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Bernard Dwork
(1923–1998)
Nicholas M. Katz and John Tate

Bernard Morris
Dwork, “Bernie” to
those who had the
privilege of knowing
him, died on May 9,
1998, just weeks
short of his seventy-
fifth birthday. He is
survived by his wife
of fifty years, Shirley;
his three children,
Andrew, Deborah,
and Cynthia; his four

granddaughters; his brothers Julius and Leo; and
his sister, Elaine Chanley.

We mention family early in this article, both be-
cause it was such a fundamental anchor of Bernie’s
life and because so many of his mathematical as-
sociates found themselves to be part of Bernie’s
extended family. The authors of this article, al-
though not family by blood, felt themselves to be
son and older brother to him.

Bernie was perhaps the world’s greatest p-adic
analyst. His proof of the rationality of the zeta func-
tion of varieties over finite fields, for which he
was awarded the AMS Cole Prize in Number The-
ory, is one of the most unexpected combinations
of ideas we know of. In this article we will try to

describe that proof and sketch Bernie’s other main
contributions to mathematics.

But let us start at the beginning. Bernie was
born on May 27, 1923, in the Bronx. In 1943 he
graduated from the City College of New York with
a bachelor’s degree in electrical engineering. He
served in the United States Army from March 30,
1944, to April 14, 1946. After eight months of
training as repeaterman at the Central Signal Corps
School, he served in the Asiatic Pacific campaign
with the Headquarters Army Service Command. He
was stationed in Seoul, Korea, which, according to
reliable sources, he once deprived of electricity
for twenty-four hours by “getting his wires
crossed”. This is among the first of many “Bernie
stories”, some of which are so well known that they
are referred to with warm affection in shorthand
or code. For instance, “Wrong Plane” refers to the
time Bernie put his ninety-year-old mother on the
wrong airplane. “Wrong Year” refers to the time
Bernie was prevented from flying to Bombay in Jan-
uary 1967 by the fact that his last-minute request
for a visa to attend a conference at the Tata Insti-
tute was denied on the grounds that the confer-
ence was to be held the following year, in 1968.

After his discharge from the army, Bernie
worked as an electrical engineer by day and went
to school by night, getting his master’s degree in
electrical engineering from Brooklyn Polytechnic
Institute in 1948. Bernie and Shirley Kessler were
married on October 26, 1947. He worked succes-
sively for I.T.T. (1943–48, minus his army years),
the Atomic Energy Commission (1948–50), and the
Radiological Research Laboratory of Columbia
Medical Center (1950–52). During these years he
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wrote a number of technical reports and published
a few papers, including the earliest paper of his
listed by MathSciNet, “Detection of a pulse super-
imposed on fluctuation noise”, dating from 1950.
In view of Bernie’s later interest in differential
equations (albeit from a p-adic point of view), it is
interesting to note that this paper was reviewed by
Norman Levinson.

In the summer of 1947 Bernie, encouraged by
his brother, took an evening math course at New
York University (NYU) with Emil Artin. The course
was Higher Modern Algebra Part I: Galois Theory.
The course notes, taken by Albert A. Blank, are still
one of the best “textbooks” on Galois theory avail-
able. The following summer Bernie was back, to
take Higher Modern Algebra Part II: Algebraic Num-
ber Theory, again with Artin. In the summer of 1949
Bernie took a course from Harold Shapiro on Se-
lected Topics in Additive Number Theory, and in
the summer of 1950 he took a course from Artin
which was the precursor of Artin’s 1950–51 Prince-
ton course Algebraic Numbers and Algebraic Func-
tions.1

Bernie was hooked.2 He continued taking
evening courses, both at NYU and at Columbia. He
tried to enter NYU as a graduate student in math-
ematics, but NYU found his educational back-
ground wanting. Fortunately for us, Columbia was
less picky: in February 1952 Columbia admitted
him as a math graduate student, with a scholar-
ship for the year 1952–53. He quit his job and
took up full-time study in September of 1952. This
was hardly a light decision. He was walking away
from a secure career as an engineer, and he had a
wife and son to support. Years later he wrote,
“Imagine my horror when I found that the schol-
arship was only for tuition.” The family savings
soon dwindled, and to make ends meet, Bernie
taught night courses at Brooklyn Polytechnic from
February 1953 to June 1954.

