
ESTIMATES FOR NONSINGULAR MIXED
CHARACTER SUMS

NICHOLAS M. KATZ

1. Introduction and statement of the main result

Let k be a finite field, p its characteristic, q its cardinality,

ψ : (k,+) → Z[ζp]
× ⊂ C×

a nontrivial additive character of k, and

χ : k× → Z[ζq−1]
× ⊂ C×

a nontrivial multiplicative character of k. We extend χ to k by defining
χ(0) = 0.

We wish to consider character sums over An, n ≥ 1, of the fol-
lowing form. We are given a polynomial f(x) := f(x1, . . . , xn) in
k[x1, . . . , Xn] of degree d ≥ 1, and we are given a second polynomial
g(X) := g(x1, . . . , xn) in k[x1, . . . , xn] of degree e ≥ 1. We are inter-
ested in understanding when the sum∑

x∈kn

ψ(f(x))χ(g(x))

has “square root” cancellation, i.e., when we can exhibit an explicit
constant C = C(n, d, e) and prove the estimate

|
∑
x∈kn

ψ(f(x))χ(g(x))| ≤ C(#k)n/2.

In this paper, we will exhibit one particularly nice class of pairs (f, g)
for which such estimates hold. The general problem of understanding
for which pairs (f, g) one has, or should have, such estimates is far from
being understood.

Let us first recall the notion of a “Deligne polynomial”. A polynomial
f = f(x1, ..., xn) in n ≥ 1 variables over k of degree d ≥ 1 is called a
Deligne polynomial if its degree d is prime to p and if its highest degree
term, fd, is a homogeneous form of degree d in n variables which is
nonzero, and whose vanishing, if n ≥ 2, defines a smooth hypersurface
in the projective space Pn−1.
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For f = f(x1, ..., xn) a Deligne polynomial of degree d, one has
Deligne’s fundamental estimate [De-Weil I, 8.4]

|
∑
x∈kn

ψ(f(x))| ≤ (d− 1)n(#k)n/2.

If g = g(x1, ..., xn) is a Deligne polynomial of degree e, such that g =
0 defines a smooth hypersurface in An, then one has the analogous
estimate [Ka-ENSMCS, Thm. 1]

|
∑
x∈kn

χ(g(x))| ≤ (e− 1)n(#k)n/2.

Our main result is that if f and g above are suitably transverse, then
we have a good estimate for the mixed sum. To state the estimate, we
define the constant

C(n, d, e) := (−1)n × coef. of Ln in
(1 + L)n+1

(1 + L)(1 + dL)(1 + eL)

= the value at (x, y) = (d, e) of
x(x− 1)n − y(y − 1)n

x− y

=
∑
a+b=n

(d− 1)a(e− 1)b +
∑

a+b=n−1

(d− 1)a(e− 1)b.

Recall also that, given an integer w, a number α ∈ C is said to be
pure of weight w (relative to q) if it and all its Aut(C/Q)-conjugates
have absolute value qw/2. Such an α is necessarily algebraic over Q. A
polynomial P (T ) ∈ 1 + TC[T ] is said to be pure of weight w if all its
reciprocal roots are pure of weight w; it is said to be mixed of weight
≤ w if each of its reciprocal roots α is pure of some integer weight
wα ≤ w.

Theorem 1.1. Suppose that f = f(x1, ..., xn) and g = g(x1, ..., xn) are
Deligne polynomials over k of degrees d and e respectively. If n ≥ 2,
suppose in addition that the smooth hypersurfaces in Pn−1 defined by
fd = 0 and by ge = 0 are transverse, i.e., their intersection is smooth
of codimension 2 in Pn−1. Then we have the following results.

(1) We have the estimate

|
∑
x∈kn

ψ(f(x))χ(g(x))| ≤ C(n, d, e)(#k)n/2.

The associated L function is a polynomial P (T ) (for n odd) or a
reciprocal polynomial 1/P (T )(for n even) of degree ≤ C(n, d, e),
which is mixed of weight ≤ n.

(2) If P (T ) has degree = C(n, d, e), then P (T ) is pure of weight n.



ESTIMATES FOR NONSINGULAR MIXED CHARACTER SUMS 3

(3) If g = 0 defines a nonsingular hypersurface in An, then P (T )
has degree = C(n, d, e), and is pure of weight n.

We are indebted to Steve Sperber for the observation that the ideas
which go into proving this theorem lead in a straightforward way to a
theorem dealing with the following more general situation. Instead of
(f, g), we give ourselves an integer r ≥ 1, and r+1 Deligne polynomials
(f, g1, ..., gr) in n variables over k, of degrees (d, e1, ..., er). If n ≥ 2,
we assume that the r+ 1 smooth hypersurfaces in Pn−1 defined by the
vanishing of their highest degree forms are transverse, in the sense that
for any integer j with r + 1 ≥ j ≥ 1, the intersection of any j of them
is smooth of codimension j in Pn−1 if j ≤ n− 1, and is empty if j ≥ n.
Then we get the following result.

