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Abstract. We find some new one-parameter families of exponen-
tial sums in every odd characteristic whose geometric and arith-
metic monodromy groups are G2.

Introduction

In earlier work [Ka-ESDE, 9.1.1], we proved that certain very simple
one-parameter families of exponential sums had the exceptional group
G2 as their (geometric and arithmetic) monodromy groups, in every
finite characteristic p ≥ 17. These sums were of the form

(1/g)
∑
x∈k×

χ2(x)ψ(x7 + tx).

Here k is a finite field, g is a fixed gauss sum, χ2 is the quadratic
character of k×, ψ is a nontrivial additive character of k, and t ∈ k is
the parameter. A question of Rudnick and Waxman led us to wonder if,
in this construction, the polynomial x7 inside the ψ could be replaced
by other polynomials of degree seven and still yield G2. Computer
experiments suggested that the answer was indeed yes, for polynomials
of the form

ax7/7 + 2abx5/5 + ab2x3/3,

any a 6= 0, any b. That these polynomials do indeed produce G2 in
large characteristic (see Theorem 4.3) results from certain Witt vector
identities. It remains an open question if these are the only polynomials
which produce G2.

In the second half of the paper, we analyze the situation in low
characteristic, especially in characteristics 3, 5, 7, where Witt vectors
reappear in order to make sense of the question, and (again) to provide
the answer.
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1. The exceptional identities

Fix a prime p, and consider the p-Witt vectors of length 2 as a ring
scheme over Z. The addtion law is given by

(x, a) + (y, b) := (x+ y, a+ b+ (xp + yp − (x+ y)p)/p).

The multiplication law is given by

(x, a)(y, b) := (xy, xpb+ ypa+ pab).

For an odd prime p, we have

(x, 0) + (y, 0) + (−x− y, 0) = (0, (xp + yp − (x+ y)p)/p).

Let us define, for odd p, the integer polynomial

Fp(x, y) := (xp + yp − (x+ y)p)/p ∈ Z[x, y].

For p = 2, we have

(x, 0) + (y, 0) + (−x− y, 0) = (0, x2 + xy + y2),

and we define

F2(x, y) := x2 + xy + y2 ∈ Z[x, y].

Thus
F3 = −xy(x+ y).

The exceptional identities we have in mind are

F5 = F3F2, F7 = F3(F2)
2.

2. Basic facts about G2

We work with algebraic groups over C. Given a prime number p,
a theorem of Gabber [Ka-ESDE, 1.6] tells us the possible connected
irreducible (in the given p-dimensional representation) Zariski closed
subgroups of SLp. For p = 2, the only possibility is SL2. For p odd
and p 6= 7, the possibilities are either the image of SL2 in Symp−1(std2),
SOp, or SLp.

For p = 7 there is one new possibility, G2, which sits in

image of SL2 ⊂ G2 ⊂ SO7 ⊂ SL7.

This new group G2 can be determined among the four by its third and
fourth moments M3 and M4. Recall that for a group G (given inside
some GL(V )), its moments (with respect to the given representation
V ) are defined by

Mn(G) := Mn(G, V ) := dim((V⊗n)G),

the dimension of the space of G-invariants in V ⊗n. Four our four
groups, M3 is successively 1, 1, 0, 0, and M4 is successively 7, 4, 3, 2.
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In fact, in our application, we will only use M3. Notice also that for
our four possible choices, M3 = 1 if and only if M3 > 0.

3. The local systems

Fix a finite field k of odd characteristic p. We have the quadratic
character

χ2 : k× → ±1,

which we extend to all of k by defining χ2(0) = 0. Fix a nontrivial
additive character

ψ : (k,+)→ µp(Q(ζp)).

Given a polynomial f(x) ∈ k[x] of degree n ≥ 2 which is prime to p,
we are interested in the sum

−
∑
x∈k

χ2(x)ψ(f(x)).

Now fix a prime number ` 6= p and an embedding of Q(ζp) into Q`.
Then this sum is the trace of Frobk on H1

c (A1
k
,Lχ2(x) ⊗Lψ(f(x))). Here

Lχ2(x) is the Kummer sheaf (extended by 0 across 0 ∈ A1) and Lψ(f(x))
is the (pullback by f of) the Artin-Schreier sheaf Lψ(x).

If we consider these sums as we vary f by adding to it a varying
linear term,

t 7→ −
∑
x∈k

χ2(x)ψ(f(x) + tx),

then we are looking at the traces, at the k-points t ∈ A1(k), of a rank
n local system on the A1 of t’s, the Fourier Transform

FT (Lχ2(x) ⊗ Lψ(f(x))).
For a finite extension K/k, and t ∈ A1(K), the trace is the “same” sum,
now over x ∈ K, but with χ2 replaced by χ2,K the quadratic character
of K× extended by zero, and with ψ replaced by the composition ψ ◦
TraceK/k.

This FT is pure of weight one, thanks to Weil. Its description as
an FT shows that it is geometrically irreducible. One knows from the
work of Laumon [Lau-FT, 2.4.3], cf. also [Ka-ESDE, 7.3.4 (1), (2),
(3)], that its I∞-slopes are

{0, n/(n− 1) repeated n− 1 times}.