Bernie had intended, once at Columbia, to study
under Chevalley. But Chevalley returned to France
that year, so he turned to Artin for advice.3 Artin
gave Bernie a thesis problem and introduced him
to the second author of this article, then a young
instructor at Princeton who later became Bernie’s

formal thesis adviser (de-
spite being two years
Bernie’s junior) when he
spent 1953–54 visiting Co-
lumbia.

Bernie received his
Ph.D. from Columbia in
1954, with a thesis enti-
tled “On the root number
in the functional equation
of the Artin-Weil L-series”,
about the possibility of
defining “local root num-
bers” for nonabelian Artin
L-functions, whose prod-
uct would be the global
root number (:= constant
in the functional equation
connecting L(s, χ) and
L(1− s, χ̄ )). Bernie solved
this problem up to sign;
Langlands (unpublished)
solved it definitively in 1968, and soon after,
Deligne, inspired by the work of Langlands, found
a more conceptual solution.

Before we discuss Bernie’s later work, let us
record the key dates of his professional career as
a mathematician. He spent 1954–57 at Harvard as
a Peirce Instructor, then 1957–64 at Johns Hopkins
(1957–60 as assistant professor, 1960–61 as as-
sociate professor, 1961–64 as professor). In 1964
he moved to Princeton, where in 1978 he was
named Eugene Higgins Professor of Mathematics.
During this time, Bernie spent numerous sabbati-
cal years in France and Italy. In 1992 he was named
Professore di Chiara Fama by the Italian govern-
ment and was awarded a special chair at the Uni-
versity of Padua, which he occupied until his death.

We now return to Bernie’s work. In 1959 he
electrified the mathematical community when he
proved the first part of the Weil conjecture in a
strong form, namely, that the zeta function of any
algebraic variety (“separated scheme of finite type”
in the modern terminology) over a finite field was
a rational function. What’s more, his proof did not
at all conform to the then widespread idea that the
Weil conjectures would, and should, be solved by
the construction of a suitable cohomology theory
for varieties over finite fields (a “Weil cohomology”
in later terminology) with a plethora of marvelous
properties.4

Bernie’s proof of rationality was an incredible
tour de force, making use of a number of new and

1Artin was in those years professor of mathematics at
Princeton University, but he regularly taught evening
courses at NYU in algebra and number theory.
2Strictly speaking, he was “rehooked”, because he had been
very drawn to mathematics in high school and college, but
his parents convinced him that he would never earn a liv-
ing as a mathematician and that engineering would be
an adequate outlet for his mathematical enthusiasm. Par-
ents are not always right.
3The (alphabetically) first author of this article, who was
Bernie’s thesis student in 1964–66, has fond memories of
Bernie’s describing his anxieties and his car troubles,
which included once breaking down on the George Wash-
ington Bridge, on his early trips to Princeton to see Artin.

4We should point out, however, that by 1964 the `-adic
étale cohomology with compact supports of M. Artin and
Grothendieck had caught up with Bernie and provided an
alternate proof not only of Bernie’s rationality result but
also of most of the rest of the Weil conjecture for projec-
tive smooth varieties over finite fields, all but the “Riemann
Hypothesis”, which Deligne proved in 1973.

In Europe, en route to 1962 ICM in
Stockholm. Shirley and Bernie Dwork
with children Cynthia (left) and
Andrew.
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unexpected ideas. We will describe it in some de-
tail, because even after nearly forty years it remains
strikingly fresh and original and gives a good idea
of the way Bernie thought. But before we say more
about Bernie’s proof, we must digress to say a few
words about zeta functions of varieties over finite
fields.

