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IIIInnnnttttrrrroooodddduuuuccccttttiiiioooonnnn

It is now nearly 27 years since Deligne, in the summer of 1973, proved the last of the Weil

Conjectures, the Riemann Hypothesis for projective smooth varieties over finite fields. That proof

was the subject of his article [De-Weil I], often referred to as Weil I. In the fall of that same year,

Deligne formulated and proved a vast generalization of his Weil I result. This generalization, which

is the subject of Deligne's article [De-Weil II], is referred to as Weil II. As marvelous an

achievement as Weil I was, it is Weil II which has turned out to be the fundamental tool. For

example, both the "hard Lefschetz theorem" for projective smooth varieties over finite fields, and

Deligne's general equidistribution theorem ("generalized Sato-Tate conjecture in the function field

case") require Weil II. 

Deligne's proof of Weil I was based upon combining Grothendieck's …-adic cohomological

theory of L-functions, the monodromy theory of Lefschetz pencils, and Deligne's own stunning

transposition to the function field case of Rankin's method [Ran] of "squaring", developed by

Rankin in 1939 to give the then best known estimates for the size of Ramanujan's †(n). Deligne's

proof of Weil II is generally regarded as being much deeper and more difficult that his proof of

Weil I. In the spring of 1984, Laumon found a signifigant simplification [Lau-TF, 4, pp. 203-208]

of Deligne's proof of Weil II, based upon Fourier Transform ideas. 

In these lectures, we will present a further simplification of Laumon's simplification of

Deligne's proof of Weil II. In order to explain the idea behind this simplification, suppose we want

to prove the Riemann Hypothesis for a projective smooth hypersurface of some odd dimension

2n+1 and some degree d ≥ 2 (the case d=1 being trivial~) over a finite field of some characteristic p.

Deligne in Weil I proves the Riemann Hypothesis ssssiiiimmmmuuuullllttttaaaannnneeeeoooouuuussssllllyyyy for aaaallllllll projective smooth

hypersurfaces of dimension 2n+1 and degree d over all finite fields of characteristic p, cf. [Ka-

ODP, pp. 288-297] The key point is that the family of all such hypersurfaces has big monodromy.

In other words, he proves the Riemann Hypothesis for a particular hypersurface by putting it in a

family with big monodromy. 

Our underlying idea is to put the particular L-function for which we are trying to prove the

Weil II estimate into a family of L-functions which has big monodromy, then to apply the Rankin

squaring method to this family. So we end up with a proof of Weil II in the style of Weil I. We will

not assume any familiarity with either Weil I or Weil II, but we will, after briefly recalling them,

make use of the standard facts about …-adic sheaves, their cohomology, and their L-functions. We

will also make use of an elementary instance of the involutivity [Lau-TF, 1.2.2.1] of the Fourier

Transform (in Step 1 of Lecture 4). Caveat emptor.

This paper is a fairly faithful written version of four lectures I gave in March, 2000 at the

Arizona Winter School 2000. It is a pleasure to thank both the organizers and the students of the

School.

RRRReeeevvvviiiieeeewwww    ooooffff    …………----aaaaddddiiiicccc    sssshhhheeeeaaaavvvveeeessss    aaaannnndddd    …………----aaaaddddiiiicccc    ccccoooohhhhoooommmmoooollllooooggggyyyy

Recall that for any connected scheme X, and for any geometric point (:= point of X with
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values in an algebraically closed field) x of X, we have the profinite fundamental group π1(X, x),

which classifies finite etale coverings of X. Just as in usual topology, if we change the base point x

in X, say to another geometric point x' in X, then the choice of a "path" from x to x' gives a well-

defined isomorphism from π1(X, x) to π1(X, x'). If we vary the path, then this isomorphism will

vary by an inner automorphism (of either source or target). If we have a second connected scheme

Y and a morphism f : X ¨ Y, we get an induced homomorphism 

f* : π1(X, x) ¨ π1(Y, f(x)) 

We will often suppress the base point, and write simply π1(X). Then "the" induced

homomorphism

f* : π1(X) ¨ π1(Y)

is only well-defined up to an inner automorphism of the target.

In what follows, we will only need to speak of π1(X) for X a normal connected scheme.

Such a scheme X has a function field, say K. If we fix an algebraic closure äK of K, and denote by

Ksep/K the separable closure of K inside äK, then π1(X) [with base point given by the chosen äK]

has an apparently simple description in terms of Galois theory. Namely, π1(X) is that quotient of

Gal(Ksep/K) which classifies those finite separable extensions L/K inside Ksep with the property

that the normalization of X in L is finite etale over X. [In fact in the pre-Grothendieck days, this is

how people defined the fundamental group.] In particular, when X is the spectrum of a field k, then

π1(Spec(k)) is just Gal(ksep/k). When k is a finite field, ksep = äk, and Gal(äk/k) is canonically the

abelian group ö#, with canonical generator "geometric Frobenius" Fk, defined as the iiiinnnnvvvveeeerrrrsssseeee. of the

"arithmetic Frobenius" automorphism å ÿ åùk of äk. Given two finite fields k and E, for any

morphism from Spec(E) to Spec(k) (i.e., for any field inclusion k fi E), the induced map from

π1(Spec(E)) to π1(Spec(k)) sends FE to (Fk)deg(E/k).

Given a connected scheme X, a field E, and an E-valued point x in X(E), we can view x as

a morphism from Spec(E) to X. So we get a group homomorphism 

x* : π1(Spec(E)) = Gal(äE/E) ¨ π1(X),

well defined up to inner automorphism. When E is a finite field, the image in π1(X) of the

canonical generator FE of π1(Spec(E)) is denoted FrobE,x: it is well-defined as a conjugacy class

in π1(X). For any field automorphism ß of E, and any x in X(E), we may form the point ß(x) in

X(E); the Frobenius conjugacy classes of x and of ß(x) are equal: FrobE,ß(x)= FrobE,x 

If we start with a field k, and a k-scheme X/k, then for variable k-schemes S, we are

generally interested not in the set X(S) := HomSchemes(S, X) of all S-valued points of X as an

abstract scheme, but rather in the subset (X/k)(S) := HomSchemes/k(S, X) consisting of the k-

scheme morphisms from S to X. 

Now fix a prime number …. Denote by $… the completion of $ for the …-adic valuation, and
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by ä$… an algebraic closure of $…. Given a finite extension E¬ of $… inside ä$…, we will denote by

Ø¬ its ring of integers, and by É¬ its residue field. There is the general notion of a constructible

ä$…-sheaf on our connected normal X. In most of what follows, we will be concerned with the

more restricted class of lisse ä$…-sheaves on X. For our purposes, a lisse ä$…-sheaf Ï on X "is" a

finite-dimensional continuous ä$…-representation

Ú := ÚÏ : π1(X) ¨ GL(r, ä$…).

For any given Ï, there is a finite extension E¬ of $… such that ÚÏ takes values in GL(r, E¬), cf.

[Ka-Sar, 9.0.7]. In a suitable basis of the representation space, ÚÏ takes values in GL(r, Ø¬). The

degree r of the representation ÚÏ is called the rank of the lisse sheaf Ï. 

Suppose that k is a finite field, and that X is a (connected, normal) separated k-scheme of

finite type. Inside a chosen äk, k has a unique extension kn/k of each degree n ≥ 1, and the sets

(X/k)(kn) are all finite. Given a lisse ä$…-sheaf Ï on X, corresponding to a continuous ä$…-

representation

Ú := ÚÏ : π1(X) ¨ GL(n, ä$…),

the L-function attached to Ï on X/k is defined as a formal power series L(X/k, Ï)(T) in 1 +

Tä$…[[T]] by the following recipe. For each integer n ≥ 1, one forms the sum

Sn(X/k, Ï):= ‡x in (X/k)(kn) Trace(ÚÏ(Frobkn,x)).

[One sometimes writes Trace(ÚÏ(Frobkn,x)) as Trace(Frobkn,x | Ï):

Trace(Frobkn,x | Ï) := Trace(ÚÏ(Frobkn,x)).

Then one defines

L(X/k, Ï)(T) = exp(‡n≥1 Sn(X/k, Ï)Tn/n).

There is also an Euler product for the L-function, over the closed points (:= orbits of

Gal(ksep/k) in (X/k)(äk)) of X/k. The degree deg(∏) of a closed point ∏ is the cardinality of the

corresponding orbit. For a closed point ∏ of degree n, i.e., an orbit of Gal(kn/k) in (X/k)(kn) of

cardinality n, every point x in that orbit gives rise to the same Frobenius conjugacy class Frobkn,x:

this class is called Frob∏. One has the identity

L(X/k, Ï)(T) = °∏ 1/det(1 - Tdeg(∏)ÚÏ(Frob∏)).

Suppose now and henceforth that X/k is separated of finite type, smooth and geometrically

connected of dimension n over the finite field k. We have a short exact sequence

   degree

0 ¨ π1(X‚käk) ¨ π1(X) ¨ π1(Spec(k)) = Gal(äk/k) = ö# ¨ 0,

in which the degree map has the following effect on Frobenii:

   Frobkn,x ÿ (Fk)n.
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The first group π1(X‚käk) is called π1
geom(X/k), the geometric fundamental group of X/k, and the

middle group π1(X) is called π1
arith(X/k), the arithmetic fundamental group of X/k:

0 ¨ π1
geom(X/k) ¨ π1

arith(X/k) ¨ ö# ¨ 0.

The inverse image in π1
arith(X/k) of the subgroup # of ö# consisting of integer powers of Fk is

called W(X/k), the Weil group of X/k:

0 ¨ π1
geom(X/k) ¨ W(X/k) ¨ # ¨ 0.

We next define generalized Tate twists. Given an …-adic unit å in ä$…
≠ (i.e., å lies in some

Ø¬
≠), the group homomorphism

# ¨ ä$…
≠ = GL(1, ä$…)

d ÿ åd

extends uniquely to a continuous homomorphism 

ö# ¨ ä$…
≠.

We then view ö# as a quotient of π1
arith(X/k). The composite character

π1
arith(X/k) ¨ ä$…

≠

© ÿ ådegree(©)

is called ådeg. The characters of π1
arith(X/k) which are trivial on π1

geom(X/k) are precisely these

ådeg characters. Given a lisse ä$…-sheaf Ï on X, corresponding to a finite-dimensional

representation ÚÏ, we denote by Ï‚ådeg the lisse sheaf of the same rank defined to ÚÏ‚"ådeg".

For an integer r, and for å := (ùk)-r, we write Ï(r) for Ï‚ådeg 

Suppose further that the prime number … is invertible in k. For each integer i ≥ 0, and for

any constructible ä$…-sheaf Ï on X, we have both ordinary and compact cohomology groups

Hi(X‚käk, Ï) and Hi
c(X‚käk, Ï)

of X‚käk with coefficients in Ï. These are finite-dimensional ä$…-vector spaces on which Gal(äk/k)

acts continuously, and which vanish for i > 2n (recall n := dim(X)). If X/k is proper, then Hi
c ¶

Hi. In general, there is a natural "forget supports" map

Hi
c(X‚käk, Ï) ¨ Hi(X‚käk, Ï),

which need not be an isomorphism. The group H2n
c(X‚käk, Ï) is a birational invariant, in the

sense that for any dense open set U in X,

H2n
c(U‚käk, Ï) ¶ H2n

c(X‚käk, Ï).

For Ï a lisse ä$…-sheaf on X/k (which we have assumed separated of finite type, smooth

and geometrically connected of dimension n) its ordinary and compact cohomology are related by
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Poincare duality. The group H2n
c(X‚käk, ä$…) is ä$…(-n), the one-dimensional ä$…-vector space on

which Fk acts as (ùk)n. For Ï£ the linear dual (contragredient representation), the cup-product

pairing

Hi
c(X‚käk, Ï)≠H2n-i(X‚käk, Ï£) ¨ H2n

c(X‚käk, ä$…) ¶ ä$…(-n)

is a Gal(äk/k)-equivariant pairing, which identifies each pairee with the ä$…(-n)-dual of the other. 

For Ï lisse, the group H0(X‚käk, Ï) has a simple description: it is the space of

π1
geom(X/k)-invariants in the corresponding representation:

H0(X‚käk, Ï) = (Ï)
π1

geom(X/k)
,

with the induced action of πarith/π1
geom = Gal(äk/k).

By Poincare duality, the group H2n
c(X‚käk, Ï) is the space of Tate-twisted π1

geom(X/k)-

coinvariants (largest quotient on which π1
geom(X/k) acts trivially) of the corresponding

representation:

H2n
c(X‚käk, Ï) = (Ï)π1

geom(X/k)(-n).

If X is affine, then for any constructible Ï we have

Hi(X‚käk, Ï) = 0 for i > n.

Thus for Ï lisse we have the dual vanishing, 

Hi
c(X‚käk, Ï) = 0 for i < n.

Thus for X/k an affine curve, and Ï lisse, the only possibly nonvanishing Hi
c are H1

c and H2
c,

and of these two groups we know H2
c: it is the Tate-twisted coinvariants.

For any constructible Ï, its L-function is a rational function, given by its Hi
c 

L(X/k, Ï)(T) = °i=0 to 2n det(1 - TFk|Hi
c(X‚käk, Ï))(-1)i+1

.

[This formula is equivalent (take logarithmic derivatives of both sides) to the Lefschetz Trace

Formula [Gro-FL]: for every finite extension E/k, 

      ‡x in (X/k)(E)Trace(FrobE,x|Ï) = ‡i (-1)iTrace(FE | Hi
c(X‚käk, Ï)).]

In the fundamental case when X is an affine curve and Ï is lisse, the cohomological

formula for L is simply

L(X/k, Ï)(T) = det(1 - TFk|H1
c(X‚käk, Ï))/det(1 - TFk|H2

c(X‚käk, Ï)).

For X an affine curve, and Ï a constructible ä$…-sheaf on X, there is always a dense open

set j : U ¨ X on which Ï is lisse. We have a natural adjunction map Ï ¨ j*j*Ï, which is injective
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if and only if H0
c(X‚käk, Ï) = 0. [The point is that the kernel of the adjunction map, call it PctÏ, is

punctual, supported at finitely many closed points. So PctÏ = 0 if and only if H0
c(X‚käk, PctÏ) =

0. Because X is affine, H0
c(X‚käk, j*j*Ï) = 0, so the inclusion of PctÏ into Ï induces an

isomorphism on H0
c, cf. [Ka-SE, 4.5.2].] If H0

c(X‚käk, Ï) = 0, then the largest open set on

which Ï is lisse is precisely the set of points where its stalk has maximum rank. 

