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Abstract. This is Part III of the paper “Witt vectors and a ques-
tion of Keating and Rudnick” [Ka-WVQKR]. We prove equidistri-
bution results for the L-functions attached to “super-even” char-
acters of the group of truncated “big” Witt vectors, and for the
L-functions attached to the twists of these characters by the qua-
dratic character.

1. Introduction: the basic setting

We work over a finite field k = Fq of characteristic p inside a fixed

algebraic closure k, and fix an odd integer n ≥ 3. We form the k-
algebra

B := k[X]/(Xn+1).

Following Rudnick and Waxman, we say that a character

Λ : B× → C×

is “super-even” if it is trivial on the subgroup B×even := (k[X2]/(Xn+1))×

of B×.
If Λ is nontrivial and super-even, one defines its L-function L(A1/k,Λ, T ),

a priori a formal power series, by

L(A1/k,Λ, T ) := (1− T )−1
∏

P monic irreducible
P (0)6=0

(1− Λ(P )T degP )−1,

where the product is over all monic irreducible polynomials P ∈ k[X]
other than X. In fact it is a polynomial. For Λ primitive (see §2), it
is a polynomial of degree n− 1, and there is a unique conjugacy class
θk,Λ in the compact symplectic group USp(n− 1) such that

det(1− Tθk,Λ) = L(A1/k,Λ, T/
√
q).

The question of the distribution of the symplectic conjugacy classes
θk,Λ attached to variable super-even characters arises in the work of
Rudnick and Waxman on (the variance in) a function field analogue of
Hecke’s theorem that Gaussian primes are equidistributed in angular
sectors.
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We will show (Theorem 5.1) that for odd n ≥ 7, in any sequence of
finite fields ki of cardinalities tending to∞ , the collections of conjugacy
classes

{θki,Λ}Λ primitive super−even

become equidistributed in the space USp(n−1)# of conjugacy classes
of USp(n − 1) for its induced Haar measure. For n = 3, 5 we need to
exclude certain small characteristics, see §5.

Our second set of results deals with equidistribution in orthogonal
groups. When the field k has odd characteristic, there is a quadratic
character χ2 of k×, which induces a quadratic character χ2 of B× given
by f 7→ χ2(f(0)). Given a super-even primitive character Λ mod T n+1

as above, we form the L-function L(Gm/k, χ2Λ, T ) and get an associ-
ated conjugacy class θk,χ2Λ in the compact orthogonal group O(n,R).
A natural question, although one which does not (yet) have applica-
tions to function field analogues of classical number-theoretic results, is
whether these orthogonal conjugacy classes are suitably equidistributed
in the compact orthogonal group.

We show (Theorem 7.1) that for a fixed odd integer n ≥ 5, in any
sequence ki of finite fields of odd cardinalities tending to infinity, the
conjugacy classes

{θki,χ2Λ}Λ primitive super−even

become equidistributed in the space O(n,R)# of conjugacy classes
of O(n,R). The same result holds for n = 3 if we restrict the charac-
teristics of the finite fields to be different from 5.

With these two results about symplectic and orthogonal equidistri-
bution established, a natural question is what one can say about the
joint distribution.

We also show (Theorem 8.1) that the classes θk,Λ and θk,χ2Λ are
independent, in the following sense. Fix an odd integer n ≥ 5. In any
sequence ki of finite fields of odd cardinalities tending to infinity, the
collections of pairs of conjugacy classes

{(θki,Λ, θki,χ2Λ}Λ primitive super−even

become equidistributed in the space USp(n−1)#×O(n,R)# of con-
jugacy classes of the product USp(n − 1) × O(n,R). The same result
holds for n = 3 if we restrict the characteristics of the finite fields to
be different from 5.

This last result does not yet have applications to function field ana-
logues of classical number-theoretic results, but is an instance of a
natural question having a nice answer.
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2. The situation in odd characteristic

Throughout this section, we suppose that k has odd characteristic p.
Then B×even is the subgroup of B× consisting of those elements which
are invariant under X 7→ −X.

Let us denote by B×odd ⊂ B× the subgroup of elements f(X) ∈ B×
with constant term 1 which satisfy f(−X) = 1/f(X) in B×.

Lemma 2.1. (p odd) The product B×even × B×odd maps isomorphically
to B× by the map (f, g) 7→ fg.

Proof. We first note that this map is injective. For if g = 1/f then
g is both even and odd and hence g(−X) is both g(X) and 1/g(X).
Thus g2 = 1 in B×. But the subgroup of elements of B× with constant
term 1 is a p-group. By assumption p is odd, hence g = 1. To see
that the map is surjective, note first that B×even contains the constants
k×. So it suffices to show that the image contains every element of B×

with constant term 1. This last group being a p-group, it suffices that
the image contain the square of every such element. This results from
writing

h(X)2 = [h(X)h(−X)][h(X)/h(−X)].

�

Recall from [Ka-WVQKR, & 2] that the quotient group B×/k× is,
via the Artin-Hasse exponential, isomorphic to the product∏

m≥1 prime to p, m≤n

W`(m,n)(A),

with `(m,n) the integer defined by

`(m,n) = 1 + the largest integer k such that mpk ≤ n.

Via this isomorphism, the quotient B×/B×even
∼= B×odd becomes the sub-

product ∏
m≥1 prime to p, m≤n, m odd

W`(m,n)(A).

Under these isomorphisms, the map from A1(k) to B×/k×, t 7→
1− tX, becomes the map

1− tX 7→
∏

m≥1 prime to p, m≤n

(tm, 0, ..., 0) ∈ W`(m,n)(A),

and its projection to B×odd becomes the map

1− tX 7→
∏

m≥1 prime to p, m≤n, m odd

(tm, 0, ..., 0) ∈ W`(m,n)(A).
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Any super-even character takes values in the subfield Q(µp∞) ⊂ C.

We choose a prime number ` 6= p, and an embedding of Q(µp∞) ⊂ Q`.

This allows us to view Λ as taking values in Q`
×

, and will allow us to
invoke `-adic cohomology.

Corollary 2.2. (p odd) For Λ a super-even character of B×, and
LΛ(1−tX) the associated lisse rank one Q`- sheaf on A1/k, we have

LΛ2(1−tX)
∼= LΛ((1−tX)/(1+tX)).

Proof. Indeed, we have

Λ2(1− tX) = Λ((1− tX)2)

= Λ([(1− tX)(1 + tX)][(1− tX)/(1 + tX)])

= Λ((1− tX)/(1 + tX)),

the last equality because Λ is super-even. �

Recall that a character Λ of B× is called primitive if it is nontrivial
on the subgroup 1 + kXn. The Swan conductor Swan(Λ) of Λ is the
largest integer d ≤ n such that Λ is nontrivial on the subgroup 1+kXd.
One knows [Ka-WVQKR, Lemma 1.1] that the Swan conductor of Λ is
equal to the Swan conductor at∞ of the lisse, rank one sheaf LΛ(1−tX)

on the affine t-line.
When Λ is a nontrivial super-even character, its Swan conductor is

an odd integer 1 ≤ d ≤ n. Its L-function on A1/k is given by

det(1− TFrobk|H1
c (A1 ⊗k k,LΛ(1−tX))),

a polynomial of degree d − 1, which is “pure of weight one”. In other

words, it is of the form
∏Swan(Λ)−1

i=1 (1− βiT ) with each βi an algebraic
integer all of whose complex absolute values are

√
q.

Lemma 2.3. (p odd) Suppose Λ is a nontrivial super-even character.

1 The lisse sheaf LΛ(1−tX) is isomorphic to its dual sheaf LΛ(1−tX);

indeed it is the pullback [t 7→ −t]?(LΛ(1−tX)) of its dual.
2 The resulting cup product pairing

H1
c (A1 ⊗k k,LΛ(1−tX))×H1

c (A1 ⊗k k,LΛ(1−tX))

→ H2
c (A1 ⊗k k,Q`) ∼= Q`(−1)

given by

(α, β) 7→ α ∪ [t 7→ −t]?(β)

is a symplectic autoduality.
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Proof. As the group B×odd is a p-group, its character group is a p-group,
so every super-even character has a unique square root. So for [1] it
suffices to treat the case of Λ2, in which case the assertion is obvious
from Corollary 2.2 above. For [2], we note first that both our L’s
are totally wildly ramified at ∞, so for each the forget supports map
H1
c → H1 is an isomorphism. Thus the cup product pairing is an

autoduality. Viewed inside the the H1 of C, the cohomology group in
question is the Λ-isotypical component of the H1 of C. The fact that
the pairing is symplectic then results from the fact that cup-product
is alternating on H1 of C; cf. [Ka-MMP, 3.10.1-2] for an argument of
this type. �

For Λ primitive and super-even, we define a conjugacy class θk,Λ
in the compact symplectic group USp(n − 1) in terms of its reversed
characteristic polynomial by the formula

det(1− Tθk,Λ) = L(A1 ⊗k k,LΛ(1−tX))(T/
√
q).

We next recall how to realize these conjugacy classes in an algebro-
geometric way. For each integer r ≥ 1, choose a faithful character
ψr : Wr(Fp) ∼= Z/prZ→ µpr . For convenience, choose these characters
so that under the maps x 7→ px of Z/prZ to Z/pr+1Z, we have

ψr(x) = ψr+1(px).