Lemma 3.1. Suppose n ≥ 5 is prime to p, and f(x) is a polynomial of
degree n. Then the geometric monodromy group Ggeom of FT (Lχ2(x) ⊗
Lψ(f(x))) is not contained in the image Symn−1(SL2) of SL2 in SLn by
its irreducible representation Symn−1(std2) of dimension n.
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Proof. If Ggeom lies in this image, then Ggeom has a faithful repre-
sentation of dimension either 2, if n is even, or 3 if n is odd (i.e.,
Symn−1(std2) is faithful if n is even, and factors through a faithful rep-
resentation of SL2/± 1 ∼= SO3 if n is odd). In either case, the pushout
of our FT by this representation has the same highest∞ slope as does
the FT itself [Ka-ESDE, 7.2.4].The pushout has rank ≤ 3, so its high-
est ∞ slope has denominator one of 1, 2, 3, whereas the original FT
has highest slope n/(n− 1), with denominator n− 1 > 3. �

When n is odd and f is an odd polynomial (i.e. f(−x) = −f(x)),
then this FT is orthogonally self dual, and its Ggeom lies in SOn. More-
over, after we twist by an explicit Gauss sum [Ka-NG2, 1.7], our FT
will be pure of weight zero, and we will have

Ggeom ⊂ Garith ⊂ SOn.

Here is a general fact [Ka-MG, Prop. 5] about geometrically irre-
ducible local systems F on A1

k, a consequnce of the Feit-Thompson
theorem [F-T, ]. If p > 2n+ 1, then F is Lie-irreducible, meaning that
G0
geom acts irreducibly.

4. Looking for local systems whose Ggeom is G2

Some years ago, I proved [Ka-ESDE, 9.1.1] that with f(x) = x7,
in any characteristic p ≥ 17, the FT had Ggeom = G2. A question of
Rudnick and Waxman made me wonder if there were other odd, degree
seven polynomials f(x) for which the FT would have Ggeom = G2.

Using the exceptional identities, it turned out to be a simple matter
to show that M3 = 1 for the (Ggeom of the) local system F on A2 with
parameters B, t whose trace function is

(B, t) ∈ k2 7→ (1/g)
∑
x∈k

χ2(x)ψ(x7/7 + 2Bx5/5 +B2x3/3 + tx),

g being the explicit Gauss sum

g := g(ψ, χ2) =
∑
x∈k×

ψ(−x)χ2(x) = χ2(−1)
∑
x∈k×

ψ(x)χ2(x).

This local system is orthogonally self dual, and [Ka-NG2, 1.7] has

Ggeom ⊂ Garith ⊂ SO7.

Theorem 4.1. Fix a prime p > 7, k a finite field of characteristic p,
ψ a nontrivial additive character of k, a prime number ` 6= p, and an
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embeddiing of Q(ζp) into Q`. Consider the Q` local system F on A2/k
with coordinates B, t whose trace function is

(B, t) 7→ (1/g)
∑
x∈k

χ2(x)ψ(x7/7 + 2Bx5/5 +B2x3/3 + tx)

for (B, t) ∈ k2, g being the above gauss sum g(ψ, χ2), with the usual
variant for a finite extension K/k and (B, t) ∈ K2 (namely the sum is
over x ∈ K, χ2 is replaced by χ2,K and ψ is replaced by ψ ◦TraceK/k).
Then M3 = 1.

Proof. The local system F is pure of weight zero. By [De-Weil II,
3.4.1 (iii)], F and all its tensor powers are completely reducible as
representations of Ggeom. Therefore we have

M3 = dim(H4
c (A2 ⊗k k,F⊗3)(2)).

As explained in [Ka-LFM, the idea behind the calculation], we recover
M3 as the limsup of the archimedean absolute value of the “empirical
third moment sums”

(1/#k)2
∑
B,t∈k

((1/g)
∑
x∈k

χ2(x)ψ(x7/7 + 2Bx5/5 +B2x3/3 + tx))3 =

= (1/(g3(#k)2))
∑
B,t∈k

∑
x,y,z∈k

χ2(xyz)×

ψ((x7+y7+z7)/7+2B(x5+y5+z5)/5+B2(x3+y3+z3)/3+t(x+y+z)),

with k replaced by larger and larger finite extensions of itself. When we
sum over t, we get #k times the sum over those x, y, z with x+y+z =
0. Substituting z = −x − y, the empirical sum becomes, using the
exceptional identities,

(1/(g3(#k)))
∑
B∈k

∑
x,y∈k

χ2(F3(x, y))ψ(F7(x, y)+2BF5(x, y)+B2F3(x, y)) =

= (1/(g3(#k)))
∑
B∈k

∑
x,y∈k

χ2(F3(x, y)ψ(F3(x, y)(B + F2(x, y))2) =

(making the change of variable (x, y, B) 7→ (x, y, B − F2(x, y)))

= (1/(g3(#k)))
∑

x,y,B∈k

χ2(F3(x, y))ψ(F3(x, y)B2) =

= (1/(g3(#k)))
∑
x,y∈k

χ2(F3(x, y))
∑
B∈k

ψ(F3(x, y)B2).
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For fixed x, y, the χ2(F3(x, y)) factor vanishes unless F3(x, y) 6= 0. For
such x, y, the inner sum overB is just the Gauss sum χ2(F3(x, y))g(ψ, χ2).
So the empirical sum is

= (1/(g3(#k)))
∑

x,y∈k,F3(x,y)6=0

χ2(F3(x, y))χ2(F3(x, y))g(ψ, χ2) =

= (1/(g3(#k)))
∑

x,y∈k,F3(x,y)6=0

g(ψ, χ2).

