both e < (δ/(1 + δ))d and such that p does not divide
δ(1 + δ).

(3) If g is a Deligne polynomial (and e is arbitrary), we can replace
B(n, d, e) by the constant

(e− 1)n + |coef. of Ln−1 in d(1 + L)n/((1 + dL)(1 + eL))|.

Proof. Denote by F = Fd(X0, ..., Xn) the degree d homogenization of
f , by G = Ge(X0, ..., Xn) the degree e homogenization of g. Denote
by XF ⊂ Pn the hypersurface defined by F = 0, by H ⊂ Pn the
hypersurface defined by G = 0, and by L ⊂ Pn the hyperplane defined
by X0. And denote by Vf ⊂ An the affine hypersurface defined by
f = 0.

We first show that the sum in question is O(#(k)(n+1)/2). To do this,
we first “complete” the sum by adding the t = 0 terms:∑

t∈k×

∑
x∈kn

ψ(tf(x) + g(x))

= −
∑
x∈kn

ψ(g(x)) +
∑
t∈k

∑
x∈kn

ψ(tf(x) + g(x))

= −
∑
x∈kn

ψ(g(x)) + #k
∑

x∈Vf (k)

ψ(g(x)).

The first term is (minus) the sum over Pn[1/X0](k) of ψ(G/Xe
0).

Here Pn ∩ L is of course smooth, being Pn−1, and Pn ∩ L ∩ H is the
hypersurface Xge in that Pn−1. By assumption, Xge has at worst iso-
lated singularities, so [Ka-ESES, Theorem 4] shows [the ε there is
−1, and the δ there is ≤ 0] that the absolute value of this sum is
≤ C(n+ 1, 1, 1, e)(#(k)(n+1)/2).

The second term is (#k times) the sum overXF [1/X0](k) of ψ(G/Xe
0).

Here XF ∩ L is of smooth, being Xfd
, and XF ∩ L ∩G is smooth, be-

ing Xfd
∩ Xge ⊂ Pn−1. So once again [Ka-ESES, Theorem 4] shows

[the ε and δ there are both −1] that the absolute value of this sum is
O ≤ C(n, 1, d, e)(#(k)(n+1)/2).

It remains to get the asserted constants if either both e < d and p is
odd, or if g is a Deligne polynomial. Suppose first that e < d and p is
odd. The question being geometric, we may make a finite extension of
scalars, and find new coordinates in which fd is Dwork-regular. Then
for all but at most dn values of a ∈ k, f + a is affine-Dwork-regular.
On the product space Gm × A1, with coordinates (t, a), we have the
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lisse sheaf (pr?1F)⊗ Lψ(at). So the sheaf

G := Rpr2!((pr
?
1F)⊗ Lψ(at))

on A1 is a sheaf of perverse origin, and hence its stalk G0 at a = 0, which
is the group H1

c (Gm ⊗k k,F), has rank at most equal to the generic
rank of G. This generic rank is attained at all but finitely many points,
so certainly at some point a where f + a is affine-Dwork-regular. Now
apply Corollary 5.2, part (3), to f +a and to g, with A = 1 and B = δ.

Now suppose that g is a Deligne polynomial of arbritary degree e.
Then the cohomology groups H i

c(An ⊗ k,Lψ(g)) vanish for i 6= n, and

Hn
c (An ⊗ k,Lψ(g)) has dimension (e − 1)n. What about the groups

H i
c(Vf ⊗ k,Lψ(g))? A close reading of the proof of [Ka-ESES, Theorem

4] shows that, under our hypotheses, these groups vanish for i ≥ n.
Because Vf is a hypersurface, and so certainly locally a complete inter-
section, the lisse sheaf Lψ(g), placed in degree 1−n, i.e., Lψ(g)[n−1], is a
perverse sheaf on Vf . Since Vf is affine, its compact cohomology groups
with perverse coefficients vanish in strictly negative degree. Thus we
have

H i
c(Vf ⊗ k,Lψ(g)[n− 1]) = Hn−1+i

c (Vf ⊗ k,Lψ(g)) = 0 for i < 0.

