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1. Introduction and a bit of history

After proving [Dw-Rat] the rationality of zeta functions of all alge-
braic varieties over finite fields nearly fifty years ago, Dwork studied
in detail the zeta function of a nonsingular hypersurface in projective
space, cf. [Dw-Hyp1] and [Dw-HypII]. He then developed his “de-
formation theory”, cf. [Dw-Def], [Dw-NPI] and [Dw-NPII], in which
he analyzed the way in which his theory varied in a family. One of
his favorite examples of such a family, now called the Dwork family,
was the one parameter (λ) family, for each degree n ≥ 2, of degree n
hypersurfaces in Pn−1 given by the equation

n∑
i=1

Xn
i − nλ

n∏
i=1

Xi = 0,

a family he wrote about explicitly in [Dw-Def, page 249, (i),(ii),(iv), the
cases n = 2, 3, 4], [Dw-HypII, section 8, pp. 286-288, the case n = 3]
and [Dw-PC, 6.25, the case n = 3, and 6.30, the case n = 4]. Dwork
of course also considered the generalization of the above Dwork family
consisting of single-monomial deformations of Fermat hypersurfaces of
any degree and dimension. He mentioned one such example in [Dw-Def,
page 249, (iii)]. In [Dw-PAA, pp. 153-154], he discussed the general
single-monomial deformation of a Fermat hypersurface, and explained
how such families led to generalized hypergeometric functions.

My own involvement with the Dwork family started (in all senses!)
at the Woods Hole conference in the summer of 1964 with the case
n = 3, when I managed to show in that special case that the alge-
braic aspects of Dwork’s deformation theory amounted to what would
later be called the Gauss-Manin connection on relative de Rham co-
homology, but which at the time went by the more mundane name of
“differentiating cohomology classes with respect to parameters”.

That this article is dedicated to Manin on his seventieth birthday is
particularly appropriate, because in that summer of 1964 my reference
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for the notion of differentiating cohomology classes with respect to
parameters was his 1958 paper [Ma-ACFD]. I would also like to take
this opportunity to thank, albeit belatedly, Arthur Mattuck for many
helpful conversations that summer.

I discussed the Dwork family in [Ka-ASDE, 2.3.7.17-23, 2.3.8] as a
“particularly beautiful family”, and computed explicitly the differen-
tial equation satisfied by the cohomology class of the holomorphic n−2
form. It later showed up in [Ka-SE, 5.5, esp. pp. 188-190], about which
more below. Ogus [Ogus-GTCC, 3.5, 3.6] used the Dwork family to
show the failure in general of “strong divisibility”. Stevenson, in her
thesis [St-th],[St, end of section 5, page 211], discussed single-monomial
deformations of Fermat hypersurfaces of any degree and dimension.
Koblitz [Kob] later wrote on these same families. With mirror sym-
metry and the stunning work of Candelas et al [C-dlO-G-P] on the
case n = 5, the Dwork family became widely known, especially in the
physics community, though its occurence in Dwork’s work was almost
(not entirely, cf. [Ber], [Mus-CDPMQ]) forgotten. Recently the Dwork
family turned out to play a key role in the proof of the Sato-Tate con-
jecture (for elliptic curves over Q with non-integral j-invariant), cf.
[H-SB-T, section 1, pp. 5-15].

The present paper gives a new approach to computing the local sys-
tem given by the cohomology of the Dwork family, and more gener-
ally of families of single-monomial deformations of Fermat hypersur-
faces. This approach is based upon the surprising connection, noted in
[Ka-SE, 5.5, esp. pp. 188-190], between such families and Kloosterman
sums. It uses also the theory, developed later, of Kloosterman sheaves
and of hypergeometric sheaves, and of their behavior under Kummer
pullback followed by Fourier Transform, cf. [Ka-GKM] and [Ka-ESDE,
esp. 9.2 and 9.3]. In a recent preprint, Rojas-Leon and Wan [RL-Wan]
have independently implemented the same approach.

2. The situation to be studied: generalities

We fix an integer n ≥ 2, a degree d ≥ n, and an n-tuple W =
(w1, ..., wn) of strictly positive integers with

∑
iwi = d, and with

gcd(w1, ..., wn) = 1. This data (n, d,W ) is now fixed. Let R be a
ring in which d is invertible.

Over R we have the affine line A1
R := Spec(R[λ]). Over A1

R, we con-
sider certain one parameter (namely λ) families of degree d hypersur-
faces in Pn−1. Given an n+ 1-tuple (a, b) := (a1, ..., an, b) of invertible
elements in R, we consider the one parameter (namely λ) family of



ANOTHER LOOK AT THE DWORK FAMILY 3

degree d hypersurfaces in Pn−1,

Xλ(a, b) :
n∑
i=1

aiX
d
i − bλXW = 0,

where we have written

XW :=
n∏
i=1

Xwi
i .

More precisely, we consider the closed subscheme X(a, b)R of Pn−1
R ×RA1

R

defined by the equation

n∑
i=1

aiX
d
i − bλXW = 0,

and denote by

π(a, b)R : X(a, b)R → A1
R

the restriction to X(a, b)R of the projection of Pn−1
R ×R A1

R onto its
second factor.

Lemma 2.1. The morphism

π(a, b)R : X(a, b)R → A1
R

is lisse over the open set of A1
R where the function

(bλ/d)d
∏
i

(wi/ai)
wi − 1

is invertible.

Proof. Because d and the ai are invertible in R, a Fermat hypersurface
of the form

n∑
i=1

aiX
d
i = 0

is lisse over R. When we intersect our family with any coordinate
hyperplane Xi = 0, we obtain a constant Fermat family in one lower
dimension (because each wi ≥ 1). Hence any geometric point (x, λ) ∈ X
at which π is not smooth has all coordinates Xi invertible. So the locus
of nonsmoothness of π is defined by the simultaneous vanishing of all
the Xid/dXi, i.e., by the simultaneous equations

daiX
d
i = bλwiX

W , for i = 1, ..., n.

Divide through by the invertible factor dai. Then raise both sides of
the i’th equation to the wi power and multiply together right and left
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sides separately over i. We find that at a point of nonsmoothness we
have

XdW = (bλ/d)d
∏
i

(wi/ai)
wiXdW .

As already noted, all the Xi are invertible at any such point, and hence

1 = (bλ/d)d
∏
i

(wi/ai)
wi

at any geometric point of nonsmoothness. �

In the Dwork family per se, all wi = 1. But in a situation where there
is a prime p not dividing d` but dividing one of the wi, then taking for
R an Fp-algebra (or more generally a ring in which p is nilpotent), we
find a rather remarkable family.

Corollary 2.2. Let p be a prime which is prime to d but which divides
one of the wi, and R a ring in which p is nilpotent. Then the morphism

π(a, b)R : X(a, b)R → A1
R

is lisse over all of A1
R

Remark 2.3. Already the simplest possible example of the above sit-
uation, the family in P1/Fq given by

Xq+1 + Y q+1 = λXY q,

is quite interesting. In dehomogenized form, we are looking at

xq+1 − λx+ 1

as polynomial over Fq(λ); its Galois group is known to be PSL(2,Fq),
cf. [Abh-PP, bottom of p. 1643], [Car], and [Abh-GTL, Serre’s Appen-
dix]. The general consideration of “p|wi for some i” families in higher
dimension would lead us too far afield, since our principal interest here
is with families that “start life” over C. We discuss briefly such “p|wi
for some i” families in Appendix II. We would like to call the attention
of computational number theorists to these families, with no degener-
ation at finite distance, as a good test case for proposed methods of
computing efficiently zeta functions in entire families.

3. The particular situation to be studied: details

Recall that the data (n, d,W ) is fixed. Over any ring R in which
d

∏
iwi is invertible, we have the family π : X → A1

R given by

Xλ := Xλ(W, d) :
n∑
i=1

wiX
d
i − dλXW = 0;
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it is proper and smooth over the open set U := A1
R[1/(λd − 1)] ⊂ A1

R

where λd − 1 is invertible.
The most natural choice of R, then, is Z[1/(d

∏
iwi)]. However, it

will be more convenient to work over a somewhat larger cyclotomic
ring, which contains, for each i, all the roots of unity of order dwi.
Denote by lcm(W ) the least common multiple of the wi, and define
dW := lcm(W )d. In what follows, we will work over the ring

R0 := Z[1/dW ][ζdW
] := Z[1/dW ][T ]/(ΦdW

(T )),

where ΦdW
(T ) denotes the dW ’th cyclotomic polynomial.

We now introduce the relevant automorphism group of our family.
We denote by µd(R0) the group of d’th roots of unity in R0, by Γ =
Γd,n the n-fold product group (µd(R0))

n, by ΓW ⊂ Γ the subgroup
consisting of all elements (ζ1, ..., ζn) with

∏n
i=1 ζ

wi
i = 1, and by ∆ ⊂ ΓW

the diagonal subgroup, consisting of all elements of the form (ζ, ..., ζ).
The group ΓW acts as automorphisms of X/A1

R0
, an element (ζ1, ..., ζn)

acting as
((X1, ..., Xn), λ) 7→ ((ζ1X1, ..., ζnXn), λ).

The diagonal subgroup ∆ acts trivially.
The natural pairing

(Z/dZ)n × Γ → µd(R0) ⊂ R×
0 ,

(v1, ..., vn)× (ζ1, ..., ζn) →
∏
i

ζvi
i ,

identifies (Z/dZ)n as theR0-valued character groupDΓ := Homgroup(Γ, R
×
0 ).

The subgroup
(Z/dZ)n0 ⊂ (Z/dZ)n

consisting of elements V = (v1, ..., vn) with
∑

i vi = 0 in Z/dZ is then
the R0-valued character group D(Γ/∆) of Γ/∆. The quotient group
(Z/dZ)n0/ < W > of (Z/dZ)n0 by the subgroup generated by (the im-
age, by reduction mod d, of) W is then the R0-valued character group
D(ΓW/∆) of ΓW/∆.

For G either of the groups Γ/∆ or ΓW/∆, an R0-linear action of G
on a sheaf of R0-modules M gives an eigendecomposition

M = ⊕ρ∈D(G)M(ρ).

If the action is by the larger group G = Γ/∆, then DG = (Z/dZ)n0 , and
for V ∈ (Z/dZ)n0 we denote by M(V ) the corresponding eigenspace. If
the action is by the smaller group ΓW/∆, then DG is the quotient
group (Z/dZ)n0/ < W >; given an element V ∈ (Z/dZ)n0 , we de-
note by V mod W its image in the quotient group, and we denote
by M(V mod W ) the corresponding eigenspace.
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If M is given with an action of the larger group Γ/∆, we can decom-
pose it for that action:

M = ⊕V ∈(Z/dZ)n
0
M(V ).

If we view this same M only as a representation of the sugroup ΓW/∆,
we can decompose it for that action:

M = ⊕V ∈(Z/dZ)n
0 /<W>M(V mod W ).