For U/k an affine curve, Ï a lisse ä$…-sheaf on U, C/k the complete nonsingular model of

U, and j : U ¨ C the inclusion, we may form the constructible ä$…-sheaf j*Ï on C. Its

cohomology groups are related to those of Ï on U as follows:

H0(C‚käk, j*Ï) = H0(U‚käk,Ï), and H0
c(U‚käk,Ï) = 0,

H1(C‚käk, j*Ï) = Image(H1
c(U‚käk,Ï) ¨ H1(U‚käk,Ï)),

H2(C‚käk, j*Ï) = H2
c(U‚käk,Ï), and H2(U‚käk,Ï) = 0.

WWWWeeeeiiiigggghhhhttttssss,,,,    aaaannnndddd    ffffoooorrrrmmmmuuuullllaaaattttiiiioooonnnn    ooooffff    tttthhhheeee    ttttaaaarrrrggggeeeetttt    tttthhhheeeeoooorrrreeeemmmm

We now introduce archimedean considerations into our discussion. Denote by | | the usual

complex absolute value on ^: 

|x+iy| := Sqrt(x2 + y2).

Fix a field embedding “ of ä$… into ^. By means of “, we may speak of the complex absolute value

of an element å of ä$…:

|å|“ := |“(å)|.

Given a lisse ä$…-sheaf Ï on X/k as above (i.e. smooth and geometrically connected, of

dimension n), and a real number w, we say that Ï is “-pure of weight w if the following condition

holds. For every finite extension field E/k, for every point x in (X/k)(E), we have

|every eigenvalue of ÚÏ(FrobE,x)|“ = Sqrt(ùE)w.

We say that a finite-dimensional ä$…-representation V of Gal(äk/k) is “-pure of weight w if

|every eigenvalue of Fk on V|“ = Sqrt(ùk)w.

We say that V is “-mixed of weight ≤ w (resp. ≥ w) if we have the inequality

|every eigenvalue of Fk on V|“ ≤ Sqrt(ùk)w,

respectively

|every eigenvalue of Fk on V|“ ≥ Sqrt(ùk)w,

In questions concerning “-weights, we may, whenever convenient, extend scalars from the

ground field k over which we started to any finite extension field. 

 The interpretation of H0 (resp. of H2n
c) in terms of π1

geom(X/k)-invariants (resp. Tate-

twisted coinvariants) shows that if a lisse Ï is “-pure of weight w, then H0(X‚käk, Ï) (and so also

its subspace H0
c(X‚käk, Ï)) is “-pure of weight w, and H2n

c(X‚käk, Ï) is “-pure of weight w +
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2n. [For example, if (X/k)(kd) is nonempty, say containing a point x, then the action of (Fk)d on

H0
c(X‚käk, Ï)) is induced by the action of Frobkd,x on Ï, and the action of (Fk)d on

H2n
c(X‚käk, Ï)) is induced by the action of Frobkd,x on Ï(-n).] Thus we always have

H0
c(X‚käk, Ï)) is “-pure of weight w,

H2n
c(X‚käk, Ï) is “-pure of weight w + 2n.

Given a lisse Ï which is “-pure of some weight w, we can always find an …-adic unit å

such that Ï‚ådeg is “-pure of weight zero. Indeed, if Ï has rank r ≥ 1, and if E/k is a finite

extension, say of degree d, for which (X/k)(E) is nonempty, pick a point x in (X/k)(E), and take for

å any rd'th root of 1/det(ÚÏ(FrobE,x)). We have the trivial compatibility

Hi
c((X‚käk, Ï‚ådeg) = Hi

c((X‚käk, Ï)‚ådeg.

We can now state our target theorem.

TTTTaaaarrrrggggeeeetttt    TTTThhhheeeeoooorrrreeeemmmm    ((((DDDDeeeelllliiiiggggnnnneeee)))) Let U/k be a smooth, geometrically connected curve over a finite field, …

a prime invertible in k, and Ï a lisse ä$…-sheaf on U which is “-pure of weight w. Then

H1
c(U‚käk, Ï) is “-mixed of weight ≤ w + 1.

As noted above, we already know that

H0
c(U‚käk, Ï) is “-pure of weight w, and vanishes if U is affine,

H2
c(U‚käk, Ï) is “-pure of weight w + 2.

CCCCoooorrrroooollllllllaaaarrrryyyy [De-Weil II, 3.2.3] 

1) The ordinary cohomology group H1(Uºkäk, Ï) is “-mixed of weight ≥ w + 1.

2) If the "forget supports" map is an isomorphism

H1
c(Uºkäk, Ï) ¶ H1(Uºkäk, Ï),

then H1
c(Uºkäk, Ï) is “-pure of weight w+1.

3) For C/k the complete nonsingular model of U/k, for 

j : U ¨ C

the inclusion, and for every integer 0 ≤ i ≤ 2,

Hi(C‚käk, j*Ï) is “-pure of weight w + i.

PPPPrrrrooooooooffff    ooooffff    tttthhhheeee    ccccoooorrrroooollllllllaaaarrrryyyy To prove 1), we argue as follows. For Ï lisse and “-pure of weight w, the

contragredient Ï£ is lisse and “-pure of weight -w. By the target theorem applied to Ï£,

H1
c(U‚käk, Ï£) is “-mixed of weight ≤ -w + 1. But H1

c(U‚käk, Ï£) and H1(Uºkäk, Ï) are

Poincare-dually paired to H2
c(U‚käk, ä$…) ¶ ä$…(-1), which is “-pure of weight 2. Therefore

H1(Uºkäk, Ï) is “-mixed of weight ≥ w+1.



L-functions and monodromy: four lectures on Weil II-9

To prove 2), notice that the target theorem and 1), both applied to Ï, show that H1
c(Uºkäk,

Ï) is simultaneously “-mixed of weight ≤ w+1 and “-mixed of weight ≥ w+1.

We now prove 3). For i=0, 

H0(C‚käk, j*Ï) = H0(U‚käk, Ï), 

and this last group is “-pure of weight w. For i=2, we have

H2(C‚käk, j*Ï) = H2
c(C‚käk, j*Ï) ¶ H2

c(U‚käk, Ï),

and this last group is “-pure of weight w+2.

For i=1, H1(C‚käk, j*Ï) is the image of H1
c(Uºkäk, Ï) in H1(Uºkäk, Ï). Thus H1(C‚käk,

j*Ï) is simultaneously a quotient of H1
c(Uºkäk, Ï), so “-mixed of weight ≤ w+1, and a subobject

of H1(Uºkäk, Ï), and so (by part 1)) “-mixed of weight ≥ w+1. QED

FFFFiiiirrrrsssstttt    rrrreeeedddduuuuccccttttiiiioooonnnnssss    iiiinnnn    tttthhhheeee    pppprrrrooooooooffff    ooooffff    tttthhhheeee    ttttaaaarrrrggggeeeetttt    tttthhhheeeeoooorrrreeeemmmm

By an ådeg twist, it suffices to prove the target theorem in the special case when Ï is “-

pure of weight zero. We henceforth assume that Ï is “-pure of weight zero. 

We next reduce to the case when the curve U/k is the affine line !1/k. We do this in several

steps. To prove the theorem for the data (U/k, Ï), we may always shrink U to a dense open set U1

fi U. Indeed, if we denote by j1: U1 ¨ U the inclusion, we have a short exact sequence on U

0 ¨ (j1)~(j1)*Ï ¨ Ï ¨ (a punctual sheaf) ¨ 0.

The long exact cohomology sequence then exhibits H1
c(Uºkäk, Ï) as a quotient of H1

c(U1ºkäk,

Ï|U1). We may also extend scalars from k to any finite extension of k. 

In this way, we may reduce to the case when U is affine, and at least one point at ‘, say P,

is k-rational. We next reduce to the case when U is a dense open set in !1. For all large integers

m, the Riemann-Roch space L(mP) contains a function f which has a pole of order precisely m at

P, and no other poles. If we take m to be invertible in k, the differential df of any such f is nonzero.

So f, viewed as a finite flat map of degree m from C to @1, is finite etale of degree m over some

dense open set V of @1. Shrinking V, we may further assume that V fi !1 and that f-1(V) fi U.

Shrinking U, we may assume that U itself is finite etale over V, of degree m. Then f*Ï is lisse on

V, and “-pure of weight zero, and we have

Hi
c(V‚käk, f*Ï) = Hi

c(U‚käk, Ï),

by the (trivial) Leray spectral sequence for the map f: U ¨ V.

Once we are reduced to the case of a dense open set U in !1/k, we may, by a further

extension of scalars, reduce to the case when all the points in S := !1 - U are k-rational. Denote

by Æ the additive subgroup of !1(k) = (k, +) generated by the points in S. Thus Æ is an Ép-vector



L-functions and monodromy: four lectures on Weil II-10

space of dimension at most ùS, so in particular it is a finite subgroup of !1(k). Shrinking U = !1

- S, we reduce to the case when U is of the form !1 - Æ, for Æ a finite subgroup of !1(k). The

quotient !1/Æ is itself an !1/k. The quotient map, say π,

π : !1 ¨ !1/Æ ¶ !1,

is finite etale, and makes !1 - Æ finite etale over !1 - {0} := ´m/k. So it suffices to treat π*Ï on

´m/k. 

To complete the reduction, we note that in positive characteristic p, the Abhyankar map

[Ab, Thm. 1, page 830]

Abhy: ´m ¨ !1,

x ÿ xp + 1/x,

makes ´m a finite etale covering of !1 of degree p+1. So it suffices to treat Abhy*π*Ï on !1/k.

So now we are reduced to proving the target theorem for a lisse Ï on !1 which is “-pure

of weight zero. We next reduce to the case when Ï is irreducible as a representation of

π1
arith(!1/k). We proceed by induction on the length of a Jordan-Holder series. If Ï1 fi Ï is an

irreducible lisse subsheaf of Ï, both Ï1 and Ï/Ï1 are lisse and “-pure of weight zero, and by

induction both H1
c(!1‚käk, Ï1) and H1

c(!1‚käk, Ï/Ï1) are “-mixed of weight ≤ 1. The

cohomology sequence for the short exact sequence

0 ¨ Ï1 ¨ Ï ¨ Ï/Ï1 ¨0

gives an exact sequence

H1
c(!1‚käk, Ï1) ¨ H1

c(!1‚käk, Ï) ¨H1
c(!1‚käk, Ï/Ï1),

whose middle term is thus “-mixed of weight ≤ 1 as well.

We now show that it suffices to prove the target theorem in the case when the lisse

irreducible Ï on !1 is geometrically irreducible, i.e., irreducible as a representation of

π1
geom(!1/k). We proceed by induction on the rank of Ï. Consider the restriction of Ï to

π1
geom(!1/k). Because Ï is irreducible for π1

arith(!1/k), and π1
geom(!1/k) is normal in

π1
arith(!1/k), the restriction of Ï to π1

geom(!1/k) is completely reducible. So we may write it as

a sum of irreducibles Ïi with multiplicities ni, say

Ï | π1
geom(!1/k) ¶ ·i niÏi.

Consider first the case when Ï | π1
geom(!1/k) is not isotypical, i.e., the case in which

there are at least two distinct Ïi's in the decomposition. In that case, the individual isotypical

components niÏi are permuted among themselves by the action of the quotient group

π1
arith(!1/k)/π1

geom(!1/k) ¶ Gal(äk/k). As there are only finitely many such isotypical

components, an open subgroup of finite index in Gal(äk/k) stabilizes each isotypical component
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separately. So after extending scalars from k to some finite extension field, Ï becomes reducible as

a representation of π1
arith. Each irreducible summand has lower rank, so the target theorem holds

for it, by induction.

It remains to treat the case in which Ï | π1
geom(!1/k) is isotypical, say

Ï | π1
geom(!1/k) ¶ n1Ï1,

with Ï1 corresponding to some irreducible representation ® of π1
geom(!1/k). We will show that

in this case Ï is already geometrically irreducible, i.e., that n=1. Because n® is a representation of

π1
arith(!1/k), for each fixed element © in π1

arith(!1/k), the representation ® of π1
geom(!1/k) has

the same trace function as the representation ®(©): g ÿ ®(©g©-1) of π1
geom(!1/k). So for fixed ©,

we can choose A in GL(degree(®), ä$…) such that for every g in π1
geom(!1/k), we have

®(©g©-1) = A®(g)A-1.

Now take for © an element of degree one. Then the Weil group  W(!1/k) (:= the subgroup of

π1
arith(!1/k) consisting of elements of integer degree) is the semidirect product

W(!1/k) = π1
geom(!1/k) â (the # generated by ©),

with © acting on π1
geom(!1/k) by conjugation. Then ® extends to a representation ë® of the Weil

group W(!1/k), defined by

ë®(g©n) := ®(g)An.

Now consider Ï | W(!1/k). What is its relation to ë®? Well, on the normal subgroup π1
geom(!1/k)

of W(!1/k), Ï agrees with në®. So the natural map

ë®‚Homπ1
geom(!1/k)(ë®, Ï) ¨ Ï

is an isomorphism of W(!1/k)-representations (because it is W(!1/k)-equivariant, and it is an

isomorphism of π1
geom(!1/k)-representations). Now Ï, being irreducible on π1

arith(!1/k),

remains irreducible on the dense subgroup W(!1/k). Therefore the n-dimensional representation

Homπ1
geom(!1/k)(ë®, Ï) must be an irreducible representation of W(!1/k). But

Homπ1
geom(!1/k)(ë®, Ï) is in fact a representation of the quotient group 

W(!1/k)/π1
geom(!1/k) = #.

Being irreducible, its dimension must be 1. Thus n=1, which means precisely that Ï |

π1
geom(!1/k) ¶ Ï1 is irreducible.

So we are now reduced to proving the target theorem for a lisse, geometrically irreducible Ï

on !1/k which is “-pure of weight zero. We now look to see if Ï happens to be geometrically

self-dual, i.e, we look to see if Ï£ is isomorphic to Ï as a representation of π1
geom(!1/k). If Ï is
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geometrically self dual, we claim that some ådeg twist of Ï is arithmetically self-dual, i.e.,

isomorphic to its contragredient as a representation of π1
arith(!1/k), and still “-pure of weight

zero. To see this, we argue as follows. Pick a π1
geom(!1/k)-invariant non-zero bilinear form < ,

> on the representation space, say V, of the representation ® :=ÚÏ:

<®(g)v, ®(g)w> = <v, w>

for every g in π1
geom(!1/k). Because Ï is geometrically irreducible, the form < , > is unique up to

a ä$…
≠ factor. We claim that for any fixed element © in π1

arith(!1/k), the nonzero bilinear form

T©[v, w] := <®(©)v, ®(©)w>

is also π1
geom(!1/k)-invariant. This holds simply because π1

geom(!1/k) is a normal subgroup

of π1
arith(!1/k): for g in π1

geom(!1/k), we readily calculate

T©[®(g)v, ®(g)w] := <®(©)®(g)v, ®(©)®(g)w>

= <®(©g©-1)®(©)v, ®(©g©-1)®(©)w>

= <®(©)v, ®(©)w> := T©[v, w].