Thus, we begin with a finite field k—e.g., k
might be Z/pZ for p a prime number—and an al-
gebraic variety X/k—e.g., Xmight be an “affine va-
riety”, namely, the common zeroes of a finite col-
lection of polynomials fi(X1, . . . , Xn) in some finite
number n of variables with coefficients in the field
k. In this affine example, by a k-valued point of
X we mean an n-tuple (a1, . . . , an) in kn such that
fi(a1, . . . , an) = 0 in k for each defining equation
fi. In any case, for any algebraic variety X/k we
have the notion of a k-valued point of X, and an
easy but essential observation is that the set X(k)
of k-valued points of X/k is a finite set. It is known
that inside a given algebraic closure k̄ of k there
is one and only one field extension kd/k of each
degree d ≥ 1. Each field kd is itself finite, so the
sets X(kd) are finite for all d ≥ 1. We denote by
Nd ≥ 0 the integer

Nd := Card (X(kd)).

The integers Nd are fundamental diophantine in-
variants of X/k . The zeta function of X/k ,
Zeta(X/k,T ) , is simply a convenient packaging of
these integers: it is defined as the formal series in
T with coefficients in Q and constant term 1 by

Zeta(X/k,T ) := exp
( ∑
d≥1

NdTd/d
)
.

An important fact is that Zeta(X/k,T ) has integer
coefficients. To see this, let us define a closed point
℘ of X/k to be an orbit of the Galois group
Gal(k̄/k) on the set X(k̄), and let us define the de-
gree of ℘ to be the cardinality of the orbit which
℘ “is”. If we denote by Bd the number of closed
points of degree d, we have the relation

Nd =
∑
r |d
rBr ,

hence the Euler product expansion

Zeta(X/k,T ) =
∏
r≥1

(1− Tr )−Br =
∏
℘

(1− Tdeg(℘))−1.

This last formula makes clear that Zeta(X/k,T ) as
power series has integer coefficients.

Let us interpret what it means for Zeta(X/k,T )
to be a rational function of T, say

Zeta(X/k,T ) =
∏
i

(1−αiT )
/∏

j
(1− βjT ) .

Taking logarithms of both sides and equating co-
efficients of like powers of T, we see that rationality
means precisely that all the integers Nd are de-
termined by the finitely many numbers αi and βj
by the rule

Nd =
∑
j
βdj −

∑
i
αdi .

This has the striking consequence that all the Nd
are determined by the first few of them. More pre-
cisely, once we know upper bounds, say A and B,
for the degrees of the numerator and denomina-
tor of Zeta, then all the integers Nd are deter-
mined by the Nd for d ≤ A + B.

Let us now describe Bernie’s proof of the ra-
tionality of Zeta(X/k,T ) . By an elementary inclu-
sion-exclusion argument, he reduces first to the
case when X/k is affine, then to the case when X/k
is defined by one equation f = 0 for some poly-
nomial f in k[X1, . . . , Xn], and finally to the case
when X/k is the open subset of f = 0 where all the
coordinates xi are nonzero. To count points over
k, he then uses a nontrivial additive character ψ
of k with values in a field K of characteristic zero.
For a while in the argument, K could be C, but a
different choice of K will be handy in a moment.
Bernie exploits the classical orthogonality rela-
tion: for a ∈ k, we have, in K,

∑
y∈k

ψ(ya) =

{
0 , if a 6= 0

q := Card (k) , if a = 0 .

Taking for a the value f (x) at a point x in kn, we
get ∑

y∈k
ψ(yf (x)) =

{
0 , if f (x) 6= 0

q , if f (x) = 0 .

Shirley and Bernie Dwork with grandchildren at Bernie’s
retirement party, October 1993.
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Letting k∗ = kr {0} we get∑
y∈k
x∈k∗n

ψ(yf (x)) = qN1 .

The terms with y = 0 in the above sum are each
1, so we get∑

y∈k∗
x∈k∗n

ψ(yf (x)) = qN1 − (q − 1)n .

So far, nothing too exciting. But now come the
fireworks, in three new ideas. The first is to express
analytically a nontrivial additive character of k in
a way well adapted to the passage from k to kd.
For this, Bernie now takes for K a large p-adic
field (large enough to contain the p-th roots of
unity and all roots of unity of order prime to p)
and introduces the concept of a splitting function,
i.e., a power series in one variable over K, sayΘ(T ), that converges in a disc |T | < r for some
r > 1 such that the following two conditions hold:

1) For a in k (= Fq), denote by Teich(a)
its Teichmuller representative, the
unique solution of Xq = X in the ring
OK of integers in K that reduces 
to a in the residue field. Then
a 7→ Θ(Teich(a)) is a nontrivial additive
character ψ of k, with values in K.