So the H i
c(Vf ⊗k,Lψ(g)) vanish for i 6= n−1. Thus our sum is given by∑

t∈k×

∑
x∈kn

ψ(tf(x) + g(x))

= −(−1)nTrace(Frobk|Hn
c (An ⊗ k,Lψ(g)))

+(−1)n−1#kTrace(Frob|Hn−1
c (Vf ⊗ k,Lψ(g))).

It remains to bound the dimension of Hn−1
c (Vf ⊗ k,Lψ(g)). Again,

the question is geometric, so we may make a finite extension of scalars
and find coordinates such that fd is Dwork-regular. Once again, f + a
is affine-Dwork-regular for all but at most dn values of a ∈ k. Now we
consider the smooth (solve for a!) hypersurface in V ⊂ An × A1, with
coordinates (x, a), of equation f(x) + a = 0. We have the lisse sheaf
pr?1Lψ(g) on V , and the morphism pr2 : V → A1, which is a complete
intersection morphism of relative dimension n− 1. So the sheaf

G := Rn−1pr2!(pr
?
1Lψ(g))

on A1 is a sheaf of perverse origin. Its stalk G0 at a = 0, which is the
group Hn−1

c (Vf ⊗ k,Lψ(g)), has rank at most equal to the generic rank
of G. This generic rank is attained at all but finitely many points, so
certainly at some point a where f + a is affine-Dwork-regular. Pick
such a point a. Then Ga is the group Hn−1

c (Vf+a ⊗ k,Lψ(g)). By the



ON A QUESTION OF BROWNING AND HEATH-BROWN 17

“nonsingular” case [Ka-SE, 5.1.1, applied to X ⊂ Pn there defined by
F + aXd

0 = 0 and the function G/Xe
0 ], we know that this group is pure

of weight n− 1, and its dimension is given by

(−1)n−1dimHn−1
c (Vf+a ⊗ k,Lψ(g))

= coef. of Ln in dL(1 + L)n+1/((1 + dL)(1 + L)(1 + eL)).

�

6. Proof of the (A,B) Purity Theorem when A+B = d

Let us recall the situation. We are given

(1) an affine-Dwork-regular Deligne polynomial f of degree d prime
to p in n ≥ 1 variables over the finite field k,

(2) a partition d = A+B with A ≥ 1, B ≥ 1, and both A,B prime
to p,

(3) a polynomial g(x) in n variables over the finite field k, of degree
deg(g) := e < B = (B/(A+B))d,

(4) a one-variable polynomial PB(t) over k of degree B without
constant term: PB(0) = 0.

We consider the one-parameter family of Deligne polynomials

t 7→ tAf(x) + g(x) + PB(1/t)

over Gm. On An × Gm we have the lisse sheaf Lψ(tAf(x)+g(x)+PB(1/t)),
and we form the sheaf

F := Rn(pr2)!Lψ(tAf(x)+g(x)+PB(1/t))

on Gm. Again, F is lisse of rank (d−1)n, and pure of weight n. Because
F is the only one of the Ri(pr2)!Lψ(tAf(x)+g(x)+PB(1/t)) which is nonzero,
the Leray spectral sequence degenerates at E2, and gives isomorphisms

H2
c (Gm ⊗k k,F) ∼= Hn+2

c ((An ×Gm)⊗ k,Lψ(tAf(x)+g(x)+PB(1/t))),

H1
c (Gm ⊗k k,F) ∼= Hn+1

c ((An ×Gm)⊗ k,Lψ(tAf(x)+g(x)+PB(1/t))).