The number of zeros of F3(x, y) in k2 is 3#k− 2, so the empirical sum
is

(#k − 1)(#k − 2)g(ψ, χ2)

g3(#k)

Recall that g2 = χ2(−1)#k, hence g3 = χ2(−1)g#k = g(ψ, χ2)#k, so
the empirical sum is

(#k − 1)(#k − 2)g(ψ, χ2)

g(ψ, χ2)(#k)2
=

(#k − 1)(#k − 2)

(#k)2
,

whose limit, as #k grows, is visibly 1. �

Theorem 4.2. In any characteristic p > 7, the local system F on A2/k
of the previous theorem has Ggeom = Garith = G2.

Proof. We will show that F is Lie-irreducible. Admitting this tem-
porarily, we argue as follows. We know that

Ggeom ⊂ Garith ⊂ SO7.

We have already shown that Ggeom has M3 = 1. Therefore its identity
component has a larger M3 ≥ 1. But as already observed, among
connected irreducible subgroups of SL7, M3 ≥ 1 implies M3 = 1.
Therefore G0

geom has M3 = 1, so by Gabber’s theorem G0
geom is either

G2 or the image of SL2 in SO7. Both of these groups are their own
normalizers in SO7, so we either have

Ggeom = Garith = the image in SO7 of SL2

or we have

Ggeom = Garith = G2.

The SL2 case is ruled out by Lemma 3.1.
It remains to show that F is Lie-irreducible. Consider a pullback

FB=b0 to a line B = b0 in A2. Its Ggeom is a subgroup of the Ggeom

for F , so it suffices to exhibit such a pullfback which is Lie-irreducible.
If p ≥ 17, then any such pullback will be Lie-irreducible.This follows
from the fact that a geometrically irreducible local system on A1/Fp of
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rank n is Lie-irreducible if p > 2n + 1, cf. [Ka-MG, Prop. 5], applied
to our rank 7 pullback.

For p = 11 or p = 13, we first reduce to the case when k = Fp.
Fix a nontrivial additive character ψFp of Fp, and denote by ψk/Fp :=
ψFp ◦ Tracek/Fp . Then ψ(x) is of the form

ψk/Fp,A0(x) := ψk/Fp(A0x)

for some A0 ∈ k×. Extending scalars from k to a finite extension, we
may assume A0 is a seventh power, say A0 = A7. Our sums, for fixed
b0, are then

(1/g(ψk/Fp,A7 , χ2))
∑
x∈k

χ2(x)ψk/Fp(A7(x7/7 + 2b0x
5/5 + b20x

3/3 + tx)).

Making the change of variable x 7→ x/A, our sums becomes

(1/g(ψk/Fp , χ2))
∑
x∈k

χ2(x)ψk/Fp(x7/7 + A2b0x
5/5 + A4b20x

3/3 + A6tx)).

Now make the choice b0 = 1/A2. Then our sums become

(1/g(ψk/Fp , χ2))
∑
x∈k

χ2(x)ψk/Fp(x7/7 + 2x5/5 + x3/3 + A6tx)).

So we are looking at the multiplicative translate (by t 7→ A6t) of the
pullback from A1/Fp to A1/k of the Fourier Transform of (−1/g)degLχ2(x)⊗
LψFp (x

7/7+2x5/5+x3/3) on A1Fp. So we are reduced to proving that this
Fourier Transform is Lie-irreducible.

We apply [Ka-NG2, Lemma 3.5] to know that our Fourier Transform
is either Lie-irreducible or has finite Ggeom. We then apply the “low or-
dinal” criterion, [Ka-WVQKR, text before Lemma 7.2] and [Ka-ESDE,
8.14.3], according to which its Ggeom cannot be finite if the single sum
(the value at t = 0)∑

x∈F×
p

χ2(x)ψ(x7/7 + 2x5/5 + x3/3)

has ordp < 1/2. In fact, for p = 13, this sum has ordp = 2/(p− 1), and
for p = 11 this sum has ordp = 1/(p− 1).

To see this, we calculate in the ring Z[ζp]. Define π ∈ Z[ζp] by

1 + π = ζp.

Then ordp(π) = 1/(p− 1), and modulo pZ[ζp] this sum is congruent to∑
x∈F×

p

x(p−1)/2(1 + π)x
7/7+2x5/5+x3/3.
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Expanding by the binomial theorem, this sum is congruent mod π3

to∑
x∈F×

p

x(p−1)/2[1+(x7/7+2x5/5+x3/3)π+Binom(x7/7+2x5/5+x3/3, 2)π2].

The sum
∑

x∈F×
p
x(p−1)/2 vanishes in Fp.