Theorem 1.2. For any r- tuple of nontrivial multiplicative characters
(χ1, ..., χr), we have the bound

|
∑
x∈kn

ψ(f(x))
∏
i

χi(gi(x))| ≤ C(n, d, e1, ..., er)(#k)
n/2,

where C(n, d, e1, ..., er) is defined as

C(n, d, e1, ..., er) := (−1)n×coef. of Ln in
(1 + L)n+1

(1 + L)(1 + dL)
∏

i(1 + eiL)
.

We will discuss the proof of this more general result in the appendix.

2. Statement of a second version of the main result

In this section, we give a generalization in the spirit of [Ka-SE, 5.1.1]
and [Ka-ENSMCS, Thm.’s 3,4]. Let X/k be a projective, smooth, and
geometrically connected k-scheme of dimension n ≥ 1, given with a
projective embedding X ↪→ PNk := P. We fix integers d ≥ 1 and e ≥ 1,
both prime to p. We are given a linear form

Z ∈ H0(P,OP(1)),

a degree d form
F ∈ H0(P,OP(d)),

and a degree e form
G ∈ H0(P,OP(e)),

all on the ambient projective space P. Assume that the following four
transversality hypotheses hold.

(1) X ∩ Z is lisse of codimension 1 in X.
(2) X ∩ Z ∩ F is lisse of codimension 1 in X ∩ Z (:= empty, if

n = 1).
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(3) X ∩ Z ∩ G is lisse of codimension 1 in X ∩ Z (:= empty, if
n = 1).

(4) X ∩Z ∩ F ∩G is lisse of codimension 2 in X ∩Z (:= empty, if
n ≤ 2).

To this data, we attach the smooth affine k-scheme

V := X −X ∩ Z = X[1/Z],

and the functions

f := F/Zd : V → A1
k

and

g := G/Ze : V → A1
k.

We denote by c(X) the total Chern class of X, and by L the class
of OX(1). We define the constant C(X, d, e) by

C(X, d, e) := (−1)n
∫
X

c(X)

(1 + L)(1 + dL)(1 + eL)
.

Thus when X is Pn with the identity embedding of itself into P = Pn,
C(X, d, e) is the constant C(n, d, e) of the first section. When X is a
complete intersection in Pn+r of multidegree (a1, ..., ar), then

C(X, d, e) := (−1)n
∫

Pn+r

a1...arL
r(1 + L)n+r+1

(1 + L)(1 + dL)(1 + eL)
∏

i(1 + aiL)

= coef. of Ln in
a1...ar(1 + L)n+r+1

(1 + L)(1 + dL)(1 + eL)
∏

i(1 + aiL)

Theorem 2.1. Suppose that (X,Z, F,G) are as above. Then we have
the following results.

(1) We have the estimate

|
∑

x∈V (k)

ψ(f(x))χ(g(x))| ≤ C(X, d, e)(#k)n/2.

The associated L function is a polynomial P (T ) (for n odd) or a
reciprocal polynomial 1/P (T )(for n even) of degree ≤ C(X, d, e),
which is mixed of weight ≤ n.

(2) If P (T ) has degree = C(X, d, e), then P (T ) is pure of weight n.
(3) If X ∩ G is smooth of codimension 1 in X, or equivalently if

g = 0 is smooth of codimension 1 in V , then P (T ) has degree
= C(X, d, e), and is pure of weight n.

Thus when X is Pn with the identity embedding of itself into P = Pn,
this theorem is just Theorem 1.1.
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3. Proof of Theorem 2.1; the strategy

As customary in such questions, we choose a prime number ` 6= p
and choose an embedding of Q(ζp, ζq−1) into Q`, so that we can view
all our characters, both additive and multiplicative, as having values

in Q×
` , and so that we can apply `-adic cohomology.

On the smooth, geometrically connected, affine variety V [1/g] of
dimension n, we have the lisse, rank one, Artin-Schreier sheaf Lψ(f),
the lisse, rank one, Kummer sheaf Lχ(g), and their lisse, rank one,
tensor productLψ(f)⊗Lχ(g), cf. [De-ST, 1.4.2, 1.4.3]. Each of these lisse
sheaves is pure of weight 0. By the Lefschetz Trace Formula [Gr-Rat],
we have ∑

x∈V (k)

ψ(f(x))χ(g(x))

=
∑
i

(−1)iTrace(Frobk|H i
c(V [1/g]⊗k k,Lψ(f) ⊗ Lχ(g)).

By Deligne’s Weil II result [De-Weil II, 3.3.4], the (reversed character-
istic polynomial of Frobk on the) cohomology group H i

c above is mixed
of weight ≤ i. By the dual of the Lefschetz affine theorem, H i

c vanishes
for i < n, cf. [SGA 4 Tome 3, Exposé XVIII, Thm. 3.2.5 and Exposé
XIV, Cor. 3.2].

