
ON THE GRAPH ATTACHED TO TRUNCATED BIG
WITT VECTORS

NICHOLAS M. KATZ

Warning to the reader

After this paper was written, we became aware of S.D.Cohen’s 1998
result [C-Graph, Theorem 1.4], which is both sharper and more general
than the result, Theorem 1.1, of this paper. We leave this manuscript
up only because its techniques, quite different from those of Cohen,
may conceivably be of some independent interest.

1. Introduction

For any ring A, the group BigWitt(A) is simply the abelian group
1+XA[[X]] of formal series with constant term 1, under multiplication
of formal series. In this group, the elements 1 + Xn+1A[[X]] form a
subgroup; the quotient by this subgroup is BigWittn(A):

BigWittn(A) := (1 +XA[[X]])/(1 +Xn+1A[[X]]).

For each element a ∈ A, we have the element 1+aX ∈ BigWittn(A).
Some natural questions1 are

(1) Do the elements {1+aX}a∈A generate the group BigWittn(A)?
(2) If the answer to (1) is yes, is there an upper bound N for the

number of factors 1+aX ∈ BigWittn(A) needed to write every
element as a product of these factors? If so, what is that upper
bound?

Let us form the directed graph G(n,A) whose vertices are the ele-
ments of BigWittn(A), and in which there is a directed edge from the
element α to the element β precisely when β/α = 1 + aX for some
a 6= 0, a ∈ A. Then question (1) above asks whether this graph is con-
nected, and question (2) asks, in cases when this graph is connected,
whether it has finite diameter, and, if so, what is the diameter.

Even in the case that A is a field, the graph G(n,A) need not be
connected if the field is too small. For example, take for A the field
F2 of two elements. Then we are asking if BigWittn(F2) is the cyclic

1Of course these questions are trivial for n = 1, where the answers are yes, with
N = 1. See [Ka-FP] for the étale variant of these questions.
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group generated by 1 + X. But for n ≥ 3, the group BigWittn(F2) is
not cyclic. Already the quotient BigWitt3(F2) is not cyclic (indeed it
is the product Z/2Z× Z/4Z).

When A the field R of real numbers, there are archimedean obstruc-
tions which prevent BigWitt2(R) from being connected for n ≥ 2.
Already in BigWitt2(R), the element 1 + X2 is not a finite product
of elements 1 + aiX with real ai. Indeed, as we will explain below, no
element of BigWitt2(R) of the form 1 + s1X + s2X

2 with s2
1 < 2s2 is

such a product.
To see this last assertion, and to formulate the general framework

we will use to analyze such questions, we proceed as follows. Given
an integer N ≥ 1, and N variables a1, ..., aN , we have the elementary
symmetric functions si(a1, ..., aN) ∈ Z[a1, ..., aN ], 1 ≤ i ≤ N , defined
by the identity

N∏
i=1

(1 + aiX) = 1 +
N∑
i=1

si(a1, ..., aN)X i

in Z[a1, ..., aN ][X]. We also have the Newton symmetric functions
Ni((a1, ..., aN) ∈ Z[a1, ..., aN ], i ≥ 1, defined by the power sums

Ni(a1, ..., aN) =
N∑
j=1

aij,

and the well known identities relating the Ni’s and the si’s. As poly-
nomials in the ai’s, both sj and Nj are homogeneous of degree j. For
any integer 1 ≤ n ≤ N , we have

Z[N1, ..., Nn] ⊂ Z[s1, ..., sn] inside Z[a1, ..., aN ]

and

Z[1/n!][N1, ..., Nn] = Z[1/n!][s1, ..., sn] inside Z[1/n!][a1, ..., aN ].

For any ring A, to write an element 1+
∑n

i=1 biX
i of BigWittn(A) as

the product of N ≥ n factors 1 + aiX is to solve, in A, the n equations

si(a1, ..., aN) = bi, 1 ≤ i ≤ n.

To say that every element can be so written is to say that these n
equations have A-valued solutions (a1, ..., aN) for every n-tuple of bi’s.

When the integer n! is invertible in A, these n equations have A-
valued solutions (a1, ..., aN) for every n-tuple of bi’s if and only the n
equations

Ni(a1, ..., aN) = ci, 1 ≤ i ≤ n

have A-valued solutions (a1, ..., aN) for every n-tuple of ci’s.
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Returning to the case when A = R, we use the relations N1 =
s1, N2 = s2

1− 2s2 and the observation that N2(a1, ..., aN) ≥ 0 whenever
the ai are all real, to justify our assertion that G(2,R) is not connected.

