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Abstract

Using the middle convolution functor MCχ introduced by N. Katz, we prove the
existence of rigid local systems whose monodromy is dense in the simple algebraic
group G2. We derive the existence of motives for motivated cycles which have a motivic
Galois group of type G2. Granting Grothendieck’s standard conjectures, the existence
of motives with motivic Galois group of type G2 can be deduced, giving a partial answer
to a question of Serre.

Introduction

The method of rigidity was first used by Riemann [Rie57] in his study of Gauß’s hypergeometric
differential equations 2F1 = 2F1(a, b, c). Consider the monodromy representation

ρ : πtop
1 (P1\{0, 1,∞}, s)→GL(Vs)

that arises from analytic continuation of the vector space Vs ' C2 of local solutions of 2F1 at s,
along paths in P1\{0, 1,∞} which are based at s. Let γi, i ∈ {0, 1,∞}, be simple loops around
the points 0, 1,∞ (respectively) which are based at s. Then the monodromy representation ρ
is rigid in the sense that it is determined up to isomorphism by the Jordan canonical forms of
ρ(γi), for i= 0, 1,∞.

One can translate the notion of rigidity into the language of local systems by saying that
the local system L(2F1) on P1\{0, 1,∞} which is given by the holomorphic solutions of 2F1 is
rigid in the following sense: the monodromy representation of L(2F1) (as defined in [Del70])
is determined up to isomorphism by the local monodromy representations at the missing points.
This definition of rigidity extends in the obvious way to other local systems. Since Riemann’s
work, the concept of a rigid local system has proven to be very fruitful and has appeared in
many different branches of mathematics and physics (see, e.g., [BH89, Inc56]).

A key observation turned out to be the following: the local sections of the rank-two local
system L(2F1) can be written as linear combinations of convolutions f ∗ g, where f and g are
solutions of two related Fuchsian systems of rank one (see [Kat96, Introduction]). By interpreting
the convolution as higher direct image and using a transition to étale sheaves, Katz proved
in [Kat96] a vast generalization of the above observation: let F be any irreducible étale rigid
local system on the punctured affine line in the sense specified below; then F can be transformed
to a rank-one sheaf by a suitable iterative application of middle convolutions MCχ and tensor
products with rank-one objects to it (see [Kat96, ch. 5]). (The definition of the middle convolution
MCχ and its main properties are recalled in § 1.) This yields the Katz existence algorithm for
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irreducible rigid local systems, which tests whether a given set of local representations comes from
an irreducible and rigid local system (see [Kat96, ch. 6]). This algorithm works simultaneously
in the tame étale case and in the classical case of rigid local systems mentioned above [Kat96,
§§ 6.2 and 6.3].

Let F be a lisse constructible Q̄`-sheaf on a non-empty Zariski open subset j : U → P1
k which is

tamely ramified at the missing points P1
k\U (cf. [Gro77]). We say that F is rigid if the monodromy

representation
ρF : πtame

1 (U, η̄) −→ GL(Fη̄)
of F is determined up to isomorphism by the conjugacy classes of the induced representations of
tame inertia groups Itame

s , where s ∈D := P1\U. Sometimes we will call such a sheaf an étale
rigid local system. If F is irreducible, then F is rigid if and only if the following formula holds:

χ(P1, j∗End(F)) = (2− Card(D))rk(F)2 +
∑
s∈D

dim(CentralizerGL(Fη̄)(I
tame
s )) = 2;

see [Kat96, chs 2 and 6].
In preparation for Theorem 1 below, recall that there exist only finitely many exceptional

simple linear algebraic groups over an algebraically closed field which are not isomorphic to a
classical group; see [Bor91]. The smallest of these is the group G2, which admits an embedding
into the group GL7. Let us also fix some notation: let 1, −1 and U(n) denote, respectively,
the trivial Q̄`-valued representation, the unique quadratic Q̄`-valued character and the standard
indecomposable unipotent Q̄`-valued representation of degree n of the tame fundamental group
πtame

1 (Gm,k), where k is an algebraically closed field of characteristic not equal to 2 or `. The
group πtame

1 (Gm,k) is isomorphic to the tame inertia group Itame
s . This can be used to view

representations of Itame
s as representations of πtame

1 (Gm,k). We prove the following result.

Theorem 1. Let ` be a prime number and let k be an algebraically closed field of characteristic
not equal to 2 or `. Let ϕ, η : πtame

1 (Gm,k)→ Q̄×` be continuous characters such that

ϕ, η, ϕη, ϕη2, ηϕ2, ϕη 6=−1.

Then there exists an étale rigid local systemH(ϕ, η) of rank 7 on P1
k\{0, 1,∞} whose monodromy

group is Zariski dense in G2(Q̄`) and whose local monodromy is as follows.

• The local monodromy at 0 is of type

−1⊕−1⊕−1⊕−1⊕ 1⊕ 1⊕ 1.

• The local monodromy at 1 is of type

U(2)⊕U(2)⊕U(3).

• The local monodromy at ∞ is of the form summarized in the following table.

Local monodromy at ∞ Conditions on ϕ and η

U(7) ϕ= η = 1

U(3, ϕ)⊕U(3, ϕ)⊕ 1 ϕ= η 6= 1, ϕ3 = 1

U(2, ϕ)⊕U(2, ϕ)⊕U(1, ϕ2)⊕U(1, ϕ2)⊕ 1 ϕ= η, ϕ4 6= 1 6= ϕ6

U(2, ϕ)⊕U(2, ϕ)⊕U(3) ϕ= η, ϕ4 6= 1

ϕ⊕ η ⊕ ϕη ⊕ ϕη ⊕ η ⊕ ϕ⊕ 1 ϕ, η, ϕη, ϕη, η, ϕ, 1

pairwise distinct
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Rigid local systems and motives of type G2

Theorem 1 is proved in a slightly more general form as Theorem 1.3.1 below, where it is also
proved that these are the only étale rigid local systems of rank 7 whose monodromy is dense in
G2. The proof of Theorem 1.3.1 relies heavily on Katz’s existence algorithm. Using the canonical
homomorphism

πtop
1 (P1(C)\{0, 1,∞})→ πét

1 (P1
C\{0, 1,∞}),

the existence of a rigid local system in the classical sense (corresponding to a representation
of the topological fundamental group πtop

1 (P1(C)\{0, 1,∞})) whose monodromy group is Zariski
dense in G2 can easily be derived.

Suppose that one is given several local representations

Itame
s −→ GL(V ) with s ∈D ∪ {∞}

which are assumed to come from an irreducible rigid local system F on P1\D ∪ {∞}. It has
been observed empirically that the rigidity condition χ(P1, j∗End(F)) = 2 and the (necessary)
irreducibility condition

χ(P1, j∗F) = (1− Card(D))rk(F) +
∑

s∈D∪{∞}

dim(FItame
s
s ) 6 0 (0.0.1)

contradict each other in many cases; this occurs especially often when the Zariski closure of the
monodromy group of F is supposed to be small in the underlying general linear group. It is
thus astonishing that the aforementioned irreducible and rigid G2-sheaves exist at all. In fact,
the local systems given by Theorems 1 and 1.3.1 are the first, and perhaps the only, examples
of tamely ramified rigid sheaves such that the Zariski closure of the monodromy group is an
exceptional simple algebraic group.

We remark that in positive characteristic, wildly ramified lisse sheaves on Gm with G2-
monodromy were previously found by Katz (see [Kat88, Kat90]). Also, the conjugacy classes
in G2(F`) which correspond to the local monodromy of the above rigid local system H(1, 1)
have already come up in the work of Feit, Fong and Thompson on the inverse Galois problem
(see [FF85, Tho85]); however, only the situation in G2(F`) was considered, and the transition to
rigid local systems was not made.

We apply the above results to give a partial answer to a question posed by Serre on
the existence of motives with exceptional motivic Galois groups. Recall that a motive in the
Grothendieck sense is a triple M = (X, P, n), n ∈ Z, where X is a smooth projective variety over
a field K and P is an idempotent correspondence; see, e.g., [Saa72]. Motives appear in many
branches of mathematics (see [JKS94]) and play a central role in the Langlands program [Lan79].
Granting Grothendieck’s standard conjectures, the category of Grothendieck motives has the
structure of a Tannakian category. Thus, by the Tannakian formalism, every Grothendieck motive
M has conjecturally an algebraic group attached to it, called the motivic Galois group of M
(see [Del90, Saa72]).

An unconditional theory of motives for motivated cycles was developed by André [And96],
who formally adjoins a certain homological cycle (the Lefschetz involution) to the algebraic cycles
in order to obtain the Tannakian category of motives for motivated cycles. Let us also mention
the Tannakian category of motives for absolute Hodge cycles, introduced by Deligne [DMOS82]
(for a definition of an absolute Hodge cycle, take a homological cycle that satisfies the most
visible properties of an algebraic cycle). In both categories, one has the notion of a motivic
Galois group, given by the Tannakian formalism. It can be shown that any motivated cycle is an
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absolute Hodge cycle, so every motive for motivated cycles is also a motive for absolute Hodge
cycles; see [And96]. Since the category of motives for motivated cycles is the minimal extension
of Grothendieck’s category that is unconditionally Tannakian, we will work and state our results
mainly in this category.

The motivic Galois group is expected to encode essential properties of a motive. Many
open conjectures on motivic Galois groups and related Galois representations are considered
in the article [Ser94]. Under the general assumption of Grothendieck’s standard conjectures,
Serre [Ser94, 8.8] asks the following question ‘plus hasardeuse’: do there exist motives whose
motivic Galois group is an exceptional simple algebraic group of type G2 (or E8)? It follows from
Deligne’s work on Shimura varieties that such motives cannot be submotives of abelian varieties
or the motives parametrized by Shimura varieties; see [Del79]. Thus, motives with motivic Galois
group of type G2 or E8 are presumably hard to construct.

There is the notion of a family of motives for motivated cycles; see [And96] and § 3.2. Using
this notion, we prove the following result (see also Theorem 3.3.1).

Theorem 2. There is a family of motives Ms, parametrized by S = P1\{0, 1,∞}, such that for
any s ∈ S(Q) outside a thin set, the motive Ms has a motivic Galois group of type G2.

Since the complement of a thin subset of Q is infinite (see [Ser89]), Theorem 2 implies the
existence of infinitely many motives for motivated cycles whose motivic Galois group is of type
G2. A proof of Theorem 2 will be given in § 3. It can be shown that under the assumption of
the standard conjectures, the motives Ms are Grothendieck motives with motivic Galois group
of type G2 (see Remark 3.3.2). In this sense, we obtain a positive answer to Serre’s question in
the G2 case.

The method of construction of the motives Ms is based on the motivic interpretation of rigid
local systems with quasi-unipotent local monodromy, introduced by Katz in [Kat96, ch. 8]. It
follows from Katz’s work that the sheaf H(1, 1) in Theorem 1 comes from the cohomology of a
smooth affine morphism π : Hyp→ P1

Q\{0, 1,∞} which arises during the convolution process (see
Theorem 2.4.1 and Corollary 2.4.2). Then a desingularization of the relative projective closure of
Hyp and the work of André [And96] on families of motives imply that a suitable compactification
and specialization of π gives motives over Q whose motivic Galois groups are of type G2.

In the appendix to this paper, written jointly with Katz, the Galois representations associated
with the above motives Ms are studied. It follows from Theorem A.1 of the appendix that for
two coprime integers a and b which each have at least one odd prime divisor, the motive Ms,
with s= 1 + a/b, gives rise to `-adic Galois representations whose image is Zariski dense in the
group G2. This implies that the motivic Galois group of Ms is of type G2. By letting a and b
vary among the squarefree coprime odd integers greater than 2, one obtains infinitely many
non-isomorphic motives M1+a/b with motivic Galois group of type G2; see Corollary A.2(ii) in
the appendix.

We remark that Gross and Savin [GS98] proposed a completely different way of constructing
motives with motivic Galois group G2, which involves looking at the cohomology of Shimura
varieties of type G2 with non-trivial coefficients. The connection between these approaches has
yet to be explored. Owing to an observation of Serre, at least the underlying Hodge types
coincide.
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1. Middle convolution and G2-local systems

Throughout this section we fix an algebraically closed field k and a prime number ` 6= char(k).

1.1 The middle convolution

Let G be an algebraic group over k and let π :G×G→G be the multiplication map. Let
Db
c(G, Q̄`) denote the bounded derived category of constructible Q̄`-sheaves on G (cf. [Del80,
§ 1] and [Kat96, § 2.2]). Given two objects K, L ∈Db

c(G, Q̄`), define their !-convolution as

K ∗! L :=Rπ!(K � L) ∈Db
c(G, Q̄`)

and their ∗-convolution as

K ∗∗ L :=Rπ∗(K � L) ∈Db
c(G, Q̄`).

An element K ∈Db
c(G, Q̄`) is called a perverse sheaf (cf. [BBD82]) if K and its dual D(K) satisfy,

respectively,

dim(Supp(H i(K))) 6−i and dim(Supp(H i(D(K)))) 6−i.

Suppose that K is a perverse sheaf with the property that for any other perverse sheaf L on G,
the sheaves K ∗! L and K ∗∗ L are again perverse. Then one can define the middle convolution
K ∗mid L of K and L as the image of L ∗! K in L ∗∗ K under the ‘forget supports map’ in the
abelian category of perverse sheaves.