What we must prove, then, is that the groups

H i
c((An ×Gm)⊗ k,Lψ(tAf(x)+g(x)+PB(1/t)))

vanish for i 6= n + 1, and that the Hn+1
c is pure of weight n + 1, and

has dimension (A+B)(d− 1)n = d(d− 1)n.
We apply the automorphism t 7→ 1/t, x 7→ x to our situation. Then

we must prove that the groups

H i
c((An ×Gm)⊗ k,Lψ(t−Af(x)+g(x)+PB(t)))

vanish for i 6= n + 1, and that the Hn+1
c is pure of weight n + 1, and

has dimension (A+B)(d− 1)n = d(d− 1)n.
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This statement is a special case of a result proven in [Ka-SE, 5.4.1]
and amplified in [Ka-MMP, 4.1.12, but note that here the earlier condi-
tion 4.1.3 is assumed to remain in force]. Let us state that result in the
case when the ambient space X there is Pn+1, (here the case n = 0 is
perfectly fine) with coordinates (T,X0, X1, ..., Xn), the integer r there
is 2, the integers d1, d2 there are both 1, and the prime to p integers
b1, b2 of [Ka-SE, 5.4.1] (denoted e1, e2 in [Ka-MMP, 4.1.12]), are A,B.
We take for Z1 and Z2 there the transverse hyperplanes of equation
T = 0 and X0 = 0 respectively. We are given a degree d hypersurface
of equation H(T,X0, X1, ..., Xn) = 0. We assume that

(1) The intersection (H = 0)∩ (T = 0) is smooth of codimension 2
in Pn+1.

(2) The intersection (H = 0) ∩ (X0 = 0) is smooth of codimension
2 in Pn+1.

(3) The intersection (H = 0) ∩ (X0 = 0) ∩ (T = 0) is smooth of
codimension 3 in Pn+1.

On the the open set V := Pn+1[1/TX0] ⊂ Pn+1 where both T and
X0 are invertible, we have the function H/TAXB

0 , and we form the
Artin-Schreir sheaf Lψ(H/TAXB

0 ). The theorem asserts that

(1) The groups H i
c(V ⊗ k,Lψ(H/TAXB

0 )) vanish for i 6= n+ 1.

(2) The remaining group Hn+1
c is pure of weight n+ 1.

(3) Denote by L the class of a hyperplane, and by

c(Pn+1) = (1 + L)n+2

the total Chern class of Pn+1. The dimension of the group Hn+1
c

is given by the formula

(−1)n+1dimHn+1
c = χ(V ⊗ k,Lψ(H/TAXB

0 ))

=

∫
Pn+1

c(Pn+1)/((1+dL)(1+L)2) = coef. of Ln+1 in (1+L)n/(1+dL)

=
n∑
i=0

Binom(n, i)(−d)n+1−i = (−d)(1− d)n = (−1)n+1d(d− 1)n.

In order to apply this result, let us denote by

F (X) := F (X0, ..., Xn) := Xd
0f(X1/X0, ..., Xn/X0)

the degree d homogenization of f , by

Ge(X) := Ge(X0, ..., Xn) := Xe
0g(X1/X0, ..., Xn/X0)

the degree e homogenization of g, and by

Pd(T,X0) := TAXB
0 PB(T/X0)
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the degree d homogenization of tAPB(t).
We then apply the cited result with

H(T,X0, X1, ..., Xn) := F (X) + TAXB−e
0 Ge(X) + Pd(T,X0).

The space Pn+1[1/TX0] is just the product An×Gm, with coordinates
xi := Xi/X0, i = 1 to n, and t = T/X0. The function H/TAXB

0 on
this space is just the function

t−Af(x) + g(x) + PB(t).

The intersection (H = 0) ∩ (T = 0) is the hypersurface F = 0 in
Pn, which is smooth because f is affine-Dwork-regular. The intersec-
tion (H = 0) ∩ (X0 = 0) is the smooth hypersurface in the Pn with
homogeneous coordinates (X1, ..., Xn, T ) of equation

fd((X1, ..., Xn) + (leading coef. of PB(t))T d = 0,

which is again smooth because d is prime to p, and because fd defines
a smooth hypersurface in Pn−1. [It is the degree restriction on g which
insures that the term TAXB−e

0 Ge(X) vanishes when we set either T or
X0 to 0.] Finally, the intersection (H = 0) ∩ (X0 = 0) ∩ (T = 0) is the
smooth hypersurface in Pn−1 defined by fd. This concludes the proof
of the A+B = d case of the (A,B) Purity Theorem.