If p = 13 the coefficient of π is∑
x∈F×

p

x(p−1)/2(x7/7 + 2x5/5 + x3/3) =

=
∑
x∈F×

13

x6(x7/7 + 2x5/5 + x3/3) =
∑
x∈F×

13

(x13/7 + x11/5 + x9/3),

which vanishes in Fp, since each of the exponents 13, 11, 9 is nonzero
mod p− 1 = 12. So mod π3, our sum is

π2
∑
x∈F×

p

x(p−1)/2(x7/7 + 2x5/5 + x3/3)2/2 =

= π2
∑
x∈F×

p

(x12/18 + 2x14/15 + 67x16/525 + 2x18/35 + x20/98).

Of the exponents 12, 14, 16, 18, 20, only 12 is zero mod p − 1 = 12, so
mod π3 our sum is

π2
∑
x∈F×

p

(1/18) = 5π2.

Thus for p = 13, our sum has ordp = 2/(p− 1) = 1/6.
If p = 11, already the coefficient of π is∑

x∈F×
p

x(p−1)/2(x7/7 + 2x5/5 + x3/3) =

=
∑
x∈F×

11

x5(x7/7 + 2x5/5 + x3/3) =
∑
x∈F×

11

(x12/7 + 2x10/5 + x8/3),

and here, of the exponents 12, 10, 8 only 10 is zero mod p− 1 = 10, so
mod π2 our sum is

π
∑
x∈F×

11

(2/5) = 4π.

Thus for p = 11, our sum has ordp = 1/(p− 1) = 1/10.
This concludes the proof that F is Lie-irreducible. �
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Theorem 4.3. Suppose that either p ≥ 17 or p = 11. Then for
any finite field k of characteristic p, any nontrivial additive charac-
ter ψ of k, and any b ∈ k, the local system FT ((−1/g)degLχ2(x) ⊗
Lψ(x7/7+2bx5/5+b2x3/3)), whose trace function is

t ∈ k 7→ (1/g)
∑
x∈k

χ2(x)ψ(x7/7 + 2bx5/5 + b2x3/3 + tx),

has Ggeom = Garith = G2.

Proof. For p ≥ 17, our FT is Lie-irreduclble (by the “p > 2n + 1”
argument) and, as a pullback of F , has Ggeom ⊂ Garith ⊂ G2. Then
G0
geom is a connected irreducible subgroup of G2. By Gabber’s theorem,

it is either G2 or it is the image SO3 of SL2 in G2 by Sym6(std2). As
both these candidates are their own normalizers in G2, Ggeom is either
G2 or the image of SL2. The SL2 case is ruled out by Lemma 3.1.

For p = 11, our pullback is either Lie-irreducible or has finite Ggeom

[Ka-NG2, 3.5]. which is then a finite irreducible (in the ambient seven-
dimensional representation) subgroup of G2. Moreover it is a primitive
subgroup, simply because in characteristic 11 > 7, A1/Fp has no con-
nected finite etale coverings of degree 7. Because our pullback has some
strictly positive I∞-slopes, the wild inertia group P∞ acts nontrivially,
and hence

11|#Ggeom.

But the primitive finite irreducible subgroups of G2 have been classified
by Cohen-Wales [C-W, Theorem page 449], and none of them has order
divisible by 11. �

5. Sawin’s analysis of the situation in characteristic 13

The situation in characteristic p = 13 is more subtle, because we
know that when b = 0, the FT in question has finiteGgeom = PSL(2,F13),
[Ka-NG2, 4.13]. However Will Sawin has proven the following theorem.

Theorem 5.1. (Sawin) For any finite field k of characteristic 13, any
nontrivial additive character ψ of k, and any nonzero b ∈ k×, the local
system

FT ((−1/g)degLχ2(x) ⊗ Lψ(x7/7+2bx5/5+b2x3/3)),

whose trace function is

t ∈ k 7→ (1/g)
∑
x∈k

χ2(x)ψ(x7/7 + 2bx5/5 + b2x3/3 + tx),

has Ggeom = Garith = G2.
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Proof. Fix b ∈ k×. Exactly as in the proof of Theorem 4.3 above, it
suffices to show that our FT is Lie-irreducible. If not, then its Ggeom

is a finite primitive (because 13 > 7) irreducible subroup, call it Γ, of
G2. Because our pullback has some strictly positive I∞-slopes, the wild
inertia group P∞ acts nontrivially, and hence

13|#Ggeom.

By the classification of Cohen-Wales, the only possibility for Γ is PSL(2,F13).
The key point is that the order of PSL(2,F13) is not divisible by 132.
Sawin shows that, because b 6= 0, the order of the image of P∞ is di-
visible by 132. This is a special case of the following theorem of his,
applied with n = 7 and p = 13. �

Theorem 5.2. (Sawin)Let n be an integer n ≥ 3, k a finite field
of characteristic p > n, and ψ a nontrivial additive character of k.
Let f(x) ∈ k[x] be a polynomial of degree n with f(0) = 0 which is
not of the form αxn + βx. Let χ be a (possibly trivial) multiplicative
character of k×. Then the image of P∞ in the I∞ representation of
FT (Lψ(f(x)) ⊗ Lχ(x)) has order divisible by p2.

Proof. At the expense of replacing f by a k× multiple of itself, we may
assume ψ comes from (by composition with the trace) a nontrivial
additive character of Fp. Let us write

f(x) = anx
n + an−tx

n−t + lower terms,

with 1 ≤ t ≤ n− 2 and an−t 6= 0. Passing to a finite extension of k, we
may take the n’th root of −nan, say

−nan = λn.

