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1 Introduction and a bit of history

After proving [Dw-Rat] the rationality of zeta functions of all algebraic va-
rieties over finite fields nearly fifty years ago, Dwork studied in detail the
zeta function of a nonsingular hypersurface in projective space, cf. [Dw-Hyp1]
and [Dw-HypII]. He then developed his “deformation theory”, cf. [Dw-Def],
[Dw-NPI] and [Dw-NPII], in which he analyzed the way in which his theory
varied in a family. One of his favorite examples of such a family, now called
the Dwork family, was the one parameter (λ) family, for each degree n ≥ 2,
of degree n hypersurfaces in Pn−1 given by the equation

n∑
i=1

Xn
i − nλ

n∏
i=1

Xi = 0,

a family he wrote about explicitly in [Dw-Def, page 249, (i),(ii),(iv), the cases
n = 2, 3, 4], [Dw-HypII, section 8, pp. 286-288, the case n = 3] and [Dw-PC,
6.25, the case n = 3, and 6.30, the case n = 4]. Dwork of course also considered
the generalization of the above Dwork family consisting of single-monomial
deformations of Fermat hypersurfaces of any degree and dimension. He men-
tioned one such example in [Dw-Def, page 249, (iii)]. In [Dw-PAA, pp. 153-
154], he discussed the general single-monomial deformation of a Fermat hy-
persurface, and explained how such families led to generalized hypergeometric
functions, cf. also [Dw-BP, 6.1].

My own involvement with the Dwork family started (in all senses!) at the
Woods Hole conference in the summer of 1964 with the case n = 3, when I
managed to show in that special case that the algebraic aspects of Dwork’s
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deformation theory amounted to what would later be called the Gauss-Manin
connection on relative de Rham cohomology, but which at the time went by
the more mundane name of “differentiating cohomology classes with respect
to parameters”.

That this article is dedicated to Manin on his seventieth birthday is partic-
ularly appropriate, because in that summer of 1964 my reference for the notion
of differentiating cohomology classes with respect to parameters was his 1958
paper [Ma-ACFD]. I would also like to take this opportunity to thank, albeit
belatedly, Arthur Mattuck for many helpful conversations that summer.

I discussed the Dwork family in [Ka-ASDE, 2.3.7.17-23, 2.3.8] as a “par-
ticularly beautiful family”, and computed explicitly the differential equation
satisfied by the cohomology class of the holomorphic n − 2 form. It later
showed up in [Ka-SE, 5.5, esp. pp. 188-190], about which more below. Ogus
[Ogus-GTCC, 3.5, 3.6] used the Dwork family to show the failure in general of
“strong divisibility”. Stevenson, in her thesis [St-th],[St, end of Section 5, page
211], discussed single-monomial deformations of Fermat hypersurfaces of any
degree and dimension. Koblitz [Kob] later wrote on these same families. With
mirror symmetry and the stunning work of Candelas et al [C-dlO-G-P] on the
case n = 5, the Dwork family became widely known, especially in the physics
community, though its occurence in Dwork’s work was almost (not entirely,
cf. [Ber], [Mus-CDPMQ]) forgotten. Recently the Dwork family turned out
to play a key role in the proof of the Sato-Tate conjecture (for elliptic curves
over Q with non-integral j-invariant), cf. [H-SB-T, Section 1, pp. 5-15].

The present paper gives a new approach to computing the local system
given by the cohomology of the Dwork family, and more generally of families
of single-monomial deformations of Fermat hypersurfaces. This approach is
based upon the surprising connection, noted in [Ka-SE, 5.5, esp. pp. 188-
190], between such families and Kloosterman sums. It uses also the theory,
developed later, of Kloosterman sheaves and of hypergeometric sheaves, and
of their behavior under Kummer pullback followed by Fourier Transform, cf.
[Ka-GKM] and [Ka-ESDE, esp. 9.2 and 9.3]. In a recent preprint, Rojas-Leon
and Wan [RL-Wan] have independently implemented the same approach.

2 The situation to be studied: generalities

We fix an integer n ≥ 2, a degree d ≥ n, and an n-tuple W = (w1, ..., wn) of
strictly positive integers with

∑
i wi = d, and with gcd(w1, ..., wn) = 1. This

data (n, d,W ) is now fixed. Let R be a ring in which d is invertible.
Over R we have the affine line A1

R := Spec(R[λ]). Over A1
R, we consider

certain one parameter (namely λ) families of degree d hypersurfaces in Pn−1.
Given an n + 1-tuple (a, b) := (a1, ..., an, b) of invertible elements in R, we
consider the one parameter (namely λ) family of degree d hypersurfaces in
Pn−1,
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Xλ(a, b) :
n∑
i=1

aiX
d
i − bλXW = 0,

where we have written

XW :=
n∏
i=1

Xwi
i .

More precisely, we consider the closed subscheme X(a, b)R of Pn−1
R ×R A1

R

defined by the equation

n∑
i=1

aiX
d
i − bλXW = 0,

and denote by
π(a, b)R : X(a, b)R → A1

R

the restriction to X(a, b)R of the projection of Pn−1
R ×R A1

R onto its second
factor.

Lemma 2.1. The morphism

π(a, b)R : X(a, b)R → A1
R

is lisse over the open set of A1
R where the function

(bλ/d)d
∏
i

(wi/ai)wi − 1

is invertible.

Proof. Because d and the ai are invertible in R, a Fermat hypersurface of the
form

n∑
i=1

aiX
d
i = 0

is lisse over R. When we intersect our family with any coordinate hyperplane
Xi = 0, we obtain a constant Fermat family in one lower dimension (because
each wi ≥ 1). Hence any geometric point (x, λ) ∈ X at which π is not smooth
has all coordinates Xi invertible. So the locus of nonsmoothness of π is defined
by the simultaneous vanishing of all the Xid/dXi, i.e., by the simultaneous
equations

daiX
d
i = bλwiX

W , for i = 1, ..., n.

Divide through by the invertible factor dai. Then raise both sides of the i’th
equation to the wi power and multiply together right and left sides separately
over i. We find that at a point of nonsmoothness we have

XdW = (bλ/d)d
∏
i

(wi/ai)wiXdW .
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As already noted, all the Xi are invertible at any such point, and hence

1 = (bλ/d)d
∏
i

(wi/ai)wi

at any geometric point of nonsmoothness. ut

In the Dwork family per se, all wi = 1. But in a situation where there is
a prime p not dividing d` but dividing one of the wi, then taking for R an
Fp-algebra (or more generally a ring in which p is nilpotent), we find a rather
remarkable family.

Corollary 2.2. Let p be a prime which is prime to d but which divides one
of the wi, and R a ring in which p is nilpotent. Then the morphism

π(a, b)R : X(a, b)R → A1
R

is lisse over all of A1
R

Remark 2.3. Already the simplest possible example of the above situation,
the family in P1/Fq given by

Xq+1 + Y q+1 = λXY q,

is quite interesting. In dehomogenized form, we are looking at

xq+1 − λx+ 1

as polynomial over Fq(λ); its Galois group is known to be PSL(2,Fq), cf.
[Abh-PP, bottom of p. 1643], [Car], and [Abh-GTL, Serre’s Appendix]. The
general consideration of “p|wi for some i” families in higher dimension would
lead us too far afield, since our principal interest here is with families that
“start life” over C. We discuss briefly such “p|wi for some i” families in Ap-
pendix II. We would like to call the attention of computational number theo-
rists to these families, with no degeneration at finite distance, as a good test
case for proposed methods of computing efficiently zeta functions in entire
families.

3 The particular situation to be studied: details

Recall that the data (n, d,W ) is fixed. Over any ring R in which d
∏
i wi is

invertible, we have the family π : X → A1
R given by

Xλ := Xλ(W,d) :
n∑
i=1

wiX
d
i − dλXW = 0;

it is proper and smooth over the open set U := A1
R[1/(λd − 1)] ⊂ A1

R where
λd − 1 is invertible.
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The most natural choice of R, then, is Z[1/(d
∏
i wi)]. However, it will

be more convenient to work over a somewhat larger cyclotomic ring, which
contains, for each i, all the roots of unity of order dwi. Denote by lcm(W )
the least common multiple of the wi, and define dW := lcm(W )d. In what
follows, we will work over the ring

R0 := Z[1/dW ][ζdW
] := Z[1/dW ][T ]/(ΦdW

(T )),

where ΦdW
(T ) denotes the dW ’th cyclotomic polynomial.

We now introduce the relevant automorphism group of our family. We
denote by µd(R0) the group of d’th roots of unity in R0, by Γ = Γd,n the
n-fold product group (µd(R0))n, by ΓW ⊂ Γ the subgroup consisting of all
elements (ζ1, ..., ζn) with

∏n
i=1 ζ

wi
i = 1, and by ∆ ⊂ ΓW the diagonal sub-

group, consisting of all elements of the form (ζ, ..., ζ). The group ΓW acts as
automorphisms of X/A1

R0
, an element (ζ1, ..., ζn) acting as

((X1, ..., Xn), λ) 7→ ((ζ1X1, ..., ζnXn), λ).

The diagonal subgroup ∆ acts trivially.
The natural pairing

(Z/dZ)n × Γ → µd(R0) ⊂ R×0 ,

(v1, ..., vn)× (ζ1, ..., ζn) →
∏
i

ζvi
i ,

identifies (Z/dZ)n as the R0-valued character groupDΓ := Homgroup(Γ,R×0 ).
The subgroup

(Z/dZ)n0 ⊂ (Z/dZ)n

consisting of elements V = (v1, ..., vn) with
∑
i vi = 0 in Z/dZ is then the R0-

valued character groupD(Γ/∆) of Γ/∆. The quotient group (Z/dZ)n0/ < W >
of (Z/dZ)n0 by the subgroup generated by (the image, by reduction mod d,
of) W is then the R0-valued character group D(ΓW /∆) of ΓW /∆.

For G either of the groups Γ/∆ or ΓW /∆, an R0-linear action of G on a
sheaf of R0-modules M gives an eigendecomposition

M = ⊕ρ∈D(G)M(ρ).

If the action is by the larger group G = Γ/∆, then DG = (Z/dZ)n0 , and for
V ∈ (Z/dZ)n0 we denote by M(V ) the corresponding eigenspace. If the action
is by the smaller group ΓW /∆, thenDG is the quotient group (Z/dZ)n0/<W >;
given an element V ∈ (Z/dZ)n0 , we denote by V mod W its image in the
quotient group, and we denote byM(V mod W ) the corresponding eigenspace.

If M is given with an action of the larger group Γ/∆, we can decompose
it for that action:

M = ⊕V ∈(Z/dZ)n
0
M(V ).
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If we view this same M only as a representation of the sugroup ΓW /∆, we
can decompose it for that action:

M = ⊕V ∈(Z/dZ)n
0 /<W>M(V mod W ).

The relation between these decompositions is this: for any V ∈ (Z/dZ)n0 ,

M(V mod W ) = ⊕r mod dM(V + rW ).

We return now to our family π : X → A1
R0

, which we have seen is (projec-
tive and) smooth over the open set

U = A1
R0

[1/(λd − 1)].