Let us admit temporarily the following theorem, and explain how it
implies Theorem 2.1.

Theorem 3.1. Suppose that (X,Z, F,G) are as in Theorem 2.1. Then
we have the following results.

(1) H i
c := H i

c(V [1/g]⊗k k,Lψ(f) ⊗ Lχ(g)) vanishes for i 6= n.
(2) If X∩G is smooth of codimension 1 in X, or equivalently if g =

0 is smooth of codimension 1 in V , then we have the following
results.
(2a) Hn

c has dimension C(X, d, e), and is pure of weight n.
(2b) The “forget supports” map is an isomorphism

Hn
c (V [1/g]⊗k k,Lψ(f) ⊗ Lχ(g)) ∼= Hn(V [1/g]⊗k k,Lψ(f) ⊗ Lχ(g)).

Using this, we prove Theorem 2.1 as follows. Over the affine space

A := H0(P,OP(1))×H0(P,OP(d))×H0(P,OP(e)),

we have the product X × A, the closed subscheme of this product
consisting of points (x ∈ X,Z, F,G) where L(x)G(x) = 0, and its open
complement V [1/g]univ, consisting of points (x ∈ X,Z, F,G) where
L(x)G(x) is invertible. We view V [1/g]univ as fibred over A, say

πuniv : V [1/g]univ → A.
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The triples (Z, F,G) ∈ A which satisfy our four transversality con-
ditions with respect to X form a dense open set U ⊂ A. Over this
open set U ⊂ A, the pullback V [1/g] of V [1/g]univ is an affine smooth
U -scheme, say

π : V [1/g] → U .
with geometrically connected fibres of dimension n, whose fibre over a
point (Z, F,G) is V [1/g] = X[1/LG].

On V [1/g], we have the lisse sheaf Lψ(f) ⊗ Lχ(g). The sheaf

N := Rnπ!(Lψ(f) ⊗ Lχ(g))

is then a sheaf of perverse origin on U , cf. [Ka-SCMD, Introduction and
Cor. 5]. For a sheaf of perverse origin, one knows [Ka-SCMD, Prop.’s
11, 12] that the stalk at any point has rank at most the generic rank,
and that the open set Ulisse where the sheaf is lisse consists precisely
of the points Umax where the stalk has this maximum rank.

The stalk of N at a k-valued point (Z, F,G) ∈ U(k) is the cohomol-
ogy group

Hn
c (V [1/g]⊗k k,Lψ(f) ⊗ Lχ(g)).

The supplementary condition on (Z, F,G) that X ∩G be smooth of
codimension 1 inX defines a dense open set U1 ⊂ U . By the second part
of Theorem 3.1, the stalk of N at any point of U1 has rank C(X, d, e),
and this stalk is pure of weight n. [Let us note in passing that this
proves part (3) of Theorem 2.1.]

Therefore the generic rank of N must be C(X, d, e). So for any
k-valued point (Z, F,G) ∈ U(k), we have

dimHn
c (V [1/g]⊗k k,Lψ(f) ⊗ Lχ(g)) ≤ C(X, d, e).

As this group is mixed of weight ≤ n, and all other H i
c vanish, we have∑

x∈V (k)

ψ(f(x))χ(g(x)) = (−1)nTrace(Frobk|Hn
c ),

so we get the estimate

|
∑

x∈V (k)

ψ(f(x))χ(g(x))| ≤ C(X, d, e)(#k)n/2.

This proves part (1) of Theorem 2.1.
On the dense open set U1, N is punctually pure of weight n, and

has constant rank C(X, d, e). Thus we have the inclusion U1 ⊂ Ulisse =
Umax. Now the sheafN is mixed, by [De-Weil II, 3.3.3], so its restriction
to Ulisse is a lisse sheaf which is mixed. Such a sheaf on a lisse k-scheme
is a successive extension of pure lisse sheaves, by [De-Weil II, 3.4.1], so
the weights which occur, and their multiplicities, can be read by looking
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at any single point in Ulisse(k). Taking a point in U1(k), we conclude
that N|Umax is pure of weight n. This proves the second assertion of
Theorem 2.1.

4. Proof of part (1) of Theorem 3.1

Let us recall the situation. We have X/k a projective, smooth, and
geometrically connected k-scheme of dimension n ≥ 1, given with a
projective embedding X ↪→ PNk := P. And we have homogeneous
forms (Z, F,G) of prime-to-p degrees 1, d, e respectively in the ambient
P, subject to various transversality conditions. We must show that

H i
c := H i

c(V [1/g]⊗k k,Lψ(f) ⊗ Lχ(g))

vanishes for i 6= n. As already noted earlier, H i
c vanishes for i < n by

the dual of the Lefschetz affine theorem. So it remains to show that
H i
c vanishes for i > n.
We first treat the case where χe is trivial. In this case, we argue as

follows. Consider the finite flat covering Ve := V [g1/e] of V gotten by
taking the e’th root of g, say

ρ : Ve → V.

