
I am indebted to Douglas Ulmer for pointing out, in great and careful
detail, a number of errors and omissions in Chapter 5 of Twisted L-
Functions and Monodromy. For the convenience of the reader, what
follows is a corrected version of Chapter 5. The corrections and
additions are typed in this font rather than in the font of the book, to make
them relatively easy to locate. Because of the additions, the page
numbers match less and less well as the chapter goes on, but should
still help the reader find his place.



CCCChhhhaaaapppptttteeeerrrr    5555::::    TTTTwwwwiiiisssstttt    SSSShhhheeeeaaaavvvveeeessss    aaaannnndddd    TTTThhhheeeeiiiirrrr    MMMMoooonnnnooooddddrrrroooommmmyyyy

5555....0000 FFFFaaaammmmiiiilllliiiieeeessss    ooooffff    ttttwwwwiiiissssttttssss::::    bbbbaaaassssiiiicccc    ddddeeeeffffiiiinnnniiiittttiiiioooonnnnssss    aaaannnndddd    ccccoooonnnnssssttttrrrruuuuccccttttiiiioooonnnnssss
(5.0.1) In this section, we make explicit the "families of twists" we will be concerned with. We fix
an algebraically closed field k, a proper smooth connected curve C/k whose genus is denoted g,
and a prime number … invertible in k. We also fix an integer r ≥ 1, and an irreducible middle
extension ä$…-sheaf Ï on C of generic rank r. This means that for some dense open set U in C,

with j : U ¨ C the inclusion, Ï|U is a lisse sheaf of rank r on U which is irreducible in the sense
that the corresponding r-dimensional ä$…-representation of π1(U) is irreducible, and Ï on C is

obtained from the lisse irreducible sheaf Ï|U on U by direct image: Ï ¶ j*(Ï|U) := j*j*Ï. 

(5.0.2) We say that Ï is self-dual if for every dense open set U on which it is lisse, Ï|U is self-
dual as lisse sheaf, i.e., isomorphic to its contragredient. It is equivalent to say that the perverse
sheaf Ï[1] on C is self-dual, but we will not need this more sophisticated point of view.
(5.0.3) The finite set of points of C at which Ï fails to be lisse, i.e., the set of points x for which
the inertia group I(x) acts nontrivially on Ï, will be denoted Sing(Ï), the set of "singularities" of Ï.
Thus Ï is lisse on C - Sing(Ï), and Sing(Ï) is minimal with this property.
(5.0.4) We fix an effective divisor D = ‡aiPi on C, whose degree d := ‡ai satisfies d ≥ 2g+1.

Some or all or none of the points Pi may lie in Sing(Ï). We denote by L(D) the Riemann-Roch

space H0(C, I-1(D)), and we view L(D) as a space of functions (maps to !1) on the open curve 
C - D. 
(5.0.5) Corresponding to the choice of D as the "points at ‘" of C, we break up the set Sing(Ï) as
the disjoint union
(5.0.5.1) Sing(Ï) := Sing(Ï)finite ‹ Sing(Ï)‘
where
(5.0.5.2) Sing(Ï)finite := Sing(Ï)¤(C-D),

(5.0.5.3) Sing(Ï)‘ := Sing(Ï)¤D.

LLLLeeeemmmmmmmmaaaa    5555....0000....6666 Given a finite subset S of C-D, denote by 
Fct(C, d, D, S) fi L(D)

the set of nonzero functions f in L(D) with the following property:

the divisor of zeroes of f, f-1(0), consists of d = degree(D) distinct points, none of
which lies in S⁄D. Then Fct(C, d, D, S) is (the set of k-points of) a dense open set 

Fct(C, d, D, S) in L(D) (viewed as the set of k-points of an affine space !d+1-g over k).

pppprrrrooooooooffff The projective space @(L(D)£) of lines in L(D) is the space of effective divisors of degree d
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which are linearly equivalent to D. In the space Symd(C) of all effective divisors of degree D,
those consisting of d distinct points, none of which lies in S⁄D, form an open set, say U1. When

we map Symd(C) to Jacd(C), the fibre over the class of D is @(L(D)£). The intersection of this

fibre with U1 is an open set U2 in @(L(D)£). The inverse image U3 of this set in L(D) - {0} is the

set Fct(C, d, D, S) in L(D), which is thus open. 
To see that U3 is nonempty, we argue as follows. Suppose there exists a function f in L(D)

whose divisor of poles is D and whose differential df is nonzero. Then for any t in k which is not a
value taken by f on either S or on the set of zeroes in C-D of df, the function f-t lies in U3 (it is

nonzero on S, and it has simple zeroes because it has no zeroes in common with df). 
Why does such an f exist? By Riemann-Roch, for each point Pi in D, L(D - Pi) is a

hyperplane in L(D): as k is infinite, L(D) is not the union of finitely many hyperplanes. So we can
find a function f in L(D) whose divisor of poles is D. If any of the coefficients ai in D = ‡aiPi is

invertible in k, then df is nonzero, because at Pi it has a pole of order 1+ai. If all ai vanish in k, then

k has charactertistic p, all the ai are divisible by p, say ai = pbi, and D = pD0, for D0 the divisor

D0 := ‡i biPi. If df vanishes, then f = gp for some g in L(D0). In this case, pick a function g in

L(D - P1) whose divisor of poles is D - P1 (still possible by Riemann-Roch). Then dg is

nonzero (it has a pole of order a1 at P1). For all but finite many values of t in k, f - tg still has

divisor of poles D. For any such t, f - tg is the desired function. QED

RRRReeeemmmmaaaarrrrkkkk    5555....0000....7777 Perhaps the simplest example to keep in mind is this. Take C to be @1, and take D to

be d‘. So here C-D is !1 = Spec[k[X]), and Fct(C, d, D, S) is all the polynomials of degree d in
one variable X with d distinct zeroes, none of which lies in S. 

NNNNoooottttaaaattttiiiioooonnnnssss 5555....0000....7777....1111 It will be convenient in the rest of this chapter to
adopt the following notations. For any finite subset S of C, not
necessarily contained in C - D, we define Fct(C, d, D, S) by

Fct(C, d, D, S) := Fct(C, d, D, S€(C-D)).
And for Z a finite subscheme of C, we define

Fct(C, d, D, Z) := Fct(C, d, D, Zred).:= Fct(C, d, D, Zred€(C-D)).

NNNNoooottttaaaattttiiiioooonnnn 5555....0000....7777....2222 For f any nonzero rational function on C, we
denote by div(f) the minimal finite subset of C outside of which f is
invertible. In other words, div(f) consists of the zeroes and poles of f,
each taken with multiplicity one.

(5.0.8) We now turn to our final piece of data, a nontrivial ä$…
≠-valued character ç of finite order n
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≥ 2 of the tame fundamental group of ´m/k, corresponding to a lisse rank one ä$…-sheaf Òç on

´m. The order n of ç is necessarily invertible in k, indeed π1
tame(´m/k) is the inverse limit of the

groups µN(k) over those N invertible in k, corresponding to the various Kummer coverings 

x ÿ xn of ´m by itself. 

(5.0.9) When k has positive characteristic, the Òç's having given order n are obtained concretely as

follows. Take any finite subfield Éq of k which contains the n'th roots of unity (i.e., q•1 mod n),

and take a character ç : (Éq)≠ ¨ ä$…
≠ of order n. View ´m/Éq as an (Éq)≠-torsor over itself by

the map ("Lang isogeny")

(5.0.9.1) 1 - Frobq : x ÿ x1-q,

and push out this torsor by the character ç : (Éq)≠ ¨ ä$…
≠ to obtain a lisse rank one Òç on ´m/Éq.

Its pullback to ´m/k is an Òç of the same order n on ´m/k, and every Òç of order n on ´m/k is

obtained this way.
(5.0.10) Given f in Fct(C, d, D, Sing(Ï)finite), we may view f as mapping the open curve 

C - D - f-1(0) to ´m, and we form the lisse rank one ä$…-sheaf Òç(f) := f*Òç on 

C - D - f-1(0). When no ambiguity is likely, we will also denote by Òç(f) the extension by direct

image of this sheaf to all of C. We then "twist" Ï by Òç(f). This means that we pass to the open

set

j : C - D - f-1(0) - Sing(Ï)finite fi C,

on which both Ï and Òç(f) are lisse, on that open set we form Ï‚Òç(f), and then we take the

direct image j*(Ï‚Òç(f)) to C. Notice that this twisted sheaf j*(Ï‚Òç(f)) on C is itself an

irreducible middle extension.

(5.0.11) Since at each point of f-1(0) and at each point of Sing(Ï)finite one of the factors Ï or

Òç(f) is lisse, the sheaf j*(Ï‚Òç(f)) | C-D is the literal tensor product Ï‚Òç(f) | C-D. Thus if

we denote by j‘: C - D ¨ C the inclusion, j*(Ï‚Òç(f)) as defined above is obtained from the

literal tensor product Ï‚Òç(f) | C-D by taking direct image across Dred: 

j*(Ï‚Òç(f)) = j‘*(Ï‚Òç(f)). 

This alternate interpretation will be used later, in 5.2.4 and 5.2.5.

(5.0.12) We then form the cohomology groups Hi(C, j*(Ï‚Òç(f))) with coefficients in the twist

j*(Ï‚Òç(f)). Our eventual goal is to study the variation of these cohomology groups as f varies.

But first we must establish some basic properties of these groups for a fixed f.
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5555....1111    BBBBaaaassssiiiicccc    ffffaaaaccccttttssss    aaaabbbboooouuuutttt    tttthhhheeee    ggggrrrroooouuuuppppssss    HHHHiiii((((CCCC,,,,    jjjj****((((ÏÏÏÏ‚‚‚‚ÒÒÒÒçççç((((ffff))))))))))))

LLLLeeeemmmmmmmmaaaa    5555....1111....1111 Hypotheses and notations as in 5.0.1, 5.0.4, 5.0.8, and 5.0.10 above, the cohomology

groups Hi(C, j*(Ï‚Òç(f))) vanish for i±1.

pppprrrrooooooooffff The Hi vanish for cohomological dimension reasons for i not in [0, 2]. For i=0, we have 

H0(C, j*(Ï‚Òç(f))) := H0(C - D - f-1(0) - Sing(Ï)finite, Ï‚Òç(f)).

This group vanishes because Ï‚Òç(f) is lisse on the open curve, it is irreducible (Ï is irreducible,

and Òç(f) has rank one) and nontrivial (because Ï‚Òç(f) is nontrivially ramified at each of the d

points of f-1(0)). So the H0 is the invariants in a nontrivial irreducible representation, so vanishes.

Similarly, the birational invariance of H2
c gives

H2(C, j*(Ï‚Òç(f))) := H2
c(C - D - f-1(0) - Sing(Ï)finite, Ï‚Òç(f)),

which is the Tate-twisted coinvariants in the same representation, so also vanishes. QED

(5.1.2) We next compute the dimension of H1(C, j*(Ï‚Òç(f))), for f in 

Fct(C, d, D, Sing(Ï)finite). 

Given a point x in C(k), and a lisse sheaf Ó on some dense open set of C, we denote by
Ó(x) the representation of I(x) given by Ó (strictly speaking, given by the pullback of Ó to the

spectrum of the x-adic completion of the function field of C), and by Ó(x)I(x), or simply ÓI(x),

the invariants in this representation. We will write Ó/ÓI(x) for Ó(x)/Ó(x)I(x). We will write

(5.1.2.1) dropx(Ó) := dropx(Ó(x)) := dim(Ó/ÓI(x)).

For any of the Pi occurring in D = ‡aiPi, and any f with divisor of poles D, the I(Pi)-

representation (Òç(f))(Pi) depends only on çai, as follows. Choose a uniformizing parameter at Pi,

and use it to identify the complete local ring of C at Pi with the complete local ring k[[1/X]] (sic) of

@1 at ‘, and to identify the inertia group I(Pi) with I(‘). Consider the lisse sheaf Òçai := Òçai(X)
on ´m. Then (Òç(f))(Pi) as I(Pi)-representation is just (Òçai)(‘) as I(‘)-representation. When

we want to indicate unambiguously that we are thinking of (Òçai)(‘) as an I(Pi)-representation by

some choice of uniformizer as above, we will denote it (Òçai)(‘, Pi).
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LLLLeeeemmmmmmmmaaaa    5555....1111....3333 Hypotheses and notations as in 5.1.1 above, for any f in Fct(C, d, D, Sing(Ï)finite),

we have the dimension formula 

(5.1.3.1) h1(C, j*(Ï‚Òç(f))) 

= (2g-2 + deg(D))rank(Ï)
+ ‡Pi in Dred Swan

Pi
(Ï) + ‡s in Sing(Ï)finite

Swan
s
(Ï).