The relation between these decompositions is this: for any element
V ∈ (Z/dZ)n0 ,

M(V mod W ) = ⊕r mod dM(V + rW ).

We return now to our family π : X → A1
R0

, which we have seen is
(projective and) smooth over the open set

U = A1
R0

[1/(λd − 1)].

We choose a prime number `, and an embedding of R0 into Q`. [We
will now need to invert `, so arguably the most efficient choice is to
take for ` a divisor of dW .] We We form the sheaves

F i := Riπ?Q`

on A1
R0[1/`]. They vanish unless 0 ≤ i ≤ 2(n − 2), and they are all

lisse on U [1/`]. By the weak Lefschetz Theorem and Poincaré duality,
the sheaves F i|U [1/`] for i 6= n − 2 are completely understood. They
vanish for odd i; for even i = 2j ≤ 2(n − 2), i 6= n − 2, they are the
Tate twists

F2j|U [1/`] ∼= Q`(−j).
We now turn to the lisse sheaf Fn−2|U [1/`]. It is endowed with

an autoduality pairing (cup product) toward Q`(−(n − 2)) which is
symplectic if n− 2 is odd, and orthogonal if n− 2 is even. If n− 2 is
even, say n − 2 = 2m, then Fn−2|U [1/`] contains Q`(−m) as a direct
summand (m’th power of the hyperplane class from the ambient P)
with nonzero self-intersection. We define Primn−2 (as a sheaf on U [1/`]
only) to be the annihilator in Fn−2|U [1/`] of this Q`(−m) summand
under the cup product pairing. So we have

Fn−2|U [1/`] = Primn−2 ⊕Q`(−m),

when n−2 = 2m. When n−2 is odd, we define Primn−2 := Fn−2|U [1/`],
again as a sheaf on U [1/`] only.

The group ΓW/∆ acts on our family, so on all the sheaves above.
For i 6= n− 2, it acts trivially on F i|U [1/`]. For i = n− 2 = 2m even,
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it respects the decomposition

Fn−2|U [1/`] = Prim⊕Q`(−m),

and acts trivially on the second factor.
We thus decompose Primn−2 into eigensheaves Primn−2(V mod W ).

The basic information on the eigensheaves Primn−2(V mod W ) is en-
coded in elementary combinatorics of the coset V mod W . An element
V = (v1, ..., vn) ∈ (Z/dZ)n0 is said to be totally nonzero if vi 6= 0 for
all i. Given a totally nonzero element V ∈ (Z/dZ)n0 , we define its de-
gree, deg(V ) as follows. For each i, denote by ṽi the unique integer
1 ≤ ṽi ≤ d − 1 which mod d gives vi. Then

∑
i ṽi is 0 mod d, and we

define

deg(V ) := (1/d)
∑
i

ṽi.

Thus deg(V ) lies in the interval 1 ≤ deg(V ) ≤ n− 1. The Hodge type
of a totally nonzero V ∈ (Z/dZ)n0 is defined to be HdgType(V ) :=
(n− 1− deg(V ), deg(V )− 1).

We now compute the rank and the the Hodge numbers of eigen-
sheaves Primn−2(V mod W ). We have already chosen an embedding
of R0 into Q`. We now choose an embedding of Q` into C. The com-
posite embedding R0 ⊂ C allows us to extend scalars in our fam-
ily π : X → A1

R0
, which is projective and smooth over the open set

UR0 = A1
R0

[1/(λd−1)], to get a complex family πC : XC → A1
C, which is

projective and smooth over the open set UC = A1
C[1/(λd − 1)]. Work-

ing in the classical complex topology with the corresponding analytic
spaces, we can form the higher direct image sheaves RiπanC Q on A1,an

C ,
whose restrictions to Uan

C are locally constant sheaves. We can also form
the locally constant sheaf Primn−2,an(Q) on Uan

C . Extending scalars in
the coefficients from Q to Q`, we get the sheaf Primn−2,an(Q`). On
the other hand, we have the lisse Q`-sheaf Primn−2 on UR0[1/`], which
we can pull back, first to UC, and then to Uan

C . By the fundamental
comparison theorem, we have

Primn−2,an(Q`) ∼= Primn−2|Uan
C .

Extending scalars from Q` to C, we find

Primn−2,an(C) ∼= (Primn−2|Uan
C )⊗Q`

C.

This is all ΓW/∆-equivariant, so we have the same relation for individ-
ual eigensheaves:

Primn−2,an(C)(V mod W ) ∼= (Primn−2(V mod W )|Uan
C )⊗Q`

C.



8 NICHOLAS M. KATZ

If we extend scalars on Uan
C from the constant sheaf C to the sheaf

OC∞ , then the resulting C∞ vector bundle Primn−2,an(C)⊗C OC∞ has
a Hodge decomposition,

Primn−2,an(C)⊗C OC∞ =
⊕

a≥0,b≥0,a+b=n−2

Prima,b.

This decomposition is respected by the action of ΓW/∆, so we get a
Hodge decomposition of each eigensheaf:

Primn−2,an(C)(V modW )⊗COC∞ =
⊕

a≥0,b≥0,a+b=n−2

Prima,b(V modW ).

Lemma 3.1. We have the following results.

(1) The rank of the lisse sheaf Primn−2(V mod W ) on UR0[1/`] is
given by

rk(Primn−2(V mod W )) = #{r ∈ Z/dZ | V +rW is totally nonzero}.

In particular, the eigensheaf Primn−2(V mod W ) vanishes if
none of the W -translates V + rW is totally nonzero.

(2) For each (a, b) with a ≥ 0, b ≥ 0, a+ b = n− 2, the rank of the
C∞ vector bundle Prima,b(V mod W ) on Uan

C is given by

rk(Prima,b(V mod W ))

= #{r ∈ Z/dZ | V +rW is totally nonzero and deg(V +rW ) = b+1}.

Proof. To compute the rank of a lisse sheaf on UR0[1/`], or the rank of
a C∞ vector bundle on Uan

C , it suffices to compute its rank at a sin-
gle geometric point of the base. We take the C-point λ = 0, where
we have the Fermat hypersurface. Here the larger group (Z/dZ)n0 op-
erates. It is well known that under the action of this larger group,
the eigenspace Prim(V ) vanishes unless V is totally nonzero, e.g., cf.
[Ka-IMH, section 6]. One knows further that if V is totally nonzero,
this eigenspace is one-dimensional, and of Hodge type HdgType(V ) :=
(n− 1− deg(V ), deg(V )− 1), cf. [Grif-PCRI, 5.1 and 10.8]. �

The main result of this paper is to describe the eigensheaves

Primn−2(V mod W )

as lisse sheaves on U [1/`], i.e., as representations of π1(U [1/`]), and to
describe the direct image sheaves jU?(Prim

n−2(V mod W )) on A1
R0[1/`],

for jU : U [1/`] ⊂ A1
R0[1/`] the inclusion. The description will be in terms

of hypergeometric sheaves in the sense of [Ka-ESDE, 8.7.11].
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4. Interlude: Hypergeometric sheaves

We first recall the theory in its original context of finite fields, cf.
[Ka-ESDE, Chapter 8]. Let k be an R0[1/`]-algebra which is a finite

field, and ψ : (k,+) → Q×
` a nontrivial additive character. Because k

is an R0[1/`]- algebra, it contains dW distinct dW ’th roots of unity, and
the structural map gives a group isomorphism µdW

(R0) ∼= µdW
(k). So

raising to the #k×/dW ’th power is a surjective group homomorphism

k× → µdW
(k) ∼= µdW

(R0).

So for any character χ : µdW
(R0) → µdW

(R0), we can and will view the
composition of χ with the above surjection as defining a multiplicative
character of k×, still denoted χ. Every multiplicative character of k× of
order dividing dW is of this form. Fix two non-negative integers a and
b, at least one of which is nonzero. Let χ1, ..., χa be an unordered list
of a multiplicative characters of k× of order dividing dW , some possibly
trivial, and not necessarily distinct. Let ρ1, ..., ρb be another such list,
but of length b. Assume that these two lists are disjoint, i.e., no χi
is a ρj. Attached to this data is a geometrically irreducible middle

extension Q`-sheaf

H(ψ;χi
′s; ρj

′s)

on Gm/k, which is pure of weight a+b−1. We call it a hypergeometric
sheaf of type (a, b). If a 6= b, this sheaf is lisse on Gm/k; if a = b it is lisse
on Gm−{1}, with local monodromy around 1 a tame pseudoreflection
of determinant (

∏
j ρj)/(

∏
i χi).

The trace function of H(ψ;χi
′s; ρj

′s) is given as follows. For E/k a
finite extension field, denote by ψE the nontrivial additive character of
E obtained from ψ by composition with the trace map TraceE/k, and
denote by χi,E (resp. ρj,E) the multiplicative character of E obtained
from χi (resp. ρj) by composition with the norm map NormE/k. For
t ∈ Gm(E) = E×, denote by V (a, b, t) the hypersurface in (Gm)a ×
(Gm)b/E, with coordinates x1, ..., xa, y1, ..., yb, defined by the equation∏

i

xi = t
∏
j

yj.

Then

Trace(Frobt,E|H(ψ;χi
′s; ρj

′s))

= (−1)a+b−1
∑

V (n,m,t)(E)

ψE(
∑
i

xi −
∑
j

yj)
∏
i

χi,E(xi)
∏
j

ρj,E(yj).
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In studying these sheaves, we can always reduce to the case a ≥ b,
because under multiplicative inversion we have

inv?H(ψ;χi
′s; ρj

′s)) ∼= H(ψ; ρj
′s;χi

′s)).

If a ≥ b, the local monodromy around 0 is tame, specified by the list
of χi’s: the action of a generator γ0 of I tame0 is the action of T on the
Q`[T ]-module Q`[T ]/(P (T )), for P (T ) the polynomial

P (T ) :=
∏
i

(T − χi(γ0)).

In other words, for each of the distinct characters χ on the list of the
χ′is, there is a single Jordan block, whose size is the multiplicity with
which χ appears on the list. The local monodromy around ∞ is the
direct sum of a tame part of dimension b, and, if a > b, a totally
wild part of dimension a− b, all of whose upper numbering breaks are
1/(a−b). The b-dimensional tame part of the local monodromy around
∞ is analogously specified by the list of ρ’s: the action of a generator
γ∞ of I tame∞ is the action of T on the Q`[T ]-module Q`[T ]/(Q(T )), for
Q(T ) the polynomial

Q(T ) :=
∏
j

(T − ρj(γ0)).

When a = b, there is a canonical constant field twist of the hy-
pergeometric sheaf H = H(ψ;χi

′s; ρj
′s) which is independent of the

auxiliary choice of ψ, which we will call Hcan. We take for A ∈ Q×
` the

nonzero constant

A = (
∏
i

(−g(ψ, χi))(
∏
j

(−g(ψ, ρj)),

and define

Hcan := H⊗ (1/A)deg.