Let us now consider the situation where G= A1
k. For any non-trivial continuous character

χ : πtame
1 (Gm,k) −→ Q̄×` ,

let Lχ denote the corresponding lisse sheaf of rank one on Gm,k. Let j : Gm→ A1 denote the
inclusion. From j∗Lχ one obtains a perverse sheaf j∗Lχ[1] on A1 by placing the sheaf in degree
−1. Since !-convolution (and ∗-convolution) with j∗Lχ[1] preserves perversity (see [Kat96, ch. 2]),
the middle convolution K ∗mid j∗Lχ[1] is defined for any perverse sheaf K on A1.

The following notation will be used: for any scheme W and any map f :W →Gm, define

Lχ(f) := f∗Lχ. (1.1.1)

The identity character will be denoted by 1, and −1 will denote the unique quadratic character
of πtame

1 (Gm). The inverse character of χ will be denoted by χ (by definition, χ⊗ χ= 1). The
following category will be of importance.

Definition 1.1.1. Let T` = T`(k) denote the full subcategory of constructible Q̄`-sheaves F on
A1
k which satisfy the following conditions.

• There exists a dense open subset j : U → A1 such that j∗F is lisse and irreducible on U and
F ' j∗j∗F .

• The lisse sheaf j∗F is tamely ramified at every point of P1\U.

• There are at least two distinct points of A1 at which F fails to be lisse.
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The properties of T` imply that F [1] ∗mid Lχ[1] is a single sheaf placed in degree −1 (see [Kat96,
ch. 5]), leading to the middle convolution functor

MCχ : T`→T`, F 7→ (F [1] ∗mid Lχ[1])[−1];

see [Kat96, 5.1.5]. (Note that, by the definition of T`, the sheaf MCχ(F) is again irreducible;
cf. [Kat96, Theorem 3.3.3].)

An important property of MCχ is that

MCχ ◦MCρ = MCχρ if χρ 6= 1, MCχ ◦MCχ = Id. (1.1.2)

Let U ⊆ A1 be an open subset of A1 such that F|U is lisse, and let ι : U → P1 be the canonical
inclusion. The sheaf F ∈ T` is called cohomologically rigid if the index of rigidity

rig(F) = χ(P1, ι∗(End(F|U )))

is equal to 2. Then MCχ carries rigid elements in T` to rigid elements in T` by virtue of the
following relation (see [Kat96, 6.0.17]):

rig(F) = rig(MCχ(F)). (1.1.3)

1.2 The numerology of the middle convolution

We recall the effect of the middle convolution on the Jordan canonical forms of the local
monodromy, given by Katz in [Kat96, ch. 6]. Let F ∈ T` and let j : U 7→ A1

x denote an open
subset such that j∗F is lisse. Let D := A1\U. Then, for any point s ∈D ∪ {∞}= P1\U, the sheaf
F gives rise to the local monodromy representation F(s) of the tame inertia subgroup I(s)tame (of
the absolute Galois group of the generic point of A1) at s. The representation F(s) decomposes
as a direct sum of (character) ⊗ (unipotent representation), where the sum is over the set of
continuous Q̄`-characters ρ of πtame

1 (Gm,k)' I(s)tame:

F(s) =
⊕
ρ

Lρ(x−s) ⊗Unip(s, ρ, F) for all s ∈D

and

F(∞) =
⊕
ρ

Lρ(x) ⊗Unip(∞, ρ, F).

Here, the following convention is used: if one starts with a rank-one object F , which at s ∈D
gives rise locally to a character χs of πtame

1 (Gm), then

χ∞ =
∏
s∈D

χs.

For s ∈D ∪ {∞}, write Unip(s, ρ, F) as a direct sum of Jordan blocks of lengths {ni(s, ρ, F)}i.
This leads to a decreasing sequence of non-negative integers

e1(s, ρ, F) > e2(s, ρ, F) > · · · > ek(s, ρ, F) = 0 for k� 0,

where the integer ej(s, ρ, F) is defined to be the number of Jordan blocks in Unip(s, ρ, F) whose
length is at least j.
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Proposition 1.2.1. Let F ∈ T` be of generic rank n. Then the following hold.

(i) rk(MCχ(F)) =
∑
s∈D

rk(F(s)/(F(s)I(s)))− rk((F(∞)⊗ Lχ)I(∞))

=
∑
s∈D

(n− e1(s, 1, F))− e1(∞, χ, F).

(ii) For s ∈D and i > 1,

ei(s, ρχ,MCχ(F)) = ei(s, ρ, F) if ρ 6= 1 and ρχ 6= 1,

ei+1(s, 1,MCχ(F)) = ei(s, χ̄, F),
ei(s, χ,MCχ(F)) = ei+1(s, 1, F).

Moreover,

e1(s, 1,MCχ(F)) = rk(MCχ(F))− n+ e1(s, 1, F).

(iii) For s=∞ and i > 1,

ei(∞, ρχ,MCχ(F)) = ei(∞, ρ, F) if ρ 6= 1 and ρχ 6= 1,

ei+1(∞, χ,MCχ(F)) = ei(∞, 1, F),
ei(∞, 1,MCχ(F)) = ei+1(∞, χ, F).

Moreover,

e1(∞, χ,MCχ(F)) =
∑
s∈D

(rk(F)− e1(s, 1, F))− rk(F).

Proof. Assertion (i) is [Kat96, Corollary 3.3.7]. The first three equalities in (ii) are [Kat96,
6.0.13], and the last equality follows from [Kat96, 6.0.14]. To deduce (iii), we argue as follows.
From [Kat96, 3.3.6 and 6.0.5], for any F ∈ T` there exists an I(∞)tame-representation M(∞, F)
of rank

∑
s∈D(n− e1(s, 1, F)) that has the following properties:

Ei(∞, ρ, F) = ei(∞, ρ, F) if ρ 6= 1,

Ei+1(∞, 1, F) = ei(∞, 1, F) for i > 1,
E1(∞, 1, F) = rk(M(∞, F))− rk(F),

where the numbers Ei(∞, ρ, F) denote the invariants associated to M(∞, F), defined in an
analogous way to the invariants ei(s, ρ, F) for F(s). Moreover, by [Kat96, 6.0.11], we have that

Ei(∞, ρχ,MCχ(F)) = Ei(∞, ρ, F) for all i > 1 and ρ.

By combining the preceding equations, it follows that if ρχ 6= 1 and ρ 6= 1, then

ei(∞, ρχ,MCχ(F)) = Ei(∞, ρχ,MCχ(F)) = Ei(∞, ρ, F) = ei(∞, ρ, F).

If ρ= 1, then since χ is non-trivial, the following holds:

ei+1(∞, χ,MCχ(F)) = Ei+1(∞, χ,MCχ(F)) = Ei+1(∞, 1, F) = ei(∞, ρ, F).

Moreover,

ei(∞, 1,MCχ(F)) = Ei+1(∞, 1,MCχ(F)) = Ei+1(∞, χ, F) = ei+1(∞, χ, F),
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since χ and hence χ are non-trivial. Finally,

e1(∞, χ,MCχ(F)) = E1(∞, χ,MCχ(F))
= E1(∞, 1, F)
= rk(M(∞, F))− rk(F)

=
∑
s∈D

(rk(F)− e1(s, 1, F))− rk(F),

where the last equality follows from [Kat96, 6.0.6]. 2

Let F ∈ T`, and let L be a middle extension sheaf on A1 (i.e. there exists an open subset
j : U → A1 such that j∗L is lisse and L ' j∗j∗L). Assume that F|U is also lisse. Then the middle
tensor product of F and L is defined as

MTL(F) = j∗(F|U ⊗ L|U );

cf. [Kat96, 5.1.9]. Obviously, the generic rank of MTL(F) is the same as the generic rank of F . For
any s ∈D ∪ {∞}, denote by χs,L the unique character ρ with e1(s, ρ, L) = 1. Then the following
holds (see [Kat96, 6.0.10]):

ei(s, ρχs,L,MTL(F)) = ei(s, ρ, F). (1.2.1)

1.3 Classification of irreducible rigid local systems with G2-monodromy

In this section, we give a complete classification of rank-7 rigid sheaves H ∈ T` whose associated
monodromy group is Zariski dense in the exceptional simple algebraic group G2(Q̄`) whose
minimal representation has dimension 7 (we refer to [Bor91] for basic results on the group G2).

Let us first collect some information on the conjugacy classes of the simple algebraic group
G2 which will be needed in what follows. In Table 1 (on page 937), we list the possible Jordan
canonical forms of elements of the group G2(Q̄`) 6GL7(Q̄`), together with the dimensions of the
centralizers in G2(Q̄`) and in GL7(Q̄`).

We use the following conventions: En ∈ Q̄n×n
` denotes the identity matrix, J(n) denotes

a unipotent Jordan block of length n, ω ∈ Q̄×` denotes a primitive third root of unity, and
i ∈ Q̄×` denotes a primitive fourth root of unity. Moreover, an expression of the form
(xJ(2), x−1J(2), x2, x−2, 1) denotes a matrix in Jordan canonical form in GL7(Q̄`) with one
Jordan block of length 2 having eigenvalue x, one Jordan block of length 2 having eigenvalue x−1,
and three Jordan blocks of length 1 having eigenvalues x2, x−2 and 1.

Table 1 can be derived as follows. By Jordan decomposition, any element g ∈G2(Q̄`) can be
written as g = su where s ∈G2(Q̄`) is a semi-simple element and u is unipotent. By conjugating
inside GL7(Q̄`), we may assume that s is in the maximal G2-torus

T = {diag(x, y, xy, 1, (xy)−1, y−1, x−1) | x, y, ∈ Q̄×` }.

Since the group G2(Q̄`) is simply connected, the centralizer C(s) is a connected reductive group
of Lie rank two (see [Car93, Theorems 3.5.4 and 3.5.6]). The possibilities for the type of the
centralizer C(s) and its Weyl group

W (C(s))⊆W (G2) =D6 = 〈(1, 6, 5, 7, 2, 3), (1, 2)(6, 7)〉,
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Table 1. The GL7 conjugacy classes of G2.

Centralizer dimension in
Jordan form G2 GL7 Conditions

E7 14 49
(J(2), J(2), E3) 8 29

(J(3), J(2), J(2)) 6 19
(J(3), J(3), 1) 4 17

J(7) 2 7

(−E4, E3) 6 25
(−J(2),−J(2), E3) 4 17

(−J(2),−J(2), J(3)) 4 11
(−J(3),−1, J(3)) 2 9

(ωE3, 1, ω−1E3) 8 19
(ωJ(2), ω−1J(2), ω, ω−1, 1) 4 11

(ωJ(3), ω−1J(3), 1) 2 7

(i, i,−1, 1, i−1, i−1,−1) 4 13
(iJ(2), i−1J(2),−1,−1, 1) 2 9

(x, x, x−1, x−1, 1, 1, 1) 4 17 x2 6= 1
(x, x, x2, 1, x−1, x−1, x−2) 4 11 x4 6= 1 6= x3

(x,−1,−x, 1,−x−1,−1, x−1) 2 9 x4 6= 1
(xJ(2), x−1J(2), x2, x−2, 1) 2 7 x4 6= 1

(xJ(2), x−1J(2), J(3)) 2 7 x2 6= 1

(x, y, xy, 1, (xy)−1, y−1, x−1) 2 7 x, y, xy, 1, (xy)−1, y−1, x−1

pairwise distinct

which is embedded into G2(Q̄`)⊆GL7(Q̄`) by the permutation representation of the underlying
symmetric group S7, are summarized in the following table.

C(s) T Q̄×` ·A1 A1 ·A1 A2 G2

W (C(s)) 1 Z2 Z2 × Z2 S3 D6

Here, Zn denotes the cyclic group of order n, Sn denotes the symmetric group on n letters, and
Dn denotes the dihedral group of order 2n. This also implies the centralizer dimensions in G2 of
the semi-simple elements occurring in Table 1.

The W (G2)-conjugacy classes of the subgroups W (C(s)) 6W (G2) are as follows.

Z2 〈(1, 2)(6, 7)〉 〈(1, 6)(2, 7)(3, 5)〉 〈(1, 7)(2, 6)(3, 5)〉
Z2 × Z2 〈(1, 7)(2, 6)(3, 5), (1, 2)(6, 7)〉
S3 〈(1, 5, 2)(6, 7, 3), (1, 2)(6, 7)〉 〈(1, 5, 2)(6, 7, 3), (1, 6)(2, 7)(3, 5)〉

The conditions on the eigenvalues of an element s ∈ T, imposed by the condition that s
be centralized by one of the above conjugacy classes of subgroups of W (G2), lead to the
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following possibilities for the Jordan forms and their centralizers inside W (G2) (note that if
(1, 7)(2, 6)(3, 5) ∈ C(s), then s has order less than or equal to 2).

s W (C(s)) Conditions

diag(x, y, xy, 1, (xy)−1, y−1, x−1) 1 1, x, y, xy pairwise distinct
diag(x, x, x2, 1, x−2, x−1, x−1) 〈(1, 2)(6, 7)〉 x2 6= 1, x3 6= 1

diag(x, x−1, 1, 1, 1, x, x−1) 〈(1, 6)(2, 7)(3, 5)〉 x2 6= 1
diag(−1,−1, 1, 1, 1,−1,−1) Z2 × Z2

diag(ω, ω, ω2, 1, ω−2, ω−1, ω−1) S3 ω3 = 1

The Jordan forms of the unipotent elements u can be found in [Law95] and their centralizers
C(u) = CG2(u) in [Car93, § 13.1]. We note that for any Jordan form, there is only one class
in G2(Q̄`); cf. [Car93]. The connected component C(u)0 can be written as C(u)0 = C ·R,
C ∩R= 1, where R denotes the unipotent radical of C(u) and C is reductive. These results
are summarized as follows.