+ ‡s in Sing(Ï)finite
 drops(Ï)

+ ‡Pi in Dred dropPi
(Ï(Pi)º(Òçai)(‘, Pi)),

and the inequality

(5.1.3.2) h1(C, j*(Ï‚Òç(f))) ≥ (2g-2 + deg(D))rank(Ï) + ùSing(Ï)finite.

pppprrrrooooooooffff The inequality 5.1.3.2 is an immediate consequence of the asserted dimension formula
5.1.3.1 and the observation that drops(Ï) ≥ 1 at each point in Sing(Ï)finite. By Lemma 5.1.1, we

have

h1(C, j*(Ï‚Òç(f))) = - ç(C, j*(Ï‚Òç(f))).

At each of the deg(D) distinct zeroes of f, Ï is lisse and Òç(f) is ramified, so -ç(C, j*(Ï‚Òç(f)))

is equal to

= - çc(C - f-1(0) - D - Sing(Ï)finite, Ï‚Òç(f))

-‡s in Sing(Ï)finite
 dim(Ï(s)I(s))

- ‡Pi in Dred dim((Ï(Pi)º(Òçai)(‘, Pi))
I(Pi)).

Now use the Euler-Poincarïe formula to write this as

 = (2g-2 + deg(D) + ùDred + ùSing(Ï)finite)rank(Ï)

+ ‡Pi in Dred Swan
Pi

(Ï) + ‡s in Sing(Ï)finite
Swan

s
(Ï).

-‡s in Sing(Ï)finite
 dim(Ï(s)I(s))

- ‡Pi in Dred dim((Ï(Pi)º(Òçai)(‘, Pi))
I(Pi))

= (2g-2 + deg(D))rank(Ï)
+ ‡Pi in Dred Swan

Pi
(Ï) + ‡s in Sing(Ï)finite

Swan
s
(Ï).

+ ‡s in Sing(Ï)finite
 drops(Ï)

+ ‡Pi in Dred dropPi
(Ï(Pi)º(Òçai)(‘, Pi)). QED
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5555....2222    PPPPuuuuttttttttiiiinnnngggg    ttttooooggggeeeetttthhhheeeerrrr    tttthhhheeee    ggggrrrroooouuuuppppssss    HHHH1111((((CCCC,,,,    jjjj****((((ÏÏÏÏ‚‚‚‚ÒÒÒÒçççç((((ffff))))))))))))

CCCCoooonnnnssssttttrrrruuuuccccttttiiiioooonnnn----PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    5555....2222....1111 (compare [Ka-RLS, 2.7.2]) Hypotheses and notations as in 5.0.1,
5.0.4, 5.0.8, and 5.0.10 above, There is a natural lisse ä$…-sheaf Ì on the space

 Fct(C, d, D, Sing(Ï)finite) 

whose stalk at f is the cohomology group H1(C, j*(Ï‚Òç(f))). More precisely, over the parameter

space 
X := Fct(C, d, D, Sing(Ï)finite),

consider the proper smooth curve Ç := C≠X, and in it the relative divisor Î defined at "time f" by

Dred + Sing(Ï)finite + f-1(0). Then Î is finite etale over the base of constant degree

ù(Dred) + ù(Sing(Ï)finite) + d.
On Ç - Î, we have the lisse sheaf Ï‚Òç(f). Denote the projection

π : Ç - Î ¨ Fct(C, d, D, Sing(Ï)finite).

We have the following results.

1) The sheaves Riπ~(Ï‚Òç(f)) on Fct(C, d, D, Sing(Ï)finite) vanish for i±1, and

R1π~(Ï‚Òç(f)) is lisse [and, by proper base change, of formation

compatible with arbitrary change of base].

2) The sheaves Riπ*(Ï‚Òç(f)) on Fct(C, d, D, Sing(Ï)finite) vanish for i±1, and

R1π*(Ï‚Òç(f)) is lisse, and of formation compatible with arbitrary change of base.

3) The image Ì of the natural "forget supports" map 

R1π~(Ï‚Òç(f)) ¨ R1π*(Ï‚Òç(f)) 

is lisse, of formation compatible with arbitrary change of base. The stalk of Ì at the k-valued point

"f" of Fct(C, d, D, Sing(Ï)finite) is the cohomology group H1(C, j*(Ï‚Òç(f))).

4) If the irreducible middle extension Ï on C is orthogonally (respectively symplectically) self-
dual, and ç has order two, then the lisse sheaf Ì on X is symplectically (respectively orthogonally)
self-dual.
5) The rank of Ì is equal to

rank(Ì)= (2g-2 + deg(D))rank(Ï)
+ ‡Pi in Dred Swan

Pi
(Ï) + ‡s in Sing(Ï)finite

Swan
s
(Ï)

+ ‡s in Sing(Ï)finite
 drops(Ï)

+ ‡Pi in Dred dropPi
(Ï(Pi)º(Òçai)(‘, Pi)).

6) We have the inequality
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rank(Ì) ≥ (2g-2 + deg(D))rank(Ï) + ùSing(Ï)finite.

pppprrrrooooooooffff 1) By proper base change and the previous lemma, we have the vanishing of the

Riπ~(Ï‚Òç(f)) for i±1. To show that R1π~(Ï‚Òç(f)) is lisse, we apply Deligne's semicontinuity

theorem [Lau-SC, 2.1.2], according to which it suffices to show the #-valued function which
attaches to each k-valued point "f" of the base the sum of the Swan conductors of Ï‚Òç(f) at all

the points at infinity,
f ÿ ‡Pi in Dred Swan

Pi
(Ï‚Òç(f)) 

+ ‡s in Sing(Ï)finite
Swan

s
(Ï‚Òç(f))

+ ‡x in f-1(0)Swan
x

(Ï‚Òç(f)),

is constant. As Òç(f) is rank one and everywhere tame, and Ï is lisse at every point of f-1(0), the

terms at points of f-1(0) all vanish, and those at other points don't see the Òç(f). Thus the function

is equal to the constant
‡Pi in Dred Swan

Pi
(Ï) + ‡s in Sing(Ï)finite

Swan
s
(Ï).

Assertion 2) results by Poincarïe duality from 1) for the dual sheaf Ï£‚Òäç(f). Once we have 1)

and 2), Ì is lisse and of formation compatible with arbitrary change of base, being the image of a
map of such sheaves on a smooth base X. That Ì has the asserted stalk at "f" amounts, by base

change, to the fact that H1(C, j*(Ï‚Òç(f))) is the image of the "forget supports" map

H1
c(C - D - f-1(0) - Sing(Ï)finite, Ï‚Òç(f)) 

¨ H1(C - D - f-1(0) - Sing(Ï)finite, Ï‚Òç(f)).

Assertion 4) results from 1), 2), and 3), by Poincarïe duality and standard properties of cup
product. Because Ì is lisse, assertions 5) and 6) result from Lemma 5.1.3, applied to any single f in
the parameter space Fct(C, d, D, Sing(Ï)finite). QED

NNNNoooottttaaaattttiiiioooonnnn    5555....2222....2222 When we want to keep in mind the twist genesis of the lisse sheaf Ì on 
Fct(C, d, D, Sing(Ï)finite) constructed in 5.2.1 above, we will denote it Twistç,C,D(Ï):

(5.2.2.1) Ì := Twistç,C,D(Ï).

RRRReeeemmmmaaaarrrrkkkk    5555....2222....3333 It will also be convenient to have the following variant on the above description of
the sheaf Ì := Twistç,C,D(Ï) on the space

X := Fct(C, d, D, Sing(Ï)finite). 

Start as before with the lisse irreducible sheaf Ï‚Òç(f) on Ç - Î. The base X is itself lisse, of

dimension d + 1 - g, so Ï‚Òç(f)[d+2-g] is perverse irreducible on Ç-Î. Denote by
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 j : Ç - Î ¨ Ç 
the inclusion, and form the middle extension j~*(Ï‚Òç(f)[d+2-g]). Then according to [Ka-RLS,

2.7.2], if we denote by äπ : Ç ¨ X the projection, we have
Ì[d+1-g] = Räπ*j~*(Ï‚Òç(f)[d+2-g])

= image(Rπ~(Ï‚Òç(f)[d+2-g]) ¨ Rπ*(Ï‚Òç(f)[d+2-g])),

where the image is taken in the category of perverse sheaves on X.

LLLLeeeemmmmmmmmaaaa    5555....2222....4444 With the notations of 5.2.1, denote by 

j1 : Ç - Î ¨ Ç - Dred≠X = (C - D)≠X

the inclusion. Then the middle extension of Ï‚Òç(f)[d+2-g] by j1 is the [shifted] literal tensor

product
(j1)~*(Ï‚Òç(f)[d+2-g]) = Ï‚Òç(f)[d+2-g]

on (C-D)≠X. Its formation commutes with arbitrary change of base on X.

pppprrrrooooooooffff We are forming the middle extension across two disjoint smooth divisors in (C - D)≠X,
namely f=0 and Sing(Ï)finite≠X. Consider the inclusions

j2 : Ç - Î ¨ Ç - Dred≠X - Sing(Ï)finite≠X,

j3 : Ç - Dred≠X - Sing(Ï)finite≠X ¨ Ç - Dred≠X.

Under j2, we are extending across the divisor f=0. The sheaf Ï is lisse on the target 

(Ç - Dred≠X) - (Sing(Ï)finite≠X), so we have

(j2)~*(Ï‚Òç(f)[d+2-g]) ¶ Ï‚(j2)~*(Òç(f)[d+2-g]).

To see that (j2)~*(Òç(f)[d+2-g]) = (j2~Òç(f))[d+2-g] amounts to showing that j2*Òç(f) vanishes

on f=0 (for then j2*Òç(f) is lisse on f=0, and hence (j2)~*(Òç(f)[d+2-g]) = (j2*Òç(f))[d+2-g],

but this latter is (j2~Òç(f))[d+2-g]). But near any point of f=0, f is part of a system of coordinates

(f, coordinates for X), so by the Kunneth formula we are reduced to the fact that for j : ´m ¨ !1

the inclusion, we have j~Òç ¶ j*Òç.

When we extend by j3, across Sing(Ï)finite≠X, Òç(f) is lisse in a neighborhood of this

divisor, we may pull it out, and then we are reduced, by Kunneth, to the fact that Ï on C-D is its
own middle extension across Sing(Ï)finite. QED

VVVVaaaarrrriiiiaaaannnntttt    CCCCoooonnnnssssttttrrrruuuuccccttttiiiioooonnnn    ooooffff    ÌÌÌÌ    ::::====    TTTTwwwwiiiissssttttçççç,,,,CCCC,,,,DDDD((((ÏÏÏÏ))))    5555....2222....5555 (compare [Ka-RLS, 2.7.2]) Notations as in

5.2.1 above, over the parameter space 
X := Fct(C, d, D, Sing(Ï)finite),
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consider the proper smooth curve Ç := C≠X over X and in it the product divisor Dred≠X. On the

open curve Ç - Dred≠X = (C - D)≠X, form the literal tensor product sheaf Ï‚Òç(f). Denote by

j‘ : (C - D)≠X ¨ C≠X

the inclusion.
Denote by

pr2 : (C - D)≠X ¨ X = Fct(C, d, D, Sing(Ï)finite)

and
äπ : C≠X ¨ X

the projections. Then

1) The sheaves Ripr2~(Ï‚Òç(f)) on Fct(C, d, D, Sing(Ï)finite) vanish for i±1, and

R1pr2~(Ï‚Òç(f)) is lisse.

2) The sheaves Ripr2*(Ï‚Òç(f)) on Fct(C, d, D, Sing(Ï)finite) vanish for i±1, and

R1pr2*(Ï‚Òç(f)) is lisse, and of formation compatible with arbitrary change of base.

3) The perverse object Ì[d+1-g] on X is given by
Ì[d+1-g] = Räπ*j‘~*(Ï‚Òç(f)[d+2-g])

= image(Rpr2~(Ï‚Òç(f))[d+2-g] ¨ Rpr2*(Ï‚Òç(f))[d+2-g]).

pppprrrrooooooooffff For 1), we see the vanishing fibre by fibre. The lisseness results from part 1) of the 5.2.1 via
the long cohomology sequence for Rpr2~ attached to the short exact sequence of sheaves

0 ¨ j1~j1
*(Ï‚Òç(f)) ¨ Ï‚Òç(f) ¨ Ï‚Òç(f) | (Sing(Ï)finite≠X ¨ 0.