[That Hcan is independent of the choice of ψ can be seen in two ways.
By elementary inspection, its trace function is independent of the choice
of ψ, and we appeal to Chebotarev. Or we can appeal to the rigidity
of hypergeometric sheaves with given local monodromy, cf. [Ka-ESDE,
8.5.6], to infer that with given χ’s and ρ’s, the hypergeometric sheaves
Hcan
ψ with different choices of ψ are all geometrically isomorphic. Being

geometrically irreducible as well, they must all be constant field twists
of each other. We then use the fact that H1(Gm ⊗k k,Hcan

ψ ) is one
dimensional, and that Frobk acts on it by the scalar 1, to see that the
constant field twist is trivial.]
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Here is the simplest example. Take χ 6= ρ, and form the hyperge-
ometric sheaf Hcan(ψ;χ; ρ). Then using the rigidity approach, we see
that

Hcan(ψ;χ; ρ) ∼= Lχ(x) ⊗ L(ρ/χ)(1−x) ⊗ (1/A)deg,

with A (minus) the Jacobi sum over k,

A = −J(k;χ, ρ/χ) := −
∑
x∈k×

χ(x)(ρ/χ)(1− x).

The object

H(χ, ρ) := Lχ(x) ⊗ L(ρ/χ)(1−x)

makes perfect sense on Gm/R0[1/`], cf. [Ka-ESDE, 8.17.6]. By [We-JS],
attaching to each maximal ideal P ofR0 the Jacobi sum−J(R0/P ;χ, ρ/χ)
over its residue field is a grossencharacter, and so by [Se-ALR, Chapter
2] a Q`-valued character, call it Λχ,ρ/χ, of π1(Spec(R0[1/`]). So we can
form

Hcan(χ, ρ) := H(χ, ρ)⊗ (1/Λχ,ρ/χ)

on Gm/R0[1/`]. For any R0[1/`]-algebra k which is a finite field, its
pullback to Gm/k is Hcan(ψ;χ; ρ).

This in turn allows us to perform the following global construction.
Suppose we are given an integer a > 0, and two unordered lists of
characters,χ1, ..., χa and ρ1, ..., ρa, of the group µdW

(R0) with values in
that same group. Assume that the lists are disjoint. For a fixed choice
of orderings of the lists, we can form the sheavesHcan(χi, ρi), i = 1, ..., a
on Gm/R0[1/`]. We can then define, as in [Ka-ESDE, 8.17.11], the !
multiplicative convolution

Hcan(χ1, ρ1)[1] ?! Hcan(χ2, ρ2)[1] ?! ... ?! Hcan(χa, ρa)[1],

which will be of the form F [1] for some sheaf F on Gm/R0[1/`] which
is “tame and adapted to the unit section”. This sheaf F we call
Hcan(χi

′s; ρj
′s). For any R0[1/`]-algebra k which is a finite field,

its pullback to Gm/k is Hcan(ψ;χi
′s; ρj

′s). By Chebotarev, the sheaf
Hcan(ψ;χi

′s; ρj
′s) is, up to isomorphism, independent of the orderings

that went into its definition as an interated convolution. This canonical
choice (as opposed to, say, the ad hoc construction given in [Ka-ESDE,
8.17.11], which did depend on the orderings) has the property that,
denoting by

f : Gm/R0[1/`] → Spec(R0[1/`])

the structural map, the sheaf R1f!Hcan(χi
′s; ρj

′s) on Spec(R0[1/`]) is
the constant sheaf, i.e., it is the trivial one-dimensional representation
of π1(Spec(R0[1/`])).
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If the unordered lists χ1, ..., χa and ρ1, ..., ρb are not disjoint, but
not identical, then we can “cancel” the terms in common, getting
shorter disjoint lists. The hypergeometric sheaf we form with these
shorter, disjoint “cancelled” lists we denote H(ψ;Cancel(χi

′s; ρj
′s)),

cf. [Ka-ESDE, 9.3.1], where this was denoted CancelH(ψ;χi
′s; ρj

′s).
If a = b, then after cancellation the shorter disjoint lists still have
the same common length, and so we can form the constant field twist
Hcan(ψ;Cancel(χi

′s; ρj
′s)). And in the global setting, we can form

the object Hcan(Cancel(χi
′s; ρj

′s)) on Gm/R0[1/`].

5. Statement of the main theorem

We continue to work with the fixed data (n, d,W ). Given an element
V = (v1, ..., vn) ∈ (Z/dZ)n0 , we attach to it an unordered list List(V,W )
of d =

∑
iwi multiplicative characters of µdW

(R0), by the following
procedure. For each index i, denote by χvi

the character of µdW
(R0)

given by

ζ 7→ ζ(vi/d)dW .

Because wi divides dW/d, this characterχvi
has wi distinct wi’th roots.

We then define

List(V,W ) = {all w′1th roots of χv1 , ..., all w′nth roots of χvn}.
We will also need the same list, but for −V , and the list

List(all d) := {all characters of order dividing d}.
So long as the two lists List(−V,W ) and List(all d) are not identical,
we can apply the Cancel operation, and form the hypergeometric sheaf

HV,W := Hcan(Cancel(List(all d);List(−V,W )))

on Gm/R0[1/`].

Lemma 5.1. If Primn−2(V mod W ) is nonzero, then the unordered
lists List(−V,W ) and List(all d) are not identical.

Proof. If Primn−2(V modW ) is nontrivial, then at least one choice of V
in the coset V mod W is totally nonzero. For such a totally nonzero V ,
the trivial character is absent from List(−V,W ). If we choose another
representative of the same coset, say V − rW , then denoting by χr
the character of order dividing d of µdW

(R0) given by ζ 7→ ζ(r/d)dW ,
we see easily that List(−(V − rW ),W ) = χrList(−V,W ). Hence the
character χr is absent from List(−V + rW,W ). �

Lemma 5.2. Suppose that Primn−2(V mod W ) is nonzero. Then
Primn−2(V mod W ) and [d]?HV,W have the same rank on UR0[1/`].
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Proof. Choose V in the coset V modW . The rank of Primn−2(V modW )
is the number of r ∈ Z/dZ such that V +rW is totally nonzero. Equiv-
alently, this rank is d − δ, for δ the number of r ∈ Z/dZ such that
V + rW fails to be totally nonzero. On the other hand, the rank of
HV,W is d − ε, for ε the number of elements in List(all d) which also
appear in List(−V,W ). Now a given character χr in List(all d) ap-
pears in List(−V,W ) if and only if there exists an index i such that
χr is a wi’th root of χ−vi

, i.e., such that χwi
r = χ−vi

, i.e., such that
rwi ≡ −vi mod d. �

Theorem 5.3. Suppose that Primn−2(V mod W ) is nonzero. Denote
by j1 : UR0[1/`] ⊂ A1

R0[1/`] and j2 : Gm,R0[1/`] ⊂ A1
R0[1/`] the inclusions,

and by [d] : Gm,R0[1/`] → Gm,R0[1/`] the d’th power map. Then for any
choice of V in the coset V mod W , there exists a continuous character

ΛV,W : π1(Spec(R0[1/`])) → Q×
` and an isomorphism of sheaves on

A1
R0[1/`],

j1?Prim
n−2(V mod W ) ∼= j2?[d]

?HV,W ⊗ ΛV,W .

Remark 5.4. What happens if we change the choice of V in the coset
V mod W , say to V − rW? As noted above, List(−(V − rW ),W ) =
χrList(−V,W ). As List(all d) = χrList(all d) is stable by multi-
plication by any character of order dividing d, we find [Ka-ESDE,
8.2.5] that HV−rW,W ∼= Lχr ⊗ HV,W ⊗ Λ, for some continuous char-

acter Λ : π1(Spec(R0[1/`])) → Q×
` . Therefore the pullback [d]?HV,W is,

up to tensoring with a character Λ of π1(Spec(R0[1/`])), independent
of the particular choice of V in the coset V mod W . Thus the truth of
the theorem is independent of the particular choice of V .

Question 5.5. There should be a universal recipe for the character
ΛV,W which occurs in Theorem 5.3. For example, if we look at the
ΓW/∆-invariant part, both Primn−2(0 mod W ) and H0,W are pure
of the same weight n − 2, and both have traces (on Frobenii) in Q.
So the character Λ0,W must take Q-values of weight zero on Frobenii
in large characteristic. [To make this argument legitimate, we need
to be sure that over every sufficiently large finite field k which is an
R0[1/`]-algebra, the sheaf Primn−2(0 mod W ) has nonzero trace at
some k-point. This is in fact true, in virtue of Corollary 8.7 and a
standard equidistribution argument.] But the only rational numbers of
weight zero are ±1. So Λ2

0,W trivial. Is Λ0,W itself trivial?
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6. Proof of the main theorem: the strategy

Let us admit for a moment the truth of the following characteristic
p theorem, which will be proven in the next section.

Theorem 6.1. Let k be an R0[1/`]-algebra which is a finite field,

and ψ : (k,+) → Q×
` a nontrivial additive character. Suppose that

Primn−2(V mod W ) is nonzero. Denote by j1,k : Uk ⊂ A1
k and

j2,k : Gm,k ⊂ A1
k the inclusions. Choose V in the coset V mod W ,

and put

HV,W,k := Hcan(ψ;Cancel(;List(all d);List(−V,W ))).

Then on A1
k the sheaves j1,k?Prim

n−2(V mod W ) and j2,k?[d]
?HV,W,k

are geometrically isomorphic, i.e., they become isomorphic on A1
k
.

We now explain how to deduce the main theorem. The restriction
to UR0 − {0} = Gm,R0 − µd of our family

Xλ :
n∑
i=1

wiX
d
i = dλXW

is the pullback, through the d’th power map, of a projective smooth
family over Gm − {1}, in a number of ways. Here is one way to
write down such a descent πdesc : Y → Gm − {1}. Use the fact that
gcd(w1, ..., wn) = 1 to choose integers (b1, ..., bn) with

∑
i biwi = 1.

Then in the new variables

Yi := λbiXi

the equation of Xλ becomes
n∑
i=1

wiλ
−dbiY d

i = dY W .

Then the family

Yλ :
n∑
i=1

wiλ
−biY d

i = dY W

is such a descent. The same group ΓW/∆ acts on this family. On the
base Gm−{1}, we have the lisse sheaf Primn−2

desc for this family, and its
eigensheaves Primn−2

desc(V modW ), whose pullbacks [d]?Primn−2
desc(V modW )

are the sheaves Primn−2(V mod W )|(Gm,R0 − µd).

Lemma 6.2. Let k be an R0[1/`]-algebra which is a finite field. Suppose
Primn−2

desc(V mod W ) is nonzero. Then there exists a choice of V in the
coset V mod W such that the lisse sheaves Primn−2

desc(V mod W ) and
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HV,W,k on Gm,k−{1} are geometrically isomorphic, i.e., isomorphic on
Gm,k − {1}.