[For example, take ψr(x) := exp(2πix/pr).]
Every character of Wr(k) is of the form

w 7→ ψr(TraceWr(k)/Wr(Fp)(aw))

for a unique a ∈ Wr(k). We denote this character ψr,a.
A super-even character Λ of B×, under the isomorphism

B×odd
∼=

∏
m≥1 prime to p, m≤n, m odd

W`(m,n)(k),

becomes a character of
∏

m≥1 prime to p, m≤n, m odd W`(m,n)(k), where it
is of the form

(w(m))m 7→
∏
m

ψ`(m,n),a(m)(w(m))

for uniquely defined elements a(m) ∈ W`(m,n)(k).
The lisse sheaf LΛ(1−tX) on A1/k thus becomes the tensor product

LΛ(1−tX)
∼= ⊗mLψ`(m,n)(a(m)(tm,0′s)),

over the m ≥ 1 prime to p, m ≤ n, m odd.
Recall from [Ka-WVQKR, Lemma 3.2] the following lemma, which

will be applied here to super-even characters Λ.
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Lemma 2.4. (p odd) Write the odd integer n = n0p
r−1 with n0 prime

to p and r ≥ 1. Then we have the following results about a super-even
character Λ of B×.

(1) We have Swan∞(⊗mLψ`(m,n)(a(m)(tm,0′s))) = n if and only if the

Witt vector a(n0) ∈ W`(n0,n)(k) = Wr(k) has its initial compo-
nent a(n0)0 ∈ k×.

(2) We have Swan∞(LΛ(1−tX)) = n if and only if Λ is a primitive
super-even character of B×

We continue with our odd n ≥ 3 written as n = n0p
r−1 with n0

prime to p and r ≥ 1. As explained above, the sheaves LΛ(1−tX) with
Λ primitive are exactly the sheaves

⊗mLψ`(m,n)(a(m)(tm,0′s))

for which the Witt vector a(n0) ∈ W`(n0,n)(k) = Wr(k) has its initial
component a(n0)0 ∈ k×. Let us denote by

W×
r ⊂ Wr

the open subscheme of Wr defined by the condition that the initial
component a0 be invertible.

Let us denote by W the product space
∏

m≥1 prime to p, m≤n, m oddW`(m,n).

Thus W is a unipotent group over Fp, with W(k) = B×odd, whose k-
valued points are the super-even characters of B×.

On the space A1 ×k W, with coordinates (t, (a(m)m), we have the
lisse rank one Q`-sheaf

Luniv, odd := ⊗mLψ`(m,n)(a(m)(tm,0′s)).

Denoting by

pr2 : A1 ×k W→W
the projection on the second factor, we form the sheaf

Funiv, odd := R1(pr2)!(Luniv, odd)

on W. This is a sheaf of perverse origin in the sense of [Ka-SMD].
For E/k a finite extension, and Λ((a(m))m a super-even nontrivial

character of (E[X]/(Xn+1))× given by a nonzero point a = (a(m))m ∈
W(E), we have

det(1− TFrobE,((a(m))m)|Funiv, odd) =

det(1− TFrobE, H1
c (A1 ⊗k k,LΛ((a(m))m (1−tX)) =

= L(A1/E,Λ((a(m))m)(T ).
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Let us denote by

Primn,odd ⊂
∏

m≥1 prime to p, m≤n, m odd

W`(m,n)

the open set defined by the condition that the n0 component lie in W×
r .

Exactly as in [Ka-WVQKR], we see that the restriction of Funiv, odd to
Primn,odd is lisse of rank n − 1, pure of weight one. By Lemma 2.3

above, it is symplectically self-dual toward Q`(−1). Moreover, the
Tate-twisted sheaf Funiv, odd(1/2), restricted to Primn,odd, is pure of
weight zero and symplectically self dual.

We now state an equicharacteristic version of our equidistribution
theorem in odd characteristic.

Theorem 2.5. Suppose either

(1) n ≥ 3 and p ≥ 7
or

(2) n ≥ 7 and p ≥ 3
or

(3) n = 3 and p = 3
or

(4) n = 5 and p = 3 or p = 5.

The geometric and arithmetic monodromy groups of the lisse sheaf
Funiv, odd(1/2)|Primn,odd are given by Ggeom = Garith = Sp(n− 1).

3. Analysis of the situation in characteristic 2, and a
variant situation in arbitrary characteristic p

We work over a finite field k = Fq of arbitrary characteristic p inside

a fixed algebraic closure k, and fix an integer n ≥ 3 which is prime to p.
We choose a prime number ` 6= p, and an embedding of Q(µpn) ⊂ Q`.
We form the k-algebra

B := k[X]/(Xn+1).

Inside B×, we have the subgroup B×p′th powers consisting of p’th powers

of elements of B×. Concretely, B×p′th powers is the image of k[[Xp]]× in

B×. When p = 2, B×p′th powers is the subgroup B×even.
A character

Λ : B× → C×

is trivial on the subgroup B×p′th powers of B× if and only if Λp = 1.

Lemma 3.1. Via the Artin-Hasse exponential, the quotient group B×/B×p′th powers

is isomorphic to the additive group consisting of all polynomials f(X) =
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i amX

m in k[X] such that

degree(f) ≤ n, a0 = 0, am = 0 if p|m.

Proof. The Artin-Hasse is the formal series, a priori in 1 + XQ[[X]],
defined by

AH(X) := exp(−
∑
n≥0

Xpn/pn) = 1−X + ...

The “miracle” is that in fact AH(X) has p-integral coefficients, i.e., it
lies in 1 +XZ(p)[[X]].

For R any Z(p) algebra, i.e. any ring in which every prime number
other than p is invertible, in particular for k, one knows that every
element of the multiplicative group 1+XR[[X]] has a unique represen-
tation as an infinite product∏

m≥1 prime to p, a≥0

AH(ampaX
mpa)1/m

with coefficients ampa ∈ R.
In the quotient group (1+XR[[X])/(1+XpR[[Xp]), the factors with

a ≥ 1 die, so every element in this quotient group is of the form∏
m≥1 prime to p

AH(amX
m)1/m

for some choice of coefficients am ∈ R. The key observation is that for
any two elements a, b ∈ R, we have

AH(aX)AH(bX)/AH((a+ b)X) ∈ 1 +XpR[[Xp]).

To see this, we argue as follows. The quotient lies in 1 +XR[[X]]. By
reduction to the universal case (when R is the polynomial ring Z(p)[a, b]
in two variables a, b), it suffices to treat the case when R lies in a Q-
algebra, where we must show that only powers of Xp occur. It suffices
to check this after extension of scalars from R to to the Q-algebra
R⊗ZQ. So we reduce to the case when R is a Q-algebra, in which case
the assertion is obvious, as

AH(aX)AH(bX)/AH((a+b)X) = exp(−
∑
n≥1

(ap
n

+bp
n−(a+b)p

n

)Xpn/pn)

is visibly a series in Xp.
Thus the map∏

m≥1 prime to p

R→ (1 +XR[[X])/(1 +XpR[[Xp])
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given by

(am)m 7→
∏

m≥1 prime to p

AH(amX
m)1/m mod 1 +XpR[[Xp]

is a surjective group homomorphism with source the additive group∏
m≥1 prime to pR. Truncating mod Xn+1, and taking R = k, we get

a surjective homomorphism from the additive group consisting of all
polynomials f(X) =

∑
i amX

m in k[X] such that

degree(f) ≤ n, a0 = 0, am = 0 if p|m,
to B×/B×p′th powers. This map is an isomorphism, because source and
target have the same cardinality. �

Let us denote by W[p] the additive groupscheme over Fp whose R-
valued points are the Artin-Schreier reduced polynomials of degree ≤ n
over R which are strongly odd [Ka-MMP, 3.10.4] i.e., those polynomials
f(X) =

∑
i amX

m in R[X] such that

degree(f) ≤ n, a0 = 0, am = 0 if either p|m or if 2|m.
Let us denote by B×even,p′th powers the subgroup of B× generated by

both B×even and B×p′th powers.

Corollary 3.2. The quotient B×/B×even,p′th powers is isomorphic to the
additive group W[p](k).

The group W[p](k) is its own Pontrayagin dual, by the pairing

(f, g) 7→ ψ1(constant term of f(X)g(1/X)).

For Λ a character of B×/B×even ,p′th powers, the corresponding lisse,

rank one sheaf LΛ(1 − tX) on A1 is of the form Lψ1(f(t)) for a unique
f(t) ∈ k[t] which is strongly odd and Artin-Schreier reduced of degree
≤ n. This Λ is primitive if and only if f has degree n. For such
Λ, we define a conjugacy class θk,Λ in the compact symplectic group
USp(n − 1) in terms of its reversed characteristic polynomial by the
formula

det(1− Tθk,Λ) = L(A1 ⊗k k,LΛ(1−tX))(T/
√
q).

.
When p = 2, these are precisely the conjugacy classes attached to

the super-even characters which are primitive.
On the product A1×W[p], with coordinates (t, f), we have the lisse,

rank one Artin-Schreier sheaf

Luniv,odd,AS := Lψ1(f(t)),
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and the projection

pr2 : A1 ×W[p]→W[p].

We then define the sheaf Funiv,AS by

Funiv,odd,AS := R1(pr2)!(Luniv,AS).

This is a sheaf of perverse origin on W[p].
On the open set Primn,odd[p] ⊂W[p] where the coefficient an of Xn

is invertible, Funiv,odd,AS is lisse of rank n− 1, pure of weight one, and
symplectically self dual.

The following theorem is essentially proven in [Ka-MMP, 3.10.7], cf.
the remark below.