For 2), denote by Ï£ the middle extension sheaf dual to Ï. By Lemma 5.2.4 above, applied to Ï£

and äç, Ï£‚Òäç(f)[d+2-g] is its own middle extension from Ç-Î, so it is the Verdier dual of

Ï‚Òç(f)[d+2-g]. So 2) for Ï‚Òç(f) results from 1) for Ï£‚Òäç(f) by Poincarïe duality. For 3),

we already know (5.2.3) that 
Ì[d+1-g] = Räπ*j~*(Ï‚Òç(f)[d+2-g])

for j the inclusion of Ç - Î into Ç. So by the transitivity of middle extension (j~* = j‘~*«j1~*) and

Lemma 5.2.4, we get
Ì[d+1-g] = Räπ*j‘~*(Ï‚Òç(f)[d+2-g]).

That Räπ*j‘~*(Ï‚Òç(f)[d+2-g]) is the image of the canonical map

Rpr2~((Ï‚Òç(f))[d+2-g]) ¨ Rpr2*((Ï‚Òç(f))[d+2-g])

is [Ka-RLS, 2.7.2]. QED

5555....3333    FFFFiiiirrrrsssstttt    pppprrrrooooppppeeeerrrrttttiiiieeeessss    ooooffff    ttttwwwwiiiisssstttt    ffffaaaammmmiiiilllliiiieeeessss::::    rrrreeeellllaaaattttiiiioooonnnn    ttttoooo    mmmmiiiiddddddddlllleeee    aaaaddddddddiiiittttiiiivvvveeee    ccccoooonnnnvvvvoooolllluuuuttttiiiioooonnnn    oooonnnn    !!!!1111
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(5.3.1) We begin with a direct image formula, which, although elementary, is a fundamental
reduction tool in what is to follow.
(5.3.2) Fix f in Fct(C, d, D, Sing(Ï)finite). Thus f is a finite flat map from C-D to 

!1 = Spec(k[X]) of degree d, whose fibre over 0 consists of d distinct points, none of which lies
in Sing(Ï)finite. Denote by CritPt(f) fi C-D the finite set of points in C-D at which df vanishes.

Define
(5.3.2.1) CritVal(f, Ï) := f(CritPt(f)) ⁄ f(Sing(Ï)finite),

a finite subset of !1. Then for t in !1 - CritVal(f, Ï), the function t-f lies in 
Fct(C, d, D, Sing(Ï)finite), and so we have a morphism

(5.3.2.2) !1 - CritVal(f, Ï) ¨ Fct(C, d, D, Sing(Ï)finite)

given by t ÿ t-f. 
(5.3.3) What is the relation to convolution? We first explain the idea. For a good value t0 of t, the

stalk of Ì at t0-f is the cohomology group

H1(C, j‘*(Ï‚Òç(t0 - f))) = image of the "forget supports" map

Hc
1(C-D, Ï‚Òç(t0 - f)) ¨ H1(C-D, Ï‚Òç(t0 - f)).

Compute these cohomology groups on C-D by first mapping C-D to !1 by f. Since Òç(t0 - f) is

f*Òç(t0-X), the projection formula gives

Hc
1(C-D, Ï‚Òç(t0 - f)) = Hc

1(!1, (f*Ï)‚Òç(t0 -X)),

H1(C-D, Ï‚Òç(t0 - f)) = H1(!1, (f*Ï)‚Òç(t0 -X)).

So we get

H1(C, j‘*(Ï‚Òç(t0 - f)) = image of the "forget supports" map

Hc
1(!1, (f*Ï)‚Òç(t0 -X)) ¨ H1(!1, (f*Ï)‚Òç(t0 -X)).

If we denote by j‘ : !1 ¨ @1 the inclusion, this image is just H1(@1, j‘*((f*Ï)‚Òç(t0 -X))).

According to [Ka-RLS, 2.8.5], there is an open dense set in !1 such that for t0 in this open dense

set, H1(@1, j‘*((f*Ï)‚Òç(t0 -X))) is the stalk at t0 of the [shifted] middle additive convolution

of f*Ï with Òç. 

(5.3.4) Here is the precise result.

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    5555....3333....5555 Hypotheses and notations as in 5.2.1, fix f in Fct(C, d, D, Sing(Ï)finite), viewed

as a map from C-D to !1. Form the direct image sheaf f*(Ï|C-D) on !1. The object 
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f*(Ï|C-D)[1] 

on !1 is perverse. For j : ´m ¨ !1 the inclusion, form the sheaf j*Òç = j~Òç on !1, and the

perverse object j*Òç[1] on !1. Consider the middle additive convolution [Ka-RLS, 2.9]

f*(Ï|C-D)[1]*mid+j*Òç[1]

on !1. On !1 - CritVal(f, Ï) we have a canonical isomorphism

([t ¨ t - f]*Ì)[1] ¶ (f*(Ï|C-D)[1])*mid+j*Òç[1].

pppprrrrooooooooffff The sheaf Ï on C-D is a middle extension, so Ï[1] on C-D is perverse. Since f is a finite
map, f*(perverse) is perverse.

We use the description of Ì[d+1-g] as
image(Rpr2~((Ï‚Òç(f))[d+1-g]) ¨ Rpr2*((Ï‚Òç(f))[d+1-g]))

on Fct(C, d, D, Sing(Ï)finite). 

This description commutes with arbitrary change of base, so ([t ¨ t - f]*Ì)[1] is
image(Rpr2~((Ï‚Òç(t-f))[1]) ¨ Rpr2*((Ï‚Òç(t-f))[1])),

pr2 the projection of (C-D)≠(!1 - CritVal(f, Ï)) to !1 - CritVal(f, Ï). Now factor this

projection the composition of 

f≠id: (C-D)≠(!1 - CritVal(f, Ï)) ¨ !1≠(!1 - CritVal(f, Ï))
with the projection

pr2,! : !1≠(!1 - CritVal(f, Ï))¨ (!1 - CritVal(f, Ï)).

Since f is finite, we have f~ = f* = Rf*. The key point is that

Òç(t-f)= (f≠id)*Òç(t-X)
and hence by the projection formula we find

Rpr2~(Ï‚Òç(t-f)) = Rpr2~(Ï‚(f≠id)*Òç(t-X))

= Rpr2,!~((f≠id)~(Ï‚(f≠id)*Òç(t-X)))

= Rpr2,!~((f~Ï)‚Òç(t-X))

= Rpr2,!~((f*Ï)‚Òç(t-X)).

Similarly we find
Rpr2*(Ï‚Òç(t-f)) = Rpr2,!*((f*Ï)‚Òç(t-X)).

Thus we get that ([t ¨ t - f]*Ì)[1] is
 image(Rpr2~((Ï‚Òç(t-f))[1]) ¨ Rpr2*((Ï‚Òç(t-f))[1]))

= image(Rpr2,!~((f*Ï)‚Òç(t-X))[1]) ¨ Rpr2,!*((f*Ï)‚Òç(t-X))[1])).
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This last image is the restriction to !1 - CritVal(f, Ï) of the middle additive convolution of f*Ï

and Òç, thanks to [Ka-RLS, 2.7.2 and 2.8.4]. QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    5555....3333....6666 Hypotheses and notations as in 5.2.1, suppose we are in one of the following
situations:
1a) Sing(Ï)finite is nonempty, deg(D) ≥ 2g+1, and char(k) ± 2.

1b) Sing(Ï)finite is nonempty, deg(D) ≥ 2g+3, and char(k) = 2.

2a) deg(D) ≥ 4g+2, and char(k) ± 2.
2b) deg(D) ≥ 4g+6, and char(k) = 2.
Then the lisse ä$…-sheaf Ì on Fct(C, d, D, Sing(Ï)finite) is irreducible (or zero).

pppprrrrooooooooffff Suppose first that Sing(Ï)finite is nonempty. If char(k) ± 2 [resp. if char(k) = 2] pick a

function f in Fct(C, d, D, Sing(Ï)finite) which also lies in the dense open set U of Theorem 2.2.6

[resp. Theorem 2.4.2], applied with S taken to be Sing(Ï)finite. Thus f as map from C-D to !1 is

of Lefschetz type, and for each s in Sing(Ï)finite, the fibre f-1(s) consists of d distinct points, only

one of which lies in Sing(Ï)finite. By the Irreducible Induction Criterion 3.3.1, f*(Ï|C-D) is an

irreducible middle extension on !1. By [Ka-RLS, 2.9.7], the middle additive convolution

(f*(Ï|C-D)[1])*mid+j*Òç[1] on !1 is perverse irreducible. Hence its restriction to any dense

open set of !1 is perverse irreducible (or zero). 
We now turn to the case in which either char(k) ± 2 and deg(D) ≥ 4g+2, or char(k) = 2 and

deg(D) ≥ 4g+6. Write D as the sum of two effective divisors D = D1 + D2, with both Di having

degree ≥ 2g+1 (resp. ≥ 2g+3 if char(k) = 2).
Since deg(D1) ≥ 2g+1 (resp. ≥ 2g+3 if char(k) = 2), we may choose a function f1 in

Fct(C, deg(D1), D1, Sing(Ï)⁄Dred). Thus f1 lies in L(D1), its divisor of poles is D1, and it has

deg(D1) distinct zeroes, none of which lies in either Sing(Ï) or in D. Fix one such f1.

As deg(D2) ≥ 2g+1 if char(k) ± 2 [resp. ≥ 2g+3 if char(k) = 2], we may pick a function f2

in Fct(C, deg(D2), D2, Sing(Ï)⁄Dred⁄f1
-1(0)) which lies in the open set U of Theorem 2.2.6 if

char(k) ± 2 [resp. in the open set U of Theorem 2.4.2 if char(k) = 2] with respect to S the set 

(Sing(Ï)⁄Dred⁄f1
-1(0))€(C - D2). 

Thus f2 has divisor of poles D2, it has deg(D2) distinct zeroes, none of which lies in

Sing(Ï)⁄Dred⁄f1
-1(0), and for each zero å of f1, the f2-fibre containing it, f2

-1(f2(å)),

consists of deg(D2) distinct points, of which only å is a zero of f1, and none of which lies in D

or in Sing(Ï). In particular, the middle extension of Ï‚Òç(f1)
is lisse
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at every point of this fibre f2
-1(f2(å)) other than at å itself. For any

such f2, the product f1f2 lies in the space Fct(C, d, D, Sing(Ï)finite). Moreover, for most scalars t,

the product f1(t - f2) lies in the space Fct(C, d, D, Sing(Ï)finite). Indeed, we need that

f2 -t have d2 distinct zeroes, all of which are disjoint from div(f1)

and from Sing(Ï). Let us denote
CritPt(f2, f1, Ï) := (div(f1)⁄Sing(Ï)⁄(zeroes of df2))€(C - D2),

CritVal(f2, f1, Ï) := f2(CritPt(f2, f1, Ï)).

Then for fixed f1 and f2 as above, we have a map

!1 - CritVal(f2, f1, Ï) ¨ Fct(C, d, D, Sing(Ï)finite),

t ÿ f1(t - f2).

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    5555....3333....7777    Given an effective D of degree d ≥ 4g+2 (resp. d ≥ 4g+6 if char(k) = 2), write it
as D1+D2 with both Di effective of deg(Di) ≥ 2g+1 (resp. ≥ 2g+3 if char(k) = 2). Fix 

f1 in Fct(C, deg(D1), D1, Sing(Ï)⁄Dred). 

Fix a function f2 in Fct(C, deg(D2), D2, Sing(Ï)⁄Dred⁄f1
-1(0)) which also lies in the open set

U of Theorem 2.2.6 if char(k) ± 2 [resp. in the open set U of Theorem 2.4.2 if char(k) = 2] with

respect to the set S := (Sing(Ï)⁄Dred⁄f1
-1(0))€(C - D2). View f2 as a finite flat map

from C - D2 to !1. For i=1,2, denote by

ji : C - D ¨ C - Di
the inclusion. Start with the sheaf Ï‚Òç(f1) on C- D, form its direct image j2*(Ï‚Òç(f1)) on

C-D2, and take its direct image f2*j2*(Ï‚Òç(f1)) on !1. The object f2*j2*(Ï‚Òç(f1))[1] on

!1 is perverse. For j : ´m ¨ !1 the inclusion, form the sheaf j*Òç = j~Òç on !1, and the

perverse object j*Òç[1] on !1. Consider the middle additive convolution [Ka-RLS, 2.9]

f2*j2*(Ï‚Òç(f1))[1]*mid+j*Òç[1]

on !1. On !1 - CritVal(f2, f1, Ï), we have a canonical isomorphism

([t ÿ f1(t - f2)]*Ì)[1] ¶ (f2*j2*j1
*(Ï‚Òç(f1))[1])*mid+j*Òç[1].

pppprrrrooooooooffff    ooooffff    5555....3333....7777 We work over the space

T := !1 - CritVal(f2, f1, Ï).