We will prove the following theorem.

Theorem 1.1. Given an integer n ≥ 1, there are explicit constants
C2(n) and C3(n) such that we have the following results.

(1) If k is a finite field with #k ≥ C2(n) whose characteristic p
does not divide (n + 2)(n + 1), then G(n, k) is connected, and
has diameter ≤ n+ 2.

(2) If n is even, and if k is a finite field of characteristic 2 with
#k ≥ C3(n), then G(n, k) is connected, and has diameter ≤
n+ 3.

Corollary 1.2. Given n ≥ 1, if k is a finite field of odd characteristic
with #k ≥ Max (C2(n), C2(n+1), C2(n+2)), then G(n, k) is connected,
and has diameter ≤ n + 4. if if k is a finite field of characteristic 2
with #k ≥ Max (C3(n), C3(n+ 1)), then G(n, k) is connected, and has
diameter ≤ n+ 4.

Proof. The group BigWittn(k) is a quotient of BigWittn+1(k). Hence
if G(n+ 1, k) is connected, then so is G(n, k), and diameter(G(n, k)) ≤
diameter(G(n + 1, k)). If p is odd, then either p does not divide (n +
2)(n + 1), or it does not divide (n + 3)(n + 2), or it does not divide
(n + 4)(n + 3), and we apply part (1) of the above theorem to the
appropriate one of G(n, k), G(n + 1, k), or G(n + 2, k). If p = 2, then
either n or n+ 1 is even, and we apply part (2) to the appropriate one
of G(n, k) or G(n+ 1, k). �

Another corollary is this.

Corollary 1.3. Given n ≥ 1, if k is a finite field of characteristic
p ≥ n+3 with #k ≥ C2(n), then G(n, k) is connected, and has diameter
≤ n+ 2.

2. Proof of Theorem 1.1

Given integers N = n + d ≥ n ≥ 1, a finite field k of characteristic

p, and an n + d tuple ~b = (b1, ..., bn+d) ∈ kn+d, we define a projective

variety X(n, d,~b) ⊂ Pn+d/k by the n homogeneous equations (in the
homogeneous coordinates a1, ..., an+d, z)

si(a1, ..., an+d) = biz
i, 1 ≤ i ≤ n.



4 NICHOLAS M. KATZ

We define the affine variety U(n, d,~b) ⊂ An+d/k by the n equations
(in the coordinates a1, ..., an+d)

si(a1, ..., an+d) = bi, 1 ≤ i ≤ n.

We define the projective variety Z(n, d) ⊂ Pn+d−1/k by the n homo-
geneous equations (in the homogeneous coordinates a1, ..., an+d)

si(a1, ..., an+d) = 0, 1 ≤ i ≤ n.

Lemma 2.1. We have the following results about the k-scheme Z(n, d).

(1) For d ≥ 0, Z(n, d) is a complete intersection of dimension d−1.
(2) If p does not divide (n+2)(n+1), Z(n, 2) is a smooth complete

intersection curve.
(3) If p = 2 and n + 3 is odd, Z(n, 3) is a complete intersection

surface with at worst isolated singularities.

Proof. If we impose d more equations sj = 0 for j = n+1, ..., d+n, the
only affine solution with values in a field is ai = 0 for all i (i.e. we are
asking for the roots of the polynomial Xn+d), so the projective variety
we get by imposing these d additional equations is empty. This shows
that Z(n, d) is a complete intersection of dimension d− 1.

The singular locus is defined by the vanishing of all n× n minors of
the n × (n + d) matrix (∂si/∂aj)1≤i≤n,1≤j≤n+d. We have the following
determinant formula, due to F.A. Tarleton in 1867, cf. [T], [Muir-III,
page 142], [Sc, page 102], [La-Pr, page170].

Lemma 2.2. The determinant of the n×n matrix (∂si/∂aj)1≤i≤n,1≤j≤n
is2

±
∏

1≤i<j≤n

(ai − aj).