Remark 6.1. The n = 0 case of the underlying result we have cited
gives the n = 0 case of the (A,B) Purity Theorem.

7. Proof of the (A,B) Purity Theorem in the general
case

We begin by recalling two general principles. Let X and Y be two
separated k-schemes of finite type.

Suppose we are given a morphism π : X → Y which is finite and
flat of some rank n ≥ 1. Then for any constructible Q`-sheaf F on
Y , F is a direct summand of π?π

?F , a retraction being furnished by
(1/n)Trπ, cf. [SGA 4 Tome 3, Exposé XVII, 6.2.3, (Var 4)]. For G any
constructible Q`-sheaf on X, we have

H i
c(X ⊗ k,G) ∼= H i

c(Y ⊗ k, π?G).

Taking G := π?F , we get

H i
c(X ⊗ k, π?F) ∼= H i

c(Y ⊗ k, π?π
?F).

Thus H i
c(Y ⊗ k,F) is a direct summand of H i

c(X ⊗ k, π?F).
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Suppose now thatG is a finite group of order n prime to p := char(k),
and that π : X → Y is a finite étale G-covering. Then for any con-
structible Q`-sheaf F on Y , its compact Euler characteristic

χc(Y ⊗ k,F) :=
∑
i

(−1)idimH i
c(Y ⊗ k,F)

obeys the Riemann-Hurwitz formula for this covering:

χc(Y ⊗ k,F) = (1/#G)χc(X ⊗ k, π?F),

cf. [Ka-SE, 5.5.2, Cor. 1].
We now are in a position to prove the (A,B) Purity Theorem. Let

us recall the situation: We are given two integers A ≥ 1, B ≥ 1, such
that p is prime to AB(A + B). We are also given an integer d ≥ 1
prime to p and an affine-Dwork-regular Deligne polynomial f of degree
d in n ≥ 1 variables over the finite field k, and an arbitrary polynomial
g of degree deg(g) := e < (B/(A + B))d. Finally, we are given a
one-variable polynomial PB(t) over k of degree B. We consider the
one-parameter family of Deligne polynomials

t 7→ tAf(x) + g(x) + PB(1/t)

over Gm. On An × Gm we have the lisse sheaf Lψ(tAf(x)+g(x)+PB(1/t)),
and we form the sheaf

F := Rn(pr2)!Lψ(tAf(x)+g(x)+PB(1/t))

on Gm. Again, F is lisse of rank (d − 1)n, and pure of weight n.
Inverting t, what we must prove is that the groups

H i
c((An ×Gm)⊗ k,Lψ(t−Af(x)+g(x)+PB(t)))

vanish for i 6= n + 1, and that the Hn+1
c is pure of weight n + 1, and

has dimension (A+B)(d− 1)n.
We first consider the finite flat morphism

π : An ×Gm → An ×Gm, (x1, ..., xn, t) 7→ (xA+B
1 , ..., xA+B

n , td)

of rank d(A+B)n. Visibly, we have

π?Lψ(t−Af(x)+g(x)+PB(t)) = Lψ(t−dAf(xA+B)+g(xA+B)+PB(td)).