Concretely, Ve is the closed subscheme of V ×A1, with coordinate t on
A1, of equation te = g. The direct image sheaf ρ?Q` on V has a direct
sum decomposition, as the direct sum of the constant sheaf on V with
various Kummer sheaves on V [1/g], extended by zero. More precisely,
denote by

j : V [1/g] ⊂ V

the inclusion. We have a direct sum decomposition on V

ρ?Q` = Q`

⊕
⊕Λetriv,Λ nontriv j!LΛ(g).

By the projection formula, we see that for each i,

H i
c(V [1/g]⊗k k,Lψ(f) ⊗ Lχ(g))

is a direct summand of

H i
c(Ve⊗kk, ρ

?Lψ(f)) = H i
c(V ⊗kk, ρ?ρ

?Lψ(f)) = H i
c(V ⊗kk,Lψ(f)⊗ρ?Q`)

= H i
c(V ⊗k k,Lψ(f))

⊕
⊕Λetriv,Λ nontriv H

i
c(V [1/g]⊗k k,Lψ(f)⊗LΛ(g)).

[We note for later use that this same projection formula argument
shows that for each i, the ordinary cohomology group

H i(V [1/g]⊗k k,Lψ(f) ⊗ Lχ(g))

is a direct summand of the ordinary cohomology group

H i(Ve ⊗k k, ρ
?Lψ(f)).]
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So it suffices to show that the cohomology groups

H i
c(Ve ⊗k k, ρ

?Lψ(f))

vanish for i > n. We will see that this results from the “nonsingular”
case (ε = δ = −1) of [Ka-ESES, Thm. 4]. For this, we argue as follows.
We began with X ⊂ P. To fix ideas, think of this ambient P = PN
as having homogeneous coordinates (X0, ..., XN). In the projective
space PN+1, with homogeneous coordinates (T,X0, ..., XN), we consider
the closed subscheme Xe defined by the equations which defined X,
together with the new equation

T e −G = 0.

Then (X0, ..., XN) define a map from Xe to X, which makes Xe a finite
flat covering of X of degree e. [A more intrinsic way to view Xe is as
follows. On X, we have the invertible OX-module M := OX(1), and
the global section m := G of M⊗e. Then Xe represents the functor on
X-schemes which attaches to an X-scheme π : Y → X the set

{z ∈ H0(Y, π?M)| ze = π?m in H0(Y, π?M⊗e).]

InsideXe, Ve is the open setXe−Xe∩Z = Xe[1/Z], and ρ?Lψ(f) on Ve
is just Lψ(f), for f the “same” function F/Zd, but now viewed on Ve =
Xe[1/Z]. A rereading of [Ka-ESES, Lemma 10 made cohomological,
Cor. 14(1), and the first paragraph of the proof of Thm. 16], shows
that the asserted vanishing of the cohomology groups

H i
c(Ve ⊗k k, ρ

?Lψ(f))

for i > n is proven (though not explicitly stated!) in [Ka-ESES], pro-
vided that the following three conditions hold.

(1) Xe is Cohen-Macaulay and equidimensional of dimension n.
(2) Xe ∩ Z is smooth of dimension n− 1.
(3) Xe ∩ Z ∩ F is smooth of dimension n− 2 (:= empty, if n=1).

To see that these three conditions hold, we argue as follows. To show
Xe is Cohen-Macaulay and equidimensional of dimension n, we argue
as follows. The scheme Xe is the finite flat covering of X defined by
taking the e’th root of G. The open set Xe[1/G] ⊂ X is finite etale
over X[1/G], so is itself smooth. And over an open neighborhood U
of a point x ∈ X where G(x) = 0, the covering Xe is a hypersurface
in the smooth scheme U × A1, so is Cohen-Macaulay, cf. [A-K, Chpt.
III, Cor. 4.5]. To see that Xe ∩ Z is smooth of dimension n− 1, view
it as the covering of X ∩ Z defined by taking the e’th root of G. By
hypothesis G = 0 defines a smooth hypersurface in the smooth scheme
X∩Z of dimension n−1, and e is prime to p, so the total space Xe∩Z
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of this covering is itself smooth. Similarly, Xe ∩ Z ∩ F is the covering
of X ∩ Z ∩ F defined by taking the e’th root of G, and we argue as
above, now using the assumed smoothness of both X ∩ Z ∩ F and of
X ∩ Z ∩ F ∩G. This concludes the proof of the first part of Theorem
3.1, in the case when χe is trivial.