For i=1, 2, denote by ji,‘ the inclusion

ji,‘: C - Di ¨ C.
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We know that ([t ÿ f1(t - f2)]*Ì)[1] on T is given in terms of the projections

pr2,D : (C-D)≠T ¨ T

and
pr2 : C≠T ¨ T

as
image(Rpr2,D~((Ï‚Òç(f1(t-f2)))[2]) ¨ Rpr2,D*((Ï‚Òç(f1(t-f2)))[2]))

 = Rpr2*((j‘≠id)~*(Ï‚Òç(f1(t-f2))[2]))

 = Rpr2*((j2,‘≠id)~*(j2≠id)~*(Ï‚Òç(f1(t-f2))[2])).

Now (j2≠id)~*(Ï‚Òç(f1(t-f2))[1]) means extending across points which are in D1 but not in D2,

and Òç(t-f2) is lisse near such points [simply because t does not lie in

f2((div(f1)€(C - D2))]. So 

(j2≠id)~*(Ï‚Òç(f1(t-f2))[1]) = j2*(Ï‚Òç(f1))[1]‚Òç(t-f2).

Thus ([t ÿ f1(t - f2)]*Ì)[1] on T is

Rpr2*(j2,‘≠id)~*((j2*(Ï‚Òç(f1))[1]‚Òç(t-f2)[1]).

Denote äf2 := f2 viewed as a map of C to @1. Compute Rpr2* by factoring pr2 as

äf2≠id: C≠T ¨@1≠T 

followed by

 pr2,@: @1≠T ¨T.

Thus 
Rpr2*(j2,‘≠id)~*(j2*(Ï‚Òç(f1))[1]‚Òç(t-f2)[1]).

= Rpr2,@*(f2≠id)*(j2,‘≠id)~*(j2*(Ï‚Òç(f1))[1]‚Òç(t-f2)[1])

In terms of the inclusion

j! : !1 ¨ @1

and

f2 : C-D2 ¨ !1

we have a cartesian diagram
    j2,‘

    C - D2 ¨ C

f2      Ñ          Ñ äf2

        !1  ¨ @1

    j!
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in which the horizontal maps are affine open immersions, and the vertical maps are finite. So we
have

(äf2≠id)*(j2,‘≠id)~* = (j!≠id)~*(f2≠id)~*.

So we get
Rpr2,@*(äf2≠id)*(j2,‘≠id)~*(j2*(Ï‚Òç(f1))[1]‚Òç(t-f2)[1])

= Rpr2,@*(j!≠id)~*(f2≠id)*(j2*(Ï‚Òç(f1))[1]‚Òç(t-f2)[1]).

Now Òç(t-f2) is f2
*Òç(t-X), so by the projection formula we may rewrite this last expression as

= Rpr2,@*(j!≠id)~*(Òç(t-X)[1]‚(f2*j2*(Ï‚Òç(f1))[1])).

By [Ka-RLS, 2.9.2], this is (restriction to T of) the asserted middle convolution. QED for 5.3.7

Once we have Proposition 5.3.7, then to prove the irreducibility of Ì it suffices to show

that f2*j2*j1
*(Ï‚Òç(f1)) is an irreducible middle extension. This is immediate from the

Irreducible Induction Criterion 3.3.1, since the singularities of j2*j1
*(Ï‚Òç(f1)) on C - D2

include the deg(D1) distinct zeroes of f1, and the f2-fibre containing each of these zeroes consists

of deg(D2) distinct points, precisely one of which, namely that zero, is a singularity of

j2*j1
*(Ï‚Òç(f1)). QED

5555....4444    TTTThhhheeeeoooorrrreeeemmmmssss    ooooffff    bbbbiiiigggg    mmmmoooonnnnooooddddrrrroooommmmyyyy    iiiinnnn    cccchhhhaaaarrrraaaacccctttteeeerrrriiiissssttttiiiicccc    nnnnooootttt    2222

TTTThhhheeeeoooorrrreeeemmmm    5555....4444....1111 Let k be an algebraically closed field of characteristic not 2, C/k a proper, smooth
connected curve of genus g. Suppose that D = ‡aiPi is an effective divisor of degree d ≥ 2g+1,

with all ai invertible in k. Let Ï be an irreducible middle extension sheaf on C with 

Sing(Ï)finite := Sing(Ï)¤(C-D) nonempty. Suppose that either Ï is everywhere tame, or that Ï is

tame at all points of D and that the characteristic p is either zero or a prime p ≥ rank(Ï) + 2.
Suppose that the following inequalities hold:

if rank(Ï) = 1, 2g-2+d ≥ Max(2ùSing(Ï)finite, 4rank(Ï)),

if rank(Ï) ≥ 2, 2g-2+d ≥ Max(2ùSing(Ï)finite, 72rank(Ï)).

Fix a nontrivial character ç whose finite order n ≥ 2 is invertible in k. Form the lisse sheaf 
Ì := Twistç,C,D(Ï) 

on the space Fct(C, d, D, Sing(Ï)finite).

Pick a function f in Fct(C, d, D, Sing(Ï)finite) which also lies in the dense open set U of

Theorem 2.2.6 applied with S taken to be Sing(Ï)finite. Thus f as map from C-D to !1 is of

Lefschetz type, and for each s in Sing(Ï)finite, the fibre f-1(s) consists of d distinct points, only
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one of which lies in Sing(Ï)finite. Consider the lisse ä$…-sheaf Ó on !1 - CritVal(f, Ï) given by 

Ó := [t ÿ t-f]*Ì,
i.e., by

t ÿ H1(C, j*(Ï‚Òç(t-f)).

Its geometric monodromy group Ggeom is either Sp or SO or O, or Ggeom contains SL. If Ï is

orthogonally (respectively symplectically) self-dual, and ç has order 2, then Ggeom is Sp

(respectively SO or O). If ç has order ≥ 3, then Ggeom contains SL.

pppprrrrooooooooffff Let us put r := rank(Ï), m := ù Sing(Ï)finite. We have seen (5.3.5) that Ó is the restriction to

!1 - CritVal(f, Ï) of the middle additive convolution of f*Ï and Òç. 

Let us put
Ï1 := f*Ï.

We have seen above (in the proof of 5.3.6) that Ï1 is an irreducible middle extension on !1.

Notice that Ï1 lies in the class ∏conv, cf. 4.0.2, because its rank is ≥ 3. [Indeed, its rank is

d≠rank(Ï) ≥ d. If g > 0, then the hypothesis that d ≥ 2g+1 gives d ≥ 3. If g = 0, the hypothesis
2g-2+d ≥ Max(2ùSing(Ï)finite, 4rank(Ï)).

gives d ≥ 6.]
The sheaf Ï1 is tame at ‘, because Ï is tame at all the poles of f, and the poles of f all have

order prime to p. Moreover, the I(‘)-invariants are given by

Ï1(‘)I(‘) ¶ ·points Pi in D Ï(Pi)
I(Pi).

Over each critical value å of f, Ï is lisse, and f-å has one and only one double zero, so the
local monodromy of Ï1 at å is quadratic of drop r, with scale the unique character of order 2:

Ï1(å)/Ï1(å)I(å) ¶ r copies ofÒç2(x-å).

Over the m images ∂ = f(∫) of points ∫ in Sing(Ï)finite, f is finite etale, and ∫ is the unique

point of Sing(Ï)finite in the fibre, so the local monodromy of Ï1 at ∂ has drop ≤ r. More precisely,

we have

Ï1(∂)/Ï1(∂)I(∂) ¶ Ï(∫)/Ï(∫)I(∫),

where we use f to identify I(∂) with I(∫). 

At all other points of !1, i.e., on !1 - CritVal(f, Ï), Ï1 is lisse. Moreover, if Ï is

everywhere tame on C, then Ï1 is everywhere tame. Now form Ó, the middle additive convolution

of Ï1 with Òç. Thus Ó is tame at ‘ (by 4.1.10, part 2d)), and it is everywhere tame if Ï is

everywhere tame (by 4.1.10, parts 1b) and 2d)). By 5.2.1, part 6), we have the inequality
rank(Ó) ≥ (2g-2 + d)r + ùSingfinite(Ï) > (2g-2 + d)r.
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The local monodromy of Ó at each of the m images ∂ = f(∫) of points ∫ in Sing(Ï)finite
has drop ≤ r, by 4.1.10, part 1c), and is given by

Ó(∂)/Ó(∂)I(∂) ¶ MCçloc(∂)(Ï(∫)/Ï(∫)I(∫) as I(∂)-rep'n. 

The local monodromy of Ó at each critical value å of f is quadratic of drop r, with scale the
character çç2:

Ó(å)/Ó(å)I(å) ¶ Òç(x-å)‚(r copies of Òç2(x-å))

¶ r copies of Òçç2(x-å).

The key observation here is that çç2 is nnnnooootttt of order two, and that f hhhhaaaassss critical points (because their

number, the number of zeroes of df, is
2g-2+ ‡i(1+ai) > 2g-2+d > 2ùSing(Ï)finite > 2 > 0).

The conclusion follows from Theorem 1.5.1 (and Theorem 1.7.1, if r=1), applied to the data
(r, m, Ó). QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    5555....4444....2222 Hypotheses and notations as in Theorem 5.4.1 above, suppose that ç has order
2, but Ï is not self-dual. Then Ggeom contains SL.

pppprrrrooooooooffff If not, then by the paucity of choice, Ggeom is contained in either Sp or O, and hence Ó is

self-dual. But Ó is the middle convolution of f*Ï and Òç. As ç has order 2, we recover f*Ï as

the middle convolution of Ó and Òç. As ç has order 2, Òç is self-dual. As both Ó and Òç are

self-dual, so is their middle convolution, f*Ï. By Proposition 3.4.1, the autoduality of f*Ï implies

that of Ï, contradiction. QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    5555....4444....3333 Hypotheses and notations as in Theorem 5.4.1 above, suppose that ç has order
2, and that Ï is symplectically self-dual. 
1) Suppose there exists a finite singularity ∫ of Ï, i.e., a point ∫ in Sing(Ï)¤(C-D), such that the
following two conditions hold:

1a) Ï is tame at ∫,

1b) Ï(∫)/Ï(∫)I(∫) has odd dimension.
Then the group Ggeom for the sheaf Ó is the full orthogonal group O.

2) Suppose that Ï is everywhere tame. Then Ggeom for Ó is the special orthogonal group SO if

and only if Ï(∫)/Ï(∫)I(∫) has even dimension for every finite singularity ∫ of Ï.

pppprrrrooooooooffff In terms of Ï1 := f*Ï, Ó on !1 - CritVal(f, Ï) is (the restriction from !1 of) the middle

convolution Ï1*mid+Òç. We already know that Ggeom for Ó is either SO or O, so we have only
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to see whether det(Ó) is trivial or not. Since det(Ó) is either trivial or of order 2, it is ttttaaaammmmeeee on 

!1 - CritVal(f, Ï). Hence det(Ó) is trivial if and only if it is trivial on every ffffiiiinnnniiiitttteeee inertia group
I(©), © in CritVal(f, Ï). 

At © which is a critical value å of f, we have seen that the local monodromy of Ï1 at å is

quadratic of drop r := rank(Ï), with scale the unique character of order 2:

Ï1(å)/Ï1(å)I(å) ¶ r copies ofÒç2(x-å).

The local monodromy of Ó = Ï1*mid+Òç at å is given by

Ó(å)/Ó(å)I(å) ¶ (Ï1(å)/Ï1(å)I(å))‚Òç(x-å)
¶ r copies of ú,

this last equality because ç is the quadratic character ç2. From this we calculate 

det(Ó(å)) = det(Ó(å)/Ó(å)I(å)) = ú.
Thus the local monodromy of det(Ó) is trivial at all the critical values of f.

At © which is the image ∂ = f(∫) of a point ∫ in Sing(Ï)finite, we have seen that

Ï1(∂)/Ï1(∂)I(∂) ¶ Ï(∫)/Ï(∫)I(∫)

where we use f to identify I(∂) with I(∫). Using this identification, the local monodromy of 
Ó = Ï1*mid+Òçat ∂ is

Ó(∂)/Ó(∂)I(∂) ¶ MCçloc(∂)(Ï(∫)/Ï(∫)I(∫)) as I(∂)-rep'n.