2) For each d ≥ 1, the nontrivial addi-
tive character ψd of kd obtained by
composing ψwith the trace from kd to
k is given as follows. For a in kd, de-
note by Teich(a) the unique solution of
Xqd = X in OK which reduces to a in
the residue field. Then we have

ψd(a) =
d−1∏
i=0

Θ(Teich(a)q
i
).

The simplest example of a splitting function Θ(T )
relative to Fq is exp(π (T − Tq)), where πp−1 = −p,
although the fact that this is a splitting function
is nontrivial.

To see what this has bought us, lift the poly-
nomial f (X) over k to a polynomial over OK by lift-
ing each coefficient to its Teichmuller lifting, say
to 
∑
AwXw , with each Aw its own q-th power.

The series

F (Y,X) :=
∏
w
Θ(AwYXw )

has the property that for any point (y, x) in kn+1,
we have

ψ(yf (x)) = F (Teich(y, x)).

More generally, for any d ≥ 1, if we define

Fd(Y,X) :=
d−1∏
i=0

F (Yq
i
, Xq

i
),

then for any point (y, x) in (kd)n+1, we have

ψd(yf (x)) = Fd(Teich(y, x)).

Let us recall how this relates to counting points.
We have∑

y∈k∗
x∈k∗n

F (Teich(y, x)) = qN1 − (q − 1)n,

and, more generally, for each d ≥ 1 we have∑
y∈k∗d
x∈k∗d n

Fd(Teich(y, x)) = qdNd − (qd − 1)n.

The second new idea is to express a sum of
that form as the trace of a completely continuous
operator on a p-adic Banach space. On the space
of formal series over K in n + 1 variables, Bernie
defines an operator Ψq by

Ph.D. Students of Bernard Dwork
Kenneth Ireland (1964)
Alvin Thaler (1966)
Nicholas Katz (1966)
Daniel Reich (1967)
Stefan Burr (1968)
Philippe Robba* (c. 1972)
Steven Sperber* (1975)
Edith Stevenson (1975)
Jack Diamond (1975)
Alan Adolphson (1976)
Mark Heiligman (1982)

*Unofficial students of Bernie

Papers and Books by Bernie
Under Dwork, B., MathSciNet lists over seventy
items, including three books. Bernie also wrote two
papers as Maurizio Boyarsky. Rather than recopy his
complete list of publications, we give a complete
alphabetical list of Bernie’s coauthors, from which
the reader can correctly infer Bernie’s delight and
enthusiasm in sharing ideas with colleagues around
the world.

A. ADOLPHSON F. LOESER

F. BALDASSARRI A. OGUS

S. BOSCH P. ROBBA

S. CHOWLA S. SPERBER

G. CHRISTOL F. J. SULLIVAN

R. EVANS F. TOVENA

G. GEROTTO A. J. VAN DER POORTEN
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(qd − 1)n+1Trace((Ψq ◦ F )d) = qdNd − (qd − 1)n.

Because Θ(T ) converges in a disc strictly bigger
than the unit disc, F has good convergence prop-
erties. By restricting the action of Ψq ◦ F to a space
of series with suitable growth conditions, one can
make sense of Ψq ◦ F as a completely continuous
endomorphism of a p-adic Banach space. The Fred-
holm characteristic series det(1− TΨq ◦ F ) is an
entire function of T, which as a formal power se-
ries is given by

det(1− TΨq ◦ F )

= exp
(
−
∑
d≥1

Trace((Ψq ◦ F )d)Td/d
)
.

Denote by ∆(T ) the entire function
det(1− TΨq ◦ F ). Then from the identities

(qd − 1)n+1Trace((Ψq ◦ F )d) = qdNd − (qd − 1)n

for d ≥ 1 we get the identity of series

n+1∏
i=0

∆(qiT )(−1)n−i
(
n+1
i

)

= Zeta(X/k, qT )
n∏
i=0

(1 − qiT )(−1)n−i
(
n
i

)
.

