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1. Introduction

Let k be a finite field, p its characteristic, q its cardinality, and

ψ : (k,+)→ Z[ζp]
× ⊂ C×

a nontrivial additive character of k. Given an integer n ≥ 1 and an
element a ∈ Gm(k) = k×, the n-variable Kloosterman sum Kln(ψ, k, a)
is the complex number defined as

Kln(ψ, k, a) :=
∑

x1....xn=a, all xi∈k

ψ(
n∑
i=1

xi).

It was proven by Weil [Weil] in 1948, as a consequence of the Riemann
Hypothesis for curves over finite fields, along lines foreseen by Daven-
port and Hasse [Dav-Ha] in 1934, that, at least if p is odd, one had the
estimate

|Kl2(ψ, k, a)| ≤ 2q1/2.

It was expected that in general one should have

|Kln(ψ, k, a)| ≤ nq(n−1)/2,

but this was only proven nearly thirty years later, by Deligne [De-ST,
7.4].

In between, there appeared a 1969 result of Carlitz [Car], which did
not then seem to fit into any known paradigm. Carlitz proved the
expected estimate in the special case when p = 2 and n = 3. He
did this by proving the following identity. Denote by ψF2 the unique
nontrivial additive character of the field F2, and take for ψ the additive
character

ψ := ψF2 ◦ Tracek/F2
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of k obtained by composition with the trace. With this particular choice
of ψ, Carlitz proved the striking identity

Kl2(ψ, k, a)2 = q +Kl3(ψ, k, a).

We will see that there is an analogous identity for Kl2(ψ, k, a)2 in
any characteristic, but in odd characteristic it involves the so-called
hypergeometric sums of type (3, 1) (as opposed to 3-variable Kloost-
erman sums, which are hypergeometric sums of type (3, 0)). These
identities are reminiscent of Clausen’s famous 1828 identity [Clau] for
the square of a hypergeometric function, and of Schläfli’s (surprisingly)
later 1871 identity [Schl, pages 141-142] for the square of a Bessel func-
tion. [Indeed, one might speculate that Carlitz was led to his identity
by looking for a finite field analogue of Schläfli’s.]

To understand these identities, we invoke the theory of hypergeomet-
ric sheaves (of which Kloosterman sheaves are a special case), and their
properties of rigidity. In terms of these sheaves, what these identities
amount to is roughtly the statement that if H is a known hypergeo-
metric sheaf of rank 2, then Sym2(H) is a known hypergeomtric sheaf
of rank 3.

In fact, there are some other identities for Kloosterman and hyper-
geometric sums in (a few) more variables, which come from the ”acci-
dent” that for 3 ≤ n ≤ 6, the spin double covering group of the special
orthogonal group SO(n)

Spin(n)→ SO(n)

is a classical group. Here is a table. For 3 ≤ n ≤ 6, we list below
Spin(n) as a classical group, and we tell how the tautological represen-
tation Vn of SO(n) is built out of the ”standard” representation stdn
of Spin(n) as classical group.

n Spin(n) Vn

3 SL(2) Sym2(std2)

4 SL(2)× SL(2) std2 ⊗ std2

5 Sp(4) Λ2(std4)/(triv)

6 SL(4) Λ2(std4)

The n = 3 case leads to formulas of the Carlitz type discussed above.
The n = 4 case leads to identities for products of two suitable Kloost-
erman or hypergeometric sums, which are a finite field analogue of
Schläfli’s formula [Schl, pages 141-142] for the product of Bessel func-
tions. The n = 4 case also leads, by the method of tensor induction,
to finite field analogues of formulas [Bai2, 2.04, 2.07, and 2.09, on
pages 245-246] or [EMOT, 4.3 (3), (4), (5)] for products of the form
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f(x)f(−x), with f a suitable Bessel or hypergeometric function. The
product formula of Cayley and its later generalizations by Orr and Bai-
ley, cf. [Cay], [Orr], and [BC], do not seem to fit into this framework,
however.

The n = 5 and n = 6 cases lead to formulas for “Λ2” of certain 4-
variable sums, a sort of finite field analogue of an investigation begun
by Appell, cf. [App, pp. 415-417].

In the cases of n = 4, 5, 6, a consideration of the Lie algebra aspects
of these accidents leads to some other identities, which do not seem to
occur in the classical hypergeometric literature.

Some of this material was presented at Beijing University in July,
2005, at the University of Wisconsin in November, 2005, and at the
University of Minnesota in September, 2007. It is a pleasure to thank
Dennis Stanton for pointing me to Bailey’s 1928 paper [Bai2] with its
plethora of hypergeometric identities; examination of [Bai2, 2.04,2.07,2.09]
led to section 6 of this paper, and examination of [Bai2, 2.11] led to
section 7.

2. Hypergeometric sums and hypergeometric sheaves, cf.
[Ka-ESDE, Chapter 8] and [Ka-G2, section 2]

2.1. Hypergeometric sums. Denote by Qab the field Q(all roots of
unity), say inside C. Let k be a finite field of characteristic p and cardi-
nality q, inside a fixed Fp, and ψ a nontrivial Q×ab-valued additive char-
acter of k. Fix two non-negative integers n and m, at least one of which
is nonzero. Let χ1, ..., χn be an unordered list of n Q×ab-valued multi-
plicative characters of k×, some possibly trivial, and not necessarily dis-
tinct. We denote by I the trivial multiplicative character. Let ρ1, ..., ρm
be another such list, but of length m. For E/k a finite extension field
(inside the fixed Fp), denote by ψE the nontrivial additive character of
E obtained from ψ by composition with the trace map TraceE/k, and
denote by χi,E (resp. ρj,E) the multiplicative character of E obtained
from χi (resp. ρj) by composition with the norm map NormE/k. For
a ∈ E×, the hypergeometric sum Hyp(ψ;χ′is; ρ

′
js)(a,E) is the cyclo-

tomic integer defined as follows. Denote by V (n,m, a) the hypersurface
in (Gm)n × (Gm)m/E, with coordinates x1, ..., xn, y1, ..., ym, defined by
the equation ∏

i

xi = a
∏
j

yj.

Then

Hyp(ψ;χi
′s; ρj

′s)(a,E) :=
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V (n,m,a)(E)

ψE(
∑
i

xi −
∑
j

yj)
∏
i

χi,E(xi)
∏
j

ρj,E(yj).

These hypergeometric sums are closely related to monomials in Gauss
sums, by multiplicative Fourier transform. Recall that for Λ a multi-
plicative character of E×, the Gauss sum g(ψE,Λ) is defined by

g(ψE,Λ) :=
∑
x∈E×

ψE(x)Λ(x).

Thus for Λ the trivial character I, we have

−g(ψE, I) = 1.

For E/k a finite extension field, and for any multiplicative character Λ
of E× we have the formula∑
a∈E×

Λ(a)Hyp(ψ;χi
′s; ρj

′s)(a,E) =
∏
i

g(ψE, χi,EΛ)
∏
j

g(ψE, ρj,EΛ).

By Fourier inversion, for each a ∈ E× we have the formula∑
Λ

Λ(a)
∏
i

g(ψE, χi,EΛ)
∏
j

g(ψE, ρj,EΛ) = (#E−1)Hyp(ψ;χi
′s; ρj

′s)(a,E).

2.2. Hypergeometric sheaves and their trace functions. Now
make the disjointness assumption that no χi is a ρj. Then for ev-

ery prime ` 6= p, and every embedding of Qab into Q`, there exists a
geometrically irreducible middle extension Q`-sheaf

H(ψ;χi
′s; ρj

′s)

on Gm/k of rank Max(n,m) and pure of weight n + m− 1. It is lisse
on Gm if n 6= m, and it is lisse on Gm − 1 if n = m. Its trace function
on Gm incarnates the above hypergeometric sums, as follows. For any
finite extension E/k and any a ∈ E×−1, (or, if n 6= m, for any a ∈ E×),
we denote by FrobE,a the Frobenius conjugacy class in π1(Gm− 1) (or,
if n 6= m, in π1(Gm)) attached to a as an E-valued point of Gm−1 (or,
if n 6= m, of Gm).Then we have

Trace(FrobE,a|H(ψ;χi
′s; ρj

′s)) = (−1)n+m−1Hyp(ψ;χi
′s; ρj

′s)(a,E).

In the “missing” case when n = m and a = 1, this formula remains
valid if we interpret the left hand side to mean the trace of FrobE
on the stalk of H at 1, i.e., on the space HI1 of inertial invariants at
the point 1. A hypergeometric sheaf of type (n, 0), H(ψ;χi

′s; ∅), is
called a Kloosterman sheaf of rank n, denoted K`(ψ;χi

′s). Thus the
Kloosterman sum Kln(ψ, k, a) is, up to the sign (−1)n−1, the trace of
Frobk,t on K`(ψ; I, ..., I n times).
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Because H(ψ;χi
′s; ρj

′s) is geometrically irreducible, it is a fortiori
arithmetically irreducible. Therefore any auxiliary sheaf F , lisse on
Gm − 1 (or on Gm, if n 6= m), built out of H by ”an opertion of linear
algebra”, i.e., by pushing out by a representation of GL(rank(H)) as
algebraic group over Q, and any subquotient G of such an F , is itself
arithmetically semisimple, and hence, by Chebotarev, is determined by
its traces Trace(FrobE,a|G), as E ranges over all finite extensions of k,
and as a runs over E× − 1 (or over E×, if n 6= m).

Given a hypergeometric sheaf H(ψ;χi
′s; ρj

′s) on Gm/k and a Kum-
mer sheaf LΛ attached to a multiplicative character Λ of k, we have an
isomorphism

LΛ ⊗H(ψ;χi
′s; ρj

′s) ∼= H(ψ; Λχi
′s; Λρj

′s),

because the two sides have, by inspection, the same traces.
Under multiplicative inversion, we have

inv?H(ψ;χi
′s; ρj

′s)) ∼= H(ψ; ρj
′s;χi

′s)).

The linear dual of H := H(ψ;χi
′s; ρj

′s) is given by

H(ψ;χi
′s; ρj

′s)∨ ∼= H(ψ;χi
′s; ρj

′s)(n+m− 1).

If ((
∏

j ρj)/(
∏

i χi))(−1) = 1, a condition which always holds over the

quadratic extension of k, then multiplicative translation t 7→ (−1)n−mt
carries H(ψ;χi

′s; ρj
′s) into H(ψ;χi

′s; ρj
′s). More generally, for A

the constant
A := ((

∏
j

ρj)/(
∏
i

χi))(−1) = ±1,

and Adeg the corresponding geometrically constant lisse sheaf of rank
one, we have

[t 7→ (−1)n−mt]?H(ψ;χi
′s; ρj

′s) ∼= H(ψ;χi
′s; ρj

′s)
⊗

Adeg.

2.3. Local monodromy at 1, if n=m. If n = m, the local mon-
odromy of H at 1, i.e., its restriction to the inertia group I1 at the point
1, is a tame pseudoreflection, whose determinant is (

∏
j ρj)/(

∏
i χi),

viewed as a tame character of I1. Here we view multiplicative char-
acters of k× as characters of I tame1 as follows. First we use additive
translation to identify I1 with I0. Then we view multiplicative charac-
ters of k× as characters of I tame0 in two steps, as follows. First use the
inclusion (which is in fact an isomorphism)

I tame0 ⊂ πtame1 (Gm ⊗ k),

and then use the isomorphism (given by the Lang torsor)

πtame1 (Gm ⊗ k) ∼= liminvE/k,NormE/k
E×.
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2.4. Local monodromy at 0, when n ≥ m. Let us now suppose in
addition that n ≥ m, a situation we can always achieve by multiplica-
tive inversion. Local monodromy at 0 is tame, and the action of a gen-
erator γ0 of I tame0 is the action of T on the Q`[T ]-module Q`[T ]/(P (T )),
for P (T ) the polynomial

P (T ) :=
∏
i

(T − χi(γ0)).