If Ï is tame at ∫, we have

Ó(∂)/Ó(∂)I(∂) ¶ (Ï(∫)/Ï(∫)I(∫))‚Òç(x-∂).

We then readily compute 

det(Ó(∂)) = det(Ó(∂)/Ó(∂)I(∂)) 

= det((Ï(∫)/Ï(∫)I(∫))‚Òç(x-∂))

= det((Ï(∫)/Ï(∫)I(∫)))‚(Òç(x-∂))
dim(Ï(∫)/Ï(∫)I(∫)).

But we have

det((Ï(∫)/Ï(∫)I(∫))) = det(Ï(∫)) = ú,
this last equality because Ï is symplectic, and Sp fi SL. Thus we find

det(Ó(∂)) = (Òç(x-∂))
dim(Ï(∫)/Ï(∫)I(∫)).

Thus det(Ó) is nontrivial at the image ∂ = f(∫) of a point ∫ in Sing(Ï)finite at which Ï is

tame, if and only if Ï(∫)/Ï(∫)I(∫) has odd dimension. This proves 1). 
Suppose now that Ï is everywhere tame. We already know that det(Ó) is trivial at all the

critical values of f, so det(Ó) is trivial if and only if it is trivial at every ∂ = f(∫), ∫ in Sing(Ï)finite.

For Ï everywhere tame, this triviality at every ∂ = f(∫) means precisely that Ï(∫)/Ï(∫)I(∫) has even
dimension for all finite singularities ∫ of Ï. QED
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RRRReeeemmmmaaaarrrrkkkk    5555....4444....4444 Here is an example to show that part 2) of the above proposition can fail if we drop
the hypothesis that Ï be everywhere tame. We fix an even integer 2n ≥ 2, and work over äÉp for

any prime p ≥ 2n+2. Fix a nontrivial ä$…-valued additive character ¥ of Ép. Denote by Kl2n the

standard Kloosterman sheaf in 2n variables: thus Kl2n is the lisse sheaf of rank 2n on ´m/Ép

whose trace function at a point å in E≠, E a finite extension E of Ép, is

Trace(Frobå,E | Kl2n) = -‡x1x2...x2n=å in E ¥(‡xi).

One knows that Kl2n is symplectically self-dual. 

Take Ï the middle extension of the lisse sheaf [x ÿ 1/x]*Kl2n on ´m. One knows that

Kl2n(‘) is a totally wild irreducible representation of I(‘), all of whose slopes are 1/2n. Thus Ï is

totally wild at zero, and hence Ï(0)/Ï(0)I(0) has even dimension 2n.

We take C to be @1/äÉp, D to be d‘ for a sufficiently large integer d prime to p, ç to be the

quadratic character ç2, and Ï as above. Then Sing(Ï)finite is {0}, and, as noted above,

Ï(0)/Ï(0)I(0) has even dimension 2n. Nonetheless, we will see that Ggeom for Ó is the full

orthogonal group O. More precisely, with ∂ := f(0), we will show that det(Ó) is nontrivial at ∂. To
simplify the notations, let us replace f by f - ∂, so that f(0) = 0. Then we have

Ó(0)/Ó(0)I(0) ¶ MCçloc(0)(Ï(0)/Ï(0)I(0)).

We will show that det(Ó(0)) is Òç. We have

det(Ó(0)) = det(Ó(0)/Ó(0)I(0)) = det(MCçloc(0)(Ï(0)/Ï(0)I(0))).

We will calculate MCçloc(0)(Ï(0)/Ï(0)I(0)) by a global argument. The sheaf Ï on !1 lies

in ∏conv of 4.0.2. We define

 Ì := Ï*mid+Òç in ∏conv. 

Then by Theorem 4.1.10, part 1) we have

Ì(0)/Ì(0)I(0) ¶ MCçloc(0)(Ï(0)/Ï(0)I(0)).

Thus 

det(Ó(0)) = det(MCçloc(0)(Ï(0)/Ï(0)I(0)))

= det(Ì(0)/Ì(0)I(0))
= det(Ì(0)).

Hence we are reduced to showing that det(Ì(0)) is Òç.

Applying Fourier transform FT (:= FT¥) to the defining equation

 Ì := Ï*mid+Òç,

we obtain
FT(Ì) = j*(FT(Ï)‚Òç | ´m).
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The key observation is that, because Ï is [x ÿ 1/x]*Kl2n, we have

FT(Ï) ¶ Kl2n+1,

a remark due to Deligne [De-AFT, 7.1.4] and developed in [Ka-ESDE, 8.1.12 and 8.4.3]. Thus
we find

FT(Ì) = j*(FT(Ï)‚Òç | ´m) = j~Kl2n+1(ç, ç, ..., ç).

We can calculate FT(j~Kl2n+1(ç, ç, ..., ç)) as a hypergeometric sheaf of type (1, 2n+1), cf. [Ka-

ESDE, 9.3.2 with d=1]. The result is
FT(j~Kl2n+1(ç, ç, ..., ç)) ¶ j*Óyp(ú; ç, ..., ç). 

Since FT is involutive, we find a geometric isomorphism

[x ÿ -x]*Ì ¶ j*Óyp(ú; ç, ..., ç). 

So to show that det(Ì(0)) is Òç, it is equivalent to show that det(Óyp(ú; ç, ..., ç))(0) is Òç.

The sheaf Óyp(ú; ç, ..., ç) is lisse on ´m. Its local monodromy at ‘ is Òç‚Unip(2n+1),

whose determinant is Òç (remember ç is ç2). Its local monodromy at 0 is ú·W, where W has rank

2n and all slopes 1/2n. Since all slopes at 0 are < 1, det(Óyp(ú; ç, ..., ç)) is tame at 0. Thus
det(Óyp(ú; ç, ..., ç)) is lisse on ´m, tame at both 0 and ‘, and agrees with Òç at ‘. Therefore we

have a global isomorphism
det(Óyp(ú; ç, ..., ç)) ¶ Òç on ´m/äÉp.

In particular, det(Óyp(ú; ç, ..., ç))(0) is Òç.

Here is a further elaboration on this sort of counterexample. With 2n, p, and d fixed as
above, choose further an oooodddddddd integer k ≥ 1 which is prime to p. Now define Ï to be the middle

extension of the lisse sheaf [x ÿ 1/xk]*Kl2n on ´m. Then Sing(Ï)finite is {0}, Ï is totally wild

at 0, and Ï(0)/Ï(0)I(0) has even dimension 2n. Using [Ka-ESDE, 9.3.2 with d=k], a similar
argument now shows that Ó has Ggeom the full orthogonal group, and that det(Ó) is nontrivial at

0. 

(5.4.5) We will now give another one-parameter family of twists with big monodromy. Before
stating the result, we need an elementary lemma.

LLLLeeeemmmmmmmmaaaa    5555....4444....6666 Let k be an algebraically closed field of any characteristic, C/k a proper, smooth
connected curve of genus g. Suppose that D = ‡aiPi is an effective divisor of degree d. Suppose

d1 and d2 are positive integers with d1 + d2 = d. If k has characteristic p > 0, suppose further that

d2/d ≤ (p-1)/p. Then we can write D as a sum of effective divisors D1 + D2 with D2 of degree

either d2 or d2 +1, such that D2 = ‡ciPi, has all its nonzero ci invertible in k. Moreover, if

d2/d > 1/3, then D2 can be chosen so that, in addition, for any point

Pi which occurs in D but not in D2, we have ai ≤ 2.
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pppprrrrooooooooffff If k has characteristic zero, any writing of D as a sum of effective divisors D1 + D2 with D2
of degree d2 does the job. 

If k has characteristic p > 0, put ¬ := d2/d. For real x ≥ 0, we denote its "floor" and

"ceiling"
[x]fl := the greatest integer ≤ x,

[x]ce := the least integer ≥ x.

Since ¬ ≤ 1, we have, for each i,
ai ≥ [¬ai]ce ≥ ¬ai ≥ [¬ai]fl.

We define effective divisors Dfl and Dce by

Dfl := ‡i [¬ai]flPi, Dce := ‡i [¬ai]cePi.

Thus D ≥ Dce ≥ Dfl, and deg(Dce) ≥ d2 ≥ deg(Dfl). For each i, the coefficients [¬ai]ce and [¬ai]fl
are either equal or differ by 1. So we can choose, for each i, either [¬ai]ce and [¬ai]fl, call it bi, so

that the "intermediate" divisor Dint := ‡ibiPi has degree d2. Clearly 

Dce ≥ Dint ≥ Dfl. 

If Dint has all its nonzero bi invertible in k, we take D2 to be Dint. Then D2 will have

degree d2.

If some of the nonzero bi are divisible by p, we modify Dint as follows. First of all, if p

divides a nonzero bi, then bi ≥ p, so bi - 1 is positive and prime to p. What about bi + 1? It is

prime to p, but is bi + 1 ≤ ai? In other words, is bi < ai? The answer is yes, because if not, then bi
= ai. But ai ≥ [¬ai]ce ≥ bi, so we would have ai = [¬ai]ce. This means in turn that ¬ai > ai - 1, i.e.,

1 > ai(1-¬). But p divides bi, so ai ≥ p, and so 1 > p(1-¬), which contradicts the hypothesis 

¬ ≤ (p-1)/p. 
So each nonzero bi that is divisible by p can be either increased by 1 or decreased by 1 and

continue to lie in the range [0, ai]. If there are evenly many indices i whose bi is divisible by p,

increase half of them by 1 and decrease the other half by 1, to get the desired D2: it has degree d2.

If there are oddly many bi divisible by p, group all but one in pairs, and in each pair increase one

member by 1 and decrease the other by 1. Increase the leftover by 1. This gives a D2 of degree

1+d2. 

It remains to prove the "moreover". Suppose now that ¬ :=
d2/d > 1/3. Let Pi be a point which occurs in D but which has ci = 0.

Recall that
1) bi is either [¬ai]ce or [¬ai]ce -1,
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2) ci is bi unless we are in positive characteristic p and bi is a

nonzero multiple of p, in which case ci is bi _ 1.

If we are in positive characteristic p and bi is a nonzero multiple of

p, then ci ≥ p-1, so ci is nonzero. Thus ci = 0 implies bi = 0, which in

turn implies that either [¬ai]ce = 0 or [¬ai]ce = 1. So if ci = 0, we

have ¬ai ≤ 1, and hence ai ≤ 1/¬. Since ¬ > 1/3, we have 1/¬ < 3, and

so ai < 3. As ai is an integer, we have ai ≤ 2, as asserted. QED

RRRReeeemmmmaaaarrrrkkkk    5555....4444....7777 The example of a divisor D of the form ‡i pPi, which has all its ai = p, shows that

the hypothesis d2/d ≤ (p-1)/p cannot be relaxed. The example of a divisor D of the form dP, and

the choice d2 = p, shows that we cannot insist that D2 have degree d2.

CCCCoooorrrroooollllllllaaaarrrryyyy    5555....4444....8888 Let k be an algebraically closed field, C/k a proper, smooth connected curve of
genus g. 
1) Suppose that D = ‡aiPi is an effective divisor of degree d ≥ 4g+5. Then we can write D as a

sum of effective divisors D1 + D2 with degrees d1 ≥ 2g+2 and d2 ≥ 2g+2, such that D2 = ‡ciPi
has all its nonzero ci invertible in k and such that for any point Pi which

occurs in D but not in D2, we have ai ≤ 2.

2) Suppose that D = ‡aiPi is an effective divisor of degree d ≥ 4g+4. Then we can write D as a

sum of effective divisors D1 + D2 with degrees d1 ≥ 2g+2 and d2 ≥ 2g+1, such that D2 = ‡ciPi
has all its nonzero ci invertible in k and such that for any point Pi which

occurs in D but not in D2, we have ai ≤ 2.