We choose a prime number `, and an embedding of R0 into Q`. [We will now
need to invert `, so arguably the most efficient choice is to take for ` a divisor
of dW .] We We form the sheaves

F i := Riπ?Q`

on A1
R0[1/`]

. They vanish unless 0 ≤ i ≤ 2(n − 2), and they are all lisse on
U [1/`]. By the weak Lefschetz Theorem and Poincaré duality, the sheaves
F i|U [1/`] for i 6= n− 2 are completely understood. They vanish for odd i; for
even i = 2j ≤ 2(n− 2), i 6= n− 2, they are the Tate twists

F2j |U [1/`] ∼= Q`(−j).

We now turn to the lisse sheaf Fn−2|U [1/`]. It is endowed with an autod-
uality pairing (cup product) toward Q`(−(n− 2)) which is symplectic if n− 2
is odd, and orthogonal if n− 2 is even. If n− 2 is even, say n− 2 = 2m, then
Fn−2|U [1/`] contains Q`(−m) as a direct summand (m’th power of the hy-
perplane class from the ambient P) with nonzero self-intersection. We define
Primn−2 (as a sheaf on U [1/`] only) to be the annihilator in Fn−2|U [1/`] of
this Q`(−m) summand under the cup product pairing. So we have

Fn−2|U [1/`] = Primn−2 ⊕Q`(−m),

when n − 2 = 2m. When n − 2 is odd, we define Primn−2 := Fn−2|U [1/`],
again as a sheaf on U [1/`] only.

The group ΓW /∆ acts on our family, so on all the sheaves above. For
i 6= n− 2, it acts trivially on F i|U [1/`]. For i = n− 2 = 2m even, it respects
the decomposition

Fn−2|U [1/`] = Prim⊕Q`(−m),

and acts trivially on the second factor. We thus decompose Primn−2 into
eigensheaves Primn−2(V mod W ). The basic information on the eigensheaves
Primn−2(V mod W ) is encoded in elementary combinatorics of the coset
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V mod W . An element V = (v1, ..., vn) ∈ (Z/dZ)n0 is said to be totally nonzero
if vi 6= 0 for all i. Given a totally nonzero element V ∈ (Z/dZ)n0 , we define
its degree, deg(V ) as follows. For each i, denote by ṽi the unique integer
1 ≤ ṽi ≤ d− 1 which mod d gives vi. Then

∑
i ṽi is 0 mod d, and we define

deg(V ) := (1/d)
∑
i

ṽi.

Thus deg(V ) lies in the interval 1 ≤ deg(V ) ≤ n − 1. The Hodge type of a
totally nonzero V ∈ (Z/dZ)n0 is defined to be

HdgType(V ) := (n− 1− deg(V ), deg(V )− 1).

We now compute the rank and the the Hodge numbers of eigensheaves
Primn−2(V mod W ). We have already chosen an embedding of R0 into Q`.
We now choose an embedding of Q` into C. The composite embedding R0 ⊂ C
allows us to extend scalars in our family π : X → A1

R0
, which is projective

and smooth over the open set UR0 = A1
R0

[1/(λd − 1)], to get a complex
family πC : XC → A1

C, which is projective and smooth over the open set
UC = A1

C[1/(λd − 1)]. Working in the classical complex topology with the
corresponding analytic spaces, we can form the higher direct image sheaves
RiπanC Q on A1,an

C , whose restrictions to UanC are locally constant sheaves. We
can also form the locally constant sheaf Primn−2,an(Q) on UanC . Extending
scalars in the coefficients from Q to Q`, we get the sheaf Primn−2,an(Q`).
On the other hand, we have the lisse Q`-sheaf Primn−2 on UR0[1/`], which we
can pull back, first to UC, and then to UanC . By the fundamental comparison
theorem, we have

Primn−2,an(Q`) ∼= Primn−2|UanC .

Extending scalars from Q` to C, we find

Primn−2,an(C) ∼= (Primn−2|UanC )⊗Q`
C.

This is all ΓW /∆-equivariant, so we have the same relation for individual
eigensheaves:

Primn−2,an(C)(V mod W ) ∼= (Primn−2(V mod W )|UanC )⊗Q`
C.

If we extend scalars on UanC from the constant sheaf C to the sheaf OC∞ ,
then the resulting C∞ vector bundle Primn−2,an(C) ⊗C OC∞ has a Hodge
decomposition,

Primn−2,an(C)⊗C OC∞ =
⊕

a≥0,b≥0,a+b=n−2

Prima,b.

This decomposition is respected by the action of ΓW /∆, so we get a Hodge
decomposition of each eigensheaf:

Primn−2,an(C)(V mod W )⊗C OC∞ =
⊕

a≥0,b≥0,a+b=n−2

Prima,b(V mod W ).
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Lemma 3.1. We have the following results.

(1)The rank of the lisse sheaf Primn−2(V mod W ) on UR0[1/`] is given by

rk(Primn−2(V mod W )) = #{r ∈ Z/dZ | V + rW is totally nonzero}.

In particular, the eigensheaf Primn−2(V mod W ) vanishes if none of the
W -translates V + rW is totally nonzero.

(2) For each (a, b) with a ≥ 0, b ≥ 0, a+ b = n− 2, the rank of the C∞ vector
bundle Prima,b(V mod W ) on UanC is given by

rk(Prima,b(V mod W ))

= #{r ∈ Z/dZ | V + rW is totally nonzero and deg(V + rW ) = b+ 1}.

Proof. To compute the rank of a lisse sheaf on UR0[1/`], or the rank of a C∞
vector bundle on UanC , it suffices to compute its rank at a single geometric
point of the base. We take the C-point λ = 0, where we have the Fermat
hypersurface. Here the larger group (Z/dZ)n0 operates. It is well known that
under the action of this larger group, the eigenspace Prim(V ) vanishes unless
V is totally nonzero, e.g., cf. [Ka-IMH, Section 6]. One knows further that if
V is totally nonzero, this eigenspace is one-dimensional, and of Hodge type
HdgType(V ) := (n− 1− deg(V ), deg(V )− 1), cf. [Grif-PCRI, 5.1 and 10.8].

ut

The main result of this paper is to describe the eigensheaves

Primn−2(V mod W )

as lisse sheaves on U [1/`], i.e., as representations of π1(U [1/`]), and to de-
scribe the direct image sheaves jU?(Primn−2(V mod W )) on A1

R0[1/`]
, for

jU : U [1/`] ⊂ A1
R0[1/`]

the inclusion. The description will be in terms of hy-
pergeometric sheaves in the sense of [Ka-ESDE, 8.7.11].

4 Interlude: Hypergeometric sheaves

We first recall the theory in its original context of finite fields, cf. [Ka-ESDE,
Chapter 8]. Let k be an R0[1/`]-algebra which is a finite field, and

ψ : (k,+) → Q×
`

a nontrivial additive character. Because k is an R0[1/`]- algebra, it contains
dW distinct dW ’th roots of unity, and the structural map gives a group isomor-
phism µdW

(R0) ∼= µdW
(k). So raising to the #k×/dW ’th power is a surjective

group homomorphism

k× → µdW
(k) ∼= µdW

(R0).
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So for any character χ : µdW
(R0) → µdW

(R0), we can and will view the com-
position of χ with the above surjection as defining a multiplicative character
of k×, still denoted χ. Every multiplicative character of k× of order dividing
dW is of this form. Fix two non-negative integers a and b, at least one of which
is nonzero. Let χ1, ..., χa be an unordered list of a multiplicative characters of
k× of order dividing dW , some possibly trivial, and not necessarily distinct.
Let ρ1, ..., ρb be another such list, but of length b. Assume that these two
lists are disjoint, i.e., no χi is a ρj . Attached to this data is a geometrically
irreducible middle extension Q`-sheaf

H(ψ;χi ′s; ρj ′s)

on Gm/k, which is pure of weight a + b − 1. We call it a hypergeometric
sheaf of type (a, b). If a 6= b, this sheaf is lisse on Gm/k; if a = b it is lisse
on Gm − {1}, with local monodromy around 1 a tame pseudoreflection of
determinant (

∏
j ρj)/(

∏
i χi).

The trace function of H(ψ;χi ′s; ρj ′s) is given as follows. For E/k a
finite extension field, denote by ψE the nontrivial additive character of E
obtained from ψ by composition with the trace map TraceE/k, and denote
by χi,E (resp. ρj,E) the multiplicative character of E obtained from χi (resp.
ρj) by composition with the norm map NormE/k. For t ∈ Gm(E) = E×,
denote by V (a, b, t) the hypersurface in (Gm)a × (Gm)b/E, with coordinates
x1, ..., xa, y1, ..., yb, defined by the equation∏

i

xi = t
∏
j

yj .

Then
Trace(Frobt,E |H(ψ;χi ′s; ρj ′s))

= (−1)a+b−1
∑

V (n,m,t)(E)

ψE(
∑
i

xi −
∑
j

yj)
∏
i

χi,E(xi)
∏
j

ρj,E(yj).

In studying these sheaves, we can always reduce to the case a ≥ b, because
under multiplicative inversion we have

inv?H(ψ;χi ′s; ρj ′s)) ∼= H(ψ; ρj
′s;χi

′s)).

If a ≥ b, the local monodromy around 0 is tame, specified by the list of χi’s:
the action of a generator γ0 of Itame0 is the action of T on the Q`[T ]-module
Q`[T ]/(P (T )), for P (T ) the polynomial

P (T ) :=
∏
i

(T − χi(γ0)).

In other words, for each of the distinct characters χ on the list of the χ′is, there
is a single Jordan block, whose size is the multiplicity with which χ appears
on the list. The local monodromy around ∞ is the direct sum of a tame part
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of dimension b, and, if a > b, a totally wild part of dimension a − b, all of
whose upper numbering breaks are 1/(a − b). The b-dimensional tame part
of the local monodromy around ∞ is analogously specified by the list of ρ’s:
the action of a generator γ∞ of Itame∞ is the action of T on the Q`[T ]-module
Q`[T ]/(Q(T )), for Q(T ) the polynomial

Q(T ) :=
∏
j

(T − ρj(γ0)).

When a = b, there is a canonical constant field twist of the hypergeometric
sheaf H = H(ψ;χi ′s; ρj ′s) which is independent of the auxiliary choice of ψ,
which we will call Hcan. We take for A ∈ Q×

` the nonzero constant

A = (
∏
i

(−g(ψ, χi))(
∏
j

(−g(ψ, ρj)),

and define
Hcan := H⊗ (1/A)deg.

[That Hcan is independent of the choice of ψ can be seen in two ways. By
elementary inspection, its trace function is independent of the choice of ψ, and
we appeal to Chebotarev. Or we can appeal to the rigidity of hypergeometric
sheaves with given local monodromy, cf. [Ka-ESDE, 8.5.6], to infer that with
given χ’s and ρ’s, the hypergeometric sheaves Hcan

ψ with different choices of
ψ are all geometrically isomorphic. Being geometrically irreducible as well,
they must all be constant field twists of each other. We then use the fact that
H1(Gm⊗kk,Hcan

ψ ) is one dimensional, and that Frobk acts on it by the scalar
1, to see that the constant field twist is trivial.]