Here we use view multiplicative characters χi of k× as characters of
I tame0 via the inclusion, in fact an isomorphism,

I tame0 ⊂ πtame1 (Gm ⊗ k) ∼= liminvE/k,NormE/k
E×.

2.5. Local monodromy at ∞, when n ≥ m. Local monodromy at
∞ is the direct sum of an m-dimensional tame summand, say Tamem,
and, if n > m, a totally wild summand,

Wild(ψ;χi
′s; ρj

′s),

of dimension n−m, Swan conductor 1, and all upper numbering breaks
equal to 1/(n−m). On Tamem, the action of a generator γ∞ of I tame∞
is the action of T on the Q`[T ]-module Q`[T ]/(Q(T )), for Q(T ) the
polynomial

Q(T ) :=
∏
j

(T − ρj(γ∞)).

Here we use view multiplicative characters ρj of k× as characters of
I tame∞ via the inclusion, again an isomorphism,

I tame∞ ⊂ πtame1 (Gm ⊗ k) ∼= liminvE/k,NormE/k
E×.

The isomorphism class of any totally wild representation of I∞ with
Swan conductor 1, is determined, up to unique multiplicative transla-
tion on Gm⊗k, by its rank n−m and its determinant. More precisely,
the isomorphism class of

Wild(ψ;χi
′s; ρj

′s)

depends only on the triple ( the character ψ, the rank n − m, the
character (

∏
i χi)/(

∏
j ρj)), cf. [Ka-ESDE, 8.6.4].] We denote by

Wildn−m(ψ, α), α := (
∏
i

χi)/(
∏
j

ρj),

one representation in this isomorphism class. When n −m ≥ 2, then
det(Wildn−m(ψ, α)) = α.

For any d ≥ 1, we obtain a choice ofWildd(ψ, α) as the I∞-representation
attached to any Kloosterman sheaf K`(ψ;χ1, ..., χd) of type (d, 0) with∏

i χi = α.
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If d is prime to the characteristic p, then denoting by [d] : Gm → Gm

the d’th power map, and by Lψd
the Artin Schreier sheaf attached to

the character ψd(x) := ψ(dx), one knows [Ka-GKM, 5.6.2] that the
direct image [d]?Lψd

is geometrically isomorphic to the Kloosterman
sheaf of rank d

K`(ψ; all characters of order dividing d).

Its Wildd thus has trivial determinant if d is odd, and has determinant
the quadratic character χ2 if d is even. But as d is prime to the char-
acteristic p, any multiplicative character α has, over a possibly bigger
finite field, a d’th root. So Wildd(ψ, α) is the tensor product of a tame
character with (the restriction to I∞ of) [d]?Lψd

. More precisely, we
have

Wildd(ψ, α) ∼= [d]?(Lα ⊗ Lψd
if d is odd,

Wildd(ψ, α) ∼= [d]?(Lαχ2 ⊗ Lψd
if d is even,

where we write χ2 for the quadratic character. Therefore the pullback
[d]?Wildd(ψ, α) has a known and explicit structure as a representation
of the inertia group I∞: it is the restriction to I∞ of

Lα(x) ⊗
⊕

ζ∈µd(k)

Lψ(ζdx), if d is odd,

L(αχ2)(x) ⊗
⊕

ζ∈µd(k)

Lψ(ζdx), if d is even.

What is the structure of Wildd(ψ, α) when d is not prime to p, e.g.,
when d is a power q of p? In this case, one knows [Ka-GKM, 1.14,
1.14.2, 1.15] that the restriction of Wildq(ψ, α) to the wild inertia group
P∞ is absolutely irreducible. In fact, this restriction Wildq(ψ, α)|P∞
detects multiplicative translations, as the following (slightly more gen-
eral) lemma (combined with [Ka-ESDE, 8.6.4]) shows, applied to two
multiplicative translates M and N of Wildq(ψ, α).

Lemma 2.5.1. Let k be a finite field, ` 6= p a prime, q a power of
p, M and N two absolutely irreducible Q`-representations of I∞, both
of dimension q. Suppose that det(M) = det(N) as characters of I∞.
Suppose also that there exists an isomorphism of P∞-representations

M |P∞ ∼= N |P∞.

Then there exists an isomorphism of I∞-representations

M ∼= N.
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Proof. If q = 1, there is nothing to prove, since M = det(M) and
N = det(N). Suppose now that q > 1. By [Ka-GKM, 1.15], both
M |P∞ and N |P∞ are absolutely irreducible. Hence the internal hom
HomP∞(M,N) is a one-dimensional representation of I∞ on which P∞
acts trivially, so is a Kummer sheaf Lχ for some tame character χ. The
canonical I∞-equivariant composition map

HomP∞(M,N)⊗M → N

is an isomorphism, so we have

Lχ ⊗M ∼= N.

Comparing determinants, we conclude that χq = I is the trivial char-
acter. As q is a power of p, χ itself is trivial. �

2.6. Frobenius action on inertial invariants.

Lemma 2.6.1. Let k be a finite field, ` 6= p a prime, and H :=
H(ψ;χi

′s; ρj
′s) on Gm/k a hypergeometric sheaf of type (n,m). Sup-

pose that the trivial character I is among the χi (respectively among
the ρj). Then the space HI0 of I0-invariants (respectively the space
HI∞ of I∞-invariants) is one-dimensional, and Frobk acts on it as the
monomial in gauss sums

Trace(Frob|HI0) =
n∏
i=1

(−g(ψ, χi))
m∏
j=1

(−g(ψ, ρj)).

Proof. By multiplicative inversion, it suffices to treat the I0 case. That
HI0 is one-dimensional follows from the structure of the I0-representation
recalled above, that each character that occurs in it occurs in a single
Jordan block. As I occurs at 0, it does not occur at∞, by disjointness,
and hence HI∞ = 0. So if we denote by

j : Gm → P1

the inclusion, we have a short exact sequence of sheaves on P1,

0→ j!H → j?H → HI0 conc. at 0→ 0.

We claim that all the cohomology groups H i(P1 ⊗ k, j?H) vanish. To
see this, notice that H is not only geometrically irreducible, but when
it has rank one it is geometrically nonconstant (because it is ramified
at ∞, for type (1, 0),or at 0 , for type (0, 1)or at 1, for type (1, 1).
Hence both the H0 and the H2 vanish, so it suffices to see that the
Euler characteristic vanishes. But this is obvious from the above short
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exact sequence, since H has Euler characteristic −1. So from the long
exact sequence of cohomology, we get a coboundary isomorphism

HI0 ∼= H1
c (Gm ⊗ k,H),

while all the other groups H i
c(Gm ⊗ k,H), i 6= 1, vanish. By the

Lefschetz Trace Formula applied to H, we have

Trace(Frobk|H1
c (Gm ⊗ k,H)) = −

∑
t∈k×

Trace(Frobk,t|H) =

−
∑
t∈k×

(−1)n+m−1Hyp(ψ;χ′is; ρ
′
js)(t, k) =

n∏
i=1

(−g(ψ, χi))
m∏
j=1

(−g(ψ, ρj)),

this last equality by the relation, recalled above, of hypergeometric
sums to monomials in Gauss sums. �

2.7. Rigidity properties. We next recall from [Ka-ESDE, 8.5.3.1] the
fundamental rigidity result for hypergeometric sheaves of type (n,m).
Consider first the case when n > m. Suppose we are given a lisse,
geometrically irreducible Q`-sheaf F on Gm/k of rank n ≥ 1 which is
tame at 0 and has Swan∞(F) = 1. Suppose in addition that all the
tame characters which occur in the local monodromy at both 0 and∞
are characters of k×, i.e., have order dividing #k×. Then F is geomet-
rically isomorphic to a unique multiplicative translate, by an element
of Gm(k) = k×, of a unique hypergeometric sheaf H(ψ;χi

′s; ρj
′s) on

Gm/k of type (n,m) for some m < n.
What about the case n = m? Suppose we are given a geometrically

irreducible middle extension sheaf on Gm of rank n ≥ 1 which is lisse
on Gm − 1, tame at both 0 and ∞, and whose local monodromy at
1 is a tame pseudoreflection. Suppose in addition that all the tame
characters which occur in the local monodromy at both 0 and ∞ are
characters of k×, i.e., have order dividing #k×. Then F is geometrically
isomorphic to a unique hypergeometric sheaf H(ψ;χi

′s; ρj
′s) on Gm/k

of type (n, n). [In the case n = m, the geometric isomorphism class is
independent of the choice of ψ.]

Suppose now we are given a lisse Q`-sheaf F on Gm/k of rank n ≥ 1
which is is tame at 0 and has Swan∞(F) = 1, but which is not assumed
to be geometrically irreducible. Suppose that all the tame characters
χi, i = 1, ..., n occuring in the local monodromy at 0 , respectively all
the tame characters ρj, j = 1, ...,m with m < n at ∞ are characters of
k×, and make the disjointness assumption that no χi is a ρj. Then in
fact F is geometrically irreducible, hence is geometrically isomorphic to
a unique multiplicative translate, by an element of Gm(k) = k×, of the
hypergeometric sheaf H(ψ;χi

′s; ρj
′s) of type (n,m) on Gm/k. Indeed,
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denote by Wild(F) the wild part of the I∞-representation of F . Work
over k, and form the Jordan-Holder constituents, say Fi, of F as lisse
sheaf on Gm/k. Since Wild(F) has Swan conductor 1, it is irreducible,
and so is contained in precisely one of the Jordan-Holder constituents,
say F0. The other Jordan-Holder constituents are then tame at both 0
and∞, so are necessarily Kummer sheaves. But the existence of such a
Kummer sheaf constituent contradicts the disjointness assumption that
no χi is a ρj. Therefore F is geometrically irreducible, as asserted.

Similarly, suppose we are given a middle extension sheaf F on Gm/k
which is lisse on Gm − 1 and whose local monodromy at 1 is a tame
pseudoreflection, but which is not assumed to be geometrically irre-
ducible. Suppose that all the tame characters χi, i = 1, ..., n occuring
in the local monodromy at 0 , respectively all the tame characters
ρj, j = 1, ..., n at ∞ are characters of k×, and make the disjointness
assumption that no χi is a ρj. Then F is geometrically irreducible.
The key point is that F is a middle extension sheaf on Gm whose Euler
characteristic is −1. One knows the Euler characteristic of any middle
extension sheaf on Gm is a negative integer, and that it is zero if and
only if the sheaf is a successive extension of Kummer sheaves. Then
conclude as above that among the Jordan-Holder constituents, there is
precisely one whose Euler characteristic is −1, and that there can be
no others, since these would be Kummer sheaves, not allowed by the
disjointness.