3) Fix an integer A ≥ 0. Suppose that D = ‡aiPi is an effective divisor of degree 

d ≥ Max(6g+9, 6A + 11), 
and that the characteristic is not two. Then we can write D as a sum of effective divisors D1 + D2
both of whose degrees d1 and d2 are at least 2g+2, such that D2 = ‡ciPi has all its nonzero ci
invertible in k, such that for any point Pi which occurs in D but not in

D2, we have ai ≤ 2, and such that 2g - 2 + d > 2(A+d1).

pppprrrrooooooooffff 1) Take d2 = [d/2]fl. Because d ≥ 4g + 5, d - d2 ≥ 2g+3, and d2/d

> 1/3. So we simply apply 5.4.6 to this situation.
2) If d ≥ 4g+5, apply part 1). If d = 4g+4, we argue as follows. If g ≥ 1,
then take d2= 2g+1. We have d2/d > 1/3, and again we simply apply

5.4.6. If g = 0, then d = 4, and we resort to an ad hoc argument,
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depending on how many distinct Pi there are in D. Here is a table of

the various types of effective D of degree 4, and appropriate choices
of D1 and D2 for each.

D D1 D2
4P 3P P
3P + Q 2P P + Q
2P + 2P P+Q P+Q
2P + Q + R P+R P+Q
P+Q+R+S P+Q R+S.

For 3), we apply the lemma with the initial choice d2 := [2d/3], allowed because the

characteristic is not two. We end up with D2 of degree d2 either [2d/3] or [2d/3]+1, both of which

are ≥ (2d-2)/3 and both of which are ≤ (2d+3)/3. Then D1 has degree d1 either d - [2d/3] or 

d - 1- [2d/3], both of which are ≥ (d-3)/3, and both of which are ≤ (d+2)/3. So both D1 and D2
have degree at least (d-3)/3 ≥ 2g+2. We also have

2g - 2 + d - 2(A+d1) = 2g - 2 + d1 + d2 - 2(A+d1) 

= d2 - d1 + 2g - 2 - 2A

≥ d2 - d1 -2A - 2

≥ (2d-2)/3 - (d+2)/3 - 2A - 2
= (d-4)/3 - 2A - 2
≥ (6A +7)/3 - 2A - 2 > 0,

as required. It remains to check that d2/d > 1/3. This holds simply

because d2 :=[2d/3] ≥ (2d-2)/3, and hence d2/d > (2d-2)/3d > 1/3, the

last inequality because d > 2. QED

TTTThhhheeeeoooorrrreeeemmmm    5555....4444....9999    Let k be an algebraically closed field of characteristic not 2, C/k a proper, smooth
connected curve of genus g. Suppose that D = ‡aiPi is an effective divisor of degree d ≥ 4g+4.

Write D as a sum of effective divisors D1 + D2 of degrees d1 ≥ 2g+2 and d2 ≥ 2g+1, such that

D2 = ‡ciPi has all its nonzero ci invertible in k and such that for any point Pi
which occurs in D but not in D2, we have ai ≤ 2. 

Let Ï be an irreducible middle extension sheaf on C. Suppose that either Ï is everywhere
tame, or that Ï is tame at all points of D and that the characteristic p is either zero or a prime 
p ≥ rank(Ï) + 2. Suppose that the following inequalities hold:

if rank(Ï) = 1, 2g - 2 + d > Max(2ù(Sing(Ï)¤(C-D2)), 4rank(Ï)),
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if rank(Ï) ≥ 2, 2g - 2 + d > Max(2ù(Sing(Ï)¤(C-D2)), 72rank(Ï)).

Fix a nontrivial character ç of finite order n ≥ 2. If n=4, suppose also that
2g - 2 + d > 2(ù(Sing(Ï)¤(C-D2)) + d1).

If n=4 and the curve C has genus g=0, suppose in addition that D1 and D2 are chosen so that 

d2 ≥ 2. (Such a choice is always possible if g=0 by Corollary 5.4.8, part 1), because 

d-2 = 2g-2+d > 72rank(Ï) ≥ 72, hence d ≥ 75 > 4g+5.)
Fix a function

f1 in Fct(C, deg(D1), D1, Sing(Ï)⁄Dred). 

Fix a function f2 in Fct(C, deg(D2), D2, Sing(Ï)⁄Dred⁄f1
-1(0)) which also lies in the open set

U of Theorem 2.2.6 with respect to the set S :=(Sing(Ï)⁄Dred⁄f1
-1(0))€(C - D2).

Consider the lisse ä$…-sheaf Ó on !1 - CritVal(f2, f1, Ï) given by [t ÿ f1(t-f2)]*Ì, i.e.,

by

t ÿ H1(C, j*(Ï‚Òç(f1(t-f2))).

Its geometric monodromy group Ggeom is either Sp or SO or O or a group between SL and GL. If

Ï is orthogonally (respectively symplectically) self-dual, and ç has order 2, then Ggeom is Sp

(respectively SO or O). If ç has order ≥ 3, then Ggeom contains SL....

pppprrrrooooooooffff Suppose first n ± 4. Put r := rank(Ï), m := ù(Sing(Ï)¤(C-D2)). We have seen in

Proposition 5.3.7 that Ó is the restriction to !1 - CritVal(f2, f1, Ï) of the middle additive

convolution of f2*(Ï‚Òç(f1)) and Òç.

Let us put
Ï1 := f2*(Ï‚Òç(f1)).

As already noted at the end of the proof of 5.3.6, the Irreducible Induction Criterion 3.3.1 shows
that Ï1 is an irreducible middle extension sheaf. The sheaf Ï1 lies in the class ∏conv, because it

has at least d1 ≥ 2g+2 ≥ 2 finite singularities, namely the d1 distinct images by f2 of the d1 distinct

zeroes of f1. It is tame at ‘, because Ï is tame at all the poles of f2, and the poles of f2 all have

order prime to p.
Over each critical value å of f2, Ï‚Òç(f1) is lisse, and f2-å has one and only one double

zero, so the local monodromy of Ï1 at å is quadratic of drop r, with scale the unique character of

order 2:

Ï1(å)/Ï1(å)I(å) ¶ r copies ofÒç2(x-å).

Over the m images ∂ =f2(∫) of points ∫ in C-D2 which are



Twist Sheaves and Their Monodromy 109

singularities of Ï, f2 is finite etale, and ∫ is the only point in its f2-

fibre at which Ï‚Òç(f1)
can possibly fail to be lisse. So Ï1 has drop

≤ r at each of these m points. More precisely, if we define
Ï0 := Ï‚Òç(f1)

,

we have

Ï1(∂)/Ï1(∂)
I(∂) ¶ Ï0/Ï0

I(∫),

where we use f2 to identify I(∂) with I(∫).

Where eeeellllsssseeee on C - D2 can Ï0 := Ï‚Òç(f1)
fail to be lisse? Only

at a pole of zero of f1 which is not in Sing(Ï) or in D2. Let us first

consider the case of a pole, say ®, of f1 which lies in C - D2. Thus ® is

a point of D which is not in D2. There may of course be no such

points. But if ® is such a point, then f1 has a pole of order either 1 or

2 at ®. By the choice of f2, f2 is finite etale over ß =f2(®), and ® is

the only point in its f2-fibre at which Ï0 := Ï‚Òç(f1)
can fail to be

lisse. Let us define
a(®) := ord®(f1).

Thus a(®) is either -1 or -2. Since Ï itself is lisse at ®, we see that
the local monodromy of Ï1 at ß = f2(®) is quadratic of drop r, with

scale the character Òça(®)(x-ß) of I(ß). Notice that if a(®) = -1, this

scale is just ç-1, while if a(®) = -2, this scale is ç-2. Notice that in
the single exceptional case when both a(®) = -2 and when ç has
order 2, Ï0 := Ï‚Òç(f1)

is lisse at ®.

We now turn to the zeroes of f1. Over each of the d1 images © = f2(Ω) of the

zeroes of f1, f2 is finite etale, Ω is the only zero of f1 in its f2-fibre, and Ï is lisse. Thus Ï‚Òç(f1)

is lisse at all but the point Ω in the fibre f2
-1(©). At Ω the local monodomy of Ï‚Òç(f1) is

quadratic of drop r, with scale the character Òç(uniformizer at Ω) of I(Ω). Thus the local

monodromy of Ï1 at © is quadratic of drop r, with scale the character Òç(x-©) of I(©).

At all other points of !1, i.e., on !1 - CritVal(f2, f1, Ï), Ï1 is lisse. Moreover, if

Ï is everywhere tame on C, then Ï1 is everywhere tame. Now form Ó, the middle additive

convolution of Ï1 with Òç:

Ó := Ï1*mid+Òç.
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Thus (by 4.1.10, 2d) and 1b)) Ó is tame at ‘, and it is everywhere tame if Ï is everywhere tame.
Its rank is given by (5.2.1, part 5))

rank(Ó) = (2g-2 + d)r
+ ‡Pi in Dred Swan

Pi
(Ï) + ‡s in Sing(Ï)finite

Swan
s
(Ï)

+ ‡s in Sing(Ï)finite
 drops(Ï)

+ ‡Pi in Dred dropPi
(Ï(Pi)º(Òçai)(‘, Pi)),

where we have written Sing(Ï)finite for Sing(Ï)¤(C-D).

In particular, we have the inequality (5.2.1, part 6))
rank(Ó) ≥ (2g-2 + d)r.

The local monodromy of Ó at the m images ∂ = f2(∫) of points ∫ in Sing(Ï)¤(C-D2) has

drop ≤ r, by (4.1.10, part 1c), applied to Ï1).

What about the local monodromy of Ó at the image ß = f2(®)

of any pole ® of f1 which lies neither in D2 nor in Sing(Ï)? In the

single exceptional case when a(®) = -2 and when ç has order 2, Ó is
lisse at ß. Otherwise, the local monodromy of Ó at ß is quadratic of

drop r, with scale the character ç1+a(®).

Ó(ß)/Ó(ß)I(ß) ¶ Òç(x-ß)‚(r copies of Òça(®)(x-ß))

¶ r copies of Òç1+a(®)(x-ß).

Since a(®) is either -1 or -2, the local monodromy of Ó at ß satisfies

Ó(ß)/Ó(ß)I(ß) ¶ r copies of ú, if a(®) = -1,

Ó(ß)/Ó(ß)I(ß) ¶ r copies of ç-1, if a(®) = -2 and ç2 ± ú,

Ó(ß)/Ó(ß)I(ß) = 0, if a(®) = -2, and ç2 = ú.
In particular, the local monodromy of Ó at ß is either trivial, or it is
quadratic of drop r, with scale a character which is not of order 2.

The local monodromy of Ó at each critical value å of f2 is quadratic of drop r, with scale

the character çç2:

Ó(å)/Ó(å)I(å) ¶ Òç(x-å)‚(r copies of Òç2(x-å))

¶ r copies of Òçç2(x-å).

Over each of the d1 images © = f2(Ω) of the zeroes of f1, the local monodromy of Ó at © is

quadratic of drop r, with scale the character Òç2(x-©) of I(©).

With the exception of at most m points of !1, namely the images by f2 of points in

Sing(Ï)¤(C-D2), the local monodromy of Ó is quadratic of drop r, with scale a character not of
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order 2. Indeed, at the critical values of f2, çç2 is not of order 2 (ç being nontrivial), and at the d1

images of the zeroes of f1, ç2 is not of order 2 (because the order n of ç is assumed to be not 4).

At the images ß = f2(®) of the poles, if any, of f1 which lie neither in

Sing(Ï) not in D2, we have already noted that the the local

monodromy of Ó at ß is either trivial, or it is quadratic of drop r,
with scale a character which is not of order 2.

The conclusion now follows from Theorem 1.5.1 (and Theorem 1.7.1, if r=1), applied to
the data (r, m, Ó). 

Suppose now that n is 4. Our Ï1 is still perverse irreducible, and in the class ∏conv. The

difficulty with the case n=4 is this: at the d1 images © = f2(Ω) of the zeroes of f1, the local

monodromy of Ó at © is quadratic of drop r, with scale the character Òç2(x-©) of I(©). But for ç

of order 4, ç2 is the quadratic character, and so these d1 points will be part of the excluded "at all

but at most m points" in hypothesis 4) of Theorem 1.5.1. To overcome this difficulty, we assume
that

2g - 2 + d >2(ù(Sing(Ï)¤(C-D2)) + d1).

We put r := rank(Ï), m := ù(Sing(Ï)¤(C-D2)) + d1. We have noted above that 

rank(Ó) ≥ (2g-2 + d)r, 
so we have

rank(Ó) > Max(2mr, 72r2).