Theorem 3.3. Fix an odd integer n ≥ 3 which is prime to p. If either
n ≥ 7 or p ≥ 7, the geometric and arithmetic monodromy groups of
Funiv,odd,AS(1/2)|Primn,odd[p] are given by Ggeom = Garith = Sp(n− 1).

Remark 3.4. We say “essentially” because in [Ka-MMP, 3.10.7], the
parameter space D(1, n, odd) consists of all strictly odd polynomials
of degree n; the requirement of being Artin-Schreier reduced is not
imposed. When p = 2, the Artin-Schreier reducednes is automatic, im-
plied by strict oddness. When p is odd, D(1, n, odd) contains the image
of the space of strongly odd polynomials of degree≤ n/p under the map
g 7→ g− gp, and is the product of Primn,odd[p] with this subspace. But
one knows tha Lψ1(f(t)+g(t)−g(t)p) is isomorphic to Lψ1(f(t)). Thus the
universal F on D(1, n, odd) is the pullback of Funiv,odd,AS|Primn,odd[p]
by the “Artin-Schrier reduction” map of D(1, n, odd) onto Primn,odd[p].

4. Proof of Theorem 2.5

We have a priori inclusions Ggeom ⊂ Garith ⊂ Sp(n−1), so it suffices
to show that Ggeom = Sp(n− 1).

We first treat the case (cases (1) and (2)) when either n ≥ 7 or p ≥ 7.
In this case, we exploit the fact that if n is prime to p, then Primn,odd,AS

lies in Primn,odd, and the restriction of Funiv, odd|Primn,odd to Primn,odd,AS

is the sheaf Funiv, odd,AS|Primn,odd,AS.
Thus if n is prime to p, already a pullback of Funiv, odd|Primn,odd has

Ggeom = Sp(n− 1).
We must now treat the case when p|n. Because n is odd, p ≥ 3.

We first apply the “low p-adic ordinal” argument of [Ka-WVQKR,
Lemma 7.2.], which, when n and p are both odd, conveniently produces
a super-even primitive character Λ whose Fp-character sum has low p-
adic ordinal. This insures that the Fourier Transform NFT (LΛ), which
is the restriction of Funiv, odd|Primn,odd to a line in Primn,odd, has a
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Ggeom which is not finite. This NFT (LΛ) is an irreducible Airy sheaf
in the sense of [S, 11.1], according to which it either has finite Ggeom,
or is Artin-Schrier induced, or is Lie irreducible. As NFT (LΛ) has
rank n − 1 prime to p, it cannot be Artin-Schrier induced. Therefore
NFT (LΛ) is Lie-irreducible. According to [S, 11.6], its G0

geom is either
Sp(n− 1) or SL(n− 1). As we have an a priori inclusion of its Ggeom

in Sp(n − 1), NFT (LΛ) has Ggeom = Sp(n − 1). So also in this case,
already a pullback of Funiv, odd|Primn,odd has Ggeom = Sp(n− 1).

Suppose now that (n, p) is either (3, 3) or (5, 3) or (5, 5). In these
cases,n ≥ p ≥ 3 and `(1, n) = 2, so the “low p-adic ordinal” argument
of [Ka-WVQKR, Lemma 7.2.] again produces a super-even primitive
character Λ whose Fp-character sum has low p-adic ordinal. Again here
n− 1 is prime to p, and we conclude as in the previous paragraph.

This concludes the proof of Theorem 2.5.

5. The target theorem

Our goal is to prove the following equidistribution theorem. En-
dow the space USp(n − 1)# of conjugacy classes of USp(n − 1) with
the direct image of the total mass one Haar measure on USp(n − 1).
Equidistribution in the theorem below is with respect to this measure.

Theorem 5.1. We have the following results.

(1) Fix an odd integer n ≥ 7. In any sequence of finite fields ki
of (possibly varying) characteristics pi, whose cardinalities qi
are archimedeanly increasing to ∞, the collections of conjugacy
classes

{θki,Λ}Λ primitive super−even

become equidistributed in USp(n− 1)#.
(2) For n = 3, we have the same result if every ki has characteristic

pi = 3 or pi ≥ 7.
(3) For n = 5, we have the same result if every ki has characteristic

pi ≥ 3.

Proof. Whenever p is an allowed characteristic, then by Theorem 3.3
for p = 2 and by Theorem 2.5 for odd p, the relevant monodromy
groups are Ggeom = Garith = Sp(n− 1).

Fix the odd integer n ≥ 3. By the Weyl criterion, it suffices show
that for each irreducible nontrivial representation Ξ of USp(n − 1),
there exists a constant C(Ξ) such that for any allowed characteristic p
and any finite field k of characteristic p, we have the estimate

|
∑

Λ super−even and primitive

Trace(Ξ(θk,Λ)| ≤ #Primn,odd(k)C(Ξ)/
√

#k.
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For a given allowed characteristic p, Deligne’s equidistribution theo-
rem [De-Weil II, 3.5.3], as explicated in [Ka-Sar, 9.2.6, part 2)], we can
take

C(Ξ, p) :=
∑
i

hic(Primn,odd ⊗Fp Fp,Ξ(Funiv,odd)).

This sum of Betti numbers is uniformly bounded as p varies. In fact,
we have the following estimate.

Lemma 5.2. Fix an irreducible nontrivial representation Ξ of USp(n−
1). Let M ≥ 1 be an integer such that Ξ occurs in std⊗Mn−1.[ For example,
if the highest weight of Ξ is

∑
i riωi in Bourbaki numbering, then ωi

occcurs in Λi(stdn−1) ⊂ std⊗in−1, and so we may take M :=
∑

i iri.] In
characteristic p > n, we have the estimate∑

i

hic(Primn,odd ⊗Fp Fp,Ξ(Funiv,odd))

≤
∑
i

hic(Primn,odd ⊗Fp Fp,F⊗Muniv,odd)

≤ 3(n+ 2)M+1+(n+3)/2 ≤ 3(n+ 2)M+n+1.

Proof. The first asserted inequality is obvious, since Ξ(Funiv,odd) is a
direct summand of (Funiv,odd|Primn,odd)

⊗M .
When p > n, the space W is the space of odd polynomials f of degree

≤ n, the sheaf Luniv,odd on A1 ×W with coordinates (t, f) is Lψ1(f(t),
and Funiv,odd on W is R1(pr2)!(ψ1(f(t)). The space Primn,odd ⊂ W is
the space of odd polynomials of degree n, i.e. the open set of W
where the coefficient an of f =

∑
i odd,i≤n ait

i is invertible. The key

point is that over Primn,odd, the Ri(pr2)!(Lψ1(f(t)) vanish for i 6= 1 (as
one sees looking fibre by fibre). By the Kunneth formula [SGA4 t3,
Exp. XVII, 5.4.3], the M ’th tensor power of Funiv,odd|Primn,odd is
RM(pr2)!(Lψ1(f(t1)+f(t2)+...+f(tM )) for the projection of AM × Primn,odd

onto Primn,odd, and the Ri(pr2)!(Lψ1(f(t1)+f(t2)+...+f(tM )) vanish for i 6=
M . [One might note that f(t1) + f(t2) + ... + f(tM) is, for each f , a
Deligne polynomial [Ka-MMP, 3.5.8] of degree n in M variables.] So
the cohomology groups which concern us are

H i
c(Primn,odd ⊗Fp Fp,F⊗Muniv,odd) =

= H i+M
c (AM × Primn,odd,Lψ1(f(t1)+f(t2)+...+f(tM ))).

Here the space AM × Primn,odd is the open set in AM+(n+1)/2, coor-
dinates (t1, ..., tM , a1, a3, ..., an) where an is invertible, so defined in
AM+1+(n+1)/2, with one new coordinate z, by one equation zan = 1. The
function f(t1)+f(t2)+ ...+f(tM) is a polynomial in the M +(n+1)/2
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variables the ti and the aj of degree n + 1. The asserted estimate is
then a special case of [Ka-SumsBetti, Thm. 12] �

Here is another method, which avoids the problem of finding good
bounds for the sum of the Betti numbers in large characteristic, but
which itself only applies when p > 2(n−1)+1. As above, the primitive
super-even Λ’s give precisely the Artin-Schreier sheaves Lψ1(f(t)) for f
running over the strictly odd polynomials of degree n. Each of these
sheaves has its Fourier Transform, call it

Gf := NFT (Lψ1(f(t))),

lisse of rank n − 1 on A1, with all ∞-slopes equal to n/(n − 1), and
one knows [Ka-MG, Theorem 19] that its Ggeom is Sp(n − 1). [In the
reference [Ka-MG, Theorem 19], the hypothesis is stated as p > 2n+1,
but what is used is that p > 2rank(Gf ) + 1.] This Gf is just the
restriction of Funiv,odd to the line a 7→ f(t) + at, and the restriction of
Ξ(Funiv,odd) to this line is Ξ(Gf ). Because Gf has Ggeom = Sp(n − 1),
and has all ∞-slopes ≤ n/(n− 1), we have the estimate

h1
c(A1 ⊗ Fp,Ξ(Gf )) ≤ dim(Ξ)/(n− 1), other hic = 0,

cf. the proof of [Ka-WVQKR, 8.2]. Thus we get

|
∑

a∈k,Λ∼=f(t)+at

Trace(Ξ(θk,Λ)| ≤ (dim(Ξ)/(n− 1))#k/
√

#k.

