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Introduction

The “Galois representations” of the title are modular representa-
tions ρ of the Galois groups of a number field F , and the ”automorphic
realization” of the title refers to obtaining these representations as con-
stituents of Galois representations attached to automorphic represen-
tations of general linear groups over F . The present article refines the
moduli-theoretic arguments of [HST] to show that this is possible in
rather general situations, provided one works “potentially,” replacing
ρ by its restriction to a certain infinite class of Galois extensions F ′/F ;
this class is sufficiently large that the restriction to the Galois group of
F ′ can be assumed injective.

In §1, we introduce the notion of potential stable automorphy of
modular galois representations, and state a general result on the ubiq-
uity of such representations. In §2 we state some rather precise group-
theoretic results on the monodromy of the Dwork family, strengthening
the results of [HST], and use them to prove the general result of §1. In
§3 we discuss variants and possible future applications of the general
result. In §4 we prove the group-theoretic results stated in §2, as well
as some supplements to those results. The techniques used in §4 are
basd on (1), relating the monodromy of the Dwork family to a rigid
local system, then exploiting properties of rigid local systems, and (2),
applying results on the classification of irreducible subgroups of finite
classical groups with certain sorts of generators.
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1. Stable automorphy of residual representations

Let F be a number field, ΓF = Gal(Q̄/F ), k a finite field of char-
acteristic ` > 2, O the ring of integers of a finite extension of Z` with
residue field k, ρ : ΓF → GL(n,O) a continuous representation of ΓF .
We assume ρ is defined over a number field C in the sense that ρ is
unramified at all primes of F outside a finite set S and, for v /∈ S, the
characteristic polynomial of (geometric) Frobenius Frobv

Pv(ρ,X) = det(I − ρ(Frobv)X)

has coefficients in C. Fix an embedding ι : C → C. One says that ρ
is automorphic (relative to ι) if there is an automorphic representation
Π of GL(n, F ) such that, for almost all places v of F prime to `, ρ is
unramified at v and there is an equality of local Euler factors

Lv(s, ρ) = L(s,Πv)

where Lv(s, ρ) = Pv(ρ,Nv
−s) and L(s,Πv) is the standard (Godement-

Jacquet) local Euler factor of Πv.
Let mO ⊂ O be the maximal ideal, and let σ = ρ̄ : ΓF → GL(n, k) be

the reduction mod mO of ρ. One says that ρ is residually automorphic,
or that σ is automorphic, if there is an automorphic lift ρ′ of σ to some
finite extension O′ of O with residue field k (one could also replace k by
a finite extension, but with no added generality); by definition ρ′ has to
be defined over a number field with a chosen complex embedding. This
is an intrinsic property of σ, so the definition remains valid without
assuming a priori that σ lifts to characteristic zero.

One says that ρ is potentially automorphic if, for any finite exten-
sion L0 of F , there is a finite Galois extension F ′/F disjoint from L0

such that ρ |ΓF ′ is automorphic. One says that σ : ΓF → GL(n, k) is
potentially automorphic if for any finite extension L0 of F , there is a
finite Galois extension F ′/F disjoint from L0 such that σF ′ = σ |ΓF ′ is
automorphic. This definition implies that σF ′ admits a lift to charac-
teristic zero for each such F ′, but this is not necessarily the case for
the original σ.

The notion of residual automorphy is the starting point of the ap-
proach, initiated by Wiles and generated in a variety of directions, to
show that an `-adic representation such as ρ is associated to automor-
phic forms. The notion of potential automorphy was introduced by
Taylor and has proved a powerful tool for applications in which actual
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automorphy is either unnecessary or inaccessible; the proof of Serre’s
conjecture by Khare and Wintenberger suggests that it may eventu-
ally be possible to use a combination of automorphic and arithmetic
techniques to deduce automorphy from potential automorphy.

In contrast to these two notions, whose fruitfulness has been amply
demonstrated, the following notion may have no applications whatso-
ever:

Definition 1.1. Let ρ and σ be as above. Say ρ is stably residually
automorphic (resp. σ is stably automorphic) if there exists a finite-
dimensional representation σ′ : ΓF → GL(n′, k) such that ρ̄⊕ σ′ (resp.
σ ⊕ σ′) is automorphic.

In the obvious way one combines this definition with the previous
ones, and we can talk of stably potentially automorphic representations
– that is, representations that are direct summands of potentially auto-
morphic representations – or stably potentially residually automorphic
representations. The main result of the present note is the following
application of the method of potential automorphy as developed in the
article [HST]:

Main Theorem 1.2. Assume F is totally real and k = F`. Then
any finite-dimensional representation σ : ΓF → GL(n,F`) is stably
potentially automorphic. Moreover, the finite Galois extensions F ′ in
the definition of potential automorphy can be assumed totally real.

Remarks 1.3.

(1) A representation σ as above is said to be polarized of weight w
if it admits a nondegenerate pairing

σ ⊗ σ → k(−w)

where k(−w) is the one-dimensional vector space over k on
which ΓF acts by the −w-power of the cyclotomic character.
Likewise for ρ. It will be clear from the proof that if n is even
and σ is symplectically polarized of weight n− 1, or more gen-
erally of any weight w of parity opposite to n, one can take
σ′ = (0) – i.e. σ is itself potentially automorphic – unless
` | n + 1, which is precisely where the argument breaks down.
In general, one can take σ′ = σ∨(1 − 2n), unless ` | 2n + 1.
This smallest possible choice for σ′ is not necessarily optimal,
for reasons to be discussed in §3.

(2) Note that σ is not assumed odd when F = Q and n = 2. There
is a sign obstruction to relating σ to a Galois representation
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arising in the cohomology of a Shimura variety, but this is com-
pensated by σ′.

(3) The assumption that F is totally real can be suppressed, as
follows. Let F+ ⊂ F be the maximal totally real subfield.

Let σ+ = Ind
ΓF+

ΓF
σ, and apply the theorem to σ+. Then the

restrictions of σ+ to ΓF ·F ′ , for F ′ as in the definition of potential
automorphy, all contain σ |ΓF ·F ′ .

(4) One is entitled to expect stronger results when F is CM and
σ is not polarized of weight n − 1 but rather that there is a
nondegenerate pairing σ⊗σ ◦c→ F`(1−n), where c is complex
conjugation. The methods of [HST] do not apply to this situa-
tion. However, shortly after completing the first version of this
article, the authors became aware of Barnet-Lamb’s generaliza-
tion in [BL] of the techniques of [HST], based on [Ka-AL]. This
work may provide a more natural formulation for CM fields.

(5) The assumption that k = F` is dispensable – just replace σ by
the representation of dimension [k : F`] dimσ – but since one
cannot guarantee that the automorphic lifts of the indicated
representations have coefficients in W (k)-algebras this is rather
artificial. Again, the methods of [BL] should lead to a result
over general finite residue field.

(6) The method breaks down completely when ` = 2. Whether or
not this is unfortunate is left to the reader’s judgment.

2. A refined potential automorphy result

In view of the following result, the proof of the Main Theorem is
an immediate application of the methods of [HST], whose notation we
use freely. Let F be a number field, d > 1 a positive odd integer, N a
positive integer. Define T0 = P1 \ {∞, µd} over Z[1

d
] as in [HST], and

let V [N ] be the natural representation of π1(T0(C), t) defined in [loc.
cit.], with d replaced by n + 1. The following result is a substantial
strengthening of Corollary 1.11 of [HST]. It is based on the rather
miraculous rigidity properties of absolutely irreducible hypergeometric
local systems, and on the explicit description by Levelt of such systems,
which is perfectly adapted to “reduction mod `” considerations.

Theorem 2.1. Suppose N is relatively prime to 2d. Then the natural
map π1(T0(C), t)→ Sp(V [N ]) ' Sp(d− 1,Z/NZ) is surjective.