Therefore the form T© is a ä$…
≠-multiple of < , >, say 

T© = c©< , >.

The map © ÿ c© is a continuous homomorphism from π1
arith(!1/k) to ä$…

≠ which is trivial on

π1
geom(!1/k), so it is of the form ∫deg for some …-adic unit in ä$…

≠. If we take for å either square

root of 1/∫, then Ï‚ådeg is arithmetically self dual, and “-pure of some weight w (namely the real

number w such that |“(å)| = (ùk)w/2). The contragredient of Ï‚ådeg is therefore “-pure of weight

-w. Thus w = -w, so w = 0, as required.

LLLLeeeeccccttttuuuurrrreeee    IIIIIIII

To summarize: we are reduced to proving the target theorem for a lisse, geometrically

irreducible Ï on !1/k which is “-pure of weight zero, and which, if geometrically self-dual, is

arithmetically self dual. We may further assume that Ï is geometrically nontrivial. For if Ï is

geometrically trivial, then H1
c(!1‚käk, Ï) = 0 (simply because H1

c(!1‚käk, ä$…) = 0), so in this

case there is nothing to prove. 

RRRReeeevvvviiiieeeewwww    ooooffff    tttthhhheeee    AAAArrrrttttiiiinnnn----SSSScccchhhhrrrreeeeiiiieeeerrrr    sssshhhheeeeaaaaffff    ÒÒÒÒ¥¥¥¥::::    wwwwiiiilllldddd    ttttwwwwiiiissssttttiiiinnnngggg    aaaannnndddd    tttthhhheeee    aaaauuuuxxxxiiiilllliiiiaaaarrrryyyy    sssshhhheeeeaaaaffff    ÌÌÌÌ    oooonnnn    !!!!2222::::    tttthhhheeee    ppppuuuurrrriiiittttyyyy

tttthhhheeeeoooorrrreeeemmmm

Let us fix a nontrivial additive ä$…
≠-valued character ¥ of our ground field k, 

¥ : (k, +) ¨ ä$…
≠.

Then !1/k becomes a finite etale galois covering of itself with galois group (k, +), by the (sign-

changed) Artin-Schreier map x ÿ x - xùk:
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!1/k

Ñ x ÿ x - xùk

!1/k

This covering exhibits (k, +) as a finite quotient group of π1
arith(!1/k):

π1
arith(!1/k) ¨ (k, +) ¨ 0.

If we compose this surjection with ¥, we get a continuous homomorphism

π1
arith(!1/k) ¨ (k, +) ¨ ä$…

≠,

i.e., we get a lisse ä$…-sheaf of rank one on !1/k. This by definition is Ò¥. Its trace function is

given as follows. For any finite extension E/k, and for any point x in (!1/k)(E) = E, FrobE,x acts

on Ò¥ as the scalar ¥(TraceE/k(x)). [It is to get this trace to come out correctly that we use the

sign-changed Artin-Schreier map.] Since the trace is always a p'th root of unity for p:= char(k),

Ò¥ is “-pure of weight zero.

Given any k-scheme X/k, and any function f on X, we can view f as a k-morphism from

X to !1/k, and form the pullback sheaf f*Ò¥ on X, which we denote Ò¥(f). Thus Ò¥(f) is a lisse

rank one ä$…-sheaf on X, “-pure of weight zero, and its trace function is given as follows. For any

finite extension E/k, and any point x in (X/k)(E), FrobE,x acts on Ò¥(f) as the scalar

¥(TraceE/k(f(x))). For f the zero function, the sheaf Ò¥(0) is canonically the constant sheaf ä$…,X

on X.

Suppose now that X is !1/k itself, and f is a polynomial function. To fix ideas, think of

!1/k as Spec(k[T]). For f in k[T] whose degree is invertible in k, Ò¥(f) on !1/k has Swan

conductor at ‘ equal to the degree of f:

Swan‘(Ò¥(f)) = deg(f).

For Ï a lisse ä$…-sheaf on !1/k, the Euler-Poincare formula [Ray] of Grothendieck-Neron-

Ogg-Shafarevic gives

çc(!1‚käk, Ï) := h2
c(!1‚käk, Ï) - h1

c(!1‚käk, Ï)

= rank(Ï) - Swan‘(Ï).

Given a lisse Ï, take f in k[T] with deg(f) invertible in k and deg(f) > Swan‘(Ï). Then

Ï‚Ò¥(f) is totally wild at ‘, all its "upper numbering breaks" are equal to deg(f), and 

Swan‘(Ï‚Ò¥(f)) = deg(f)≠rank(Ï).

The total wildness forces 

H2
c(!1‚käk, Ï‚Ò¥(f))) = 0. 

Thus for such an f we have
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h1
c(!1‚käk, Ï‚Ò¥(f))) = (deg(f) - 1)≠rank(Ï),

Hi
c(!1‚käk, Ï‚Ò¥(f))) = 0 for i ± 1.

Moreover, the total wildness at ‘ implies that under the "forget supports map" is an isomorphism

H1
c(!1‚käk, Ï‚Ò¥(f))) ¶ H1(!1‚käk, Ï‚Ò¥(f))).

We now specialize to the case where Ï is our lisse, geometrically irreducible and

geometrically nontrivial sheaf on !1/k which is “-pure of weight zero, and which, if geometrically

self-dual, is arithmetically self-dual. We will now describe an auxiliary lisse sheaf Ì on !2/k.

Fix an integer N which satisfies

N is invertible in k,

N > Swan‘(Ï),

N ≥ 3 if char(k) ± 2, 

N ≥ 5 if char(k) = 2.

Choose a polynomial f(T) in k[T] of degree N. 

Suppose first that k has odd characteristic. Our idea is to consider the two parameter family

of polynomials of degree N given by

(a, b) ÿ f(T) + aT + bT2,

and to form the sheaf on !2/k which incarnates the assignment

(a, b) ÿ H1
c(!1‚käk, Ï‚Ò¥(f(T) + aT + bT2))).

To make the formal definition, consider the space !3/k, with coordinates T, a, b. On this space we

have the polynomial function

(T, a, b) ¨ f(T) + aT + bT2,

so we may speak of Ò¥(f(T) + aT + bT2) on !3/k. Using the first projection

pr1 : !3/k ¨ !1/k,

(T, a, b) ÿ T, 

we pull back Ï, and form (pr1)*Ï on !3/k. We then tensor this with Ò¥(f(T) + aT + bT2),

obtaining

((pr1)*Ï)‚Ò¥(f(T) + aT + bT2) on !3/k.

Using the projection onto (a, b)-space

pr2,3 :  !3/k ¨ !2/k,

(T, a, b) ÿ (a, b),

we define

Ì = ÌÏ,¥,f := R1(pr2,3)~(((pr1)*Ï)‚Ò¥(f(T) + aT + bT2)).

If char(k) is two, we use the two parameter family

(a, b) ÿ f(T) + aT + bT3,

and define
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Ì = ÌÏ,¥,f := R1(pr2,3)~(((pr1)*Ï)‚Ò¥(f(T) + aT + bT3)).

We will use the Weil I idea (which in terms of Weil II amounts to a "baby case" of the purity

criterion 1.5.1 of Weil II) to prove

PPPPuuuurrrriiiittttyyyy    TTTThhhheeeeoooorrrreeeemmmm Notations as in the three preceding paragraphs, the auxiliary sheaf Ì = ÌÏ,¥,f on

!2/k is lisse of rank (N-1)rank(Ï), and “-pure of weight one. 

We will prove this Purity Theorem in a later lecture. For now, we will admit its truth, and

explain how it allows us to prove the target theorem. To begin, we extract an obvious corollary.

PPPPuuuurrrriiiittttyyyy    CCCCoooorrrroooollllllllaaaarrrryyyy H1
c(!1‚käk, Ï‚Ò¥(f))) is “-pure of weight one.

pppprrrrooooooooffff By proper base change, the stalk of ÌÏ,¥,f at the origin is the cohomology group in

question. QED

RRRReeeedddduuuuccccttttiiiioooonnnn    ooooffff    tttthhhheeee    ttttaaaarrrrggggeeeetttt    tttthhhheeeeoooorrrreeeemmmm    ttttoooo    tttthhhheeee    ppppuuuurrrriiiittttyyyy    tttthhhheeeeoooorrrreeeemmmm

This purity corollary holds for every polynomial f of the fixed degree N. In particular, for

every finite extension field E/k, and for every s in E≠, H1
c(!1‚Eäk, Ï‚Ò¥(sTN))) is “-pure of

weight one. If we put s = 0, the sheaf Ï‚Ò¥(sTN) becomes the sheaf Ï. The rough idea now is to

"take the limit as s ¨ 0" and show that weights can only decrease. Then we will get the target

theorem, namely that H1
c(!1‚Eäk, Ï‚Ò¥(sTN))) is “-mixed of weight ≤ 1 for s = 0.

To make sense of this rough idea, we work on the !2/k with coordinates (T, s), on which

we have the lisse sheaves (pr1)*Ï, Ò¥(sTN), and ((pr1)*Ï)‚Ò¥(sTN). We form the sheaf Ó on

the s-line !1/k defined as

Ó := R1(pr2)~(((pr1)*Ï)‚Ò¥(sTN)).

By proper base change, for every finite extension field E/k, and every s in E, the stalk Ós of Ó at

(a geometric point over) s is the cohomology group H1
c(!1‚Eäk, Ï‚Ò¥(sTN))). 

DDDDeeeeggggeeeennnneeeerrrraaaattttiiiioooonnnn    LLLLeeeemmmmmmmmaaaa The sheaf Ó on !1/k has 

H0
c(!1‚käk, Ó) = 0. 

Restricted to ´m/k, Ó is lisse of rank (N-1)rank(Ï), and “-pure of weight one. Denoting by j :

´m ¨ !1 the inclusion, the adjunction map 

Ó ¨j*j*Ó

is injective.

pppprrrrooooooooffff Consider the Leray spectral sequence for the map 
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pr2 : !2/k ¨ !1/k

and the lisse sheaf  := ((pr1)*Ï)‚Ò¥(sTN) on the source:

E2
a,b = Ha

c(!1‚käk, Rb(pr2)~) à Ha+b
c(!2‚käk, ).

By proper base change, and looking fibre by fibre, we see that Ri(pr2)~ vanishes for i±1

[Remember Ï is geometrically irreducible and nontrivial, so H2
c(!1‚käk, Ï) vanishes.] So the

spectral sequence degenerates, and gives, for every a,

Ha
c(!1‚käk, Ó) = Ha+1

c(!2‚käk, ).

Taking a=0, we find

H0
c(!1‚käk, Ó) = H1

c(!2‚käk, ).

But as  is lisse, we have H1
c(!2‚käk, ) = 0, so we get the vanishing of H0

c(!1‚käk, Ó).

Therefore Ó is lisse wherever its stalks have maximal rank. By proper base change, these stalks

have rank (N-1)rank(Ï) at every point of ´m/k. At 0, Ó0 = H1
c(!1‚käk, Ï) has strictly lower

rank, equal to

 -çc(!1‚käk, Ï) = Swan‘(Ï) - rank(Ï).

Once Ó|´m is lisse, it is “-pure of weight one by proper base change and the purity corollary. As

already noted, the vanishing of H0
c(!1‚käk, Ó) gives the injectivity of Ó ¨j*j*Ó. QED

Let us spell out more explicitly what the injectivity of

Ó ¨j*j*Ó

gives us. The sheaf j*Ó is lisse on ´m/k = Spec(k[T, 1/T]), so "is" a representation of

π1
arith(´m/k). The inclusion of rings

k[T, 1/T] fi k[[T]][1/T]

gives a map Spec(k[[T]][1/T]) ¨ ´m/k, and a map of π1's

π1(Spec(k[[T]][1/T])) ¨ π1
arith(´m/k).

The group π1(Spec(k[[T]][1/T])) is D(0), the "decomposition group" at 0 (:= the absolute galois

group of the fraction field k[[T]][1/T] of the complete local ring at the origin in !1). Its subgroup

I(0) := π1(Spec(äk[[T]][1/T]))

is the inertia group at 0; it sits in a short exact sequence

0 ¨ I(0) ¨ D(0) ¨ Gal(äk/k) ¨ 0.

Thus Ó|´m gives a representation of D(0). The stalk of j*j*Ó at 0 is the space of I(0)-invariants

(Ó|´m
)I(0)

, with its induced action of D(0)/I(0) = Gal(äk/k). So the injectivity of

Ó ¨j*j*Ó,
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read on the stalks at 0, gives us nf Fk-equivariant inclusion

Ó0 = H1
c(!1‚käk, Ï) fi (j*j*Ó)0 = (Ó|´m

)I(0).

How do we exploit this inclusion? To prove the target theorem, namely that H1
c(!1‚Eäk,

Ï) is “-mixed of weight ≤ 1, it suffices now to show that (Ó|´m)I(0) is “-mixed of weight ≤ 1.

We will deduce this from the fact that Ó|´m is lisse and “-pure of weight one.

WWWWeeeeiiiigggghhhhtttt    DDDDrrrroooopppp    LLLLeeeemmmmmmmmaaaa    [[[[DDDDeeee----WWWWeeeeiiiillll    IIIIIIII,,,,    1111....8888....1111]]]] Let Ô be a lisse sheaf on ´m/k which is “-pure of weight

w. Then (Ô)I(0) is “-mixed of weight ≤ w. 

pppprrrrooooooooffff Step 1. By an ådeg twist, it suffices to treat the case when w = 0. 

Step 2. We first establish the weak estimate, that (Ô)I(0) is “-mixed of weight ≤ 2. For this,

we consider the L-functions both of Ô on ´m/k and of j*Ô on !1/k. For the first, we have

L(´m/k, Ô)(T) 

= det(1 - TFk|H1
c(´m‚käk, Ô))/det(1 - TFk|H2

c(´m‚käk, Ô)).

For the second, we have

L(!1/k, j*Ô)(T) 

= det(1 - TFk|H1
c(!1‚käk, j*Ô))/det(1 - TFk|H2

c(!1
käk, j*Ô)),

[remember H0
c(!1‚käk, j*Ô) = 0, because j*Ô has no nonzero punctual sections]. By the

birational invariance of H2
c, we have

H2
c(´m‚käk, Ô) = H2

c(!1
käk, j*Ô).

From the Euler products for the two L-functions, we see that

L(´m/k, Ô)(T) = det(1 - TFk| (Ô)I(0))≠L(!1/k, j*Ô)(T).

So comparing their cohomological expressions ,we find

det(1 - TFk|H1
c(´m‚käk, Ô))

= det(1 - TFk| (Ô)I(0))≠det(1 - TFk|H1
c(!1‚käk, j*Ô).