But the data (Ad,Bd, (A+B)d, f(xA+B), g(xA+B), PB(td)) is input for
the Ad+Bd = (A+B)d case of the theorem proven in the last section.
So we know that the the groups

H i
c((An ×Gm)⊗ k,Lψ(t−dAf(xA+B)+g(xA+B)+PB(td)))

vanish for i 6= n + 1, and that the Hn+1
c is pure of weight n + 1, and

has dimension (Ad+Bd)(d(A+B)− 1)n. Therefore the “downstairs”
groups H i

c((An × Gm) ⊗ k,Lψ(t−Af(x)+g(x)+PB(t))), which are subgroups
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of these “upstairs” groups, themselves vanish for i 6= n + 1, and the
group Hn+1

c is pure of weight n+ 1.
It remains only to compute the compact Euler characteristic. The

question is geometric, so we may assume k contains all the roots of unity
of order dividing (A + B)d. We decompose An × Gm set-theoretically
as a finite disjoint union of locally closed subschemes ZS, indexed by
subsets S ⊆ {1, 2, ..., n}, as follows. We define

ZS := {(x1, ..., xn, t)|xi 6= 0 if i ∈ S, xi = 0 otherwise}.
The merit of this stratification is that under the map π, we have
π−1ZS = ZS for each S, and π makes ZS into a finite étale Galois
covering of itself, with Galois group µSA+B × µd. Let us also introduce
the closed subschemes WS ⊂ An ×Gm defined by

WS := {(x1, ..., xn, t)|xi = 0 if i not in S}.
Thus WS

∼= AS×Gm. Because f is affine-Dwork-regular, if we take the
data (A,B, d, f, g, PB) and set the non-S variables xi to zero, we get
data on WS

∼= AS ×Gm which is input for the (A,B) Purity Theorem.
Similarly, if we take the data (Ad,Bd, (A+B)d, f(xA+B), g(xA+B), PB(td))
and set the non-S variables xi to zero, we get data on WS

∼= AS ×Gm

which is input for the (Ad,Bd) Purity Theorem in the proven Ad+Bd =
(A+B)d case.

For ease of notation in the combinatorics to follow, let us define

χ(WS, down) := χc(WS ⊗ k,Lψ(t−Af(x)+g(x)+PB(t))|WS),

χ(ZS, down) := χc(WS ⊗ k,Lψ(t−Af(x)+g(x)+PB(t))|ZS),
χ(WS, up) := χc(WS ⊗ k,Lψ(t−dAf(xA+B)+g(xA+B)+PB(td))|WS),

χ(ZS, up) := χc(WS ⊗ k,Lψ(t−dAf(xA+B)+g(xA+B)+PB(td))|ZS).
What we must show is that χ(WS, down) = (−A − B)(1 − d)S, for S
the entire set {1, 2, ..., n}, where we write rS as a shorthand for r#S.
In fact, we will show it for all S at once.

For each S, we have a disjoint union decomposition

WS =
⊔
T⊆S

ZT .

Since compact Euler characteristic is additive, we have

χ(WS, down) =
∑
T⊆S

χ(ZT , down)

and
χ(WS, up) =

∑
T⊆S

χ(ZT , up),
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for every S ⊆ {1, 2, ..., n}. By Riemann-Hurwitz, we have

χ(ZT , down) = (1/((A+B)Td))χ(ZT , up),

for every T ⊆ {1, 2, ..., n}.
What remains is straightforward combinatorics. For each T ⊆ {1, 2, ..., n},

we have
χ(WT , up) = (−d(A+B))(1− d(A+B))T ,

by the dA+dB = d(A+B) case of the (dA, dB) Purity Theorem. This
allows us to solve for the numbers χ(ZT , up), using Moebius inversion.
From these, we get the numbers χ(ZT , down) by Riemann-Hurwitz.
Then we add the χ(ZT , down), over all T ⊆ S, to get χ(WS, down).

Writing
D := (A+B)d,

Moebius inversion upstairs gives

χ(ZS, up) = (−1)S
∑
T⊆S

(−1)Tχ(WT , up) =

= (−1)S
∑
T⊆S

(−1)T (−D)(1−D)T = (−D)(−D)S,

the last identity being the binomial theorem for (1 + (D − 1))S. Now
using Riemann-Hurwitz, we have

χ(ZS, down) = (1/((A+B)Sd))χ(ZS, up)

= (1/((A+B)Sd))(−D)(−D)S = (−A−B)(−d)S.
Summing downstairs, we get the asserted formula:

χ(WS, down) =
∑
T⊆S

χ(ZT , down) =
∑
T⊆S

(−A−B)(−d)S = (−A−B)(1−d)S.