Jordan form dim(R) Type of C C(u)/C(u)0

(J(2), J(2), E3) 5 A1 1
(J(2), J(2), J(3)) 3 A1 1

(J(3), J(3), 1) 4 1 S3

(J(7)) 2 1 1

To obtain the information in Table 1 about a mixed (i.e. neither semi-simple nor unipotent)
element g ∈G2(Q̄`), we make use of the uniqueness of the Jordan decomposition of g = gs · gu =
gu · gs within the group G2(Q̄`), where gs ∈G2(Q̄`) is semi-simple and gu ∈G2(Q̄`) unipotent;
cf. [Car93]. The uniqueness implies that

CG2(g) = CG2(gs) ∩ CG2(gu). (1.3.1)

Note that the centralizer dimensions of elements in GLn can be derived from their Jordan form
by using the arguments of [Car93, p. 398].

By the structure of the centralizers of unipotent elements listed above, every centralizer of a
unipotent element contains an involution, except for J(7), which explains the occurrence of the
mixed elements in the seventh to ninth rows of Table 1. To verify the claim on the centralizer
dimensions in G2, note that the dimension of the centralizer of a non-trivial unipotent element u
in a group of type A1 ·A1 is either 2 or 4, depending on whether or not a subgroup of type A1

is contained in the centralizer of u. The claim concerning the centralizer dimension in G2 for
the seventh to ninth rows of Table 1 therefore follows from the structure of the centralizers of
unipotent elements shown above.

Since the centralizer of an element s of order 3 is of type A2, one has two classes of non-trivial
unipotent elements in CG2(s). Then, the centralizer dimensions in a group of type A2 may again
be derived using [Car93, p. 398], implying by (1.3.1) the centralizer dimensions in G2 given n
the 11th and 12th rows of Table 1.

Let s= diag(y, y, y2, 1, y−2, y−1, y−1). Since CG2(s) is of type Q̄×` ·A1, the distribution of
the eigenvalues of s implies that the non-trivial unipotent elements in C(s) have Jordan form
(J(2), J(2), 1, 1, 1). Thus there exists an element h with Jordan form (yJ(2), y2, 1, y−2, y−1J(2)),
which explains the occurrence of the mixed elements in rows 14 and 18 of Table 1.
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The computation of the centralizer dimension is similar to what was done in the above cases.
A similar argument applies to row 19, using the fact that the centralizer of a unipotent element
with Jordan form (J(2), J(2), J(3)) contains a group of type A1.

The only case left is to exclude an element g = gsgu with possible Jordan form
(xJ(2), 1, 1, 1, x−1J(2)), x2 6= 1. Since CG2(gs) is of type T1 ·A1 (with T1 ' Q̄×` ), one has gs ∈ T1.
A similar argument applied to the element h= g′sgu occurring in rows 14 and 18 of Table 1
(with Jordan form (yJ(2), y2, 1, y−2, y−1J(2))) implies the existence of a non-conjugate torus
T2 ' Q̄×` with T2 ⊆ CG2(gu), contradicting CG2(gu) =A1 ·R where R is the unipotent radical.
Summarizing these results leads to Table 1.

We will use the following notation in our next result, Theorem 1.3.1. Let U(i) denote the
Q̄`-valued representation of πtame

1 (Gm) which sends a generator of πtame
1 (Gm) to the Jordan

block J(i). For any character χ of πtame
1 (Gm), let

U(i, χ) := χ⊗U(i),

let

−U(i) :=−1⊗U(i)

(with −1 denoting the unique quadratic character of πtame
1 (Gm)), and let U(i, χ)j denote the

j-fold direct sum of the representation U(i, χ).

Theorem 1.3.1. Let ` be a prime number and let k be an algebraically closed field with
char(k) 6= 2, `. Then the following hold.

(i) Let α1, α2 ∈ A1(k) be two distinct points and let ϕ, η : πtame
1 (Gm,k)→ Q̄×` be continuous

characters such that

ϕ, η, ϕη, ϕη2, ηϕ2, ϕη 6=−1. (1.3.2)

Then there exists an irreducible cohomologically rigid sheaf H=H(ϕ, η) ∈ T`(k) of generic
rank 7 whose local monodromy is as follows.

• The local monodromy at α1 is −14 ⊕ 13.
• The local monodromy at α2 is U(2)2 ⊕U(3).
• The local monodromy at ∞ is of the following form.

Local monodromy at ∞ Conditions on ϕ and η

U(7) ϕ= η = 1

U(3, ϕ)⊕U(3, ϕ)⊕ 1 ϕ= η 6= 1, ϕ3 = 1

U(2, ϕ)⊕U(2, ϕ)⊕U(1, ϕ2)⊕U(1, ϕ2)⊕ 1 ϕ= η, ϕ4 6= 1 6= ϕ6

U(2, ϕ)⊕U(2, ϕ)⊕U(3) ϕ= η, ϕ4 6= 1

ϕ⊕ η ⊕ ϕη ⊕ ϕη ⊕ η ⊕ ϕ⊕ 1 ϕ, η, ϕη, ϕη, η, ϕ, 1

pairwise distinct

Moreover, the restriction H|A1
k\{α1,α2} is lisse and the monodromy group associated to H is

a Zariski dense subgroup of the simple exceptional algebraic group G2(Q̄`).

(ii) Assume that H ∈ T` is a cohomologically rigid Q̄`-sheaf of generic rank 7 which fails to be
lisse at ∞ and is such that the monodromy group associated to H is Zariski dense in the
group G2(Q̄`). Then H fails to be lisse at exactly two distinct points α1, α2 ∈ A1(k) and,
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up to a permutation of the points α1, α2 and ∞, the above list exhausts all the possible
local monodromies of H.

Proof. We introduce the following notation. Let j : U := A1
k\{α1, α2}→ P1 denote the

tautological inclusion. Let x− αi, with i= 1, 2, denote the morphism U →Gm induced by
sending x ∈ U to x− αi. For any pair of continuous characters χ1, χ2 : πtame

1 (Gm)→ Q̄×` , set

L(χ1, χ2) := j∗(Lχ1(x−α1) ⊗ Lχ2(x−α2)),

using the notation of (1.1.1). Let

F1 = L(−1,−ϕη) ∈ T`.

Define inductively a sequence of sheaves H0, . . . ,H6 in T` by setting

H0 := F1 and Hi := MTFi+1(MCρi(Hi−1)) for i= 1, . . . , 6,

where the Fi and ρi are defined as follows:

F3 = F5 = F7 = L(−1, 1), F2 = F6 = L(1,−ϕ), F4 = L(1,−ϕη)

and

ρ1 :=−ϕη2, ρ2 :=−ϕη2, ρ3 :=−ϕη, ρ4 :=−ϕη, ρ5 :=−ϕ, ρ6 :=−ϕ.

We now distinguish five cases, which correspond to the different types of local monodromy
at ∞ listed above.
Case 1. Let ϕ= η = 1. The following table lists the local monodromies of the sheaves H0, . . . ,
H6 =H at the points α1, α2 and ∞; the proof is a direct computation, using Proposition 1.2.1
and (1.2.1).

at α1 at α2 at ∞
H0 −1 −1 1

H1 U(2) −U(2) U(2)

H2 −12 ⊕ 1 U(3) U(3)

H3 U(2)2 U(2)⊕−12 U(4)

H4 12 ⊕−13 U(2)2 ⊕−1 U(5)

H5 U(2)3 −U(2)⊕−12 ⊕ 12 U(6)

H6 −14 ⊕ 13 U(2)2 ⊕U(3) U(7)

By Proposition 1.2.1 and the results of § 1.1, the sheaf H=H6 is a cohomologically rigid
irreducible sheaf of rank 7 in T` which is lisse on the open subset U = A1

k\{α1, α2} ⊆ A1
k. The

lisse sheaf H|U corresponds to a representation

ρ : πtame
1 (A1\{α1, α2})→GL(V ),

where V is a Q̄`-vector space of dimension 7. LetG be the image of ρ. Note thatG is an irreducible
subgroup of GL(V ) since H is irreducible. In the following, we fix an isomorphism V ' Q̄7

` . This
induces an isomorphism GL(V )'GL7(Q̄`), so we can view G as a subgroup of GL7(Q̄`).

We want to show that G is contained in a conjugate of the group G2(Q̄`) 6GL7(Q̄`). To do
this, we argue as in [Kat90, § 4.1]. First, note that the local monodromy at s ∈ {α1, α2,∞} can
be (locally) conjugated in GL7(Q̄`) into the orthogonal group O7(Q̄`). It then follows from the
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rigidity of the representation ρ that there exists an element x ∈GL(V ) such that

Transpose(ρ(g)−1) = ρ(g)x ∀g ∈ πtame
1 (A1\{α1, α2}).

In other words, the group G respects the non-degenerate bilinear form given by the element x−1.
Since G is irreducible and the dimension of V is 7, this form has to be symmetric. Thus we can
assume that G is contained in the orthogonal group O7(Q̄`). By the results of Aschbacher [Asc87,
Theorem 5 parts (2) and (5)], an irreducible subgroup G of O7(K) (where K denotes an
algebraically closed field or a finite field) lies inside an O7(K)-conjugate of G2(K) if and only
if G has a non-zero invariant in the third exterior power Λ3(V ) of V =K7. In our case, this is
equivalent to

H0(U, Λ3(H̃))'H0(P1, j∗Λ3(H̃)) 6= {0}, (1.3.3)

where H̃=H|U . Poincaré duality implies that the previous formula is equivalent to

H2
c (U, Λ3(H̃))'H2(P1, j∗Λ3(H̃)) 6= {0}. (1.3.4)

The Euler–Poincaré formula implies that

χ(P1, j∗Λ3(H̃)) = h0(P1, j∗Λ3(H̃))− h1(P1, j∗Λ3(H̃)) + h2(P1, j∗Λ3(H̃))

= χ(U) · rk(Λ3(H̃)) +
∑

s∈{α1,α2,∞}

dim(Λ3(H̃)I(s))

= −35 + 19 + 13 + 5
= 2. (1.3.5)

Note that

χ(U) = h0(U)− h1(U) + h2(U) =−1, rk(Λ3(H̃)) = 35

and, for s= α1, α2 and∞, the dimensions of the local invariants dim(Λ3(H̃)I(s)) equal 19, 13 and
5, respectively.

The latter claim can be verified as follows. The group G2 leaves a line fixed in the third
exterior power Λ3(V ) of its minimal representation V = Q̄7

` ; cf. [Asc87]. Hence [OV90, Table 5]
implies (for dimension reasons) that the G2(Q̄`)-module Λ3(V ) decomposes as

Λ3(V ) = V ⊕ S2(V ), (1.3.6)

where S2(V ) is the second symmetric power of V. For s= α1, we have to determine the dimension
of the fixed space of an involution in G2(Q̄`) under Λ3, which can easily be seen to have
dimension 19, using the decomposition in (1.3.6). For s=∞, we have to determine the dimension
of the fixed space of a regular unipotent element u, which can be assumed to be contained in the
image of the sixth symmetric power S6(ρ) of the standard representation ρ of SL2(Q̄`). Since

S2(Sp(ρ)) =
∑
i>0

S2p−4i(ρ), (1.3.7)

where S0(ρ) = 1 and Sk(ρ) = 0 for k negative (cf. [OV90, Table 5]), this implies that
dim(Λ3(H̃)I(∞)) = 5, because Λ3(S6(ρ)) = S6(ρ)⊕ (S12(ρ)⊕ S8(ρ)⊕ S4(ρ)⊕ 1) (by (1.3.6)) and
each summand adds a 1 to the dimension of the fixed space. The claim for dim(Λ3(H̃)I(α2)) can
be verified by analogous reasoning, using

S2(V1 ⊕ V2) = S2(V1)⊕ S2(V2)⊕ (V1 ⊗ V2) and Sp(ρ)⊗ Sq(ρ) =
∑
i>0

Sp+q−2i(ρ)
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together with formula (1.3.7), by embedding the element (J(2), J(2), J(3)) into the image of
ρ⊕ ρ⊕ S2(ρ).

It follows from (1.3.5) and the equivalence of (1.3.3) and (1.3.4) that h0(U, Λ3(H̃)) > 1.
Therefore, the monodromy group G can be assumed to be contained in G2(Q̄`). Let G denote the
Zariski closure of G in G2(Q̄`). By [Asc87, Corollary 12], either a Zariski closed proper maximal
subgroup of G2(Q̄`) is reducible or G is isomorphic to the group SL2(Q̄`) acting on the vector
space of homogeneous polynomials of degree 6. In the latter case, the unipotent elements of the
image of SL2(Q̄`) are either equal to the identity matrix or conjugate in GL7(Q̄`) to a Jordan
block of length 7. Since the local monodromy of H at α2 is not of this form, G must coincide
with G2(Q̄`). This finishes the proof of assertion (i) in Case 1.