Proof. We have the identity

∂si/∂aj = si−1(all variables except aj),

with the convention that s0 = 1. So if ai = aj with i 6= j, then the
matrix in question has two identical columns. Thus the determinant
is divisible by ai − aj, for all 1 ≤ i < j ≤ n, in Z[a1, ..., an+d], and
hence is divisible by

∏
1≤i<j≤n(ai − aj). On the other hand, this de-

terminant is homogeneous in the aj of the same degree n(n − 1)/2,
so the determinant is of the form (some integer)×

∏
1≤i<j≤n(ai − aj).

If this integer factor were not ±1, then in some finite characteristic p
this determinant would vanish identically. But this is not the case. To
see this, put an+1 = ... = an+d = 0, and choose n distinct elements

2In fact, the sign is +, cf. [La-Pr, page170], but we do not need this finer fact.
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αj, 1 ≤ j ≤ n in some (large enough) field k of characteristic p, and
take βi := si(α1, ..., αn). Then the equations

sj(a1, ..., an, 0, ..., 0) = βj, 1 ≤ j ≤ n

define a finite étale k-scheme, hence the matrix in question is invertible
at the point (α1, ..., αn, 0..., 0). �

From Tarleton’s determinant formula, applied to each n× n minor,
we see that the geometric points (a1, ..., an+d) of the singular locus are
those points such that there are at most n − 1 distinct values among
the ai.

Suppose now that p does not divide (n + 2)(n + 1). If (a1, ..., an+2)
is a geometric point of the singular locus of Z(n, 2), then some ai is
nonzero, there are at most n− 1 distinct values among the ai, and we
have the polynomial identity

n+2∏
i=1

(1 + aiX) = 1 + AXn+1 +BXn+2

for

A := sn+1(a1, ..., an+2), B := sn+2(a1, ..., an+2).

Equivalent to this identity is the palindromic identity in the variable
T := 1/X,

n+2∏
i=1

(T + ai) = T n+2 + AT +B.

So the asserted nonsingularity in (2) results from the following elemen-
tary lemma.

Lemma 2.3. Let n ≥ 1 be an integer, K an algebraically closed field in
which (n+ 2)(n+ 1) is invertible, and A,B ∈ K. Then the polynomial
T n+2 + AT + B has either n + 1 or n + 2 distinct roots in K unless
A = B = 0 (in which case its only root is 0, with multiplicity n+ 2).

Proof. Let us write f(T ) := T n+2 +AT +B. A multiple root of f is a
common root of f(T ) and of its derivative f ′(T ) = (n + 2)T n+1 + A.
If A = 0, the only root of f ′ is 0, but 0 is a root of f only if B = 0.
Thus if A = 0, either f has all distinct roots, or f = T n+2. Suppose
now A 6= 0. If α is a multiple root, then

0 = f ′(α) = αf ′(α) = (n+ 2)(α)n+2 + Aα.

Thus

(α)n+2 = −Aα/(n+ 2),
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and so α, also being a root of f , satisfies

(1− 1/(n+ 2))Aα +B = 0,

i.e., we have α = −((n + 2)/(n + 1))B/A. If α = 0, then B = 0, in
which case our polynomial is T n+2 + AT with A 6= 0, which has n+ 2
distinct roots. If α 6= 0, then α is not a root of f ′′ = (n+2)(n+)T n. So
in this α 6= 0 case, f has at most one multiple root, and that multiple
root occurs with multiplicity two. �

Suppose now that p = 2, and that n + 3 is odd. To show that
Z(n, 3) has at most isolated singularities, it suffices to show that its
intersection with the hypersurface sn+2(a1, ..., an+3) = 0, call it W (n, 3)
is a nonsingular curve.

Lemma 2.4. If p = 2, and n+ 3 is odd, then W (n, 3) is a nonsingular
curve.

Proof. We have homogeneous coordinates a1, ..., an+3, and W (n, 3) is
defined by the n+ 1 equations

si(a1, ..., an+3) = 0, 1 ≤ i ≤ n, together with sn+2(a1, ..., an+3) = 0.

We know that W (n, 3) is a complete intersection of dimension one
(because imposing two more equations, sn+1 = 0 and sn+3 = 0, gives
the empty scheme). To analyze its singular locus, we use the following
variant of Tarleton’s lemma.

Lemma 2.5. Suppose n + 3 ≥ 5 is odd. Then the determinant of the
(n+ 1)× (n+ 1) Jacobian matrix

(∂si/∂aj)i=1,2,...,n,n+2, j=1,2,...,n+1

in which the functions are s1, ..., sn and sn+2, and we differentiate with
respect to n + 1 of the n + 3 variables a1, ..., an+3, here with respect to
a1, ..., an+1, is

±(an+2 + an+3)
∏

1≤i<j≤n+1

(ai − aj).