Making the change of variable x 7→ x/λ, we are reduced to the case
when f has the form

f(x) = −xn/n− an−txn−t + lower terms,

with some new nonzero an−t We then apply a result of Lei Fu, [Fu, part
(ii) of Theorem 0.1] (his α(t) is our f(x) and his (s, r) are our (n, 1))
according to which the wild part of the I∞-representation of this FT
is an explicit direct image by − d

dx
(f(x)), namely it is

[− d

dx
(f(x))]?(Lψ(f(x)−x d

dx
(f(x))) ⊗ Lχ(x) ⊗ Lχ(−(n−1)xn/2)).

Now we try to write − d
dx

(f(x)) as a n− 1’st power. We have

− d

dx
(f(x)) = xn−1 + (n− t)an−txn−1−t + lower terms =
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= xn−1(1 +
(n− t)an−t

xt
+ higher terms in 1/x).

We wish to find a new formal parameter 1/w at ∞, with

wn−1 =
d

dx
(f(x)) = xn−1(1 +

(n− t)an−t
xt

+ higher terms in 1/x).

We simply take the n− 1’st root:

w := x(1 +
(n− t)an−t/(n− 1)

xt
+ higher terms in 1/x).

In terms of w, we have

x = w(1− (n− t)an−t/(n− 1)

wt
+ higher terms in 1/w).

We now write f(x)− x d
dx

(f(x)) in terms of w. We have

f(x)− x d
dx

(f(x)) =
(n− 1)xn

n
+ (n− t− 1)an−tx

n−t + lower terms,

which in terms of w is

(n− 1)wn

n
[1−n(n− t)an−t/(n− 1)

wt
+higher terms in 1/w]+(n−t−1)an−tw

n−t+...

=
(n− 1)wn

n
− an−twn−t + less polar at ∞.

The key point is that this is of the form

αxn + βxn−t + less polar at ∞
with both α, β nonzero.

In terms of w, then, the wild part of the I∞-representation is (de-
noting by [n− 1] the n− 1’st power map),

[n− 1]?(Lψ(αwn+βwn−t+less polar at ∞) ⊗ (rank one and tame at ∞))

with both α, β nonzero. The image of P∞ does not change if we pass
to the [n− 1] pullback, which, restricted to P∞, is the direct sum⊕

ζ∈µn−1(k)

Lψ(α(ζw)n+β(ζw)n−t+less polar at ∞).

For the image of P∞ to have order p, the polynomials α(ζw)n+β(ζw)n−t,
indexed by ζ ∈ µn−1(k), would each need to be Fp multiples of αwn +
βwn−t. But as 1 ≤ t ≤ n− 2, if we take for ζ a primitive n− 1’st root
of unity, the two polynomials

αwn + βwn−t and ζnαwn + ζn−tβwn−t

are not k-proportional (simply because ζt 6= 1). �
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6. The situation in characteristic p = 7, 5, 3

For p one of 7, 5, 3, denote by W2 the ring scheme of p-Witt vectors
of length 2. Let k be a finite field of characteristic p, and

ψ2 : W2(k) � µp2(Z[ζp2 ]).

a character of order p2 of the additive group of W2(k). Then

x ∈ k 7→ ψ2(0, x) := ψ(x)

is a nontrivial additive character of k (and every nontrivial additive
character of k is of this form).

For p = 7, we have the local system F on A2/k with coordinates B, t
whose trace function is

(B, t) 7→ (1/g)
∑
x∈k

χ2(x)ψ2(x, 0)ψ(2Bx5/5 +B2x3/3 + tx)

for (B, t) ∈ k2, g being the above gauss sum g(ψ, χ2), with the usual
variant for a finite extension K/k and (B, t) ∈ K2 (namely the sum
is over x ∈ K, χ2 is replaced by χ2,K and ψ2 , respectively ψ are
replaced by their compositions with TraceK/k from W2(K) to W2(k),
respectively from K to k).

This local system F is pure of weight zero, geometrically irreducible
and self dual (its trace is R-valued). As its rank, 7, is odd, the autod-
uality is orthogonal, and hence

Ggeom ⊂ Garith ⊂ O7.

Theorem 6.1. In characteristic 7, the local system F has M3 = 1,
and Frobk acts on H4

c (A2 ⊗k k,F⊗3)(2) as 1.

Proof. The proof that M3 = 1 is identical to the proof of Theorem
4.1(the first one), using the exceptional identities. Once M3 = 1, then
the H4 has dimension one, so Frobk acts on it as a unitary scalar. This
scalar lies in Q(ζp2) (Galois invariance of the L-function, and isolation
of its highest weight part) and is an λ-adic unit for all places λ of
Q(ζp2) not over p. So by the product formula for Q(ζp2), it is be a unit
in Z[ζp2 ] all of whose archimedean absolute values are 1, hence is a root
of unity of order dividing 2p2. So we can recover it as the archimedean
limit of the empirical M3 calculated over those extensions of k whose
degrees over k are congruent to 1 modulo 2p2. The calculation of the
empirical M3 shows that this limit is 1. �

Theorem 6.2. In characteristic 7, the local system F has

Ggeom = Garith = G2.
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Proof. Suppose first that F is Lie-irreducible. Then (as in the proof of
Theorem4.2) by Gabber’s theorem, G0

geom is either G2 or Sym6(SL2):=
the image of SL2 in SO7. The normalizer of either of these groups
G in O7 is ±G. So Ggeom is either G2 or ±G2, or Sym6(SL2) or
±Sym6(SL2). Of these four groups, only G2 and Sym6(SL2) have
M3 = 1, the other two have M3 = 0. Since M3 = 1 for Garith, the
same argument shows that Garith is either G2 or Sym6(SL2). Because
Ggeom is a normal subgroup of Garith, we have the same dichotomy as
in Theorem earlier, either

Ggeom = Garith = the image in SO7 of SL2

or we have

Ggeom = Garith = G2.