Proof. Fix a choice of V in the coset V mod W . By Theorem 6.1, the
lisse sheaves [d]?Primn−2

desc(V mod W ) and [d]?HV,W,k are isomorphic on
Gm,k−µd. Taking direct image by [d] and using the projection formula,
we find an isomorphism⊕
χ with χd trivial

Lχ ⊗ Primn−2
desc(V mod W ) ∼=

⊕
χ with χd trivial

Lχ ⊗HV,W,k

of lisse sheaves Gm,k − {1}. The right hand side is completely re-
ducible, being the sum of d irreducibles. Therefore the left hand
side is completely reducible, and each of its d nonzero summands
Lχ⊗Primn−2

desc(V mod W ) must be irreducible (otherwise the left hand
side is the sum of more than d irreducibles). By Jordan-Hölder, the
summand Primn−2

desc(V mod W ) on the left is isomorphic to one of the
summands Lχ⊗HV,W,k on the right, say to the summand Lχr⊗HV,W,k.
As explained in Remark 5.3, this summand is geometrically isomorphic
to HV−rW,W,k. �

Lemma 6.3. Suppose Primn−2
desc(V mod W ) is nonzero. Choose an

R0[1/`]-algebra k which is a finite field, and choose V in the coset
V mod W such that the lisse sheaves Primn−2

desc(V mod W ) and HV,W,k

on Gm,k − {1} are geometrically isomorphic. Then there exists a con-

tinuous character ΛV,W : π1(Spec(R0[1/`])) → Q×
` and an isomorphism

of lisse sheaves on Gm,R0[1/`] − {1},

Primn−2
desc(V mod W ) ∼= HV,W ⊗ ΛV,W .

This is an instance of the following general phenomenon, which is
well known to the specialists. In our application, the S below is
Spec(R0[1/`]), C is P1, and D is the union of the three everywhere
disjoint sections 0, 1,∞. We will also use it a bit later when D is the
union of the d+ 2 everywhere disjoint sections 0, µd,∞.

Theorem 6.4. Let S be a reduced and irreducible normal noetherian
Z[1/`]-scheme whose generic point has characteristic zero. Let s be a
chosen geometric point of S. Let C/S be a proper smooth curve with
geometrically connected fibres, and let D ⊂ C be a Cartier divisor which
is finite étale over S. Let F and G be lisse Q`-sheaves on C−D. Then
we have the following results.

(1) Denote by j : C −D ⊂ C and i : D ⊂ C the inclusions. Then
the formation of j?F on C commutes with arbitrary change of
base T → S, and i?j?F is a lisse sheaf on D.
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(2) Denoting by f : C − D → S the structural map, the sheaves
Rif!F on S are lisse.

(3) The sheaves Rif?F on S are lisse, and their formation com-
mutes with arbitrary change of base T → S.

(4) Consider the pullbacks Fs and Gs of F and of G to Cs − Ds.
Suppose that Fs ∼= Gs, and that Gs (and hence also Fs) are irre-
ducible. Then there exists a continuous character Λ : π1(S) →
Q×
` an isomorphism of lisse sheaves on C −D,

G ⊗ Λ ∼= F .

Proof. The key point is that because the base S has generic characteris-
tic zero, any lisse sheaf on C−D is automatically tamely ramified along
the divisor D; this results from Abhyankar’s Lemma. See [Ka-SE, 4.7]
for assertions (1) and (2). Assertion (3) results from (2) by Poincaré
duality, cf. [De-CEPD, Corollaire, p. 72].

To prove assertion (4), we argue as follows. By the Tame Spe-
cialization Theorem [Ka-ESDE, 8.17.13], the geometric monodromy
group attached to the sheaf Fs is, up to conjugacy in the ambient
GL(rk(F),Q`), independent of the choice of geometric point s of S.
Since Fs is irreducible, it follows that Fs1 is irreducible, for every geo-
metric point s1 of S. Similarly, Gs1 is irreducible, for every geometric
point s1 of S. Now consider the lisse sheaf Hom(G,F) ∼= F ⊗ G∨ on
C − D. By assertion (3), the sheaf f?Hom(G,F) is lisse on S, and
its stalk at a geometric point s1 of S is the group Hom(Gs1 ,Fs1). At
the chosen geometric point s, this Hom group is one-dimensional, by
hypothesis. Therefore the lisse sheaf f?Hom(G,F) on S has rank one.
So at every geometric point s1, Hom(Gs1 ,Fs1) is one-dimensional. As
source and target are irreducible, any nonzero element of this Hom
group is an isomorphism, and the canonical map

Gs1 ⊗ Hom(Gs1 ,Fs1) → Fs1
is an isomorphism. Therefore the canonical map of lisse sheaves on
C −D

G ⊗ f ?f?Hom(G,F) → F
is an isomorphism, as we see looking stalkwise. Interpreting the lisse
sheaf f?Hom(G,F) on S as a character Λ of π1(S), we get the asserted
isomorphism. �

Applying this result, we get Lemma 6.3. Now pull back the isomor-
phism of that lemma by the d’th power map, to get an isomorphism

Primn−2(V mod W ) ∼= [d]?HV,W ⊗ ΛV,W



ANOTHER LOOK AT THE DWORK FAMILY 17

of lisse sheaves on Gm,R0[1/`] − µd. Then extend by direct image to
A1
R0[1/`] to get the isomorphism asserted in Theorem 5.3.

7. Proof of Theorem 6.1

Let us recall the situation. Over the ground ring R0[1/`], we have
the family π : X → A1 given by

Xλ := Xλ(W, d) :
n∑
i=1

wiX
d
i − dλXW = 0,

which is projective and smooth over U = A1−µd. We denote by V ⊂ X
the open set where XW is invertible, and by Z ⊂ X the complementary
reduced closed set, defined by the vanishing of XW . As scheme over
A1, Z/A1 is the constant scheme with fibre

(XW = 0) ∩ (
∑
i

wiX
d
i = 0).

The group ΓW/∆, acting as A1-automorphisms of X, preserves both the
open set V and its closed complement Z. In the following discussion,
we will repeatedly invoke the following general principle, which we state
here before proceeding with the analysis of our particular situation.

Lemma 7.1. Let S be a noetherian Z[1/`]-scheme, and f : X →
S a separated morphism of finite type. Suppose that a finite group
G acts admissibly (:= every point lies in a G-stable affine open set)
as S-automorphisms of X. Then in Db

c(S,Q`), we have a direct sum
decomposition of Rf!Q` into G-isotypical components

Rf!Q` =
⊕

irred. Q` rep.′s ρ of G

Rf!Q`(ρ).

Proof. Denote by h : X → Y := X/G the projection onto the quotient,
and denote by m : Y → S the structural morphism of Y/S. Then
Rh!Q` = h?Q` is a constructible sheaf of Q`[G] modules on Y , so has
a G-isotypical decomposition

Rh!Q` = h?Q` =
⊕

irred. Q` rep.′s ρ of G

h?Q`(ρ).

Applying Rm! to this decomposition gives the asserted decomposition
of Rf!Q`. �

We now return to our particular situation. We are given a R0[1/`]-
algebra k which is a finite field, and a nontrivial additive character
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ψ : (k,+) → Q×
` . We denote by

πk : Xk → A1
k

the base change to k of our family. Recall that the Fourier Transform
FTψ is the endomorphism of the derived category Db

c(A1
k,Q`) defined

by looking at the two projections pr1, pr2 of A2
k onto A1

k, and at the
“kernel” Lψ(xy) on A2

k, and putting

FTψ(K) := R(pr2)!(Lψ(xy) ⊗ pr?1K[1]),

cf. [Lau-TFCEF, 1.2]. One knows that FTψ is essentially involutive,

FTψ(FTψ(K)) ∼= [x 7→ −x]?K(−1),

or equivalently

FTψ(FTψ(K)) ∼= K(−1),

that FTψ maps perverse sheaves to perverse sheaves and induces an
exact autoequivalence of the category of perverse sheaves with itself.

We denote by K(A1
k,Q`) the Grothendieck group of Db

c(A1
k,Q`). One

knows that K is the free abelian group on the isomorphism classes
of irreducible perverse sheaves, cf. [Lau-TFCEF, 0.7, 0.8]. We also
denote by FTψ the endomorphism of K(A1

k,Q`) induced by FTψ on

Db
c(A1

k,Q`).
The key fact for us is the following, proven in [Ka-ESDE, 9.3.2], cf.

also [Ka-ESDE, 8.7.2 and line -4, p.327].

Theorem 7.2. Denote by ψ−1/d the additive character x 7→ ψ(−x/d),
and denote by j : Gm,k ⊂ A1

k the inclusion. Denote by Λ1, ...,Λd the list
List(all d) of all the multiplicative characters of k× of order dividing
d. For any unordered list of d multiplicative characters ρ1, ...ρd of k×

which is different from List(all d), the perverse sheaf

FTψj?[d]
?H(ψ−1/d; ρ1, ...ρd; ∅)[1]

on A1
k is geometrically isomorphic to the perverse sheaf

j?[d]
?H(ψ;Cancel(List(all d); ρ1, ..., ρd))[1].

Before we can apply this result, we need some preliminaries. We
first calculate the Fourier Transform of Rπk,!Q`, or more precisely its
restriction to Gm,k, in a ΓW/∆-equivariant way. Recall that Vk ⊂ Xk

is the open set where XW is invertible, and Zk ⊂ Xk is its closed
complement. We denote by

f := πk|Vk : Vk → A1
k
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the restriction to Vk of πk. Concretely, Vk is the open set Pn−1
k [1/XW ]

of Pn−1
k (with homogeneous coordinates (X1, ..., Xn)) where XW is in-

vertible, and f is the map

(X1, ..., Xn) 7→
∑
i

(wi/d)X
d
i /X

W .

Lemma 7.3. For any character V mod W of ΓW/∆, the canonical map
of ρ-isotypical components Rf!Q`(V mod W ) → Rπk,!Q`(V mod W )
induced by the A1

k-linear open immersion Vk ⊂ Xk induces an isomor-
phism in Db

c(Gm,k,Q`),

(FTψRf!Q`)(V mod W )|Gm,k
∼= (FTψRπk,!Q`)(V mod W )|Gm,k.

Proof. We have an “excision sequence” distinguished triangle

Rf!Q`(V modW ) → Rπk,!Q`(V modW ) → R(π|Z)k,!Q`(V modW ) → .

The third term is constant, i.e., the pullback to A1
k of a an object on

Spec(k), so its FTψ is supported at the origin. Applying FTψ to this
distinguished triangle gives a distinguished triange

FTψRf!Q`(V mod W ) → FTψRπk,!Q`(V mod W )

→ FTψR(π|Z)k,!Q`(V mod W ) → .

Restricting to Gm,k, the third term vanishes. �

We next compute (FTψRf!Q`)|Gm,k in a ΓW/∆-equivariant way. We
do this by working upstairs, on Vk with its ΓW/∆-action.