2.8. A twisting principle. To end this section, we recall the follow-
ing general principle, valid on any smooth, geometrically connected
k-scheme U/k. Suppose F and G are geometrically irreducible lisse
Q`-sheaves on U which are geometrically isomorphic. The there ex-

ists a unit A ∈ Q`
×

such that after tensoring with the geometrically
constant lisse rank one sheaf Adeg, we have an arithmetic isomorphism
F ∼= G ⊗ Adeg.

3. The Carlitz identity

Theorem 3.1 (Carlitz). Denote by ψ the unique nontrivial additive
character of the field F2. Then we have the following two equivalent
results.

(1) For every odd prime `, we have an isomorphism of lisse Q`-
sheaves on Gm/F2,

Sym2(K`(ψ; I, I)) ∼= K`(ψ; I, I, I).
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(2) For every finite extension field E/F2, and for every t ∈ E×, we
have the Carlitz identity of Kloosterman sums

Kl2(ψE, E, t)
2 = #E +Kl3(ψE, E, t).

Proof. The first assertion implies the second, by passing to traces, and
remembering [Ka-GKM, 7.4.1.2] that det(K`(ψ; I, I)) ∼= Q`(−1).The
second implies the first, by Chebotarev, which guarantees that both
sides have isomorphic semisimplifications. But both sides are arith-
metically semisimple. Indeed, both K`(ψ; I, I)) and K`(ψ; I, I, I) are
geometrically irreducible, hence arithmetically irreducible. The arith-
metic semisimplicity of K`(ψ; I, I) implies that of anything built out of
it by linear algebra, in particular Sym2(K`(ψ; I, I)).

To prove the first assertion, we argue as follows. We know [Ka-GKM,
11.1] that the geometric monodromy group of K`(ψ; I, I)) is SL(2).
Therefore Sym2(K`(ψ; I, I)) is geometrically irreducible, with geomet-
ric monodromy group SO(3). Its local monodromy at 0 is Unip(3):=
a single unipotent Jordan block of size 3, simply because the local
monodromy at 0 of K`(ψ; I, I)) is Unip(2).

What about the local monodromy at ∞ of Sym2(K`(ψ; I, I))? The
local monodromy at ∞ of K`(ψ; I, I) has both slopes 1/2, so

Swan∞(Sym2(K`(ψ; I, I))) ≤ 3/2.

But Swan conductors are nonnegative integers, so Swan∞(Sym2) is 0
or 1. It cannot be 0, otherwise Sym2(K`(ψ; I, I)) is a lisse sheaf on
Gm/k which is tame at both 0 and ∞, so is a successive extension
of rank one Kummer sheaves, so cannot be geometrically irreducible.
Therefore Swan∞(Sym2(K`(ψ; I, I))) = 1, and all the ∞-slopes are
≤ I/2. So either Sym2(K`(ψ; I, I)) is totally wild at ∞, with all ∞-
slopes 1/3, or its I∞-representation is the direct sum of a tame charac-
ter and a totally wild part of rank 2 with both ∞-slopes 1/2. We now
show this second possibility cannot arise. Indeed, in this second case,
rigidity would show that, geometrically, Sym2(K`(ψ; I, I)) is a multi-
plicative translate of a hypergeometric sheaf of type (3, 1) of the shape
H(ψ; I, I, I;χ) for some nontrivial (by disjointness) χ. But this sheaf
has geometric monodromy group SO(3), in particular is self dual, and
this is possible only if χ = χ. But in characteristic 2, the only such χ
is the trivial character.

[Here is a second argument to show that Sym2(Wild2(ψ, I)) is to-
tally wild in characteristic 2. Since K`(ψ; I, I)) is geometrically self
dual, Wild2(ψ, I)|P∞ is self dual. So it is the same to show that
End0(Wild2(ψ, I)) is totally wild, i.e., to show that the space of P∞-
invariants in End(Wild2(ψ, I)) is one-dimensional. And this is just
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Schur’s lemma, because in characteristic2, Wild2(ψ, I)|P∞ is absolutely
irreducible.]

Therefore the local monodromy at ∞ of Sym2(K`(ψ; I, I)) is totally
wild, with all ∞-slopes 1/3. So by rigidity, it is geometrically iso-
morphic to a Gm(F2)-translate of K`(ψ; I, I, I). Since Gm(F2) consists
only of the identity element, we conclude that Sym2(K`(ψ; I, I)) and
K`(ψ; I, I, I) are geometrically isomorphic. As both are geometrically

irreducible, there exists a unit A ∈ Q`
×

such that we have an arithmetic
isomorphism

Sym2(K`(ψ; I, I)) ∼= K`(ψ; I, I, I)⊗ Adeg.
It remains to show that A = 1. For this, we argue as follows.

The ”half” Tate-twisted sheaf K`(ψ; I, I)(1/2) has Garith = Ggeom =
SL(2), and the Tate-twisted sheaf K`(ψ; I, I, I)(1) has Garith = Ggeom =
SO(3), cf. [Ka-GKM, 11.1 and 11.3]. Hence both Sym2(K`(ψ; I, I))(1)
and K`(ψ; I, I, I)(1) have Garith = Ggeom = SO(3). Therefore A is a
scalar which lies inSO(3), so A = 1. �

Corollary 3.2. For ψ the nontrivial additive character of F2, we have
isomorphisms of I∞-representations

Sym2(Wild2(ψ; I)) ∼= Wild3(ψ, I),

Wild2(ψ; I)⊗Wild2(ψ; I) ∼= Wild3(ψ, I)⊕Q`.

Proof. Restrict the isomorphism of part (1) of the theorem to the in-
ertia group at ∞ to obtain the first assertion, and remember that
det(Wild2(ψ; I)) = I to deduce from it the second. �

We can now make use of the above corollary to prove a slight gen-
eralization of the theorem. Henceforth, we will not spell out the trace
identities which result from, and are indeed equivalent to (by Cheb-
otarev, cf. 2.2), arithmetic isomorphisms of arithmetically semisimple
lisse sheaves.

Theorem 3.3. Let k be a finite field of characteristic 2, and ψk the
nontrivial additive character of k obtained from the ψ mof the previous
theorem by composition with the trace. Let χ be any multiplicative
character of k×, χ the inverse character. Then for every odd prime `,
we have an isomorphism of lisse Q`-sheaves on Gm/k,

Sym2(K`(ψk;χ, χ)) ∼= K`(ψk; I, χ2, χ2).

Proof. By the above corollary, and the fact that the I∞-representation
of K`(ψk;χ, χ) is independent of the choice of χ, we know we know
that local monodromy at∞ of Sym2(K`(ψk;χ, χ)) is Wild3(ψ, I). Since
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Wild3(ψ, I) is irreducible, we see that Sym2(K`(ψk;χ, χ)) must be geo-
metrically irreducible. Then by rigidity, we conclude that it is geomet-
rically isomorphic to some k×-translate of K`(ψk; I, χ2, χ2). Looking
again at the I∞-representations, which detect multiplicative transla-
tions, we conclude that the two sheaves in question are geometrically
isomorphic. As both are geometrically irreducible, there exists a unit

A ∈ Q`
×

such that we have an arithmetic isomorphism

Sym2(K`(ψk;χ, χ)) ∼= K`(ψk; I, χ2, χ2)⊗ Adeg.

We then show that A = 1 as follows. Whatever the choice of χ,
the half Tate-twisted sheaf K`(ψk;χ, χ)(1/2) has both its Ggeom and
its Garith inside SL(2), cf. [Ka-GKM, 7.4.1.2]. Therefore the Tate-
twisted sheaf Sym2(K`(ψk;χ, χ))(1) has both its Ggeom and its Garith

inside S)(3). So the Tate-twisted sheafK`(ψk; I, χ2, χ2)(1) has itsGgeom

inside SO(3). This sheaf is orthogonally self dual, so its Garith lies in
O(3). But again by [Ka-GKM, 7.4.1.2], its Garith lies in SL(3). So its
Garith lies in SO(3). Thus again A is a scalar which lies in SO(3), so
A = 1. �

Here is a slightly more general restatement of this last theorem.

Corollary 3.4. Let k be a finite field of characteristic 2, and ψk the
nontrivial additive character of k obtained from the ψ mof the previous
theorem by composition with the trace. Let Λ and ρ be any multiplicative
characters of k×. Then for every odd prime `, we have an isomorphism
of lisse Q`-sheaves on Gm/k,

Sym2(K`(ψk; Λ, ρ)) ∼= K`(ψk; Λρ,Λ2, ρ2).

Proof. Since we are in characteristic 2, every multiplicative charac-
ter has a unique square root. So we can find characters η and χ
of k× such that (Λ, ρ) = (ηχ, ηχ). Then we have K`(ψk; Λ, ρ) ∼=
Lη ⊗K`(ψk;χ, χ), and the result now follows by applying the previous
corollary to K`(ψk;χ, χ). �

What happens in odd characteristic? Here K`(ψ; I, I, I) is replaced
by a hypergeometric sheaf of type (3, 1), which involves the quadratic
character (and hence “makes no sense” in characteristic 2).

Theorem 3.5. Let k be a finite field of odd characteristic p, and ψ a
nontrivial additive character of k. Denote by χ2 the quadratic charac-
ter, i.e., the unique character of k× of order 2. Then for every prime
` 6= p, we have an isomorphism of lisse Q`-sheaves on Gm/k

Sym2(K`(ψ; I, I)) ∼= [x 7→ 4x]?H(ψ; I, I, I;χ2)⊗ Adeg,
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for A (minus) the reciprocal Gauss sum

A := 1/(−g(ψ, χ2)), g(ψ, χ2) :=
∑
x∈k×

ψ(x)χ2(x).

Proof. We apply rigidity to the sheaf Sym2(K`(ψ; I, I)). SinceGgeom for
K`(ψ; I, I)) is SL(2), it follows that Sym2(K`(ψ; I, I)) is geometrically
irreducible, with Ggeom the group SO(3). Its local monodromy at 0 is
Unip(3). To analyze its local monodromy at ∞, we pull back by the
squaring map [2], to find, as representation of I∞,

[2]?Sym2(K`(ψ; I, I)) ∼= [2]?Sym2([2]?(Lχ2(x) ⊗ Lψ(2x))

∼= Sym2([2]?[2]?(Lχ2(x) ⊗ Lψ(2x))) ∼= Sym2(Lχ2(x) ⊗ (Lψ(2x) ⊕ Lψ(−2x)))

∼= Lψ(4x) ⊕ Lψ(−4x) ⊕Q`.

Thus we see that Sym2(K`(ψ; I, I)) is a hypergeometric of type (3, 1),
geometrically isomorphic to a multiplicative translate of H(ψ; I, I, I; ρ)
for some nontrivial ρ. But as this Sym2 is geometrically self dual, we

must have ρ = χ2. By rigidity, we then know that for some t ∈ k
×

,
there exists a geometric isomorphism

Sym2(K`(ψ; I, I)) ∼= [x 7→ tx]?H(ψ; I, I, I;χ2).

We must show that t = 4. For this, write t = s2, for some s ∈ k×. Com-
paring the wild parts of the pullbacks by [2] of the I∞-representations,
we find

Lψ(4x) ⊕ Lψ(−4x)
∼= [2]?[x 7→ s2x]?Wild2(ψ, χ2)

∼= [x 7→ sx]?[2]?[2]?Lψ(2x)
∼= [x 7→ sx]?(Lψ(2x) ⊕ Lψ(−2x))

∼= Lψ(2sx) ⊕ Lψ(−2sx).