Summing this estimate over equivalence clases of strictly odd f ’s of
degree n (for the equivalence relation f ∼= g if deg(f − g) ≤ 1), we get,
in characteristic p > 2(n− 1) + 1, the estimate

|
∑

Λ super−even and primitive

Trace(Ξ(θk,Λ)|

≤ #Primn,odd(k)(dim(Ξ)/(n− 1))/
√

#k.

Thus we may take

C(Ξ) := Max (dim(Ξ)/(n− 1),Max p≤2n−1, allowedC(Ξ, p)).

�

6. Twisting by the quadratic character

In this section, k = Fq is a finite field of odd characteristic, and χ2 :
k× → ±1 denotes the quadratic character, extended to k by χ2(0) := 0.
We can view χ2 as the character of B× given by f(X) 7→ χ2(f(0)).

For Λ any nontrivial super-even character of B×, the L-function

det(1− TFrobk|H1
c (Gm ⊗k k,Lχ2(t) ⊗ LΛ(1−tX))
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is polynomial of degree Swan(Λ), which is pure of weight one. For any
nontrivial additive character ψ of k, with Gauss sum

G(ψ, χ2) :=
∑
t∈k×

ψ(t)χ2(t),

the product

(−1/G(ψ, χ2))(−
∑
t∈k×

χ2(t)Λ(1− tX))

is easily checked to be real.
On the space Gm ×k W, with coordinates (t, (a(m)m), we have the

lisse rank one Q`-sheaf

Lχ2(t) ⊗ Luniv, odd := Lχ2(t) ⊗⊗mLψ`(m,n)(a(m)(tm,0′s)).

Denoting by

pr2 : Gm ×k W→W
the projection on the second factor, we form the sheaf

Funiv,odd,χ2 := R1(pr2)!(Lχ2(t) ⊗ Luniv, odd)

on W. This is a sheaf of perverse origin in the sense of [Ka-SMD].
For E/k a finite extension, and Λ((a(m))m a super-even nontrivial

character of (E[X]/(Xn+1))× given by a nonzero point a = (a(m))m ∈
W(E), we have

det(1− TFrobE,((a(m))m)|Funiv,oddχ2) =

det(1− TFrobE, H1
c (Gm ⊗k k,Lχ2(t) ⊗ LΛ((a(m))m (1−tX)).

the restriction of Funiv,odd,χ2 to Primn,odd is lisse of rank n, pure of
weight one. It is geometrically irreducible, because for any super-even
primitive Λ, its restriction to a suitable line is NFT (Lχ2(t)⊗LΛ(1−tX)).
The sheaf

Funiv,odd,χ2(−G(ψ, χ2))−degree|Primn,odd

is thus geometrically irreducible, and pure of weight zero. Its trace
function is R-valued, so this sheaf is isomorphic to its dual. Since its
rank is the odd integer n, the resulting autoduality must be orthogonal.
Thus the Ggeom and Garith of Funiv,odd,χ2(−G(ψ, χ2))−degree|Primn,odd

have

Ggeom ⊂ Garith ⊂ O(n).

Lemma 6.1. Ggeom 6⊂ SO(n).
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Proof. IfGgeom were contained in SO(n), then det(Funiv,odd,χ2|Primn,odd)
would be geometrically constant. In particular, for any two primitive
super-even characters Λ0 and Λ1 of B×, we would have

det(Frobk|H1
c (Gm ⊗k k,Lχ2(t) ⊗ LΛ0(1−tX)))

= det(Frobk|H1
c (Gm ⊗k k,Lχ2(t) ⊗ LΛ1(1−tX))).

Fix a primitive super-even Λ0. Choose a nonsquare a ∈ k×, and take

Λ1(1− tX) = Λ0(1− atX).

[Concretely, if Λ0 has ‘coordinates” a(m), with

LΛ(01−tX)
∼= ⊗mLψ`(m,n)(a(m)(tm,0′s)),

then Λ1 has coordinates Teich(am)a(m).]
We will show that the two determinants have opposite signs. The

sums
−

∑
t∈k×

χ2(t)Λ0(1− atX)

and
−

∑
t∈k×

χ2(t)Λ0(1− tX)

have opposite signs; make the change of variable t 7→ t/a in the first
sum, and remember that χ2(a) = −1. These sums over odd degree ex-
tensions of k continue to have opposite signs, while these sums over even
degree extensions coincide. In terms of the eigenvalues αi, i = 1, ..., n
and β, i = 1, ..., n of Frobk on the cohomology groups in question, this
means precisely that for the Newton symmetric functions, we have

Ni(α
′s) = (−1)iNi(β

′s)

for all i ≥ 1. But
(−1)iNi(β

′s) = Ni(−β′s).
Thus the α’s and the −β’s have the same Newton symmetric functions.
As we are in Q`, a field of characteristic zero, the α’s and the −β’s
have the same elementary symmetric functions, hence agree as sets
with multiplicity. Since n is odd,

n∏
j=1

αj =
n∏
j=1

(−βj) = −
n∏
j=1

βj.

Thus the two determinants in question have opposite signs. �

Theorem 6.2. Suppose either

(1) n ≥ 5 and p ≥ 5, or
(2) n ≥ 3 and p ≥ 7, or
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(3) n = 3 and p = 3, or
(4) n ≥ 5 and p ≥ 3.

In short, n ≥ 3 and p are odd, and (n, p) 6= (3, 5).
Then Funiv,odd,χ2(−G(ψ, χ2))−degree|Primn,odd has

Ggeom = Garith = O(n).

Proof. From the inclusions

Ggeom ⊂ Garith ⊂ O(n),

it suffices to prove that Ggeom = O(n).
Suppose first that p ≥ 5 and n ≥ 5. For any super-even primitive Λ,

we consider the lisse sheaf Lχ2(t) ⊗ LΛ(1−tX) ⊗ Lψ1(at+bt3) on Gm × A2

(parameters (t, a, b)), and its cohomology along the fibres

GΛ := R1(pr2)!(Lχ2(t) ⊗ LΛ(1−tX) ⊗ Lψ1(at+bt3)).

This GΛ is the restriction of Funiv,odd,χ2 to an A2 in Primn,odd. The
moment calculation of [Ka-LFM, pp. 115-119] or [Ka-MMP, 3.11.4]
shows that GΛ has fourth moment 3. As we have the a priori inclusion
Ggeom,GΛ

⊂ O(n), Larsen’s Alternative [Ka-LFM, p. 113] shows that
either Ggeom,GΛ

is finite, or it is SO(n) or O(n).
The group Ggeom,GΛ

is a subgroup of Ggeom. Thus if Ggeom,GΛ
is not

finite, then Ggeom,GΛ
contains SO(n), and hence Ggeom contains SO(n).

By the previous lemma, we must have Ggeom = O(n).
It remains to show that there exists at least one super-even primitive

Λ for which Ggeom,GΛ
is not finite. If Ggeom,GΛ

is always finite, then by
the diophantine criterion [Ka-ESDE, 8.14.6] for finiteness, for every
finite extension E/k and for every super-even primitive character Λ of
(B ⊗k E)×, the sum

−
∑
t∈E×

χ2(t)Λ(1− tX)

is divisible by
√

#E as an algebraic integer. If this holds for all Λ,
then the diophantine criterion, applied to Funiv,odd,χ2|Primn,odd, shows
that Ggeom is finite. However, Funiv,odd,χ2 is a sheaf of perverse origin.
Restricting it to the subspace of super-even characters of conductor 5,
it would result from [Ka-SMD] that we have finite Ggeom in the n = 5
case.

For p ≥ 7, one knows [Ka-Notes, 3.12] that Ggeom,n=5 is not finite,
indeed it contains SO(5). For p = 5 = n, we show that Ggeom,n=5 is not
finite by the “low ordinal” method. Take the character of conductor 5
given by t 7→ ψ2(t, 0) (concretely, the character t 7→ exp(2πitp/p2) of
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the Heilbronn sum in the case p=5). Then the sum

−
∑
t∈F×5

χ2(t)ψ2(t, 0)

has ordp = 1/10 < 1/2. Indeed, the Teichmuller representatives of
1, 2, 3, 4 mod 25 are 1, 7,−7,−1. Denote by ζ25 the primitive 25’th
root of unity which is the value ψ2(1, 0). Then minus our sum is

ζ25 − ζ7
25 − ζ−7

25 + ζ−1
25 = ζ25(1− ζ6

25)− ζ−7
25 (1− ζ6

25)

= (ζ25 − ζ−7
25 )(1− ζ6

25) = −ζ−7
25 (1− ζ8

25)(1− ζ6
25)

is the product of two uniformizing parameters in Zp[ζ], each with
ordp = 1/20.

Suppose now n = 3 and p ≥ 7. In this case, it is shown in [Ka-Notes,
3.7] that Ggeom contains SO(3). In view of Lemma 6.1, we have Ggeom =
O(3).

Suppose that n = 3 = p. It suffices to show that Ggeom is not
finite. For then the identity component G0

geom is a nontrivial semisimple
(because Funiv,odd,χ2|Prim3,odd is pure) connected subgroup of SO(3).
The only such subgroup is SO(3) itself. Indeed, such a subgroup is
the image of SL(2) in a 3-dimensional orthogonal representation, and
the only such representation is Sym2(std2), whose image is SO(3). We
show that Ggeom is not finite by the “low ordinal” argument. For ζ9

the primitive 9’th root of unity ζ9 := ψ2(1, 0), the sum

−
∑
t∈F×3

χ2(t)ψ2(t, 0) = −(ζ9 − ζ−1
9 ) = ζ−1

9 (1− ζ2
9 )

is a uniformizing parameter of Z3[ζ9], and has ord3 = 1/6 < 1/2.
It remains only to treat the case n ≥ 5, p = 3. Suppose first n ≥ 9

and p = 3. Pick any super-even primitive Λ. we consider the lisse sheaf
Lχ2(t) ⊗ LΛ(1−tX) ⊗ Lψ1(at+bt5+ct7) on Gm × A3 (parameters (t, a, b, c)),
and its cohomology along the fibres

GΛ := R1(pr2)!(Lχ2(t) ⊗ LΛ(1−tX) ⊗ Lψ1(at+bt5+ct7)).