Denote by TW ⊂ Gn
m,k the connected (because gcd(w1, ...wn) = 1)

torus of dimension n − 1 in Gn
m,k, with coordinates xi, i = 1, ...., n,

defined by the equation xW = 1. Denote by Pn−1
k [1/XW ] ⊂ Pn−1

k the
open set of Pn−1

k (with homogeneous coordinates (X1, ..., Xn)) where
XW is invertible. Our group ΓW is precisely the group TW [d] of points
of order dividing d in TW . And the subgroup ∆ ⊂ ΓW is just the
intersection of TW with the diagonal in the ambient Gn

m,k. We have a
surjective map

g : TW → Pn−1
k [1/XW ], (x1, ..., xn) 7→ (x1, ..., xn).

This map g makes TW a finite étale galois covering of Pn−1
k [1/XW ] with

group ∆. The d’th power map [d] : TW → TW makes TW into a finite
étale galois covering of itself, with group ΓW . We have a beautiful
factorization of [d] as h ◦ g, for

h : Pn−1
k [1/XW ] → TW , (X1, ..., Xn) 7→ (Xd

1/X
W , ..., Xd

n/X
W ).
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This map h makes Pn−1
k [1/XW ] a finite étale galois covering of TW with

group ΓW/∆. Denote by m the map

m : TW → A1
k, (x1, ..., xn) 7→

∑
i

(wi/d)xi.

Let us state explicitly the tautology which underlies our computation.

Lemma 7.4. The map f : Vk = Pn−1
k [1/XW ] → A1

k is the composition

f = m ◦ h : Pn−1
k [1/XW ]

h→ TW
m→ A1

k.

Because h is a a finite étale galois covering of TW with group ΓW/∆,
we have a direct sum decomposition on TW ,

Rh!Q` = h?Q` =
⊕

char′s V mod W of ΓW /∆

LV mod W .

More precisely, any V in the coset V mod W is a character of Γ/∆,
hence of Γ, so we have the Kummer sheaf LV on the ambient torus
Gn
m,k. In the standard coordinates (x1, ..., xn) on Gn

m,k, this Kummer
sheaf LV is LQ

i χvi (xi). The restriction of LV to the subtorus TW is
independent of the choice of V in the coset V mod W ; it is the sheaf
denoted LV mod W in the above decomposition.

Now apply Rm! to the above decomposition. We get a direct sum
decomposition

Rf!Q` = Rm!h?Q` =
⊕

char′s V mod W of ΓW /∆

Rm!LV mod W

into eigenobjects for the action of ΓW/∆.
Apply now FTψ. We get a direct sum decomposition

FTψRf!Q` =
⊕

char′s V mod W of ΓW /∆

FTψRm!LV mod W

into eigenobjects for the action of ΓW/∆; we have

(FTψRf!Q`)(V mod W ) = FTψRm!LV mod W

for each character V mod W of ΓW/∆.

Theorem 7.5. Given a character V mod W of ΓW/∆, pick V in the
coset V mod W . We have a geometric isomorphism

(FTψRf!Q`)(V mod W )|Gm,k

∼= [d]?H(ψ−1/d;List(V,W ); ∅)[2− n].
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Proof. By the definition of FTψ, and proper base change for Rm!, we
see that FTψRm!LV mod W is obtained as follows. Choose V in the

coset V mod W . Endow the product TW × A1
k, with coordinates (x =

(x1, ..., xn); t) from the ambient Gn
m,k×A1

k. The product has projections

pr1, pr2 onto TW and A1
k respectively. On the product we have the lisse

sheaf Lψ(t
P

i(wi/d)xi)
⊗ pr?1LV . By definition, we have

FTψRm!LV mod W = Rpr2,!(Lψ(t
P

i(wi/d)xi)
⊗ pr?1LQ

i χvi (xi))[1].

If we pull back to Gm,k ⊂ A1
k, then the source becomes TW × Gm,k.

This source is isomorphic to the subtorus Z of Gn+1
m,k , with coordinates

(x = (x1, ..., xn); t), defined by

xW = td,

by the map

(x = (x1, ..., xn); t) 7→ (tx = (tx1, ..., txn); t).

On this subtorus Z, our sheaf becomes Lψ(
P

i(wi/d)xi)
⊗pr?1LQ

i χvi (xi)[1].[

Remember that V has
∑

i vi = 0, so LQ
i χvi (xi) is invariant by x 7→ tx.]

Thus we have

FTψRm!LV mod W |Gm,k = Rprn+1,!(Lψ(
P

i(wi/d)xi)
⊗ pr?1LQ

i χvi (xi)[1]).

This situation,

Lψ(
P

i(wi/d)xi)
⊗ pr?1LQ

i χvi (xi)[1] on Z := (xW = td)
prn+1→ Gm,k,

is the pullback by the d’th power map on the base of the situation

Lψ(
P

i(wi/d)xi)
⊗ pr?1LQ

i χvi (xi)[1] on Gn
m,k

xW

→ Gm,k.

Therefore we have

FTψRm!LV mod W |Gm,k
∼= [d]?R(xW )!(Lψ(

P
i(wi/d)xi)

⊗pr?1LQ
i χvi (xi)[1]).

According to [Ka-GKM, 4.0,4.1, 5.5],

Ra(xW )!(Lψ(
P

i(wi/d)xi)
⊗ pr?1LQ

i χvi (xi))

vanishes for a 6= n− 1, and for a = n− 1 is the multiple multiplicative
! convolution

Kl(ψ−w1/d;χv1 , w1) ?! Kl(ψ−w2/d;χv2 , w2) ?! ... ?! Kl(ψ−wn/d;χvn , wn).

By [Ka-GKM, 4.3,5.6.2], for each convolvee we have geometric isomor-
phisms

Kl(ψ−wi/d;χvi
, wi) = [wi]?Kl(ψ−wi/d;χvi

) ∼= Kl(ψ−1/d; all w
′
ith roots of χvi

).

So the above multiple convolution is the Kloosterman sheaf

Kl(ψ−1/d; all w
′
1th roots of χv1 , ..., all w

′
nth roots of χvn)
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:= H(ψ−1/d; all w
′
1th roots of χv1 , ..., all w

′
nth roots of χvn ; ∅).

Recall that by definition

List(V,W ) := (all w′1th roots of χv1 , ..., all w
′
nth roots of χvn).

Putting this all together, we find the asserted geometric isomorphism

(FTψRf!Q`)(V mod W )|Gm,k

∼= [d]?H(ψ−1/d;List(V,W ); ∅)[2− n].

�

We are now ready for the final step in the proof of Theorem 6.1.
Recall that j1,k : Uk := A1

k − µd ⊂ A1
k, and j2,k : Gm,k ⊂ A1

k are the
inclusions. We must prove

Theorem 7.6. (Restatement of 6.1) Let V mod W be a character
of ΓW/∆ for which Primn−2(V mod W ) is nonzero. Pick V in the
coset V mod W . Then we have a geometric isomorphism of perverse
sheaves on A1

k

j1,k,?Prim
n−2(V mod W )[1] ∼= j2,k,?[d]

?HV,W,k[1].

Proof. Over the open set Uk, we have seen that sheaves Riπk,?Q`|Uk
are geometrically constant for i 6= n−2, and that Rn−2πk,?Q`|Uk is the
direct sum of Primn−2 and a geometrically constant sheaf. The same
is true for the ΓW/∆-isotypical components. Thus in K(Uk,Q`), we
have

Rπk,?Q`(V mod W )|Uk :=
∑
i

(−1)iRiπk,?Q`(V mod W )|Uk

= (−1)n−2Primn−2(V mod W ) + (geom. const.).

Comparing this with the situation on all of A1
k, we don’t know what

happens at the d missing points of µd, but in any case we will have

Rπk,?Q`(V mod W ) = (−1)n−2j1,k,?Prim
n−2(V mod W )

+(geom. const.) + (punctual, supported in µd)

in K(A1
k,Q`).

Taking Fourier Transform, we get

FTψj1,k,?Prim
n−2(V mod W ) =

(−1)n−2FTψRπk,?Q`(V modW )+(punctual, supported at 0)+(sum of Lψζ

′s)

in K(A1
k,Q`).

By Lemma 7.3 , we have

(FTψRπk,!Q`)(V mod W )|Gm,k
∼= FTψRf!Q`(V mod W )|Gm,k,
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so we have
FTψj1,k,?Prim

n−2(V mod W ) =

(−1)n−2FTψRf!Q`(V modW )+(punctual, supported at 0)+(sum of Lψζ

′s)

in K(A1
k,Q`).

By the previous theorem, we have

(FTψRf!Q`)(V mod W )|Gm,k

= (−1)n−2[d]?H(ψ−1/d;List(V,W ); ∅)
in K(Gm,k,Q`). We don’t know what happens at the origin, but in any
case we have

(FTψRf!Q`)(V mod W ) =

(−1)n−2j2,k,?[d]
?H(ψ−1/d;List(V,W ); ∅) + (punctual, supported at 0)

in K(A1
k
,Q`). So we find

FTψj1,k,?Prim
n−2(V mod W ) =

j2,k,?[d]
?H(ψ−1/d;List(V,W ); ∅)+

(punctual, supported at 0) + (sum of Lψζ

′s)

in K(A1
k
,Q`). Now apply the inverse Fourier Transform FTψ. By

Theorem 7.2, we obtain an equality

j1,k,?Prim
n−2(V mod W )[1] =

j2,k,?[d]
?HV,W,k[1] + (geom. constant) + (punctual)

in the group K(A1
k
,Q`). This is the free abelian group on isomorphism

classes of irreducible perverse sheaves on A1
k
. So in any equality of

elements in this group, we can delete all occurrences of any particular
isomorphism class, and still have an equality.

On the open set Uk, the lisse sheaves Primn−2(V mod W ) and
[d]?HV,W,k are both pure, hence completely reducible on Uk by [De-Weil II,
3.4.1 (iii)]. So both of the perverse sheaves j1,k,?Prim

n−2(V mod W )[1]
and j2,k,?[d]

?HV,W,k[1] on (A1
k

are direct sums of perverse irreducibles
which are middle extensions from Uk, and hence have no punctual con-
stituents. So we may cancel the punctual terms, and conclude that we
have

j1,k,?Prim
n−2(V mod W )[1]− j2,k,?[d]

?HV,W,k[1] = (geom. constant)

in the group K(A1
k
,Q`). By Lemma 5.2, the left hand side has generic

rank zero, so there can be no geometrically constant virtual summand.
Thus we have an equality of perverse sheaves

j1,k,?Prim
n−2(V mod W )[1] = j2,k,?[d]

?HV,W,k[1]
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in the group K(A1
k
,Q`). Therefore the two perverse sheaves have ge-

ometrically isomorphic semisimplifications. But by purity, both are
geometrically semisimple. This concludes the proof of Theorem 6.1,
and so also the proof of Theorem 5.3 �

8. Appendix I: The transcendental approach

In this appendix, we continue to work with the fixed data (n, d,W ),
but now over the groundring C. We give a transcendental proof of The-
orem 5.3, but only for the ΓW/∆-invariant part Primn−2(0 mod W ).
Our proof is essentially a slight simplification of an argument that
Shepherd-Barron gave in a November, 2006 lecture at MSRI, where he
presented a variant of [H-SB-T, pages 5-22]. We do not know how to
treat the other eigensheaves Primn−2(V mod W ), with V mod W a
nontrivial character of ΓW/∆, in an analogous fashion.