The key point here is that

det(1 - TFk| (Ô)I(0)) divides det(1 - TFk|H1
c(´m‚käk, Ô)).

So it suffices to show that H1
c(´m‚käk, Ô) is “-mixed of weight ≤ 2. Consider the

exponential sum formula for L(´m/k, Ô)(T):

L(´m/k, Ô)(T) = exp(‡n≥1 Sn(´m/k, Ô)Tn/n),

where

Sn(´m/k, Ô):= ‡x in (´m/k)(kn) Trace(ÚÔ(Frobkn,x)).

Since Ô is “-pure of weight zero, and (´m/k)(kn) has (ùk)n -1 points, we have the trivial estimate
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|“(Sn(´m/k, Ô))| ≤ (ùk)nrank(Ô).

So the inner sum ‡n≥1 “(Sn(´m/k, Ô))Tn/n is dominated term by term in absolute value by the

series

rank(Ô)≠‡n≥1 (ùk)n|T|n/n = log((1/(1 - (ùk)|T|))rank(Ô)),

and hence converges absolutely in |T| < 1/ùk. Therefore its exponential L(´m/k, Ô)(T) is an

invertible function in |T| < 1/ùk. In other words, the ratio

det(1 - TFk|H1
c(´m‚käk, Ô))/det(1 - TFk|H2

c(´m‚käk, Ô))

is invertible in |T| < 1/ùk. But H2
c(´m‚käk, Ô) is “-pure of weight two, so the denominator

det(1 - TFk|H2
c(´m‚käk, Ô))

 is invertible in |T| < 1/ùk. Therefore

det(1 - TFk|H1
c(´m‚käk, Ô))

is itself invertible in |T| < 1/ùk, and this means precisely that H1
c(´m‚käk, Ô) is “-mixed of weight

≤ 2.

Step 3. We apply the result of Step 2 to the tensor powers Ô‚n of Ô. These are all lisse on ´m/k,

and “-pure of weight zero. If å is an eigenvalue of Fk on (Ô)I(0), then ån is an eigenvalue of Fk

on (Ô‚n)I(0). So by step 2 we have the estimate

|“(ån)| ≤ ùk.

Letting n ¨ ‘, we find |“(å)| ≤ 1, as required. QED

LLLLeeeeccccttttuuuurrrreeee    IIIIIIIIIIII

To summarize: in order to prove the target theorem for our Ï on !1, it suffices to prove the

purity theorem for the auxiliary sheaf Ì = ÌÏ,¥,f on !2/k. 

WWWWhhhhyyyy    tttthhhheeee    aaaauuuuxxxxiiiilllliiiiaaaarrrryyyy    sssshhhheeeeaaaaffff    ÌÌÌÌ    iiiissss    lllliiiisssssssseeee    oooonnnn    !!!!2222////kkkk

Recall that Ì = ÌÏ,¥,f was defined as

Ì := R1(pr2,3)~

for  the lisse sheaf on !3/k defined as

 := ((pr1)*Ï)‚Ò¥(f(T) + aT + bT2), if char(k) is odd,

 := ((pr1)*Ï)‚Ò¥(f(T) + aT + bT3)), if char(k) =2.

Looking fibre by fibre, we see that all the stalks of Ì have the same rank, namely (N-1)≠rank(Ï).

Moreover, for i ± 1, we have Ri(pr2,3)~ = 0, as we see using proper base change and looking

fibre by fibre, on each of which we have a lisse sheaf on !1 which is totally wild at ‘.

To show that a constructible ä$…-sheaf Ì on !2 is lisse, it suffices to show that for every
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smooth connected affine curve C/äk and for every äk-morphism ƒ : C ¨ !2, ƒ*Ì is lisse on C.

Since ƒ*Ì has stalks of constant rank on C, it is lisse on C if and only if it has no nonzero punctual

sections, i.e, if and only if

H0
c(C, ƒ*Ì) = 0?

Form the cartesian diagram

       ëƒ

  S   ¨  !3‚käk

πÑ       Ñ pr2,3

ƒ

  C  ¨  !2‚käk.

Because pr2,3 is a smooth affine map of relative dimension one with geometrically connected

fibres, so is the map π: S ¨ C. As C is a smooth affine connected curve over äk, S is a smooth

affine connected surface over äk. On S we have the lisse sheaf ëƒ*. By proper base change we

know that ƒ*Ì is just R1π~(ëƒ
*), and that for i ± 1, we have Riπ~(ëƒ

*) = 0. So the Leray

spectral sequence for the map π : S ¨ C and the lisse sheaf ëƒ* degenerates, and gives

Ha
c(C, R1π~(ëƒ

*)) = Ha+1
c(S, ëƒ*),

i.e.,

Ha
c(C, ëƒ*Ì) = Ha+1

c(S, ëƒ*).

Taking a=0, we find

H0
c(C, ëƒ*Ì) = H1

c(S, ëƒ*) = 0,

this last vanishing because ëƒ* is lisse on the smooth connected affine surface S/äk.

GGGGeeeeoooommmmeeeettttrrrriiiicccc    mmmmoooonnnnooooddddrrrroooommmmyyyy::::    tttthhhheeee    mmmmoooonnnnooooddddrrrroooommmmyyyy    tttthhhheeeeoooorrrreeeemmmm    ffffoooorrrr    ÌÌÌÌ

Let us return momentarily to a more general situation: k is our finite field, … is invertible in

k, X/k is smooth and geometrically connected, of dimension n ≥ 1, and Ì is a lisse ä$…-sheaf on X,

of rank r ≥ 1, corresponding to a continuous r-dimensional ä$…-representation (®, V) of

π1
arith(X/k), say

® : π1
arith(X/k) ¨ GL(V) ¶ GL(r, ä$…).

The Zariski closure in GL(V) of the image ®(π1
geom(X/k)) of the ggggeeeeoooommmmeeeettttrrrriiiicccc fundamental group of

X/k is called the geometric monodromy group Ggeom attached to Ì. Thus Ggeom is, by definition,

the smallest Zariski closed subgroup of GL(V) whose ä$…-points contain ®(π1
geom(X/k)). 

The key property for us of this algebraic subgoup Ggeom of GL(V) is this. Take any
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finite-dimensional ä$…-representation (Ú, W) of GL(V). We may view W as a representation of

Ggeom, then as a representation of its "abstract" subgroup ®(π1
geom(X/k)), and finally as a

representation of π1
geom(X/k). Then we have an equality of spaces of coinvariants

WGgeom
 = Wπ1

geom(X/k).

We now return to our concrete situation. We have the lisse sheaf Ì = ÌÏ,¥,f on !2/k

attached to a lisse, geometrically irreducible and geometrically nontrivial ä$…-sheaf Ï on !1/k

which is “-pure of weight zero, and which, if geometrically self-dual, is arithmetically self dual. 

MMMMoooonnnnooooddddrrrroooommmmyyyy    TTTThhhheeeeoooorrrreeeemmmm The lisse sheaf Ì = ÌÏ,¥,f on !2/k, corresponding to the representation (®,

V) of π1
arith(!2/k), is geometrically irreducible. Its Ggeom is constrained as follows.

1) If char(k) is odd, then Ggeom is either a finite irreducible subroup of GL(V), or Ggeom

contains SL(V) as a subgroup of finite index.

2) If char(k) = 2 and Ï is not geometrically self-dual, then just as in case 1) Ggeom is either a

finite irreducible subroup of GL(V), or Ggeom contains SL(V) as a subgroup of finite index.

3) If char(k) = 2 and Ï is geometrically self-dual by an orthogonal autoduality, then Ì is

geometrically self-dual by a symplectic autoduality, and Ggeom is either a finite irreducible

subgroup of Sp(V), or it is the full group Sp(V).

4) If char(k) = 2 and Ï is geometrically self-dual by a symplectic autoduality, then Ì is

geometrically self-dual by a orthogonal autoduality, and Ggeom is either a finite irreducible

subgroup of O(V), or it is either SO(V) or O(V).

RRRReeeedddduuuuccccttttiiiioooonnnn    ooooffff    tttthhhheeee    ppppuuuurrrriiiittttyyyy    tttthhhheeeeoooorrrreeeemmmm    ttttoooo    tttthhhheeee    mmmmoooonnnnooooddddrrrroooommmmyyyy    tttthhhheeeeoooorrrreeeemmmm

We will prove the monodromy theorem in the next lecture. Let us explain how, using it, we

can prove the Purity Theorem. 

Because Ï is lisse and “-pure of weight zero, the sheaves Ï and Ï£ on !1/k have complex

conjugate trace functions: for any finite extension E/k, and for any x in (!1/k)(E), 

“(Trace(FrobE,x | Ï)) and “(Trace(FrobE,x | Ï£))

are complex conjugates. For this reason, we will allow ourselves to denote

äÏ := Ï£.

Denote by ä¥ the character x ÿ ¥(-x). Thus after our complex embedding “, ¥ and ä¥ are

complex conjugates of each other. What is the relation of the lisse sheaf ÌäÏ,ä¥,f to the lisse sheaf

ÌÏ,¥,f? 

DDDDuuuuaaaalllliiiittttyyyy////CCCCoooonnnnjjjjuuuuggggaaaaccccyyyy    LLLLeeeemmmmmmmmaaaa 

1) The dual sheaf (ÌÏ,¥,f)
£ on !2/k is canonically the sheaf ÌäÏ,ä¥,f(1). 

2) The sheaves ÌÏ,¥,f and ÌäÏ,ä¥,f have complex conjugate trace functions.
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pppprrrrooooooooffff 1) The definition of ÌÏ,¥,f was of the form

ÌÏ,¥,f := R1(pr2,3)~(a certain lisse sheaf,say , on !3/k),

where  was

((pr1)*Ï)‚Ò¥(f(T) + aT + bT2), in characteristic not 2,

((pr1)*Ï)‚Ò¥(f(T) + aT + bT3), in characteristic 2.

The definition of ÌäÏ,ä¥,f is then

ÌäÏ,ä¥,f := R1(pr2,3)~(the contragredient £ of this same ).

So have a cup-product pairing of lisse sheaves on !2/k

ÌÏ,¥,f ≠ ÌäÏ,ä¥,f ¨ R2(pr2,3)~(ä$…) ¶ ä$…(-1).

To see that this pairing identifies each pairee with the ä$…(-1)-dual of the other, it suffices to check

on fibres At the point (a, b), put

fa,b(T) := f(T) + aT + bT2, in characteristic not 2,

:= f(T) + aT + bT3, in characteristic 2.

We need the cup product pairing

H1
c(!1‚käk, Ï‚Ò¥(fa,b))) ≠ H1

c(!1‚käk, Ï£‚Ò¥(-fa,b))) ¨ ä$…(-1)

to be a duality. But we have already noted that

H1
c(!1‚käk, Ï‚Ò¥(fa,b))) ¶ H1(!1‚käk, Ï‚Ò¥(fa,b))),

so this is just usual Poincare duality.

2) Let E/k be a finite extension, (a, b) in (!2/k)(E). Then as already noted we have

H2
c(!1‚käk, Ï‚Ò¥(fa,b))) = 0,

H2
c(!1‚käk, Ï£‚Ò¥(-fa,b))) = 0.

So by proper base change and the Lefschetz Trace Formula we have

Trace(FrobE,(a,b) | ÌÏ,¥,f)

= Trace(FE | H1
c(!1‚käk, Ï‚Ò¥(fa,b)))

= - ‡ t in E Trace(FrobE,t | Ï)¥(TraceE/k(fa,b(t))).

Similarly, we find

Trace(FrobE,(a,b) | ÌäÏ,ä¥,f)

= Trace(FE | H1
c(!1‚käk, Ï

£
‚Ò¥(-fa,b)))

= - ‡ t in E Trace(FrobE,t | Ï
£)¥(-TraceE/k(fa,b(t))),

and this last sum is, term by term, the complex conjugate of the sum which gives the trace of

FrobE,(a,b) on ÌÏ,¥,f at the same point (a, b). QED
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PPPPoooossssiiiittttiiiivvvveeee    TTTTrrrraaaacccceeee    CCCCoooorrrroooollllllllaaaarrrryyyy The trace function of Ì‚Ì£ takes values, after “, in %≥0.

pppprrrrooooooooffff Let us write

Ì := ÌÏ,¥,f,

äÌ := ÌäÏ,ä¥,f.

Then Ì‚Ì£ is Ì‚äÌ(1). Its trace at (a, b) in (!2/k)(E) is thus

(1/ùE)|“(Trace(FrobE,(a,b) | ÌÏ,¥,f))|
2. QED

How do we bring to bear the monodromy theorem? Recall that (®, V) is the representation

of π1
arith(!2/k) corresponding to Ì. Because π1

geom(!2/k) is a normal subgroup of

π1
arith(!2/k), for any element © in π1

arith(!2/k), ®(©) normalizes Ggeom (inside GL(V)). 

Consider first the case in which Ggeom for Ì is a finite irreducible subgroup of GL(V).

Then Aut(Ggeom) is finite, say of order M. So given © in π1
arith(!2/k), ®(©)M, acting on Ggeom

by conjugation in the ambient GL(V), acts trivially. This means that ®(©)M commutes with Ggeom,

and as Ggeom is an irreducible subgroup of GL(V), this in turn implies that ®(©)M is a scalar. 

Now consider the case when Ggeom contains SL(V). Then trivially we have the inclusion 

GL(V) fi ´mGgeom.

So in this case, given © in π1
arith(!2/k), there exists a scalar å in ä$…

≠ and an element g in Ggeom

such that

®(©) = åg.

If Ggeom is Sp(V), then ®(©) is an element of GL(V) which normalizes Sp(V), and is

therefore a symplectic similitude [because Sp(V) acts irreducibly on V, cf. the twisting autoduality

discussion]. So in this case also there exists a scalar å in ä$…
≠ and an element g in Sp(V) = Ggeom

such that

®(©) = åg.

If Ggeom is SO(V) or O(V), then char(k) = 2 and Ï is symplectically self-dual, So N ≥ 5,

and Ï has even rank. Thus

dim(V) := rank(Ì) = (N-1)≠rank(Ï) ≥ 4≠2 = 8 > 2.

Therefore SO(V) acts irreducibly on V. Just as above, ®(©) is an element of GL(V) which

normalizes Ggeom and hence normaizes (Ggeom)0 = SO(V), and is therefore an orthogonal

similitude. Thus there exists a scalar å0 in ä$…
≠ and an element g0 in O(V) such that ®(©) = å0g.

Squaring, we find that there exists a scalar å (:= (å0)2) and an element g (:= (g0)2) in SO(V) fi

Ggeom such that

®(©)2 = åg.