This GΛ is the restriction of Funiv,odd,χ2 to an A3 in Primn,odd. The usual
moment calculation, now using [Ka-MMP, 3.11.6A], shows that GΛ has
fourth moment 3. As we have the a priori inclusion Ggeom,GΛ

⊂ O(n),
Larsen’s Alternative [Ka-LFM, p. 113] shows that either Ggeom,GΛ

is finite, or it is SO(n) or O(n). If Ggeom,GΛ
is not finite, then the

larger group Ggeom contains SO(n), so by Lemma 6.1 must be O(n).
If Ggeom,GΛ

were finite for all super-even primitive Λ, then by the dio-
phantine criterion Ggeom would be finite. Because Funiv,odd,χ2 is a sheaf
of perverse origin, restricting to the subspace of super-even characters
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of conductor 3, we would find that Ggeom is finite in the n = 3 = p
case, contradiction.

If n = 7 and p = 3, we repeat the above argument with one important
modification. For a given choice of super-even primitive Λ, there is
exactly one value c0 of c for which Lχ2(t) ⊗ LΛ(1−tX) ⊗ Lψ1(at+bt5+ct7)

has lower conductor. So we must work with this sheaf on the product
of Gm with the open set of A3 where c − c0 is invertible, and form its
R1(pr2)!, which is the restriction of Funiv,odd,χ2 to A3[1/(c−c0)]. On the
entire A3, the moment calculation would give fourth moment 3. One
checks that the fact of omitting the hyperplane c = c0 only changes the
calculation by lower order terms, the point being that in A4/F3 with
coordinates (x, y, z, w), the subscheme defined by the two equations

x5 + y5 = z5 + w5, x7 + y7 = z7 + w7,

has codimension 2. Now repeat the argument of the previous para-
graph.

Here is an alternate proof for the case n = 7, p = 3. Over F3,we
first use the “low ordinal” argument. We have the character Λ :=
ψ1(t7 − t5)ψ2(t, 0), whose sum

−
∑
t∈F×3

χ2(t)ψ1(t7 − t5)ψ2(t, 0) = −ψ2(1, 0) + ψ2(−1, 0)

= −ζ9 + ζ−1
9 = ζ−1

9 (1− ζ2
9 )

is a uniformizing parameter for Z3[ζ9], whose ord3 = 1/6 < 1/2. This
shows that G := NFT (Lχ2(t) ⊗ LΛ(1−tX)) has a Ggeom,GΛ

which is not
finite. Because the rank n = 7 is prime, its Ggeom,G must therefore be
Lie irreducible, cf. [Ka-Notes, 3.5].

Now consider the three parameter (a, b, c) family of characters Λa,b,c :=
ψ1(t7 + at5 + bt) ⊗ ψ2(ct, 0). On Gm × A3 with coordinate (t, a, b, c)
we have the lisse sheaf Lχ2(t) ⊗ LΛa,b,c(1−tX), its R1(pr2)! := H is the
restriction of Funiv,odd,χ2 to an A3 in Primn,odd, and its further restric-
tion to the A1 defined by a = −1, c = 1 with parameter b is the sheaf
G above. Therefore the larger group Ggeom,H must be Lie irreducible.
By Gabber’s theorem [Ka-ESDE, 1.6] on prime-dimensional represen-
tations, the only possibilities for G0

geom,H are SO(7) itself or G2 or the

image of SL(2) in Sym6(std2), which we will denote Sym6(SL(2)). If
we get SO(7), then Ggeom contains SO(7), and so by Lemma 6.1 must
be O(7).

We will show that G0
geom,H is not Sym6(SL(2)) or G2. We argue by

contradiction. Our H is a lisse sheaf on A3/F3, with a determinant
which is geometrically of order dividing 2. Hence its determinant is
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geometrically constant. Moreover, the twisted sheaf Harith := H ⊗
(−G(ψ, χ2))−degree has its Garith,G in O(7), so its determinant, being
geometrically constant, is either trivial or is (−1)degree.

So over any even degree extension of F3, in particular over F9, our
twisted sheaf Harith has Garith,H ⊂ SO(7). If G0

geom,H is one of the

groups Sym6(SL(2)) or G2, then Garith,H lies in the normalizer of
Sym6(SL(2)), respectively of G2, in SO(7). But each of these groups
is its own normalizer in SO(7). Therefore Garith,H is either the group
Sym6(SL(2)) or G2. One knows that Sym6(SL(2)) ⊂ G2, so we find
an inclusion Garith,G ⊂ G2. One knows that the traces of elements of
the compact form UG2 of G2 lie in the interval [−2, 7]. So the traces
of Frobenius on Harith at F9-points will all lie in the interval [−2, 7].
Concretely, these are the sums

(1/3)
∑
t∈F×9

χ2(NormF9/F3(t))ψ1(TraceF9/F3(t7+at5+bt))ψ2(TraceW2(F9)/W2(F3)(ct, 0)).

A machine calculation shows that at the point (a = −1, b = 0, c =
1 + i), (i being either primitive fourth root of unity in F9), this trace
is −6.10607/3 = −2.03536, contradiction. [Machine calculation also
shows that at the point (a = i, b = −1 − i, c = 1 + i) this trace is
−7.29086/3 = −2.43029.]

If n = 5 and p = 3, the argument is quite similar. Over F3,we first use
the “low ordinal” argument. We have the character Λ := ψ1(t5)ψ2(t, 0),
whose sum

−
∑
t∈F×3

χ2(t)ψ1(t5)ψ2(t, 0) = −ψ1(1)ψ2(1 0) + ψ1(−1)ψ2(−1, 0)

= −ζ3ζ9 + ζ−1
3 ζ−1

9 = ζ−4
9 − ζ4

9 = ζ−4
9 (1− ζ8

9 )

is a uniformizing parameter for Z3[ζ9], whose ord3 = 1/6 < 1/2. This
shows that G := NFT (Lχ2(t) ⊗ LΛ(1−tX)) has a Ggeom,GΛ

which is not
finite. Because the rank n = 5 is prime, its Ggeom,G must therefore
be Lie irreducible, cf. [Ka-Notes, 3.5]. Thus G0

geom,G is a connected
semisimpe group in an irreducible five-dimensional representation. By
Gabber’s theorem [Ka-ESDE, 1.6] on prime-dimensional representa-
tions, the only possibilities for G0

geom,G are SO(5) itself or the image of

SL(2) in Sym4(std2), which we will denote Sym4(SL(2)). If we get
SO(5) for GΛ, then Ggeom contains SO(5), and so by Lemma 6.1 must
be O(5).

So it suffices to show that G0
geom,G is not Sym4(SL(2)). We argue

by contradiction. Our G is a lisse sheaf on A1/F3, with a determinant
which is geometrically of order dividing 2. Hence its determinant is



20 NICHOLAS M. KATZ

geometrically constant. Moreover, the twisted sheaf Garith := G ⊗
(−G(ψ, χ2))−degree has its Garith,G in O(5), so its determinant, being
geometrically constant, is either trivial or is (−1)degree.

So over any even degree extension of F3, in particular over F9, our
twisted sheaf Garith has Garith,G ⊂ SO(5). Therefore Garith,G lies in
the normalizer of Sym4(SL(2)) in SO(5). But this normalizer is just
Sym4(SL(2)) itself, and henceGarith,G is the group Sym4(SL(2)). There-
fore the traces of Frobenius on Garith at F9-rational points are among
the traces of elements of SU(2) in Sym4(std2). For an element γ of
SU(2) with Trace(γ) = T , its trace in Sym4(std2) is 1−3T 2 +T 4. The
minimum of this polynomial on the interval [−2, 2] is −5/4.

The twisting factor over F9 is −1/3, so the sums, indexed by a ∈ F9,

(1/3)
∑
t∈F×9

χ2(NormF9/F3(t))ψ1(TraceF9/F3(t5+at))ψ2(TraceW2(F9)/W2(F3)(t, 0)),

must all lie in the interval [−5/4, 5]. We get a contradiction, because
for a = 1 + i (for i either primitive fourth root of unity in F9), machine
calculation shows that this sum is −4.75877048/3 = −1.58626. �

7. Equidistribution for the twists by the quadratic
character

Fix an odd integer n ≥ 3. For each finite field k of odd characteris-
tic, and each primitive super-even character Λ of (k[X]/(Xn+1)×, the
reversed characteristic polynomial

det(1− TFrobk, H1
c (Gm ⊗k k,Lχ2(t) ⊗ LΛ(1−tX))/(−G(ψ, χ2))

is the reversed characteristic polynomial det(1 − Tθk,χ2Λ) of a unique
conjugacy class θk,χ2Λ of the compact orthogonal group O(n,R). Be-
cause n is odd, the group O(n) is the product (±1) × SO(n), the de-
composition being

A = det(A)Ã; Ã := A/ det(A).