First, let us recall the bare definition of hypergeometric D-modules.
We work on Gm (always over C), with coordinate λ. We write D :=
λd/dλ. We denote by D := C[λ, 1/λ][D] the ring of differential oper-
ators on Gm. Fix nonnegative integers a and b, not both 0. Suppose
we are given an unordered list of a complex numbers α1, ..., αa ,not
necessarily distinct. Let β1, ..., βb be a second such list, but of length
b. We denote by Hyp(α′is; β

′
js) the differential operator

Hyp(α′is; β
′
js) :=

∏
i

(D − αi)− λ
∏
j

(D − βj)

and by H(α′is; β
′
js) the holonomic left D-module

H(α′is; β
′
js) := D/DHyp(α′is; β′js).

We say that H(α′is; β
′
js) is a hypergeometric of type (a, b).

One knows [Ka-ESDE, 3.2.1] that this H is an irreducible D-module
on Gm, and remains irreducible when restricted to any dense open set
U ⊂ Gm, if and only if the two lists are disjoint “mod Z”, i.e., for
all i, j, αi − βj is not an integer. [If we are given two lists List1 and
List2 which are not identical mod Z, but possibly not disjoint mod Z,
we can “cancel” the common (mod Z) entries, and get an irreducible
hypergeometric H(Cancel(List1, List2)).]

We will assume henceforth that this disjointness mod Z condition is
satisfied, and that a = b. Then H(α′is; β

′
js) has regular singular points

at 0, 1,∞. If all the αi and βj all lie in Q, pick a common denominator
N , and denote by χαi

the character of µN(C) given by

χαi
(ζ) := ζαiN .
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Similarly for χβj
. For any prime number `, the Riemann-Hilbert part-

ner of H(α′is; β
′
js) is the Q` perverse sheaf Hcan(χαi

′s;χβj
′s)[1] on Gm,

cf. [Ka-ESDE, 8.17.11].
We denote by Dη := C(λ)[D] the ring of differential operators at the

generic point. Although this ring is not quite commutative, it is near
enough to being a one-variable polynomial ring over a field that it is
left (and right) Euclidean, for the obvious notion of long division. So
every nonzero left ideal in Dη is principal, generated by the monic (in
D) operator in it of lowest order. Given a left Dη-module M , and an
element m ∈M , we denote by Ann(m,M) the left ideal in Dη defined
as

Ann(m,M) := {operators L ∈ Dη|L(m) = 0 in M}.
If Ann(m,M) 6= 0, we define Lm,M ∈ Dη to be the lowest order monic
operator in Ann(m,M).

We have the following elementary lemma, whose proof is left to the
reader.

Lemma 8.1. Let N and M be left Dη-modules, f : M → N a horizon-
tal (:= Dη-linear) map, and m ∈ M . Suppose that Ann(m,M) 6= 0.
Then Ann(m,M) ⊂ Ann(f(m), N), and Lm,M is right-divisible by
Lf(m),N .

We now turn to our complex family π : X → A1, given by

Xλ := Xλ(W, d) :
n∑
i=1

wiX
d
i − dλXW = 0.

We pull it back to U := Gm − µd ⊂ A1, over which it is proper and
smooth, and form the de Rham incarnation of Primn−2, which we
denote Primn−2

dR . We also have the relative de Rham cohomolgy of
(Pn−1 × U −XU)/U over the base U in degree n− 1, which we denote
simply Hn−1

dR ((P− X)/U). Both are O-locally free D-modules (Gauss-
Manin connection) on U , endowed with a horizontal action of ΓW/∆.
The Poincaré residue map gives a horizontal, ΓW/∆-equivariant iso-
morphism

Res : Hn−1
dR ((P− X)/U) ∼= Primn−2

dR .

Exactly as in the discussion beginning section 6, we write 1 =
∑

i biwi
to obtain a descent of our family through the d’power map: the family
πdesc : Y → Gm given by

Yλ :
n∑
i=1

wiλ
−biY d

i = dXW .
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The same group ΓW/∆ acts on this family, which is projective and
smooth over Gm − {1}. So on Gm − {1}, we have Primn−2

dR,desc for

this family, and its fixed part Primn−2
dR,desc(0 mod W ), whose pullback

[d]?Primn−2
dR,desc(0 mod W ) is the sheaf Primn−2

dR (0 mod W )|(Gm− µd).
Our next step is to pull back further, to a small analytic disk. Choose

a real constant C > 4. Pull back the descended family to a small disc
Uan,C around C. We take the disc small enough that for λ ∈ Uan,C , we
have |C/λ|bi < 2 for all i. The extension of scalars map

Hn−1
dR ((P−Y)/(Gm−{1})) 7→ Hn−1

dR ((P−Y)/(Gm−{1}))⊗OGm−{1}OUan,C

is a horizontal map; we view both source and target as D -modules.
Over this disc, the C∞ closed immersion

γ : (S1)n/Diagonal→ Pn−1, (z1, ..., zn) 7→ (Cb1/dz1, ..., C
bn−1/dzn−1, C

bn/dzn)

lands entirely in P− Y: its image is an n− 1-torus Z ⊂ Pn−1 which is
disjoint from Yλ for λ ∈ Uan,C . In Restricting to the ΓW/∆-invariant
part Hn−1

dR ((P− Y)/(Gm − {1}))(0 mod W ), we get a horizontal map

Hn−1
dR ((P−Y)/(Gm−{1}))(0 mod W ) → H0(Uan,C ,OUan,C

), ω 7→
∫
Z

ω.

Write yi := Yi/Yn for i = 1, ..., n− 1. Denote by

ω ∈ Hn−1
dR ((P− Y)/(Gm − {1}))(0 mod W )

the (cohomology class of the) holomorphic n− 1-form

ω := (1/2πi)n−1(
dY W

dY W −
∑n

i=1wiλ
−biY d

i

)
n−1∏
i=1

dyi/yi.

Our next task is to compute the integral∫
Z

ω.

The computation will involve the Pochammer symbol. For α ∈ C,
and k ≥ 1 a positive integer, the Pochammer symbol (α)k is defined by

(α)k := Γ(α+ k)/Γ(α) =
k−1∏
i=0

(α+ i).

We state for ease of later reference the following elementary identity.

Lemma 8.2. For integers k ≥ 1 and r ≥ 1, we have

(kr)!/rkr =
r∏
i=1

(i/r)k.
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Lemma 8.3. We have the formula∫
Z

ω = 1 +
∑
k≥1

(

∏d
i=1(i/d)k∏n

i=1

∏wi

j=1(j/wi)k
)(1/λ)k.

Proof. Divide top and bottom by dY W , expand the geometric series,
and integrate term by term. This is legitimate because at a point
z ∈ Z, the function

∑n
i=1(wi/d)λ

−biY d
i /Y

W has the value

n∑
i=1

(wi/d)λ
−biCbizdi /Cz

W =
n∑
i=1

(wi/d)(C/λ)bizdi /Cz
W ,

which has absolute value ≤ 2(
∑n

i=1(wi/d))/C = 2/C ≤ 1/2. Because
each term in the geometric series is homogeneous of degree zero, the
integral of the k’th term in the geometric series is the coefficient of
zkW in (

∑n
i=1(wi/d)(λ)−bizdi )

k. This coefficient vanishes unless k is
a multiple of d (because gcd(w1, ..., wn) = 1). The integral of the
dk’th term is the coefficient of zkdW in (

∑n
i=1(wi/d)(λ)−bizdi )

dk, i.e.,
the coefficient of zkW in (

∑n
i=1(wi/d)(λ)−bizi)

dk. Expanding by the
multinomial theorem, this coefficient is

(dk)!
n∏
i=1

(((wi/d)λ
−bi)kwi/(kwi)!) = (λ)−k((dk)!/ddk)/

n∏
i=1

((kwi)!/w
kwi
i ),

which, by the previous lemma, is as asserted. �

This function

F (λ) :

∫
Z

ω = 1 +
∑
k≥1

(

∏d
i=1(i/d)k∏n

i=1

∏wi

j=1(j/wi)k
)(1/λ)k

is annihilated by the following differential operator. Consider the two
lists of length d.

List(all d) := {1/d, 2/d, ..., d/d},

List(0,W ) := {1/w1, 2/w1, ..., w1/w1, ..., 1/wn, 2/wn, ..., wn/wn}.
These lists are certainly not identical mod Z; the second one contains
0 with multiplicity n, while the first contains only a single integer. Let
us denote the cancelled lists, whose common length we call a,

Cancel(List(all d);List(0,W )) = (α1, ..., αa); (β1, ..., βa).

So we have

F (λ) :

∫
Z

ω = 1 +
∑
k≥1

(

∏a
i=1(αi)k∏a
i=1(βi)k

)(1/λ)k,
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which one readily checks is annihilated by the differential operator

Hyp0,W := Hyp(α′is; βi − 1′s) :=
a∏
i=1

(D − αi)− λ

a∏
i=1

(D − (βi − 1)).

Theorem 8.4. We have an isomorphism of D-modules on Gm − {1},

Hn−1
dR ((P−Y)/(Gm−{1})) ∼= H0,W |(Gm−{1}) := H(α′is; βi−1′s)|(Gm−{1}).

Proof. Both sides of the alleged isomorphism areO-coherentD-modules
on Gm−{1}, so each is the “middle extension” of its restriction to any
Zariski dense open set in Gm − {1}. So it suffices to show that both
sides become isomorphic over the function field of Gm − {1}, i.e., that
they give rise to isomorphic Dη-modules. For this, we argue as follows.
Denote by A the ring

A := H0(Uan,C ,OUan,C
)⊗OGm−{1} C(λ),

which we view as a Dη-module. We have the horizontal map

Hn−1
dR ((P− Y)/(Gm − {1}))(0 mod W )

R
Z→ H0(Uan,C ,OUan,C

).

Tensoring over OGm−{1} with C(λ), we obtain a horizontal map

Hn−1
dR ((P− Y)/C(λ))(0 mod W )

R
Z→ A.

By (the Hyp analogue of) Lemma 5.2, we know that the source has
C(λ)-dimension a:= the order of Hyp(α′is; βi − 1′s). So the element ω
in the source is annihilated by some operator in Dη of order at most
a, simply because ω and its first a derivatives must be linearly de-
pendent over C(λ). So the lowest order operator annihilating ω in
Hn−1
dR ((P − Y)/C(λ))(0 mod W ), call it Lω,HdR

, has order at most
a. On the other hand, the irreducible operator Hyp(α′is; βi − 1′s) an-
nihilates

∫
Z
ω ∈ A. But

∫
Z
ω 6= 0, so Ann(

∫
Z
ω,A) is a proper left

ideal in Dη, and hence is generated by the irreducible monic operator
(1/(1− λ))Hyp(α′is; βi − 1′s). By Lemma 8.2, we know that Lω,HdR

is
divisible by (1/(1−λ))Hyp(α′is; βi−1′s). But Lω,HdR

has order at most
a, the order of Hyp(α′is; βi−1′s), so we conclude that Lω,HdR

= (1/(1−
λ))Hyp(α′is; βi−1′s). Thus the Dη-span of ω in Hn−1

dR ((P−Y)/C(λ))(0
mod W ) is Dη/DηHyp(α

′
is; βi − 1′s). Comparing dimensions, we see

that this Dη-span must be all of Hn−1
dR ((P−Y)/C(λ))(0 mod W ). �

Corollary 8.5. For the family

Xλ := Xλ(W, d) :
n∑
i=1

wiX
d
i − dλXW = 0,
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its Primn−2
dR (0 mod W ) as D-module on A1 − µd is related to the D-

module [d]?(H0,W |(Gm − {1})) on Gm − µd as follows.