Let W be a free Z/NZ-module of rank d−1 with a continuous action
of Gal(Q̄/F ) and a perfect alternating pairing

<,>W : W ×W → (Z/NZ)(2− d).
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We may think of W as a lisse etale sheaf over SpecF . Consider the
functor from T0 × SpecF -schemes to sets which sends X to the set of
isomorphisms between the pull back of W and the pull back of V [N ]
which sends 〈 , 〉W to the pairing we have defined on V [N ]. As in the
discussion following Corollary 1.11 of [HST], this functor is represented
by a finite étale cover TW/T0 × SpecF . Theorem 2.1 implies the next
corollary.

Corollary 2.2. Suppose N is relatively prime to 2d. Then the curve
TW is geometrically irreducible.

The orthogonal analogue of Theorem 2.1 is not invoked in the proof
of the Main Theorem but it is included for the sake of completeness.
Suppose now d > 0 is even, ` an odd prime number, and define V [`] as
before.

Theorem 2.3. Suppose ` is relatively prime to 2d, d ≥ 10. Moreover
suppose neither d − 1 nor d + 1 is a power of `. Then the image of
the natural map π1(T0(C), t) → O(V [`]) ' O(d − 1,Z/`Z) is one of
the following two subgroups of index 2 in O(d − 1,Z/`Z): either the
subgroup

{g ∈ O(d− 1,Z/`Z) | ns(g) = 1}
or the subgroup

{g ∈ O(d− 1,Z/`Z) | ns(g) = det(g)},
where ns is the spinor norm.

Remark 2.4. A version of this theorem valid for Z/NZ-representations
is proved in §4. The formulation is somewhat more complicated than
the analogous statement for Theorem 2.1; see 4.10 for a precise state-
ment.

Remark 2.5. The exceptional cases, when d ± 1 is a power of `, are
analyzed in 4.11.

The proofs of Theorems 2.1 and 2.3 are given in §4.

Proof of the Main Theorem. As in [HST], the proof makes crucial
use of the following variant of a theorem of Moret-Bailly [MB]

Proposition 2.6. Let F be a number field and let S = S1

∐
S2

∐
S3

be a finite set of places of F such that S2 contains no infinite place.
Suppose that T/F is a smooth, geometrically connected variety. Sup-
pose also that for v ∈ S1, Ωv ⊂ T (Fv) is a non-empty open (for the
v-topology) subset; that for v ∈ S2, Ωv ⊂ T (F nr

v ) is a non-empty open
Gal(F nr

v /Fv)-invariant subset; and that for v ∈ S3, Ωv ⊂ T (F̄v) is
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a non-empty open Gal(F̄v/Fv)-invariant subset . Suppose finally that
L0/F is a finite extension.

Then there is a finite Galois extension F ′/F and a point P ∈ T (F ′)
such that

• F ′/F is linearly disjoint from L0/F ;
• every place v of S1 splits completely in F ′ and if w is a prime

of F ′ above v then P ∈ Ωv ⊂ T (F ′w);
• every place v of S2 is unramified in F ′ and if w is a prime of
F ′ above v then P ∈ Ωv ∩ T (F ′w);
• and if w is a prime of F ′ above v ∈ S3 then P ∈ Ωv ∩ T (F ′w).

Corollary 2.2 is used to verify the irreducibility condition above for
certain moduli spaces of Calabi-Yau hypersurfaces with level structure.
In [HST], this was only known for level structures of modulus all of
whose prime factors are sufficiently large.

One takes N = ` · `′ where ` is the characteristic of k, as before, and
`′ is an absurdly large prime, as in [HST], to be specified presently. We
take σ′ any representation of dimension r such that

(a) d = n+ r + 1 is odd and relatively prime to `, and
(b) σ ⊕ σ′ is symplectically polarized of weight d− 2.

Remark (1) of §1 gives some suggestions for σ′ provided n + 1 (or
2n + 1) is prime to `. If that is not the case, one can just add an
innocuous additional factor of the appropriate odd dimension. We
place ourselves in the setting of §3 of [HST], letting the index t = 1
in the statement of Theorem 3.1, with the dimension n1 = d − 1. Let
ρ̄ = σ ⊕ σ′ and let E be an imaginary quadratic field. We let ψ = ψ1

be (the finite part of) a Hecke character of the CM field M , cyclic of
degree d − 1 over Q, satisfying the properties listed at the beginning
of the proof of Theorem 3.1 of [HST]. In particular, ψ is unramified at
primes of M dividing ` and at any prime dividing a rational prime that
does not split in E/Q, its infinity type is as specified in the proof of
Theorem 3.1, and the automorphic induction of ψ to an automorphic
representation of GL(d− 1,Q) is self-dual, cohomological (up to twist
by a half-integral power of the norm character) and cuspidal.

Assume `′ is chosen as in the proof of Theorem 3.1 of [HST]. In
particular, `′ ≡ 1 (mod d) is a prime that is unramified in F and the
splitting field of σ ⊕ σ′ and satisfying

`′ > 8(
d+ 1

4
)
d−1
2

+1.

Moreover, `′ is split in the extension of E ·M generated by the values
(at finite idèles) of the Hecke character ψ. The character ψ gives us an
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residual representation

I(θ̄) : ΓQ → GSp(d− 1,F`′).
as in the proof of Theorem 3.1 of [loc. cit.]; in particular, our choice of ψ
and the very large lower bound on `′ guarantee that I(θ̄) is irreducible.

In [loc. cit.] there is a prime q at which a lift of the representation
taking the place of ρ̄ is of Steinberg type. In our situation there is no
given lift of ρ̄, so q has nothing to do with `, but we choose a q > d
at which I(θ̄) is unramified and whose residue class in F×`′ is of order
≥ d−1. The choice of q is irrelevant in what follows but it is important
to note that such q (obviously) exist in order to apply the results as
stated in [HST].1

Now let W be the Galois module W` ×W`′ = ρ̄× I(θ̄) of rank d− 1
over F` × F`′ . By hypothesis (b) above and the construction of [HST]
we see that the representation of ΓF on W lies in GSp(d− 1,F`×F`′).
It follows from Corollary 2.2 and our hypotheses on ` and `′ that the
curve TW is geometrically irreducible. Hence the proof of Theorem
3.1 of [HST] applies to yield a totally real Galois extension F ′ of F ,
unramified at `′ and q and a point t ∈ TW (F ) corresponding to a
Calabi-Yau hypersurface in the Dwork family with good reduction at
`′ and totally degenerate reduction at q. At the request of the referee,
we sketch the argument, since both the hypotheses and the conclusions
are weaker than in [loc. cit.]. In Proposition 2.6 we take S1 to be the
set of archimedean primes of F , S2 to be the set of primes dividing `′,
and S3 to be the set of primes dividing q. To prove that F ′ can be
taken totally real, it suffices, by Moret-Bailly’s theorem, to show that
TW (R) is non-empty. This follows as in [HST] from the existence of
the symplectic polarization of weight d − 2 on ρ̄ and the construction
of θ̄. To prove that F ′ can be taken unramified at `′, we note as in
[loc. cit] that, on the one hand, ρ̄ was assumed unramified at `′; on the
other hand, the other hypotheses on ψ and `′ imply, as in [HST], that
there is a point of TW (Qunr

`′ ) lying above the Fermat point 0 ∈ T0. The
condition at q does not appear in the statement of the Main Theorem,
so we refer the reader to [HST] for the details on this point.

Moreover, Proposition 2.6 asserts that F ′ can be taken linearly dis-
joint over F from any finite extension L0/F . Note that, in contrast to
[HST], we do not assume F ′ unramified at `.

Recall that the point t has the property that there is a compatible
family of (d−1)-dimensional `∗-adic representations V`∗,t of ΓF ′ (letting

1Given the results of the Paris book project, the choice of an auxiliary prime
q at this stage is no longer necessary, and the article [BGHT] dispenses with this
choice.
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`∗ denote a variable prime), with symplectic polarizations of weight
d− 2, and with residual representations V [`∗]t, such that

V [`]t ' ρ̄ |ΓF ′ ; V [`′]t ' I(θ̄) |ΓF ′ .
Moreover, V`′,t is crystalline with Hodge-Tate weights 0, 1, . . . , d − 2,
each with multiplicity one. Now Theorem 4.61 of [CHT] and Theorem
4.6 of [T] apply to show that V`′,t is automorphic as a representation of
ΓF ′ . Thus V`,t is also automorphic, hence ρ̄ |ΓF ′ is automorphic. This
completes the proof of the Main Theorem.