8. Twists by multiplicative characters, and ramification
of F

In this section, we consider a slight variant on the set up of the (A,B)
Purity Theorem, where we introduce a (possibly trivial) multiplicative
character

χ : k× → Q`

and its associated Kummer sheaf Lχ on Gm/k.
As before, we are given two integers A ≥ 1, B ≥ 1, such that p

is prime to AB(A + B). We are also given an integer d ≥ 1 prime
to p and an affine-Dwork-regular Deligne polynomial f of degree d in
n ≥ 1 variables over the finite field k, and an arbitrary polynomial g of
degree deg(g) := e < (B/(A+B))d. Finally, we are given a one-variable
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polynomial PB(t) over k of degree B. We consider the one-parameter
family of Deligne polynomials

t 7→ tAf(x) + g(x) + PB(1/t)

over Gm. As before, we form the sheaf F on Gm given by

F := Rn(pr2)!Lψ(tAf(x)+g(x)+PB(1/t)),

which is lisse of rank (d− 1)n, and pure of weight n.
This time, we are interested in the χ-twisted sums∑

t∈k×

∑
x∈kn

χ(t)ψ(tAf(x) + g(x) + PB(1/t)).

It is the lisse sheaf F ⊗ Lχ which governs these sums. Indeed, the
Lefschetz Trace formula tells us that

(−1)n
∑
t∈k×

∑
x∈kn

χ(t)ψ(tAf(x) + g(x) + PB(1/t))

= Trace(FrobE|H2
c (Gm⊗kk,F⊗Lχ))−Trace(FrobE|H1

c (Gm⊗kk,F⊗Lχ)).

Theorem 8.1 ((A,B,χ) Purity Theorem). In the above situation, we
have the following three results.

(1) H2
c (Gm ⊗k k,F ⊗ Lχ) = 0.

(2) dimH1
c (Gm ⊗k k,F ⊗ Lχ) = (A+B)(d− 1)n.

(3) H1
c (Gm ⊗k k,F ⊗ Lχ) is pure of weight n+ 1.

Proof. Denote by r the prime to p integer which is the order of the
character χ, and by

[r] : Gm → Gm

the r’th power map. Then under pullback we have

[r]?(F ⊗ Lχ) ∼= [r]?F .
Hence H i

c(Gm⊗k k,F⊗Lχ) is a direct summand of H i
c(Gm⊗k k, [r]

?F).
Now the sheaf [r]?F is precisely the sheaf attached to the data

(Ar,Br, d, f, g, PB(tr)).

So by the (Ar, Br) Purity Theorem, the groups H i
c(Gm ⊗k k, [r]

?F)
vanish for 6= 1, while the group H1

c is pure of weight n + 1, and has
dimension (rA + rB)(d − 1)n. This gives the asserted vanishing and
purity assertions. The dimension formula then results from Riemann-
Hurwitz:

χc(Gm ⊗k k,F ⊗ Lχ) = (1/r)χc(Gm ⊗k k, [r]
?(F ⊗ Lχ))

= (1/r)χc(Gm ⊗k k, [r]
?F) = χc(Gm ⊗k k,F) = −(A+B)(d− 1)n.

�
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Corollary 8.2. If in the (A,B,χ) Purity Theorem we drop only the
hypothesis that the Deligne polynomial f be affine-Dwork-regular, or if
we drop only the hypothesis that deg(PB) be exactly B, then we have
the following results.

(1) In the first case, the inertial invariants of F⊗Lχ at zero vanish:
(F ⊗ Lχ)I(0) = 0. In the second case, the inertial invariants of
F ⊗ Lχ at ∞ vanish: (F ⊗ Lχ)I(∞) = 0.