Here is the simplest example. Take χ 6= ρ, and form the hypergeometric
sheaf Hcan(ψ;χ; ρ). Then using the rigidity approach, we see that

Hcan(ψ;χ; ρ) ∼= Lχ(x) ⊗ L(ρ/χ)(1−x) ⊗ (1/A)deg,

with A (minus) the Jacobi sum over k,

A = −J(k;χ, ρ/χ) := −
∑
x∈k×

χ(x)(ρ/χ)(1− x).

The object
H(χ, ρ) := Lχ(x) ⊗ L(ρ/χ)(1−x)

makes perfect sense on Gm/R0[1/`], cf. [Ka-ESDE, 8.17.6]. By [We-JS], at-
taching to each maximal ideal P of R0 the Jacobi sum −J(R0/P;χ, ρ/χ)
over its residue field is a grossencharacter, and so by [Se-ALR, Chapter 2] a
Q`-valued character, call it Λχ,ρ/χ, of π1(Spec(R0[1/`]). So we can form

Hcan(χ, ρ) := H(χ, ρ)⊗ (1/Λχ,ρ/χ)
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on Gm/R0[1/`]. For any R0[1/`]-algebra k which is a finite field, its pullback
to Gm/k is Hcan(ψ;χ; ρ).

This in turn allows us to perform the following global construction. Sup-
pose we are given an integer a > 0, and two unordered disjoint lists of charac-
ters, χ1, ..., χa and ρ1, ..., ρa, of the group µdW

(R0) with values in that same
group. For a fixed choice of orderings of the lists, we can form the sheaves
Hcan(χi, ρi), i = 1, ..., a on Gm/R0[1/`]. We can then define, as in [Ka-ESDE,
8.17.11], the ! multiplicative convolution

Hcan(χ1, ρ1)[1] ?! Hcan(χ2, ρ2)[1] ?! ... ?! Hcan(χa, ρa)[1],

which will be of the form F [1] for some sheaf F on Gm/R0[1/`] which is “tame
and adapted to the unit section”. This sheaf F we call Hcan(χi ′s; ρj ′s).
For any R0[1/`]-algebra k which is a finite field, its pullback to Gm/k is
Hcan(ψ;χi ′s; ρj ′s). By Chebotarev, the sheaf Hcan(ψ;χi ′s; ρj ′s) is, up to
isomorphism, independent of the orderings that went into its definition as an
interated convolution. This canonical choice (as opposed to, say, the ad hoc
construction given in [Ka-ESDE, 8.17.11], which did depend on the orderings)
has the property that, denoting by

f : Gm/R0[1/`] → Spec(R0[1/`])

the structural map, the sheaf R1f!Hcan(χi ′s; ρj ′s) on Spec(R0[1/`]) is
the constant sheaf, i.e., it is the trivial one-dimensional representation of
π1(Spec(R0[1/`])).

If the unordered lists χ1, ..., χa and ρ1, ..., ρb are not disjoint, but not iden-
tical, then we can “cancel” the terms in common, getting shorter disjoint lists.
The hypergeometric sheaf we form with these shorter, disjoint “cancelled” lists
we denote H(ψ;Cancel(χi ′s; ρj ′s)), cf. [Ka-ESDE, 9.3.1], where this was de-
noted CancelH(ψ;χi ′s; ρj ′s). If a = b, then after cancellation the shorter
disjoint lists still have the same common length, and so we can form the con-
stant field twist Hcan(ψ;Cancel(χi ′s; ρj ′s)). And in the global setting, we
can form the object Hcan(Cancel(χi ′s; ρj ′s)) on Gm/R0[1/`].

5 Statement of the main theorem

We continue to work with the fixed data (n, d,W ). Given an element V =
(v1, ..., vn) ∈ (Z/dZ)n0 , we attach to it an unordered list List(V,W ) of d =∑
i wi multiplicative characters of µdW

(R0), by the following procedure. For
each index i, denote by χvi the character of µdW

(R0) given by

ζ 7→ ζ(vi/d)dW .

Because wi divides dW /d, this characterχvi has wi distinct wi’th roots. We
then define
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List(V,W ) = {all w′1th roots of χv1 , ..., all w′nth roots of χvn}.

We will also need the same list, but for −V , and the list

List(all d) := {all characters of order dividing d}.

So long as the two lists List(−V,W ) and List(all d) are not identical, we can
apply the Cancel operation, and form the hypergeometric sheaf

HV,W := Hcan(Cancel(List(all d);List(−V,W )))

on Gm/R0[1/`].

Lemma 5.1. If Primn−2(V mod W ) is nonzero, then the unordered lists
List(−V,W ) and List(all d) are not identical.

Proof. If Primn−2(V mod W ) is nontrivial, then at least one choice of V in
the coset V mod W is totally nonzero. For such a totally nonzero V , the trivial
character is absent from List(−V,W ). If we choose another representative of
the same coset, say V − rW , then denoting by χr the character of order
dividing d of µdW

(R0) given by ζ 7→ ζ(r/d)dW , we see easily that

List(−(V − rW ),W ) = χrList(−V,W ).

Hence the character χr is absent from List(−V + rW,W ). ut

Lemma 5.2. If Primn−2(V mod W ) is nonzero, then Primn−2(V mod W )
and [d]?HV,W have the same rank on UR0[1/`].

Proof. Choose V in the coset V mod W . The rank of Primn−2(V mod W ) is
the number of r ∈ Z/dZ such that V + rW is totally nonzero. Equivalently,
this rank is d − δ, for δ the number of r ∈ Z/dZ such that V + rW fails
to be totally nonzero. On the other hand, the rank of HV,W is d − ε, for
ε the number of elements in List(all d) which also appear in List(−V,W ).
Now a given character χr in List(all d) appears in List(−V,W ) if and only
if there exists an index i such that χr is a wi’th root of χ−vi , i.e., such that
χwi
r = χ−vi , i.e., such that rwi ≡ −vi mod d. ut

Theorem 5.3. Suppose that Primn−2(V mod W ) is nonzero. Denote by
j1 : UR0[1/`] ⊂ A1

R0[1/`]
and j2 : Gm,R0[1/`] ⊂ A1

R0[1/`]
the inclusions,

and by [d] : Gm,R0[1/`] → Gm,R0[1/`] the d’th power map. Then for any
choice of V in the coset V mod W , there exists a continuous character
ΛV,W : π1(Spec(R0[1/`])) → Q×

` and an isomorphism of sheaves on A1
R0[1/`]

,

j1?Prim
n−2(V mod W ) ∼= j2?[d]?HV,W ⊗ ΛV,W .
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Remark 5.4. What happens if we change the choice of V in the coset
V mod W , say to V − rW? As noted above,

List(−(V − rW ),W ) = χrList(−V,W ).

As List(all d) = χrList(all d) is stable by multiplication by any character of
order dividing d, we find [Ka-ESDE, 8.2.5] that HV−rW,W ∼= Lχr ⊗HV,W ⊗Λ,
for some continuous character Λ : π1(Spec(R0[1/`])) → Q×

` . Therefore the
pullback [d]?HV,W is, up to tensoring with a character Λ of π1(Spec(R0[1/`])),
independent of the particular choice of V in the coset V mod W . Thus the
truth of the theorem is independent of the particular choice of V .

Question 5.5. There should be a universal recipe for the character ΛV,W
which occurs in Theorem 5.3. For example, if we look at the ΓW /∆-invariant
part, both Primn−2(0 mod W ) and H0,W are pure of the same weight n− 2,
and both have traces (on Frobenii) in Q. So the character Λ0,W must take
Q-values of weight zero on Frobenii in large characteristic. [To make this
argument legitimate, we need to be sure that over every sufficiently large
finite field k which is an R0[1/`]-algebra, the sheaf Primn−2(0 mod W ) has
nonzero trace at some k-point. This is in fact true, in virtue of Corollary 8.7
and a standard equidistribution argument.] But the only rational numbers of
weight zero are ±1. So Λ2

0,W trivial. Is Λ0,W itself trivial?

6 Proof of the main theorem: the strategy

Let us admit for a moment the truth of the following characteristic p theorem,
which will be proven in the next section.

Theorem 6.1. Let k be an R0[1/`]-algebra which is a finite field, and let
ψ : (k,+) → Q×

` be a nontrivial additive character of k. Suppose that
Primn−2(V mod W ) is nonzero. Let j1,k : Uk ⊂ A1

k and j2,k : Gm,k ⊂ A1
k be

the inclusions. Choose V in the coset V mod W , and put

HV,W,k := Hcan(ψ;Cancel(;List(all d);List(−V,W ))).

Then on A1
k the sheaves j1,k?Primn−2(V mod W ) and j2,k?[d]?HV,W,k are

geometrically isomorphic, i.e., they become isomorphic on A1
k
.

We now explain how to deduce the main theorem. The restriction to

UR0 − {0} = Gm,R0 − µd

of our family

Xλ :
n∑
i=1

wiX
d
i = dλXW
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is the pullback, through the d’th power map, of a projective smooth family
over Gm − {1}, in a number of ways. Here is one way to write down such a
descent πdesc : Y → Gm−{1}. Use the fact that gcd(w1, ..., wn) = 1 to choose
integers (b1, ..., bn) with

∑
i biwi = 1. Then in the new variables

Yi := λbiXi

the equation of Xλ becomes

n∑
i=1

wiλ
−dbiY di = dYW .

Then the family

Yλ :
n∑
i=1

wiλ
−biY di = dYW

is such a descent. The same group ΓW /∆ acts on this family. On the base
Gm − {1}, we have the lisse sheaf Primn−2

desc for this family, and its eigen-
sheaves Primn−2

desc(V mod W ), whose pullbacks [d]?Primn−2
desc(V mod W ) are

the sheaves Primn−2(V mod W )|(Gm,R0 − µd).

Lemma 6.2. Let k be an R0[1/`]-algebra which is a finite field. Suppose
Primn−2

desc(V mod W ) is nonzero. Then there exists a choice of V in the coset
V mod W such that the lisse sheaves Primn−2

desc(V mod W ) and HV,W,k on
Gm,k − {1} are geometrically isomorphic, i.e., isomorphic on Gm,k − {1}.

Proof. Choose a V in the coset V mod W . By Theorem 6.1, the lisse sheaves
[d]?Primn−2

desc(V mod W ) and [d]?HV,W,k are isomorphic on Gm,k−µd. Taking
direct image by [d] and using the projection formula, we find an isomorphism⊕
χ with χd trivial

Lχ ⊗ Primn−2
desc(V mod W ) ∼=

⊕
χ with χd trivial

Lχ ⊗HV,W,k

of lisse sheaves Gm,k−{1}. The right hand side is completely reducible, being
the sum of d irreducibles. Therefore the left hand side is completely reducible,
and each of its d nonzero summands Lχ⊗Primn−2

desc(V mod W ) must be irre-
ducible (otherwise the left hand side is the sum of more than d irreducibles).
By Jordan-Hölder, the summand Primn−2

desc(V mod W ) on the left is isomor-
phic to one of the summands Lχ ⊗HV,W,k on the right, say to the summand
Lχr ⊗ HV,W,k. As explained in Remark 5.3, this summand is geometrically
isomorphic to HV−rW,W,k. ut

Lemma 6.3. Suppose that the sheaf Primn−2
desc(V mod W ) is nonzero. Choose

an R0[1/`]-algebra k which is a finite field, and choose V in the coset V mod W
such that the lisse sheaves Primn−2

desc(V mod W ) and HV,W,k on Gm,k − {1}
are geometrically isomorphic. Then there exists a continuous character
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ΛV,W : π1(Spec(R0[1/`])) → Q×
`

and an isomorphism of lisse sheaves on Gm,R0[1/`] − {1},

Primn−2
desc(V mod W ) ∼= HV,W ⊗ ΛV,W .