In Cases 2–5 that follow, we shall list only the local monodromy of the sheaves

H0, . . . ,H6 =H.

In each case, rigidity implies that the image of π1(U) is contained in an orthogonal group, and
one can compute that an analogue of (1.3.5) holds. Thus the image of π1(U) is Zariski dense
in G2 by the same arguments as in Case 1.

Case 2. Suppose ϕ= η and that ϕ is non-trivial of order 3. Then the local monodromies of
H0, . . . ,H6 =H at α1, α2 and ∞ are as follows.

at α1 at α2 at ∞
H0 −1 −ϕ ϕ

H1 U(2) −ϕ⊕−ϕ ϕ⊕ ϕ
H2 −12 ⊕ 1 ϕ⊕ ϕ⊕ 1 ϕ⊕ ϕ⊕ 1

H3 U(1, ϕ)2 ⊕ 12 ϕ⊕ 1⊕U(1,−1)2 U(2, ϕ)⊕ 1⊕ ϕ
H4 12 ⊕−13 −ϕ⊕U(1, ϕ)2 ⊕ 12 U(2)⊕U(2, ϕ)⊕ ϕ
H5 U(1, ϕ)3 ⊕ 13 U(2,−ϕ)⊕ 12 ⊕U(1,−ϕ)2 U(3, ϕ)⊕U(2)⊕ ϕ
H6 −14 ⊕ 13 U(2)2 ⊕U(3) U(3, ϕ)⊕U(3, ϕ)⊕ 1

Case 3. Suppose ϕ= η and ϕ4 6= 1 6= ϕ6. Then the local monodromies are as given in the following
table.

at α1 at α2 at ∞
H0 −1 −ϕ2 ϕ2

H1 ϕ3 ⊕ 1 −ϕ2 ⊕−ϕ ϕ4 ⊕ ϕ2

H2 −12 ⊕ 1 ϕ⊕ ϕ2 ⊕ 1 ϕ3 ⊕ ϕ⊕ ϕ
H3 U(1, ϕ2)2 ⊕ 12 ϕ⊕ 1⊕U(1,−1)2 ϕ2 ⊕ ϕ⊕ ϕ3 ⊕ ϕ
H4 12 ⊕−13 −ϕ⊕U(1, ϕ2)2 ⊕ 12 ϕ2 ⊕ 1⊕ ϕ3 ⊕ ϕ⊕ ϕ
H5 U(1, ϕ)3 ⊕ 13 U(2,−ϕ)⊕ 12 ⊕U(1,−ϕ)2 1⊕U(2, ϕ2)⊕ ϕ⊕ ϕ3 ⊕ ϕ
H6 −14 ⊕ 13 U(2)2 ⊕U(3) U(2, ϕ)⊕U(2, ϕ)⊕ ϕ2 ⊕ ϕ2 ⊕ 1
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Case 4. Suppose ϕ= η and ϕ4 6= 1. Then we have the following.

at α1 at α2 at ∞
H0 −1 −1 1

H1 ϕ⊕ 1 −1⊕−ϕ U(2)

H2 −12 ⊕ 1 ϕ⊕ ϕ2 ⊕ 1 U(3, ϕ)

H3 U(2)2 ϕ⊕ 1⊕U(1,−ϕ2)2 ϕ2 ⊕U(3, ϕ)

H4 12 ⊕−13 −ϕ⊕U(1, ϕ2)2 ⊕ 12 ϕ2 ⊕ 1⊕U(3, ϕ)

H5 U(1, ϕ)3 ⊕ 13 U(2,−ϕ)⊕ 12 ⊕U(1,−ϕ)2 1⊕U(2, ϕ2)⊕U(3, ϕ)

H6 −14 ⊕ 13 U(2)2 ⊕U(3) U(2, ϕ)⊕U(2, ϕ)⊕U(3)

Case 5. The characters

ϕ, η, ϕη, ϕη, η, ϕ, 1

are pairwise disjoint and

ϕη 6=−1 6= ϕη2, ϕ2η.

Then the local monodromies are as follows.

at α1 at α2 at ∞
H0 −1 −ϕη ϕη

H1 ϕη2 ⊕ 1 −ϕη ⊕−ϕ ϕη ⊕ ϕ2η2

H2 1⊕−12 η ⊕ η2 ⊕ 1 η ⊕ ϕ⊕ ϕη2

H3 U(1, ϕη)2 ⊕ 12 η ⊕ 1⊕U(1,−ϕη)2 η ⊕ ϕη2 ⊕ ϕ⊕ η2

H4 U(1,−1)3 ⊕ 12 −ϕ⊕U(1, ϕ2)2 ⊕ 12 ϕ⊕ η ⊕ ϕ2η ⊕ ϕη ⊕ ϕη
H5 U(1, ϕ)3 ⊕ 13 U(2,−ϕ)⊕U(1,−ϕ)2 ⊕ 12 ϕ⊕ ηϕ2 ⊕ η ⊕ ϕη ⊕ ϕη ⊕ ϕ2

H6 −14 ⊕ 13 U(2)2 ⊕U(3) 1⊕ ηϕ⊕ ηϕ⊕ η ⊕ η ⊕ ϕ⊕ ϕ

This finishes the proof of assertion (i).

Now let us prove assertion (ii) of the theorem. Let D be a reduced effective divisor on A1,
let U := A1\D, and let j : U → P1 denote the obvious inclusion. A sheaf H ∈ T`(k) which is lisse
on U is cohomologically rigid if and only if

rig(H) = (1− Card(D))rk(H|U )2 +
∑

s∈D∪∞

∑
i,χ

ei(s, χ,H)2 = 2 (1.3.8)

(cf. [Kat96, 6.0.15]). (Note that the sum
∑

i,χ ei(s, χ,H)2 gives the dimension of the centralizer
of the local monodromy in the group GLrk(H|U )(Q̄`); see [Kat96, 3.1.15].) Another necessary
condition for H to be contained in T` is that H be irreducible. This implies that

χ(P1, j∗(H|U )) = (1− Card(D))rk(H) +
∑

s∈D∪{∞}

e1(s, 1,H) 6 0, (1.3.9)
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Table 2. The possible centralizer dimensions.

Case
∑

i,χ ei(α1, χ,H)2
∑

i,χ ei(α2, χ,H)2
∑

i,χ ei(∞, χ,H)2

P1 29 13 9
P2 29 11 11
P3 25 19 7
P4 25 17 9
P5 25 13 13
P6 19 19 13
P7 17 17 17

since the same arguments as for (1.3.5) apply here. Assume first that Card(D)> 2 and that H
fails to be lisse at all points of D. Then, by (1.3.8),∑

s∈D∪∞

∑
i,χ

ei(s, χ,H)2 = 2 + (Card(D)− 1)72.

Since
∑

i,χ ei(s, χ,H)2 6 29 by Table 1, one immediately concludes that the cardinality of D
is less than or equal to 3. If Card(D) = 3, then, by Table 1, the following combinations of the
centralizer dimensions can occur:

(25, 25, 25, 25), (29, 29, 29, 13), (29, 29, 25, 17).

In each case, one obtains a contradiction to (1.3.9) (using a quadratic twist at each local
monodromy in the (25, 25, 25, 25) case).

Thus D = {α1, α2}, where α1 and α2 are two distinct points of A1(k), and∑
s∈{α1,α2,∞}

∑
i,χ

ei(s, χ,H)2 = 72 + 2 = 51.

This leaves us with seven possible cases P1, . . . , P7, which are listed in Table 2.
Using Table 1 and the inequality of (1.3.9), one can exclude P1, P4 and P7 by possibly twisting

the local monodromy at α1, α2 and ∞ by three suitable (at most quadratic) characters whose
product is 1. The case P5 can be excluded by means of the inequality in (1.3.9) and a twist by
suitable characters of order at most 4 whose product is 1.

Since the monodromy representation of H is dense in the group G2(Q̄`), one obtains an
associated sheaf Ad(H) ∈ T` of generic rank 14, given by the adjoint representation of G2. This
is again irreducible, which implies that

χ(P1, j∗(Ad(H)|U )) = (1− Card(D)) · 14 +
∑

s∈D∪∞
dim(CG2(H(s))) 6 0.

This can be used to exclude the cases P2 and P6, because in these cases one has, respectively,

χ(P1, j∗EndG2
(H|U )) =−14 + 8 + 4 + 4> 0

and
χ(P1, j∗EndG2

(H|U )) =−14 + 6 + 6 + 4> 0.
By the same argument, in case P3 one can exclude the possibility that the centralizer dimension
19 comes from a non-unipotent character.
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Thus, up to a permutation of the points α1, α2 and∞, we are left with the following possibility
for the local monodromy: the local monodromy at α1 is an involution, the local monodromy at
α2 is unipotent of the form U(2)2 ⊕U(3), and the local monodromy at ∞ is regular, i.e. the
dimension of the centralizer is 7. Let us explain the conditions in formula (1.3.2) of Theorem 1.3.1.
By Table 1, the regularity of the local monodromy at ∞ implies that ϕ, η, ϕη 6=−1. It follows
from the properties of Katz’s algorithm and the regularity at ∞ that F1, . . . , F6 also must not
equal 1 (see Remark 1.3.2(i)), implying the further condition ϕη̄ 6=−1 by the definition of F4.
In addition, each ρi has to not equal 1 in order for MCρi to be defined, which implies ϕη2 6=−1.
The condition ηϕ2 6=−1 is non-redundant only in Case 5. In this case, by Proposition 1.2.1(i),
the equality ηϕ2 =−1 implies that the rank of MC−ϕη(H2) is 3 instead of 4, producing
a contradiction. (We remark that the conditions ϕ4 6= 1 6= ϕ6 in Case 3 and the condition
ϕ4 6= 1 in Case 4 also follow from (1.3.2) and are stated only for completeness in the table
of Theorem 1.3.1(i). Also, the conditions of (1.3.2) can alternatively be derived from similar
considerations as for ηϕ2 =−1.) 2

Remark 1.3.2. Let us give a few remarks on the general construction of the sheaves in the proof
of Theorem 1.3.1.

(i) The construction of the various sheaves H=H6 follows Katz’s existence algorithm for rigid
local systems [Kat96, ch. 6] in reverse order, using the invertibility of MCχ stated in (1.1.2).
Since the local monodromy of H at∞ is always regular by the discussion following Table 2,
it follows from Proposition 1.2.1(iii) that the local monodromy at ∞ also has to be regular
in each intermediate step (making the tables of local monodromies plausible, at least for
the local monodromy at∞). Together with the multiplicativity of MC stated in (1.1.2) and
Proposition 1.2.1, this also implies the conditions F2, F4, F6 6= 1 (as well as F1, F3, F5 6= 1,
which is automatically fulfilled). Proposition 1.2.1 further implies that the local monodromy
at α1 has to be involutive in each second intermediate step. The monodromy groups of
H2,H4,H6 are contained in a general orthogonal group. In addition, the monodromy groups
of H1,H3,H5 in Case 1 are symplectic groups. (The latter two claims can be derived from
rigidity and the properties of the local monodromy.)

(ii) We stress that while Theorem 1.3.1 gives all possible local monodromies of rigid local
systems of rank 7 with monodromy group Zariski dense in G2, it does not list all possible
pairs of characters ϕ, η for which one can apply a sequence of middle tensor products
and middle convolutions in order to obtain such a local system. There is some freedom in
choosing the sequence of intermediate sheaves H1, . . . ,H5 while fixing H6. Thus one can,
for example, interchange ϕ with η, corresponding to the action of the Weyl group W (G2)
on the maximal torus.

(iii) In some special cases, the monodromy group of H2 is even a finite group. This phenomenon
arises in Case 2, where the monodromy group of H2 is the imprimitive reflection group
Z2

2 .Z3. In Case 3 with ϕ being a fifth root of unity, we obtain A5 × Z5 as the monodromy
group of H2. Also, in Case 5 with η being a third (respectively, a fifth) root of unity and
ϕη being a fifth (respectively, a third) root of unity, one obtains a finite monodromy group.
In this case the monodromy group of H2 is A5 × Z3 (respectively, A5 × Z5).

Let us assume that α1 = 0, α2 = 1 and k = Q̄. Let ι : A1
Q̄→ A1

Q be the base-change map. We say
that a sheaf H as in Theorem 1.3.1 is defined over Q if H|AQ̄\{0,1} is of the form ι∗(H) where H

is lisse on A1
Q\{0, 1}.
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Theorem 1.3.3. If a sheaf H as in Theorem 1.3.1(i) is defined over Q, then the trace of the
local monodromy at ∞ is contained in Q. This is the case if and only if the local monodromy
at ∞ takes one of the following forms.

U(7)

U(3, ϕ)⊕U(3, ϕ)⊕ 1 ϕ of order 3

U(2, ϕ)⊕U(2, ϕ)⊕U(3) ϕ of order 3 or 6

ϕ⊕ η ⊕ ϕη ⊕ ϕη ⊕ η ⊕ ϕ⊕ 1 ϕ of order 7 or 14 and η = ϕ2

ϕ of order 12 and η =−ϕ

Proof. The first assertion follows from the structure of the local fundamental group at ∞. Using
the local monodromy of the sheaves H listed in Theorem 1.3.1(i), one obtains the result via an
explicit computation. 2

2. The motivic interpretation of the rigid G2-sheaves

In this section we recall the motivic interpretation of the middle convolution in the universal
setup of [Kat96, ch. 8]. This leads to an explicit geometric construction of the rigid G2-sheaves
found in the previous section.