Remark 2.7. Note that the cited theorems of [CHT] and [T] actually
state that V`′,t and V`,t are automorphic of the type considered in those
papers, namely correspond to self-dual cohomological automorphic rep-
resentations Π′ of GL(n, F ′) (with a local condition at some finite prime
that should soon be irrelevant). Moreover, the archimedean component
of Π′ is the unique tempered representation of GL(n, F ′ ⊗Q R) with
non-trivial cohomology with coefficients in the trivial representation.

Remark 2.8. It is clear that the proof works just as well if k = F` is
replaced by Z/`mZ for any m. In particular, we find that any repre-
sentation of ΓF on a free rank n Z/`mZ-module can be completed to a
rank d representation, for appropriate d, that admits potential liftings,
for a collection of totally real Galois extensions F ′/F , to d-dimensional
`-adic representations ρ of ΓF ′ that are not only geometric in the sense
of Fontaine-Mazur (unramified outside a finite set of primes and de
Rham at primes dividing `) but are in fact automorphic and indeed
are attached to automorphic representations of the kind considered in
[CHT]. We leave the details to the reader. It is likely that by paying
more attention to the choice of `′ one can even take ρ to be crystalline
at primes dividing ` – then one can expect F ′/F to be highly ramified
at ` – but we have not looked into the question carefully.

3. Variants

One interest of the Main Theorem is that it hints at the patholo-
gies that may lurk in the unexplored regions of the eigenvarieties con-
structed by Chenevier [C1, C2] and studied in his book with Belläıche
[Be-Ch]. Let Π be an automorphic representation of GL(n, F ). For
almost all 2 `, the (semisimplified) automorphic `-adic Galois represen-
tations define points on these eigenvarieties, whereas the automorphic

2The exceptions are a subset of the ` such that, for some prime v of F dividing `
the local component Πv has no vector fixed by the maximal pro-` subgroup of the
Iwahori subgroup at v.
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residual representations define discrete invariants. If the residual rep-
resentation is reducible then one can ask about the reducibility locus
on the corresponding component of the eigenvariety, which is expected
to encode a wealth of arithmetic information.

One naturally wonders whether any (semi-stable) lifting of the resid-
ual representation occurs as a point of the eigenvariety, which is obvi-
ously an especially intriguing question when the residual representation
is completely arbitrary (for example a sum of the reductions modulo
` of the two-dimensional representations one hopes to attach to Maass
forms, cf. Remark 1.3(2)). One might someday hope to be able to
prove automorphic lifting theorems for certain representations like the
ρ̄ = σ ⊕ σ′ introduced in the proof of the main theorem. Assuming
this to be the case (a very optimistic assumption), this gives a (poten-
tially) positive answer to the question raised by Langlands, whether
all Galois representations are in some sense accessible by a combina-
tion of automorphic and congruence methods. This answer may not
be very satisfying, even ignoring the difference between automorphy
and potential automorphy, but in this generality it’s hard to imagine a
simpler answer.

The ”very optimistic” assumption above is a sort of overconvergent
modularity lifting hypothesis – the point on the eigenvariety associated
to the lifting of (σ ⊕ σ′) |ΓF ′ corresponds to an overconvergent `-adic
automorphic form of finite slope. It is very optimistic even if σ is
irreducible and polarized of weight n−1 and σ′ is taken trivial, mainly
because current methods assume (a) ` > n (which we do not assume);
(b) ` is unramified in each F ′ (which we cannot guarantee), and (c) σ
admits a de Rham lifting with distinct Hodge-Tate weights, which is a
restrictive condition even on residual representations. It is much more
optimistic if σ′ is not trivial – this includes every case when σ is a 2-
dimensional even representation – because modularity lifting theorems
appear to be completely out of reach for reducible representations of
dimension > 2. When n = 2 and F = Q one has the notoriously
difficult Skinner-Wiles theorem.

Note that in §2 we constructed automorphic lifts of representations of
the form σ⊕σ′, but there is no reason not to take non-trivial extensions
of σ by σ′, provided the extensions admit symplectic polarizations of
the right weight. If we take an extension such that EndΓF (ρ̄) is limited
to scalars – it seems this can always be arranged – then the deformation
functor of ρ̄ is representable. Generalizing the Skinner-Wiles theorem
to higher dimensions, as would be necessary to treat reducible ρ̄, ap-
pears at present an insurmountable obstacle, but if that were not the
case we would want to make judicious choices of σ′ when possible. This
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suggests the following strengthening of the hypotheses (a) and (b) of
“Proof of the Main Theorem” in §2:

(c) For every prime v of F dividing `, σ is of Fontaine-Laffaille type
at v with n distinct weights.

(d) If σ is not symplectically polarized of weight d−2 (with d to be
determined below), then the sets of Fontaine-Laffaille weights
of σ and of σ∨(2− d) have empty intersection.

This already implies at least ` > 2n, otherwise there is no room for
2n distinct Fontaine-Laffaille weights. In fact, we want ` > m+ −m−,
where m+ (resp. m−) is the largest (resp. smallest) Fontaine-Laffaille
weight of σ ⊕ σ∨(2 − d), and we define σ′ = σ∨(2 − d) ⊕ τ where τ
is an innocuous symplectically polarized representation of dimension
d− 1− 2n such that (a) and (b) are satisfied and such that σ⊕ σ′ is of
Fontaine-Laffaille type at each v dividing ` with weights 0, . . . , d − 2,
each with multiplicity one. One can take τ to be induced from a CM
Hecke character with the missing weights.

The Main Theorem shows that such σ ⊕ σ′, after restriction to ΓF ′
for a large class of totally real F ′, admit automorphic lifts of the type
indicated in Remark 2.8. One expects that one can replace F ′ by F ,
and it is plausible that every lift of σ ⊕ σ′ to characteristic zero that
is unramified at all but finitely many places and de Rham at primes
dividing ` is automorphic of this type. This should have implications
for lifts of the original σ that are not assumed symplectically polarized.

In the applications in [HST] it was always necessary to prove that F ′

can be chosen unramified at `, in order to apply the modularity lifting
theorems of [CHT] and [T]. This required in practice assuming that the
residual representation ρ̄ is a sum of (necessarily distinct) characters
when restricted to the inertia group at any prime dividing `. Without
this assumption there is no way to guarantee that the moduli space
TW has rational points over an unramified extension of Q`. Since TW
is a curve, its local `-adic points have little room for variation. Lifting
theorems for the ρ̄ considered above will have to be valid for number
fields in which ` is allowed to ramify. For ordinary liftings this has now
been proved in D. Geraghty’s Harvard thesis, and there are interesting
partial results in other cases in a forthcoming preprint of Barnet-Lamb,
Gee, and Geraghty.

4. Proofs of Theorems 2.1 and 2.3

4.1. The general setting. Recall the general setting. We work over
C. We are given an integer d ≥ 3, and we consider the Dwork family
of degree d hypersurfaces Xλ in Pd−1, with homogeneous coordinates
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X1, ..., Xd, defined by the equation

Xλ :
d∑
i=1

Xd
i − dλ

d∏
i=1

Xi = 0,

with parameter λ ∈ T0(C) := P1 \ {∞, µd}. For any chosen t ∈
T0(C), we have a representation of the (topological) fundamental group
π1(T0(C), t) on the Betti cohomology group Hd−2(Xt,Z), which is a free
Z-module of known rank. The cup product pairing

<,>: Hd−2(Xt,Z)×Hd−2(Xt,Z)→ H2d−4(Xt,Z) = Z

is a perfect duality of free Z modules; it is alternating if d is odd, and
symmetric if d is even. The action of π1(T0(C), t) respects this pairing.