This is an instance of the following general phenomenon, which is well
known to the specialists. In our application, the S below is Spec(R0[1/`]), C
is P1, and D is the union of the three everywhere disjoint sections 0, 1,∞. We
will also use it a bit later when D is the union of the d+2 everywhere disjoint
sections 0, µd,∞.

Theorem 6.4. Let S be a reduced and irreducible normal noetherian Z[1/`]-
scheme whose generic point has characteristic zero. Let s be a chosen geomet-
ric point of S. Let C/S be a proper smooth curve with geometrically connected
fibres, and let D ⊂ C be a Cartier divisor which is finite étale over S. Let F
and G be lisse Q`-sheaves on C −D. Then we have the following results.

(1)Denote by j : C−D ⊂ C and i : D ⊂ C the inclusions. Then the formation
of j?F on C commutes with arbitrary change of base T → S, and i?j?F
is a lisse sheaf on D.

(2)Denoting by f : C −D → S the structural map, the sheaves Rif!F on S
are lisse.

(3)The sheaves Rif?F on S are lisse, and their formation commutes with
arbitrary change of base T → S.

(4) Consider the pullbacks Fs and Gs of F and of G to Cs −Ds. Suppose that
Fs ∼= Gs, and that Gs (and hence also Fs) are irreducible. Then there exists
a continuous character Λ : π1(S) → Q×

` an isomorphism of lisse sheaves
on C −D,

G ⊗ Λ ∼= F .

Proof. The key point is that because the base S has generic characteristic zero,
any lisse sheaf on C − D is automatically tamely ramified along the divisor
D; this results from Abhyankar’s Lemma. See [Ka-SE, 4.7] for assertions (1)
and (2). Assertion (3) results from (2) by Poincaré duality, cf. [De-CEPD,
Corollaire, p. 72].

To prove assertion (4), we argue as follows. By the Tame Specialization
Theorem [Ka-ESDE, 8.17.13], the geometric monodromy group attached to
the sheaf Fs is, up to conjugacy in the ambient GL(rk(F),Q`), independent
of the choice of geometric point s of S. Since Fs is irreducible, it follows
that Fs1 is irreducible, for every geometric point s1 of S. Similarly, Gs1 is
irreducible, for every geometric point s1 of S. Now consider the lisse sheaf
Hom(G,F) ∼= F ⊗ G∨ on C −D. By assertion (3), the sheaf f?Hom(G,F) is
lisse on S, and its stalk at a geometric point s1 of S is the group Hom(Gs1 ,Fs1).
At the chosen geometric point s, this Hom group is one-dimensional, by hy-
pothesis. Therefore the lisse sheaf f?Hom(G,F) on S has rank one. So at every
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geometric point s1, Hom(Gs1 ,Fs1) is one-dimensional. As source and target
are irreducible, any nonzero element of this Hom group is an isomorphism,
and the canonical map

Gs1 ⊗Hom(Gs1 ,Fs1) → Fs1

is an isomorphism. Therefore the canonical map of lisse sheaves on C −D

G ⊗ f?f?Hom(G,F) → F

is an isomorphism, as we see looking stalkwise. Interpreting the lisse sheaf
f?Hom(G,F) on S as a character Λ of π1(S), we get the asserted isomorphism.

ut

Applying this result, we get Lemma 6.3. Now pull back the isomorphism
of that lemma by the d’th power map, to get an isomorphism

Primn−2(V mod W ) ∼= [d]?HV,W ⊗ ΛV,W

of lisse sheaves on Gm,R0[1/`] − µd. Then extend by direct image to A1
R0[1/`]

to get the isomorphism asserted in Theorem 5.3.

7 Proof of Theorem 6.1

Let us recall the situation. Over the ground ring R0[1/`], we have the family
π : X → A1 given by

Xλ := Xλ(W,d) :
n∑
i=1

wiX
d
i − dλXW = 0,

which is projective and smooth over U = A1 − µd. We denote by V ⊂ X the
open set where XW is invertible, and by Z ⊂ X the complementary reduced
closed set, defined by the vanishing of XW . As scheme over A1, Z/A1 is the
constant scheme with fibre

(XW = 0) ∩ (
∑
i

wiX
d
i = 0).

The group ΓW /∆, acting as A1-automorphisms of X, preserves both the open
set V and its closed complement Z. In the following discussion, we will re-
peatedly invoke the following general principle, which we state here before
proceeding with the analysis of our particular situation.

Lemma 7.1. Let S be a noetherian Z[1/`]-scheme, and f : X → S a separated
morphism of finite type. Suppose that a finite group G acts admissibly (:=
every point lies in a G-stable affine open set) as S-automorphisms of X. Then
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in Db
c(S,Q`), we have a direct sum decomposition of Rf!Q` into G-isotypical

components
Rf!Q` =

⊕
irred. Q` rep.′s ρ of G

Rf!Q`(ρ).

Proof. Denote by h : X → Y := X/G the projection onto the quotient,
and denote by m : Y → S the structural morphism of Y/S. Then Rh!Q` =
h?Q` is a constructible sheaf of Q`[G] modules on Y , so has a G-isotypical
decomposition

Rh!Q` = h?Q` =
⊕

irred. Q` rep.
′s ρ of G

h?Q`(ρ).

Applying Rm! to this decomposition gives the asserted decomposition of
Rf!Q`. ut

We now return to our particular situation. We are given a R0[1/`]-algebra
k which is a finite field, and a nontrivial additive character ψ : (k,+) → Q×

` .
We denote by

πk : Xk → A1
k

the base change to k of our family. Recall that the Fourier Transform FTψ is
the endomorphism of the derived category Db

c(A1
k,Q`) defined by looking at

the two projections pr1, pr2 of A2
k onto A1

k, and at the “kernel” Lψ(xy) on A2
k,

and putting
FTψ(K) := R(pr2)!(Lψ(xy) ⊗ pr?1K[1]),

cf. [Lau-TFCEF, 1.2]. One knows that FTψ is essentially involutive,

FTψ(FTψ(K)) ∼= [x 7→ −x]?K(−1),

or equivalently
FTψ(FTψ(K)) ∼= K(−1),

that FTψ maps perverse sheaves to perverse sheaves and induces an exact
autoequivalence of the category of perverse sheaves with itself.

We denote by K(A1
k,Q`) the Grothendieck group of Db

c(A1
k,Q`). One

knows that K is the free abelian group on the isomorphism classes of irre-
ducible perverse sheaves, cf. [Lau-TFCEF, 0.7, 0.8]. We also denote by FTψ
the endomorphism of K(A1

k,Q`) induced by FTψ on Db
c(A1

k,Q`).
The key fact for us is the following, proven in [Ka-ESDE, 9.3.2], cf. also

[Ka-ESDE, 8.7.2 and line -4, p.327].

Theorem 7.2. Denote by ψ−1/d the additive character x 7→ ψ(−x/d), and de-
note by j : Gm,k ⊂ A1

k the inclusion. Denote by Λ1, ..., Λd the list List(all d)
of all the multiplicative characters of k× of order dividing d. For any un-
ordered list of d multiplicative characters ρ1, ...ρd of k× which is different
from List(all d), the perverse sheaf



102 Nicholas M. Katz

FTψj?[d]?H(ψ−1/d; ρ1, ...ρd; ∅)[1]

on A1
k is geometrically isomorphic to the perverse sheaf

j?[d]?H(ψ;Cancel(List(all d); ρ1, ..., ρd))[1].

Before we can apply this result, we need some preliminaries. We first cal-
culate the Fourier Transform of Rπk,!Q`, or more precisely its restriction to
Gm,k, in a ΓW /∆-equivariant way. Recall that Vk ⊂ Xk is the open set where
XW is invertible, and Zk ⊂ Xk is its closed complement. We denote by

f := πk|Vk : Vk → A1
k

the restriction to Vk of πk. Concretely, Vk is the open set Pn−1
k [1/XW ] of Pn−1

k

(with homogeneous coordinates (X1, ..., Xn)) where XW is invertible, and f
is the map

(X1, ..., Xn) 7→
∑
i

(wi/d)Xd
i /X

W .

Lemma 7.3. For any character V mod W of ΓW /∆, the canonical map
of ρ-isotypical components Rf!Q`(V mod W ) → Rπk,!Q`(V mod W ) in-
duced by the A1

k-linear open immersion Vk ⊂ Xk induces an isomorphism
in Db

c(Gm,k,Q`),

(FTψRf!Q`)(V mod W )|Gm,k
∼= (FTψRπk,!Q`)(V mod W )|Gm,k.

Proof. We have an “excision sequence” distinguished triangle

Rf!Q`(V mod W ) → Rπk,!Q`(V mod W ) → R(π|Z)k,!Q`(V mod W ) → .

The third term is constant, i.e., the pullback to A1
k of a an object on Spec(k),

so its FTψ is supported at the origin. Applying FTψ to this distinguished
triangle gives a distinguished triange

FTψRf!Q`(V mod W ) → FTψRπk,!Q`(V mod W )

→ FTψR(π|Z)k,!Q`(V mod W ) → .

Restricting to Gm,k, the third term vanishes. ut

We next compute (FTψRf!Q`)|Gm,k in a ΓW /∆-equivariant way. We do
this by working upstairs, on Vk with its ΓW /∆-action.

Denote by TW ⊂ Gn
m,k the connected (because gcd(w1, ...wn) = 1) torus

of dimension n − 1 in Gn
m,k, with coordinates xi, i = 1, ...., n, defined by the

equation xW = 1. Denote by Pn−1
k [1/XW ] ⊂ Pn−1

k the open set of Pn−1
k (with

homogeneous coordinates (X1, ..., Xn)) where XW is invertible. Our group
ΓW is precisely the group TW [d] of points of order dividing d in TW . And
the subgroup ∆ ⊂ ΓW is just the intersection of TW with the diagonal in the
ambient Gn

m,k. We have a surjective map



Another Look at the Dwork Family 103

g : TW → Pn−1
k [1/XW ], (x1, ..., xn) 7→ (x1, ..., xn).

This map g makes TW a finite étale galois covering of Pn−1
k [1/XW ] with group

∆. The d’th power map [d] : TW → TW makes TW into a finite étale galois
covering of itself, with group ΓW . We have a beautiful factorization of [d] as
h ◦ g, for

h : Pn−1
k [1/XW ] → TW , (X1, ..., Xn) 7→ (Xd

1/X
W , ..., Xd

n/X
W ).