2.1 Basic definitions
Let us recall the setup of [Kat96, ch. 8]. Let k denote an algebraically closed field and ` a prime
number which is invertible in k. Further, let α1, . . . , αn be pairwise disjoint points of A1(k) and
ζ a primitive root of unity in k. Fix an integer N > 1 such that char(k) does not divide N and let

R :=RN,` := Z
[
ζN ,

1
N`

]
,

where ζN denotes a primitive Nth root of unity. Set

SN,n,` :=RN,`[T1, . . . , Tn][1/∆], ∆ :=
∏
i6=j

(Ti − Tj).

Fix an embedding R→Q` and let E denote the fraction field of R. For a place λ of E, let Eλ
denote the λ-adic completion of E. Let φ : SN,n,`→ k denote the unique ring homomorphism for
which φ(ζN ) = ζ and such that

φ(Ti) = αi for i= 1, . . . , n.

Let A1
SN,n,`

\{T1, . . . , Tn} denote the affine line over S with the n sections T1, . . . , Tn deleted.
Consider, more generally, the spaces

A(n, r + 1)R := Spec
(
R[T1, . . . , Tn, X1, . . . , Xr+1]

[
1

∆n,r

])
where

∆n,r :=
(∏
i6=j

(Ti − Tj)
)(∏

a,j

(Xa − Tj)
)(∏

k

(Xk+1 −Xk)
)

(here the indices i, j run through {1, . . . , n}, the index a runs through {1, . . . , r + 1}, and the
index k runs through {1, . . . , r}; when r = 0 the empty product

∏
k(Xk+1 −Xk) is understood

to be 1).
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Define

pri : A(n, r + 1)R→ A1
SN,n,`

\{T1, . . . , Tn},
(T1, . . . , Tn, X1, . . . , Xr+1) 7→ (T1, . . . , Tn, Xi).

On (Gm)R with coordinate Z, one has the Kummer covering of degree N of equation
Y N = Z. This is a connected µN (R)-torsor whose existence defines a surjective homomorphism
π1((Gm)R)→ µN (R). The chosen embedding R→Q` defines a faithful character

χN : µN (R)→Q×` ,

and the composite homomorphism

π1((Gm)R)→ µN (R)→Q×`

defines the Kummer sheaf LχN on (Gm)R. For any schemeW and any map f :W → (Gm)R, define

Lχ(f) := f∗Lχ.

2.2 The middle convolution of local systems

Denote by Lisse(N, n, `) the category of lisse Q̄`-sheaves on

A(n, 1)R = (A1 − (T1, . . . , Tn))SN,n,` .

For each non-trivial Q`-valued character χ of the group µN (R), Katz defined in [Kat96] a left
exact middle convolution functor

MCχ : Lisse(N, n, `) −→ Lisse(N, n, `)

as follows.

Definition 2.2.1. View the space A(n, 2)R with its second projection pr2 to A(n, 1)R as a
relative A1 with coordinate X1, minus the n+ 1 sections T1, . . . , Tn and X2. Compactify the
morphism pr2 into the relative P1,

pr2 : P1 × A(n, 1)R→ A(n, 1)R,

by filling in the sections T1, . . . , Tn, X2,∞. Moreover, let j : A(n, 2)R −→ P1 × A(n, 1)R denote
the natural inclusion. The middle convolution of F ∈ Lisse(N, n, `) and Lχ is defined as

MCχ(F) :=R1(pr2)!(j∗(pr∗1(F)⊗ Lχ(X2−X1))) ∈ Lisse(N, n, `)

(see [Kat96, § 8.3]).

For any F ∈ Lisse(N, n, `) and any non-trivial character χ as above, let Fk denote the
restriction of F to the geometric fibre Uk = A1

k\{α1, . . . , αn} of (A1 − (T1, . . . , Tn))SN,n,` defined
by the homomorphism φ : S→ k. Define χk to be the restriction of χ to Gm,k and let j : Uk→ P1

k

denote the inclusion. Then the following holds:

MCχk(j∗Fk)|Uk = MCχ(F)k, (2.2.1)

where on the left-hand side the middle convolution MCχk(Fk) is defined as in § 1.1, and on
the right-hand side the middle convolution is defined as in Definition 2.2.1 above (see [Kat96,
Lemma 8.3.2]).
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2.3 The motivic interpretation of the middle convolution
In [Kat96, Theorems 8.3.5 and 8.4.1] the following result is proved.

Theorem 2.3.1. Fix an integer r > 0. For a choice of n(r + 1) characters

χa,i : µN (R)→ Q̄×` , i= 1, . . . , n, a= 1, . . . , r + 1,

and a choice of r non-trivial characters

ρk : µN (R)→ Q̄×` , k = 1, . . . , r,

define a rank-one sheaf L on A(n, r + 1)R by setting

L :=
⊗
a,i

Lχa,i(Xa−Ti)
⊗
k

Lρk(Xk+1−Xk).

Then the following hold.

(i) The sheaf K :=Rr(prr+1)!(L) is mixed of integral weights in [0, r]. There exists a short
exact sequence of lisse sheaves on A1

SN,n,`
\{T1, . . . , Tn},

0→K6r−1→K→K=r→ 0,

such that K6r−1 is mixed of integral weights less than or equal to r − 1 and where K=r is
punctually pure of weight r.

(ii) Let χ= χN : µN (R)→ Q̄×` be the faithful character defined in the previous section and let
e(a, i), with i= 1, . . . , n, a= 1, . . . , r + 1, and f(k), with k = 1, . . . , r, be integers such
that

χa,i = χe(a,i) and ρk = χf(k).

In the product space Gm,R × A(n, r + 1)R, consider the hypersurface Hyp given by the
equation

Y N =
(∏
a,i

(Xa − Ti)e(a,i)
)( ∏

k=1,...,r

(Xk+1 −Xk)f(k)

)
,

and let

π : Hyp→ A1
SN,n,`

\{T1, . . . , Tn},
(Y, T1, . . . , Tn, X1, . . . , Xr+1) 7→ (T1, . . . , Tn, Xr+1).

The group µN (R) acts on Hyp by permuting Y alone, inducing an action of µN (R) on
Rrπ!(Q̄`). Then the sheaf K is isomorphic to the χ-component (Rrπ!Q̄`)χ of Rrπ!(Q̄`).

(iii) For a= 1, . . . , r + 1, let

Fa = Fa(Xa) :=
⊗

i=1,...,n

Lχa,i(Xa−Ti) ∈ Lisse(N, n, `).

Let

H0 := F1,

H1 := F2 ⊗MCρ1(H0),
...

Hr := Fr+1 ⊗MCρr(Hr−1).

Then K=r =Hr.
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2.4 Motivic interpretation for rigid G2-sheaves
Let ε : π1(Gm,R)→ µN (R) be the surjective homomorphism of § 2.1. By composition with ε, every
character χ : µN (R)→ Q̄×` gives rise to a character of π1(Gm,R), again denoted by χ. For a sheaf
K ∈ Lisse(N, n, `) which is mixed of integral weights in [0, r], let W r(K) denote the weight-r
quotient of K.

Theorem 2.4.1. Let ϕ, η and H(ϕ, η) be as in Theorem 1.3.1. Let N denote the least common
multiple of 2 and the orders of ϕ, η. Further, let χ= χN : µN (R)→ Q̄×` be the character of
order N which is defined in § 2.1, and let n1 and n2 be integers such that

ϕ= χn1
k and η = χn2

k for n1, n2 ∈ Z,

where χk is the restriction of χ to Gm,k. Let Hyp = Hyp(n1, n2) denote the hypersurface in
Gm,R × A(2, 6 + 1)R defined by the equation

Y N =
( ∏

16a67;16i62

(Xa − Ti)e(a,i)
)( ∏

16k66

(Xk+1 −Xk)f(k)

)
,

where the numbers e(a, i) and the f(k) are as given in the following two tables.

e(1, 1) e(2, 1) e(3, 1) e(4, 1) e(5, 1) e(6, 1) e(7, 1)
N
2 0 N

2 0 N
2 0 N

2

e(1, 2) e(2, 2) e(3, 2) e(4, 2) e(5, 2) e(6, 2) e(7, 2)
N
2 + n1 + n2

N
2 − n1 0 N

2 + n1 − n2 0 N
2 − n1 0

f(1) f(2) f(3) f(4) f(5) f(6)
N
2 − n1 − 2n2

N
2 + n1 + 2n2

N
2 − n1 − n2

N
2 + n1 + n2

N
2 − n1

N
2 + n1

Let

π = π(n1, n2) : Hyp(n1, n2)→ A1
SN,n,`

\{T1, T2}
be given by (Y, T1, T2, X1, . . . , X7) 7→ (T1, T2, X7). Then the higher direct image sheaf
W 6[(R6π!Q̄`)χ] is contained in Lisse(N, n, `). Moreover, for any algebraically closed field k whose
characteristic does not divide `N, one has an isomorphism

H(ϕ, η)|A1
k\{α1,α2} = (W 6[(R6π!Q̄`)χ])|A1

k\{α1,α2}.

Proof. This is just a restatement of Theorem 2.3.1 in the setting of Theorem 1.3.1. The last
formula follows from (2.2.1) and Theorem 2.3.1(iii). 2

We now turn to the special case where n1 = n2 = 0, N = 2, α1 = 0 and α2 = 1. In this case,
the higher direct image sheaves which occur in Theorem 2.4.1 can be expressed in terms of the
cohomology of a smooth and proper map of schemes over Q. This will be crucial in the next
section.

Corollary 2.4.2. Let N = 2 and n1 = n2 = 0, and let

Hyp = Hyp(0, 0)⊆Gm,R × A(2, 6 + 1)R

be the associated hypersurface equipped with the structural morphism π = π(0, 0) : Hyp→
A1
S\{T1, T2}. Let πQ : HypQ→ A1

Q\{0, 1} denote the base-change of π induced by T1 7→ 0 and
T2 7→ 1. Then the following hold.
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(i) There exist a smooth and projective scheme X over A1
Q\{0, 1} and an open embedding of

j : HypQ→X such that

D =X\HypQ =
⋃
i∈I

Di

is a strict normal crossings divisor over A1\{0, 1}. The involutory automorphism σ of Hyp
(given by Y 7→ −Y ) extends to an automorphism σ of X.

(ii) Let
∐
i∈I Di denote the disjoint union of the components of D, and let

πX :X → A1
Q\{0, 1} and π∐Di :

∐
i∈I

Di→ A1
Q\{0, 1}

denote the structural morphisms. Let G :=W 6[(R6π!Q̄`)χ]|A1
Q\{0,1}

. Then

G 'Π[ker(R6(πX)∗(Q̄`)→R6(π∐Di)∗(Q̄`))],

where Π denotes the formal sum (σ − 1)/2.

Proof. Let ∆⊆ A7
X1,...,X7

be the divisor defined by the vanishing of

6∏
i=1

(Xi+1 −Xi)
7∏
i=1

Xi

7∏
i=1

(Xi − 1). (2.4.1)

Let S = A1
X7
\{0, 1} and let P6

S := P6
X0,...,X6

× S. Consider the embedding

A7 −→ P6
S , (x1, . . . , x7) 7−→ ([1 : x1 : · · · : x6], x7).

Let
L := P6

S\(A7\∆) =
⋃
i

Li,

where the Li are the irreducible components of L. By Theorem 2.4.1, the hypersurface HypQ ⊆
Gm × (A7\∆) is an unramified double cover of A7\∆ defined by

Y 2 =
6∏
i=1

(Xi+1 −Xi)
∏

i=1,3,5,7

Xi

∏
i=1,2,4,6

(Xi − 1). (2.4.2)

Consider the embedding

Gm × (A7\∆) −→ P1 × P6
S , (y, x1, . . . , x7) 7−→ ([1, y], [1 : x1 : · · · : x6], x7)

and view Hyp as a subscheme of P1 × P6
S via this embedding. Let X ⊆ P1 × P6

S be the Zariski
closure of Hyp. By projecting onto P6

S , we obtain a ramified double cover α :X → P6
S . The

singularities of X are situated over the singularities of the ramification locus R of α :X → P6
S ,

which is a subdivisor of L by (2.4.2).
There is a standard resolution of any linear hyperplane arrangement L=

⋃
i Li ⊆ Pn that is

given in [ESV92, § 2]. By this we mean a birational map τ : P̃n→ Pn which factors into several
blow-ups and which has the following properties: the inverse image of L under τ is a strict
normal crossings divisor in P̃n, and the strict transform of L is non-singular (see [ESV92, Claim
in § 2]). The standard resolution depends only on the combinatorial intersection behaviour of the
irreducible components Li of L; therefore it can be defined for locally trivial families of hyperplane
arrangements.