Conjugacy classes of O(n,R) have the same product decomposition

θk,χ2Λ = det(θk,χ2Λ)θ̃k,χ2Λ,

with θ̃k,χ2Λ a conjugacy class of SO(n,R).
Endow the space O(n,R)# of conjugacy classes of O(n,R) with the

direct image of the total mass one Haar measure on O(n,R). Equidis-
tribution in the theorem below is with respect to this measure.
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Theorem 7.1. Fix an odd integer n ≥ 5. In any sequence of finite
fields ki of (possibly varying) odd characteristics pi, whose cardinali-
ties qi are archimedeanly increasing to ∞, the collections of conjugacy
classes

{θki,χ2Λ}Λ primitive super−even

become equidistributed in O(n,R)#. We have the same result for n = 3
if we require that no pi is 5.

Proof. Fix the odd integer n ≥ 3. Whenever p is an allowed char-
acteristic, then by Theorem 6.2 the relevant monodromy groups are
Ggeom = Garith = O(n).

By the Weyl criterion, it suffices show that for each irreducible non-
trivial representation Ξ of O(n,R), there exists a constant C(Ξ) such
that for any allowed characteristic p and any finite field k of character-
istic p, we have the estimate

|
∑

Λ super−even and primitive

Trace(Ξ(θk,χ2Λ))| ≤ #Primn,odd(k)C(Ξ)/
√

#k.

The group O(n) is the product (±1) × SO(n), the decomposition
being

A = (det(A))(det(A)A).

So the irreducible nontrivial representations Ξ are products deta×Ξ0

with a being 0 or 1 and Ξ0 an irreducible representation of SO(n), such
that either a = 1 or Ξ0 is irreducible nontrivial. We have seen, in
the proof of Lemma 6.1, that over a given finite field k = Fq of odd
characteristic, the q−1 pullbacks [t 7→ at]?(Λ(1−tX)) of a given super-
even primitive character will give rise to the conjugacy class θk,χ2Λ

exactly (q − 1)/2 times, and to the conjugacy class −θk,χ2Λ exactly
(q − 1)/2 times. This shows that when the representation Ξ is of the
form det×Ξ0, then the sum∑

Λ super−even and primitive

Trace(Ξ(θk,χ2Λ))

vanishes identically. So we need only be concerned with the Weyl sums
for irreducible nontrivial representationss Ξ0.

Thus we have reduced the theorem to the following one.

Theorem 7.2. Fix an odd integer n ≥ 5. In any sequence of finite
fields ki of (possibly varying) odd characteristics pi, whose cardinali-
ties qi are archimedeanly increasing to ∞, the collections of conjugacy
classes

{θ̃ki,χ2Λ}Λ primitive super−even
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become equidistributed in SO(n,R)#. We have the same result for n = 3
if we require that no pi is 5.

For a given allowed characteristic p, and an irreducible nontrivial rep-
resentation Ξ of SO(n), Deligne’s equidistribution theorem [De-Weil II,
3.5.3], as explicated in [Ka-Sar, 9.2.6, part 2)], tells us we can take

C(Ξ, p) :=
∑
i

hic(Primn,odd ⊗Fp Fp,Ξ(Funiv,odd,χ2)),

This sum of Betti numbers is uniformly bounded as p varies. Indeed,
we have the following lemma.

Lemma 7.3. Fix an irreducible nontrivial representation Ξ of SO(n).
Choose an integer M ≥ 1 such that Ξ occurs in std⊗Mn . For p > n, we
have the estimate∑

i

hic(Primn,odd ⊗Fp Fp,Ξ(Funiv,odd,χ2))

≤
∑
i

hic(Primn,odd ⊗Fp Fp,F⊗Muniv,odd,χ2
)

≤ 3(n+ 3 +M)(n+3)/2+M+1 ≤ 3(n+ 3 +M)n+M+1.

Proof. The proof is similar to that of Lemma 5.2. For p > n, we again
invoke the Kunneth formula and end up with isomorphisms

H i
c(Primn,odd ⊗Fp Fp,F⊗Muniv,odd,χ2

)

= H i+M
c ((AM × Primn,odd)⊗Fp Fp,Lχ2(t1t2...tM )Lψ1(f(t1)+...f(tm))).

The asserted estimate is then a special case of [Ka-SumsBetti, Theorem
12]. �

We can also use the Fourier transform method in large characteristic,
for any n 6= 7. If p > n, the primitive super-even Λ’s give precisely
the Artin-Schreier sheaves Lψ1(f(t)) for f running over the strictly odd
polynomials of degree n. For each of these, the Fourier transform

Gf := NFT (Lχ2(t) ⊗ sLψ1(f(t))),

is lisse of rank n and geometrically irreducible, hence Lie irreducible
by [Ka-MG, Prop. 5]. Its Ggeom lies in SO(n). Its ∞-slopes are

{0, n− 1 slopes n/(n− 1)}.
By [Ka-ESDE, 7.1.1 and 7.2.7 (2)] there are (effective) nonzero integers
N1(n− 1) and N2(n− 1) such that if p, in addition to being > 2n+ 1,
does not divide the integer 2nN1(n−1)N2(n−1), then Ggeom,Gf is either
SO(n),or, if n = 7, possibly G2. [It is this ambiguity which rules out
the case n = 7.]
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Because Gf has Ggeom,Gf = SO(n), and has all∞-slopes ≤ n/(n−1),
we have the estimate

h1
c(A1 ⊗ Fp,Ξ(Gf )) ≤ dim(Ξ)/(n− 1), other hic = 0,

cf. the proof of [Ka-WVQKR, 8.2]. Thus we get

|
∑

a∈k,Λ∼=f(t)+at

Trace(Ξ(θ̃k,Λ)| ≤ (dim(Ξ)/(n− 1))#k/
√

#k.

Summing this estimate over equivalence clases of strictly odd f ’s of
degree n (for the equivalence relation f ∼= g if deg(f − g) ≤ 1), we get,
in characteristic p > 2n+ 1, p not dividing 2nN1(n− 1)N2(n− 1), the
estimate

|
∑

Λ super−even and primitive

Trace(Ξ(θ̃k,Λ)|

≤ #Primn,odd(k)(dim(Ξ)/(n− 1))/
√

#k.

Denote by Excep(n) the finite set of odd primes p which are either
≤ 2n+ 1 or which divide 2nN1(n− 1)N2(n− 1). We may take

C(Ξ) := Max (dim(Ξ)/(n− 1),Max p∈Excep(n)C(Ξ, p)).

�

Remark 7.4. In the case n = 7 and p ≥ 17, it is proven in [Ka-ESDE,
9.1.1] that for any a 6= 0 and for f = ax7, the sheaf Gf has Ggeom,Gf =
G2. We will show elsewhere that for p sufficiently large, we also have
Ggeom,Gf = G2 for any f of the form ax7 + abx5 + ab2(25/84)x3. It is
plausible that these are the only such f . If that were the case, then
the exceptions would be uniformly small enough (over Fq, q2(q−1) out

of q3(q − 1) θ̃’s in all) that we would get the same result for n = 7 as
for the other odd n, with all odd primes allowed.

8. A theorem of joint equidistribution

Theorem 8.1. Fix an odd integer n ≥ 5. In any sequence of finite
fields ki of (possibly varying) odd characteristics pi, whose cardinali-
ties qi are archimedeanly increasing to ∞, the collections of pairs of
conjugacy classes

{(θki,Λ, θki,χ2Λ}Λ primitive super−even

become equidistributed in the space USp(n−1)#×O(n,R)# of conjugacy
classes in the product group USp(n− 1)×O(n,R). We have the same
result for n = 3 if we require that no pi is 5.
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Proof. We consider the direct sum sheaf

(Funiv,odd ⊕Funiv,odd,χ2)|Primn,odd.

The two factors have, respectively,

Ggeom = Garith = Sp(n− 1), Ggeom = Garith = O(n)

in any odd characteristic p. So Ggeom (respectively Garith) for the direct
sum is a subgroup of the product Sp(n − 1) × O(n) which maps onto
each factor.

Suppose first that n is neither 3 nor 5. Then these two factors have
no nontrivial quotients which are isomorphic. So by Goursat’s lemma,
the direct sum sheaf has

Ggeom = Garith = Sp(n− 1)×O(n)

in any odd characteristic p.
Let us temporarily admit that for n = 5, the direct sum sheaf also

has

Ggeom = Garith = Sp(n− 1)×O(n)

in any odd characteristic p. Let us also admit that for n = 3 the direct
sum sheaf has

Ggeom = Garith = Sp(n− 1)×O(n)

in any odd characteristic p 6= 5.
By the Weyl criterion, it suffices to show that for each irreducible

nontrivial representation Π ⊗ Ξ of USp(n − 1) × O(n,R), there exists
a constant C(Π ⊗ Ξ) such that for any odd characteristic p and any
finite field k of characteristic p, we have the estimate

|
∑

Λ super−even and primitive

Trace(Π(θk,Λ))Trace(Ξ(θk,χ2Λ))|

≤ #Primn,odd(k)C(Π⊗ Ξ)/
√

#k.

For a ∈ k× a nonsquare, the effect of Λ 7→ [t 7→ at]∗Λ is leave θki,Λ
unchanged, but to replace θki,χ2Λ by minus itself. So exactly as in the
proof of Theorem 7.2 above, the Weyl sums vanish identically when the
Ξ factor is of the form det⊗Ξ0 for Ξ0 a representation of SO(n). So we
need only be concerned with the Weyl sums for irreducible nontrivial
representations of the form Π⊗ Ξ0.