This map h makes Pn−1
k [1/XW ] a finite étale galois covering of TW with group

ΓW /∆. Denote by m the map

m : TW → A1
k, (x1, ..., xn) 7→

∑
i

(wi/d)xi.

Let us state explicitly the tautology which underlies our computation.

Lemma 7.4. The map f : Vk = Pn−1
k [1/XW ] → A1

k is the composition

f = m ◦ h : Pn−1
k [1/XW ] h→ TW

m→ A1
k.

Because h is a a finite étale galois covering of TW with group ΓW /∆, we
have a direct sum decomposition on TW ,

Rh!Q` = h?Q` =
⊕

char′s V mod W of ΓW /∆

LV mod W .

More precisely, any V in the coset V mod W is a character of Γ/∆, hence of Γ ,
so we have the Kummer sheaf LV on the ambient torus Gn

m,k. In the standard
coordinates (x1, ..., xn) on Gn

m,k, this Kummer sheaf LV is LQ
i χvi

(xi). The
restriction of LV to the subtorus TW is independent of the choice of V in the
coset V mod W ; it is the sheaf denoted LV mod W in the above decomposition.

Now apply Rm! to the above decomposition. We get a direct sum decom-
position

Rf!Q` = Rm!h?Q` =
⊕

char′s V mod W of ΓW /∆

Rm!LV mod W

into eigenobjects for the action of ΓW /∆.
Apply now FTψ. We get a direct sum decomposition

FTψRf!Q` =
⊕

char′s V mod W of ΓW /∆

FTψRm!LV mod W

into eigenobjects for the action of ΓW /∆; we have

(FTψRf!Q`)(V mod W ) = FTψRm!LV mod W

for each character V mod W of ΓW /∆.
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Theorem 7.5. Given a character V mod W of ΓW /∆, pick V in the coset
V mod W . We have a geometric isomorphism

(FTψRf!Q`)(V mod W )|Gm,k

∼= [d]?H(ψ−1/d;List(V,W ); ∅)[2− n].

Proof. By the definition of FTψ, and proper base change for Rm!, we see that
FTψRm!LV mod W is obtained as follows. Choose V in the coset V mod W .
Endow the product TW × A1

k, with coordinates (x = (x1, ..., xn); t) from the
ambient Gn

m,k × A1
k. The product has projections pr1, pr2 onto TW and A1

k

respectively. On the product we have the lisse sheaf Lψ(t
P

i(wi/d)xi)
⊗ pr?1LV .

By definition, we have

FTψRm!LV mod W = Rpr2,!(Lψ(t
P

i(wi/d)xi)
⊗ pr?1LQ

i χvi
(xi))[1].

If we pull back to Gm,k ⊂ A1
k, then the source becomes TW×Gm,k. This source

is isomorphic to the subtorus Z of Gn+1
m,k , with coordinates (x = (x1, ..., xn); t),

defined by
xW = td,

by the map
(x = (x1, ..., xn); t) 7→ (tx = (tx1, ..., txn); t).

On this subtorus Z, our sheaf becomes Lψ(
P

i(wi/d)xi)
⊗pr?1LQ

i χvi
(xi)[1]. [Re-

member that V has
∑
i vi = 0, so LQ

i χvi
(xi) is invariant by x 7→ tx.] Thus

we have

FTψRm!LV mod W |Gm,k = Rprn+1,!(Lψ(
P

i(wi/d)xi)
⊗ pr?1LQ

i χvi
(xi)[1]).

This situation,

Lψ(
P

i(wi/d)xi)
⊗ pr?1LQ

i χvi
(xi)[1] on Z := (xW = td)

prn+1→ Gm,k,

is the pullback by the d’th power map on the base of the situation

Lψ(
P

i(wi/d)xi)
⊗ pr?1LQ

i χvi
(xi)[1] on Gn

m,k
xW

→ Gm,k.

Therefore we have

FTψRm!LV mod W |Gm,k
∼= [d]?R(xW )!(Lψ(

P
i(wi/d)xi)

⊗ pr?1LQ
i χvi

(xi)[1]).

According to [Ka-GKM, 4.0,4.1, 5.5],

Ra(xW )!(Lψ(
P

i(wi/d)xi)
⊗ pr?1LQ

i χvi
(xi))

vanishes for a 6= n − 1, and for a = n − 1 is the multiple multiplicative !
convolution
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Kl(ψ−w1/d;χv1 , w1) ?! Kl(ψ−w2/d;χv2 , w2) ?! ... ?! Kl(ψ−wn/d;χvn , wn).

By [Ka-GKM, 4.3,5.6.2], for each convolvee we have geometric isomorphisms

Kl(ψ−wi/d;χvi , wi) = [wi]?Kl(ψ−wi/d;χvi) ∼= Kl(ψ−1/d; all w′ith roots of χvi).

So the above multiple convolution is the Kloosterman sheaf

Kl(ψ−1/d; all w′1th roots of χv1 , ..., all w
′
nth roots of χvn)

:= H(ψ−1/d; all w′1th roots of χv1 , ..., all w
′
nth roots of χvn ; ∅).

Recall that by definition

List(V,W ) := (all w′1th roots of χv1 , ..., all w
′
nth roots of χvn).

Putting this all together, we find the asserted geometric isomorphism

(FTψRf!Q`)(V mod W )|Gm,k

∼= [d]?H(ψ−1/d;List(V,W ); ∅)[2− n].

ut

We are now ready for the final step in the proof of Theorem 6.1. Recall
that j1,k : Uk := A1

k − µd ⊂ A1
k, and j2,k : Gm,k ⊂ A1

k are the inclusions. We
must prove

Theorem 7.6. (Restatement of 6.1) Let V mod W be a character of ΓW /∆
for which Primn−2(V mod W ) is nonzero. Pick V in the coset V mod W .
Then we have a geometric isomorphism of perverse sheaves on A1

k

j1,k,?Prim
n−2(V mod W )[1] ∼= j2,k,?[d]?HV,W,k[1].

Proof. Over the open set Uk, we have seen that sheaves Riπk,?Q`|Uk are
geometrically constant for i 6= n − 2, and that Rn−2πk,?Q`|Uk is the direct
sum of Primn−2 and a geometrically constant sheaf. The same is true for the
ΓW /∆-isotypical components. Thus in K(Uk,Q`), we have

Rπk,?Q`(V mod W )|Uk :=
∑
i

(−1)iRiπk,?Q`(V mod W )|Uk

= (−1)n−2Primn−2(V mod W ) + (geom. const.).

Comparing this with the situation on all of A1
k, we don’t know what happens

at the d missing points of µd, but in any case we will have

Rπk,?Q`(V mod W ) = (−1)n−2j1,k,?Prim
n−2(V mod W )

+(geom. const.) + (punctual, supported in µd)
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in K(A1
k,Q`).

Taking Fourier Transform, we get

FTψj1,k,?Prim
n−2(V mod W ) =

(−1)n−2FTψRπk,?Q`(V modW )+(punctual, supported at 0)+(sum of Lψζ

′s)

in K(A1
k,Q`).

By Lemma 7.3 , we have

(FTψRπk,!Q`)(V mod W )|Gm,k
∼= FTψRf!Q`(V mod W )|Gm,k,

so we have
FTψj1,k,?Prim

n−2(V mod W ) =

(−1)n−2FTψRf!Q`(V mod W )+(punctual, supported at 0)+(sum of Lψζ

′s)

in K(A1
k,Q`).

By the previous theorem, we have

(FTψRf!Q`)(V mod W )|Gm,k

= (−1)n−2[d]?H(ψ−1/d;List(V,W ); ∅)

in K(Gm,k,Q`). We don’t know what happens at the origin, but in any case
we have

(FTψRf!Q`)(V mod W ) =

(−1)n−2j2,k,?[d]?H(ψ−1/d;List(V,W ); ∅) + (punctual, supported at 0)

in K(A1
k
,Q`). So we find

FTψj1,k,?Prim
n−2(V mod W ) =

j2,k,?[d]?H(ψ−1/d;List(V,W ); ∅)+

(punctual, supported at 0) + (sum of Lψζ

′s)

in K(A1
k
,Q`). Now apply the inverse Fourier Transform FTψ. By Theorem

7.2, we obtain an equality

j1,k,?Prim
n−2(V mod W )[1] =

j2,k,?[d]?HV,W,k[1] + (geom. constant) + (punctual)

in the group K(A1
k
,Q`). This is the free abelian group on isomorphism classes

of irreducible perverse sheaves on A1
k
. So in any equality of elements in this

group, we can delete all occurrences of any particular isomorphism class, and
still have an equality.
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On the open set Uk, the lisse sheaves Primn−2(V mod W ) and [d]?HV,W,k

are both pure, hence completely reducible on Uk by [De-Weil II, 3.4.1 (iii)]. So
both perverse sheaves j1,k,?Primn−2(V mod W )[1] and j2,k,?[d]?HV,W,k[1] on
A1
k

are direct sums of perverse irreducibles which are middle extensions from
Uk, and hence have no punctual constituents. So we may cancel the punctual
terms, and conclude that we have

j1,k,?Prim
n−2(V mod W )[1]− j2,k,?[d]?HV,W,k[1] = (geom. constant)

in the group K(A1
k
,Q`). By Lemma 5.2, the left hand side has generic rank

zero, so there can be no geometrically constant virtual summand. Thus we
have an equality of perverse sheaves

j1,k,?Prim
n−2(V mod W )[1] = j2,k,?[d]?HV,W,k[1]

in the group K(A1
k
,Q`). Therefore the two perverse sheaves have geometri-

cally isomorphic semisimplifications. But by purity, both are geometrically
semisimple. This concludes the proof of Theorem 6.1, and so also the proof of
Theorem 5.3 ut

8 Appendix I: The transcendental approach

In this appendix, we continue to work with the fixed data (n, d,W ), but now
over the groundring C. We give a transcendental proof of Theorem 5.3, but
only for the ΓW /∆-invariant part Primn−2(0mod W ). Our proof is essentially
a slight simplification of an argument that Shepherd-Barron gave in a Novem-
ber, 2006 lecture at MSRI, where he presented a variant of [H-SB-T, pages 5-
22]. We do not know how to treat the other eigensheaves Primn−2(V mod W ),
with V mod W a nontrivial character of ΓW /∆, in an analogous fashion.

First, let us recall the bare definition of hypergeometric D-modules. We
work on Gm (always over C), with coordinate λ. We write D := λd/dλ. We
denote by D := C[λ, 1/λ][D] the ring of differential operators on Gm. Fix
nonnegative integers a and b, not both 0. Suppose we are given an unordered
list of a complex numbers α1, ..., αa ,not necessarily distinct. Let β1, ..., βb be
a second such list, but of length b. We denote by Hyp(α′is;β

′
js) the differential

operator
Hyp(α′is;β

′
js) :=

∏
i

(D − αi)− λ
∏
j

(D − βj)

and by H(α′is;β
′
js) the holonomic left D-module

H(α′is;β
′
js) := D/DHyp(α′is;β′js).

We say that H(α′is;β
′
js) is a hypergeometric of type (a, b).