(1) We have an isomorphism of D-modules on Gm − µd,

Primn−2
dR (0 mod W )|(Gm − µd) ∼= [d]?(H0,W |(Gm − {1})).

(2) Denote by j1 : A1 − µd ⊂ A1 and j2 : Gm − µd ⊂ A1 the
inclusions. The we have an isomorphism of D-modules on A1

of the middle extensions

j1,!,?(Prim
n−2
dR (0 mod W )) ∼= j2,!,?([d]

?(H0,W |(Gm − {1}))).

Proof. The first isomorphism is the pullback by d’th power of the iso-
morphism of the theorem above. We obtain the second isomorphism
as follows. Denote by j3 : Gm − µd ⊂ A1 − µd the inclusion. Be-
cause Primn−2

dR (0 mod W ) is an O-coherent D-module on A1 − µd, it
is the middle extension j3,!,?(Prim

n−2
dR (0 mod W )|(Gm − µd)). Because

j2 = j1 ◦ j3, we obtain the second isomorphism by applying j2,!,? to the
first isomorphism. �

Theorem 8.6. Suppose n ≥ 3. For either the family

Xλ := Xλ(W, d) :
n∑
i=1

wiX
d
i − dλXW = 0,

over A1 − µd, or the descended family

Yλ :
n∑
i=1

wiλ
−biY d

i = dXW

over Gm − {1}, consider its Primn−2
dR (0 mod W ) (resp. consider its

Primn−2
dR,desc(0 mod W )) as D-module, and denote by a its rank. For

either family, its differential galois group Ggal (which here is the Zariski
closure of its monodromy group) is the symplectic group Sp(a) if n− 2
is odd, and the orthogonal group O(a) if n− 2 is even.

Proof. Poincaré duality induces on Primn−2
dR (0 mod W ) (resp. on

Primn−2
dR,desc(0 mod W )) an autoduality which is symplectic if n − 2

is odd, and orthogonal if n− 2 is even. So we have a priori inclusions
Ggal ⊂ Sp(a) if n − 2 is odd, Ggal ⊂ O(a) if n − 2 is even. It suf-
fices to prove the theorem for the descended family. This is obvious
in the Sp case, since the identity component of Ggal is invariant under
finite pullback. In the O case, we must rule out the possibility that the
pullback has group SO(a) rather than O(a). For this, we observe that
an orthogonally autodual hypergeometric of type (a, a) has a true re-
flection as local monodromy around 1 (since in any case an irreducible
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hypergeometric of type (a, a) has as local monodromy around 1 a pseu-
doreflection, and the only pseudoreflection in an orthogonal group is a
true reflection). As the d’th power map is finite étale over 1, the pull-
back has a true reflection as local monodromy around each ζ ∈ µd. So
the group for the pullback contains true reflections, so must be O(a).

We now consider the descended family. So we are dealing with
H0,W := H(α′is; βi − 1′s). From the definition of H0,W , we see that
β = 1 mod Z occurs among the βi precisely n− 1 times (n− 1 times
and not n times because of a single cancellation with List(all d)). Be-
cause n − 1 ≥ 2 by hypothesis, local monodromy around ∞ is not
semisimple [Ka-ESDE, 3.2.2] and hence H(α′is; β

′
js) is not Belyi in-

duced or inverse Belyi induced, cf. [Ka-ESDE, 3.5], nor is its G0,der

trivial.
We next show thatH0,W is not Kummer induced of any degree r ≥ 2.

Suppose not. As the αi all have order dividing d in C/Z, r must divide
d, since 1/r mod Z is a difference of two αi’s, cf. [3.5.6]Ka-ESDE. But
the βj mod Z are also stable by x 7→ x+1/r, so we would find that 1/r
mod Z occurs with the same multiplicity n− 1 as 0 mod Z among the
βj mod Z. So r must divide at least n − 1 of the wi; it cannot divide
all the wi because gcd(w1, ..., wn) = 1. But this 1/r cannot cancel with
List(all d), otherwise its multiplicity would be at most n−2. This lack
of cancellation means that r does not divide d, contradiction.

Now we appeal to [Ka-ESDE, 3.5.8]: letH(α′is; β
′
js) be an irreducible

hypergeometric of type (a, a) which is neither Belyi induced nor inverse
Belyi induced not Kummer induced. Denote by G its differential galois
group Ggal, G

0 its identity component, and G0,der the derived group
(:= commutator subgroup) of G0. Then G0,der is either trivial or it is
one of SL(a) or SO(a) or, if a is even, possibly Sp(a).

In the case of H0,W , we have already seen that G0,der
gal is not trivial.

Given that Ggal lies in either Sp(a) or O(a), depending on the parity of
n− 2, the only possibility is that Ggal = Sp(a) for n− 2 odd, and that
Ggal = O(a) or SO(a) if n − 2 is even. In the even case, the presence
of a true reflection in Ggal rules out the SO case. �

Corollary 8.7. In the context of Theorem 5.3, on each geometric fi-
bre of UR0[1/`]/Spec(R0[1/`]), the geometric monodromy group Ggeom of
Primn−2(0 mod W ) is the full symplectic group Sp(a) if n− 2 is odd,
and is the full orthogonal group O(a) if n− 2 is even.

Proof. On a C-fibre, this is just the translation through Riemann-
Hilbert of the theorem above. The passage to other geometric fibres is
done by the Tame Specialization Theorem [Ka-ESDE, 8.17.3]. �



ANOTHER LOOK AT THE DWORK FAMILY 31

When does it happen that Primn−2
dR (0 mod W ) has rank n − 1 and

all Hodge numbers 1?

Lemma 8.8. The following are equivalent.

(1) Primn−2
dR (0 mod W ) has rank n− 1.

(2) Every wi divides d, and for all i 6= j, gcd(wi, wj) = 1.
(3) Local monodromy at ∞ is a single unipotent Jordan block.
(4) Local monodromy at ∞ is a single Jordan block.

(5) All the Hodge numbers Prima,b
dR(0 mod W )a+b=n−2 are 1.

Proof. (1)⇒(2) The rank is at least n− 1, as this is the multiplicity of
0 mod Z as a β in H0,W . If the rank is no higher, then each wi must
divide d, so that the elements 1/wi, ..., (wi − 1)/wi mod Z can cancel
with List(all d). And the wi must be pairwise relatively prime, for if
a fraction 1/r mod Z with r ≥ 2 appeared among both 1/wi, ..., (wi −
1)/wi and 1/wj, ..., (wj−1)/wj, only one of its occurrences at most can
cancel with List(all d).

(2)⇒(1) If all wi divide d, and if the wi are pairwise relatively prime,
then after cancellation we find that H0,W has rank n− 1.

(1)⇒(3) If (1) holds, then the βi’s are all 0 mod Z, and there are
n − 1 of them. This forces H0,W and also [d]?H0,W to have its local
monodromy around∞, call it T , unipotent, with a single Jordan block,
cf. [Ka-ESDE, 3.2.2].

(3)⇒(4) is obvious.
(4)⇒(3) Although d’th power pullback may change the eigenvalues

of local monodromy at ∞, it does not change the number of distinct
Jordan blocks. But there is always one unipotent Jordan block of size
n− 1, cf. the proof of (1)⇒(2).

(3)⇒(5) If not all the n− 1 Hodge numbers are 1, then some Hodge
number vanishes, and at most n− 2 Hodge numbers are nonzero. But
by [Ka-NCMT, 14.1] [strictly speaking, by projecting its proof onto
ΓW/∆-isotypical components] any local monodromy is quasiunipotent
of exponent of nilpotence≤ h:= the number of nonzero Hodge numbers.
So our local monodromy T around ∞, already unipotent, would satisfy
(T − 1)n−2 = 0. But as we have already remarked, H0,W always has
unipotent Jordan block of size n− 1. Therefore all the Hodge numbers
are nonzero, and hence each is 1.

(5)⇒(1) is obvious. �

Remark 8.9. Four particular n = 5 cases where condition (2) is sat-
isfied, namely W = (1, 1, 1, 1, 1), W = (1, 1, 1, 1, 2), W = (1, 1, 1, 1, 4),
and W = (1, 1, 1, 2, 5), were looked at in detain in the early days of
mirror symmetry, cf. [Mor, Section 4, Table 1].
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Whatever the rank of Primn−2
dR (0 mod W ), we have:

Lemma 8.10. All the Hodge numbers Prima,b
dR(0 mod W )a+b=n−2 are

nonzero.

Proof. Repeat the proof of (3)⇒(5). �

9. Appendix II: The situation in characteristic p, when p
divides some wi

We continue to work with the fixed data (n, d,W ). In this appendix,
we indicate briefly what happens in a prime-to-d characteristic p which
divides one of the wi. For each i, we denote by w◦i the prime-to-p part
of wi, i.e.,

wi = w◦i × (a power of p),

and we define
W ◦ := (w◦1, ..., w

◦
n).

We denote by dW ◦ the integer

dW ◦ := lcm(w◦1, ..., w
◦
n)d,

and define
d′ :=

∑
i

w◦i .

For each i, we have wi ≡ w◦i mod p − 1, so we have the congruence,
which will be used later,

d ≡ d′ mod p− 1.

We work over a finite field k of characteristic p prime to d which con-
tains the dW ◦ ’th roots of unity. We take for ψ a nontrivial additive
character of k which is of the form ψFp ◦ Tracek/Fp , for some nontrivial
additive character ψFp of Fp. The signifigance of this choice of ψ is that
for q = pe, e ≥ 1, any power of p, under the q’th power map we have

[q]?Lψ = Lψ, [q]?Lψ = Lψ
on A1

k.
The family we study in this situation is π : X → A1,

Xλ := Xλ(W, d) :
n∑
i=1

w◦iX
d
i − dλXW = 0.

The novelty is that, because p divides some wi, this family is projective
and smooth over all of A1.

The group ΓW/∆ operates on this family. Given a character V modW
of this group, the rank of the eigensheaf Primn−2(V mod W ) is still
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given by the same recipe as in Lemma 3.1(1), because at λ = 0 we have
a smooth Fermat hypersurface of degree d.