Proof. Exactly as in the proof of the Tarleton formula, the determinant
visibly vanishes if ai = aj for some pair 1 ≤ i < j ≤ n + 1. Let us
admit temporarily that the determinant also vanishes if an+2+an+3 = 0.
Then the determinant is divisible by its asserted value, and both sides
of of the asserted identity are homogeneous of the same degree. So
the determinant must be some integer multiple of its asserted value.
It that integer multiple were not ±1, the determinant would vanish
identically in some finite characteristic p. In that characteristic, the
affine surface defined by the same equations, s1 = ... = sn = sn+2 = 0
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in An+3 would be everywhere singular, and hence the scheme defined by
further specializing sn+1 = A, sn+3 = B would be everywhere singular,
for any choices of A and B in any algebraically closed field K of the
bad characteristic p. If p = 2, or more generally if p does not divide
n + 3, take A = 0, B = 1.Then we are looking at the K-scheme of
complete factorizations of 1 + T n+3 over a field K in which n + 3 is
invertible; this K-scheme is finite étale. If p is odd and p divides n+ 3,
take A = B = 1. Then we are looking at the K-scheme of complete
factorizations of 1 + T n+1 + T n+3 over a field K in which n + 3 = 0.
Equivalently, passing to the palindromic polynomial, we are looking at
the K-scheme of complete factorizations of f(T ) := 1 +T 2 +T n+3 over
a field K of odd characteristic p in which n + 3 = 0. This polynomial
has all distinct roots (the only root of its derivative f ′(T ) = 2T is 0,
which is not a root of f), so the K-scheme of its complete factorizations
is again finite étale over K.

It remains to show that (an+2+an+3) divides the determinant. Recall
that

∂si/∂aj = si−1(all variables except aj).

It will be important to specify exactly which variables are involved.
Thus for j = 1, 2, ..., n+ 1, we will write

Si(not aj) := si(all variables a1, ..., an+3 except aj),

Si(not aj) := si(all variables a1, ..., an+1 except aj).

One checks easily that, modulo the relation an+2 + an+3 = 0, for each
i ≥ 2 we have

Si(not aj) = Si(not aj) + an+2an+3Si−2(not aj).

[Think of Si(not aj) as a sum of monomials. The terms in which neither
an+2 nor an+3 occurs give precisely Si(not aj). The terms in which
both an+2 and an+3 occur give an+2an+3Si−2(not aj). The terms in
which exactly one of {an+2, an+3} occurs cancel identically, modulo the
relation an+2 + an+3 = 0.]

Notice now that the lowest row of our Jacobian matrix has entries
the Sn+1(not aj). Because there are only n+3 variables in total, in the
identity (modulo the relation an+2 + an+3 = 0)

Sn+1(not aj) = Sn+1(not aj) + an+2an+3Sn−1(not aj),

the term Sn+1(not aj) vanishes identically. Thus (modulo the relation
an+2 + an+3 = 0) we have

Sn+1(not aj) = an+2an+3Sn−1(not aj),

Sn−1(not aj) = Sn−1(not aj) + an+2an+3Sn−3(not aj),
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...,

S3(not aj) = S3(not aj) + an+2an+3S1(not aj).

Again modulo the relation an+2 + an+3 = 0, we have

S1(not aj) = S1(not aj).

So for each index 1 ≤ j ≤ n+ 1 we get the relation

Sn+1(not aj) = −
n/2∑
i=1

(−an+2an+3)
iSn+1−2i(not aj.)

This relation shows that (modulo the relation an+2 + an+3 = 0) the
bottom row of the Jacobian matrix is a Z[an+2an+3]-linear combination
of the rows above it. Thus modulo the relation an+2 + an+3 = 0, the
determinant vanishes. �

It remains to show that if n is even and k has characteristic p = 2,
then W (n, 3) is smooth. In view of the determinant formula of the
previous lemma, it suffices to show that for any algebraically closed
overfield K of k, and for any two elements A,B ∈ K other than 0, 0,
the polynomial f(T ) := T n+3 + AT 2 + B has at least n + 2 distinct
roots. If A = 0, then B is nonzero, and our polynomial has n + 3
distinct roots. If A is nonzero, then the derivative f ′(T ) = 2AT has
only T = 0 as a root, and this is also a root of f only when B = 0. In
this last case, f is T n+3 +AT 2, which has n+ 2 distinct roots, 0 being
the unique double root; we then number the roots so that one but not
both of an+2, an+3 is this double root 0 to get a nonzero minor. This
concludes the proof of Lemma 2.4. �

This concludes the proof of Lemma 2.1. �

Lemma 2.6. Let k be a field of characteristic p. We have the following

results about the scheme X(n, d,~b)/k.