We rule out the SL2 case by Lemma 3.1.
It remains to show that F is Lie-irreducible. For this it suffices to find

a pullback FB=b0 which is Lie-irreducible. We will use the “low ordinal”
method to show that FB=0 is Lie-irreducible. For this we first reduce
to the case when k is Fp. Fix a character ψ2,Fp of W2(Fp) ∼= Z/p2Z of
order p2, so of the form

x ∈ Z/p2Z 7→ ζxp2

for a fixed primitive p2’th root of unity ζp2 . We denote by ψFp the
attached addtive character of Fp,

ψFp(x) := ψ2,Fp(0, x)

which is just x 7→ ζxp for ζp := ζpp2 . We denote by ψk,Fp the character
ψFp ◦ Tracek/Fp of k.

We denote by ψ2,k,Fp the character of W2(k) which is ψ2,Fp ◦Tracek/Fp .
For a unique element (α, β) ∈ W2(k)×, the character ψ2 is of the form

(x, y) 7→ ψ2,k,Fp((α, β)(x, y)).

In Witt vector multiplication, we have

(α, β)(x, y) = (αx, βxp + αpy).

The trace function of the pullback sheaf FB=0 is

t ∈ k 7→ (1/g)
∑
x∈k

χ2(x)ψ2(x, 0)ψ(tx) = (1/g)
∑
x∈k

χ2(x)ψ2(x, tx) =

= (1/g)
∑
x∈k

χ2(x)ψ2,k,Fp((α, β)(x, tx)) = (1/g)
∑
x∈k

χ2(x)ψ2,k,Fp(αx, βxp+αptx).
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Replacing k if necessary by its quadratic extension, we may further
assume that α is a square in k×. After the change of variable x 7→ x/α,
the trace function becomes

(1/g)
∑
x∈k

χ2(x/α)ψ2,k,Fp(x, (β/αp)xp + αp−1tx) =

= (1/g)
∑
x∈k

χ2(x)ψ2,k,Fp(x, 0)ψ2,k,Fp(0, (β1/p/α) + αp−1t)x),

which is the the pullback by an affine transformation on the t-line of

t 7→ (1/g)
∑
x∈k

χ2(x)ψ2,k,Fp(x, 0)ψ2,k,Fp(0, tx).

This is the trace function of the pullback to A1/k of the corresponding
Fourier Transform on A1/Fp.

When k is Fp, we use the “low ordinal” method. It suffices to show
that the sum ∑

x∈Fp

χ2(x)ψ2,Fp(x, 0)

has ordp < 1/2. This sum, the “Gauss-Heilbron sum”, is

p−1∑
x=1

χ2(x)ζx
p

p2 .

If we write
ζp2 = 1 + πp2 , ζpp2 = 1 + πp,

then our sum is congruent, modulo πpZ[ζp2 ], to

p−1∑
x=1

x(p−1)/2(1 + πp2)
x.

Expanding (1 + πp2)
x by the binomial theorem, we see that this last

sum, modulo pZp[ζp2 ], starts in degree (p−1)/2 as a series in πp2 , so has
ordp = 1/(2p) < 1/2. This concludes the proof that F is Lie-irreducible
in characteristic p = 7. �

Theorem 6.3. Let k be a finite field of characteristic p = 7, and ψ2

an additive character of W2(k) of order p2. For any b ∈ k, the pullback
local system FB=b on A1/k, whose trace function is

t ∈ k 7→ (1/g)
∑
x∈k

χ2(x)ψ2(x, 0)ψ(2bx5/5 + b2x3/3 + tx),

has
Ggeom = Garith = G2.
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Proof. This pullback, being itself a Fourier transform, is geometrically
irreducible, and its ∞-slopes are

{0, 7/6 repeated 6 times},
cf. the discussion preceeding Lemma 3.1. Being a pullback of F , it has

Ggeom ⊂ Garith ⊂ G2.

Admit for the moment that this pullback is Lie-irreducible. Then by
Gabber’s theorem, Ggeom is either G2 or it is Sym6(SL2). The second
possibility is ruled out by Lemma 3.1.

It remains to show that our pullback is Lie-irreducible. If not, its
Ggeom is a finite irreducible subgroup of G2, whose order must be di-
visible by 7 (because it has some ∞-slopes which are > 0). From the
Cohen-Wales classification, we see that there are no finite irreducible
subgroup of G2 whose order is divisible by 72. So it suffices to show
that the image of the wild inertia group P∞ has order divisible by 72.
To see this, denote by M the wild part of the I∞-representation of
our pullback. We apply [Ka-GKM, 1.14] with its (a, n) = (7, 6) in
characteristic 7 to conclude that

M = [n]?V

for a one-dimensional representation V of I∞ whose Swan conductor
is p = 7. In characteristic p, for any one-dimensional representa-
tion of I∞ of Swan conductor p, its restriction to P∞ has order p2

(and, more generally, if the Swan conductor is strictly positive and has
ordp(Swan) = r, then its restriction to P∞ has order pr+1). Therefore
V is a direct summand of

[n]?M = [n]?[n]?V =
⊕

ζ∈µn(k)

[x 7→ ζx]?V.