When d is even, the (d− 2)/2’nd power of the cohomology class of a
hyperplane section is a π1(T0(C), t)-invariant element L ∈ Hd−2(Xt,Z)
with< L,L >= d. We define Primd−2(Xt,Z[1/d])) ⊂ Hd−2(Xt,Z[1/d])
to be the orthogonal of L under the cup product pairing. Because
we have now inverted d, the cup product induces an autoduality on
Primd−2(Xt,Z[1/d]). If d is odd, we define Primd−2(Xt,Z[1/d])) :=
Hd−2(Xt,Z[1/d]).

The finite group H0 := {(ζ1, ..., ζd) ∈ µdd|
∏

i ζi = 1} acts on our fam-
ily, so induces a π1(T0(C), t)-equivariant action on Primd−2(Xt,Z[1/d])).
The space of invariants

V := Primd−2(Xt,Z[1/d])H0

is a free Z[1/d] module of rank d−1, on which the cup product induces
an autoduality. So we have a representation

ρ : π1(T0(C), t)→ Aut(V,<,>),

with Aut(V,<,>) either Sp(d−1,Z[1/d]), if d is odd, or O(d−1,Z[1/d])
if d is even. For any integer N prime to d, we have the reduction mod
N of this representation

ρN : π1(T0(C), t)→ Aut(V [N ], <,>),

where we write

V [N ] := V/NV.

4.2. A descent. There is a slightly finer structure we will take advan-
tage of. Consider the family over P1 \ {0, 1,∞} given by

Yλ : λ−1Xd
1 +

d∑
i=2

Xd
i = d

d∏
i=1

Xi.
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This is a descent of the Dwork family through the d’th power map, cf.
[Ka-AL, section 6]. [Indeed, its pullback Yλd is

Yλd : λ−dXd
1 +

d∑
i=2

Xd
i = d

d∏
i=1

Xi,

which, by the change of variable X1 7→ λX1, Xi 7→ Xi for i ≥ 2, be-
comes Xλ.] Repeating everything for this descended family, we now
get, for any t ∈ P1 \ {0, 1,∞}, the subspace

Ṽ := Primd−2(Yt,Z[1/d])H0

the representation

ρ̃ : π1(P1 \ {0, 1,∞}, t)→ Aut(Ṽ , <,>),

and, for each integer N prime to d, its reduction mod N ,

ρ̃N : π1(P1 \ {0, 1,∞}, t)→ Aut(Ṽ [N ], <,>),

where we write Ṽ [N ] := Ṽ /NṼ .
The point of considering this descent is this. The d’th power map is

a finite etale covering of P1(C) \ {0, 1,∞} by P1(C) \ {0, µd,∞}, so for
a base point t ∈ P1(C)\{0, µd,∞} and its image td ∈ P1(C)\{0, 1,∞},
π1(P1(C)\{0, µd,∞}, t) is a normal subgroup of π1(P1(C)\{0, 1,∞}, td)
of index d, with cyclic quotient. So for any homomorphism

Λ : π1(P1(C) \ {0, 1,∞}, td)→ G

toward any group G, its image and the image of its restriction [d]?Λ to
π1(P1(C)\{0, µd,∞}, t) are related as follows: Image([d]?Λ) is a normal
subgroup of Image(Λ) of index dividing d, with cyclic quotient. We
will apply this with Λ taken to be ρ̃, so that [d]?Λ is our ρ.

We know that

(odd case) If d ≥ 3 is odd, then Image(ρ̃) ⊂ Sp(d − 1,Z[1/d]) is Zariski
dense in Sp(d− 1,C].

(even case) If d ≥ 3 is even, then Image(ρ̃) ⊂ O(d − 1,Z[1/d]) is Zariski
dense in O(d− 1,C],

cf. [HST, 1.9] or [Ka-AL, 8.7]. Moreover, we know [Ka-AL, 5.3 or 8.5]
that the C-local system ṼC is a specific hypergeometric local system,
HC, whose local monodromies are

(at 0) an automorphism whose characteristic polynomial is (T d−1)/(T−
1).

(at 1) a pseudoreflection of determinant (−1)d−1, i.e., a transvection
if d is odd, and a reflection if d is even.

(at ∞) a single unipotent Jordan block.
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We will now exploit the rigidity of this local system.

4.3. Rigid local systems. Let us first recall the basic facts about
local systems on P1(C) \ {0, 1,∞} and their rigidity. For any ring R,
an R-local system F of rank n ≥ 1 on P1(C) \ {0, 1,∞} is a locally
constant sheaf of free R-modules of rank n. Picking bases, this is a
homomorphism

ρF : π1(P1(C) \ {0, 1,∞}, t)→ GL(n,R).

Concretely, this means a triple (M0,M1,M∞) of elements in GL(n,R)
satisfying M0M1M∞ = 1; the M ’s are the local monodromies around
the three missing points. An isomorphism between R-local systems
(M0,M1,M∞) and (N0, N1, N∞) is an element A ∈ GL(n,R) which
conjugates eachM into the correspondingN , i.e., A(M0,M1,M∞)A−1 =
(N0, N1, N∞). Two R-local system are said to be locally isomorphic if
there exist three elements A0, A1, A∞ ∈ GL(n,R) such that

A0M0A
−1
0 = N0, A1M1A

−1
1 = N1, A∞M∞A

−1
∞ = N∞.

An R-local system F is said to be rigid if, whenever G is a second
R-local system which is locally isomorphic to ρ, there exists an isomor-
phism of F with G.

When R is a field k, and F is an absolutely irreducible k-local
system, there is a numerical criterion that implies its rigidity. Cohomo-
logically, it can be stated as follows. Denote by j : P1(C) \ {0, 1,∞} ⊂
P1(C) the inclusion. If the Euler characteristic χ(P1(C), j?(End(F))) =
2, then F is rigid, cf. [Ka-RLS, first half of the proof of 1.1.2, which
works with coefficients k any field]. In terms of the local monodromy
matrices (M0,M1,M∞) in GL(n, k) giving F , absolute irreducibility
means that no proper nonzero subspace of (kalg.cl)n is stable under each
of M0,M1,M∞. To make explicit the numerical criterion, we need a
notation. Given an element A ∈ GL(n, k), denote by Z(A) ∈ Mn(k)
its centralizer, i.e., the set of matrices which commute with A. For any
k-local system F of rank n, we have the Euler-Poincaré formula

χ(P1(C), j?(End(F))) = −n2 +
∑

s∈{0,1,∞}

dimk(Z(Ms)).

The numerical criterion for rigidity of an absolutely irreducible k-local
system F of rank n on P1(C) \ {0, 1,∞} is thus∑

s∈{0,1,∞}

dim(Z(Ms)) = n2 + 2.
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4.4. Hypergeometric local systems. We next define hypergeomet-
ric local systems. An endomorphism A ∈ Mn(k) with characteristic
polynomial PA(T ) := det(T In−A) is said to be cyclic, or of companion
type, if the pair (kn, A) is k-isomorphic to the pair (k[T ]/PA(T )k[T ], T ).
A k-local system F on P1(C) \ {0, 1,∞} is called hypergeometric if it
satisfies the following three conditions on its local monodromies.

(1) M1 is a pseudoreflection, i.e.,dimk(Ker(M1 − 1)) = n− 1, i.e.,
the fixed space of M1 has codimension one.

(2) Both M0 and M∞ are of companion type.

A hypergeometric k-local system is absolutely irreducible if M−1
0

and M∞ have relatively prime characteristic polynomials (i.e., have no
common eigenvalue in any overfield of k), simply because if G ⊂ F is
a nonzero proper sub-local system, then on either G or on the quotient
F/G, M1 will be trivial, and on that piece we will have M0M∞ = 1.

Lemma 4.4.1. Let k be a field, F ∼ (M0,M1,M∞) a hypergeometric
k-local system on P1(C) \ {0, 1,∞} of rank n ≥ 1. Suppose that M0

and M−1
∞ have relatively prime characteristic polynomials. Then F is

(absolutely irreducible and) rigid.