So in all cases, there exists an integer M such that given any element © in π1
arith(!2/k),
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®(©)M is of the form åg, with å a scalar, and g in Ggeom. Therefore on V‚V£ and on all its

tensor powers (V‚V£)‚a, ©M acts as an element of Ggeom. Therefore for every integer a ≥ 1,

©M acts trivially on the space of Ggeom-coinvariants

((V‚V£)‚a)Ggeom
.

IIIInnnn    ppppaaaarrrrttttiiiiccccuuuullllaaaarrrr,,,,    ffffoooorrrr    eeeevvvveeeerrrr    iiiinnnntttteeeeggggeeeerrrr    aaaa    ≥≥≥≥    1111,,,,    eeeevvvveeeerrrryyyy    eeeeiiiiggggeeeennnnvvvvaaaalllluuuueeee    ooooffff    ©©©©    aaaaccccttttiiiinnnngggg    oooonnnn    

((((((((VVVV‚‚‚‚VVVV££££))))‚‚‚‚aaaa))))GGGGggggeeeeoooommmm
....

iiiissss    aaaa    rrrrooooooootttt    ooooffff    uuuunnnniiiittttyyyy (of order dividing M, but we don't care about this).

In order to exploit this result, we need to restrict Ì to cleverly chosen curves in !2/k, cf.

[Ka-Spacefill]. Let us write

q := ùk.

For each integer n ≥ 1, consider the curve Cn/k in !2/k defined by the equation

Cn : yqn
 - y = x(xqn

 - x).

Then Cn/k is a smooth, geometrically connected curve, and it visibly goes through all the kn-

rational points of !2/k. As explained in [Ka-Spacefill, Cor. 7], if we restrict Ì to Cn, then for n

sufficiently large and sufficiently divisible, Ì|Cn on Cn/k has the same Ggeom as Ì did on !2/k.

Let us say that such a Cn is good for Ì.

AAAApppppppplllliiiiccccaaaattttiiiioooonnnn    ooooffff    RRRRaaaannnnkkkkiiiinnnn''''ssss    mmmmeeeetttthhhhoooodddd

Let us now prove that Ì is “-pure of weight one. To say that Ì is “-pure of weight one is to

say that for every finite extension E/k and every point (A, B) in (!2/k)(E), ®(FrobE, (A,B)) has,

via “, all its eigenvalues of complex absolute value equal to (ùE)1/2. Take a Cd which is good for Ì

and which contains all the E-valued points of !2/k (i.e., take d divisible by deg(E/k)). Pick an

integer a ≥ 1, and consider the L-function of (Ì‚Ì£)‚a on Cd. The denominator of its

cohomological expression is

det(1-TFk|H2
c(Cd‚käk, (Ì‚Ì£)‚a)).

In terms of the representation (®, V) corresponding to Ì, we have

H2
c(Cd‚käk, (Ì‚Ì£)‚a) = ((V‚V£)‚a)Ggeom

(-1),

and the action of Fk on this space is induced by the action of an Frobenius element Frobk, x at any

rational point in Cd/k. [It is here that we use the fact that Ì|Cd has the same Ggeom as Ì did.]

Therefore every eigenvalue of Fk on H2
c(Cd‚käk, (Ì‚Ì£)‚a) is of the form

(ùk)≠(a root of unity).

Of this, we retain only that
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H2
c(Cd‚käk, (Ì‚Ì£)‚a) is “-pure of weight 2.

Then from the cohomological formula for the L-function, we infer that L(Cd/k, (Ì‚Ì£)‚a)(T) is

holomorphic in |T| < 1/ùk. 

Now think of this same L-function as a power series in T, given by

L(Cd/k, (Ì‚Ì£)‚a)(T) = exp(‡n≥1 Sn(Cd/k, (Ì‚Ì£)‚a)Tn/n),

where

“(Sn(Cd/k, (Ì‚Ì£)‚a)))

:= ‡x in (Cd/k)(kn) “(Trace(Frobkn,x | (Ì‚Ì£)‚a))

= ‡x in (Cd/k)(kn) “(Trace(Frobkn,x | (Ì‚äÌ(1))‚a))

= (1/ùk)na ‡x in (Cd/k)(kn) “(Trace(Frobkn,x | (Ì‚äÌ)‚a))

= (1/ùk)na ‡x in (Cd/k)(kn) |“(Trace(Frobkn,x | Ì)|2a.

Thus the coefficients Sn(Cd/k, (Ì‚Ì£)‚a)) lie, via “, in %≥0. 

PPPPoooossssiiiittttiiiivvvveeee    CCCCooooeeeeffffffffiiiicccciiiieeeennnntttt    LLLLeeeemmmmmmmmaaaa Let F(T) and G(T) be elements of T%[[T]] whose coefficients all lie in

%≥0. Suppose that F(T) - G(T) has all its coefficients in %≥0. Then

1) exp(F(T)) and exp(G(T)) as series in 1 + T%[[T]] both have coefficients in %≥0.

2) exp(F(T)) - exp(G(T)) has all its coefficients in %≥0.

pppprrrrooooooooffff Assertion 1) holds because exp(T) =‡n Tn/n~ has all its coefficients in %≥0. For 2), put

H(T) := F(T) - G(T). By 1) applied to H(T), we have

exp(H(T)) Ÿ 1 + T%≥0[[T]],

say

exp(H(T)) = 1 + K(T),

with K in T%≥0[[T]].

Then

exp(F(T)) = exp(G(T))≠exp(H(T)) = exp(G(T))≠(1 + K(T))

= exp(G(T)) + exp(G(T))≠K(T).

The final product exp(G(T))≠K(T) lies in %≥0[[T]], being the product of two elements of

%≥0[[T]]. QED

Now let us return to the point (A, B) in (Cd/k)(E) at which we are trying to establish the “-

purity of Ì. For each strictly positive multiple

m = n≠deg(E/k)

of deg(E/k), one of the non-negative summands of
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“(Sm(Cd/k, (Ì‚Ì£)‚a)))

= (1/ùk)ma ‡x in (Cd/k)(km) |“(Trace(Frobkm,x | Ì)|2a.

is the single term

(1/ùk)ma |“(Trace(Frobkm,(A,B) | Ì)|2a.

We now apply the positive coefficient lemma to

F(T) := ‡n≥1 “(Sn(Cn/k, (Ì‚Ì£)‚a))Tn/n

and to 

G(T)

:= ‡m≥1, deg(E/k) | m(1/ùk)ma |“(Trace(Frobkm,(A,B) | Ì)|2aTm/m.

We have

exp(F(T)) = “L(Cd/k, (Ì‚Ì£)‚a)(T),

exp(G(T)) = 1/“det(1 - Tdeg(E/k)FrobE,(A,B) | (Ì‚Ì£)‚a).

By part 1) of the positive coefficient lemma, the L-function is a series with positive coefficients.

We have shown that the L-function is holomorphic in |T| < 1/ùk. Therefore its power series around

the origin, exp(F(T)), is convergent in |T| < 1/ùk. By part 2) of the positive coefficient lemma,

exp(G(T)) has positive coefficients, and it is dominated by exp(F(T)), coefficient by coefficient.

Therefore the series exp(G(T)) must also converge in |T| < 1/ùk. But

exp(G(T)) = 1/“det(1 - Tdeg(E/k)FrobE,(A,B) | (Ì‚Ì£)‚a),

so the polynomial 

“det(1 - Tdeg(E/k)FrobE,(A,B) | (Ì‚Ì£)‚a)

has no zeroes in |T| < 1/ùk. In other words, the polynomial

“det(1 - TFrobE,(A,B) | (Ì‚Ì£)‚a)

has no zeroes in |T| < 1/ùE, i.e., every eigenvalue of FrobE,(A,B) on (Ì‚Ì£)‚a = (Ì‚äÌ(1))‚a

has, via “, complex absolute value ≤ ùE. 

If å is an eigenvalue of FrobE,(A,B) on Ì‚Ì£, then åa is an eigenvalue of of FrobE,(A,B)

on (Ì‚Ì£)‚a. Therefore

|“(å)|a ≤ ùE.

Letting a ¨ ‘, we infer that

|“(any eigenvalue of FrobE,(A,B) on Ì‚Ì£)| ≤ 1.

Since FrobE,(A,B) on Ì‚Ì£ has trivial determinant, these inequalities are necessarily equalities:

|“(any eigenvalue of FrobE,(A,B) on Ì‚Ì£)| = 1.

If ∂ is (the image under “ of) an eigenvalue of FrobE,(A,B) on Ì, then ∂ä∂/ùE is (the image

under “ of) an eigenvalue of FrobE,(A,B) on Ì‚Ì£ ¶ Ì‚äÌ(1). Thus we get
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|∂ä∂/ùE| = 1, 

which is to say,

|“(any eigenvalue of FrobE,(A,B) on Ì)| = (ùE)1/2.

This concludes the proof of the purity theorem, modulo the monodromy theorem.

LLLLeeeeccccttttuuuurrrreeee    IIIIVVVV

In this lecture, we will prove the monodromy theorem. Let us recall its statement.

MMMMoooonnnnooooddddrrrroooommmmyyyy    TTTThhhheeeeoooorrrreeeemmmm The lisse sheaf Ì = ÌÏ,¥,f on !2/k, corresponding to the representation (®,

V) of π1
arith(!2/k), is geometrically irreducible. Its Ggeom is constrained as follows.

1) If char(k) is odd, then Ggeom is either a finite irreducible subroup of GL(V), or Ggeom

contains SL(V) as a subgroup of finite index.

2) If char(k) = 2 and Ï is not geometrically self-dual, then just as in case 1) Ggeom is either a

finite irreducible subroup of GL(V), or Ggeom contains SL(V) as a subgroup of finite index.

3) If char(k) = 2 and Ï is geometrically self-dual by an orthogonal autoduality, then Ì is

geometrically self-dual by a symplectic autoduality, and Ggeom is either a finite irreducible

subgroup of Sp(V), or it is the full group Sp(V).

4) If char(k) = 2 and Ï is geometrically self-dual by a symplectic autoduality, then Ì is

geometrically self-dual by a orthogonal autoduality, and Ggeom is either a finite irreducible

subgroup of O(V), or it is either SO(V) or O(V).

PPPPrrrrooooooooffff    ooooffff    tttthhhheeee    mmmmoooonnnnooooddddrrrroooommmmyyyy    tttthhhheeeeoooorrrreeeemmmm

SSSStttteeeepppp    1111::::    GGGGeeeeoooommmmeeeettttrrrriiiicccc    iiiirrrrrrrreeeedddduuuucccciiiibbbbiiiilllliiiittttyyyy    ooooffff    ÌÌÌÌ

In order to show that Ì = ÌÏ,¥,f on !2/k is geometrically irreducible, it suffices to exhibit

some smooth, geometrically connected curve C/k and a k-map ƒ : C ¨ !2 such that the pullback

ƒ*Ì on C is geometrically irreducible. We will take for C the straight line "b = 0" in (a, b) space.

The pullback of Ì to this line is, by proper base change, the higher direct image

Ì|C = R1(pr2)~((pr1
*Ï)‚Ò¥(f(T) + aT))

=R1(pr2)~((pr1
*(Ï‚Ò¥(f(T)))‚Ò¥(aT)).

Here pr1 and pr2 are the two projections of the !2/k with coordinates (T, a) onto the two factors. 

In more down to earth terms, Ì|C is simply the "naive Fourier transform"

NFT¥((Ï‚Ò¥(f(T))) in the notation of [Ka-GKM, 8.2]. The input sheaf Ï‚Ò¥(f(T)) has all its

‘-breaks equal to N > 1. As noted in [Ka-ESDE, 7.8, "Class(1)"] as a consequence of Laumon's

general theory of Fourier Transform, NFT¥ induces an autoequivalence of the abelian category of

those lisse sheaves on !1/k all of whose ‘-breaks are > 1. Its quasi-inverse is NFTä¥(1). In

particular, NFT¥ preserves geometrically irreducibility of objects in this category. Thus Ì|C is
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geometrically irreducible, and hence Ì itself is geometrically irreducible.

SSSStttteeeepppp    2222::::    ddddeeeetttt((((ÌÌÌÌ))))    iiiissss    ggggeeeeoooommmmeeeettttrrrriiiiccccaaaallllllllyyyy    ooooffff    ffffiiiinnnniiiitttteeee    oooorrrrddddeeeerrrr

Indeed, any ä$…
≠valued character ç of π1(!2‚käk) has finite order. To see this, note first

that ç takes values in some Ø¬
≠, for Ø¬ the ring of integers in some finite extension of $…. The

quotient group Ø¬
≠/(1 + 2…Ø¬) is finite, say of order M. Then çM takes values in 1 + 2…Ø¬, a

multiplicative group that is isomorphic, by the log, to the additive group 2…Ø¬. Thus (1/2…)log(çM)

lies in 

Hom(π1(!2‚käk), Ø¬) = H1(!2‚käk, Ø¬) = 0.

Therefore log(çM) = 0, and hence çM is trivial.

SSSStttteeeepppp    3333::::    tttthhhheeee    mmmmoooommmmeeeennnntttt    ccccrrrriiiitttteeeerrrriiiioooonnnn    ((((""""LLLLaaaarrrrsssseeeennnn''''ssss    AAAAlllltttteeeerrrrnnnnaaaattttiiiivvvveeee""""))))

We have seen so far that the representation (®, V) of π1
arith(!2/k), is geometrically

irreducible, and that det(®) is geometrically of finite order. Therefore the group Ggeom is an

irreducible, and hence reductive, Zariski closed subgroup of GL(V), whose determinant is of finite

order. 

Suppose we are in characteristic 2, and Ï is geometrically self-dual. Because Ï is

geometrically irreducible, the autoduality is either orthogonal or symplectic. In characteristic 2, the

sheaf Ò¥(anything) is itself orthogonally self-dual. So by standard properties of cup-product, Ì

will be geometrically self-dual (toward ä$…(-1), but geometrically this is isomorphic to ä$…), with

an autoduality of the opposite sign, i.e., if Ï is orthogonal, Ì will be symplectic, and if Ï is

symplectic, then Ì will be orthogonal. 

We now apply the following moment criterion, originally due to Michael Larsen, cf. [Lar-

Normal] and [Lar-Char]. See [Ka-MCG] for some "G finite" cases of the theorem.

MMMMoooommmmeeeennnntttt    CCCCrrrriiiitttteeeerrrriiiioooonnnn    ((((""""LLLLaaaarrrrsssseeeennnn''''ssss    AAAAlllltttteeeerrrrnnnnaaaattttiiiivvvveeee"""")))) Let V be a finite-dimensional ä$…-vector space with

dim(V) ≥ 2, and G fi GL(V) a Zariski closed irreducible subgroup of GL(V) with det(G) finite.