One knows [Ka-ESDE, 3.2.1] that this H is an irreducible D-module on
Gm, and remains irreducible when restricted to any dense open set U ⊂ Gm,
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if and only if the two lists are disjoint “mod Z”, i.e., for all i, j, αi− βj is not
an integer. [If we are given two lists List1 and List2 which are not identical
mod Z, but possibly not disjoint mod Z, we can “cancel” the common (mod
Z) entries, and get an irreducible hypergeometric H(Cancel(List1, List2)).]

We will assume henceforth that this disjointness mod Z condition is satis-
fied, and that a = b. Then H(α′is;β

′
js) has regular singular points at 0, 1,∞.

If all the αi and βj all lie in Q, pick a common denominator N , and denote
by χαi the character of µN (C) given by

χαi(ζ) := ζαiN .

Similarly for χβj . For any prime number `, the Riemann-Hilbert partner
of H(α′is;β

′
js) is the Q` perverse sheaf Hcan(χαi

′s;χβj
′s)[1] on Gm, cf.

[Ka-ESDE, 8.17.11].
We denote by Dη := C(λ)[D] the ring of differential operators at the

generic point. Although this ring is not quite commutative, it is near enough
to being a one-variable polynomial ring over a field that it is left (and right)
Euclidean, for the obvious notion of long division. So every nonzero left ideal
in Dη is principal, generated by the monic (in Dη) operator in it of lowest
order. Given a left Dη-module M , and an element m ∈ M , we denote by
Ann(m,M) the left ideal in Dη defined as

Ann(m,M) := {operators L ∈ Dη|L(m) = 0 in M}.

If Ann(m,M) 6= 0, we define Lm,M ∈ Dη to be the lowest order monic oper-
ator in Ann(m,M).

We have the following elementary lemma, whose proof is left to the reader.

Lemma 8.1. Let N and M be left Dη-modules, f : M → N a horizon-
tal (:= Dη-linear) map, and m ∈ M . Suppose that Ann(m,M) 6= 0. Then
Ann(m,M) ⊂ Ann(f(m), N), and Lm,M is right-divisible by Lf(m),N .

We now turn to our complex family π : X → A1, given by

Xλ := Xλ(W,d) :
n∑
i=1

wiX
d
i − dλXW = 0.

We pull it back to U := Gm − µd ⊂ A1, over which it is proper and smooth,
and form the de Rham incarnation of Primn−2, which we denote Primn−2

dR .
We also have the relative de Rham cohomolgy of (Pn−1 × U − XU )/U over
the base U in degree n− 1, which we denote simply Hn−1

dR ((P−X)/U). Both
are O-locally free D-modules (Gauss-Manin connection) on U , endowed with
a horizontal action of ΓW /∆. The Poincaré residue map gives a horizontal,
ΓW /∆-equivariant isomorphism

Res : Hn−1
dR ((P− X)/U) ∼= Primn−2

dR .
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As in the discussion beginning Section 6, we write 1 =
∑
i biwi to obtain

a descent of our family through the d’power map: the family πdesc : Y → Gm

given by

Yλ :
n∑
i=1

wiλ
−biY di = dXW .

The same group ΓW /∆ acts on this family, which is projective and smooth
over Gm − {1}. So on Gm − {1}, we have Primn−2

dR,desc for this family, and its
fixed part Primn−2

dR,desc(0 mod W ), whose pullback [d]?Primn−2
dR,desc(0 mod W )

is the sheaf Primn−2
dR (0 mod W )|(Gm − µd).

Our next step is to pull back further, to a small analytic disk. Choose a real
constant C > 4. Pull back the descended family to a small disc Uan,C around
C. We take the disc small enough that for λ ∈ Uan,C , we have |C/λ|bi < 2 for
all i. The extension of scalars map

Hn−1
dR ((P− Y)/(Gm − {1})) → Hn−1

dR ((P− Y)/(Gm − {1}))⊗OGm−{1} OUan,C

is a horizontal map; we view both source and target as D -modules.
Over this disc, the C∞ closed immersion

γ : (S1)n/Diagonal → Pn−1,

(z1, ..., zn) 7→ (Cb1/dz1, ..., Cbn−1/dzn−1, C
bn/dzn)

lands entirely in P−Y: its image is an n− 1-torus Z ⊂ Pn−1 which is disjoint
from Yλ for λ ∈ Uan,C . Restricting to the ΓW /∆-invariant part

Hn−1
dR ((P− Y)/(Gm − {1}))(0 mod W ),

we get a horizontal map

Hn−1
dR ((P− Y)/(Gm − {1}))(0 mod W ) → H0(Uan,C ,OUan,C

), ω 7→
∫
Z

ω.

Write yi := Yi/Yn for i = 1, ..., n− 1. Denote by

ω ∈ Hn−1
dR ((P− Y)/(Gm − {1}))(0 mod W )

the (cohomology class of the) holomorphic n− 1-form

ω := (1/2πi)n−1(
dYW

dYW −
∑n
i=1 wiλ

−biY di
)
n−1∏
i=1

dyi/yi.

Our next task is to compute the integral∫
Z

ω.
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The computation will involve the Pochammer symbol. For α ∈ C, and
k ≥ 1 a positive integer, the Pochammer symbol (α)k is defined by

(α)k := Γ (α+ k)/Γ (α) =
k−1∏
i=0

(α+ i).

We state for ease of later reference the following elementary identity.

Lemma 8.2. For integers k ≥ 1 and r ≥ 1, we have

(kr)!/rkr =
r∏
i=1

(i/r)k.

Lemma 8.3. We have the formula∫
Z

ω = 1 +
∑
k≥1

(
∏d
i=1(i/d)k∏n

i=1

∏wi

j=1(j/wi)k
)(1/λ)k.

Proof. Divide top and bottom by dYW , expand the geometric series, and
integrate term by term. This is legitimate because at a point z ∈ Z, the
function

∑n
i=1(wi/d)λ

−biY di /Y
W has the value

n∑
i=1

(wi/d)λ−biCbizdi /Cz
W =

n∑
i=1

(wi/d)(C/λ)bizdi /Cz
W ,

which has absolute value ≤ 2(
∑n
i=1(wi/d))/C = 2/C ≤ 1/2. Because

each term in the geometric series is homogeneous of degree zero, the in-
tegral of the k’th term in the geometric series is the coefficient of zkW in
(
∑n
i=1(wi/d)(λ)−bizdi )

k. This coefficient vanishes unless k is a multiple of
d (because gcd(w1, ..., wn) = 1). The integral of the dk’th term is the co-
efficient of zkdW in (

∑n
i=1(wi/d)(λ)−bizdi )

dk, i.e., the coefficient of zkW in
(
∑n
i=1(wi/d)(λ)−bizi)dk. Expanding by the multinomial theorem, this coeffi-

cient is

(dk)!
n∏
i=1

(((wi/d)λ−bi)kwi/(kwi)!) = (λ)−k((dk)!/ddk)/
n∏
i=1

((kwi)!/wkwi
i ),

which, by the previous lemma, is as asserted. ut

This function

F (λ) :
∫
Z

ω = 1 +
∑
k≥1

(
∏d
i=1(i/d)k∏n

i=1

∏wi

j=1(j/wi)k
)(1/λ)k

is annihilated by the following differential operator. Consider the two lists of
length d.
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List(all d) := {1/d, 2/d, ..., d/d},

List(0,W ) := {1/w1, 2/w1, ..., w1/w1, ..., 1/wn, 2/wn, ..., wn/wn}.

These lists are certainly not identical mod Z; the second one contains 0 with
multiplicity n, while the first contains only a single integer. Let us denote the
cancelled lists, whose common length we call a,

Cancel(List(all d);List(0,W )) = (α1, ..., αa); (β1, ..., βa).

So we have

F (λ) :
∫
Z

ω = 1 +
∑
k≥1

(
∏a
i=1(αi)k∏a
i=1(βi)k

)(1/λ)k,

which one readily checks is annihilated by the differential operator

Hyp0,W := Hyp(α′is;βi − 1′s) :=
a∏
i=1

(D − αi)− λ

a∏
i=1

(D − (βi − 1)).

Theorem 8.4. We have an isomorphism of D-modules on Gm − {1},

Hn−1
dR ((P−Y)/(Gm−{1})) ∼= H0,W |(Gm−{1}) := H(α′is;βi−1′s)|(Gm−{1}).

Proof. Both sides of the alleged isomorphism are O-coherent D-modules on
Gm − {1}, so each is the “middle extension” of its restriction to any Zariski
dense open set in Gm − {1}. So it suffices to show that both sides become
isomorphic over the function field of Gm − {1}, i.e., that they give rise to
isomorphic Dη-modules. For this, we argue as follows. Denote by A the ring

A := H0(Uan,C ,OUan,C
)⊗OGm−{1} C(λ),

which we view as a Dη-module. We have the horizontal map

Hn−1
dR ((P− Y)/(Gm − {1}))(0 mod W )

R
Z→ H0(Uan,C ,OUan,C

).

Tensoring over OGm−{1} with C(λ), we obtain a horizontal map

Hn−1
dR ((P− Y)/C(λ))(0 mod W )

R
Z→ A.

By (the Hyp analogue of) Lemma 5.2, we know that the source has C(λ)-
dimension a:= the order of Hyp(α′is;βi− 1′s). So the element ω in the source
is annihilated by some operator in Dη of order at most a, simply because ω
and its first a derivatives must be linearly dependent over C(λ). So the low-
est order operator annihilating ω in Hn−1

dR ((P− Y)/C(λ))(0 mod W ), call
it Lω,HdR

, has order at most a. On the other hand, the irreducible operator
Hyp(α′is;βi − 1′s) annihilates

∫
Z
ω ∈ A. But

∫
Z
ω 6= 0, so Ann(

∫
Z
ω,A)

is a proper left ideal in Dη, and hence is generated by the irreducible
monic operator (1/(1 − λ))Hyp(α′is;βi − 1′s). By Lemma 8.2, we know
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that Lω,HdR
is divisible by (1/(1 − λ))Hyp(α′is;βi − 1′s). But Lω,HdR

has
order at most a, the order of Hyp(α′is;βi − 1′s), so we conclude that
Lω,HdR

= (1/(1− λ))Hyp(α′is;βi − 1′s). Thus the Dη-span of ω in the group
Hn−1
dR ((P− Y)/C(λ))(0 mod W ) is Dη/DηHyp(α′is;βi−1′s). Comparing di-

mensions we see that this Dη-span is all of Hn−1
dR ((P−Y)/C(λ))(0 mod W ).

ut

Corollary 8.5. For the family

Xλ := Xλ(W,d) :
n∑
i=1

wiX
d
i − dλXW = 0,

its Primn−2
dR (0 mod W ) as D-module on A1 − µd is related to the D-module

[d]?(H0,W |(Gm − {1})) on Gm − µd as follows.

(1)We have an isomorphism of D-modules on Gm − µd,

Primn−2
dR (0 mod W )|(Gm − µd) ∼= [d]?(H0,W |(Gm − {1})).