Thus s = ±2, and so t = 4.
So there exists a geometric isomorphism

Sym2(K`(ψ; I, I)) ∼= [x 7→ 4x]?H(ψ; I, I, I;χ2).

As both sides are geometrically isomorphic, there exists a a unit A ∈
Q`
×

such that we have an arithmetic isomorphism

Sym2(K`(ψ; I, I)) ∼= [x 7→ 4x]?H(ψ; I, I, I;χ2)⊗ Adeg.

We must show that A = 1/(−g(ψ, χ2)). Tate-twisting, we have an
arithmetic isomorphism

Sym2(K`(ψ; I, I))(1) ∼= [x 7→ 4x]?H(ψ; I, I, I;χ2)(1)⊗ Adeg.
But now the source Sym2(K`(ψ; I, I))(1) has Ggeom = Garith = SO(3)
(because K`(ψ; I, I)(1/2) has Ggeom = Garith = SL(2)). On the other
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hand, the Tate-twisted target [x 7→ 4x]?H(ψ; I, I, I;χ2)(3/2) is orthog-
onally self dual, so also

[x 7→ 4x]?H(ψ; I, I, I;χ2)(1)⊗ (1/(−g(ψ, χ2)))deg

is orthogonally self dual. But by [Ka-ESDE, 8.12.2], this last sheaf has
arithmetically trivial determinant, so has its Garith ⊂ SO(3). So the
ratio of A to 1/(−g(ψ, χ2)) is a scalar in SO(3), so is 1. �

Corollary 3.6. Let k be a finite field of odd characteristic p, and ψ a
nontrivial additive character of k. Denote by χ2 the quadratic charac-
ter. We have isomorphisms of representations of I∞

Sym2(Wild2(ψ, I)) ∼= Lχ2 ⊕ [x 7→ 4x]?Wild2(ψ, χ2),

Wild2(ψ, I)⊗Wild2(ψ, I) ∼= I⊕ Lχ2 ⊕ [x 7→ 4x]?Wild2(ψ, χ2),

Proof. Restrict the isomorphism of the previous theorem to the iner-
tia group at ∞ to obtain the first assertion, and use the fact that
det(Wild2(ψ, I)) = I to infer from it the second. �

Using this corollary, we now give a slight generalization of the theo-
rem.

Theorem 3.7. Let k be a finite field of odd characteristic p, and ψ a
nontrivial additive character of k. Denote by χ2 the quadratic charac-
ter. Let ρ be any multiplicative character of k×, ρ the inverse character.
Suppose that

ρ2 6= χ2.

Then for every prime ` 6= p, we have an isomorphism of lisse Q`-
sheaves on Gm/k

Sym2(K`(ψ; ρ, ρ)) ∼= [x 7→ 4x]?H(ψ; I, ρ2, ρ2;χ2)⊗ Adeg,
for A (minus) the reciprocal Gauss sum

A := 1/(−g(ψ, χ2)), g(ψ, χ2) :=
∑
x∈k×

ψ(x)χ2(x).

Proof. The previous corollary identifies the I∞ representation attached
to Sym2(K`(ψ; ρ, ρ)), and shows that the only tame character in it is
χ2. By the assumption that ρ2 6= χ2, we may form the geometrically
irreducbile hypergeometric sheaf H(ψ; I, ρ2, ρ2;χ2), and conclude that
Sym2(K`(ψ; ρ, ρ)) is geometrically isomorphic to a multiplicative trans-
late of it. Exactly as above we compute the multiplicative translate.
We compute the constant A as above, again using the fact that

[x 7→ 4x]?H(ψ; I, I, I;χ2)(1)⊗ (1/(−g(ψ, χ2)))deg



16 NICHOLAS M. KATZ

is orthogonally self dual, and, by [Ka-ESDE, 8.12.2], it has arithmeti-
cally trivial determinant, so has its Garith ⊂ SO(3). �

Here is a slightly more general restatement of this last theorem.

Corollary 3.8. Let k be a finite field of odd characteristic p, and ψ
a nontrivial additive character of k. Denote by χ2 the quadratic char-
acter. Let Λ and ρ be any multiplicative characters of k×. Suppose
that

ρ 6= χ2Λ.

Then for every prime ` 6= p, we have an isomorphism of lisse Q`-
sheaves on Gm/k,

Sym2(K`(ψ; Λ, ρ)) ∼= [x 7→ 4x]?H(ψ; Λρ,Λ2, ρ2; ρΛχ2)⊗ Adeg,
for

A := 1/(ρ(4)Λ(4)(−g(ψ, χ2))).

Proof. If the character Λρ had a square root (as a character of k×),
as it automatically did in characteristic 2, then just as in characteris-
tic 2 this would result from the previous (ρ, ρ) theorem by the same
twisting argument. In any case, such a square root exists over at most
a quadratic extension of k, so we do get a geometric isomorphism be-
tween Sym2(K`(ψ; Λ, ρ)) and [x 7→ 4x]?H(ψ; Λρ,Λ2, ρ2; ρΛχ2). Hence
for some unit A we get an isomorphism

Sym2(K`(ψ; Λ, ρ)) ∼= [x 7→ 4x]?H(ψ; Λρ,Λ2, ρ2; ρΛχ2)⊗ Adeg,
and the problem remains to evaluate A. To do this, we may, by tame
twisting, reduce to the case when at least one of the two characters Λ
and ρ is trivial, say Λ = I, and other,ρ, is not χ2.

To treat this case, we argue as follows. Since ρ 6= χ2, we see that
in the I0 representation of Sym2(K`(ψk; I, ρ)), the unipotent part is
a single Jordan block (of dimension 2 if ρ is trivial, and otherwise of
dimension 1), and hence the space of I0-invariants is one-dimensional.
Since we have an a priori inclusion of invariants,

Sym2((K`(ψ; I, ρ))I0) ⊂ (Sym2(K`(ψ; I, ρ)))I0 ,

and both sides are one-dimensional, this inclusion is an isomorphism,
and we get the identity

Trace(Frobk|Sym2(K`(ψ; I, ρ))I0) = (Trace(Frobk|K`(ψ; I, ρ)))I0)2

= (−g(ψ, ρ))2.

On the other hand, the I0-invariants in

[x 7→ 4x]?H(ψ; I, ρ, ρ2; ρχ2)⊗ Adeg
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are one-dimension, with Frobk-eigenvalue

(−g(ψ, ρ))(−g(ψ, ρ2))(−g(ψ, ρχ2))A.

Equate these two expressions for the Frobk-eigenvalue, rewrite g(ψ, ρ2) =
ρ2(2)g(ψ2, ρ

2), and use the Hasse-Davenport identity [Dav-Ha, 0.9I]

g(ψ2, ρ
2)g(ψ, χ2) = g(ψ, ρ)g(ψ, ρχ2)

to obtain the asserted value of A. �

4. The original Clausen isomorphism

The hypergeometric sheaf analogue of a generalized hypergeometric
function

nFm−1(a1, ..., an; b1, ..., bm−1;x)

in which no ai is either an integer or differs from any bj by an integer
is a (geometrically irreducible) hypergeometric sheaf

H(ψ; I, β1, ..., βm−1;α1, ..., αn)

of type (m,n), with the disjointness condition that no αi is either I or
any βj. In 1828, Clausen [Clau] proved the identity for hypergeometric
functions

2F1(a, b; a+ b+ 1/2;x)2 = 3F2(2a, a+ b, 2b; a+ b+ 1/2, 2a+ 2b;x).

The corresponding statement for hypergeometric sheaves in odd char-
acteristic is this.

Theorem 4.1. Let k be a finite field of odd characteristic p, ψ a non-
trivial additive character of k, and α, β two multiplicative characters
of k×, neither of which is I or χ2, and such that αβ 6= I and α 6= βχ2.
Put

γ := αβχ2

. Then for any ` 6= p we have an isomorphism of middle extension
sheaves on Gm/k

Sym2(H(ψ; I, γ;α, β)) ∼= H(ψ; I, γ, γ2;α2, β2, αβ)⊗ Adeg,
for A the constant

A = −#kg(ψ, γ)g(ψ, α2)g(ψ, β2)g(ψ, αβ)/g(ψ, γ2)g(ψ, α)2g(ψ, β)2.

Proof. The hypotheses on α and β insure that both H(ψ; I, γ;α, β) and
H(ψ; I, γ, γ2;α2, β2, αβ) are irreducible hypergeometric sheaves. The
ratio γ/αβ is χ2, hence the local monodromy around 1 ofH(ψ; I, γ;α, β)
is a true reflection. Hence the Sym2 has its local monodromy around
1 also a true reflection. Also the ratio γ3/α3β3 is χ2, hence the local
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monodromy around 1 of H(ψ; I, γ, γ2;α2, β2, αβ) is also a true reflec-
tion. Now both sides of the asserted isomorphism have isomorphic
local monodromies around each of 0, ∞, and 1, so the two sides are,
by rigidity, geometrically isomorphic. We then compute the constant
A by comparing the expressions of the Frobk-eigenvalue on the one-
dimensional space of I0-invariants on the two sides. �

In characteristic 2, we get a degenerate analogue of the Clausen
isomorphism, by erasing the term γ := αβχ2 that “doesn’t make sense”.
For ease of exposition, we interchange 0 and ∞ as well.

Theorem 4.2. Let k be a finite field of characteristic 2, ψ the nontriv-
ial additive character of k obtained by composition with the trace from
the nontrivial additive character of the prime field F2. Let α, β be two
multiplicative characters of k×, such that α, β, and αβ are all nontriv-
ial. Then for any odd ` we have an isomorphism of lisse Q`-sheaves on
Gm/k

Sym2(H(ψ;α, β; I)) ∼= H(ψ;α2, β2, αβ; I, α2β2)⊗ Adeg,

for A the constant

A = g(ψ, α)g(ψ, β)/#k.

Proof. The I∞-representation of H(ψ;α, β; I) is

I
⊕

Wild1(ψ, αβ) ∼= I
⊕
Lαβ ⊗ Lψ.

Because we are in characteristic 2, Lψ ⊗ Lψ is trivial, so the I∞-
representation of Sym2(H(ψ;α, β; I)) is

I
⊕
Lα2β2

⊕
Lαβ ⊗ Lψ.

This is also the I∞-representation of H(ψ;α2, β2, αβ; I, α2β2), so by
rigidity the two sides are geometrically isomorphic. We then compute
the constant A by comparing the expressions of the Frobk-eigenvalue
on the one-dimensional space of I0-invariants on the two sides, remem-
bering that for our choice of ψ, we have g(ψ, χ) = g(ψ, χ2) for any
multiplicative character χ. �

If we twist both sides by the square of a Kummer sheaf Lγ, and
rescale α and β, we get the following slight generalization.

Theorem 4.3. Let k be a finite field of characteristic 2, ψ the nontriv-
ial additive character of k obtained by composition with the trace from
the nontrivial additive character of the prime field F2. Let α, β, γ be
multiplicative characters of k×, such that α 6= γ, β 6= γ, and αβ 6= γ2.
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Then for any odd ` we have an isomorphism of lisse Q`-sheaves on
Gm/k

Sym2(H(ψ;α, β; γ)) ∼= H(ψ;α2, β2, αβ; γ2, α2β2/γ2)⊗ Adeg,

for A the constant

A = g(ψ, α/γ)g(ψ, β/γ)/#k.