Thus we have reduced the theorem to the following one.
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Theorem 8.2. Fix an odd integer n ≥ 5. In any sequence of finite
fields ki of (possibly varying) odd characteristics pi, whose cardinali-
ties qi are archimedeanly increasing to ∞, the collections of pairs of
conjugacy classes

{(θki,Λ, θ̃ki,χ2Λ}Λ primitive super−even

become equidistributed in the space USp(n− 1)#×SO(n,R)# of conju-
gacy classes in the product group USp(n− 1)× SO(n,R). We have the
same result for n = 3 if we require that no pi is 5.

For a given odd characteristic p, and an irreducible nontrivial repre-
sentation Π⊗Ξ of Sp(n−1)×SO(n), Deligne’s equidistribution theorem
[De-Weil II, 3.5.3], as explicated in [Ka-Sar, 9.2.6, part 2)], we can take

C(Π⊗ Ξ, p) :=
∑
i

hic(Primn,odd ⊗Fp Fp,Π(Funiv,odd)⊗ Ξ(Funiv,odd,χ2)).

This sum of Betti numbers is uniformly bounded as p varies. Notice
that if either Ξ, resspectively Π, is trivial, then its partner Π, respec-
tively Ξ, must be nontrivial, and the result is given by Lemma 5.2,
respectively Lemma 7.3. So it suffices to prove the following lemma.

Lemma 8.3. Fix irreducible nontrivial representations Π of USp(n−1)
and Ξ of SO(n,R). Choose integers M1 ≥ 1 and M2 ≥ 1 such that Π
occurs in std⊗M1

n−1 and such that Ξ occurs in std⊗M2
n . Then we have the

estimate∑
i

H i
c(Primn,odd ⊗Fp Fp,Π(Funiv,odd)⊗ Ξ(Funiv,odd,χ2))

≤
∑
i

hic(Primn,odd ⊗Fp Fp,F⊗M1
univ,odd ⊗F

⊗M2
univ,odd,χ2

)

≤ 3(n+ 3 +M2)(n+3)/2+1+M1+M2 ≤ 3(n+ 3 +M2)n+1+M1+M2

Proof. The proof is similar to the proofs of Lemma 5.2 and Lemma 7.3.
For p > n, we invoke the Kunneth formula to obtain isomorphisms

H i
c(Primn,odd ⊗Fp Fp,F⊗M1

univ,odd ⊗F
⊗M2
univ,odd,χ2

)

= H i+M1+M2
c ((AM1 × AM2 × Primn,odd)⊗Fp Fp,H)

for H the sheaf

Lχ2(s1...sM2
) ⊗ Lψ1(f(t1)+...+f(tM1

)+f(s1)+...f(sM2
)).

The asserted estimate is a special case of [Ka-SumsBetti, Theorem
12]. �
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For n not 5 or 7, we can also use the Fourier transform method. For
p > 2n+ 1 and not dividing 2nN1(n− 1)N2(n− 1), we know that for Λ
super-even primitive, LΛ(1−tX) is precisely of the form Lψ1(f(t)) for an
odd polynomial f of degree n. We have seen above that the Fourier
transforms

Gf := NFT (Lψ1(f(t)))⊗ (
√
q)−degree,

Gf,χ2 := NFT (Lχ2(t) ⊗ Lψ1(f(t)))⊗ (−G(ψ, χ2))−degree ⊗ det

have

Ggeom,Gf = Garith,Gf = Sp(n− 1),

and

Ggeom,Gf,χ2
= Garith,Gf,χ2

= SO(n).

Their direct sum Gf ⊕ Gf,χ2 has Ggeom = Garith = Sp(n − 1) × SO(n).
Both Gf and Gf,χ2 have all ∞-slopes ≤ n/(n − 1), hence so does any
tensor product

Π(Gf )⊗ Ξ(Gf,χ2).

So for any nontrivial irreducible representation Π ⊗ Ξ of Sp(n − 1) ×
SO(n) we have the estimate

h1
c(A1⊗Fp,Π(Gf )⊗Ξ(Gf,χ2)) ≤ dim(Π) dim(Ξ)/(n− 1), other hic = 0,

cf. the proof of [Ka-WVQKR, 8.2].
So we get the estimate

|
∑

a∈k,Λ∼=f(t)+at

Trace(Π(θ̃k,Λ,χ2))Trace(Ξ(θ̃k,Λ,χ2))|

≤ (dim(Π dim(Ξ)/(n− 1))#k/
√

#k.

Summing this estimate over equivalence clases of strictly odd f ’s of
degree n (for the equivalence relation f ∼= g if deg(f − g) ≤ 1), we get,
in characteristic p > 2n+ 1, p not dividing 2nN1(n− 1)N2(n− 1), the
estimate

|
∑

Λ super−even and primitive

Trace(Π(θk,Λ))Trace(Ξ(θ̃k,χ2Λ))|

≤ #Primn,odd(k)C(Π⊗ Ξ)/
√

#k.

Thus for n ≥ 9 we may take

C(Π⊗ Ξ) := Max (dim(Π) dim(Ξ)/(n− 1),Max p∈Excep(n)C(Ξ, p)).

[For n either 5 or 7, we do not know that every individual Fourier
transform has the correct Ggeom, hence their exclusion.] �
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9. Joint equidistribution in the case n = 3

The problem we must deal with in the n = 3 case is that the quotient
SL(2)/ ± 1 is isomorphic to the quotient O(3)/ ± 1 ∼= SO(3), namely
SO(3) is the image of the representation Sym2(std2) of SL(2). We
must rule out the possibility that the conjugacy classes

{(θk,Λ, θ̃k,χ2Λ}Λ primitive super−even

are related by

θ̃k,χ2Λ = Sym2(θk,Λ).

We begin with the case of characteristic p = 3. In this case, up to ten-
soring with an Lψ1(tx), the super-even primitive characters of conductor
three correspond to the Artin-Schreier-Witt sheaves Lψ2(ax,0) for some
invertible scalar a. By the obvious change of variable x 7→ x/a, this
reduces us to considering the Fourier transforms

F := NFT (Lψ2(x,0))⊗ (
√
q)−degree,

G := NFT (Lχ2(x) ⊗ Lψ2(x,0))⊗ (−G(ψ, χ2))−degree ⊗ det .

What we must show is that there is no geometric isomorphism between
Sym2(F) and G. For then by Goursat’s lemma, the Ggeom for F ⊕ G
will be the full product SL(2) × SO(3), and a fortiori the Garith will
also be the full product.

If there were a geometric isomorphism between Sym2(F) and G,
then Homπ(A1)geom(Sym2(F),G) would be a one-dimensional (both ob-

jects are geometrically irreducible) representation of πarith1 /πgeom1 =
Gal(F3/F3). In other words, for some scalar A, we would have an
arithmetic isomorphism

Sym2(F) ∼= G ⊗ Adegree.

The scalarA would necessarily have |A| = 1 for any complex embedding
Q` ⊂ C, because both F and G are pure of weight zero. In particu-
lar, for any finite extension E/F3 and any t ∈ E, and any complex
embedding, we would have an equality of absolute values

|Trace(FrobE,t|Sym2(F)| = |Trace(FrobE,t|G)|.

But already for E = F3 and t = 0, these absolute values are different.
Write ζ9 for e2πi/9. The first is

|(1/3)(
∑
x∈F3

ψ2(x, 0))2 − 1| = |(1/3)(1 + ζ9 + ζ−1
9 )2 − 1| = 1.1371...
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The second, remembering that the Gauss sum has absolute value
√

3,
is

|(1/
√

3)
∑
x∈F×3

χ2(x)ψ2(x, 0)| = |(1/
√

3)(ζ9 − ζ−1
9 )| = 0.74222...

Suppose now that p ≥ 7. In this case, the super-even primitive
Λ’s give precisely the Artin-Schreier sheaves Lψ1(ax3+bx) with (a, t) ∈
Gm × A1. What we must show is that for any a 6= 0, the two lisse
sheaves on A1 given by

Sym2(NFT (Lψ1(ax3)))(1),

NFT (Lχ2(x) ⊗ Lψ1(ax3))⊗ (−G(ψ1, χ2))−degree ⊗ det,

are not geometrically isomorphic.
Because the question is geometric, we may assume that a is a cube,

say a = 1/α3. Making the change of variable x 7→ αx, we reduce to
treating the case when a = 1. Thus we must show that

F := Sym2(NFT (Lψ1(x3)))

and

G := NFT (Lχ2(x) ⊗ Lψ1(x3))

are not geometrically isomorphic. For this, we will make use of informa-
tion about Kloosterman sheaves and hypergeometric sheaves, especially
[Ka-ESDE, 9.3.2] and [Ka-CC, 3.7].

We will denote by [3] the cubing map x 7→ x3. Notice that

Lψ1(x3)
∼= [3]?(Lψ1(x)),

Lχ2(x) ⊗ Lψ1(x3)
∼= [3]?(Lχ2(x) ⊗ Lψ1(x)).

According to [Ka-ESDE, 9.3.2], applied with d = 3, we have geomet-
ric isomorphisms

NFT ([3]?(Lψ1(x))) ∼= [3]?([x 7→ −x/27]?(Kl(!, ψ1, χ3, χ3))),

NFT ([3]?(Lχ2(x)⊗Lψ1(x))) ∼= [3]?([x 7→ −x/27]?(Hyp(!, ψ1,1, χ3, χ3;χ2)).