We now explain how to reduce the general case to this one. The
asserted vanishing of the cohomology groups is a geometric statement,
so we may extend scalars at will from the original finite field k to any
finite extension. Our first task is to show that after such an extension,
we can find a particularly nice coordinate system (Y0, ..., YN) in the
ambient P, which is suitably transverse to the situation (X,Z, F,G).
We will inductively find these homogeneous coordinates, or rather the
hyperplanes they define. We start by defining

Y0 := Z.

We wish to find a coordinate system (Z = Y0, Y1, ..., YN) in P such that
the following conditions hold.

(1) X is transverse to the coordinate system (Y0, ..., YN), in the
sense that for any subset I ⊂ {0, 1, ..., N}, the intersection
X

⋂
∩i∈IYi is smooth of dimension dimX − #I (:=empty if

#I > dimX).
(2) IfX∩G is smooth, then it is transverse to the coordinate system

(Y0, ..., YN).
(3) Each of X ∩ Z, X ∩ Z ∩ F , X ∩ Z ∩ G, and X ∩ Z ∩ F ∩ G,

viewed as a closed smooth subscheme of P∩Z, is transverse to
the coordinate system (Y1, ..., YN).

It is standard that, over k, given any finite list of smooth, equidi-
mensional subschemes Wi ⊂ P, we can find a hyperplane Y1 = 0 in P
which is transverse to each Wi, in the sense that Wi ∩ Y1 is smooth of
codimension 1 in Wi (:= empty, if dim(Wi) = 0). We apply this with
the list taken to be Z, X, X ∩Z, X ∩Z∩F , X ∩Z∩G, X ∩Z∩F ∩G,
and, in the second part of Theorem 3.1, X ∩ G itself. This produces
the desired Y1. To define Y2, we consider this list of Wi’s, augmented
by adding their intersections, when nonempty, with Y1. We then con-
tinue, at each step keeping the terms on our previous list of smooth
subschemes of P and adding on their intersections, when nonempty,
with the prevously obtained hyperplane. In this way, we get the de-
sired coordinate system (Z = Y0, Y1, ..., YN) in the ambient P, defined
over some finite extension of k, which is suitably transverse to our
original situation. Thus it suffices to treat the case where our original
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coordinate system (X0, ..., XN) has Z = X0 and is suitably transverse
to (X,Z, F,G) as above.

Pick a prime-to-p integer r such that χr is trivial (e.g., one might
take r to be #k − 1). Consider the “r’th power map”

[r] : P → P, (X0, ..., XN) 7→ (Xr
0 , ..., X

r
N).

It is finite and flat of degree rN , and finite etale over the dense open
set where all Yi are invertible.

Lemma 4.1. We have the following results.

(1) Suppose we are given a closed subscheme W ⊂ P which is
smooth and equidimensional, and which is transverse to the co-
ordinate system (X0, ..., XN), in the sense that for any subset
I ⊂ {0, 1, ..., N}, the intersection W

⋂
∩i∈IXi is smooth of di-

mension dimW − #I (:=empty if #I > dimW ). Then its
inverse image Wr in the covering [r] : P → P, is smooth.

(2) For any closed subscheme W ⊂ P, the intersection Wr ∩ Z is
the inverse image of W ∩Z ⊂ P∩Z under the “r’th power map”

[r : Z] : P ∩ Z → P ∩ Z, (X1, ..., XN) 7→ (Xr
1 , ..., X

r
N).

(2) For any closed subscheme W ⊂ P such that W ∩ Z is smooth,
Wr ∩ Z is smooth.

Proof. (1) Since k is perfect, it suffices to show that Wr is a regular
scheme. Over a k-valued point w of W where all the Xi are invert-
ible, our covering is finite étale. Over a k-valued point w of W where
precisely the Xi, i ∈ I vanish, with #I ≥ 1, pick some index j with
Xj invertible at w, and consider the functions xi := Xi/Xj. By the
transversality hypothesis, these xi are part of a system of parameters at
w. Our covering over an open neighborhood of w is an etale covering of
degree rN−#I of the finite flat covering obtained by extracting the r’th
roots of the xi. In this finite flat covering, there is a unique point over
w, whose local ring is visibly regular. Thus Wr is a regular scheme.

(2) This is a tautology.
(3) By (2), this results from (1) applied to W ∩ Z ⊂ P ∩ Z and the

map

[r : Z] : P ∩ Z → P ∩ Z, (X1, ..., XN) 7→ (Xr
1 , ..., X

r
N).

�

We now consider the pullback of our situation (X,Z, F,G) by the
map [r] : P → P. We obtain (Xr, Zr = Zr, Fr, Gr). Here Fr(Xi) :=
F (Xr

i ), Gr(Xi) := G(Xr
i ). We have Zr = Zr because by construction
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we have Z = X0. We put Vr := Xr[1/Zr] = Xr[1/Z], fr := Fr/Z
rd, and

gr := Gr/Z
re. We have a finite flat map

[r]V [1/g] : Vr[1/gr] → V [1/g]

of degree rN . By the projection formula, for each i the cohomology
group

H i
c(V [1/g]⊗k k,Lψ(f) ⊗ Lχ(g))

is a direct summand of the cohomology group

H i
c(Vr[1/gr]⊗k k,Lψ(fr) ⊗ Lχ(gr)).