(2) H2
c (Gm ⊗k k,F ⊗ Lχ) = 0.

(3) dimH1
c (Gm ⊗k k,F ⊗ Lχ) ≤ (A+B)(d− 1)n.

(4) We have the estimate

|
∑
t∈k×

∑
x∈kn

χ(t)ψ(tAf(x)+g(x)+PB(1/t))| ≤ (A+B)(d−1)n#(k)(n+1)/2.

Proof. The proof is identical to the proof of Corollary 5.2, everywhere
replacing the sheaf F there by the sheaf F ⊗ Lχ. �

Corollary 8.3. If in the (A,B) Purity Theorem we drop only the hy-
pothesis that the Deligne polynomial f be affine-Dwork-regular, i.e., if
we allow f to be “only” a Deligne polynomial, then the sheaf F is totally
wildly ramified at zero, i.e., under the wild inertia group P (0) ⊂ I(0),
F has no nonzero invariants : FP (0) = 0.

Proof. If not, then after some finite extension of the ground field, there
will be a multiplicative character χ for which (F ⊗ Lχ)I(0) 6= 0, cf.
[De-ST, paragraph 7.12]. By the previous corollary, no such χ exists.

�

Corollary 8.4. If in the (A,B) Purity Theorem we drop only the hy-
pothesis that the Deligne polynomial f be affine-Dwork-regular, i.e., if
we allow f to be “only” a Deligne polynomial, then the sheaf F has all
its ∞-slopes ≤ A, and all its 0-slopes ≤ B. Moreover, if f is affine-
Dwork-regular, then all ∞-slopes of F are = A, and all 0-slopes of F
are = B.

Proof. The statement is geometric, so we may assume that fd is Dwork-
regular. Then for all but finitely many a ∈ k, f + a is affine-Dwork-
regular. And for all but a single b ∈ k, PB(t) + btB still has degree B.
So by the (A,B) Purity Theorem, applied to the situation (A,B, d, f +
a, g, PB + btB), we conclude that we have

χc(Gm⊗kk,F⊗Lψ(atA)⊗Lψ(b/tB)) = −(A+B)(d−1)n = −(A+B)rank(F)

for all but a finite number of pairs (a, b) ∈ k2
. The effect of

F 7→ F ⊗ Lψ(atA) ⊗ Lψ(b/tB))
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on 0-slopes and on ∞-slopes is known, cf. [Ka-GKM, 1.3 and 8.5.4-5].

For all but finitely many pairs (a, b) ∈ k2
, this operation “promotes” all

∞-slopes of F which are ≤ A to A, and leaves unchanged all ∞-slopes
of F which are > A. Similarly, it “promotes” all ∅-slopes of F which
are ≤ B to B, and leaves unchanged all 0-slopes of F which are > B.
So the Euler-Poincaré formula for the lisse sheaf F ⊗Lψ(atA)⊗Lψ(b/tB)

on Gm shows that

(A+B)rank(F) = −χc(Gm ⊗k k,F ⊗ Lψ(atA) ⊗ Lψ(b/tB))

= Swan0(F ⊗ Lψ(atA) ⊗ Lψ(b/tB)) + Swan∞(F ⊗ Lψ(atA) ⊗ Lψ(b/tB))

=
∑

the rank(F) 0−slopes λi of F

Max(B, λi)+
∑

the rank(F) ∞−slopes νi of F

Max(A, νi),

and so we get the asserted inequalities on the slopes of F at both 0 and
∞: all Max(B, λi) = B, and all Max(A, νi) = A. In the case when f
is affine-Dwork-regular, we know that

(A+B)rank(F) = −χc(Gm ⊗k k,F)

=
∑

the rank(F) 0−slopes λi of F

λi +
∑

the rank(F) ∞−slopes νi of F

νi,

so the equalities are forced: all λi = B, and all νi = A. �
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Géométrie Algébrique du Bois-Marie 1967-1969 (SGA 7 II). Dirigé par P.
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