Define the "fourth absolute moment" M4(G, V) to be the dimension of

(V‚V‚V£‚V£)G.

1) If M4(G, V) = 2, then either G fl SL(V) with finite index, or G is finite. 

2) Suppose <,> is a nondegenerate symmetric bilinear form on V, and suppose G lies in the

orthogonal group O(V) := Aut(V, <,>). If M4(G, V) = 3, then either G = O(V), or G = SO(V), or

G is finite. 

3) Suppose <,> is a nondegenerate alternating bilinear form on V, and suppose G lies in the

symplectic group Sp(V) := Aut(V, <,>). Suppose also dim(V) > 2. If M4(G, V) = 3, then either G

= Sp(V), or G is finite.

pppprrrrooooooooffff We may view V‚V‚V£‚V£ as being either End(End(V)) or as being End(V‚2). We can

decompose End(V) as a sum of irreducible G-modules with multiplicities ( because G, having a
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faithful irreducible representation, is reductive). Say

End(V) = ‡ niIrredi.

Then

M4(G, V) = ‡ (ni)
2.

Or if we decompose

V‚V = ‡ miIrredi

as a sum of irreducible G-modules with multiplicities, then

M4(G, V) = ‡ (mi)
2.

Suppose first that M4(G, V) = 2. Then looking at End(V), we see that End(V) must be the

sum of two distinct irreducible G-modules. But End(V) has the a priori GL(V)-decomposition

End(V) =  ú · End0(V) = ú · Lie(SL(V)).

Therefore both of these pieces must already be G-irreducible. Thus Lie(SL(V)) is G-irreducible.

But Lie(G¤SL(V)) is a G-stable submodule of Lie(SLV)). So either Lie(G¤SL(V)) = 0, or

Lie(G¤SL(V)) = Lie(SL(V)). In the first case, G¤SL(V) is finite. In the second case, G¤SL(V) =

SL(V), so SL(V) fi G. Since det(G) is finite, G/G¤SL(V) is finite. So in the first case, G is finite,

and in the second case G/SL(V) is finite.

Suppose now that G fi O(V) and that M4(G, V) = 3. In this case, we decompose V‚V

into G-irreducibles. Since M4(G, V) = 3, V‚V must be the sum of three distinct G-irreducibles.

We have the GL(V)-decomposition

V‚V = Ú2(V) · Sym2(V).

We have the further O(V)-decomposition

Sym2(V) = ú · SphHarm2(V).

And we have

Ú2(V) = Lie(SO(V)).

So all in all we have an a priori O(V)-decomposition

V‚V = Lie(SO(V)) · ú · SphHarm2(V).

Therefore all three of these pieces must be G-irreducible. In particular, Lie(SO(V)) is G-

irreducible. But Lie(G¤SO(V)) is a G-submodule, so Lie(G¤SO(V)) is either 0 or Lie(SO(V)),

and we conclude as before.

If G fi Sp(V) and M4(G, V) = 3, we decompose V‚V into G-irreducibles. Since M4(G,

V) = 3, V‚V must be the sum of three distinct G-irreducibles. This time we have

Ú2(V) = ú · (Ú2(V)/ú),

and

Sym2(V) = Lie(Sp(V)).

So now Lie(Sp(V)) must be G-irreducible, and we conclude as in the previous case. QED
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SSSStttteeeepppp    4444    CCCCoooohhhhoooommmmoooollllooooggggiiiiccccaaaallll    vvvveeeerrrrssssiiiioooonnnn    ooooffff    tttthhhheeee    mmmmoooommmmeeeennnntttt    ccccrrrriiiitttteeeerrrriiiioooonnnn

For G a reductive subgroup of GL(V), and W any representation of GL(V), the natural

map

WG ¨ WG

from G-invariants to G-coinvariants is an isomorphism (just write W as a sum of G-

irreducibles). So we can think of M4(G, V) as being the dimension of the space of G-coinvariants:

M4(G, V) = dimension of (V‚V‚V£‚V£)G.

Thus for (®, V) corresponding to Ì, M4(G, V) is the dimension of 

H4
c(!2‚käk, Ì‚Ì‚Ì£‚Ì£)(2)

= H4
c(!2‚käk, Ì‚Ì‚Ì£(-1)‚Ì£(-1))(4)

= H4
c(!2‚käk, Ì‚Ì‚äÌ‚äÌ)(4).

So using the moment criterion, we see that the monodromy theorem results from the following

CCCCoooohhhhoooommmmoooollllooooggggiiiiccccaaaallll    MMMMoooommmmeeeennnntttt    CCCCaaaallllccccuuuullllaaaattttiiiioooonnnn 

1) Suppose that char(k) is odd. Then

dim H4
c(!2‚käk, Ì‚Ì‚äÌ‚äÌ) = 2.

2) Suppose that char(k) = 2, and that Ï is not geometrically self-dual. Then

dim H4
c(!2‚käk, Ì‚Ì‚äÌ‚äÌ) = 2.

3) Suppose that char(k) = 2, and that Ï is geometrically self-dual. Then

dim H4
c(!2‚käk, Ì‚Ì‚äÌ‚äÌ) = 3.

IIIInnnntttteeeerrrrlllluuuuddddeeee::::    TTTThhhheeee    iiiiddddeeeeaaaa    bbbbeeeehhhhiiiinnnndddd    tttthhhheeee    ccccaaaallllccccuuuullllaaaattttiiiioooonnnn

Suppose we already knew all the results of Weil II. Then Ì is “-pure of weight one,

Ì‚Ì‚äÌ‚äÌ is “-pure of weight 4, 

H4
c(!2‚käk, Ì‚Ì‚äÌ‚äÌ) is “-pure of weight 8,

and for i ≤ 3

Hi
c(!2‚käk, Ì‚Ì‚äÌ‚äÌ) is “-mixed of weight ≤ 4 + i.

By the Lefschetz Trace Formula, we have, for every finite extension E/k, 

‡(a,b) in E2 |“(Trace(FrobE,(a,b)|Ì))|4 = 

‡i (-1)i“(Trace(FE | Hi
c(!2‚käk, Ì‚Ì‚äÌ‚äÌ))).

Using Weil II, the second sum is

= “(Trace(FE | H4
c(!2‚käk, Ì‚Ì‚äÌ‚äÌ))) + O((ùE)7/2).

Since the H4
c is “-pure of weight 8, we could recover the dimension of  H4

c(!2‚käk,

Ì‚Ì‚äÌ‚äÌ) as the limsup over larger and larger finite extensions E/k of the sums
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(1/ùE)4‡(a,b) in E2 |“(Trace(FrobE,(a,b)|Ì))|4.

We now try to evaluate these sums. To fix ideas, suppose first that the characteristic is odd.

For each (a, b) in E2, we have

Trace(FrobE,(a,b)|Ì) = - ‡x in E Trace(FE,x|Ï)¥E(f(x)+ax+bx2),

where we have written ¥E for the additive character of E given by

¥E := ¥«TraceE/k.

Then

‡(a,b) in E2 |“(Trace(FrobE,(a,b)|Ì))|4

is the image under “ of

‡(a,b) in E2 ‡x,y,z,w in E of

Trace(FE,x|Ï)Trace(FE,y|Ï)Trace(FE,z|äÏ)Trace(FE,w|äÏ)≠

¥E(f(x)+ax+bx2 + f(y)+ay+by2 - f(z)-az-bz2 - f(w)-aw-bw2).

If we exchange the order of summation, this is

‡x,y,z,w in E Trace(FE,x|Ï)Trace(FE,y|Ï)Trace(FE,z|äÏ)Trace(FE,w|äÏ)

≠¥E(f(x) + f(y) - f(z) - f(w))

≠‡(a,b) in E2 ¥E(a(x + y - z - w))¥E(b(x2 + y2 - z2 - w2)).

Now the innermost sum vanishes unless the point (x, y, z, w) satisfies the two equations

x + y = z + w,

x2 + y2 = z2 + w2.

[If both equations hold, the inner sum is (ùE)2.] These equations say the first two Newton

symmetric functions of (x, y) and of (z, w) coincide. Since we are over a field E in which 2 is

invertible, the agreement of the first two Newton symmetric functions implies the agreement of the

first two elementary symmetric functions. Concretely, xy = (1/2)[(x + y)2 - (x2 + y2)].

So the inner sum vanishes unless either

x = z and y=w, or

x = w and y = z.

The only points satisfying both these conditions are the points x=y=z=w. At any point satisfying

either condition, 

¥E(f(x) + f(y) - f(z) - f(w)) = 1.

So our sum is equal to (ùE)2 times

‡x,y in E Trace(FE,x|Ï)Trace(FE,y|Ï)Trace(FE,x|äÏ)Trace(FE,y|äÏ)

+‡x,y in E Trace(FE,x|Ï)Trace(FE,y|Ï)Trace(FE,y|äÏ)Trace(FE,x|äÏ)

-‡x in E Trace(FE,x|Ï)Trace(FE,x|Ï)Trace(FE,x|äÏ)Trace(FE,x|äÏ).

Each of the first two sums is equal to
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(‡x in E Trace(FE,x|Ï)Trace(FE,x|äÏ))2

= (‡x in E |Trace(FE,x|Ï)|2)2

and the third sum is equal to

-‡x in E Trace(FE,x|Ï‚äÏ‚Ï‚äÏ).

Recall that Ï is “-pure of weight zero and geometrically irreducible. The third sum is

trivially bounded by (ùE)≠(rank(Ï))4. If we knew Weil II, the quantity being squared in the first

two sums would be 

‡x in E |Trace(FE,x|Ï)|2 = (ùE) + O((ùE)1/2).

So our overall sum would be

2(ùE)4 + O((ùE)7/2),

and we would conclude that M4(G, V) = 2.

What happens if we are in characteristic two? The only difference is that, in the above

calculation of the sum, the innermost sum would be

‡(a,b) in E2 ¥E(a(x + y - z - w))¥E(b(x3 + y3 - z3 - w3)),

which vanishes unless

x + y = z + w,

x3 + y3 = z3 + w3.

Because we are in characteristic two, there is a "new" way these equations can be satisfied, namely

we might have 

x + y = z + w = 0. 

If x+y and z+w are invertible, then these equations give

(x3 + y3)/(x + y) = (z3 + w3)/(z + w),

i.e.,

x2 - xy + y2 = z2 - zw + w2,

i.e.,

(x + y)2 - xy = (z + w)2 - zw.

Since we already know that x + y = z + w, we find that

xy = zw.

So once again we have the two previous families of solutions

x = z and y=w, or

x = w and y = z.

The calculation now proceeds as before, except that now we have an additional term coming from

the "new" family of solutions 

x + y = z + w = 0. 

As before, we can ignore cases where any two of the families intersect. The additional main term

we get is (ùE)2 times
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‡x,z in E Trace(FE,x|Ï)Trace(FE,x|Ï)Trace(FE,z|äÏ)Trace(FE,z|äÏ)

= (‡x in E Trace(FE,x|Ï)Trace(FE,x|Ï))2

= (‡x in E Trace(FE,x|Ï‚Ï))2.

If Ï is geometrically self dual, (and if we do a preliminary ådeg twist so that Ï ¶ äÏ

arithmetically, possible by our previous discussion), then this term is once again equal to

(‡x in E |Trace(FE,x|Ï|2)2, 

the overall sum is

3(ùE)4 + O((ùE)7/2),

and we conclude that M4(G, V) = 3.

If Ï is not geometrically self dual, then Weil II gives

‡x in E Trace(FE,x|Ï‚Ï) = O((ùE)1/2),

the overall sum is

2(ùE)4 + O((ùE)7/2),

and we conclude that M4(G, V) = 2.

SSSStttteeeepppp    5555    TTTThhhheeee    ccccoooohhhhoooommmmoooollllooooggggiiiiccccaaaallll    mmmmoooommmmeeeennnntttt    ccccaaaallllccccuuuullllaaaattttiiiioooonnnn

Having explained how we knew what the fourth moment should be, we now give the

cohomological translation of our calculation. In our heuristic calculation above, we used Weil II to

be able to "detect" the group

H4
c(!2‚käk, Ì‚Ì‚äÌ‚äÌ)

through the character sum which which is the alternating sum of traces of Frobenius on all the

Hi
c(!2‚käk, Ì‚Ì‚äÌ‚äÌ). In the calculation we are about to perform, we will "find" the H4

c

sitting alone in various spectral sequences.

The other main tool used in the heuristic calculation was the orthogonality relation for

characters

‡a,b in E ¥E(a¬ + bµ) = (ùE)2 if (¬, µ) = 0,

= 0 if not.

The cohomological translation of this orthogonality relation is that on the !2/k with coordinates a,

b, we have

Hi
c(!2‚käk, Ò¥(¬a + µb)) = 0 for all i, if (¬, µ) ± (0, 0),

while on any X/k, Ò¥(f) is trivial is f is identically zero.

We wish to compute H4
c(!2‚käk, Ì‚Ì‚äÌ‚äÌ). We first treat the case of odd

characteristic. The sheaves Ì and äÌ on !2/k are

Ì := R1(pr2,3)~((pr1
*Ï)‚Ò¥(f(T)+ aT + bT2)),
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äÌ := R1(pr2,3)~((pr1
*äÏ)‚Òä¥(f(T)+ aT + bT2)),

and, in both cases, all the other Ri(pr2,3)~ vanish. Let us denote by

 := ((pr1
*Ï)‚Ò¥(f(T)+ aT + bT2)) on !3,

ä := ((pr1
*äÏ)‚Òä¥(f(T)+ aT + bT2)) on !3.

Consider the four-fold fibre product of

pr2,3 : !3 ¨ !2

with itself over !2, with the four sources endowed respectively with , , ä, and ä. The total

space is !6, with coordinates x, y, z, w, a, b, the projection to !2 is pr5,6. On this total space,

denote by Ô the relative tensor product of the sheaves , , ä, and ä on the four sources. By the

relative Kunneth formula with compact supports, the sheaf Ì‚Ì‚äÌ‚äÌ on !2/k is given by

Ì‚Ì‚äÌ‚äÌ = R4(pr5,6)~Ô,

and all other Ri(pr5,6)~Ô vanish. So the Leray spectral sequence for Ô and the map

pr5,6 : !6/k ¨ !2/k

degenerates, and gives

Hi
c(!2‚käk, Ì‚Ì‚äÌ‚äÌ) = Hi+4

c(!6‚käk, Ô).

In particular, we have

H4
c(!2‚käk, Ì‚Ì‚äÌ‚äÌ) = H8

c(!6‚käk, Ô).

This first step corresponds to the "opening" of the sum at the beginning of the character sum

calculation.

The step which corresponds to interchanging the order of summation is to compute

H8
c(!2‚käk, Ô) by using the Leray spectral sequence for Ô and the map

pr1,2,3,4 : !6/k ¨ !4/k.