[We remark for later use that this same projection formula argument
shows that for each i the ordinary cohomology group

H i(V [1/g]⊗k k,Lψ(f) ⊗ Lχ(g))

is a direct summand of the ordinary cohomology group

H i(Vr[1/gr]⊗k k,Lψ(fr) ⊗ Lχ(gr)).]

We claim that the data (Xr, Z, Fr, Gr) satisfies all the transversality
conditions of section 2, but now with degrees (d, e) replaced by degrees
(dr, er). First of all, Xr is geometrically connected, because at any
of the finitely many points where exactly n of the Xi intersect X,
the covering [r]X : Xr → X is fully ramified. But if Xr were not
geometrically connected, each of its connected components would map
onto X.

The transversality hypotheses of section 2 are that X∩Z, X∩Z∩F ,
X ∩Z ∩G, and X ∩Z ∩F ∩G, are all smooth of the correct dimension
(:=empty, if that dimension is negative). Their inverse images under
[r] : P → P are the schemes Xr ∩ Z, Xr ∩ Z ∩ Fr, Xr ∩ Z ∩ Gr, and
Xr∩Z∩Fr∩Gr. That these inverse images (and also Xr∩Gr, if X∩G
is assumed smooth) are all smooth of the correct dimension (:=empty,
if that dimension is negative) results from Lemma 4.1.

But in this situation, χer is trivial, so the cohomology groups

H i
c(Vr[1/gr]⊗k k,Lψ(fr) ⊗ Lχ(gr))

vanish for i 6= n. And hence their direct summands

H i
c(V [1/g]⊗k k,Lψ(f) ⊗ Lχ(g))

vanish for i 6= n. This concludes the proof of part (1) of Theorem 3.1.
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5. Proof of part (2) of Theorem 3.1

Let us recall the situation. We start with (X,Z, F,G), but now we
assume that X ∩ Z, X ∩ Z ∩ F , X ∩ Z ∩ G, X ∩ Z ∩ F ∩ G, and in
addition X ∩ G, are all smooth of the correct dimension (:=empty, if
that dimension is negative). We first show that

Hn
c (V [1/g]⊗k k,Lψ(f) ⊗ Lχ(g))

is pure of weight n.
We first explain how to reduce to the case when χe is trivial. Exactly

as in the previous section, we pick a prime-to-p integer r so that χr is
trivial, extend scalars so that (Z = X0, X1, ..., XN) is a suitably trans-
verse coordinate system, and pass to the situation (Xr, Z, Fr, Gr), for
which all of these smoothness assumptions still hold. Our cohomology
group

Hn
c (V [1/g]⊗k k,Lψ(f) ⊗ Lχ(g))

is a direct factor of

Hn
c (Vr[1/gr]⊗k k,Lψ(fr) ⊗ Lχ(gr)).

So we are reduced to proving that Hn
c (Vr[1/gr]⊗k k,Lψ(fr) ⊗Lχ(gr)) is

pure of weight n.
So it suffices to considering the situation (X,Z, F,G) of the para-

graph above, but under the additional hypothesis that χe is trivial. In
this case, we return to the considerations of the first part of section 4,
where we introduced the covering Ve defined by taking the e’th root of
g, and saw that our cohomology group

Hn
c (V [1/g]⊗k k,Lψ(f) ⊗ Lχ(g))

was a direct factor of

Hn
c (Ve ⊗k k,Lψ(f)).

In this situation, the key observation is that Xe is in fact smooth.
Indeed, it is the covering of X defined by extracting the e’th root of G.
But e is prime to p, X is smooth, and X ∩ G is smooth, so it follows
that Xe is regular, and hence smooth. It is geometrically connected,
because it is fully ramified over X at any point of X ∩ G. We have
already seen in the first part of section 4 that Xe ∩ Z and Xe ∩ Z ∩ F
are both smooth of the correct dimension. So the purity of

Hn
c (Ve ⊗k k,Lψ(f))

now results from [Ka-SE, 5.1.1(2)].
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To conclude the proof of part (2a) of Theorem 3.1, it remains to
compute the dimension of

Hn
c (V [1/g]⊗k k,Lψ(f) ⊗ Lχ(g)).

Since this is the only nonvanishing cohomology group, its dimension is
equal to (−1)n× the Euler characteristic

χc(V [1/g]⊗k k,Lψ(f) ⊗ Lχ(g)).