(2)Denote by j1 : A1 − µd ⊂ A1 and j2 : Gm − µd ⊂ A1 the inclusions. The
we have an isomorphism of D-modules on A1 of the middle extensions

j1,!,?(Primn−2
dR (0 mod W )) ∼= j2,!,?([d]?(H0,W |(Gm − {1}))).

Proof. The first isomorphism is the pullback by d’th power of the isomorphism
of the theorem above. We obtain the second isomorphism as follows. Denote
by j3 : Gm − µd ⊂ A1 − µd the inclusion. Because Primn−2

dR (0 mod W ) is an
O-coherent D-module on A1 − µd, it is the middle extension

j3,!,?(Primn−2
dR (0 mod W )|(Gm − µd)).

Because j2 = j1 ◦ j3, we obtain the second isomorphism by applying j2,!,? to
the first isomorphism. ut

Theorem 8.6. Suppose n ≥ 3. For either the family

Xλ := Xλ(W,d) :
n∑
i=1

wiX
d
i − dλXW = 0,

over A1 − µd, or the descended family

Yλ :
n∑
i=1

wiλ
−biY di = dXW

over Gm−{1}, consider its Primn−2
dR (0 mod W ) (resp. Primn−2

dR,desc(0 mod W ))
as a D-module, and denote by a its rank. For either family, its differential ga-
lois group Ggal (which here is the Zariski closure of its monodromy group) is
the symplectic group Sp(a) if n − 2 is odd, and the orthogonal group O(a) if
n− 2 is even.
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Proof. Poincaré duality induces on Primn−2
dR (0 mod W ) (resp. on the module

Primn−2
dR,desc(0 mod W )) an autoduality which is symplectic if n − 2 is odd,

and orthogonal if n − 2 is even. So we have a priori inclusions Ggal ⊂ Sp(a)
if n− 2 is odd, Ggal ⊂ O(a) if n− 2 is even. It suffices to prove the theorem
for the descended family. This is obvious in the Sp case, since the identity
component of Ggal is invariant under finite pullback. In the O case, we must
rule out the possibility that the pullback has group SO(a) rather than O(a).
For this, we observe that an orthogonally autodual hypergeometric of type
(a, a) has a true reflection as local monodromy around 1 (since in any case
an irreducible hypergeometric of type (a, a) has as local monodromy around
1 a pseudoreflection, and the only pseudoreflection in an orthogonal group is
a true reflection). As the d’th power map is finite étale over 1, the pullback
has a true reflection as local monodromy around each ζ ∈ µd. So the group
for the pullback contains true reflections, so must be O(a).

We now consider the descended family. So we are dealing with H0,W :=
H(α′is;βi−1′s). From the definition ofH0,W , we see that β = 1 mod Z occurs
among the βi precisely n − 1 times (n − 1 times and not n times because of
a single cancellation with List(all d)). Because n − 1 ≥ 2 by hypothesis,
local monodromy around ∞ is not semisimple [Ka-ESDE, 3.2.2] and hence
H(α′is;β

′
js) is not Belyi induced or inverse Belyi induced, cf. [Ka-ESDE, 3.5],

nor is its G0,der trivial.
We next show that H0,W is not Kummer induced of any degree r ≥ 2.

Suppose not. As the αi all have order dividing d in C/Z, r must divide d,
since 1/r mod Z is a difference of two αi’s, cf. [Ka-ESDE, 3.5.6]. But the βj
mod Z are also stable by x 7→ x + 1/r, so we would find that 1/r mod Z
occurs with the same multiplicity n − 1 as 0 mod Z among the βj mod Z.
So r must divide at least n− 1 of the wi; it cannot divide all the wi because
gcd(w1, ..., wn) = 1. But this 1/r cannot cancel with List(all d), otherwise its
multiplicity would be at most n − 2. This lack of cancellation means that r
does not divide d, contradiction.

Now we appeal to [Ka-ESDE, 3.5.8]: let H(α′is;β
′
js) be an irreducible hy-

pergeometric of type (a, a) which is neither Belyi induced nor inverse Belyi
induced not Kummer induced. Denote by G its differential galois group Ggal,
G0 its identity component, and G0,der the derived group (:= commutator sub-
group) of G0. Then G0,der is either trivial or it is one of SL(a) or SO(a) or,
if a is even, possibly Sp(a).

In the case of H0,W , we have already seen that G0,der
gal is not trivial. Given

that Ggal lies in either Sp(a) or O(a), depending on the parity of n−2, the only
possibility is that Ggal = Sp(a) for n−2 odd, and that Ggal = O(a) or SO(a)
if n−2 is even. In the even case, the presence of a true reflection in Ggal rules
out the SO case. ut

Corollary 8.7. In the context of Theorem 5.3, on each geometric fibre of
UR0[1/`]/Spec(R0[1/`]), the geometric monodromy group Ggeom of the sheaf
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Primn−2(0 mod W ) is the full symplectic group Sp(a) if n− 2 is odd, and is
the full orthogonal group O(a) if n− 2 is even.

Proof. On a C-fibre, this is just the translation through Riemann-Hilbert of
the theorem above. The passage to other geometric fibres is done by the Tame
Specialization Theorem [Ka-ESDE, 8.17.3]. ut

When does it happen that Primn−2
dR (0 mod W ) has rank n − 1 and all

Hodge numbers 1?

Lemma 8.8. The following are equivalent.

(1)Primn−2
dR (0 mod W ) has rank n− 1.

(2) Every wi divides d, and for all i 6= j, gcd(wi, wj) = 1.
(3) Local monodromy at ∞ is a single unipotent Jordan block.
(4) Local monodromy at ∞ is a single Jordan block.
(5)All the Hodge numbers Prima,b

dR(0 mod W )a+b=n−2 are 1.

Proof. (1)⇒(2) The rank is at least n− 1, as this is the multiplicity of 0 mod
Z as a β in H0,W . If the rank is no higher, then each wi must divide d, so that
the elements 1/wi, ..., (wi−1)/wi mod Z can cancel with List(all d). And the
wi must be pairwise relatively prime, for if a fraction 1/r mod Z with r ≥ 2
appeared among both 1/wi, ..., (wi−1)/wi and 1/wj , ..., (wj−1)/wj , only one
of its occurrences at most can cancel with List(all d).

(2)⇒(1) If all wi divide d, and if the wi are pairwise relatively prime, then
after cancellation we find that H0,W has rank n− 1.

(1)⇒(3) If (1) holds, then the βi’s are all 0 mod Z, and there are n − 1
of them. This forces H0,W and also [d]?H0,W to have its local monodromy
around ∞, call it T , unipotent, with a single Jordan block, cf. [Ka-ESDE,
3.2.2].

(3)⇒(4) is obvious.
(4)⇒(3) Although d’th power pullback may change the eigenvalues of local

monodromy at ∞, it does not change the number of distinct Jordan blocks.
But there is always one unipotent Jordan block of size n− 1, cf. the proof of
(1)⇒(2).

(3)⇒(5) If not all the n−1 Hodge numbers are 1, then some Hodge number
vanishes, and at most n− 2 Hodge numbers are nonzero. But by [Ka-NCMT,
14.1] [strictly speaking, by projecting its proof onto ΓW /∆-isotypical compo-
nents] any local monodromy is quasiunipotent of exponent of nilpotence ≤ h:=
the number of nonzero Hodge numbers. So our local monodromy T around
∞, already unipotent, would satisfy (T − 1)n−2 = 0. But as we have already
remarked, H0,W always has unipotent Jordan block of size n − 1. Therefore
all the Hodge numbers are nonzero, and hence each is 1.

(5)⇒(1) is obvious. ut

Remark 8.9. Four particular n = 5 cases where condition (2) is satisfied,
namely W = (1, 1, 1, 1, 1), W = (1, 1, 1, 1, 2), W = (1, 1, 1, 1, 4), and W =
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(1, 1, 1, 2, 5), were looked at in detain in the early days of mirror symmetry,
cf. [Mor, Section 4, Table 1].

Whatever the rank of Primn−2
dR (0 mod W ), we have:

Lemma 8.10. All the Hodge numbers Prima,b
dR(0 mod W )a+b=n−2 are nonzero.

Proof. Repeat the proof of (3)⇒(5). ut

9 Appendix II: The situation in characteristic p, when p
divides some wi

We continue to work with the fixed data (n, d,W ). In this appendix, we indi-
cate briefly what happens in a prime-to-d characteristic p which divides one
of the wi. For each i, we denote by w◦i the prime-to-p part of wi, i.e.,

wi = w◦i × (a power of p),

and we define
W ◦ := (w◦1 , ..., w

◦
n).

We denote by dW◦ the integer

dW◦ := lcm(w◦1 , ..., w
◦
n)d,

and define
d′ :=

∑
i

w◦i .

For each i, we have wi ≡ w◦i mod p − 1, so we have the congruence, which
will be used later,

d ≡ d′ mod p− 1.

We work over a finite field k of characteristic p prime to d which contains the
dW◦ ’th roots of unity. We take for ψ a nontrivial additive character of k which
is of the form ψFp ◦ Tracek/Fp

, for some nontrivial additive character ψFp of
Fp. The signifigance of this choice of ψ is that for q = pe, e ≥ 1, any power of
p, under the q’th power map we have

[q]?Lψ = Lψ, [q]?Lψ = Lψ

on A1
k.

The family we study in this situation is π : X → A1,

Xλ := Xλ(W,d) :
n∑
i=1

w◦iX
d
i − dλXW = 0.

The novelty is that, because p divides some wi, this family is projective and
smooth over all of A1.
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The group ΓW /∆ operates on this family. Given a character V mod W
of this group, the rank of the eigensheaf Primn−2(V mod W ) is still given
by the same recipe as in Lemma 3.1(1), because at λ = 0 we have a smooth
Fermat hypersurface of degree d.

Given an element V = (v1, ..., vn) ∈ (Z/dZ)n0 , we attach to it an unordered
list List(V,W ) of d′ =

∑
i w

◦
i multiplicative characters of k×, by the following

procedure. For each index i, we denoted by χvi the character of k× given by

ζ 7→ ζ(vi/d)#k
×
.

This characterχvi has w◦i (as opposed to wi) distinct wi’th roots. We then
define

List(V,W ) = {all w1
′th roots of χv1 , ..., all wn

′th roots of χvn}.

We will also need the same list, but for −V , and the list

List(all d) := {all characters of order dividing d}.

The two lists List(−V,W ) and List(all d) are not identical, as they have
different lengths d′ and d respectively, so we can apply the Cancel operation,
and form the hypergeometric sheaf

HV,W := Hcan(Cancel(List(all d);List(−V,W )))

on Gm,k. Exactly as in Lemma 5.2, if Primn−2(V mod W ) is nonzero, its
rank is the rank of HV,W .

An important technical fact in this situation is the following variant of
Theorem 7.2, cf. [Ka-ESDE, 9.3.2], which “works” because F×p has order p−1.