At this point, we write out what Ô is on the total space !6/k. It is of the form Å‚ı, with

Å:=pr1
*(Ï‚Ò¥(f))‚pr2

*(Ï‚Ò¥(f))‚pr3
*(äÏ‚Òä¥(f))‚pr4

*(äÏ‚Òä¥(f))

and

ı:= Ò¥(a(x + y - z - w)‚Ò¥(b(x2 + y2 - z2 - w2).

The sheaf Å is a pullback from the base space !4/k. So we have

Ri(pr1,2,3,4)~(Å‚ı) = Å‚Ri(pr1,2,3,4)~ı.

Let us denote by

Z fi !4/k

the closed subscheme defined by the two equations

x + y - z - w = 0,

x2 + y2 - z2 - w2 = 0.
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Over the open set !4 - Z, all the sheaves Ri(pr1,2,3,4)~ı vanish, as we see looking fibre by fibre

and using the cohomological version of the orthogonality relation for characters. Over the closed

set Z, the sheaf ı is Ò¥(0) ¶ ä$…, and the space over !2 is Z≠!2. So over Z we have

R4(pr1,2,3,4)~ı | Z = ä$…(-2),

all other Ri(pr1,2,3,4)~ı | Z vanish.

So the sheaves Ri(pr1,2,3,4)~ı on !4/k are given by

R4(pr1,2,3,4)~ı = ä$…(-2)Z (:= ä$…(-2) on Z, extended by 0),

all other Ri(pr1,2,3,4)~ı vanish.

Thus for the sheaf Ô = Å‚ı we have

R4(pr1,2,3,4)~Ô = Å(-2)Z, extended by zero,

Ri(pr1,2,3,4)~Ô = 0 for i ± 4.

So the Leray spectral sequence for Ô and the map

pr1,2,3,4 : !6/k ¨ !4/k

degenerates, and gives, for every i,

Hi
c(Z‚käk, Å)(-2) = H4+i

c(!6‚käk, Ô).

In particular, 

H8
c(!6‚käk, Ô) = H4

c(Z‚käk, Å)(-2).

The scheme Z is the union of two irreducible components

Z1 : x = w and y = z,

Z2: x = z and y = w,

each of which is an !2/k, and whose intersection Z1¤Z2 is of dimension < 2. So by excision we

have

H4
c(Z‚käk, Å) = H4

c(Z1‚käk, Å) · H4
c(Z2‚käk, Å).

We can use the coordinates x, y to identify each Zi with !2/k. Let us write Ïx for pr1
*Ï, Ïy for

pr2
*Ï.

On Z1, the sheaf Å is 

Ïx‚Ïy‚äÏx‚äÏy‚Ò¥(f(x) + f(y) - f(x) - f(y)) 

¶ Ïx‚Ïy‚äÏx‚äÏy.

Thus

H4
c(Z1‚käk, Å) = H4

c(!2‚käk, Ïx‚Ïy‚äÏx‚äÏy).

By the Kunneth formula, we have



L-functions and monodromy: four lectures on Weil II-35

H4
c(!2‚käk, Ïx‚Ïy‚äÏx‚äÏy)

¶ H2
c(!1‚käk, Ï‚äÏ)‚H2

c(!1‚käk, Ï‚äÏ).

Each tensoree

H2
c(!1‚käk, Ï‚äÏ) = H2

c(!1‚käk, Ï‚Ï£) = H2
c(!1‚käk, End(Ï))

is one-dimensional, precisely because Ï on !1/k is geometrically irreducible (Schur's Lemma~).

Similarly, H4
c(Z2‚käk, Å) is one-dimensional. So all in all H4

c(Z‚käk, Å) has dimension 2, and

tracing back we find that 

H4
c(!2‚käk, Ì‚Ì‚äÌ‚äÌ) has dimension 2.

If we are in characteristic 2, the calculation is very much the same. We end up with the

same Å, but now ı is

ı:= Ò¥(a(x + y - z - w)‚Ò¥(b(x3 + y3 - z3 - w3),

and Z is defined by the equations

x + y = z + w,

x3 + y3 = z3 + w3.

Now Z is the union of three irreducible components, the Z1 and Z2 we had in the previous case,

and one "new" component

Z0 : x=y, z=w.

Just as above, excision gives

H4
c(Z‚käk, Å) = H4

c(Z0‚käk, Å) · H4
c(Z1‚käk, Å) · H4

c(Z2‚käk, Å).

And exactly as above, both the terms H4
c(Zi‚käk, Å) for i = 1, 2 are one-dimensional. On Z0,

which is !2/k with coordinates x, z, the sheaf Å is

Ïx‚Ïx‚äÏz‚äÏz.

By Kunneth we have

H4
c(!2‚käk, Ïx‚Ïx‚äÏz‚äÏz)

¶ H2
c(!1‚käk, Ï‚Ï)‚H2

c(!1‚käk, äÏ‚äÏ)

= H2
c(!1‚käk, Ï‚Ï)‚H2

c(!1‚käk, Ï£‚Ï£)

Because Ï is geometrically irreducible, Ï‚Ï has nonzero π1
geom-invariants (or equivalently

coinvariants) if and only if Ï is geometrically self-dual, in which case both H2
c(!1‚käk, Ï‚Ï)

and H2
c(!1‚käk, Ï£‚Ï£) are one-dimensional. If Ï is not geometrically self dual, then

H2
c(!1‚käk, Ï‚Ï) vanishes. So in characteristic 2 we find the asserted dimension for

H4
c(!2‚käk, Ì‚Ì‚äÌ‚äÌ),

namely 2 if Ï is not geometrically self-dual, and 3 if Ï is geometrically self dual. QED for the

cohomological moment calculation.
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AAAApppppppplllliiiiccccaaaattttiiiioooonnnnssss    ooooffff    tttthhhheeee    ttttaaaarrrrggggeeeetttt    tttthhhheeeeoooorrrreeeemmmm

To summarize so far: we have completed the proof of the target theorem and its corollary.

Let us recall their statements.

TTTTaaaarrrrggggeeeetttt    TTTThhhheeeeoooorrrreeeemmmm    ((((DDDDeeeelllliiiiggggnnnneeee)))) Let U/k be a smooth, geometrically connected curve over a finite field, …

a prime invertible in k, and Ï a lisse ä$…-sheaf on U which is “-pure of weight w. Then

H1
c(U‚käk, Ï) is “-mixed of weight ≤ w + 1.

As noted above, we already know that

H0
c(U‚käk, Ï) is “-pure of weight w, and vanishes if U is affine,

H2
c(U‚käk, Ï) is “-pure of weight w + 2.

CCCCoooorrrroooollllllllaaaarrrryyyy [De-Weil II, 3.2.3] 

1) The ordinary cohomology group H1(Uºkäk, Ï) is “-mixed of weight ≥ w + 1.

2) If the "forget supports" map is an isomorphism

H1
c(Uºkäk, Ï) ¶ H1(Uºkäk, Ï),

then H1
c(Uºkäk, Ï) is “-pure of weight w+1.

3) For C/k the complete nonsingular model of U/k, for 

j : U ¨ C

the inclusion, and for every integer 0 ≤ i ≤ 2,

Hi(C‚käk, j*Ï) is “-pure of weight w + i.

Although the target theorem does not by itself imply the main theorem 3.3.1 of Weil II, the

target theorem alone has many striking applications.

PPPPrrrrooooooooffff    ooooffff    WWWWeeeeiiiillll    IIII    ((((uuuussssiiiinnnngggg    aaaa    bbbbiiiitttt    ooooffff    LLLLeeeeffffsssscccchhhheeeettttzzzz    ppppeeeennnncccciiiillll    tttthhhheeeeoooorrrryyyy))))

TTTThhhheeeeoooorrrreeeemmmm    [[[[DDDDeeee----WWWWeeeeiiiillll    IIII,,,,    1111....7777]]]] Let X/k be projective smooth and geometrically connected over a finite

field k, … a prime number invertible in k. For any “, and any integer i, Hi(X‚käk, ä$…) is “-pure of

weight i.

pppprrrrooooooooffff We proceed by induction on n := dim(X). The case n = 0 is trivial, and the case n = 1 is a

special case of part 3) of the above Corollary (take Ï the constant sheaf).

Fix an auxiliary integer d ≥ 2. After a finite extension of the ground field, we can find a

Lefschetz pencil ¬F + µG on X of hypersurface sections of the chosen degree d. The axis » of the

pencil is the smooth codimension two subvariety of X where both F and G vanish. 

After we pass to the blowup X' of X along », we get a projective morphism

X' 

         πÑ
@1
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of relative dimension n-1, whose fibre over (¬, µ) is the intersection of X with the hypersurface of

equation ¬F + µG = 0. The cohomology of X injects into that of X',  cf. [SGA7, XVII, 4.2]. So it

suffices to prove the purity of the groups Hi(X'‚käk, ä$…).

There is a maximal dense open set @1 - S of @1 over which the morphism π is (projective

and) smooth. Let us denote by

j: @1 - S ¨ @1

the inclusion. Extending scalars, we may assume that S consists of k-rational points. By induction,

the theorem already holds for the fibres of π over the open set @1 - S. For each integer i, form the

sheaf 

Ïi := Riπ*ä$…

on @1. Then j*Ïi is lisse on @1 - S, and by induction (and proper base change), we know that

 j*Ïi is “-pure of weight i on @1 - S. 

Suppose first that n := dim(X) is odd. Then [SGA7, XVIII, 6.3.1] for every i, the

adjunction map is an isomorphism

Ïi ¶ j*j*Ïi.

If n := dim(X) is even, then eeeeiiiitttthhhheeeerrrr we have 

Ïi ¶ j*j*Ïi for every i,

cf. [SGA7, XVIII, 6.3.6.3.2], oooorrrr we have

Ïi ¶ j*j*Ïi for every i ± n,

and a short exact sequence

0 ¨ ·s in S ä$…(-n/2)s ¨ Ïn ¨ j*j*Ïn ¨ 0,

cf [SGA7, XVIII, 6.3.2 and 5.3.4] and [SGA7, XV, 3.4].

Now consider the Leray spectral sequence for π:

E2
a,b = Ha(@1‚käk, Ïb) à Ha+b(X'‚käk, ä$…).

It suffices to show that E2
a,b is “-pure of weight a+b. 

For b ± n, 

E2
a,b = Ha(@1‚käk, Ïb) = Ha(@1‚käk, j*j*Ïb)

 is “-pure of weight a+b, because j*Ïb is “-pure of weight b. For b = n, either Ïn ¶ j*j*Ïn and

this same argument applies, or we have a short exact sequence

0 ¨ ·s in S ä$…(-n/2)s ¨ Ïn ¨ j*j*Ïn ¨ 0.

Taking the long exact cohomology sequence, we get

0 ¨ ·s in S ä$…(-n/2) ¨ H0(@1‚käk, Ïn) ¨ H0(@1‚käk, j*j*Ïn)¨ 0,

and isomorphisms



L-functions and monodromy: four lectures on Weil II-38

Ha(@1‚käk, Ïb) ¶ Ha(@1‚käk, j*j*Ïb) for a ≥ 1.

So in all cases, E2
a,b is “-pure of weight a+b, as required. QED

GGGGeeeeoooommmmeeeettttrrrriiiicccc    sssseeeemmmmiiiissssiiiimmmmpppplllliiiicccciiiittttyyyy    ooooffff    lllliiiisssssssseeee    ppppuuuurrrreeee    sssshhhheeeeaaaavvvveeeessss

TTTThhhheeeeoooorrrreeeemmmm    [[[[DDDDeeee----WWWWeeeeiiiillll    IIIIIIII,,,,    3333....4444....1111    ((((iiiiiiiiiiii))))]]]] Let X/k be smooth and geometrically connected over a finite field

k, … a prime number invertible in k, and Ï a lisse, “-pure ä$…-sheaf on X. Then Ï as a

representation of π1
geom(X/k) is semisimple (:=completely reducible), i.e., the algebraic group

Ggeom is reductive.

pppprrrrooooooooffff By pulling back Ï to a suitable spacefilling curve, we do not change its Ggeom, cf.[Ka-

Spacefill, Corollary 7]. So it suffices to treat the case when X/k is a curve C/k. We proceed by

induction on the length of a Jordan Holder series for Ï as a representation of π1
arith(C/k). If Ï is

π1
arith(C/k)-irreducible, then it is π1

geom(C/k)-semisimple, just because π1
geom(C/k) is a

normal subgroup of π1
arith(C/k). If Ï is not π1

arith(C/k)-irreducible, let Å be a nonzero

π1
arith(C/k)-irreducible subsheaf, and ı the quotient Ï/Å. By induction, both Å and ı are

π1
geom(C/k)-semisimple, so it suffices to show that as π1

geom(C/k)-modules we have Ï ¶ Å ·

ı. So we want to show the existence of a π1
geom(C/k)-splitting of the short exact sequence

0 ¨ Å ¨ Ï ¨ ı ¨ 0

Tensor this sequence with ı£:

0 ¨ Å‚ı£ ¨ Ï‚ı£ ¨ ı‚ı£ ¨ 0.

The identity endomorphism of ı is an element, say ≈, in H0(C‚käk, ı‚ı£) which is fixed

by Fk. Finding a π1
geom(C/k)-splitting means finding an element in H0(C‚käk, Ï‚ı£) which

maps to ≈. Such an element exists if and only if ≈ dies under the coboundary map

H0(C‚käk, ı‚ı£) ¨ H1(C‚käk, Å‚ı£).