In our case, we obtain a birational map τ : P̃6
S → P6

S such that L̃ := τ−1(L) is a relative
strict normal crossings divisor over S and such that the strict transform of L is smooth over S.
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Let α̃ : X̃ → P̃6
S denote the pullback of the double cover α along τ , and let R̃ be the ramification

divisor of α̃. Then R̃ is a relative strict normal crossings divisor since it is contained in L̃. Write
R̃ as a union

⋃
k R̃k of irreducible components. By successively blowing up the (strict transforms

of the) intersection loci R̃k1 ∩ R̃k2 with k1 < k2, one ends up with a birational map f̂ : P̂6
S → P̃6

S .

Let α̂ :X → P̂6
S denote the pullback of the double cover α̃ along f̂ . Then the strict transform

of R̃ in P̂6
S is a disjoint union of smooth components. Moreover, since R̃ is a normal crossings

divisor, the exceptional divisor of the map f̂ has no components in common with the ramification
locus of α̂. It follows that the double cover α̂ :X → P̂6

S is smooth over S and that D =X\Hyp
is a strict normal crossings divisor over S. This desingularization is obviously equivariant with
respect to σ, which finishes the proof of assertion (i).

Let πX :X → S denote the structural map (the composition of α̂ :X → P̂6
S with the natural

map P̂6
S → S). There exists an n ∈ N such that the morphism πX extends to a morphism XA→

A1
A\{0, 1} of schemes over A := Z[1/(2n)]. We assume that n is big enough that DA :=XA\HypA

is a normal crossings divisor over A1
A\{0, 1}. In the following, we shall mostly omit the subscript A

but will tacitly work in the category of schemes over A (making use of the fact that A is
finitely generated over Z, so as to be able to apply Deligne’s results on the Weil conjectures).
Let πD :D→ A1\{0, 1} and πHyp : Hyp→ A1\{0, 1} be the structural morphisms. The excision
sequence gives an exact sequence of sheaves

R5(πD)∗(Q̄`)→R6(πHyp)!(Q̄`)→R6(πX)∗(Q̄`)→R6(πD)∗(Q̄`)→R7(πHyp)!(Q̄`). (2.4.3)

By exactness and the work of Deligne (see [Del80]), the kernel of the map R6(πHyp)!(Q̄`)→
R6(πX)∗(Q̄`) is an integral constructible sheaf which is mixed of weights less than or equal to 5.
Since the mixed weights of Rnπ!Q̄` (respectively, Rnπ∗Q̄`) are at most (respectively, at least) n
by [Del80], the exact sequence in (2.4.3) implies an isomorphism

W 6(R6(πHyp)!(Q̄`)) −→ im(R6(πHyp)!(Q̄`)→R6(πX)∗(Q̄`)). (2.4.4)

By the exactness of (2.4.3) and functoriality, one thus obtains the following chain of
isomorphisms:

W 6(R6(πHyp)!(Q̄`))χ ' im(R6(πHyp)!(Q̄`)→R6(πX)∗(Q̄`))χ

' ker(R6(πX)∗(Q̄`)→R6(πD)∗(Q̄`))χ, (2.4.5)

where the superscript χ stands for the χ-component of the higher direct image in the sense of
Theorem 2.3.1 (the notion extends in an obvious way to X and to D).

We claim that the natural map

ker(R6(πX)∗(Q̄`)→R6(πD)∗(Q̄`))χ −→ ker(R6(πX)∗(Q̄`)→R6(π∐
i DA,i

)∗(Q̄`))χ (2.4.6)

is an isomorphism. To show this, we argue as follows. Since the sheaf W 6(R6(πHyp)!(Q̄`))χ is
lisse (see Theorem 2.4.1), the isomorphisms given in (2.4.5) imply that

ker(R6(πX)∗(Q̄`)→R6(πD)∗(Q̄`))χ

is lisse. It follows from proper base change that

ker(R6(πX)∗(Q̄`)→R6(π∐
i DA,i

)∗(Q̄`))χ

is lisse. Thus, by the specialization theorem (see [Kat90, 8.18.2]), in order to prove that the map
in (2.4.6) is an isomorphism it suffices to verify this for any closed geometric point s̄ of Hyp.
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In view of (2.4.5), we thus have to show that

W 6(H6
c (Hyps̄, Q̄`))χ ' ker

(
H6(Xs̄, Q̄`)→H6

(∐
i

Ds̄,i, Q̄`

))χ
. (2.4.7)

It is proved in [Kat96, § 9.4.3] that the Leray spectral sequence

Ep,q2 =Hp(Xs̄, R
qj∗Q̄`)⇒Hp+q(Hyps̄, Q̄`)

for the inclusion map j∗ : Hyps̄→Xs̄ degenerates at 3. Together with the fact that d2 has bidegree
(2,−1), this implies that

W 6(H6(Hyps̄, Q̄`)) = E6,0
3 = E6,0

2 /E4,1
2

= H6(Xs̄, Q̄`)/im(H4(Xs̄, R
1j∗Q̄`))

= H6(Xs̄, Q̄`)/im
(
H4

(∐
i

Ds̄,i, Q̄`(−1)
))

,

where in the last equality we have used R1j∗Q̄` =
⊕

i Q̄`(−1)|(Di)s̄ by purity (cf. [Gro72/73] and
[Kat96, § 9.4.3]). Taking duals under Poincaré duality, we obtain

W 6(H6
c (Hyps̄, Q̄`))' ker

(
H6(Xs̄, Q̄`)→H6

(∐
i

Ds̄,i, Q̄`

))
,

which implies (2.4.7) upon taking χ-parts. Hence the map in (2.4.6) is an isomorphism as claimed.
So,

W 6(R6πHypA∗(Q̄`))χ ' ker(R6(πXA)∗(Q̄`)→R6π∐
i∈I DA,i∗(Q̄`))χ

= Π(ker(R6(πXA)∗(Q̄`)→R6(π∐
i∈I DA,i

)∗(Q̄`))),

where the last equality can be seen to be a tautology using the representation theory of finite
(cyclic) groups. It follows that

G =W 6(R6(πHyp)!(Q̄`))χ|A1
Q\{0,1}

'Π(ker(R6(πX)∗(Q̄`)→R6(π∐Di)∗(Q̄`))),

as claimed. 2

3. Relative motives with motivic Galois group G2

3.1 Preliminaries on motives
For an introduction to the theory of motives, including the basic definitions and properties, we
refer the reader to the book of André [And04]. Let K and E denote fields of characteristic
zero. Let VK denote the category of smooth and projective varieties over K. If X ∈ VK is
purely d-dimensional, we denote by Corr0(X, X)E the E-algebra of codimension-d cycles in
X ×X, modulo homological equivalence (the multiplication is given by the usual composition
of correspondences). This notion extends by additivity to an arbitrary object X ∈ VK .
A Grothendieck motive with values in E is then a triple M = (X, p, m) where X ∈ VK , m ∈ Z,
and p ∈ Corr0(X, X)E is idempotent. To any X ∈ VK one can associate a motive h(X) =
(X,∆(X), 0), called the motive of X, where ∆(X)⊆X ×X denotes the diagonal.

One also has the theory of motives for motivated cycles due to André [And96], where the
ring of correspondences Corr0(X, X)E is replaced by a larger ring Corr0

mot(X, X)E of motivated
cycles by adjoining a certain homological cycle (the Lefschetz involution) to Corr0(X, X)E
(see [And96, And04]).
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The formal definition of a motivated cycle is as follows. For X, Y ∈ VK , let prXYX denote the
projection X × Y →X. Then a motivated cycle is an element (prXYX )∗(α ∪ ∗XY (β)) ∈H∗(X)
where α and β are E-linear combinations of algebraic cycles on X × Y and ∗XY is the Lefschetz
involution on H∗(X × Y ) relative to the class of line bundles ηX×Y = [X]⊗ ηY + ηX ⊗ [Y ] (with
ηX and ηY being classes of arbitrary ample line bundles LX and LY in H2(X) and H2(Y ),
respectively). Define Corr0

mot(X, X)E to be the ring of the motivated codimension-d cycles,
in analogy to Corr0(X, X)E . A motive for motivated cycles with values in E is then a triple
M = (X, p, m) where X ∈ VK , m ∈ Z, and p ∈ Corr0

mot(X, X)E is idempotent with respect to
the composition of motivated cycles.

The category of motivated cycles is a neutral Tannakian category [And96, § 4]. Thus, by
the Tannakian formalism (see [Del90]), every motive for motivated cycles M with values in E
has attached to it an algebraic group GM over E, called the motivic Galois group of M.
Similarly, granting Grothendieck’s standard conjectures, the category of motives has the structure
of a Tannakian category. Thus, by the Tannakian formalism and by assuming the standard
conjectures, every motive in the Grothendieck sense M has attached to it an algebraic group G̃M ,
called the motivic Galois group of M. The following lemma and subsequent remark were
communicated to the authors by André.

Lemma 3.1.1. Let M = (X, p, n) be a motive for motivated cycles with motivic Galois
group GM . Assume that Grothendieck’s standard conjectures hold. Then the motive M is defined
by algebraic cycles, and the motivic Galois group G̃M in the Grothendieck sense coincides with
the motivic Galois group GM of motives for motivated cycles.

Proof. The first assertion follows from the fact that the standard conjectures predict the
algebraicity of the Lefschetz involution in the auxiliary spaces X ×X × Y that are used to
define the projector p (see [Saa72]). The second assertion is a consequence of the following
interpretation of GM (and of G̃M ). The motivic Galois group for motivated cycles GM is the
stabilizer of all motivated cycles which appear in the realizations of all submotives of the mixed
tensors M⊗n ⊗ (M∗)⊗n, where M∗ denotes the dual of M (this can be seen using the arguments
in [And04, § 6.3]). Similarly, under the assumption of the standard conjectures, the motivic Galois
group G̃M is the stabilizer of all algebraic cycles which appear in the realizations of submotives of
the mixed tensors of M ; see [And04, § 6.3]. Under the standard conjectures these spaces coincide,
so GM = G̃M . 2

Remark 3.1.2. The above lemma can be strengthened or expanded as follows. It is possible to
define unconditionally and purely in terms of algebraic cycles a group which, under the standard
conjectures, will indeed be the motivic Galois group of the motive X = (X, Id, 0), where X is a
smooth projective variety. Specifically, let Galg

X be the closed subgroup of
∏
i GL(H i(X))×Gm

that fixes the classes of algebraic cycles on powers of X (viewed as elements of H(X)⊗n ⊗Q(r),
with the factor Gm acting on Q(1) by homotheties). Then the motivic Galois group GX is
related to Galg

X by (cf. [And04, 9.1.3]) GX = im(Galg
X×Y →Galg

X ) for a suitable projective smooth
variety Y . Under the standard conjectures, one may take Y to be a point.

3.2 Results on families of motives
It is often useful to consider variations of motives over a base. Suppose that one is given the
following data:

(i) a smooth and geometrically connected variety S over a field K ⊆ C;
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(ii) smooth and projective S-schemes X and Y of relative dimensions dX and dY , respectively,
equipped with invertible ample line bundles LX and LY , with ∗ denoting the Lefschetz
involution relative to [(LX/S)s]⊗ [Ys] + [Xs]⊗ [(LY/S)s];

(iii) two Q-linear combinations Z1 and Z2 of integral codimension-(dX + dY ) subvarieties in
X ×S X ×S Y which are flat over S and such that for one (and thus for all) s ∈ S(C), the
class

ps := (prXs×Xs×YsXs×Xs )∗([(Z1)s] ∪ ∗[(Z2)s]) ∈H2dX (Xs ×Xs)(dx)⊆ End(H∗(Xs))

satisfies ps ◦ ps = ps.

(iv) an integer j.

Then the assignment s 7→ (Xs, ps, j), s ∈ S(C), defines a family of motives in the sense of [And96,
§ 5.2]. The following result is due to André (see [And96, Theorem 5.2 and § 5.3]).

Theorem 3.2.1. Let s 7→ (Xs, ps, j), s ∈ S(C), be a family of motives with coefficients in E,
and let HE(Ms) := ps(H∗B(Xs, E)(j)) be the E-realization of Ms, where H∗B(Xs, E) denotes the
singular cohomology ring of Xs(C). Then there exists a meagre subset Exc⊆ S(C) and a local
system of algebraic groups Gs 6Aut(HE(Ms)) on S(C) such that the following hold.

(i) GMs ⊆Gs for all s ∈ S(C).

(ii) GMs =Gs if and only if s /∈ Exc.

(iii) Gs contains the image of a subgroup of finite index of πtop
1 (S(C), s).

(iv) Let g′s denote the Lie algebra of Gs, and let hs denote the Lie algebra of the Zariski closure
of the image of πtop

1 (S(C), s). Then the Lie algebra hs is an ideal in g′s.

Moreover, if S is an open subscheme of Pn which is defined over a number field K, then
Exc ∩ Pn(K) is a thin subset of Pn(K) (thin in the sense of [Ser89]).

3.3 Motives with motivic Galois group G2

An algebraic group G defined over a subfield of Q̄` is said to be of type G2 if the group of
Q̄`-points G(Q̄`) is isomorphic to the simple exceptional algebraic group G2(Q̄`) (see [Bor91] for
the definition of the algebraic group G2). It is the aim of this section to prove the existence of
motives for motivated cycles having a motivic Galois group of type G2.