5. The SL(2)× SL(2) case

We begin with characteristic 2, where, as always, the results are a
bit easier.

Theorem 5.1. Let k be a finite field of characteristic 2, and ψk the
nontrivial additive character of k obtained from the unique nontrivial
ψ of the the prime field F2 by composition with the trace. Let χ and ρ
be any multiplicative characters of k×, χ and ρthe inverse characters.
Suppose that

χ 6= ρ, χ 6= ρ.

Then we have the following two equivalent results.

(1) For every odd prime `, we have an isomorphism of lisse Q`-
sheaves on Gm/k,

K`(ψk;χ, χ)⊗K`(ψk; ρ, ρ) ∼= H(ψk;χρ, χρ, χρ, χρ; I)(1).

(1bis) For every odd prime `, we have an isomorphism of lisse Q`-
sheaves on Gm/k,

K`(ψk; I, χ2)⊗K`(ψk; I, ρ2) ∼= H(ψk; I, χ2, ρ2, χ2ρ2;χρ)⊗ Adeg.

Proof. The assertions (1) and (1bis) are equivalent; we pass from (1) to
(1bis) by tensoring with the Kummer sheaf Lχ ⊗ Lρ ∼= Lχρ. To prove
(1), we remark that under the hypotheses on χ and ρ, none of the four
characters (χρ, χρ, χρ, χρ) is trivial, so the geometrically irreducible hy-
pergeometric sheaf on the right exists. By the corollary in section 3 on
Sym2(Wild2(ψ, I)), we see that both sides of the alleged isomorphism
are lisse sheaves with isomorphic I0 and I∞-representations. Then by
the lemma in section 2, the left hand side is itself geometrically irre-
ducible. Hence one side is an Adeg twist of some multiplicative translate
of the other. But the wild parts of the I∞-representations of the two
sides are already isomorphic, and each has Swan∞ = 1, so no mul-
tiplicative translation is needed, both sides are already geometrically
isomorphic. So we have an isomorphism

K`(ψk;χ, χ)⊗K`(ψk; ρ, ρ) ∼= H(ψk;χρ, χρ, χρ, χρ; I)⊗ Adeg.
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It remains to show that A = 1/#k. For this, we pass to form (1bis).
Twisting both sides of the above isomorphism by the Kummer sheaf
Lχ ⊗ Lρ ∼= Lχρ, we obtain an isomorphism

K`(ψk; I, χ2)⊗K`(ψk; I, ρ2) ∼= H(ψk; I, χ2, ρ2, χ2ρ2;χρ)⊗ Adeg.
We obtain the asserted value of A by computing the Frobk-eigenvalue
on the one-dimensional space of I0-invariants on the two sides. We
obtain the equality

(−g(ψk, χ
2))((−g(ψk, ρ

2))

= (−g(ψk, χ
2))((−g(ψk, ρ

2))((−g(ψk, χ
2ρ2))(−g(ψk, χρ))A.

Now use the fact that for any multiplicative character Λ, here χρ, our
choice of ψk as coming from the prime field, leads, for p = 2 to the
identity

g(ψk,Λ) = g(ψk,Λ
2).

�

Because in characteristic 2 every multiplicative character has a unique
square root, Kummer twisting gives the following slight generalization
of the previous result.

Theorem 5.2. Let k be a finite field of characteristic 2, and ψk the
nontrivial additive character of k obtained from the unique nontrivial ψ
of the the prime field F2 by composition with the trace. Let χ, ρ,Λ, β be
any multiplicative characters of k×, and let η be the unique character
with

η2 = χρΛβ.

Suppose that none of χΛ, χβ, ρΛ, ρβ is η. Then for every odd prime `,
we have an isomorphism of lisse Q`-sheaves on Gm/k,

K`(ψk;χ, ρ)⊗K`(ψk; Λ, β) ∼= H(ψk;χΛ, χβ, ρΛ, ρβ; η)(1).

What happens in odd characteristic? Here we obtain a finite field
analogue of Schläfli’s identity, cf. [Schl, pages 141-142] and [Bai2, 2.03
on page 245].

Theorem 5.3. Let k be a finite field of odd characteristic p, ψ a non-
trivial additive character of k. Let α, ρ,Λ, β, η be multiplicative char-
acters of k×. Suppose that

η2 = αρΛβ,

and that none of αΛ, αβ, ρΛ, ρβ is either η or ηχ2. Then for each prime
` 6= p, we have an isomorphism of lisse Q`-sheaves on Gm/k,

K`(ψk;α, ρ)⊗K`(ψk; Λ, β)
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∼= [x 7→ 4x]?H(ψk;αΛ, αβ, ρΛ, ρβ; η, ηχ2)(1)⊗ Adeg,
for A the constant

A = 1/(η2(2)(−g(ψ, χ2)).

Proof. To obtain a geometrical isomorphism between the two sides, we
may extend scalars and assume in addition that both αρ and Λβ are
squares. Then tensoring with a suitable Kummer sheaf reduces us to
the case where

αρ = Λβ = I.
In this case the assertion is that there exists a geometric isomorphism

K`(ψk;α, α)⊗K`(ψk; β, β)

∼= [x 7→ 4x]?H(ψk;αβ, α/β, β/α, 1/αβ; I, χ2).

This is immediate from rigidity and the odd p corollary in section 3.
Return now to the general case. Now reduce to the case when

α = β = I,
by tensoring both sides with the Kummer sheaf Lα⊗Lβ and replacing

η by ηαβ. So we have an isomorphism

K`(ψk; I, ρ)⊗K`(ψk; I,Λ)

∼= [x 7→ 4x]?H(ψk; I,Λ, ρ, ρΛ; η, ηχ2)(1)⊗ Adeg,
with η2 = ρΛ. To evaluate A, we again compute the Frobk-eigenvalue
on the one-dimensional space of I0-invariants on the two sides, and
equate the expressions. We get

g(ψ, ρ)g(ψ,Λ) = (A/#k)g(ψ, ρ)g(ψ,Λ)g(ψ, ρΛ)g(ψ, η)g(ψ, ηχ2).

Using the Hasse-Davenport relation

g(ψ, η)g(ψ, ηχ2) = g(ψ, χ2)g(ψ2, η2)

= η2(2)g(ψ, χ2)g(ψ, η2),

we find the asserted value of A. �

6. Another SL(2)× SL(2) case, via tensor induction

We refer to [C-R-MRT, 13] and to [Ev] for background on tensor
induction, and to [Ka-ESDE, 10.3-10.6] for instances of its application
to hypergeometric sheaves (although the case we will be considering in
this section was not discussed there).

We work over a finite field k of odd characteristic p. Then the squar-
ing map

[2] : Gm/k → Gm/k
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makes the source into a finite etale ±1-torsor over the target. Given a
lisse sheaf F on the source Gm/k, the tensor product F ⊗ [x 7→ −x]?F
has a preferred descent, called the tensor induction,

[2]⊗?F

in the notation of [Ka-ESDE, 10.5.1]. It is a lisse sheaf on the target
that with the property under Kummer pullback [2]?, we have

[2]?[2]⊗?F ∼= F ⊗ [x 7→ −x]?F .

The trace function of the tensor induction is given by the following
recipe.

Proposition 6.1. Let E/k be a finite extension, t ∈ E×. Then we
have the following formulas.

(1) If t is a square in E, say t = s2 with s ∈ E, then we have the
product formula

Trace(FrobE,s2|[2]⊗?F) = Trace(FrobE,s|F)Trace(FrobE,−s|F).

(2) If t is not a square in E, then the square roots ±s of t generate
the quadratic extension E2/E, and we have the formula

Trace(FrobE,t|[2]⊗?F) = Trace(FrobE2,s|F) = Trace(FrobE2,−s|F).

Proof. The first formula is just the spelling out of the isomorphism

[2]?[2]⊗?F ∼= F ⊗ [x 7→ −x]?F

at the E-valued point s of the source. In the second formula, the
last equality results from the fact that F is defined, by pullback from
Gm/k, on Gm/E, so that E-conjugate points (here s and −s) in a
finite extension (here E2) have the same trace. To prove the first for-
mula, first use the base change property [Ka-ESDE, 10.5.3] of tensor
induction, here by the map t : Spec(E) → Gm toward the target, to
reduce to a question about tensor induction ⊗IndEE2

from Gal(k/E2)

to Gal(k/E). The key point then is that if V is a representation of
Gal(k/E2, whose FrobE2-eigenvalues are α1, ..., αn=dim(V ), then the n2

eigenvalues of FrobE on the tensor induction ⊗IndEE2
(V ) are the same

α1, ..., αn, together with, for each i < j, both square roots of αiαj, cf.
[Ka-ESDE, 10.4.5 with n=2]. Consequently, we have the equality of
traces

Trace(FrobE2|V ) = Trace(FrobE|IndEE2
(V )),

which is the asserted equality. �
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Remark 6.2. If instead of 2 we consider the `0-power map [`0] for
any prime `0, then so long as we work over a finite field k of charac-
teristic p 6= `0 which contains all the `0’th roots of unity, we have the
two analogous formulas for Trace(FrobE,t|[`0]⊗?F), now depending on
whether or not t is an `0’th power in E. We leave their elaboration to
the reader.

The following result is the finite field analogue of a classical identity,
cf. [Bai2, 2.04 on page 245].

Theorem 6.3. Let k be a finite field of odd characteristic p, ψ a non-
trivial additive character of k. Let α, β, ρ be multiplicative characters
of k× such that

ρ2 = αβ.

Then for each prime ` 6= p, we have an isomorphism of lisse Q`-sheaves
on Gm/k,

[2]⊗?K`(ψ;α, β) ∼= [x 7→ −x/4]?K`(ψ;α, β, ρ, χ2ρ)⊗ Adeg,

for A the constant

A = (αβ)(2)/(−g(ψ, χ2)).

Proof. Let us consider the lisse, rank four sheaf

F := [2]⊗?K`(ψ;α, β).

Our first task is to show that it is a Kloosterman sheaf. We know that
its Kummer pullback by [2] is the tensor product

[2]?F ∼= K`(ψ;α, β)⊗ [x 7→ −x]?K`(ψ;α, β).

Pulling back again by [2], and comparing I∞-representations on both
sides, we see that [4]?F is the sum of four characters, each of Swan
conductor 1. Hence F as I∞-representation is totally wild, with Swan
conductor 1. Its I0-representation is tame, and the tame characters oc-
curring in it are precisely α, β, ρ, χ2ρ; this is a special case of [Ka-ESDE,
10.6.3 and its elaboration 10.6.5(1)]. Hence by rigidity [Ka-GKM,
8.7.1], F is a Kloosterman sheaf, and there exists a geometric isomor-
phism of F with some multiplicative translate of K`(ψ;α, β, ρ, χ2ρ).
Looking again at the I∞-representation of [4]?F , we see that the mul-
tiplicative translate is as asserted.

To compute the constant A, we argue as follows. We first twist by
a Kummer sheaf to reduce to the case when β = I. More precisely, for
Λ := α/β, we have

K`(ψ;α, β) ∼= Lβ ⊗K`(ψ; Λ, I).
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By the ”additivity” of tensor induction [Ka-ESDE, 10.3.2(i)], we have

[2]⊗?K`(ψ;α, β) ∼= ([2]⊗?Lβ)⊗ ([2]⊗?K`(ψ; Λ, I)).
Using the trace formula for a tensor induction, we see that

[2]⊗?Lβ ∼= Lβ ⊗ (β(−1))deg.