With the exception of at most m points of !1, namely the images by f2 of points in

Sing(Ï)¤(C-D2) and the d1 images by f2 of the zeroes of f1, the local monodromy of Ó is

quadratic of drop r, with scale a character not of order 2 (in fact, of order 1 or 4). The key point is
that the remaining finite singularities of Ó are of two types, the critical values of
f2 and the image ß = f2(®) of the poles, if any, of f1 which lie

neither in Sing(Ï) not in D2. At the image ß = f2(®) of the poles, if

any, of f1 which lie neither in Sing(Ï) not in D2, we have seen above

that the local monodromy of Ó is quadratic of drop r, with scale

either ú (the case of a simple pole) or ç-1 (the case of a double pole).
[The possibility that Ó be lisse at ß, which arose above in the n ± 4
case, does not arise here, because ç has order n = 4.] At the critical values
of f2, where the local monodromy is quadratic of drop r, with scale çç2, which has order 4. [The

number of critical values is 
2g-2 + ‡i (1+ci). 

This number is strictly positive unless g=0 and d2 = 1. This exceptional case (g=0, d2=1) is not

allowed if n is 4.] 
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The result now follows from Theorem 1.5.1 (and Theorem 1.7.1, if r=1), applied to the data
(r, m, Ó). QED

Exactly as in Proposition 5.4.2 above, we have

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    5555....4444....11110000 Hypotheses and notations as in Theorem 5.4.9 above, suppose that ç has order
2, but Ï is not self-dual. Then Ggeom contains SL.

pppprrrrooooooooffff If not, then exactly as in the proof of Proposition 5.4.2, we infer that f2*(Ï‚Òç(f1)) is self-

dual, and then that Ï‚Òç(f1), and hence Ï, are self-dual. QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    5555....4444....11111111 Hypotheses and notations as in Theorem 5.4.9 above, suppose that ç has order
2, and that Ï is symplectically self-dual. 
1) Suppose there exists a D2-finite singularity ∫ of Ï, i.e., a point ∫ in Sing(Ï)¤(C-D2), such that

the following three conditions hold:
1a) Ï is tame at ∫,

1b) Ï(∫)/Ï(∫)I(∫) has odd dimension.
1c) ∫ occurs in D with even (possibly zero) multiplicity.

Then the group Ggeom for the sheaf Ó is the full orthogonal group O.

2) Suppose that Ï is everywhere tame. Suppose further that every D2-finite

singularity ∫ of Ï occurs in D with even (possibly zero) multiplicity.

Then Ggeom for Ó is the special orthogonal group SO if and only if Ï(∫)/Ï(∫)I(∫) has even

dimension for every D2-finite singularity ∫ of Ï.

pppprrrrooooooooffff This is proven by essentially recopying the proof of 5.4.3, applied to the sheaf Ï‚Òç(f1)

and the function f2 . To prove 1), remember that f1 is invertible at ∫, if ∫ lies in

Sing(Ï)€(C-D), and f1 has a double pole at ∫, if ∫ lies in

Sing(Ï)€D€(C - D2) , so in both cases Òç(f1) is lisse at ∫). To prove 2), we

must examine what happens at all the points of CritVal(f2, f1, Ï). At

points © = f2(∫), ∫ in f2(Sing(Ï)€(C-D2)), we have

Ó(©)/Ó(©)I(©) ¶ (Ï‚Òç(f1)
)(∫)/(Ï‚Òç(f1)

)(∫)I(∫) ¶ Ï(∫)/Ï(∫)I(∫),

the last equality because, as noted just above, Òç(f1)
is lisse at ∫.

To complete the proof, along the model of 5.4.3, it suffices to show
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that at all other points of CritVal(f2, f1, Ï), det(Ó) is lisse. For this, it

suffices to observe that Ó has unipotent local monodromy at those
points.

At a point lying under a (necessarily simple) zero of f1, Ó has

unipotent local monodromy, cf. the proof of 5.4.9. At a point lying
under a pole of f1 in C - D2 at which Ï is lisse, either Ó is unipotent

(the case of a simple pole) or Ó is lisse (the case of a double pole:
remember that ç has order 2), cf. the proof of 5.4.9. At a critical
value of f2, Ó is unipotent, cf. the proof of 5.4.3. QED

5555....5555    TTTThhhheeeeoooorrrreeeemmmmssss    ooooffff    bbbbiiiigggg    mmmmoooonnnnooooddddrrrroooommmmyyyy    ffffoooorrrr    ÌÌÌÌ    ::::====    TTTTwwwwiiiissssttttçççç,,,,CCCC,,,,DDDD((((ÏÏÏÏ))))    oooonnnn FFFFcccctttt((((CCCC,,,,    dddd,,,,    DDDD,,,,    SSSSiiiinnnngggg((((ÏÏÏÏ))))ffffiiiinnnniiiitttteeee))))    iiiinnnn

cccchhhhaaaarrrraaaacccctttteeeerrrriiiissssttttiiiicccc    nnnnooootttt    2222 

TTTThhhheeeeoooorrrreeeemmmm    5555....5555....1111 Let k be an algebraically closed field in which 2 is invertible. Fix a prime number …
which is invertible in k. Fix a character ç of finite order n ≥ 2 of the tame fundamental group of
´m/k. Let C/k be a proper smooth connected curve of genus g. Fix an irreducible middle extension

ä$…-sheaf Ï on C. Let D = ‡aiPi be an effective divisor of degree d on C. Suppose that either

1a) d ≥ 2g+1, all ai are invertible in k, Sing(Ï)¤(C-D) is nonempty, and the following

inequalities hold:
if rank(Ï) = 1, 2g - 2 + d ≥ Max(2ù(Sing(Ï)¤(C-D)), 4rank(Ï)),
if rank(Ï) ≥ 2, 2g - 2 + d ≥ Max(2ù(Sing(Ï)¤(C-D)), 72rank(Ï)),

or
1b) d ≥ 4g+4, the following inequalities hold:

if rank(Ï) = 1, 2g - 2 + d > Max(2ùSing(Ï), 4rank(Ï)),
if rank(Ï) ≥ 2, 2g - 2 + d > Max(2ùSing(Ï), 72rank(Ï)),

and, if n=4,
d ≥ Max(6g+9, 6ùSing(Ï) + 11).

Suppose further that
2) either Ï is everywhere tame, or Ï is tame at all points of D and the characteristic p is either zero
or p ≥ rank(Ï) + 2. 
Then the lisse sheaf Ì on Fct(C, d, D, Sing(Ï)finite) given by

f ÿ H1(C, j*(Ï‚Òç(f))

has Ggeom given as follows:

a) If Ï is orthogonally self-dual, and ç has order 2, then Ggeom is Sp.

b) If Ï is symplectically self-dual, and ç has order 2, then Ggeom is either SO or O.

c) If either Ï is not self-dual or if ç has order > 2, then Ggeom contains SL.
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pppprrrrooooooooffff If ç has order two and Ï is orthogonally (respectively symplectically) self-dual, then Ì is
symplectically (resp. orthogonally) self-dual, and we have a priori inclusions 

Ggeom fi Sp (resp. Ggeom fi O).

In general, we have an a priori inclusion
Ggeom fi GL.

Given a smooth connected curve U/k and a map
π : U ¨ Fct(C, d, D, Sing(Ï)finite),

we have an a priori inclusion

Ggeom(π*Ì on U) fi Ggeom(Ì on Fct(C, d, D, Sing(Ï)finite)).

So it suffices to produce a π such that Ggeom(π*Ì on U) contains, in the three cases, the groups

Sp, SO, and SL respectively. This is precisely what we have done in Theorem 5.4.1 (under
hypotheses 1a) and 2)) and in Theorem 5.4.9 (under hypotheses 1b) and 2)). QED

PPPPrrrrooooppppoooossssiiiittttiiiioooonnnn    5555....5555....2222 Hypotheses and notations as in Theorem 5.5.1 above, suppose that ç has order
2, and that Ï is symplectically self-dual. 
1) Suppose that there exists a finite singularity ∫ of Ï, i.e., a point ∫ in Sing(Ï)¤(C-D), such that
the following two conditions hold:

1a) Ï is tame at ∫,

1b) Ï(∫)/Ï(∫)I(∫) has odd dimension.
Then the group Ggeom for the sheaf Ì is the full orthogonal group O.

2) Suppose we are in case 1b) of Theorem 5.5.1, and that there exists a singularity ∫ of Ï (but here
we do nnnnooootttt assume that ∫ lies in C-D) such that the following two conditions hold:

2a) Ï is tame at ∫,

2b) Ï(∫)/Ï(∫)I(∫) has odd dimension.
Suppose further that we can write D as the sum of two effective divisors D1 + D2 of degrees 

d1 ≥ 2g+2 and d2 ≥ 2g+1, such that D2 = ‡ciPi has all its nonzero ci invertible in k, and such

that every Pi in D which is absent from D2 occurs with multiplicity

at most 2 in D. Suppose further that ∫ Ÿ C - D2, and that ∫ occurs in D

with even (possibly zero) multiplicity. Then the group Ggeom for the sheaf Ì is

the full orthogonal group O.
3) Suppose that the sheaf Ì has odd rank. Then the group Ggeom for the sheaf Ì is the full

orthogonal group O.

pppprrrrooooooooffff If we are in case 1a) of Theorem 5.5.1, then Assertion 1) results from Propostion 5.4.3. If
we are in case 1b) of Theorem 5.5.1, then Assertion 1) is a special case of Assertion 2), thanks to
Corollary 5.4.8, part 2). Assertion 2) results from Proposition 5.4.11. For assertion 3), we argue as
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follows. We know that Ggeom for Ì contains SO and is contained in O. To show that Ggeom is

O, it suffices to find a one-parameter family 
π : ´m ¨ Fct(C, d, D, Sing(Ï)finite) 

such that det(π*Ì) is nontrivial on ´m. 

Fix aaaannnnyyyy f in Fct(C, d, D, Sing(Ï)finite), and consider the map

π : ´m ¨ Fct(C, d, D, Sing(Ï)finite) 

defined by
t ÿ tf.

Thus π*Ì is the lisse sheaf on ´m given by

t ÿ H1(C, j*(Ï‚Òç(tf)) = Òç(t)‚H1(C, j*(Ï‚Òç(f))).

If Ì has odd rank, then π*Ì is the direct sum of an odd number of copies of Òç(t), and hence, ç

being ç2, det(π*Ì) ¶ Òç(t). QED

QQQQuuuueeeessssttttiiiioooonnnn    5555....5555....3333 Outside the cases covered by Proposition 5.5.2, we do not know a general, a priori
way to distinguish the SO and O cases. The sheaf det(Ì) on Fct(C, d, D, Sing(Ï)finite) is a

character of order dividing 2 of π1(Fct(C, d, D, Sing(Ï)finite)), or, if we like, an element in

H1(Fct(C, d, D, Sing(Ï)finite), µµµµ2).

What is it?

5555....6666    TTTThhhheeeeoooorrrreeeemmmmssss    ooooffff    bbbbiiiigggg    mmmmoooonnnnooooddddrrrroooommmmyyyy    iiiinnnn    cccchhhhaaaarrrraaaacccctttteeeerrrriiiissssttttiiiicccc    2222

TTTThhhheeeeoooorrrreeeemmmm    5555....6666....1111 Let k be an algebraically closed field of characteristic 2, C/k a proper, smooth
connected curve of genus g. Suppose that D = ‡aiPi is an effective divisor of degree d ≥ 6g+3,

with all ai odd. Let Ï be an irreducible middle extension sheaf on C with Sing(Ï)finite :=

Sing(Ï)¤(C-D) nonempty. Suppose that Ï is everywhere tame. Suppose that the degree d is so
large that the following inequalities hold:

if rank(Ï) = 1, 2g - 2 + d ≥ Max(2ù(Sing(Ï)¤(C-D)), 4rank(Ï)),
if rank(Ï) ≥ 2, 2g - 2 + d ≥ Max(2ù(Sing(Ï)¤(C-D)), 72rank(Ï)),

Fix a nontrivial character ç of odd finite order n ≥ 3. Pick an f in Fct(C, d, D, Sing(Ï)finite) which

also lies in the dense open set U of Theorem 2.4.4 applied with S taken to be Sing(Ï)finite. Thus f

as map from C-D to !1 is of Lefschetz type, each finite monodromy of f*ä$… is a reflection of

Swan conductor 1 (by 2.7.1), and for each s in Sing(Ï)finite, the fibre f-1(s) consists of d distinct

points, only one of which lies in Sing(Ï)finite. Consider the lisse ä$…-sheaf Ó on 

!1 - CritVal(f, Ï) given by 
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Ó := [t ÿ t-f]*Ì,
i.e., by

t ÿ H1(C, j*(Ï‚Òç(t-f))).