But the image of P∞ on M is the same as its image on [n]?M . This last
image has order divisible by p2, this already being true for the direct
factor V . �

We now turn to the situation in characteristic p = 5. We fix a finite
field k of characrteristic p = 5, and a character ψ2 of order p2 of the
additive group of W2(k). We denote by F the local system on A2/k
with coordinates (B, t) whose trace function is given by

(B, t) ∈ A2(k) 7→ (1/g)
∑
x∈k

χ2(x)ψ(x7/7 +B2px3/3 + tx)ψ2(2Bx, 0).

Theorem 6.4. In characteristic p = 5, the local system F has

Ggeom = Garith = G2.
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Proof. We first observe that we have Garith ⊂ SO7. Indeed, F is ge-
ometrically irreducible (becase any pullback FB=b0 is, being a Fourier
Transform), orthogonally self dual (real trace, odd rank), so its de-
terminant, being lisse on A2/k of order two, must be geometrically
constant. So it suffices to check for the pullback FB=0, and here we in-
voke [Ka-NG2, 1.7]. We then show that M3 = 1. This results from the
exceptional identities, with the slight diffference that what previously
had been the term (B + F2(x, y))2 here becomes (Bp + F2(x, y))2, In
the sum over (B, x, y), we can replace Bp by B, and proceed as in the
proof of Theorem 4.1.

It then remains only to show that F is Lie-irreducible. For this,
it suffices to show that the pullback FB=0 is Lie-irreducible. This is
shown in [Ka-NG2, 4.12]. �

Theorem 6.5. In characteristic p = 5, for any b ∈ k, the pullback
local system FB=b on A1/k, whose trace function is

t ∈ k 7→ (1/g)
∑
x∈k

χ2(x)ψ(x7/7 + b2px3/3 + tx)ψ2(2bx, 0).

has
Ggeom = Garith = G2.

Proof. Exactly as in the proof of Theorem 6.3 (the p=7 case), we need
only rule out the possibility that Ggeom is a finite irreducible subgroup
of G2. From the wild inertia at ∞, this finite irreducible subgroup of
G2 would have order divisible by p = 5, The Cohen-Wales classification
shows there are no such subgroups. �

We now turn to the situation in characteristic p = 3. We fix a finite
field k pf characteristic p = 3, and a character ψ2 of order p2 of the
additive group of W2(k). We denote by F the local system on A2/k
with coordinates (B, t) whose trace function is given by

(B, t) ∈ A2(k) 7→ (1/g)
∑
x∈k

χ2(x)ψ(x7/7 + 2Bpx5/5 + tx)ψ2(B
2x, 0).

Just as in the proof of Theorem 6.4, we see that Garith ⊂ SO7, and,
using the exceptional identities, that M3 = 1.

Theorem 6.6. For p = 3,the local system F on A2/k has

Ggeom = Garith = G2.

Proof. As we have seen above, it suffices to show that F is Lie-irreducible.
For this, it suffices to exhibit a pullback which is Lie-irreducible. For
this, we first reduce to the case when k is the prime field F3. Just as in
the proof of Theorem 6.2, we choose a character ψ2,Fp of order p2 of the
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additive group of W2(Fp) ∼= Z/9Z. We denote by ψ2,k,F3 the character
of W2(k) obtained by composition with the trace. Similarly, we denote
by ψk,Fp the additive character of k obtained from x 7→ ψ2,Fp(0, x) by
composition with the trace.

For a unique element (α0, β) ∈ W2(k)×, the given character ψ2 is of
form

ψ2(x, y) = ψ2,k,Fp((α0, β)(x, y)) = ψ2,k,Fp(α0x, α
p
0y + βxp).

At the expense of replacing k by a finite extension, we may assume
that α0 is itself a seventh power, say

α0 = α7,

and that α itself is a square in k×. Then our local system has trace
function

(B, t) 7→ (1/g)
∑
x∈k

χ2(x)ψ2,Fp,k((α
7, β)(B2x, x7/7 + 2Bpx5/5 + tx) =

= (1/g)
∑
x∈k

χ2(x)ψ2,Fp,k(α
7B2x, 0)ψ2,k,Fp(0, α7p(x7/7+2Bpx5/5+tx)+βB2pxp).

After the change of variable x 7→ x/αp = x/α3, this sum becomes

(1/g)
∑
x∈k

χ2(x)ψ2,Fp,k(α
4B2x, 0)ψk,Fp(x7/7+2α6B3x5/5+((α6pt+β1/pB2)x).

Now choose B = 1/α2. Then we have the pullback, by the affine linear
transformation t 7→ α6pt+ β1/pB2 of t, of the Fourier Transform of the
pullback from A1/F3 to A1/k of

(−1/g)degLχ2(x) ⊗ Lψ2,F3 (x,0)
⊗ LψF3 (x

7/7+2x5/5).