Let us denote γ := ρ/β, so that

γ2 = Λ.

Thus we obtain, for our unknown A, an isomorphism

[2]⊗?K`(ψ;α, β) ∼= Lβ⊗(β(−1))deg⊗[x 7→ −x/4]?K`(ψ; Λ, I, γ, χ2γ)⊗Adeg

∼= (β(4))deg ⊗ [x 7→ −x/4]?(Lβ ⊗K`(ψ; Λ, I, γ, χ2γ)⊗ Adeg)
∼= (β(4))deg ⊗ [x 7→ −x/4]?K`(ψ;α, β, ρ, χ2ρ)⊗ Adeg.

So it suffices to treat the case when β = I (and γ2 = α). In this
case, we willl compute the Frobk-eigenvalue of the space of inertial
invariants at 0. We know that

[2]⊗?K`(ψ;α, I) ∼= [x 7→ −x/4]?K`(ψ;α, I, γ, χ2γ)⊗ Adeg,
and that

[2]?[2]⊗?K`(ψ;α, I) ∼= K`(ψ;α, I)⊗ [x 7→ −x]?K`(ψ;α, I).
Suppose first that α 6= χ2 and α 6= I. Then in the tensor product

K`(ψ;α, I)⊗ [x 7→ −x]?K`(ψ;α, I),
the space of I0-invariants is one-dimensional, and the Frobk-eigenvalue
on it is (−g(ψ, α))2.The space of I0-invariants in

[2]⊗?K`(ψ;α, I) ∼= [x 7→ −x/4]?K`(ψ;α, I, γ, χ2γ)⊗ Adeg

is one dimensional, and, as we have just noted, remains so after pullback
by [2]. So we can read its Frobk-eigenvalue after pullback by [2]. Thus
this eigenvalue is (−g(ψ, α))2. On the other hand, this eigenvalue is

A(−g(ψ, α))(−g(ψ, γ))(−g(ψ, χ2γ)).

Remembering that α = γ2, we obtain the asserted value of A using the
Hasse-Davenport formula.

In the case when α = χ2, the space of I0-invariants in the tensor
product

K`(ψ;α, I)⊗ [x 7→ −x]?K`(ψ;α, I),
is two dimensional, but Frobk nonetheless acts on it by the scalar
(−g(ψ, α))2, and again we conclude by using the Hasse-Davenport for-
mula.
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In the case when α = I, the space of I0-invariants in

[x 7→ −x/4]?K`(ψ;α, I, γ, χ2γ) = [x 7→ −x/4]?K`(ψ; I, I, I, χ2)

is one-dimensional, with Frobk-eigenvalue of weight 1, namely−g(ψ, χ2).
After pullback by [2], we get a second I0-invariant, whose weight is 3
(because in K`(ψ; I, I, I, χ2), χ2 occurs just once, cf. [Ka-GKM, 7.0.7
(2) and 7.0.8 (2)]). Looking at

K`(ψ; I, I)⊗ [x 7→ −x]?K`(ψ; I, I),
we see that the I0-representation is unipotent, with Jordan blocks of
sizes 3 and 1. On the 2-dimensional space of its I0-invariants, we have
Frobk-eigenvalues of weights 0 and 2, namely 1 and #k. Since the
3-dimensional unipotent block here must be the [2] pullback of the
3-dimensional unipotent block in [x 7→ −x/4]?K`(ψ; I, I, I, χ2), we con-
clude that it is on both sides the Frobk-eigenvalues of lowest weights
which must match, i.e., 1 = (−g(ψ, χ2))A. �

Let us spell out the trace formulas which result, the first of which is
the finite field analogue of a classical identity, cf. [Bai2, 2.04 on page
245] or [EMOT, 4.3 (3)].

Corollary 6.4. Let k be a finite field of odd characteristic p, ψ a
nontrivial additive character of k, and ` 6= p a prime. Let α, β, ρ be
multiplicative characters of k× such that

ρ2 = αβ.

Then for each each finite extension field E/k, and for each t ∈ E×, we
have the following formulas.

(1) If t = s2 with s ∈ E, then

Trace(FrobE,−s2/4|K`(ψ;α, β, ρ, χ2ρ))/(−g(ψE, χ2,E)

= Trace(FrobE,s|K`(ψ;α, β))Trace(FrobE,−s|K`(ψ;α, β)).

(2) If t is a nonsquare in E, denote by E2/E the quadratic exten-
sion, and let s ∈ E2 have s2 = t. Then

Trace(FrobE,−t/4|K`(ψ;α, β, ρ, χ2ρ))/(−g(ψE, χ2,E)

= Trace(FrobE2,s|K`(ψ;α, β)).

There is another theorem of the same flavor, but now for hypergeo-
metrics of type (2, 1) instead of (2, 0), which is the finite field analogue
of the classical identities [Bai2, 2.07 and 2.09 on pages 245-246], or
[EMOT, 4.3 (4) and (5)]. Bailey attributes the second of these to Ra-
manujan, cf. [Har, page 503, line 6] where the statement is slightly
different.



26 NICHOLAS M. KATZ

Theorem 6.5. Let k be a finite field of odd characteristic p, ψ a non-
trivial additive character of k. Let α, β, γ, ρ be multiplicative characters
of k× such that

ρ2 = αβ

and such that
α 6= γ, β 6= γ, αβ 6= γ2.

Then for each prime ` 6= p, we have an isomorphism of lisse Q`-sheaves
on Gm/k,

[2]⊗?H(ψ;α, β; γ) ∼= [x 7→ x/4]?H(ψ;α, β, ρ, χ2ρ; γ, αβ/γ)⊗ Adeg,
for A the constant

A = (αβ)(2)γ(−1)(−g(ψ, α/γ))(−g(ψ, β/γ))/(#k)(−g(ψ, χ2)).

Proof. Again we consider the lisse, rank four sheaf

F := [2]⊗?H(ψ;α, β; γ).

Our first task is to show that it is a hypergeometric sheaf of type (4, 2).
The I∞-representation of H(ψ;α, β; γ) is the direct sum

Lγ ⊕ (Lαβ/γ ⊗ Lψ).

So the I∞-representation of [2]?F is

(Lγ ⊕ (Lαβ/γ ⊗ Lψ))⊗ (Lγ ⊕ (Lαβ/γ ⊗ Lψ))

∼= Lγ2 ⊕ L(αβ/γ)2 ⊕ (Lαβ ⊗ Lψ)⊕ (Lαβ ⊗ Lψ).

Thus this I∞-representation has Swan∞ = 2. Hence Swan∞(F) = 1,
and its wild part is of dimension 2.

We next compute the tame part of the I∞-representation of F . In
virtue of [Ka-GKM, 10.6.2], we can do this by a global argument: the
I∞-representation of F is the same as that of

[2]⊗?(Lγ ⊕ (Lαβ/γ ⊗ Lψ)).

By a basic property of tensor induction [Ka-ESDE, 10.3.2 (2ter)], this
last object contains the direct sum of the tensor inductions of the in-
dividual summands

[2]⊗?(Lγ)
⊕

[2]⊗?(Lαβ/γ ⊗ Lψ)).

As already noted above, the trace property of tensor induction shows
that

[2]⊗?(Lγ) ∼= Lγ ⊗ (γ(−1))deg.

As for the second factor, by ”additivity” we have

[2]⊗?(Lαβ/γ ⊗ Lψ)) ∼= ([2]⊗?(Lαβ/γ))⊗ ([2]⊗?(Lψ)).
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The trace property of tensor induction shows that

[2]⊗?(Lψ) ∼= Q`.

So we find that the I∞-representation of F contains the 2-dimensional
tame subrepresentation

Lγ ⊕ Lαβ/γ,
which for dimension reasons must be the entire tame part.

On the other hand, the tame characters occurring in the I0-representation
of F are precisely α, β, ρ, χ2ρ, and by the hypotheses none of these is
either γ or αβ/γ. So by rigidity, F is, geometrically, a multiplica-
tive translate of H(ψ;α, β, ρ, χ2ρ; γ, αβ/γ). Comparing the wild parts
of the pullbacks by [2], we see that the multiplicative translate is as
asserted.

To compute the constant A, a bit of care is needed. If α 6= χ2β,we
proceed as in the proof of Theorem 6.3, first doing a Kummer twist to
reduce to the case when α = I, then comparing the Frobk eigenvalues
on the one-dimensional spaces of I0-invariants; the case α = I = β
requires a separate argument. If γ2 6= χ2αβ, we first do a Kummer
twist to reduce to the case when γ = I, then we compare eigenvalues
of Frobk eigenvalues on the one-dimensional spaces of I∞-invariants.
Fortunately, we are always in one of these two cases. Indeed, if we have
both α = χ2β and γ2 = χ2αβ, then the first relation gives

αβ = χ2β
2.

By the second relation, we have

αβ = χ2γ
2.

Thus β2 = γ2, so either β = γ or χ2β = γ. The first possibility is
ruled out by hypothesis. But as α = χ2β, the second possibility forces
α = γ, again ruled out. �

7. Yet another SL(2)× SL(2) case, this time a false alarm

In Bailey’s 1928 paper [Bai2, 2.11], we find the following hypergeo-
metric identity:

1F1(a; 2a;x)1F1(b; 2b;−x)

=2 F3((a+ b)/2, (a+ b+ 1)/2; a+ 1/2, b+ 1/2, a+ b;x2/4),

which looks like some strange hybrid of the identities we have con-
sidered in the last two sections. In fact, it has a rather more benign
explanation. The key point, as Dennis Stanton explained to me, is the
following identity, the finite field analogue of [Bai2, 2.02].
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Theorem 7.1. Let k be a finite field of odd characteristic p, ψ a non-
trivial additive character of k. For t ∈ k×, denote by ψt the nontrivial
additive character x 7→ ψ(tx). Let α 6= I be a multiplicative character
of k×. Then for each prime ` 6= p, we have an isomorphism of lisse
Q`-sheaves on Gm/k,

[2]?K`(αχ2, I) ∼= [x 7→ −4x]?(Lψ−1/2
⊗H(ψ;α2, I;α))⊗ Adeg,

for A the constant

A = α(1/4)(−g(ψ, χ2))/#k.

Equivalently, we have an isomorphism

Lψ−2 ⊗ [2]?K`(αχ2, I)
∼= [x 7→ −4x]?(H(ψ;α2, I;α))⊗ Adeg.

Proof. We first look at the I0-representations. Because α 6= I, the
I0-representation of [2]?K`(αχ2, I) is either a single unipotent block,
if α = χ2, or is the sum of two distinct tame characters, I and α2.
Hence the two sides of our putative isomorphism have isomorphic I0-
representations.

The I∞0-representation of K`(αχ2, I) is [2]?(Lα ⊗ Lψ2), hence that
of [2]?K`(αχ2, I) is

Lα ⊗ Lψ2

⊕
Lα ⊗ Lψ−2 .