By standard arguments of reducing the L function mod various primes
λ of Z[ζp, ζ#k−1] of residue characteristic 6= p which divide the order of
χ and considering the degree of the resulting mod λ L-function, we see
that this Euler characteristic is independent of the particular choice of
χ, and is the same with χ replaced by the trivial character:

χc(V [1/g]⊗k k,Lψ(f) ⊗ Lχ(g)) = χc(V [1/g]⊗k k,Lψ(f)).

On the other hand, we have

χc(V [1/g]⊗k k,Lψ(f))

= χc(V ⊗k k,Lψ(f))− χc(V ∩ (g = 0)⊗k k,Lψ(f)).

Now χc(V ⊗k k,Lψ(f)) is the additive character euler characteristic
attached to the situation (X,L, F ), with f = F/Zd on V = X[1/L].
Similarly, χc(V ∩ (g = 0) ⊗k k,Lψ(f)) is the additive character euler
characteristic attached to the situation (X ∩ G,L, F ), with f = F/Zd
on V ∩ (g = 0) = (X ∩G)[1/L]. So from [Ka-SE, 5.1.1 and Remarque
on page 166], we have the formulas

χc(V ⊗k k,Lψ(f)) =

∫
X

c(X)

(1 + L)(1 + dL)
,

χc(V ∩ (g = 0)⊗k k,Lψ(f)) =

∫
X∩G

c(X ∩G)

(1 + L)(1 + dL)

=

∫
X

eLc(X)

(1 + L)(1 + dL)(1 + eL)
.

Subtracting, we find

χc(V [1/g]⊗k k,Lψ(f))

=

∫
X

c(X)

(1 + L)(1 + dL)(1 + eL)
:= (−1)nC(X, d, e),

as required.
It remains to prove part (2b) of Theorem 3.1, that the “forget sup-

ports” map is an isomorphism

Hn
c (V [1/g]⊗k k,Lψ(f) ⊗ Lχ(g)) ∼= Hn(V [1/g]⊗k k,Lψ(f) ⊗ Lχ(g)).
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The right hand group Hn(V [1/g] ⊗k k,Lψ(f) ⊗ Lχ(g)) is, up to a Tate

twist, the Poincaré dual of Hn
c (V [1/g]⊗k k,Lψ(f) ⊗Lχ(g)), so (by part

(2a) of Theorem 3.1, applied with ψ and χ) it has the same dimension,
(−1)nC(X, d, e), as the left hand group. Therefore it suffices to show
that the “forget supports” map is injective:

Hn
c (V [1/g]⊗k k,Lψ(f) ⊗ Lχ(g)) ↪→ Hn(V [1/g]⊗k k,Lψ(f) ⊗ Lχ(g)).

For this we first reduce to the case when χe is trivial, by passing to
the covering Vr and looking at the commutative diagram

Hn
c (V [1/g]⊗k k,Lψ(f) ⊗ Lχ(g))

forget−→ Hn(V [1/g]⊗k k,Lψ(f) ⊗ Lχ(g))

∩ ∩
Hn
c (Vr[1/gr]⊗kk,Lψ(fr)⊗Lχ(gr))

forget−→ Hn(Vr[1/gr]⊗kk,Lψ(fr)⊗Lχ(gr)).

So it suffices to treat the case when χe is trivial. In this case, we
pass to the covering Ve, and look at the commutative diagram

Hn
c (V [1/g]⊗k k,Lψ(f) ⊗ Lχ(g))

forget−→ Hn(V [1/g]⊗k k,Lψ(f) ⊗ Lχ(g))

∩ ∩
Hn
c (Ve ⊗k k,Lψ(f))

forget−→ Hn(Ve ⊗k k,Lψ(f)).

This bottommost “forget supports” map is in fact bijective, by [Ka-SE,
5.1.1, part (0)].

6. Appendix: the case of r ≥ 1 g’s

We begin by stating the generalization of Theorem 1.2 analogous
to Theorem 2.1. As in that theorem, X/k is a projective, smooth,
and geometrically connected k-scheme of dimension n ≥ 1, given with
a projective embedding X ↪→ PNk := P. We fix integers d ≥ 1 and
e1, ..., er ≥ 1, all prime to p. We are given a linear form

Z ∈ H0(P,OP(1)),

a degree d form
F ∈ H0(P,OP(d)),

and, for i = 1, ..., r, a degree ei form

Gi ∈ H0(P,OP(ei)),

all on the ambient projective space P. We assume that the following
transversality hypotheses hold.

(1) X ∩ Z is lisse of codimension 1 in X.
(2) X ∩ Z ∩ F is lisse of codimension 1 in X ∩ Z (:= empty, if

n = 1).
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(3) For any nonempty subset I ⊂ {1, ..., r},X ∩ Z ∩ ∩i∈IGi is lisse
of codimension #I in X ∩ Z (:= empty, if #I ≥ n).

(4) For any nonempty subset I ⊂ {1, ..., r},X ∩ Z ∩ F ∩ ∩i∈IGi is
lisse of codimension 1+#I in X ∩Z (:= empty, if 1+#I ≥ n).