Here χ3 and χ3 are the two Kummer characters of order three. Thus

F ∼=∼= [3]?([x 7→ −x/27]?(Sym2(Kl(!, ψ1, χ3, χ3))).

According to [Ka-CC, 3.7], applied with ρ = χ3 we have a geometric
isomorphism

Sym2(Kl(!, ψ1, χ3, χ3) ∼= [x 7→ 4x]?(Hyp(!, ψ1,1, χ3, χ3;χ2)).

Thus we find

F ∼= [3]?([x 7→ −x/27]?([x 7→ 4x]?(Hyp(!, ψ1,1, χ3, χ3;χ2)))),
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i.e.,
F ∼= [3]?[x 7→ −4x/27]?Hyp(!, ψ1,1, χ3, χ3;χ2),

whereas
G ∼= [3]?[x 7→ −x/27]?Hyp(!, ψ1,1, χ3, χ3;χ2).

To show that F and G are not geometrically isomorphic, we argue by
contradiction. If F ∼= G, then we have a geometric isomorphism on
Gm,

[x 7→ −4x/27]?Hyp(!, ψ1,1, χ3, χ3;χ2) ∼= [x 7→ −x/27]?Hyp(!, ψ1,1, χ3, χ3;χ2).

Indeed, if two geometrically irreducible lisse sheaves on Gm have iso-
morphic pullbacks by [3], then one is the tensor product of the other
with either Q` or Lχ3 or Lχ3 . Of the three candidates, only tensor-
ing with the constant sheaf preserves χ2 as the tame part of local
monodromy at ∞, cf. [Ka-ESDE, 8.2.5]. Thus we have the asserted
geometric isomorphism, whence a geometric isomorphism

[x 7→ 4x]?Hyp(!, ψ1,1, χ3, χ3;χ2) ∼= Hyp(!, ψ1,1, χ3, χ3;χ2).

By [Ka-ESDE, 8.5.4], a hypergeometric sheaf is not isomorphic to any
nontrivial multiplicative translate of itself. This is the desired contra-
diction.

Notice that in this n = 3 case, the ”Fourier transform by Fourier
transform” method works in every allowed characteristic p 6= 5, giving
the constant

C(Π⊗ Ξ) := dim(Π) dim(Ξ)/2.

10. Joint equidistribution in the case n = 5

Here the problem is that Sp(4)/±1 is isomorphic to the group SO(5).
Indeed SO(5) is the image of Sp(4) in its second fundamental represen-
tation Λ2(std4)/1. What we must show is that for n = 5,

Λ2(Funiv,odd(1/2))/1

and
Funiv,odd,χ2 ⊗ (−1/G(ψ1, χ2))degree ⊗ det

are not geometrically isomorphic in any odd characteristic p. The proof
goes along the same lines as did the n = 3 case.

Notice first that both sides have Ggeom = Garith = SO(5), so if they
are geometrically isomorphic then they are arithmetically isomorphic.

We first treat the case p = 5. Because p is 1 mod 4, the Gauss sum
G(ψ1, χ2) is some square root of 5. So It suffices to show that for the
particular super-even character corresponding to Lψ2(t,0),

Trace(FrobF5|Λ2(H1(A1 ⊗F5 F5,Lψ2(t,0))(1/
√

5))− 1
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is not equal to either of

±Trace(FrobF5|H1(Gm ⊗F5 F5,Lχ2(t) ⊗ Lψ2(t,0))/
√

5.

Computer calculation shows that the first is -1.123807..., while the
second is ±1.033926...

Suppose now that p is an odd prime other than 5. It suffices to show
that the restrictions of the two sides to some subvariety of Primn,odd are
not geometrically isomorphic. We will show that the two lisse sheaves

Λ2(NFT (Lψ1(t5)))/1

and

NFT (Lχ2(t) ⊗ Lψ1(t5))

on A1 are not geometrically isomorphic when restricted to Gm.
By [Ka-ESDE, 9.3.2], we have a geometric isomorphism

NFT (Lψ1(t5)) ∼= [x 7→ x5]?[x 7→ −x/55]?Kl(!, ψ1; ρ1, ρ2, ρ3, ρ4),

for ρ1, ρ2, ρ3, ρ4 the four nontrivial multiplicative characters of order 5.
By [Ka-CC, 8.6], we have a geometric isomorphism

Λ2(Kl(!, ψ1; ρ1, ρ2, ρ3, ρ4))/1 ∼= [x 7→ −4x]?(Hyp(!, ψ1;1, ρ1, ρ2, ρ3, ρ4;χ2).

Thus

Λ2(NFT (Lψ1(t5)))/1

∼= [x 7→ x5]?[x 7→ −x/55]?[x 7→ −4x]?Hyp(!, ψ1;1, ρ1, ρ2, ρ3, ρ4;χ2).

At the same time, by [Ka-ESDE, 9.3.2], we have a geometric isomor-
phism

NFT (Lχ2(t) ⊗ Lψ1(t5))

∼= [x 7→ x5]?[x 7→ −x/55]?Hyp(!, ψ1;1, ρ1, ρ2, ρ3, ρ4;χ2).

So it suffices to show that the two lisse sheaves on Gm given by

[x 7→ −x/55]?[x 7→ −4x]?Hyp(!, ψ1;1, ρ1, ρ2, ρ3, ρ4;χ2)

and

[x 7→ −x/55]?Hyp(!, ψ1;1, ρ1, ρ2, ρ3, ρ4;χ2)

do not become isomorphic after pullback by the fifth power map x 7→
x5. We argue by contradiction. As the sheaves are each geometrically
irreducible, if their x 7→ x5 pullbacks are isomorphic, then one is ob-
tained from the other by tensoring with an Lρ for some character ρ
of order dividing 5. As both sides have χ2 as the tame part of their
I(∞)-representations, this ρ must be trivial. So we would find that the
hypergeometric sheaf

[x 7→ −x/55]?Hyp(!, ψ1;1, ρ1, ρ2, ρ3, ρ4;χ2)
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is geometrically isomorphic to its multiplicative translate by −4. Be-
cause p 6= 5, this is a nontrivial multiplicative translation.This contra-
dicts [Ka-ESDE, 8.5.4], according to which a geometrically irreducible
hypergeometric sheaf is not isomorphic to any nontrivial multiplicative
translate of itself.

In this n = 5 case, we cannot (at present) apply the “Fourier trans-
form by Fourier transform” method, because we have only analyzed
the Fourier transform situation for the single input Lψ1(t5), but not for
other super-even primitive Λ’s. Nor do we know for which such Λ’s, if
any, we will in fact have the exceptional isomorphism we ruled out for
Lψ1(t5).

References

[De-Weil II] Deligne, P., La conjecture de Weil II. Publ. Math. IHES 52 (1981),
313-428.

[G-T] Guralnick,R., and Tiep, P., Decompositions of small tensor powers and
Larsen’s conjecture. Represent. Theory 9 (2005), 138-208 (electronic).

[Haz] Hazewinkel, M., Witt vectors. Part 1, arXiv:0804.3888vi [math.RA], 2008.

[Hes] Hesselholt, L., Lecture notes on Witt vectors, available at
http://www.math.nagoya-u.ac.jp/ larsh/papers/s03/wittsurvey.pdf.

[Ka-CC] Katz, N., From Clausen to Carlitz: low-dimensional spin groups and iden-
tities among character sums. Mosc. Math. J. 9 (2009), no. 1, 57-89.

[Ka-ESDE] Katz, N., Exponential sums and differential equations. Annals of Math-
ematics Studies, 124. Princeton Univ. Press, Princeton, NJ, 1990. xii+430 pp.

[Ka-LFM] Katz, N., L-functions and monodromy: four lectures on Weil II. Adv.
Math. 160 (2001), no. 1, 81132.

[Ka-MG] Katz, N., On the monodromy groups attached to certain families of ex-
ponential sums. Duke Math. J. 54 (1987), no. 1, 4156.

[Ka-MGcorr] Katz, N., Correction to: ”On the monodromy groups attached to
certain families of exponential sums”. Duke Math. J. 89 (1997), no. 1, 201.

[Ka-MMP] Katz, N., Moments, monodromy, and perversity: a Diophantine per-
spective. Annals of Mathematics Studies, 159. Princeton University Press,
Princeton, NJ, 2005. viii+475 pp.

[Ka-Notes] Katz, N., Notes on G2, determinants, and equidistribution. Finite Fields
Appl. 10 (2004), no. 2, 221-269.

[Ka-Sar] Katz, N., and Sarnak, P., Random matrices, Frobenius eigenvalues, and
monodromy. American Mathematical Society Colloquium Publications, 45.
American Mathematical Society, Providence, RI, 1999. xii+419 pp.

[Ka-SMD] Katz, N., A semicontinuity result for monodromy under degeneration,
Forum Math. 15 (2003), no. 2, 191-200.



32 NICHOLAS M. KATZ

[Ka-SumsBetti] Katz, N. Sums of Betti numbers in arbitrary characteristic. Dedi-
cated to Professor Chao Ko on the occasion of his 90th birthday. Finite Fields
Appl. 7 (2001), no. 1, 29-44.

[Ka-WVQKR] Katz, N., Witt vectors and a question of Keating and Rudnick,
IMRN (2013), no. 16, 3613-3638.

[K-R] Keating, J.P., and Rudnick, Z., The Variance of the number of prime poly-
nomials in short intervals and in residue classes, arXiv:1204.0708v2 [math.NT],
2012.

[Lau-SCCS] Laumon, G., Semi-continuité du conducteur de Swan (d’après P.
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