The I∞-representation of H(ψ;α2, I;α)) is

Lα
⊕
Lα ⊗ Lψ,

as follows from [Ka-ESDE, 8.12.2(2)]. Thus both sides of our pu-
tative isomorphism have isomorphic I∞-representations. Looking at
the second formulation, we see by rigidity that the left hand side
Lψ−2⊗[2]?K`(αχ2, I) is in fact a hypergeometric sheaf, and that we have
the asserted geometric isomorphism. As always, we compute the con-
stant A by looking at the eigenvalue of Frobk on the one-dimensional
spaces of I0-invariants on the two sides. �

Theorem 7.2. Let k be a finite field of odd characteristic p, ψ a non-
trivial additive character of k. For t ∈ k×, denote by ψt the nontrivial
additive character x 7→ ψ(tx). Let α, β, η be multiplicative characters
of k×. Suppose that α 6= I, β 6= I, α 6= β, αβ 6= I, and η2 = αβ. Then
for each prime ` 6= p, we have an isomorphism of lisse Q`-sheaves on
Gm/k,

H(ψ;α2, I;α)⊗ [x 7→ −x]?(H(ψ; β2, I; β)
∼= [x 7→ x2/4]?H(ψ; I, χ2α, χ2β, αβ; η, χ2η)⊗ Adeg,
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for A the constant

A = (αβ)(2)/(−g(ψ, χ2)).

Proof. This is a formal consequence of (the [2] pullback of) Theorem
5.3, using the theorem above to rewrite its two tensor factors. �

8. The Sp(4) case

In this section, we exploit the fact that the spin group of SO(5) is
Sp(4), via the representation Λ4(std4)/(triv) of Sp(4).

Any rank 4 Kloosterman sheaf of the form K`(ψ;α, α, β, β)(3/2) is
symplectically self dual. So its Λ2 is the direct sum of Q` and a rank 5
sheaf whose Garith lies in SO(5), namely

Λ2(K`(ψ;α, α, β, β)(3/2)/Q`.

We begin in characteristic 2, with a special case.

Theorem 8.1. Let ψ be the nontrivial additive character of F2. Then
for any odd prime ` we have an isomorphism of of lisse Q`-sheaves on
Gm/F2,

Λ2(K`(ψ; I, I, I, I)(3/2))/Q`
∼= K`(ψ; I, I, I, I, I)(2).

Proof. The sheaf K`(ψ; I, I, I, I)(3/2) has Ggeom = Garith = Sp(4), cf.

[Ka-GKM, 11.1, 11.3]. So its Λ2/Q` has Ggeom = Garith = SO(5) and in
particular is geometrically irreducible. Its I0-representation is Unip(5)
(because the I0-representation of K`(ψ; I, I, I, I)3/2) is Unip(4)).

What about its I∞-representation. It cannot be tame, otherwise
Λ2/Q` is geometrically a successive extension of Kummer sheaves, con-
tradicting its geometric irreducibility. All the∞-slopes ofK`(ψ; I, I, I, I)3/2)
are 1/4, so all the∞-slopes of Λ2/Q` are at most 1/4. Thus Swan∞(Λ2/Q`) ≤
5/4. As Swan conductors are nonnegative integers, and our represen-
tation is not tame, we conclude that

Swan∞(Λ2/Q`) = 1,

and all its∞-slopes are≤ 1/4. So the wild part of the I∞-representation
has dimension either 4 or 5. We will show that the dimension is 5. If
not, our sheaf is, by rigidity and the fact that we are over F2, geomet-
rically isomorphic to a selfdual hypergeometric sheaf of the form

H(ψ; I, I, I, I, I;χ)

for some nontrivial character χ. The autoduality implies χ = χ, which
in characteristic 2 forces χ to be trivial. [Alternatively, χ must be a
nontrivial multiplicative character of F2, and there are none.]
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[Here is another argument to show that Λ2(Wild4(ψ, I)/Q` is totally
wild in characteristic 2. We know that K`(ψ; I, I, I, I) is, geometrically,
symplectically self dual, and hence that Wild4(ψ, I)|P∞ is symplecti-
cally self dual. So it suffices to show that in Λ2(Wild4(ψ, I)/Q`, the
space of P∞-invariants vanishes, or equivalently that in Λ2(Wild4(ψ, I)),
the space of P∞-invariants has dimension ≤ 1. But in the larger space

Wild4(ψ, I)⊗Wild4(ψ, I) ∼= End(Wild4(ψ, I)),
the space of P∞-invariants has dimension 1, because Wild4(ψ, I)|P∞ is
absolutely irreducible.]

So by rigidity, we conclude that we have an isomorphism

Λ2(K`(ψ; I, I, I, I)(3/2))/Q`
∼= K`(ψ; I, I, I, I, I)(2)⊗ Adeg,

for someA. To see thatA = 1, observe that both Λ2(K`(ψ; I, I, I, I)(3/2))/Q`

and K`(ψ; I, I, I, I, I)(2) have Garith ⊂ SO(5) (in fact Garith = SO(5),
but we don’t need that here), and hence A is a scalar in SO(5). �

Corollary 8.2. Let ψ be the nontrivial additive character of F2. Then
for any odd prime ` we have an isomorphisms of I∞-representations

Λ2(Wild4(ψ; I))/Q`
∼= Wild5(ψ; I),

Λ2(Wild4(ψ; I)) ∼= Wild5(ψ; I)⊕Q`.

Proof. Restrict the isomorphism of the theorem to the I∞-representations
of the two sides to get the first, which immediately implies the sec-
ond. �

Using this corollary, we get the following more general statement in
characteristic 2.

Theorem 8.3. Let k be a finite field of characteristic 2, and ψ the
nontrivial additive character of k obtained from the unique nontrivial
additive character of the the prime field F2 by composition with the
trace. Fix multiplicative characters α, β of k. Then for every odd prime
`, we have an isomorphism of of lisse Q`-sheaves on Gm/k,

Λ2(K`(ψ;α, α, β, β)(3/2))/Q`
∼= K`(ψ; I, αβ, αβ, αβ, αβ)(2).

Proof. By the corollary above, both sides have isomorphic I∞-representations.
By inspection they have the same characters occuring at 0, so by
rigidity the two sides are geometrically isomorphic. The Λ2/Q` has
Garith ⊂ SO(5) (because K`(ψ;α, α, β, β)(3/2) has Garith ⊂ Sp(4)).
The rank 5 Kloosterman sheaf in question is orthogonally self dual,
and has trivial determinant [Ka-GKM, 7.4.1.3]. So just as in the pre-
vious theorem, there is no Adeg twisting. �
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We now turn to the case of odd characteristic p. Here we have a
direct description of Wild4(ψ, I), namely

Wild4(ψ, I) ∼= [4]?(Lχ2(x) ⊗ Lψ(4x)).

Thus we have

[4]?Wild4(ψ, I) ∼= Lχ2(x) ⊗ (
⊕

ζ∈µ4(k)

Lψ(4ζx)).

Passing to Λ2, and using the fact that the nonzero sums of two distinct
elements of µ4(k), i.e., ±1± i, are the fourth roots of −4, we see that

[4]?Λ2(Wild4(ψ, I)) ∼= Q` ⊕Q` ⊕ (
⊕
γ4=−4

Lψ(4γx)).

We begin, as we did in characteristic 2 with a special case.

Theorem 8.4. Let k be a finite field of odd characteristic p, ψ a non-
trivial additive character of k. Then for every prime ` 6= p we have an
isomorphism of of lisse Q`-sheaves on Gm/k,

Λ2(K`(ψ; I, I, I, I)(3/2))/Q`
∼= [x 7→ −4x]?H(ψ; I, I, I, I, I;χ2)(2)⊗Adeg,

for A the constant
A = 1/(−g(ψ, χ2)).

Proof. The sheaf K`(ψ; I, I, I, I)(3/2) has Garith = Ggeom = Sp(4).

Hence its Λ2/Q` has Garith = Ggeom = SO(5), and in particular is geo-
metrically irreducible. From the discussion above of [4]?Λ2(Wild4(ψ, I)),
we see that the wild part of the I∞-representation of Λ2/Q` is of di-
mension 4 and has Swan conductor 1. So by rigidity, there is a ge-
omtric isomorphism between Λ2/Q` and some multiplicative translate
ofH(ψ; I, I, I, I, I; ρ), for some nontrivial ρ. But as this sheaf is self dual,
we must have ρ = χ2. That the multiplicative translate is as asserted
results immediately from the explicit shape of [4]?Λ2(Wild4(ψ, I)) re-
called above, cf. the proof of Theorem 3.5. So we find that for some
A, we have an isomorphism

Λ2(K`(ψ; I, I, I, I)(3/2))/Q`
∼= [x 7→ −4x]?H(ψ; I, I, I, I, I;χ2)(2)⊗Adeg,

and it remains to evaluate A. By [Ka-ESDE, 8.8.1, 8.8.2, 8.12.2(3)], for
the asserted value of A the sheaf [x 7→ −4x]?H(ψ; I, I, I, I, I;χ2)(2) ⊗
Adeg has Garith ⊂ SO(5), and we conclude as before. �

Corollary 8.5. Let k be a finite field of odd characteristic p, ψ a
nontrivial additive character of k. Then for every prime ` 6= p we have
isomorphisms of I∞-representations

Λ2(Wild4(ψ, I))/Q`
∼= Lχ2 ⊕ [x 7→ −4x]?Wild4(ψ, χ2),
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Λ2(Wild4(ψ, I)) ∼= Q` ⊕ Lχ2 ⊕ [x 7→ −4x]?Wild4(ψ, χ2).

Proof. Restrict the isomorphism of the theorem to the I∞-representations
of the two sides to get the first, which immediately implies the sec-
ond. �

Almost exactly as in the case of characteristic 2, we can use this
corollary to get the following more general result. The details are left
to the reader.

Theorem 8.6. Let k be a finite field of odd characteristic p, ψ a non-
trivial additive character of k. Fix multiplicative characters α, β of
k. Then for every prime ` 6= p, we have an isomorphism of of lisse
Q`-sheaves on Gm/k,

Λ2(K`(ψ;α, α, β, β)(3/2))/Q`

∼= [x 7→ −4x]?H(ψ; I, αβ, αβ, αβ, αβ;χ2)(2)⊗ Adeg,
for A the constant

A = 1/(−g(ψ, χ2)).

9. The SL(4) case

In this section, we exploit the fact that the spin group of SO(6) is
SL(4), via the representation Λ4(std4) of SL(4).

We begin with the situation in characteristic 2.

Theorem 9.1. Let k be a finite field of characteristic 2, and ψ the
nontrivial additive character of k obtained from the unique nontrivial
additive character of the the prime field F2 by composition with the
trace. Fix multiplicative characters α1, α2, α3, α4 of k. Suppose that
each product αiαj with i 6= j is nontrivial, but that α1α2α3α4 = I. Then

for any odd prime ` we have an isomorphism of of lisse Q`-sheaves on
Gm/k,

Λ2(K`(ψ;α1, α2, α3, α4)(3/2))

∼= H(α1α2, α1α3, α1α4, α2α3, α2α4, α3α4; I)(3).

Proof. Using Corollary 6.2, we see that the two sides have isomor-
phic I∞-representations. They visibly have the same characters occur-
ring in their I0-representations. So by rigidity, they are geometrically
isomorphic. The sheaf K`(ψ;α1, α2, α3, α4)(3/2) has Garith ⊂ SL(4),
cf.[7.4.1.3-4]Ka-GKM, so its Λ2 has its Garith ⊂ SO(6). By [Ka-GKM,
8.8.1-2 and 8.12.2], the target

H(α1α2, α1α3, α1α4, α2α3, α2α4, α3α4; I)(3).
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also has its Garith ⊂ SO(6).Since the only scalars in SO(6) are ±1, for
A some choice of ±1, we have an isomorphism after twisting the target
with Adeg. In order to determine A, we will prove the slightly more
general theorem below. �

Theorem 9.2. Let k be a finite field of characteristic 2, and ψ the
nontrivial additive character of k obtained from the unique nontrivial
additive character of the the prime field F2 by composition with the
trace. Fix multiplicative characters α1, α2, α3, α4 of k. Denote by η the
unique multiplicative character with

η2 = α1α2α3α4.