Because this map is Gal(äk/k)-equivariant, the image of ≈ is an element of H1(C‚käk, Å‚ı£)

which is fixed by Fk. But Å‚ı£ is “-pure of weight zero, so by part 1) of the Corollary to the

target theorem, H1(C‚käk, Å‚ı£) is “-mixed of weight ≥ 1. In particular, 1 is not an eigenvalue

of Fk on H1(C‚käk, Å‚ı£). Therefore ≈ dies in H1(C‚käk, Å‚ı£), and hence ≈ is the image of

some element H0(C‚käk, Ï‚ı£). QED

TTTThhhheeee    HHHHaaaarrrrdddd    LLLLeeeeffffsssscccchhhheeeettttzzzz    TTTThhhheeeeoooorrrreeeemmmm    [[[[DDDDeeee----WWWWeeeeiiiillll    IIIIIIII,,,,    4444....1111....1111]]]]    Let X/k be projective, smooth, and connected

over an algebraically closed field K, of dimension n. Fix a prime number … invertible in k. Fix a

projective embedding X fi @, and denote by L in H2(X, ä$…)(-1) the cohomology class of a
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hyperplane. Then for every integer i with 1 ≤ i ≤ n, the iterated cup product maps

Li : Hn-i(X, ä$…) ¨ Hn+i(X, ä$…)(-i)

are isomorphisms.

sssskkkkeeeettttcccchhhh    ooooffff    pppprrrrooooooooffff By standard spreading out techniques, one reduces to the case when K is the

algebraic closure of a finite field k, and X begins life over k. Take a Lefshetz pencil on X. By the

previous result, the lisse sheaf j*Ïn-1 on @1 - S is π1
geom((@1 - S)/k)-semisimple. If we

already know Hard Lefschetz for all smooth fibres of the pencil, then Hard Lefschetz for X itself

results from the π1
geom((@1 - S)/k)-semisimplicity of j*Ïn-1, c.f. [De-Weil II, 4.1.1-4]. QED

SSSSeeeemmmmiiiissssiiiimmmmpppplllliiiicccciiiittttyyyy    ooooffff    GGGGggggeeeeoooommmm    ffffoooorrrr    aaaa    lllliiiisssssssseeee    ““““----ppppuuuurrrreeee    sssshhhheeeeaaaaffff

TTTThhhheeeeoooorrrreeeemmmm    ((((DDDDeeeelllliiiiggggnnnneeee,,,,    WWWWeeeeiiiillll    IIIIIIII,,,,    1111....3333....9999)))) Let X/k be smooth and geometrically connected over a finite

field k, … a prime number invertible in k, and Ï a lisse, “-pure ä$…-sheaf on X. Then the algebraic

group Ggeom is semisimple. More generally, for Ï any lisse ä$…-sheaf on X/k, if Ggeom is

reductive, then it is semisimple. 

pppprrrrooooooooffff By pulling back to a suitable spacefilling curve, it suffices to treat the case when X/k is a

curve C/k. Extending scalars and pulling back to a suitable finite etale covering of C, we replace

Ggeom by its identity component. So we may further assume that Ggeom is connected and

reductive. Then Ggeom is the "almost product" (the two factors have finite intersection) of its

derived group and its connected center:

Ggeom = (Ggeom)der\Z(Ggeom)0.

The derived group is semisimple, and the connected center is a torus. Because their intersection is

finite, say of order N, the map

g = gder\z ÿ zN

exhibits Z(Ggeom)0 as a quotient of G. So to show that Ggeom is semisimple, it suffices to show

that any homomorphism from Ggeom to ´m, say ç : Ggeom ¨ ´m, is of finite order. Think of ç

as a one-dimensional representation of Ggeom (or equivalently, of π1
geom(C/k)). Because Ggeom

is reductive, and the representation (®, V) of it corresponding to Ï is faithful, every irreducible

representation of Ggeom occurs in some tensor space V‚a‚(V£)‚b. Then ç corresponds to a

rank one lisse subsheaf Ò of some Ï‚a‚(Ï£)‚b on C‚käk. Since Ï‚a‚(Ï£)‚b on C‚käk

contains only finitely isomorphism classes of irreducibles, after extending scalars from k to some

finite extension E/k, we reduce to the case where each isotypical component of Ï‚a‚(Ï£)‚b as

π1
geom(C/k)-representation is a π1

arith(C/k)-subrepresentation of Ï‚a‚(Ï£)‚b. In particular,

the isotypical component nÒ of Ò is a π1
arith(C/k)-subrepresentation. Therefore Ò‚n = Ún(nÒ)
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extends to a character of π1
arith(C/k). So replacing ç by çn, we may assume that ç as character of

π1
geom(C/k) extends to a continuous character

ç : π1
arith(C/k) ¨ ä$…

≠.

Such a character lands in some Ø¬
≠. Replacing ç by a further power of itself, we may further

assume that ç takes values in the multiplicative subgroup 1+2…Ø…, which maps injectively to the

additive group of ä$… by the logarithm. Then log(ç) restricted to π1
geom(C/k) is an element of 

Hom(π1
geom(C/k), ä$…) := H1(C‚käk, ä$…)

which is invariant by π1
arith(C/k)-conjugation, i.e, it is a fixed point of the action of Fk on

H1(C‚käk, ä$…). But H1(C‚käk, ä$…) has weight ≥ 1. So 1 is not an eigenvalue of Fk on H1(C‚käk,

ä$…). Thus log(ç) and with it ç are trivial on π1
geom(C/k). Thus ç is trivial on Ggeom. So Ggeom

has no nontrivial quotient torus, hence is semisimple. QED

EEEEqqqquuuuiiiiddddiiiissssttttrrrriiiibbbbuuuuttttiiiioooonnnn::::    SSSSaaaattttoooo----TTTTaaaatttteeee    [[[[DDDDeeee----WWWWeeeeiiiillll    IIIIIIII,,,,    3333....5555....3333]]]]

Once we have the target theorem, and the semisimplicity of Ggeom, we get Deligne's

equidistribution theorem ("Sato-Tate conjecture in the function field case") over a curve, cf. [Ka-

GKM, Chapter 3].

RRRRaaaammmmaaaannnnuuuujjjjaaaannnn CCCCoooonnnnjjjjeeeeccccttttuuuurrrreeee    [[[[DDDDeeee----FFFFMMMMRRRR…………]]]]    aaaannnndddd    [[[[DDDDeeee----WWWWeeeeiiiillll    IIIIIIII,,,,    3333....7777....1111]]]]

Take an integer N ≥ 4. Denote by ˜ := ˜Æ1(N) the modular curve over #[1/N] which

represents the functor "elliptic curves plus a point of exact order N". In Deligne's working out

[De-FMR…] of Sato's idea that "Weil implies Ramanujan", the key technical assertion is this.

Consider the univeral family of elliptic curves carried by ˜:

‰

      fÑ
˜.

Take … any prime dividing N. Form the sheaf

Ï := R1f*ä$…

on ˜. It is a lisse sheaf on ˜ of rank 2, which is “-pure of weight one for any “ [Hasse's theorem

[H], fibre by fibre]. For every integer k ≥ 1, Symk(Ï) is then “-pure of weight k. Fix a prime p

which does not divide N. Denote by ä̃ ‚Ép the complete nonsingular model of ˜‚Ép. Denote by

j : ˜‚Ép ¨ ä̃ ‚Ép

the inclusion. The action of Frobenius on the cohomology group 

H1(ä̃ ‚Ép, j*Symk(Ï))

is related to the action of Tp on cusp forms of weight k+2 on Æ1(N) by an equality of characteristic

polyomials
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det(1 - XTp + X2pk+1<p>| Sk+2(Æ1(N))) 

= det(1 - XFÉp
 | H1(ä̃ ‚Ép, j*Symk(Ï)),

cf. [De, FMR…, Theorem 4]. By Part 3) of the corollary to the target theorem, 

H1(ä̃ ‚Ép, j*Symk(Ï))

is “-pure of weight k+1, for every “. This “-purity implies that the eigenvalues of Tp on

Sk+2(Æ1(N)) have their absolute values bounded by 2Sqrt(pk+1), which is the Ramanujan

conjecture.

WWWWhhhhaaaatttt    wwwweeee    ddddoooonnnn''''tttt    ggggeeeetttt    ffffrrrroooommmm    tttthhhheeee    ttttaaaarrrrggggeeeetttt    tttthhhheeeeoooorrrreeeemmmm    aaaalllloooonnnneeee

In our target theorem, we say nothing about the weights which actually occur in

H1
c(U‚käk, Ï), only that they are ≤ w + 1. In fact, the weights that occur all differ by integers

from w + 1, and the weight drops reflect the structure of the local monodromies at the missing

points. Moreover, if Ï is “-pure of the same weight w for aaaallllllll “'s, then the “-weight of any

eigenvalue å of Fk on H1
c(U‚käk, Ï) is independent of “. 

To prove these finer results requires Deligne's detailed analysis [De-Weil II, 1.8.4] of local

monodromy on curves, and of its interplay with weights. His further analysis of the variation of

local monodromy in ffffaaaammmmiiiilllliiiieeeessss of curves [De-Weil II, 1.6 through 1.8, especially 1.8.6-8] is the

essential ingredient in his beautiful deduction of the main theorem 3.3.1 of Weil II from the target

theorem. 

Another topic we have not discussed here is Deligne's theorem [De-Weil II, 1.5.1] that for

any lisse sheaf Ï on C/k whose trace function is “-real (i.e., all traces of all Frobenii land, via “, in

%), each of its Jordan-Holder constituents is “-pure of some weight. As Kiehl and Weissauer

point out in [KW, 9.2 and 9.3], one can use this result, together with Deligne's monodromy

analysis for individual curves over finite fields (i.e."just" [De-Weil II, 1.8.4]), to give an alternate

derivation of the main theorem 3.3.1 of Weil II from the target theorem.

AAAAppppppppeeeeddddiiiixxxx    ::::    ssssttttaaaatttteeeemmmmeeeennnntttt    ooooffff    tttthhhheeee    mmmmaaaaiiiinnnn    tttthhhheeeeoooorrrreeeemmmm    3333....3333....1111    ooooffff    WWWWeeeeiiiillll    IIIIIIII

Fix a prime number …, a real number w, and a collection È of embeddings “ of ä$… into ^.

Let Z be a separated scheme of finite type over #[1/…] which is normal and connected. A lisse ä$…-

sheaf Ï on Z, corresponding to a representation (®, V) of π1(Z), is said to be È-pure of weight w

if, for every finite field k and every point z in Z(k), every eigenvalue of ®(Frobk,z) has, via every “

in È, complex absolute value (ùk)w/2. [In the case when k is a finite field, È is a single “, and Z/k is

smooth and geometrically connected, this is equivalent to the earlier definition, in terms of points in

(Z/k)(E) for all finite extension fields E/k. The point is that given any finite extension field E/k, and

any point z in Z(E), there is an automorphism ß of E such that ß(z) lies in (Z/k)(E), (because

Aut(E) acts transitively on the set of inclusions of k into E).]

Let X be a separated scheme of finite type over #[1/…], and Ï a constructible ä$…-sheaf Ï
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on X. Then there exists a partition of Xred into a finite disjoint union of locally closed subschemes

Zi, each of which is normal and connected, such that Ï | Zi is a lisse ä$…-sheaf on Zi for each i. The

sheaf Ï on X is said to be punctually È-pure of weight w on X if, for some partition as above, the

restriction of Ï to each Zi is “-pure of weight w in the sense of the preceding paragraph, for every “

in È. 

A constructible ä$…-sheaf Ï on X is said to be È-mixed of weight ≤ w on X if it is a

successive extension of finitely many constructible ä$…-sheaves Ïi on X, with each Ïi punctually

È-pure of some weight wi ≤ w.

The main theorem of Weil II is the following.

TTTThhhheeeeoooorrrreeeemmmm    [[[[DDDDeeee----WWWWeeeeiiiillll    IIIIIIII,,,,    3333....3333....1111]]]] Let X and Y be separated #[1/…]-schemes of finite type, f : X ¨ Y a

morphism. Let Ï be a constructible ä$…-sheaf Ï on X which is È-mixed of weight ≤ w. Then for

every i, the constructible ä$…-sheaf Rif~Ï on Y is È-mixed of weight ≤ w + i.

RRRReeeeffffeeeerrrreeeennnncccceeeessss

[Ab] Abhyhankar, S., Coverings of algebraic curves, Amer. J. Math. 79, No. 4, 1957, 825-856.

[De-FMR…] Deligne, P., Formes modulaires et reprïesentations …-adiques, Exposïe 355, Sïeminaire

Bourbaki 1968/69, Springer Lecture Notes in Mathematics 179, 1969.

[De-Weil I] Deligne, P., La Conjecture de Weil I, Pub. Math. I.H.E.S. 48 (1974), 273-308.

[De-Weil II] Deligne, P., La conjecture de Weil II, Pub. Math. I.H.E.S. 52 (1981), 313-428.

[Gro-FL] Grothendieck, A., Formule de Lefschetz et rationalitïe des fonctions L, Seminaire Bourbaki

1964-65, Exposïe 279, reprinted in Dix Exposïes sur la cohomologie des schïemas, North-Holland,

1968.

[H] Hasse, H. Beweis des Analogons der Riemannschen Vermutung fur die Artinschen und F. K.

Schmidschen Kongruenz-zetafunktionen in gewissen elliptische Fallen, Ges. d. Wiss. Nachrichten,

Math-Phys. Klasse, 1933, Heft 3, 253-262.

[Ka-SE] Katz, N., Sommes Exponentielles, rïedigïe par G. Laumon, Asterisque 79, 1980.

[Ka-ESDE] Katz, N.,Exponential sums and differential equations, Annals of Math. Study

124, Princeton Univ. Press, 1990.

[Ka-GKM] Katz, N.,Gauss sums, Kloosterman sums, and monodromy groups, Annals of Math.

Study 116, Princeton Univ. Press, 1988.



L-functions and monodromy: four lectures on Weil II-43

[Ka-MCG] Katz, N., A note on Moments and Classical Groups, preprint, 2000.

[Ka-ODP] Katz, N., An overview of Deligne's proof of the Riemann Hypothesis for varieties over

finite fields, in A.M.S. Proc. Symp. Pure Math. XXVIII, 1976, 275-305.

[Ka-Spacefill] Katz, N., Spacefilling curves over finite fields, MRL 6 (1999), 613-624.

[Ka-Sar] Katz, N., and Sarnak, P., Random Matrices, Frobenius Eigenvalues, and Monodromy,

A.M.S. Colloquium Pub. 45, 1999.

[K-W] Kiehl, R., and Weissauer, R., Weil Conjectures, Perverse Sheaves and …-adic Fourier

Transform, preprint, 199?

[Lar-Char] Larsen, Michael, A characterization of classical groupss by invariant theory, preprint,

middle 1990's.

[Lar-Normal], Larsen, Michael, The normal distribution as a limit of generalized Sato-Tate

measures, preprint, early 1990's.

[Lau-TF] Laumon, G., Transformation de Fourier, constantes d'ïequations fonctionelles et conjecture de

Weil, Pub. Math. I.H.E.S. 65 (1987), 131-210.

[Ran] Rankin, R. A., Contributions to the theory of Ramanujan's function †(n) and similar

arithmetic functions II, Proc. Camb. Phil. Soc. 35 (1939).

[Ray] Raynaud, M., Caractïeristique d'Euler-Poincarïe d'un Faisceau et cohomologie des variïetïes

abïeliennes, Exposïe 286 in Sïeminaire Bourbaki 1964/65, W.A. Benjamin, New York, 1966.

[SGA] A. Grothendieck et al - Sïeminaire de Gïeomïetrie Algïebrique du Bois-Marie, SGA 1, SGA 4

Parts I, II, and III, SGA 4™, SGA 5, SGA 7 Parts I and II, Springer Lecture Notes in Math. 224,

269-270-305, 569, 589, 288-340, 1971 to 1977.