(1) X(n, d,~b) is a complete intersection of dimension d.

(2) If d = 2 and p does not divide (n + 2)(n + 1), X(n, 2,~b) is a
complete intersection surface with at most isolated singularities.

(1) If p = 2, d = 3 and n is even, X(n, 3,~b) is a complete intersec-
tion threefold with a singular locus of dimension ≤ 1.

Proof. If we intersect with the hyperplane z = 0, we get Z(n, d)/k,

which is a complete intersection of dimension d−1. Hence X(n, d,~b)/k
is a complete intersection of dimension d. In the situations of (2)
and (3), the singular locus has dimension at most d − 2, otherwise
its intersection with z = 0 would have dimension ≥ d − 2. But this
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intersection lies in the singular locus of Z(n, d), and we invoke Lemma
2.1. �

Lemma 2.7. Let k be a finite field, X ⊂ Pn+d/k a projective complete
intersection of dimension d ≥ 0 and multidegree (1, 2, ..., n). Then we
have the following results.

(1) For any prime ` invertible in k, the sum of the Q`-Betti numbers
of Xk is bounded by

C(n, d) := 9× 2n(3 + n2)n+d+1.

(2) With q := #k we have the estimate

#X(k) ≤ C(n, d)qd.

(3) If d ≥ 1 and the dimension of the singular locus is at most d−2,
then with q := #k, we have the estimate

|#X(k)− qd| ≤ C(n, d)qd−1/2.

Proof. The estimate for the sum of the Betti numbers is given in
[Ka-SB, Cor. of Thm. 3, second inequality]. The “trivial” estimate (2)
results from the Lefschetz trace formula, the vanishing of H i(Xk,Q`)
for i > 2d, and the deep fact [De-Weil II, 3.3.1] that H i is mixed of
weight ≤ i. The estimate (3) for a complete intersection whose singular
locus has codimension two or more is [Ka-HooleyApp, proof of Thm.
1], where it is shown that H2d(Xk,Q`) = Q`(−d), the one-dimensional
Q` vector space on which Frobk acts as qd. A more elementary way of
seeing this is to remark that a complete intersection is Cohen-Macauley
[Eis, Prop.18.13, Section 18.15]. If it is of dimension d ≥ 1, it is ge-
ometrically connected (Lefschetz hyperplane theorem for H0). If its
singular locus has codimension ≥ 2, then it is normal (Serre’s crite-
rion, cf. [A-K, VII 2.14]). Being normal and geometrically connected,
it is geometrically irreducible, and hence its H2d is as asserted. �

With these preliminaries out of the way, we can now prove Theorem
1.1. Suppose first the p does not divide (n+2)(n+1). Given a finite field

k and a vector ~b ∈ kn+2, we must show that if q := #k is (explicitly)
sufficiently large, then

U(n, 2,~b)(k) := X(n, 2,~b)(k) \ Z(n, 2)(k)

is nonempty. First apply part (2) of Lemmas 2.1 and 2.6, then Lemma

2.7 to both X(n, 2,~b) and Z(n, 2), to get

|#X(n, 2,~b)(k)− q2| ≤ C(n, 2)q3/2,

|#Z(n, 2)(k)| ≤ C(n, 1)q.
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So we have

#U(n, 2,~b)(k) ≥ q2 − C(n, 2)q3/2 − C(n, 1)q.

So U(n, 2,~b)(k) will certainly be nonempty provided
√
q ≥ C(n, 2) + C(n, 1).

So the asserted constant C2(n) of Theorem 1.1 may be taken to be

C2(n) := (C(n, 2) + C(n, 1))2.

Suppose now that k has characteristic p = 2 and n is even. Using
now part (3) of Lemmas 2.1 and 2.6, together with Lemma 2.7, we get

|#X(n, 3,~b)(k)− q3| ≤ C(n, 3)q5/2,

|#Z(n, 3)(k)| ≤ C(n, 2)q2.