Given an element V = (v1, ..., vn) ∈ (Z/dZ)n0 , we attach to it an
unordered list List(V,W ) of d′ =

∑
iw

◦
i multiplicative characters of

k×, by the following procedure. For each index i, we denoted by χvi

the character of k× given by

ζ 7→ ζ(vi/d)#k
×
.

This characterχvi
has w◦i (as opposed to wi) distinct wi’th roots. We

then define

List(V,W ) = {all w1
′th roots of χv1 , ..., all wn

′th roots of χvn}.
We will also need the same list, but for −V , and the list

List(all d) := {all characters of order dividing d}.
The two lists List(−V,W ) and List(all d) are not identical, as they
have different lengths d′ and d respectively, so we can apply the Cancel
operation, and form the hypergeometric sheaf

HV,W := Hcan(Cancel(List(all d);List(−V,W )))

on Gm,k. Exactly as in Lemma 5.2, if Primn−2(V mod W ) is nonzero,
its rank is the rank of HV,W .

An important technical fact in this situation is the following variant
of Theorem 7.2, cf. [Ka-ESDE, 9.3.2], which “works” because F×p has
order p− 1.

Theorem 9.1. Denote by ψ−1/d the additive character x 7→ ψ(−x/d),
and denote by j : Gm,k ⊂ A1

k the inclusion. Denote by Λ1, ...,Λd the list
List(all d) of all the multiplicative characters of k× of order dividing
d. Let d′ be a strictly positive integer with d′ ≡ d mod p − 1. For any
unordered list of d′ multiplicative characters ρ1, ...ρd′ of k× which is not
identical to List(all d), the perverse sheaf

FTψj?[d]
?H(ψ−1/d; ρ1, ...ρd′ ; ∅)[1]

on A1
k is geometrically isomorphic to the perverse sheaf

j?[d]
?H(ψ;Cancel(List(all d); ρ1, ..., ρd′))[1].

The main result is the following.

Theorem 9.2. Suppose Primn−2(V mod W ) is nonzero. Denote by
j : Gm ⊂ A1 the inclusion. Choose V in the coset V mod W . There

exists a constant AV,W ∈ Q×
ell and an isomorphism of lisse sheaves on

A1
k,

Primn−2(V mod W ) ∼= j?[d]
?HV,W ⊗ (AV,W )deg.
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Proof. Because our family is projective and smooth over all of A1,
Deligne’s degeneration theorem [De-TLCD, 2.4] gives a decomposition

Rπ?Q`
∼= Primn−2[2− n]

⊕
(geom. constant).

So applying Fourier Transform, we get

FTψRπ?Q`(V mod W )|Gm
∼= FTψPrim

n−2(V mod W )[2− n]|Gm.

On the open set V ⊂ X where XW is invertible, the restriction of π
becomes the map f , now given by

(X1, ..., Xn) 7→
∑
i

(w◦i /d)X
d
i /X

W .

Then the argument of Lemma 7.3 gives

FTψPrim
n−2(V mod W )[2− n]|Gm

∼= FTψRf!Q`(V mod W )|Gm.

Theorem 7.5 remains correct as stated. [In its proof, the only modi-
fication needed is the analysis now of the sheaves Kl(ψ−w◦i /d;χvi

, wi).
Pick for each i a wi’th root ρi of χvi

. We have geometric isomorphisms

Kl(ψ−w◦i /d;χvi
, wi) = [wi]?Kl(ψ−w◦i /d;χvi

) = Lρi
⊗ [wi]?Lψ−w◦

i
/d

= Lρi
⊗[w◦i ]?Lψ−w◦

i
/d
∼= Lρi

⊗Kl(ψ−1/d; all the w
◦
i char

′s of order dividing wi)

∼= Kl(ψ−1/d; all the w
◦
i w

′
ith roots of χvi

).]

At this point, we have a geometric isomorphism

FTψPrim
n−2(V mod W )[2− n]|Gm

∼= [d]?H(ψ−1/d;List(V,W ); ∅)[2− n].

So in the Grothendieck group K(A1
k
,Q`), we have

FTψPrim
n−2(V mod W )

= j?[d]
?H(ψ−1/d;List(V,W ); ∅) + (punctual, supported at 0).

Applying the inverse Fourier Transform, we find that in K(A1
k
,Q`) we

have

Primn−2(V mod W ) = j?[d]
?HV,W + (geom. constant).

As before, the fact that Primn−2(V mod W ) and j?[d]
?HV,W have the

same generic rank shows that there is no geometically constant term,
so we have an equality of perverse sheaves in K(A1

k
,Q`),

Primn−2(V mod W ) = j?[d]
?HV,W .

So these two perverse sheaves have isomorphic semisimplifications. Again
by purity, both are geometrically semisimple. So the two sides are ge-
ometrically isomorphic. To produce the constant field twist, we repeat
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the descent argument of Lemma 6.2 to reduce to the case when both
descended sides are geometrically irreducible and geometrically isomor-
phic, hence constant field twists of each other. �

10. Appendix III: Interesting pieces in the original Dwork
family

In this appendix, we consider the case n = d,W = (1, 1, ..., 1). We
are interested in those eigensheaves Primn−2(V mod W ) that have
unipotent local monodromy at∞ with a single Jordan block. In view of
the explicit description of Primn−2(V mod W )|(Gm−µd) as [d]?HV,W ,
and the known local monodromy of hypergeometric sheaves, as recalled
in section 4, we have the following characterization.

Lemma 10.1. In the case n = d,W = (1, 1, ..., 1), let V mod W be
a character of ΓW/∆ such that Primn−2(V mod W ) is nonzero. The
following are equivalent.

(1) Local monodromy at ∞ on Primn−2(V mod W ) has a single
Jordan block.

(2) Local monodromy at ∞ on Primn−2(V mod W ) is unipotent
with a single Jordan block.

(3) Every V = (v1, ..., vn) in the coset V mod W has the following
property: there is at most one vi which occurs more than once,
i.e., there is at most one a ∈ Z/dZ for which the number of
indices i with vi = a exceeds 1.

(4) A unique V = (v1, ..., vn) in the coset V mod W has the follow-
ing property: the value 0 ∈ Z/dZ occurs more than once among
the vi, and no other value a ∈ Z/dZ does.

Proof. In order for Primn−2(V modW ) to be nonzero, the list List(−V,W )
must differ from List(all d). In this n = d case, that means precisely
that List(−V,W ) must have at least one value repeated. Adding a
suitable multiple of W = (1, 1, ..., 1), we may assume that the value 0
occurs at least twice among the vi. So (3) ⇔ (4).

For a hypergeometric Hcan(χ′is; ρ
′
js) of type (a, a), local monodromy

at ∞ has a single Jordan block if and only if all the ρj’s coincide, in
which case the common value of all the ρj’s is the eigenvalue in that
Jordan block. And [d]?Hcan(χ′is; ρ

′
js)’s local monodromy at at ∞ has

the same number of Jordan blocks (possibly with different eigenvalues)
as that of Hcan(χ′is; ρ

′
js). In our situation, if we denote by (χ1, ..., χd)

all the characters of order dividing d, and by (χ−v1 , ..., χ−vd
) the list

List(−V,W ), then

HV,W = Hcan(Cancel((χ1, ..., χd); (χ−v1 , ..., χ−vd
))).
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So in order for local monodromy at ∞ to have a single Jordan block,
we need all but one of the characters that occur among the χvi

to
cancel into List(all d). But those that cancel are precisely those which
occur with multiplicity 1. So (1) ⇔ (3). Now (2) ⇒ (1) is trivial,
and (2) ⇒ (4) by the explicit description of local monodromy at ∞ in
terms of the ρj’s. �

Lemma 10.2. Suppose the equivalent conditions of Lemma 10.1 hold.
Denote by a the rank of Primn−2(V mod W ). Then on any geometric
fibre of (A1 − µd)/Spec(Z[ζd][1/d`]), the geometric monodromy group
Ggeom attached to Primn−2(V mod W ) has identity component either
SL(a) or SO(a) or, if a is even, possibly Sp(a).

Proof. By the Tame Specialization Theorem [Ka-ESDE, 8.17.13], the
group is the same on all geometric fibres. So it suffices to look in some
characteristic p > a. Because on our geometric fibre HV,W began life
over a finite field, and is geometrically irreducible, G0

geom is semisimple.
The case a = 1 is trivial. Suppose a ≥ 2. Because its local monodromy
at ∞ is a single unipotent block, the hypergeometric HV,W is not Belyi
induced, or inverse Belyi induced, or Kummer induced, and G0,der

geom is
nontrivial. The result now follows from [Ka-ESDE, 8.11.2]. �

Lemma 10.3. Suppose the equivalent conditions of Lemma 10.1 hold.
Denote by a the rank of Primn−2(V mod W ). Suppose a ≥ 2. Denote
by V the unique element in the coset V mod W in which 0 ∈ Z/dZ
occurs with multiplicity a + 1, while no other value occurs more than
once. Then we have the following results.

(1) Suppose that −V is not a permutation of V . Then Ggeom =
SL(a) if n− 2 is odd, and Ggeom = {A ∈ GL(a)|det(A) = ±1}
if n− 2 is even.

(2) If −V is a permutation of V and n − 2 is odd, then a is even
and Ggeom = Sp(a).

(3) If −V is a permutation of V and n − 2 is even, then a is odd
and Ggeom = O(a).

Proof. That these results hold for HV,W results from [Ka-ESDE, 8.11.5,
8.8.1,8.8.2]. In applying those results, one must remember that

∑
i vi =

0 ∈ Z/dZ, which implies that (“even after cancellation”) local mon-
odromy at ∞ has determinant one. Thus in turn implies that when
d, or equivalently n− 2, is even, then (“even after cancellation”) local
monodromy at 0 has determinant the quadratic character, and hence
local monodromy at 1 also has determinant the quadratic character.
So in the cases where the group does not have determinant one, it is
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because local monodromy at 1 is a true reflection. After [d]?, which is
finite étale over 1, we get a true reflection at each point in µd. �

Lemma 10.4. If the equivalent conditions of the previous lemma hold,
then over C the Hodge numbers of Primn−2(V mod W ) form an unbro-
ken string of 1’s, i.e., the nonzero among the Primb,n−2−b(V mod W )
are all 1, and the b for which Primb,n−2−b(V mod W ) is nonzero form
(the integers in) an interval [A,A− 1 + a] for some A.

Proof. From the explicit determination of Ggeom, we see in particular
that Primn−2(V mod W ) is an irreducible local system. Looking in a
C-fibre of (A1 − µd)/Spec(Z[ζd][1/d`]) and applying Riemann-Hilbert,
we get that the D-module Primn−2

dR (V mod W ) is irreducible. By
Griffiths transversality, this irreducibility implies that the b for which
Primb,n−2−b(V mod W ) is nonzero form (the integers in) an inter-
val. The fact that local monodromy at ∞ is unipotent with a sin-
gle Jordan block implies that the number of nonzero Hodge groups
Primb,n−2−b(V mod W ) is at least a, cf. the proof of Lemma 8.8,
(3) ⇔ (5). �
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