We start with the situation of Corollary 2.4.2. Let S := A1
Q\{0, 1}, let πQ : HypQ→ S be as

in Corollary 2.4.2, and let πX :X → S be the strict normal crossings compactification of Hyp
given by Corollary 2.4.2. Let

G 'Π[ker(R6(πX)∗(Q̄`)→R6(π∐Di)∗(Q̄`))] (3.3.1)

be as in Corollary 2.4.2, where the Di are the components of the normal crossings divisor
D =X\Hyp over S. We want to use the right-hand side of this isomorphism to define a family
of motives (Ns)s∈S(C) for motivated cycles such that the Q̄`-realization of Ns coincides naturally
with the stalk Gs of G. This is done in three steps.

• Let

ψ∗s :H∗(Xs, Q̄`) −→ H∗
(∐

i

Ds,i, Q̄`

)
be the map induced by the tautological map ψs :=

∐
i Ds,i→Xs. Let Γψs ∈

Corr0
mot(Xs,

∐
i Ds,i)Q be the graph of ψs. Note that Γψs can be viewed as a morphism
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of motives

Γψs = ψ∗s : h(Xs) −→ h

(∐
i

Ds,i

)
.

Since the category of motives for motivated cycles is abelian (see [And96, § 4]), there exists
a kernel motive

Ks = (Xs, ps, 0), ps ∈ Corr0
mot(Xs, Xs)Q,

of the morphism ψ∗s such that

ps(H∗(Xs, Q̄`)) = ker
(
H∗(Xs, Q̄`)→H∗

(∐
i

Ds,i, Q̄`

))
.

• The Künneth projector π6
Xs

:H∗(Xs)→H i(Xs) is also contained in Corr0
mot(Xs, Xs)Q

(see [And96, Proposition 2.2]).

• Let Πs denote the following projector in Corr0
mot(Xs, Xs)Q :

Πs := 1
2(∆(Xs)− Γσs),

where ∆(Xs)⊆Xs ×Xs denotes the diagonal of Xs and Γσs 6Xs ×Xs denotes the graph
of σs. By construction, the action of Πs on H6(Xs) is the same as the action induced by
the idempotent Π = (1− σ)/2 which occurs in Corollary 2.4.2.

By (3.3.1) one has

Gs = Π
[
ker
(
H6(Xs, Q̄`)→H6

(∐
i

Ds,i, Q̄`

))]
∀s ∈ S(C).

Thus, by combining the above arguments, one sees that the stalk Gs is the Q̄`-realization HQ̄`(Ns)
of the motives

Ns := (Xs,Πs · ps · π6
Xs , 0) with Πs · ps · π6

Xs ∈ Corr0
mot(Xs, Xs)Q.

We set

Ms :=Ns(3) = (Xs,Πs · ps · π6
Xs , 3).

Theorem 3.3.1. The motives Ms, s ∈ S(C), form a family of motives such that for any s ∈ S(Q)
outside a thin set, the motive Ms has a motivic Galois group of type G2.

Proof. That the motives (Ns)s∈S(C) form a family of motives (in the sense of § 3.2) can be
seen from the following arguments. Let Γσ ⊆X ×S X be the graph of the automorphism σ
and let ∆(X)⊆X ×S X be the diagonal. By Corollary 2.4.2, the projectors Πs arise from the
Q-linear combination of schemes (∆(X)− Γσ)/2 over S via base change to s. The Künneth
projector π6

Xs
∈ Corr0

mot(Xs, Xs) is invariant under the action of π1(S). It therefore follows
from the theorem of the fixed part, as in [And96, § 5.1], that π6

Xs
arises from the restriction

of the Künneth projector π6
X̄
, where X̄ denotes a normal crossings compactification over Q of

the morphism πX :X → S (which exists by [Hir64]). By [And96, Proposition 2.2], the projector
π6
X̄

is a motivated cycle. Since this cycle gives rise to the Künneth projector π6
Xs

on one fibre
via restriction, we can use the local triviality of the family X/S to show that the restriction of
π6
X̄
∈ Corr0(X̄ × X̄) to X ×S X gives rise to a family of motives (Xs, π

6
Xs
, 0). A similar argument

applies to the projectors ps. Therefore the motives Ms =Ns(3), s ∈ S(C), indeed form a family
of motives.
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Let Gan be the local system on S(C) defined by the composition of the natural map
πtop

1 (S(C), s)→ π1(S, s) with the monodromy representation of G. By the comparison
isomorphism between singular and étale cohomology, the local system Gan coincides with the
local system which is defined by the singular Q̄`-realizations HQ̄`(Ns) of the above family
(Ns)s∈S(C). It follows from Theorem 2.4.1 that G|A1

C\{0,1}
'H(1, 1)|A1

C\{0,1}
, whereH(1, 1) is as in

Theorem 1.3.1. It then follows from Theorem 1.3.1(i) that the image of πtop
1 (S(C), s) 6 π1(S, s)

in Aut(HQ̄`(Ns))'GL7(Q̄`) under the monodromy map is Zariski dense in the group G2(Q̄`).
Since the algebraic group G2 is connected, the Zariski closure of the image of every subgroup of
finite index of πtop

1 (S(C)) coincides also with G2(Q̄`).

By Theorem 3.2.1(i) and (ii), and the fact that S is open in P1, there exists a local
system (Gs)s∈S(C) of algebraic groups with Gs 6Aut(HQ̄`(Ms)) such that the motivic Galois
group GMs is contained in Gs and there exists a thin subset Exc⊆Q such that if s ∈Q\Exc,
then Gs =GMs . By Theorem 3.2.1(iii), Gs contains a subgroup of finite index of the image
of π1(S(C), s). Thus, by what was said above, the group Gs contains the group G2 for all
s ∈ S(C). Let g2 denote the Lie algebra of the group G2. Let g′s denote the Lie algebra of the
group Gs. By Theorem 3.2.1(iv), the Lie algebra g2 is an ideal of g′s. From this and the fact
that NGL7(G2) = Gm ×G2 (where Gm denotes the subgroup of scalars of GL7), it follows that
GNs 6Gm ×G2 for all s ∈ S(C). The representation ρNs of GNs , which belongs to the motive
Ns under the Tannaka correspondence, is therefore a tensor product χ⊗ ρ where χ :GNs →Gm

is a character and ρ :GNs →GL7 has values in G2 6GL7. Let As denote the dual of the motive
which belongs to χ under the Tannaka correspondence. Then GNs⊗As =G2 for all s ∈Q\Exc.

We claim that for s ∈Q\Exc, the motive As is the motive (Spec(s), Id, 3). The Galois
representation which is associated to the motive Ns is equivalent to that of the stalk of G
at s (viewed as a Q̄-point) and is therefore pure of weight 6. By [KW03, Theorem 3.1], any
rank-one motive over Q is a Tate twist of an Artin motive. Therefore, the `-adic realization of
any rank-one motive over Q is a power of the cyclotomic character with a finite character. For
GNs⊗As to be contained in G2, the `-adic realization of As has to be of the form ε⊗ χ3

` , where ε
is of order at most 2. But if the order of ε is equal to 2, we derive a contradiction to Theorem A.1
in the appendix. It follows that As is the motive (Spec(s), Id, 3) and that the motivic Galois
group of Ms =Ns ⊗As =Ns(3) is of type G2. 2

Remark 3.3.2. Under the hypothesis of the standard conjectures, Theorem 3.3.1 and
Lemma 3.1.1 imply the existence of Grothendieck motives whose motivic Galois group is of
type G2. Moreover, it follows from Remark 3.1.2 that, independent of the standard conjectures,
there is a projective smooth variety X over Q such that the group Galg

X (which is defined in
Remark 3.1.2) has a quotient G2.
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Appendix. On Galois representations with

values in G2

Michael Dettweiler and Nicholas M. Katz

Let ` be a prime and let H(1, 1) be the cohomologically rigid Q̄`-sheaf on A1
Q̄ of rank 7

which is given in Theorem 1.3.1 of the main article (whose notation we adopt in this appendix).
The restriction of H(1, 1) to A1

Q̄\{0, 1} is a lisse Q̄`-sheaf whose monodromy is dense in the
exceptional algebraic group G2(Q̄`) and whose local monodromy at 0, 1 and ∞ is of type

13 ⊕ (−1)4, U(2)2 ⊕U(3) and U(7), respectively. (A.1)

By [Kat96, Theorem 5.5.4], there exists a lisse Q`-sheaf G` on S` := A1
R`
\{0, 1}(R` = Z[1/2`])

which, after the base change R`→ Q̄ and the extension of scalars Q`→ Q̄` on the coefficients,
becomes the restriction of H(1, 1) to A1

Q̄\{0, 1}. (The construction of G` is given below.) The
monodromy representation of the Tate twisted sheaf G`(3) is denoted by

ρ` : π1(S`) −→ GL7(Q`).

Let s0 ∈ S`(Q). The morphism s0→ S` induces a homomorphism α : π1(s0, s̄0)→ π1(S`, s̄0).
Since π1(s0, s̄0) is isomorphic to Gal(Q̄/Q), we can view α as a homomorphism Gal(Q̄/Q)→
π1(S`, s̄0). The specialization of ρ` to s0 is then defined as the composition

ρs0` := ρ` ◦ α : Gal(Q̄/Q) −→ GL7(Q`).

Indeed, we may view s0 as a point of S` with values in the ring Z[1/(2`)][s0, 1/s0, 1/(s0 − 1)], so
that ρs0` is in fact unramified except possibly at 2, ` and those primes p such that either s0 or
s0 − 1 fails to be a p-adic unit. Our main result is the following theorem.

Theorem A.1.

(i) The representation ρ` has values in G2(Q`).
(ii) Let a and b be two coprime integers which each have an odd prime divisor that is different

from `, and let s0 := 1 + a/b. Then the image of ρs0` is Zariski dense in G2(Q`).

For s0 ∈ S`(Q), let Ms0 be the motive for motivated cycles which appears in Theorem 3.3.1.
By construction, the above Galois representation ρs0` is the Galois representation of Gal(Q̄/Q)
on the `-adic realization of the motive Ms0 (see the proof of Corollary A.2). As a corollary of
Theorem A.1, we find an explicit way of obtaining motives with motivic Galois group of type G2.

Corollary A.2.

(i) Let s0 = 1 + a/b be as in Theorem A.1. Then the motive for motivated cycles Ms0 has a
motivic Galois group of type G2.

(ii) Let (a, b) and (a′, b′) be pairs of squarefree odd coprime integers, each greater than or equal
to 3, such that (a, b) 6= (a′, b′). Let s0 = 1 + a/b and s′0 = 1 + a′/b′. For any prime ` not

dividing the product aba′b′, the `-adic representations ρs0` and ρ
s′
0
` are not isomorphic. In

particular, the motives Ms0 and Ms′
0

are not isomorphic.
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(iii) There exist infinitely many non-isomorphic motives Ms0 whose motivic Galois group is of
type G2.

The proofs of Theorem A.1 and Corollary A.2 are given below. First let us recall the
construction of G`. The group µ2(R`) of the second roots of unity of R` = Z[1/(2`)] acts on
the étale covers f1 and f2 of S` = A1

R`
\{0, 1} defined by the equations y2 = x and y2 = x− 1,

respectively. The covers f1 and f2 therefore define surjections

ηi : π1(S`) −→ µ2(R`) for i= 1, 2.

The composition of the embedding χ : µ2(R`)→Q` with ηi, for i= 1, 2, defines lisse Q`-sheaves
Lχ(x) and Lχ(x−1) on S`. Let j : S`→ A1

R`
denote the tautological inclusion, and let

F3 = F5 = F7 := j∗(Lχ(x)) and F2 = F4 = F6 := j∗(Lχ(x−1)).

Let H0 := j∗(Lχ(x) ⊗ Lχ(x−1)) and define inductively

Hi := j∗(Fi+1 ⊗ j∗(MCχ(Hi−1))) for i= 1, . . . , 6, (A.2)

where MCχ(Hi) is as defined in [Kat96, § 4.3] (see also Remark A.5 below). We remark that on
each geometric fibre S̄` of S`, one has

MCχ(Hi−1)|S̄` = MCχ(Hi−1|S̄`), (A.3)

where MCχ on the right-hand side is the middle convolution functor defined in [Kat96, ch. 5],
(or in § 1.1 of the main part of this article). We then define G` to be the lisse sheaf H6|S` . It
follows from the construction of H(1, 1) in the proof of Theorem 1.3.1 and from formula (A.3)
that

(G` ⊗ Q̄`)|A1
Q̄\{0,1}

=H(1, 1)|A1
Q̄\{0,1}

. (A.4)

Remark A.3. By [Kat96, 5.5.4 part (3)], the weight of G` is equal to 6, which implies that
the Tate twist G`(3) has weight zero. By [Kat96, 5.5.4 part (2)], the restriction of H6 to any
geometric fibre is irreducible and cohomologically rigid of the same type of local monodromy.
Moreover, by the specialization theorem (see [Kat96, 4.2.4]), the geometric monodromy group
(of the restriction of G`) on any geometric fibre of S` is also Zariski dense in G2.

Proposition A.4. Let s0 be a rational number that is not 0 or 1, and let p be an odd prime
number different from `. Then the following hold.

(i) If ordp(s0)< 0, then the restriction of ρs0` to the inertia subgroup Ip 6Gal(Q̄/Q) at p factors

through the tame inertia group at p, Itame
p

∼= Ẑ(not p)(1), and is an indecomposable unipotent
block of length 7.