So we have

#U(n, 3,~b)(k) ≥ q3 − C(n, 3)q5/2 − C(n, 2)q2.

So U(n, 3,~b)(k) will certainly be nonempty provided
√
q ≥ C(n, 3) + C(n, 2).

So the asserted constant C3(n) of Theorem 1.1 may be taken to be

C3(n) := (C(n, 3) + C(n, 2))2.

3. Supplementary results

If we are willing to increase the constant C2(n), respectively the
constant C3(n), of Theorem 1.1, we can further impose that in rep-
resenting a given element as a product of n + 2, respectively n + 3,
elements 1 + aiX, all the ai are nonzero and ai 6= aj for i 6= j. Here
are the formal statements.

Theorem 3.1. Given an integer n ≥ 1, denote by D2(n) the constant

D2(n) := (C(n, 2) + (1 + (n+ 2)2)C(n, 1))2,

and by D3(n) the constant

D3(n) := (C(n, 3) + (1 + (n+ 3)2)C(n, 2))2.

Then we have the following results.

(1) For any finite field k with #k ≥ D2(n) whose characteristic p
does not divide (n+ 2)(n+ 1), any element of BigWittn(k) can
be written as the product of n+ 2 elements 1 +aiX, with all the
ai nonzero and ai 6= aj for i 6= j.
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(2) If n is even, then for any finite field k with #k ≥ D3(n) of
characteristic p = 2, any element of BigWittn(k) can be written
as the product of n+3 elements 1+aiX, with all the ai nonzero
and ai 6= aj for i 6= j.

Proof. (1)Fix two indices i 6= j. The subvariety of X(n, 2,~b) defined
by the two equations ai = 0 and ai = aj is itself the complete inter-

section X(n, 0,~b) of dimension 0. Therefore imposing either of these
two equations alone defines a complete intersection of dimension 1,
which may be seen as a complete intersection in Pn+1 of multidegree
(1, 2, ..., n). So the sum of its Q`- Betti numbers, for any ` invert-
ible in k, is bounded by C(n, 1). So we have the trivial estimate
that, putting q := #k, each such variety has at most C(n, 1)q k-
valued points. Inverting z(

∏
i ai)(

∏
i<j(ai − aj)) amounts to removing

1 + n+ 2 + (n+ 2)(n+ 1) = 1 + (n+ 2)2 such varieties, thus removing
at most

(1 + (n+ 2)2)C(n, 1))q

points from X(n, 2,~b)(k), which has at least q2 − C(n, 2)q3/2 points.
To prove (2), we essentially repeat this argument. The subvariety of

X(n, 3,~b) defined by the vanishing of either of the equations ai = 0 or
ai = aj is a complete intersection of dimension 2, which may be seen
as a complete intersection in Pn+2 of multidegree (1, 2, ..., n), so has
at most C(n, 2)q2 k-valued points. Inverting z(

∏
i ai)(

∏
i<j(ai − aj))

amounts to removing 1 + n + 3 + (n + 3)(n + 2) = 1 + (n + 3)2 such

varieties, while X(n, 3,~b)(k) has at least q3 − C(n, 3)q5/2 points. �

The advantage of this last result is that it generalizes to complete
noetherian local rings.

Theorem 3.2. Fix an integer n ≥ 1. Let A be a complete notherian
local ring whose residue field k is finite and has characteristic p. Then
we have the following results.

(1) If p does not divide (n + 2)(n + 1) and if #k ≥ D2(n), any
element of BigWittn(A) can be written as the product of n+ 2
elements 1 + aiX, with all the ai and all the differences ai− aj,
i 6= j, invertible in A.

(2) If n is even, p = 2 and #k ≥ D3(n), any element of BigWittn(A)
can be written as the product of n + 3 elements 1 + aiX, with
all the ai and all the differences ai − aj, i 6= j, invertible in A.