Since ∆(T ) is p-adically entire, we see that the
zeta function is the ratio of two p-adically entire
functions.

To recapitulate, we now know that the zeta
function as power series has integer coefficients
and that it is the ratio of two p-adically entire
functions. We also know the zeta function has a
nonzero radius of archimedean convergence (since
we have the trivial archimedean bound
Nd ≤ (qd − 1)n) . Bernie’s third new idea is to gen-
eralize a classical but largely forgotten result of 
E. Borel to show that any power series with these
three properties is a rational function. Thus he
proves the rationality of the zeta function.

Bernie then further developed his p-adic ap-
proach and applied it to study in detail the zeta
function in the special case of a projective smooth
hypersurface X/k, say of dimension n and degree
d. The Weil conjectures predicted that its zeta
function should look like

P (T )(−1)n+1
/ n∏
i=0

(1− qiT ),

with P a polynomial of known degree (namely, the
middle “primitive” Betti number of any smooth pro-
jective hypersurface Hn,d over the complex num-
bers, of the same degree d and dimension n as X)
and that P (T ) should satisfy a certain functional
equation. Bernie’s theory allowed him to confirm
these predictions and to study the p-adic valua-
tions of the reciprocal zeros of P (T ) . He proved,
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Ψq(∑BwXw
)

:=
∑
BqwXw .

Arguing heuristically, one sees that for any formal
series F =

∑
CwXw in the n + 1 variables X0 := Y

and Xi for i = 1 to n, the composition of Ψq with
multiplication by F has a trace, given by

Trace(Ψq ◦ F ) = Trace
(Ψq ◦∑CwXw

)
=
∑
Cw Trace(Ψq ◦Xw )

=
∑
C(q−1)w .

The last equality is valid because in the “basis”
given by all monomials, the “matrix” of Ψq ◦Xw has
no nonzero terms on the diagonal unless w is
(q − 1)v for some v , in which case the (v, v) entry
is 1 and all other diagonal entries vanish. Still ar-
guing heuristically, we interpret 

∑
C(q−1)w in terms

of values of F =
∑
CwXw at (n + 1)-tuples of

(q − 1)-th roots of unity in K by the identity

(q − 1)n+1
∑
C(q−1)w =

∑
a∈(µq−1(K))n+1

F (a)

=
∑
y∈k∗
x∈k∗n

F (Teich(y, x)) ,

an identity that does hold, in fact, when F is a sin-
gle monomial Xw or when F has coefficients tend-
ing to zero. Thus we get a heuristic identity, using
now the particular choice of F

F (Y,X) :=
∏
w
Θ(AwYXw ),

namely,

(q − 1)n+1Trace(Ψq ◦ F ) =
∑
y∈k∗
x∈k∗n

F (Teich(y, x))

= qN1 − (q − 1)n.

The d-th iterate of Ψq ◦ F is easily checked to beΨqd ◦ Fd, so for each d ≥ 1 we have a heuristic
identity

Prizes and Fellowships Awarded to
Bernie

Sloan Fellowship, 1961
Cole Prize in Number Theory, 1962
Guggenheim Fellowship, 1964
Townsend Harris Medal, 1969 (from the

Alumni Association of the City College of
New York)

Guggenheim Fellowship, 1975

mem-dwork.qxp  1/8/99 11:21 AM  Page 342



MARCH 1999 NOTICES OF THE AMS 343

for instance, that, provided p does not divide d,
the Newton polygon of P (T ) always lies above the
middle dimensional primitive “Hodge polygon” of
Hn,d ; cf. his Stockholm ICM talk, p. 259. This is the
first instance we know of a nontrivial relation be-
tween Newton and Hodge polygons. Such relations
were later established in great generality by Mazur.