Suppose that none of αiαj with i 6= j is η. Then for any odd prime `

we have an isomorphism of of lisse Q`-sheaves on Gm/k,

Λ2(K`(ψ;α1, α2, α3, α4))

∼= H(α1α2, α1α3, α1α4, α2α3, α2α4, α3α4; η).

Proof. We begin by remarking that the two sides are geometrically
isomorphic; indeed if we twistK`(ψ;α1, α2, α3, α4) by the unique square
root of η, we reduce to the situation of the previous theorem, where we
already established the geometric isomorphism.

We now twist K`(ψ;α1, α2, α3, α4) by the unique square root of α1α2,
we reduce to the case in which we have the additional condition α1α2 =
I. The advantage of this case is that now the space of I0-invariants on
both sides is one-dimensional, and it suffices to show that the Frobk-
eigenvalues are equal. Lemma 2.1 gives an explicit formula for this
eigenvalue, call it E, on the H side. How do we compute the eigenvalue
on the Λ2 side?

Suppose first that α1 = α2. Because we are in characteristic 2,
and α1α2 = I, we must have α1 = α2 = I. In this case, the I0-
unipotent subspace (K`)I0−unipotent of K` := K`(ψ;α1, α2, α3, α4) is a
single Jordan block of size either 2 or 3, and Lemma 2.1 gives an explicit
formula for the Frobk-eigenvalue, call it B, on K`I0 . Denote q := #k.
It then follows from [De-Weil II, 1.8.4, 1.6.14.2-3] (cf. also [Ka-GKM,
7.0.6-7]) that the eigenvalues of (any element in D0 whose image in
D0/|0 is) Frobk on (K`)I0−unipotent are B, qB (resp. are B, qB, q2B) if
this space has dimension 2 (resp. has dimension 3). So on

Λ2((K`)I0−unip) = (Λ2((K`))I0−unip,
the eigenvalues are qB2 (resp. qB2, q2B2, q3B2). Of these, the Frobk-
eigenvalue on Λ2(K`))I0 is always the one of lowest weight [Ka-GKM,
7.0.6-7], here qB2. It remains to see that the eigenvalues coincide, i.e.,
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that D = qB2. This is immediate from the explicit formulas, and the
fact that for our particular choice of ψ in characteristic 2, we have
g(ψ, χ) = g(ψ, χ2) for any χ.

Suppose now that α1 6= α2. Then the D0-representation of

K` := K`(ψ;α1, α2, α3, α4)

contains the direct sum

(K`)α1−unipotent ⊕ (K`)α2−unipotent.

So the the D0-representation of Λ2 contains the tensor product

(K`)α1−unipotent ⊗ (K`)α2−unipotent.

Since α1α2 = I, this last tensor product is

(Lα1 ⊗K`)I0−unipotent ⊗ (Lα2 ⊗K`)I0−unipotent.
Passing to I0-invariants, we get a D0-isomorphism

(Λ2(K`)I0 ∼= (Lα1 ⊗K`)I0 ⊗ (Lα2 ⊗K`)I0 .
Once again, Lemma 2.1 gives us explicit formulas for the Frobk-eigenvalues,
say C1 and C2, on the spaces (Lαi

⊗K`)I0 for i = 1, 2. Again, the ver-
ification that indeed D = C1C2 is immediate. �

We now turn to the situation in odd characteristic p.

Theorem 9.3. Let k be a finite field of odd characteristic p, ψ a non-
trivial additive character of k. Fix multiplicative characters α1, α2, α3, α4, η
of k. Suppose that

η2 = α1α2α3α4,

and that none of αiαj with i 6= j is η or ηχ2. Then for any prime ` 6= p

we have an isomorphism of of lisse Q`-sheaves on Gm/k,

Λ2(K`(ψ;α1, α2, α3, α4))

∼= [x 7→ −4x]?H(α1α2, α1α3, α1α4, α2α3, α2α4, α3α4; η, ηχ2)⊗ Adeg,
for A the constant

A := 1/((α1α2α3α4)(2))(−g(ψ, χ2)).

Proof. We first show that the two sides are geometrically isomorphic.
For this, we may work over a finite extension field of k in which there
η is a square, say β2η = I. Then twisting K` := K`(ψ;α1, α2, α3, α4)
by the Kummer sheaf Lβ, we reduce to the case when α1α2α3α4 = I.
Then by Corollary 6.5, both sides have isomorphic I∞-representations,
and we conclude by rigidity.

We now return to the original setting. We claim that at least one
of the six products αiαj with i 6= j is a square (of some multiplicative
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character of k). This is obviously true if two of the αi coincide. In the
case where the αi are four distinct characters, either at least two are
squares, or at least two are nonsquares, so we are done here as well.
Renumbering, we may assume that α1α2 is a square, say α1α2β

2 = I.
Kummer twisting K` by Lβ, we reduce to the case when α1α2 = I.
From this point on, the proof goes along the same reduction into two
cases as in characteristic 2, now using the Hasse-Davenport identity
[Dav-Ha, 0.9I]

g(ψ2, ρ
2)g(ψ, χ2) = g(ψ, ρ)g(ψ, ρχ2)

to see that, in both cases, the Frobk eigenvalues match. �

10. Lie algebra aspects: the SL(2)× SL(2) case

In terms of the standard representation std4 of SO(4), the Adjoint
representation of SO(4) is Λ2(std4). But if we think of std4 as being
the representation std2,first⊗std2,second of its spin group SL(2)×SL(2),
then the Adjoint representation is Sym2(std2,first)

⊕
Sym2(std2,second).

So for any two lisse Q`-sheaves F and G on Gm/k both of which have
their Garith ⊂ SL(2), we have

Λ2(F ⊗ G) ∼= Sym2(F)
⊕

Sym2(G).

Thus we obtain from Theorems 5.1 and 5.3 the following theorems.

Theorem 10.1. Let k be a finite field of characteristic 2, and ψ the
nontrivial additive character of k obtained from the unique nontrivial
additive character of the the prime field F2 by composition with the
trace. Let χ and ρ be any multiplicative characters of k×, χ and ρ the
inverse characters. Suppose that

χ 6= ρ, χ 6= ρ.

Then for every odd prime `, we have an isomorphism of lisse Q`-sheaves
on Gm/k,

Λ2(H(ψ;χρ, χρ, χρ, χρ; I)(2)).

∼= Sym2(K`(ψ;χ, χ)(1/2))
⊕

Sym2(K`(ψ; ρ, ρ)(1/2))

Theorem 10.2. Let k be a finite field of odd characteristic p, ψ a
nontrivial additive character of k. Let α, β be multiplicative characters
of k×, α and β the inverse characters. Suppose that

α2 6= β2, α2 6= β
2
.
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Then for each prime ` 6= p, we have an isomorphism of lisse Q`-sheaves
on Gm/k,

[x 7→ 4x]?Λ2(H(ψk;αβ, αβ, αβ, αβ; I, χ2)(2)⊗ Adeg)

∼= Sym2(K`(ψ;α, α)(1/2))
⊕

Sym2(K`(ψ; β, β)(1/2)),

for A the constant

A = 1/(−g(ψ, χ2)).

11. Lie algebra aspects: the Sp(4) case

In terms of the standard representation std4 of Sp(4), the Adjoint
representation of Sp(4) is Symn2(std4). In terms of the standard
representation std5 of SO(5), the Adjoint representation of SO(5) is
Λ2(std5). But the standard representation std5 of SO(5) is the repre-
sentation Λ2(std4)/(triv) of its spin group Sp(4), and hence we have
an isomorphism of representations of Sp(4),

Symn2(std4) ∼= Λ2(Λ2(std4)/(triv)).

So for any lisse Q`-sheaf F on Gm/k with Garith ⊂ Sp(4), we have

Symn2(F) ∼= Λ2(Λ2(F)/(triv)).

Thus we obtain from Theorems 8.3 and 8.6 the following theorems.

Theorem 11.1. Let k be a finite field of characteristic 2, and ψ the
nontrivial additive character of k obtained from the unique nontrivial
additive character of the the prime field F2 by composition with the
trace. Fix multiplicative characters α, β of k. Then for every odd prime
`, we have an isomorphism of of lisse Q`-sheaves on Gm/k,

Sym2(K`(ψ;α, α, β, β)(3/2))

∼= Λ2(K`(ψ; I, αβ, αβ, αβ, αβ)(2)).

Theorem 11.2. Let k be a finite field of odd characteristic p, ψ a
nontrivial additive character of k. Fix multiplicative characters α, β of
k. Then for every prime ` 6= p, we have an isomorphism of of lisse
Q`-sheaves on Gm/k,

Sym2(K`(ψ;α, α, β, β)(3/2))

∼= [x 7→ −4x]?Λ2(H(ψ; I, αβ, αβ, αβ, αβ;χ2)(2)⊗ Adeg),
for A the constant

A = 1/(−g(ψ, χ2)).
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12. Lie algebra aspects: the SL(4) case

In terms of the standard representation std4 of SL(4), the Adjoint
representation of SL(4) is End0(std4). In terms of the standard repre-
sentation std6 of SO(6), the Adjoint representation of SO(6) is Λ2(std6).
But the standard representation std6 of SO(6) is the representation
Λ2(std4) of its spin group SL(4), and hence we have an isomorphism
of representations of SL(4),

End0(std4) ∼= Λ2(Λ2(std4)).

So for any lisse Q`-sheaf F on Gm/k with Garith ⊂ SL(4), we have

End0(F) ∼= Λ2(Λ2(F)).

Thus we obtain from Theorems 9.1 and 9.3 the following theorems.

Theorem 12.1. Let k be a finite field of characteristic 2, and ψ the
nontrivial additive character of k obtained from the unique nontrivial
additive character of the the prime field F2 by composition with the
trace. Fix multiplicative characters α1, α2, α3, α4 of k. Suppose that
each product αiαj with i 6= j is nontrivial, but that α1α2α3α4 = I. Then

for any odd prime ` we have an isomorphism of of lisse Q`-sheaves on
Gm/k,

End0(K`(ψ;α1, α2, α3, α4)(3/2))
∼= Λ2(H(α1α2, α1α3, α1α4, α2α3, α2α4, α3α4; I)(3)).

Theorem 12.2. Let k be a finite field of odd characteristic p, ψ a non-
trivial additive character of k. Fix multiplicative characters α1, α2, α3, α4

of k. Suppose that
α1α2α3α4 = I,

and that none of the products αiαj with i 6= j is I or χ2. Then for any

prime ` 6= p we have an isomorphism of of lisse Q`-sheaves on Gm/k,

End0((K`(ψ;α1, α2, α3, α4)(3/2))

∼= [x 7→ −4x]?Λ2(H(α1α2, α1α3, α1α4, α2α3, α2α4, α3α4; I, χ2)(3)⊗Adeg),
for A the constant

A := 1/(−g(ψ, χ2)).
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