Its geometric monodromy group Ggeom contains SL.

pppprrrrooooooooffff The argument is quite similar to the one given for Theorem 5.4.1. Thus r := rank(Ï), 

m := ù Sing(Ï)finite, Ï1 := f*Ï, and Ó is the restriction to !1 - CritVal(f, Ï) of the middle

additive convolution of Ï1 and Òç. We know that the function f has 

g-1 + ‡(1+ai)/2 ≥ (d+1)/2 - 1 ≥ (6g+4)/2 - 1 ≥ 1

critical points, and as many critical values. Over each critical value å of f, Ï is lisse, so the local
monodromy of Ï1 at å is quadratic of drop r, with scale a character ®å of I(å) of order 2 and Swan

conductor 1:

Ï1(å)/Ï1(å)I(å) ¶ r copies of ®å.

Over the m images ∂ = f(∫) of points ∫ in Sing(Ï)finite, f is finite etale, and ∫ is the unique

point of Sing(Ï)finite in the fibre, so the local monodromy of Ï1 at ∂ has drop ≤ r. More precisely,

we have

Ï1(∂)/Ï1(∂)I(∂) ¶ Ï(∫)/Ï(∫)I(∫),

where we use f to identify I(∂) with I(∫). 

At all other points of !1, i.e., on !1 - CritVal(f, Ï), Ï1 is lisse. As Ï is everywhere tame

on C, Ï1 is tame except at the critical values of Ï. Now form Ó, the middle additive convolution of

Ï1 with Òç. Thus by 4.1.10, 2d), 1b), and 1c), Ó is tame at ‘, it is tame outside the critical values

of f, and it is lisse outside ‘, the critical values of f, and the m images ∂ = f(∫) of points ∫ in
Sing(Ï)finite. Its rank is given by (5.2.1 part 5))

rank(Ó) = (2g-2 + d)r
+ ‡Pi in Dred Swan

Pi
(Ï) + ‡s in Sing(Ï)finite

Swan
s
(Ï)

+ ‡s in Sing(Ï)finite
 drops(Ï)

+ ‡Pi in Dred dropPi
(Ï(Pi)º(Òçai)(‘, Pi)).

In particular, we have the inequality (5.2.1, part 6))
rank(Ó) ≥ (2g-2 + d)r + ùSingfinite(Ï) > (2g-2 + d)r.

The local monodromy of Ó at the m images ∂ = f(∫) of points ∫ in Sing(Ï)finite is tame

and has drop ≤ r, by 4.1.10, part 1c). It is given by

Ó(∂)/Ó(∂)I(∂) ¶ MCçloc(∂)(Ï(∫)/Ï(∫)I(∫) as I(∂)-rep'n). 

The local monodromy of Ó at each critical value å of f is quadratic of drop r, with scale a
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character MCçloc(å)(®å) whose order, twice the order of ç by 4.2.2, is ≥ 6. Thus

Ó(å)/Ó(å)I(å) ¶ r copies of a character of order ≥ 6.
The conclusion follows from Theorem 1.5.1 (and Theorem 1.7.1 if r=1), applied to (r, m, Ó), with
S - S0 the critical values of f, and S0 the m images ∂ = f(∫) of points ∫ in Sing(Ï)finite.QED

TTTThhhheeeeoooorrrreeeemmmm    5555....6666....2222    Let k be an algebraically closed field of characteristic 2, C/k a proper, smooth
connected curve of genus g. Suppose that D = ‡aiPi is an effective divisor of degree d ≥ 12g+7.

Write D as a sum of effective divisors D1 + D2 both of whose degrees d1 and d2 are at least 6g+3,

such that D2 = ‡ciPi has all its nonzero ci odd and such that for any point Pi
which occurs in D but not in D2, we have ai ≤ 2. . Let Ï be an irreducible

middle extension sheaf on C. Suppose that Ï is everywhere tame. Suppose that the following
inequalities hold:

if rank(Ï) = 1, 2g - 2 + d ≥ Max(2ù(Sing(Ï)¤(C-D2)), 4rank(Ï)),

if rank(Ï) ≥ 2, 2g - 2 + d > Max(2ù(Sing(Ï)¤(C-D2)), 72rank(Ï)).

Fix a nontrivial character ç of odd finite order n ≥ 3. 
Fix a function

f1 in Fct(C, deg(D1), D1, Sing(Ï)⁄Dred). 

Fix a function f2 in Fct(C, deg(D2), D2, Sing(Ï)⁄Dred⁄f1
-1(0)) which also lies in the open set

U of Theorem 2.4.4 with respect to the set S :=(Sing(Ï)⁄Dred⁄f1
-1(0))€(C - D2).

Consider the lisse ä$…-sheaf Ó on !1 - CritVal(f2, f1, Ï) given by [t ÿ f1(t-f2)]*Ì, i.e.,

by

t ÿ H1(C, j*(Ï‚Òç(f1(t-f2)))).

Its geometric monodromy group Ggeom contains SL....

pppprrrrooooooooffff The argument is quite similar to the one given for Theorem 5.4.9.We will indicate the
modifications which must be made. 

Put r := rank(Ï), m := ù(Sing(Ï)¤(C-D2)), Ï1 := f2*(Ï‚Òç(f1)). We have seen in

Proposition 5.3.7 that Ó is the restriction to 

!1 - CritVal(f2, f1, Ï)

of the middle additive convolution of Ï1 and Òç.

We have seen above (end of the proof of 5.3.6) that by the Irreducible Induction Criterion
3.3.1, Ï1 is an irreducible middle extension sheaf. It is tame at ‘, because Ï is tame at all the poles

of f2, and the poles of f2 all have odd order.
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We know that the function f2 has 

g-1 + ‡(1+ci)/2 ≥ (d2+1)/2 - 1 ≥ (6g+4)/2 - 1 ≥ 1

critical points, and as many critical values. Over each critical value å of f2, Ï and Òç(f1)

are, by the choice of f2 in the open set U of Theorem 2.4.4, both lisse,

so the local monodromy of Ï1 at å is quadratic of drop r, with scale a character ®å of I(å) of order

2 and Swan conductor 1:

Ï1(å)/Ï1(å)I(å) ¶ r copies of ®å.

Over the m images ∂ = f2(∫) of points ∫ in Sing(Ï)¤(C-D2), f2 is finite etale, and ∫ is,

by the choice of f2 in the open set U of Theorem 2.4.4, the unique point of

Sing(Ï)¤(C-D2) in the fibre, so the local monodromy of Ï1 at ∂ has drop ≤ r. More precisely, if

we put
Ï0 := Ï‚Òç(f1)

,

we have

Ï1(∂)/Ï1(∂)I(∂) ¶ Ï0(∫)/Ï0(∫)
I(∫),

where we use f2 to identify I(∂) with I(∫). 

What happens over a pole, say ®, of f1 which lies in neither D2
nor in Sing(Ï)? Thus ® is a point of D which is not in D2. If ® is such

a point, then f1 has a pole of order either 1 or 2 at ®. By the choice

of f2 in the open set U of Theorem 2.4.4, f2 is finite etale over

ß = f2(®), and ® is the only point in its f2-fibre at which

Ï0 := Ï‚Òç(f1)
can fail to be lisse.The local monodromy of Ï1 at

ß = f2(®) is quadratic of drop r, with scale the character ç-1 (case

of a simple pole) or ç-2 (case of a double pole).
Over each of the d1 images © = f2(Ω) of the zeroes of f1, f2 is finite etale, Ω is, by the

choice of f2 in the open set U of Theorem 2.4.4, the only zero of f1 in its f2-

fibre, and Ï is lisse. Thus Ï‚Òç(f1) is lisse at all but the point Ω in the fibre 

f2
-1(©). At Ω the local monodomy of Ï‚Òç(f1) is quadratic of drop r, with scale the character

Òç(uniformizer at Ω) of I(Ω). Thus the local monodromy of Ï1 at © is quadratic of drop r, with

scale the character Òç(x-©) of I(©).

At all other points of !1, i.e., on !1 - CritVal(f2, f1, Ï), Ï1 is lisse. As Ï is

everywhere tame on C, Ï1 is tame outside the critical values of f2. Now form Ó, the middle
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additive convolution of Ï1 with Òç. Thus (by 4.1.10, 2d), 1b), and 1c)) Ó is tame at ‘, it is tame

outside the critical values of f2, and it is lisse on !1 - CritVal(f2, Ï‚Òç(f1)). Its rank is given by

(5.2.1, part 5))
rank(Ó) = (2g-2 + d)r

+ ‡Pi in Dred Swan
Pi

(Ï) + ‡s in Sing(Ï)finite
Swan

s
(Ï)

+ ‡s in Sing(Ï)finite
 drops(Ï)

+ ‡Pi in Dred dropPi
(Ï(Pi)º(Òçai)(‘, Pi)),

where we have written Sing(Ï)finite for Sing(Ï)¤(C-D).

In particular, we have the inequality (5.2.1, part 6))
rank(Ó) ≥ (2g-2 + d)r.

The local monodromy of Ó at the m images ∂ = f2(∫) of points ∫ in Sing(Ï)¤(C-D2) is

tame and has drop ≤ r, by 4.1.10 parts 1b) and 1c).

At the image f2(®) of a pole ® of f1 which lies in neither D2 nor

in Sing(Ï), the local monodromy of Ó is quadratic of drop r, with

scale either ú (the case of a simple pole) or ç-1 (the case of a double
pole).

The local monodromy of Ó at each critical value å of f2 is quadratic of drop r, with scale a

character MCçloc(å)(®å) whose order, twice the order of ç by 4.2.2, is ≥ 6. Thus

Ó(å)/Ó(å)I(å) ¶ r copies of a character of order ≥ 6.
Over each of the d1 images © = f2(Ω) of the zeroes of f1, the local monodromy of Ó at © is

quadratic of drop r, with scale the character Òç2(x-©) of I(©), whose order, that of ç, is ≥ 3.

With the exception of at most m points of !1, namely the images by f2 of points in

Sing(Ï)¤(C-D2), the local monodromy of Ó is quadratic of drop r, with scale a character not of

order 2. The conclusion follows from Theorem 1.5.1 (and Theorem 1.7.1, if r=1), applied to 
(r, m, Ó), with S taken to be CritVal(f2, f1, Ï), and S0 the m images ∂ = f(∫) of points ∫ in

Sing(Ï)¤(C-D2). QED

5555....7777    TTTThhhheeeeoooorrrreeeemmmmssss    ooooffff    bbbbiiiigggg    mmmmoooonnnnooooddddrrrroooommmmyyyy    ffffoooorrrr    ÌÌÌÌ    ::::====    TTTTwwwwiiiissssttttçççç,,,,CCCC,,,,DDDD((((ÏÏÏÏ))))    oooonnnn FFFFcccctttt((((CCCC,,,,    dddd,,,,    DDDD,,,,    SSSSiiiinnnngggg((((ÏÏÏÏ))))ffffiiiinnnniiiitttteeee))))    iiiinnnn

cccchhhhaaaarrrraaaacccctttteeeerrrriiiissssttttiiiicccc    2222 

TTTThhhheeeeoooorrrreeeemmmm    5555....7777....1111 Let k be an algebraically closed field of characteristic 2. Fix a prime number … which
is invertible in k. Fix a nontrivial character ç of finite odd order n ≥ 3. Let C/k be a proper smooth
connected curve of genus g. Fix an irreducible middle extension ä$…-sheaf Ï on C. Let D = ‡aiPi
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be an effective divisor of degree d on C. Suppose that either

1a) d ≥ 6g+3, all ai are odd, Sing(Ï)¤(C-D) is nonempty, and the following inequalities hold:

if rank(Ï) = 1, 2g - 2 + d ≥ Max(2ù(Sing(Ï)¤(C-D)), 4rank(Ï)),
if rank(Ï) ≥ 2, 2g - 2 + d ≥ Max(2ù(Sing(Ï)¤(C-D)), 72rank(Ï)),

or
1b) d ≥ 12g+7, and the following inequalities hold:

if rank(Ï) = 1, 2g - 2 + d > Max(2ùSing(Ï), 4rank(Ï)).
if rank(Ï) ≥ 2, 2g - 2 + d > Max(2ùSing(Ï), 72rank(Ï)).

Suppose further that
2) Ï is everywhere tame.

Then for the lisse sheaf Ì on Fct(C, d, D, Sing(Ï)finite) given by

f ÿ H1(C, j*(Ï‚Òç(f)),

Ggeom contains SL.

pppprrrrooooooooffff This follows from Theorems 5.6.1 and 5.6.2 above in exactly the same way that Theorem
5.5.1 followed from Theorems 5.4.1 and 5.4.9. QED