Theorem 9.1. Denote by ψ−1/d the additive character x 7→ ψ(−x/d), and de-
note by j : Gm,k ⊂ A1

k the inclusion. Denote by Λ1, ..., Λd the list List(all d) of
all the multiplicative characters of k× of order dividing d. Let d′ be a strictly
positive integer with d′ ≡ d mod p − 1. For any unordered list of d′ multi-
plicative characters ρ1, ...ρd′ of k× which is not identical to List(all d), the
perverse sheaf

FTψj?[d]?H(ψ−1/d; ρ1, ...ρd′ ; ∅)[1]

on A1
k is geometrically isomorphic to the perverse sheaf

j?[d]?H(ψ;Cancel(List(all d); ρ1, ..., ρd′))[1].

The main result is the following.

Theorem 9.2. Suppose that Primn−2(V mod W ) is nonzero and denote by
j : Gm ⊂ A1 the inclusion. Choose V in the coset V mod W . There exists a
constant AV,W ∈ Q×

` and an isomorphism of lisse sheaves on A1
k,

Primn−2(V mod W ) ∼= j?[d]?HV,W ⊗ (AV,W )deg.
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Proof. Because our family is projective and smooth over all of A1, Deligne’s
degeneration theorem [De-TLCD, 2.4] gives a decomposition

Rπ?Q`
∼= Primn−2[2− n]

⊕
(geom. constant).

So applying Fourier Transform, we get

FTψRπ?Q`(V mod W )|Gm
∼= FTψPrim

n−2(V mod W )[2− n]|Gm.

On the open set V ⊂ X where XW is invertible, the restriction of π becomes
the map f , now given by

(X1, ..., Xn) 7→
∑
i

(w◦i /d)X
d
i /X

W .

Then the argument of Lemma 7.3 gives

FTψPrim
n−2(V mod W )[2− n]|Gm

∼= FTψRf!Q`(V mod W )|Gm.

Theorem 7.5 remains correct as stated. [In its proof, the only modification
needed is the analysis now of the sheaves Kl(ψ−w◦i /d;χvi , wi). Pick for each i
a wi’th root ρi of χvi . We have geometric isomorphisms

Kl(ψ−w◦i /d;χvi , wi) = [wi]?Kl(ψ−w◦i /d;χvi) = Lρi ⊗ [wi]?Lψ−w◦
i

/d

= Lρi⊗[w◦i ]?Lψ−w◦
i

/d
∼= Lρi⊗Kl(ψ−1/d; all the w◦i char

′s of order dividing wi)

∼= Kl(ψ−1/d; all the w◦i w
′
ith roots of χvi).]

At this point, we have a geometric isomorphism

FTψPrim
n−2(V mod W )[2− n]|Gm

∼= [d]?H(ψ−1/d;List(V,W ); ∅)[2− n].

So in the Grothendieck group K(A1
k
,Q`), we have

FTψPrim
n−2(V mod W )

= j?[d]?H(ψ−1/d;List(V,W ); ∅) + (punctual, supported at 0).

Applying the inverse Fourier Transform, we find that in K(A1
k
,Q`) we have

Primn−2(V mod W ) = j?[d]?HV,W + (geom. constant).

As before, the fact that Primn−2(V mod W ) and j?[d]?HV,W have the same
generic rank shows that there is no geometically constant term, so we have
an equality of perverse sheaves in K(A1

k
,Q`),

Primn−2(V mod W ) = j?[d]?HV,W .

So these two perverse sheaves have isomorphic semisimplifications. Again by
purity, both are geometrically semisimple. So the two sides are geometrically
isomorphic. To produce the constant field twist, we repeat the descent ar-
gument of Lemma 6.2 to reduce to the case when both descended sides are
geometrically irreducible and geometrically isomorphic, hence constant field
twists of each other. ut
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10 Appendix III: Interesting pieces in the original
Dwork family

In this appendix, we consider the case n = d,W = (1, 1, ..., 1). We are inter-
ested in those eigensheaves Primn−2(V mod W ) that have unipotent local
monodromy at ∞ with a single Jordan block. In view of the explicit descrip-
tion of Primn−2(V mod W )|(Gm − µd) as [d]?HV,W , and the known local
monodromy of hypergeometric sheaves, as recalled in Section 4, we have the
following characterization.

Lemma 10.1. In the case n = d,W = (1, 1, ..., 1), let V mod W be a char-
acter of ΓW /∆ such that Primn−2(V mod W ) is nonzero. The following are
equivalent.

(1) Local monodromy at ∞ on Primn−2(V mod W ) has a single Jordan block.
(2) Local monodromy at ∞ on Primn−2(V mod W ) is unipotent with a single

Jordan block.
(3) Every V = (v1, ..., vn) in the coset V mod W has the following property:

there is at most one vi which occurs more than once, i.e., there is at most
one a ∈ Z/dZ for which the number of indices i with vi = a exceeds 1.

(4)A unique V = (v1, ..., vn) in the coset V mod W has the following property:
the value 0 ∈ Z/dZ occurs more than once among the vi, and no other value
a ∈ Z/dZ does.

Proof. In order for Primn−2(V mod W ) to be nonzero, the list List(−V,W )
must differ from List(all d). In this n = d case, that means precisely that
List(−V,W ) must have at least one value repeated. Adding a suitable multiple
of W = (1, 1, ..., 1), we may assume that the value 0 occurs at least twice
among the vi. So (3) ⇔ (4).

For a hypergeometric Hcan(χ′is; ρ
′
js) of type (a, a), local monodromy at

∞ has a single Jordan block if and only if all the ρj ’s coincide, in which case
the common value of all the ρj ’s is the eigenvalue in that Jordan block. And
[d]?Hcan(χ′is; ρ

′
js)’s local monodromy at at ∞ has the same number of Jordan

blocks (possibly with different eigenvalues) as that of Hcan(χ′is; ρ
′
js). In our

situation, if we denote by (χ1, ..., χd) all the characters of order dividing d,
and by (χ−v1 , ..., χ−vd

) the list List(−V,W ), then

HV,W = Hcan(Cancel((χ1, ..., χd); (χ−v1 , ..., χ−vd
))).

So in order for local monodromy at ∞ to have a single Jordan block, we
need all but one of the characters that occur among the χvi to cancel into
List(all d). But those that cancel are precisely those which occur with multi-
plicity 1. So (1) ⇔ (3). Now (2) ⇒ (1) is trivial, and (2) ⇒ (4) by the explicit
description of local monodromy at ∞ in terms of the ρj ’s. ut

Lemma 10.2. Suppose the equivalent conditions of Lemma 10.1 hold. De-
note by a the rank of Primn−2(V mod W ). Then on any geometric fibre of
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(A1−µd)/Spec(Z[ζd][1/d`]), the geometric monodromy group Ggeom attached
to Primn−2(V mod W ) has identity component either SL(a) or SO(a) or, if
a is even, possibly Sp(a).

Proof. By the Tame Specialization Theorem [Ka-ESDE, 8.17.13], the group
is the same on all geometric fibres. So it suffices to look in some characteristic
p > a. Because on our geometric fibre HV,W began life over a finite field, and
is geometrically irreducible, G0

geom is semisimple. The case a = 1 is trivial.
Suppose a ≥ 2. Because its local monodromy at ∞ is a single unipotent
block, the hypergeometricHV,W is not Belyi induced, or inverse Belyi induced,
or Kummer induced, and G0,der

geom is nontrivial. The result now follows from
[Ka-ESDE, 8.11.2]. ut

Lemma 10.3. Suppose the equivalent conditions of Lemma 10.1 hold. Denote
by a the rank of Primn−2(V mod W ). Suppose a ≥ 2. Denote by V the unique
element in the coset V mod W in which 0 ∈ Z/dZ occurs with multiplicity
a+1, while no other value occurs more than once. Then we have the following
results.

(1) Suppose that −V is not a permutation of V . Then

Ggeom = SL(a)

if n− 2 is odd, and

Ggeom = {A ∈ GL(a)|det(A) = ±1}

if n− 2 is even.
(2) If −V is a permutation of V and n− 2 is odd, then a is even and

Ggeom = Sp(a).

(3) If −V is a permutation of V and n− 2 is even, then a is odd and

Ggeom = O(a).

Proof. That these results hold for HV,W results from [Ka-ESDE, 8.11.5,
8.8.1,8.8.2]. In applying those results, one must remember that

∑
i vi = 0 ∈

Z/dZ, which implies that (“even after cancellation”) local monodromy at ∞
has determinant one. Thus in turn implies that when d, or equivalently n−2, is
even, then (“even after cancellation”) local monodromy at 0 has determinant
the quadratic character, and hence local monodromy at 1 also has determi-
nant the quadratic character. So in the cases where the group does not have
determinant one, it is because local monodromy at 1 is a true reflection. After
[d]?, which is finite étale over 1, we get a true reflection at each point in µd. ut

Lemma 10.4. If the equivalent conditions of the previous lemma hold, then
over C the Hodge numbers of Primn−2(V mod W ) form an unbroken string
of 1’s, i.e., the nonzero among the Primb,n−2−b(V mod W ) are all 1, and
the b for which Primb,n−2−b(V mod W ) is nonzero form (the integers in) an
interval [A,A− 1 + a] for some A.
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Proof. From the explicit determination of Ggeom, we see in particular that
Primn−2(V mod W ) is an irreducible local system. Looking in a C-fibre of
(A1 − µd)/Spec(Z[ζd][1/d`]) and applying Riemann-Hilbert, we get that the
D-module Primn−2

dR (V mod W ) is irreducible. By Griffiths transversality, this
irreducibility implies that the b for which Primb,n−2−b(V mod W ) is nonzero
form (the integers in) an interval. The fact that local monodromy at ∞ is

unipotent with a single Jordan block implies that the number of nonzero
Hodge groups Primb,n−2−b(V mod W ) is at least a, cf. the proof of Lemma
8.8, (3) ⇔ (5). ut
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[Kob] Koblitz, N., “The number of points on certain families of hypersurfaces over

finite fields”, Compositio Math. 48 (1983), no. 1, 3-23.
[Ma-ACFD] Manin, Yu. I., “Algebraic curves over fields with differentiation”,

(Russian) Izv. Akad. Nauk SSSR. Ser. Mat. 22 (1958), 737-756.
[Lau-TFCEF] Laumon, G., “Transformation de Fourier, constantes d’équations

fonctionnelles et conjecture de Weil”, Publ. Math. IHES 65 (1987), 131-210.
[Mor] Morrison, D. R., “Picard-Fuchs equations and mirror maps for hypersur-

faces”, Essays on mirror manifolds, 241-264, Int. Press, Hong Kong, 1992. Also
available at http://arxiv.org/pdf/hep-th/9111025.

[Mus-CDPMQ] Mustata, A., “Degree 1 Curves in the Dwork Pencil and the Mirror
Quintic” preprint, math.AG/0311252

[Ogus-GTCC] Ogus, A., “Griffiths transversality in crystalline cohomology”, Ann.
of Math. (2) 108 (1978), no. 2, 395-419.

[RL-Wan] Rojas-Leon, A., and Wan, D., “Moment zeta functions for toric calabi-
yau hypersurfaces”, preprint, 2007.

[Se-ALR] Serre, J.-P., “Abelian l-adic representations and elliptic curves”, W. A.
Benjamin, Inc., New York-Amsterdam 1968 xvi+177 pp.

[SGA 4 1/2] Cohomologie Etale. Séminaire de Géométrie Algébrique du Bois Marie
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