Proof. We check the numerical criterion. Because M0 and M∞ are
of companion type, their commuting algebras each have dimension n.
Because M1 is a pseudoreflection, its commuting algebra has dimension
(n− 1)2 + 1. And indeed n+ n+ ((n− 1)2 + 1) = n2 + 2. �

4.5. Spreading out and reducing mod `, via Levelt. Now let us
return to our C-local system ṼC, which we know [Ka-AL, 5.3 or 8.5] is
a specific hypergeometric local system, HC, whose local monodromies
are

(at 0) an automorphism whose characteristic polynomial is (T d−1)/(T−
1).

(at 1) a pseudoreflection of determinant (−1)d−1, i.e., a transvection
if d is odd, and a reflection if d is even.

(at ∞) a single unipotent Jordan block.

Next we recall Levelt’s explicit description [BH, Thm. 3.5] of the
unique local system C-local system with such local monodromies. De-
note by A the companion matrix of local monodromy at ∞, and by B
the companion matrix of the inverse of local monodromy at 0. These
matrices lie in GL(d−1,Z). Taking BA−1 as local monodromy around
1, we get the matrix relation B−1(BA−1)A = 1, so a Z-local system HZ
on P1(C)\{0, 1,∞}. For any field k in which d is invertible, the images
of A and B in GL(d−1, k) have no common eigenvalue, and the image
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of BA−1 is a pseudoreflection. For such a field k, the k-local system Hk

on P1(C)\{0, 1,∞} is therefore absolutely irreducible, and any k-local
system on P1(C) \ {0, 1,∞} whose local monodromies in GL(d− 1, k)
have these prescribed Jordan normal forms is k-isomorphic to Hk.

We first apply this with k = Q. Consider the Q-local system ṼQ.
Its local monodromies are Q-forms of the complex local monodromies,
and hence its local monodromies are

(at 0) an automorphism whose characteristic polynomial is (T d−1)/(T−
1).

(at 1) a pseudoreflection of determinant (−1)d−1, i.e., a transvection
if d is odd, and a reflection if d is even.

(at ∞) a single unipotent Jordan block.

Therefore ṼQ is Q-isomorphic to HQ. With this identification, then Ṽ

and HZ[1/d] are two Z[1/d]-forms of ṼQ. So for any prime ` prime to d,
Brauer-Nesbitt tells us that the reductions mod ` of these two Z[1/d]-
forms, namely Ṽ [`] and HF` have isomorphic semisimplifications. As

HF` is irreducible, we infer that in fact Ṽ [`] and HF` are F`-isomorphic.

4.6. Proof of 2.1. With these preliminaries established, we now turn
to the proofs of Theorems 2.1 and 2.3. We begin with 2.1. Thus d ≥ 3
is odd. If ` is an odd prime not dividing d, the group Sp(d − 1,F`)
has no proper nontrivial normal subgroup other than its center {±1},
the group PSp(d − 1,F`) := Sp(d − 1,F`)/{±1} is simple, and for
fixed d but variable ` these simple groups are pairwise nonisomor-
phic, cf. [Ar, 5.1,5.2]. And for any power `n, n ≥ 2 of `, the group
Sp(d − 1,Z/`nZ) maps onto Sp(d − 1,F`) with kernel an `-group. By
Goursat’s lemma, it follows that if N =

∏
i `
ni
i is prime to d, then any

subgroup of Sp(d− 1,Z/NZ) ∼=
∏

i Sp(d− 1,Z/`nii Z) which maps onto
each factor must be the entire group Sp(d−1,Z/NZ). [We apply Gour-
sat’s lemma by induction on the number of factors, separating out one
prime `1 from the others. We must show that Sp(d − 1,Z/`n1

1 Z) and∏
i≥2 Sp(d− 1,Z/`nii Z) have no common nontrivial quotient. For this,

we argue as follows. The only composition factors Sp(d−1,Z/`n1
1 Z) and∏

i≥2 Sp(d−1,Z/`nii Z) have in common are ±1. So if Sp(d−1,Z/`n1
1 Z)

and
∏

i≥2 Sp(d − 1,Z/`nii Z) have a common nontrivial quotient, that
nontrivial quotient is a 2-group, which itself has a Z/2Z quotient. But
Sp(d − 1,Z/`1i

n1Z) does not have a Z/2Z quotient. Indeed, as `1 is
odd, any homomorphism from Sp(d−1,Z/`1i

n1Z) to Z/2Z must factor
through the Sp(d − 1,F`1) quotient, and this last group has no such
quotient.]
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We apply this to the image of ρN . So to prove Theorem 2.1, it
suffices to show that for each odd prime power `n prime to d, the
image of ρ`n is the full group Sp(d− 1,Z/`nZ). For this, it suffices to
show that the image of ρ̃`n is the full group Sp(d− 1,Z/`nZ). [Indeed,
as explained above, Image(ρ`n) is a normal subgroup of Image(ρ̃`n) of
index dividing d, with cyclic quotient. But the group Sp(d− 1,Z/`nZ)
has no such normal subgroup other than itself: any homomorphism
from Sp(d− 1,Z/`nZ) onto a nontrivial cyclic group of order prime to
` factors through its Sp(d− 1,F`) quotient, and this last group has no
nontrivial cyclic quotient.]

We first show that G := Image(ρ̃`)is the full group Sp(d− 1,F`). It
is an irreducible subgroup of Sp(d−1,F`), generated by three elements
x, y, z with xyz = 1, x an element of order d, y a transvection, and
z a unipotent element with a single Jordan block. One knows that
any irreducible subgroup of Sp(d− 1,F`) generated by transvections is
the full group, cf. [M], [ZS1]. Let N / G denote the normal subgroup
generated by all the G-conjugates of y. Then G/N is generated by the
images x̄ and z̄ of x and z, and x̄z̄ = 1. But x̄ has order dividing d,
while z̄ has order a power of `, which is prime to d. Hence G = N is
generated by all the G-conjugates of y, so is generated by transvections,
and we are done.

Now consider the closed subgroup Γ ⊂ Sp(d − 1,Z`) defined as the
`-adic closure of the image of ρ̃ : π1 → Sp(d − 1,Z[1/d]). Local mon-
odromy around 1 gives us an element γ ∈ Γ which is a transvection
when viewed in Sp(d− 1,Q`) and which remains a transvection when
reduced mod ` in Sp(d − 1,F`). By the previous paragraph, we know
that Γ maps onto Sp(d− 1,F`). The following lemma tells us that any
such Γ maps onto every finite quotient Sp(d− 1,Z/`nZ) (and hence is
the entire group Sp(d− 1,Z`)). [See [Wei, Thm. B] and [Vas, 1.3] for
other approaches to this question.] Thus the image of ρ̃`n is the full
group Sp(d− 1,Z/`nZ) for every n ≥ 1.

Lemma 4.6.1. Let d ≥ 3 be odd, ` an odd prime. Let Γ ⊂ Sp(d−1,Z`)
be a closed subgroup which maps onto Sp(d−1,F`). Suppose that there
is an element γ ∈ Γ which is a transvection when viewed in Sp(d−1,Q`)
and which remains a transvection when reduced mod ` in Sp(d− 1,F`).
Then Γ maps onto every finite quotient Sp(d − 1,Z/`nZ), and Γ =
Sp(d− 1,Z`).