Proof. (1)Given an element v = 1 +
∑n

i=1 biX
i ∈ BigWittn(A), denote

by v = 1+
∑n

i=1 biX
i ∈ BigWittn(k) its reduction modulo the maximal
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ideal of A. By Theorem 3.1, we can write v as the product of n + 2
distinct elements 1 + αiX, with αi ∈ k×. Multiplying out the product
of these elements 1 + αiX, we get a polynomial of degree n+ 2,

n+2∏
i=1

(1 + αiX) = 1 +
2n+1∑
i=1

βiX
i

in which βn+2 is invertible and in which we have

βi = bi

for 1 ≤ i ≤ n. For each integer j in [n + 1, n + 2], choose a lift bj ∈ A
of βj. Then the polynomial

1 +
n+2∑
i=1

biX
i ∈ A[X],

reduced modulo the maximal ideal of A, has n+ 2 distinct (reciprocal)
roots αi ∈ k×. Apply Hensel’s lemma to obtain unique lifts ai ∈ A× of
αi ∈ k× with

1 +
n+2∑
i=1

biX
i =

n+2∏
i=1

(1 + aiX).

Reducing mod Xn+1 gives the desired expression for v.
The proof of (2) is identical, with n+ 2 replaced by n+ 3. �

4. The girth

What can we say about the girth of the graph G(n, k), for k a finite
field? Recall the girth is the least integer g ≥ 1 such that the unit
element 1 ∈ BigWittn(k) can be written as the product of g elements
1 + aiX with all ai ∈ k×. We must have g ≥ n + 1, otherwise we get
an equation of too low degree for X. We can very well have g = n+ 1
in some cases.

Lemma 4.1. Let k have characteristic p. Write n+ 1 as n+ 1 = pam
with m prime to p. If k contains all m of the m′th roots of unity, then
G(n, k) has girth n+ 1.

Proof. Indeed, we have 1 = (
∏

ζ∈µm(k)(1− ζX))p
a ∈ BigWittn(k). �

We can very well have g ≥ n+ 2 as well.

Lemma 4.2. Let k have characteristic p. Suppose q := #k is such
that gcd(p(q − 1), n+ 1) = 1. Then G(n, k) has girth g ≥ n+ 2.
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Proof. If q − 1 is relatively prime to n + 1, then the map t 7→ tn+1 is
bijective on k×. If we have an expression

1 =
n+1∏
i=1

(1− aiX) ∈ BigWittn(k), all ai ∈ k×

then we have an identity of polynomials

n+1∏
i=1

(1− aiX) = 1− CXn+1

with C ∈ k×. We may write C uniquely as Bn+1 with B ∈ k×. So this
identity becomes

n+1∏
i=1

(1− aiX) = 1−Bn+1Xn+1.

Therefore each ai is an n + 1’st root of Bn+1, so by uniqueness each
ai = B. So our identity becomes

(1−BX)n+1 = 1−Bn+1Xn+1.

But n + 1 is prime to p, so already the linear term of (1 − BX)n+1 is
nonzero in k. �

These last two lemmas, together with Corollary 1.3, show that if, for
example, n+ 1 is an odd prime `, then as p varies, the graph G(n,Fp)
will have girth n + 1 for all p which are 1 mod `, and will have girth
n+ 2 for all other large p.

5. Relation to Galois theory

The fact that X(n, 2,~b)/k, and hence U(n, 2,~b)/k, is geometrically
irreducible when p does not divide (n+2)(n+1) leads to another proof
of Cohen’s theorem [C, Thm. 1] that for K any field of characteristic
p not dividing (n + 2)(n + 1), and for any polynomial f(T ) ∈ K[T ] of
degree n + 2, the polynomial f(T ) + AT + B with two indeterminate
coefficients A,B has galois group the full symmetric group Sn+2 over
the field K(A,B), cf. [Ka-FP, proof of Thm. 3] for a discussion of this
sort of implication.

The situation in characteristic 2 is similar. When p = 2 and n is even,
we have shown that W (n, 3), the intersection of Z(n, 3) with sn+1 = 0,
is a complete intersection curve which is smooth. Therefore the inter-

section of X(n, 3,~b)/k with sn+1 = 0 is a complete intersection surface
with at worst isolated singularities, so is geometrically irreducible. This
geometrically irreducibility in turn leads to another proof of Cohen’s
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theorem [C-Corr., Thm. 2’] that for K any field of characteristic 2 and
f(T ) ∈ K[T ] of degree n + 3, the polynomial f(T ) + AT 2 + B with
two indeterminate coefficients A,B has galois group the full symmetric
group Sn+3 over the field K(A,B). In fact, it was this result of Cohen
that led us to the consideration of the variety W (n, 3).
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