(ii) If ordp(s0 − 1)> 0, then the restriction of ρs0` to Ip factors through the tame inertia group

Itame
p

∼= Ẑ(not p)(1) and is the direct sum of an indecomposable unipotent block of length 3
and of two indecomposable unipotent blocks of length 2.

(iii) If ordp(s0)> 0, then Ip acts tamely, by automorphisms of order at most 2.

(iv) If both s0 and s0 − 1 are p-adic units, then Ip acts trivially.

Proof of Proposition A.4. We first prove (i). Let Wp denote the ring of Witt vectors of an
algebraic closure of Fp. Let t be the standard parameter on A1

R`
, let z := 1/t denote the parameter

at infinity, and consider the formal punctured disc ∆p := Spec (Wp[[z]][1/z]). Since Spec (Wp) is
simply connected, one knows that π1(∆p) is the group Ẑ(not p)(1) (this follows from Abhyankar’s
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lemma; see [Kat80, Example on p. 120]). In more concrete terms, all finite connected étale covers
of ∆p are obtained by taking the Nth root of z for some N prime to p. We can read the effect of a
topological generator of this group in our representation after extension of scalars from Wp to the
complex numbers, so we know that a topological generator gives a single unipotent block of size 7
(since this is the local monodromy of G` around ∞ on every geometric fibre of S` over R`). If
we specialize z to a non-zero point z0 (here 1/s0) in the maximal ideal pWp of Wp, the resulting
ring homomorphism Wp[[z]][1/z]→Kp := Frac(Wp) induces a homomorphism of fundamental
groups Ip→ π1(∆p), which, in view of Abhyankar’s lemma, factors through Itame

p
∼= Ẑ(not p)(1).

Identifying both source and target of this map Itame
p → π1(∆p) with the group Ẑ(not p)(1), we

see that this map is non-zero (simply because in Wp, z0 does not have an Nth root for any
N not dividing ordp(z0)). So after pullback to such a point, the specialized representation of
Itame
p remains unipotent and indecomposable (because in characteristic zero, if A is a unipotent

automorphism of a finite-dimensional vector space, then A and any non-zero power of A have the
same Jordan decomposition). To prove (ii) and (iii), we repeat these arguments, but now with z
taken to be t− 1 and t, respectively, and using the fact that for our sheaf G`, local monodromy
around 1 (respectively, around 0) is unipotent of the asserted shape (respectively, involutory).
Assertion (iv) was already noted at the beginning of the appendix. 2

Proof of Theorem A.1. For fields of cohomological dimension less than or equal to 2 (and hence
for `-adic fields), it is known that there exists only one form of the algebraic group G2, namely
the split form (see [Kne65, Ser95]). It therefore follows from Theorem 1.3.1 and formula (A.4)
that the geometric monodromy of G`(3) is Zariski dense in the group G2(Q`). Poincaré duality,
applied in each step of the convolution construction of G` given in (A.2), implies that the sheaf
G`(3) is orthogonally self-dual and hence that ρ` respects a non-degenerate orthogonal form. The
normalizer of G2(Q`) in the orthogonal group O7(Q`) consists of the scalars 〈±1〉 only. Since
the representation ρ` has degree 7, it follows that there exists a character ε` : π1(S`)→ 〈±1〉 such
that ρ` ⊗ ε` has values in G2(Q`).

We have to show that ε` is trivial. To do this, we argue as follows. Because on each fibre
the geometric monodromy group is G2 by Remark A.3, the character ε` is actually a character
of π1(Z[1/(2`)]). As ` varies, the characters ε` form a compatible system (this follows from the
compatibility of ρ` which, in turn, comes from the compatibility of MCχ proved in [Kat96,
5.5.4(4)]). So, taking ` to be 2, one sees that ε` is a quadratic character whose conductor is a
power of 2. Given the structure of 2-adic units as the product of 〈±1〉 with the pro-cyclic group
1 + 4Z2, one can see that any homomorphism from this group to 〈±1〉 actually factors through
the units modulo 8. Therefore it suffices to show that for p in a set of primes whose reduction
modulo 8 meets each non-trivial class of units mod 8, and for one t ∈ Fp\{0, 1}), the Frobenius
element ρ`(Frobp,t) is contained in G2(Q`).

Since the weight of ρ` is 0 by Remark A.3, the eigenvalues of ρ`(Frobp,t) (with p 6= 2, `) are Weil
numbers of complex absolute value equal to 1. Moreover, any Frobenius element is contained
in either G2(Q2) or the coset −G2(Q`). Since any semi-simple element in G2(Q̄`) 6GL7(Q̄`)
is conjugate to a diagonal matrix of the form diag(x, y, xy, 1, (xy)−1, y−1, x−1), it follows (from
elementary arguments on trigonometric functions) that the trace of ρ`(Frobp,t) lies in the interval
[−2, 7] if ρ`(Frobp,t) is contained in G2(Q`), or in the interval [−7, 2] if ρ`(Frobp,t) is contained in
−G2(Q`). By compatibility and the discussion above, it therefore suffices to show that for p
in a set of primes whose reduction modulo 8 meets each non-trivial class of units mod 8
and for some t ∈ Fp\{0, 1}, the trace of ρ`(Frobp,t) lies in the left open interval ]2, 7] if p 6= `.
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Using the computer system Mathematica, the authors have checked that, in fact, for the primes
p= 137, 139, 149 and 151, the trace of some ρ`(Frobp,t) is contained in ]2, 7] if ` 6= p. (Details of
the actual computation are discussed in Remark A.5 below.) This implies that ε` is trivial for
all primes `, proving the first assertion of the theorem.

By Scholl [Sch06, Proposition 3], a pure `-adic Galois representation ρ` of Gal(Q/Q) is
irreducible if the following conditions are satisfied: there exists a prime p 6= ` and an open
subgroup I 6 Ip such that the restriction of ρ` to I is unipotent and indecomposable, and the
restriction of ρ to Gal(Q`/Q`) is Hodge–Tate. By Proposition A.4(i) and the assumption on
s0 = 1 + a/b, the restriction of ρs0` : Gal(Q̄/Q)→GL7(Q`) to Ip is unipotent and indecomposable,
where p is any odd prime divisor of b which is different from `. It follows from the motivic
interpretation of G` given in Corollary 2.4.2 that ρs0` is a Galois submodule of the sixth étale
cohomology group of a smooth projective variety over Q. Since the étale cohomology groups
of a smooth projective variety over Q` are Hodge–Tate by [Fal88], the restriction of ρs0` to
Gal(Q`/Q`) has the Hodge–Tate property. Since ρs0` is pure of weight 0, Scholl’s result implies
that the representation ρs0` is absolutely irreducible. Let q be an odd prime divisor of a which
is different from `, and let Jq be the image of a topological generator of Itame

q under ρs0` . By
Proposition A.4, the Jordan canonical form of Jq has two Jordan blocks of length 2 and one
of length 3. By [Asc87, Corollary 12], a Zariski closed proper maximal subgroup of G2(Q̄`) is
reducible, or G is isomorphic to the group PSL2(Q̄`). In the latter case, the non-trivial unipotent
elements of the image of PSL2(Q̄`) are conjugate in GL7(Q̄`) to a Jordan block of length 7. Thus
the existence of Jq implies that the Zariski closure of Im(ρs0` ) in G2(Q̄`) is equal to G2(Q̄`).
It follows that Im(ρs0` ) is Zariski dense in G2(Q`), finishing the proof of the second claim of
Theorem A.1. 2

Proof of Corollary A.2. By construction, the Galois representation ρs0` :GQ→GL7(Q`) is
isomorphic to the Galois representation on the stalk (G`(3))s̄0 . Moreover, the stalk (G`(3))s̄0
is the `-adic realization of the motive Ms0 which appears in § 3.3 of the article. The motivic
Galois group GMs0

of Ms0 can be characterized as the stabilizer of the spaces of motivated
cycles in the realizations of every subobject of the Tannakian category 〈Ms0〉 generated by Ms0

(this can be seen from using the arguments in [And04, § 6.3]). By Chevalley’s theorem, there
exists one object M ∈ 〈Ms0〉 such that the motivic Galois group GMs0

is characterized as the
stabilizer of a line in the realization of M which is spanned by a motivated cycle. This line is fixed
by an open subgroup of the absolute Galois group Gal(Q̄/Q). Therefore, the group GMs0

(Q`)
contains the image of an open subgroup of Gal(Q̄/Q) under ρs0` . Since the group G2(Q`) is
connected and the Zariski closure of ρs0` (Gal(Q̄/Q)) is dense in G2(Q`) by Theorem A.1(ii), the
group G2(Q`) is contained in GMs0

(Q`). By construction, the motivic Galois group GMs0
of Ms0

is contained in the group G2 (see the proof of Theorem 3.3.1). Together with what was said
before, one concludes that GMs0

(Q`) =G2(Q`) and so GMs0
(Q`) is of type G2, proving the first

claim.

To prove the second claim, we argue as follows. Fix a prime ` which does not divide the
product aba′b′. By Proposition A.4, we recover the odd primes p that divide a as those odd
primes p where Itame

p acts unipotently with a block of length 3 and two blocks of length 2, and we
recover the odd primes that divide b as those where Itame

p acts unipotently with a single block of

length 7. Since (a, b) 6= (a′, b′), the Galois representations ρs0` and ρs
′
0
` have a different ramification

behaviour at at least one prime divisor p of a · b or of a′ · b′. Thus the Galois representations ρs0`
and ρ

s′
0
` are not isomorphic, so long as ` does not divide the product aba′b′. For any such `, the
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`-adic realizations of Ms0 and Ms′
0

are not isomorphic as Galois representations, which implies
that the motives Ms0 and Ms′

0
are not isomorphic. This concludes the proof of (ii). Assertion (iii)

is an immediate consequence of (ii). 2

Remark A.5. Let π : A1 × A1→ A1 denote the addition map. For Hi, i= 0, . . . , 6, and χ as
above, the sheaf MCχ(Hi) is the image of the !-convolution

Hi ∗! j∗(Lχ) =Rπ!(Hi � j∗(Lχ))

in the ∗-convolution Rπ∗(Hi � j∗(Lχ)) under the ‘forget supports map’ (cf. [Kat96, § 4.3]). In
the case at hand, it happens that each of the sheaves Hi has unipotent local monodromy at ∞
(in fact, a single Jordan block of length i+ 1). It then follows from [Kat96, 2.9.4 part 3]) that
the canonical map

Hi ∗! j∗(Lχ) −→ Hi ∗mid j∗(Lχ) = MCχ(Hi)

is an isomorphism. At each Fp-rational point t ∈ S`(Fp), one may then use the Grothendieck–
Lefschetz trace formula to see that the trace of the Frobenius Frobp,t at t on the stalk
(Hi ∗! j∗(Lχ))t̄ is given by the convolution

fi ∗ f2(t) :=−
∑
x∈Fp

fi(x)f2(t− x), i= 1, . . . , 6, (A.5)

where fi(x) gives the trace of Frobp,x on Hi and f2(x) gives the trace of Frobp,x on Lχ. Using a
standard computer algebra system, such as Mathematica, it is easy to derive from formula (A.5)
the trace of Frobp,t (for small primes p) for the sequence H̃0 =H0, H̃1, . . . , H̃6 of constructible
sheaves defined as follows: the ‘middle tensor’ operation

j∗(Fi+1 ⊗ j∗(MCχ(Hi−1))), i= 1, . . . , 6, (A.6)

on the right-hand side of (A.2) is replaced by the literal tensor product

H̃i = Fi+1 ⊗ (H̃i−1 ∗! j∗(Lχ)), i= 1, . . . , 6, (A.7)

of Fi+1 with the !-convolution H̃i−1 ∗! j∗(Lχ). We derive the traces of the following Frobenius
elements on H̃6(3).

Trace(Frob137,85) Trace(Frob139,18) Trace(Frob149,59) Trace(Frob151,73)

2.88 . . . 3.59 . . . 3.51 . . . 3.03 . . .

How well do these traces of Frobenii on H̃6(3) approximate the traces of the same Frobenii on
H6(3)? Although the canonical mapHi ∗! j∗(Lχ)→Hi ∗mid j∗(Lχ) = MCχ(Hi) is an isomorphism
at each stage, the middle tensor product in (A.6) may differ, by a δ-function at either 0 or 1,
from the literal tensor product used in (A.7). Keeping careful track of these δ-functions and
their progeny under later stages of the algorithmic construction of H6(3) and H̃6(3) leads to
the conclusion that the largest error in computing traces at Fp-points when working with !-
convolution and literal tensoring instead of middle convolution and middle tensoring is bounded
in absolute value by (8/

√
p) + (4/p). Thus, for p > 100, the largest error in trace at an Fp-rational

point of A1\{0, 1} is 0.84. So from the table above we see that for each p listed, the trace of
Frobenius on H6(3) at the indicated Fp-rational point does indeed lie in ]2, 7].
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Paris, 2004).

Asc87 M. Aschbacher, Chevalley groups of type G2 as the group of a trilinear form, J. Algebra 109
(1987), 193–259.

BBD82 J. Bernstein, A. A. Beilinson and P. Deligne, Faisceaux pervers, Astérisque 100 (1982).
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