Proof. Let us denote by Γi ⊂ Γ the intersection of Γ with 1+`iMd−1(Z`).
Thus Γi consists of the elements of Γ which die in Sp(d − 1,Z/`iZ).
Then Γ/Γ1 is Sp(d−1,F`), and for every i ≥ 1, the quotient Γi/Γi+1 is
an F` subspace of the F`-Lie algebra Lie(Sp(d− 1))(F`). The group Γ
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acts by conjugation on itself, preserving each subgroup Γi, and so act-
ing on each quotient Γi/Γi+1 , i ≥ 1. This last action factors through
Γ/Γ1 = Sp(d − 1,F`), and makes Γi/Γi+1 into an Sp(d − 1,F`)-stable
subspace of Lie(Sp(d−1))(F`). But one knows that Lie(Sp(d−1))(F`)
is Sp(d−1,F`)-irreducible, cf [Bor, 6.3,6.4,7.3],[Cur]. So for each i ≥ 1,
Γi/Γi+1 is either 0 or it is Lie(Sp(d− 1))(F`).

We now use the element γ to show that Γi/Γi+1 is never 0. Indeed,
the element N := γ − 1 ∈ Md−1(Z`) has N2 = 0 (because γ is a
transvection in Sp(d − 1,Q`)) and N 6= 0 in Md−1(F`) (because γ
remains a transvection mod `). So γ = 1 + N has γr = 1 + rN for

any integer r ≥ 1. Taking r = `i, we get γ`
i

= 1 + `iN , whose image
in Γi/Γi+1 is nonzero (because N is nonzero mod `). Once we know
that each Γi/Γi+1 is the full Lie(Sp(d − 1))(F`), a counting argument
shows that Γ/Γn ⊂ Sp(d− 1,Z/`nZ) is, for each n ≥ 1, the full group
Sp(d− 1,Z/`nZ). Hence Γ ⊂ Sp(d− 1,Z`) is a closed subgroup which
maps onto every Sp(d − 1,Z/`nZ), so is dense, so must be the entire
group. �

4.7. Proof of 2.3. We now turn to proving 2.3. Here also it suffices
to show that ρ̃` has one of the two asserted images. Indeed, for both of
these asserted images, the only possibly nontrivial proper normal sub-
groups are the center, which is either trivial or is ±1, and the subgroup
Ω(d − 1,F`) of index two, defined by det = ns = 1, which is a simple
group (remember d− 1 is odd). On the other hand, the image of ρ` is
a normal subgroup of the asserted image, of index dividing d, and with
cyclic quotient. The cyclicity of the quotient disqualifies the center and
the trivial group, leaving only Ω(d − 1,F`) or the full asserted image
as possibilities. The group Ω(d − 1,F`) is ruled out because it lies in
SO(d− 1,F`), but the image of ρ` contains reflections: the d’th power
map is finite etale over 1, so the local monodromy of V [`] around each
d’th root of unity is a reflection.

Thus d ≥ 10 is even, ` is an odd prime which is prime to d, and
neither d − 1 nor d + 1 is a power of `. Now G := Image(ρ̃`) is an
irreducible subgroup of O(d−1,F`), generated by three elements x, y, z
with xyz = 1, x an element of order d, y a reflection, and z a unipotent
element with a single Jordan block. The same G/N argument as above
shows that G := Image(ρ̃`) is an irreducible subgroup of O(d − 1,F`)
generated by reflections, indeed by all the G-conjugates of y.

4.8. The spinor norm. Let us denote by

ns : O(d− 1,F`)→ ±1
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the spinor norm with respect to the quadratic form on Ṽ [`] given by
cup product. Recall [Ka-Irr, &6] that when d − 1 is odd, as it is
here, there is only one orthogonal group O(d− 1,F`), because the two
isomorphism classes of nondegenerate quadratic forms in d−1 variables
over F` are proportional: if Ψ is one of them, then the other is αΨ, for
any nonsquare α ∈ F×` . The spinor norm depends on the choice of
the quadratic form Ψ, so should be denoted nsΨ. For a nonisotropic
vector v, we have the reflection Rv ∈ O(d− 1,F`), given by

Rv : w 7→ w − 2
Ψ(w, v)

Ψ(v, v)
v.

Its spinor norm is given by

nsΨ(Rv) = the class mod squares of Ψ(v, v).

Since O(d−1,F`) is generated by reflections, this determines the spinor
norm. If we pass from Ψ to αΨ, α ∈ F×` a nonsquare, then for any
g ∈ O(d− 1,F`), we have

nsαΨ(g) = det(g)nsΨ(g).

So the effect of passing from Ψ to αΨ, α ∈ F×` a nonsquare, is to
interchange the two characters ns and det× ns, and so to interchange
cases (3) and (4) in the classification just below.

4.9. Classification, and its use. One knows [W2] [ZS2] that if d ≥
10 and ` is odd, an irreducible subgroup of O(d− 1,F`) which is gener-
ated by reflections and which is primitive is one of the following five
groups.

(1a) the symmetric group Sd in its deleted permutation representa-
tion, if ` is prime to d,

(1b) the symmetric group Sd+1 in its doubly deleted permutation
representation, if ` divides d+ 1,

(2) the full group O(d− 1,F`),
(3) the index two subgroup of O(d− 1,F`) where ns = 1,
(4) the index two subgroup of O(d− 1,F`) where ns = det.

[Recall that the deleted permutation representation of Sd is the d−
1-dimensional F`-representation given by its action on the space of
those linear forms

∑d
i=1 aiXi satisfying

∑
i ai = 0. When ` divides

d + 1, the doubly deleted permutation representation of Sd+1 is the
d−1-dimensional F`-representation which is the quotient of its deleted
permutation representation by the line spanned by

∑d+1
i=1 Xi.]

In our case, G cannot be the entire group O(d−1,F`), for the follow-
ing reason. The element z has order a power of `, so ns(z) = det(z) = 1.
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Therefore we have ns(x) = ns(y) and det(x) = det(y) = −1, so
whichever of ns or det × ns is trivial on y is trivial on x as well (and
is also trivial on z). So G certainly lies inside one of the groups (3) or
(4).

Furthermore, because d is prime to `, and neither d−1 nor d+1 is a
power of `, we cannot be in case (1a) or in case (1b). Consider first case
(1a). Here G cannot be Sd, simply because the element z cannot lie in
Sd. Indeed, under the action of the cyclic group generated by z, HF`
is indecomposable. The only elements γ ∈ Sd which can possibly act
indecomposably in the deleted permutation representation are either a
single d-cycle, or a single (d− 1)-cycle. The first has order d, and the
second has order d− 1, while z has order a power of `.

When ` divides d + 1, but d + 1 is not a power of `, we cannot
be in case (1b): the element z cannot lie in Sd+1. As before HF` is
indecomposable under the cyclic group generated by z. But the only
elements γ ∈ Sd+1 which can possibly act indecomposably in the doubly
deleted permutation representation are either a single d+ 1-cycle, or a
single d-cycle, or a single (d − 1)-cycle. The first has order d + 1, the
second has order d, the third has order d−1, while z has order a power
of `.

So we are reduced to proving that G is primitive, whenever d ≥ 10,
` is an odd prime which is prime to d, and neither d− 1 nor d+ 1 is a
power of `. We argue by contradiction. Again by classification [ZS2],
if G is not primitive, then in a suitable basis of HF` , G is permutation-
shaped, i.e., it stabilizes the collection of d−1 lines spanned by the basis
vectors. So we have a homomorphism of G onto a transitive subgroup
K of Sd−1, by looking at its action on these d − 1 lines. The image
of y must be nontrivial, since G is generated by the conjugates of y.
And y must map to a transposition, since it acts as a reflection on HF` .
Since G is generated by the conjugates of y, the image group K is a
transitive subgroup of Sd−1 generated by transpositions, so K = Sd−1.
In this image group Sd−1, we have x̄ȳz̄ = 1, so z̄x̄ = ȳ−1 is a reflection,
and Sd−1 is generated by x̄, ȳ, and z̄. We claim that either x̄ or z̄ is a
(d− 1)-cycle, and that the other is the product of two disjoint cycles.
Granting this, we reach a contradiction as follows. If x̄ is a (d−1)-cycle,
then it has order d− 1. But x had order d, so x̄ has order dividing d,
hence x̄ = 1. But this is impossible, for then Sd−1 would be generated
by ȳ and z̄, with ȳz̄ = 1, so Sd−1 would be generated by ȳ, so would
be cyclic of order 2. If z̄ is a (d− 1)-cycle, then it has order d− 1, but
z had order a power of `, so z̄ has order either 1 or a power of `. Since
d − 1 is not a power of `, z̄ must be trivial, and we reach the same
contradiction. Here is a monodromy-theoretic proof of the claim.
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Lemma 4.9.1. Let d ≥ 4, a, b, c ∈ Sd−1 elements with abc = 1 which
generate Sd−1. Suppose that b is a transposition. Then one of a or c is
a (d− 1)-cycle, and the other is the product of two disjoint cycles.