To see that this is Lie-irreducible, we use the “low ordinal” method. It
suffices to show that at t = 0, our sum∑

x∈F3

χ2(x)ψ(x7/7 + 2x5/5)ψ2(x, 0)

has ordp < 1/2. This sum has only two terms: it is

χ2(1)ψ(1/7 + 2/5)ψ2(1, 0) + χ2(−1)ψ(−1/7− 2/5)ψ2(−1, 0) =

= ζ23ζ9 − ζ−23 ζ−19 =

= ζ79 − ζ−79 = ζ79 − ζ29 = −ζ29 (1− ζ59 ),

which has ord3 = 1/6 < 1/2. �

It is proven in [Ka-NG2, 4.15] that for for b = 0, the pullback FB=0

onA1/k has finite Ggeom = U3(3) in Atlas [CCNPW-Atlas] notation.
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Theorem 6.7. For any finite field k of characteristic p = 3, any addi-
tive character ψ2 of W2(k), and any nonzero b 6= 0 in k×, the pullback
sheaf FB=b, whose trace function is

t ∈ k 7→ (1/g)
∑
x∈k

χ2(x)ψ(x7/7 + 2b3x5/5 + tx)ψ2(b
2x, 0),

has

Ggeom = Garith = G2.

Proof. As above, it suffices to prove that such a pullback is Lie-irreducible.
If not, its Ggeom is a finite irreducible subgroup of G2. The wild part of
its I∞-representation has rank six, with all six slopes = 7/6. Because
p = 3 divides the rank 6, the restriction to the wild inertia group P∞ is
the direct sum of two three-dimensional irreducible representations of
P∞, cf. [Ka-GKM, 1.14]. The image of P∞ in either of these represen-
tations is a p-group, whose order must be at least p3, simply because
groups of order p or p2 are abelian. Therefore if Ggeom is finite, its
order is divisible by p3 = 33. In the Cohen-Wales classification of finite
irreducible subroups of G2, only U3(3) and G2(2) have orders divisible
by 33. The group G2(2) cannot occur, because it contains U3(3) as a
normal subgroup of index 2, so admits a surjective homomorphism to
Z/2Z. By pre-composing with the surjection of π1(A1/F3) onto Ggeom,

we would obtain Z/2Z as a quotient of π1(A1/F3)s, which is nonsense.
Thus if Ggeom is finite, it is U3(3). Moreover, the normalizer of U3(3)
in G2 is G2(2), so if Ggeom is finite, then Garith is either U3(3) or it is
G2(2).

The unique orthogonal seven-dimensional irreducible representation
of U3(3) has integer traces, as do both orthogonal seven-dimensional
irreducible representations of G2(2). So if Ggeom is finite, then all the
traces of our pullback are integers. In particular, they all lie in Q(ζ3)
(rather than in the larger field Q(ζ9) which obviously contains them).
This will lead to a congradiction, as follows.

The galois group of Q(ζ9)/Q(ζ3) is the cyclic group of order three
generated by ζ9 7→ ζ49 . In W2(F3) ∼= Z/9Z, the element 4 ∈ Z/9Z is
the Witt vector (1, 1). So the image of the trace at time t ∈ k,

(1/g)
∑
x∈k

χ2(x)ψ(x7/7 + 2b3x5/5 + tx)ψ2(b
2x, 0),

under the automorphism ζ9 7→ ζ49 is simultaneously equal to itself (be-
cause it lies in Q(ζ3)) and equal to

(1/g)
∑
x∈k

χ2(x)ψ(x7/7 + 2b3x5/5 + tx)ψ2((1, 1)(b2x, 0)) =
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= (1/g)
∑
x∈k

χ2(x)ψ(x7/7 + 2b3x5/5 + tx)ψ2(b
2x, b6x3) =

= (1/g)
∑
x∈k

χ2(x)ψ(x7/7 + 2b3x5/5 + tx+ b6x3)ψ2(b
2x, 0) =

= (1/g)
∑
x∈k

χ2(x)ψ(x7/7 + 2b3x5/5 + (t+ b2)x)ψ2(b
2x, 0).

This is the trace function of the additive translation t 7→ t + b2 of
our pullback. By Chebotarev, this pullback, being arithmetically irre-
ducible, is isomorphic to it additive translate by t 7→ t+ b2. In partic-
ular, this pullback is geometrically isomorphic to its additive translate
by t 7→ t+ b2. On the Fourier Transform side, this says that

K := Lχ2(x) ⊗ Lψ(x7/7+2b3x5/5) ⊗ Lψ2(b2x,0)

is geometrically isomorphic on Gm/F3 to

K ⊗ Lψ(b2x) = Lχ2(x) ⊗ Lψ(x7/7+2b3x5/5+b2x) ⊗ψ2(b2x,0)) .

This says that Lψ(b2x) is geometrically constant on Gm/F3, which is
nonsense, as it has Swan conductor one at ∞. �

7. An Open Question

In characteristic p ≥ 17, suppose fB,C(x) := x7/7 + 2Bx5/5 +Cx3/3
is a polynomial such that the Ggeom of the Fourier Transform of Lχ2(x)⊗
Lψ(fB,C(x)) is G2. Is it true that C = B2?
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