Bernie also studied the way his p-adic con-
struction varied when the projective smooth hy-
persurface varied in a family. The rich structure
he discovered was the first nontrivial instance of
what later came to be called an F-crystal. Roughly
speaking, an F-crystal is a differential equation
upon which a “Frobenius” operates. Bernie cor-
rectly conjectured that the underlying differential
equation to his F-crystal was the relative (primi-
tive, middle dimensional) de Rham cohomology of
the family, endowed with its Gauss-Manin con-
nection, i.e., the classical Picard-Fuchs equations
attached to the family. He also studied the varia-
tion in a family of the Newton polygon attached
to an F -crystal, which led him to discover the
“slope filtration” of an F-crystal. It seems fair to
say that a desire to understand Bernie’s results in
a more cohomological context was one of the main
motivations for the development, by Grothendieck
and Berthelot in the late 1960s, of crystalline co-
homology.

One of Bernie’s key discoveries was that those
differential equations that “admit a Frobenius”,
i.e., that underlie an F-crystal, have very special
properties as p-adic differential equations (for in-
stance, solutions have p-adic radius of conver-
gence 1 in generic discs). By crystalline theory,
any Picard-Fuchs equation underlies an F-crystal
and hence has these special properties for almost
all primes p. One enduring fascination of Bernie’s
was the still open problem of characterizing, by p-
adic conditions for almost all p, those differential
equations over, say, number fields, that “come
from geometry” (or “are motivic”, in the new ter-
minology) in the sense, say, that they are succes-
sive extensions of pieces, each of which is a sub-
quotient of a Picard-Fuchs equation.

Another of Bernie’s fundamental and icono-
clastic discoveries concerns the arithmetic signif-
icance of equations with irregular singular points.
Picard-Fuchs equations are known to have regular
singular points, and for a long time it was gener-
ally believed that the only differential equations rel-
evant to algebraic geometry were those with reg-
ular singular points. But in the early 1970s Bernie
achieved the remarkable insight that equations
with irregular singular points (e.g., those for the
hypergeometric function pFq for arbitrary p and
q, q 6= p − 1) were not only not to be regarded as
pathological, but they were in fact a fundamental
feature of the p-adic algebro-geometric landscape,
playing the same role for exponential sums in fam-

ilies as regular singular equations play for count-
ing points in families.

Pursuing these ideas led Bernie to a long and
deep study of the p-adic and arithmetic properties
of differential equations, both for their own sake
and for their interaction with the arithmetic of va-
rieties over finite fields and with the algebraic
geometry of families over C. He remained actively
engaged in this study right up to his death.

This is perhaps an appropriate point to com-
ment on three early mathematical influences on
Bernie.
1. We have already explained how it was an NYU

evening course taught by Emil Artin in 1947
which hooked Bernie on mathematics.

2. His interest in mod p and p-adic properties of
Picard-Fuchs equations probably dates from
the late 1950s at Johns Hopkins, when he
learned from Igusa that the Hasse invariant for
the Legendre family of elliptic curves

y2 = x(x− 1)(x− λ)

in any odd characteristic p is a mod p solu-
tion of the Picard-Fuchs equation for that fam-
ily (explicitly, the differential equation for the
hypergeometric function F (1/2,1/2,1;λ)).

3. Where did Bernie get the idea that there could
be a connection between p-adic analysis and
zeta functions? It grew out of a letter from the
second author of this article to Bernie, dated
February 13, 1958, an extract of which is
quoted on page 257 of Bernie’s ICM Stock-
holm talk. The letter contained a result on the
“unit root” of an ordinary elliptic curve, which
could be proved by using work of Michel
Lazard on formal groups to show that certain
p-adic power series have integral coefficients.
The letter writer, considering Bernie to be the
world’s leading expert in such matters, chal-
lenged him to prove those results by p-adic
analysis. Bernie met the challenge almost by
return mail and, going further, discovered the
“close connection” that he mentions in the
following quote from loc. cit., p. 250, “…but
using unpublished results of Tate and Lazard,
we give indications of the existence of a de-
formation theory, involving a close connec-
tion between hypergeometric series and the
zeros of the zeta functions of elliptic curves.
We became aware of this connection in 1958;
it was the first suggestion of a connection be-
tween p-adic analysis and the theory of zeta
functions.”

Nurtured in Dwork’s amazingly original mind,
what marvelous fruit these three seeds bore.
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