Proof. View Sd−1 inside O(d−1,C) by the permutation representation,
and denote by A,B,C ∈ O(d− 1,C) the images of a, b, c respectively.
Denote by F the C-local system on P1(C)\{0, 1,∞} of rank d−1 whose
local monodromies at 0, 1,∞ are A,B,C respectively. Consider the
inclusion j : P1(C) \ {0, 1,∞} → P1(C) the inclusion, and form the co-
homology groups H i(P1(C), j?F), whose dimensions we denote simply
hi. Thus hi = 0 for i outside {0, 1, 2}. The permutation representation
of Sd−1 has one-dimensional spaces of invariants and of coinvariants,
so h0 = h2 = 1. Because F is orthogonally self dual, H i(P1(C), j?F)
is symplectically self dual, so h1 is even. The Euler-Poincare formula
gives

χ(P1(C), j?F) := h0 − h1 + h2 = 2− h1

= χ(P1(C)\{0, 1,∞},F)+
∑

s∈{0,1,∞}

(dim of invar.′s of local mono. at s)

= −(d−1)+dim(Ker(A−1))+dim(Ker(B−1))+dim(Ker(C−1)).

As B is a reflection, dim(Ker(B − 1)) = d− 2, so we get

2− h1 = −1 + dim(Ker(A− 1)) + dim(Ker(C − 1)),

i.e.,

−h1 = dim(Ker(A− 1)) + dim(Ker(C − 1))− 3.

Since h1 is ≥ 0 and even, we get the inequality

dim(Ker(A− 1)) + dim(Ker(C − 1)) ≤ 3,

and the information that dim(Ker(A− 1)) + dim(Ker(C − 1)) is odd.
But dim(Ker(A−1)), respectively dim(Ker(C−1)), is just the number
of cycles in a, resp. in c, when that element of Sd−1 is written as a
product of disjoint cycles, including cycles of length one. So either
a or c is a single cycle, and the other is the product of two disjoint
cycles. �

Although we do not need it, here for the sake of completeness is a
more elementary (but perhaps less satisfying conceptually) proof of a
slightly stronger statement.

Lemma 4.9.2. Let d ≥ 4, a, b, c ∈ Sd−1 elements with abc = 1 which
generate a transitive subgroup of Sd−1. Suppose that b is a transposition.
Then one of a or c is a (d − 1)-cycle, and the other is the product of
two disjoint cycles.
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Proof. To fix ideas, renumber so that the transposition b is (1, 2), and
remember that a−1 = bc, so that b and c generate a transitive subgroup.
If c is a (d − 1)-cycle write c as (1, ..., x, 2, ..., y). Then a−1 = bc =
(1, ..., x)(2, ..., y) is the product of two disjoint cycles. If c is the product
of two disjoint cycles, then the symbols 1 and 2 cannot be in the same
cycle, otherwise b fixes every element of the other cycle, contradicting
the fact that b and c generate a transitive subgroup. So we can write
c = (1., , , , x)(2, ..., y). But then a−1 = bc = (1., , , , x, 2, ..., y) is a
(d−1)-cycle. Finally, c cannot be the product of three or more disjoint
cycles, for then at least one of the cycles contains neither 1 nor 2,
and then b fixes every element of such a cycle, again contradicting the
transitivity. �

4.10. Analysis of the mod N representation. We begin with the
orthogonal analogue of Lemma 4.6.1.

Lemma 4.10.1. Let d ≥ 4 be even, ` an odd prime. Denote by

O1(d− 1,F`) ⊂ O(d− 1,F`)

any chosen one of the five subgroups containing Ω(d − 1,F`). De-
note by O1(d − 1,Z`) ⊂ O(d − 1,Z`), resp. by O1(d − 1,Z/`nZ) ⊂
O(d− 1,Z/`nZ), the complete inverse image of O1(d− 1,F`) under the
“reduction mod `” map. Let Γ ⊂ O1(d − 1,Z`) be a closed subgroup
which maps onto O1(d− 1,F`). Suppose that there is an element γ ∈ Γ
which is a regular unipotent element (i.e., unipotent with a single Jor-
dan block) when viewed in O(d − 1,Q`) and which remains a regular
unipotent element when reduced mod ` in O(d − 1,F`). Then Γ maps
onto O1(d− 1,Z/`nZ) for every n ≥ 1, and Γ = O1(d− 1,Z`).

Proof. Let us denote by Γi ⊂ Γ the intersection of Γ with 1+`iMd−1(Z`).
Thus Γi consists of the elements of Γ which die in O(d−1,Z/`iZ). Then
Γ/Γ1 is O1(d − 1,F`), and for every i ≥ 1, the quotient Γi/Γi+1 is an
F` subspace of the F`-Lie algebra Lie(SO(d − 1))(F`). The group Γ
acts by conjugation on itself, preserving each subgroup Γi, and so act-
ing on each quotient Γi/Γi+1 , i ≥ 1. This last action factors through
Γ/Γ1 = O1(d − 1,F`), and makes Γi/Γi+1 into an O1(d − 1,F`)-stable
subspace of Lie(SO(d − 1))(F`). One knows that Lie(SO(d − 1))(F`)
is Spin(d − 1,F`)-irreducible, cf [Bor, 6.3,6.4,7.3],[Cur]. The adjoint
action of Spin(d − 1,F`) on its Lie algebra factors through its Ω(d −
1,F`) quotient. Since O1(d − 1,F`) contains Ω(d − 1,F`), we see that
Lie(SO(d − 1))(F`) is O1(d − 1,F`)- irreducible. So for each i ≥ 1,
Γi/Γi+1 is either 0 or it is Lie(Sp(d− 1))(F`). We now use the element
γ to show that Γi/Γi+1 is never 0.
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If ` is large, i.e. if ` ≥ d−1, then N ` = 0, and we can use the powers
γ`

i
= 1 + `i(N + higher terms in N) exactly as in the proof of Lemma

4.6.1 to get the asserted result.
In the general case, let us denote by `ν the least power of ` with

`ν ≥ d − 1. Then N `ν = 0, but N `ν−1 6= 0 in Md−1(F`) (because
γ remains a regular unipotent element mod `). Then we claim that
γ`

ν
= 1 + `N0 for some nilpotent N0 with N0 6= 0 in Md−1(F`). Indeed,

when we expand γ`
ν

= (1+N)`
ν

by the binomial theorem, the last term
N `ν vanishes, and the intermediate terms all have coefficients divisible
by `, so our N0 is given by

N0 = (1/`)
`ν−1∑
a=1

Binom(`ν , a)Na.

Since N `ν−1 6= 0 in Md−1(F`), it suffices to show that for some integer
1 ≤ a ≤ `ν−1, we have ord`(Binom(`ν , a)) = 1. For the least such
a, we have N0 = (`−adic unit)Na + .... But a = `ν−1 is such an a.
Once we know that γ`

ν
= 1 + `N0 with N0 nilpotent and N0 6= 0 in

Md−1(F`), we proceed inductively, examining the `i powers of γ`
ν
. For

each i ≥ 0, we have γ`
ν+i

= 1 + `i+1Ni for some nilpotent Ni with
Ni 6= 0 in Md−1(F`), indeed Ni+1 = Ni + higher terms in Ni. We then

use these powers γ`
ν+i

exactly as in the proof of Lemma 4.6.1 to get
the asserted result. �

Corollary 4.10.2. Suppose ` is an odd prime, d ≥ 10 is even and
prime to `, and neither d− 1 nor d+ 1 is a power of `. Denote by

O1(d− 1,F`) ⊂ O(d− 1,F`)

the common image of ρ` and of ρ̃`. Then for every n ≥ 1, the images
of ρ`n and ρ̃`n are both the group O1(d− 1,Z/`nZ).

Proof. For both ρ and ρ̃, apply the previous result with Γ the `-adic
image, using local monodromy around ∞ as γ. �

Suppose d ≥ 10 is even, and N =
∏

i `
ni
i ≥ 3 is an odd integer which

is relatively prime to d. Suppose also that neither d − 1 nor d + 1 is
a power of any `i dividing N . We have the product group

∏
iO1(d −

1,Z/`nii Z). Each of its factors O1(d − 1,Z/`nii Z) has a determinant
homomorphism toward the same ”abstract” group ±1. We denote by

O1,=det(d− 1,Z/NZ) ⊂
∏
i

O1(d− 1,Z/`nii Z)
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the subgroup of elements (γi)i all of whose components fγi have the
same determinant in ±1 as each other. We have obvious inclusions

Image(ρN) ⊂ Image(ρ̃N) ⊂ O1,=det(d− 1,Z/NZ),

the second inclusion simply because ρ̃N is the reduction mod N of an
orthogonal representation in characteristic zero.

Lemma 4.10.3. In the situation of the paragraph above, we have

Image(ρN) = Image(ρ̃N) = O1,=det(d− 1,Z/NZ).

.

Proof. We show this by induction on the number distinct `i. If there is
only one, this is the previous result. Separate `1 from the others, and
define N0 := N/`n1

1 . Then we have

Image(ρN) ⊂ O1(d− 1,Z/`n1
1 Z)×O1,=det(d− 1,Z/N0Z),

and the subgroup Image(ρN) maps onto each factor, by induction. So
by Goursat’s lemma, this subgroup is the complete inverse image of an
isomorphism between isomorphic quotients of the two factors. The only
composition factors in the first factor are the simple group Ω(d−1,F`1),
a single ±1, and possibly some copies of F`1 . The only composition
factors in the second factor are the simple groups Ω(d − 1,F`i) with
i ≥ 2, possibly various copies of F`i with i ≥ 2, and some copies of ±1.
So the only possible common nontrivial quotient of the two factors is
the single group ±1. Now on the first factor such a quotient must be
a quotient of O1(d− 1,F`1), since the kernel of reduction mod `1 is an
`1-group. Similarly, on the second factor, such a quotient must be a
quotient of O1,=det(d − 1,Z/N red

0 Z), where we write N red
0 :=

∏
i≥2 `i.

But in each group O1(d− 1,F`i), the elements of determinant one are
precisely the simple group Ω(d − 1,F`i). So we have a short exact
sequence

{1} →
∏
i≥2

Ω(d− 1,F`i)→ O1,=det(d− 1,Z/N red
0 Z)

det→ ±1→ {1}.

Thus the only ±1 quotient of O1,=det(d − 1,Z/N red
0 Z) is by the deter-

minant. So by Goursat, Image(ρN) is either the full product O1(d −
1,Z/`n1

1 Z) × O1,=det(d − 1,Z/N0Z) or it the subgroup of this product
consisting of pairs with equal determinants, i.e., the group O1,=det(d−
1,Z/NZ). But as already noted, we have the a priori inclusion of the
image in O1,=det(d− 1,Z/NZ). �
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4.11. Analysis of the exceptional cases. What becomes of Theo-
rem 2.3 in the two excluded cases, when d± 1 is a power of `?

Lemma 4.11.1. Suppose ` is an odd prime, and d− 1 ≥ 5 is a power
of `. Then the images of ρ` and of ρ̃` are both the symmetric group
Sd ⊂ O(d− 1,F`), Sd in its deleted permutation representation.

Proof. It suffices to prove that the image of ρ̃` is Sd, since the image
of ρ` is then a normal subgroup of Sd of index dividing d, with cyclic
quotient. The only such proper subgroup is the alternating group Ad,
but this lies inside SO(d − 1,F`), whereas the image of ρ` contains
reflections. To show that ρ̃` has the asserted image, we use the abso-
lute irreducibility and the rigidity of our mod ` local system. Inside
the subgroup Sd ⊂ O(d − 1,F`) we indeed have three elements x, y, z
with xyz = 1 and which generate Sd, such that x has eigenvalues all
the nontrivial d’th roots of unity, y is a reflection, and z is a regular
unipotent element. Namely, we take x−1 := (1, 2, 3, ..., d), y := (1, 2),
and z := (2, 3, ...., d). [To see that z is a regular unipotent element,
notice first that it is unipotent because it has ` power order. Now view
z as lying in Sd−1. Then the given mod ` representation of < z > is
the restriction of the permutation representation of Sd−1; in this rep-
resentation, z has a one-dimensional space of invariants. Thus z is a
unipotent element with a one-dimensional space of invariants, which is
precisely a regular unipotent element.] �

Lemma 4.11.2. Suppose ` is an odd prime, and d+1 ≥ 5 is a power of
`. Then the images of ρ` and of ρ̃` are both the symmetric group Sd+1 ⊂
O(d− 1,F`), Sd+1 in its doubly deleted permutation representation.

Proof. Exactly as in the lemma above, it suffices to show that the image
of ρ̃` is Sd+1. We again use the absolute irreducibility and the rigidity
of our mod ` local system. Inside the subgroup Sd+1 ⊂ O(d − 1,F`)
we indeed have three elements x, y, z with xyz = 1 and which generate
Sd+1, such that x has eigenvalues all the nontrivial d’th roots of unity,
y is a reflection, and z is a regular unipotent element. Namely, we
take x−1 := (2, 3, ..., d + 1), y := (1, 2), and z := (1, 2, 3, ...., d + 1).
[To see that z is a regular unipotent element, notice again that it is
unipotent because it has ` power order. When we view z as lying
in Sd+1, it gives a regular unipotent element in O(d+ 1,F`) in the full
permutation representation of Sd+1, i.e., it gives a unipotent element of
companion type. Our d−1-dimensional representation is a subquotient
of this one, and the property of being of companion type passes to
subquotients.] �
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We can also be more precise about the entire `-adic image in these
two excluded cases.

Lemma 4.11.3. Suppose d− 1 ≥ 7, respectively d+ 1 ≥ 7, is a power
of the odd prime `. Denote by

OS(d− 1,F`) ⊂ O(d− 1,F`)
the symmetric group Sd ⊂ O(d−1,F`), respectively Sd+1 ⊂ O(d−1,F`).
Denote by OS(d − 1,Z`) ⊂ O(d − 1,Z`), resp. by OS(d − 1,Z/`nZ) ⊂
O(d−1,Z/`nZ), the complete inverse image of OS(d−1,F`) under the
“reduction mod `” map. Let Γ ⊂ OS(d − 1,Z`) be a closed subgroup
which maps onto OS(d − 1,F`). Suppose that there is an element γ ∈
Γ which is a regular unipotent element (i.e., unipotent with a single
Jordan block) when viewed in O(d−1,Q`) and which remains a regular
unipotent element when reduced mod ` in O(d − 1,F`). Then Γ maps
onto OS(d− 1,Z/`nZ) for every n ≥ 1, and Γ = OS(d− 1,Z`).

Proof. The key point is the subgroup OS(d− 1,F`) ⊂ O(d− 1,F`) acts
irreducibly on Lie(SO(d − 1)). In fact already the alternating group,
Ad or Ad+1 in the two cases, acts irreducibly, cf. [MagMal, Prop. 2.5,
Table 2.1]. Using this fact, the proof is then identical to the proof of
Lemma 4.10.1. �

Corollary 4.11.4. Suppose d − 1 ≥ 7, respectively d + 1 ≥ 7, is a
power of the odd prime `. The for every n ≥ 1, the images of ρ`n and
ρ̃`n are both the group OS(d− 1,Z/`nZ).
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