To this data, we attach the smooth affine k-scheme

V := X −X ∩ Z = X[1/Z],

and the functions

f := F/Zd : V → A1
k

and

gi := Gi/Z
ei : V → A1

k.

We denote by c(X) the total Chern class of X, and by L the class
of OX(1). We define the constant C(X, d, e1, ..., er) by

C(X, d, e1, ..., er) := (−1)n
∫
X

c(X)

(1 + L)(1 + dL)
∏

i(1 + eiL)
.

Thus when X is Pn with the identity embedding of itself into P = Pn,
C(X, d, e1, ..., er) is the constant C(n, d, e1, ..., er) of Theorem 1.2.

We have the following generalization of Theorem 2.1.

Theorem 6.1. Suppose that (X,Z, F,G1, ..., Gr) are as above. Then
we have the following results.

(1) We have the estimate

|
∑

x∈V (k)

ψ(f(x))
∏
i

χi(gi(x))| ≤ C(X, d, e1, ..., er)(#k)
n/2.

The associated L function is a polynomial P (T ) (for n odd) or a
reciprocal polynomial 1/P (T )(for n even) of degree ≤ C(X, d, e1, ..., er),
which is mixed of weight ≤ n.

(2) If P (T ) has degree = C(X, d, e1, ..., er), then P (T ) is pure of
weight n.

(3) If, for any nonempty subset I ⊂ {1, ..., r},X ∩∩i∈IGi is lisse of
codimension #I in X (:= empty, if #I > n), then P (T ) has
degree = C(X, d, e1, ..., er), and is pure of weight n.

Exactly as in section 3, Theorem 6.1 follows from the following gen-
eralization of Theorem 3.1.

Theorem 6.2. Suppose that (X,Z, F,G1, ..., Gr) are as in Theorem
6.1. Then we have the following results.

(1) H i
c := H i

c(V [1/
∏

i gi]⊗k k,Lψ(f) ⊗ (⊗iLχi(gi))) vanishes for i 6=
n.
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(2) If, for any nonempty subset I ⊂ {1, ..., r},X ∩∩i∈IGi is lisse of
codimension #I in X (:= empty, if #I > n), then we have the
following results.
(2a) Hn

c has dimension C(X, d, e1, ..., er), and is pure of weight
n.

(2b) The “forget supports” map is an isomorphism

Hn
c (V [1/

∏
i

gi]⊗k k,Lψ(f) ⊗ (⊗iLχi(gi)))

∼= Hn(V [1/
∏
i

gi]⊗k k,Lψ(f) ⊗ (⊗iLχi(gi))).

To prove the first part of Theorem 6.2, it suffices, exactly as in section
4, to prove the vanishing of H i

c for i > n. We first reduce to the case
when all χei

i are trivial. Extending scalars, we can find a coordinate
system (Z = Y0, Y1, ..., YN) in the ambient P which is transversal to X,
to each X ∩ ∩i∈IGi which is smooth, to X ∩ Z, X ∩ Z ∩ F , to every
nonempty X ∩Z ∩∩i∈IGi, and to every nonempty X ∩Z ∩F ∩∩i∈IGi.
So it suffices to treat the case when the original coordinate system
(Z = X0, X1, ..., XN) has all these transversality properties. Then with
q := #k, we consider the “q − 1’th power mapping”

[q − 1] : P → P, (X0, ..., XN) 7→ (Xq−1
0 , ..., Xq−1

N ).

It is finite and flat of degree (q − 1)N , and finite etale over the dense
open set where all Xi are invertible. Exactly as in section 4, it suffices
to treat the pullback situation (Xq−1, Z, Fq−1, G1,q−1, ..., Gr,q−1) by this
map. This completes the reduction to the case when all χei

i are trivial.
When all the χei

i are trivial, we pass to the covering Xe1,...,er of X
defined by extracting, for each i = 1, ..., r, the ei’th root of Gi. On
this covering, we have the pullbacks Z and F of their namesakes on
X. Exactly as in section 4, the “nonsingular” case (ε = δ = −1) of
[Ka-ESES, Thm. 4], applied now to the data (Xe1,...,er , Z, F ), gives the
vanishing of H i

c for i > n.
To prove the second part of Theorem 6.2, we observe that under

the additional transversality hypotheses, the covering Xe1,...,er of the
previous paragraph is itself smooth, so the purity of Hn

c again results
from [Ka-SE, 5.1.1(2)]. Exactly as in section 5, the dimension of Hn

c is
(−1)n× the Euler characteristic

χc(V [1/
∏
i

gi]⊗k k,Lψ(f) ⊗⊗i(Lχi(gi)))

= χc(V [1/
∏
i

gi]⊗k k,Lψ(f)).
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The asserted formula for this Euler formula now follows by inclusion-
exclusion from the formulas of [Ka-SE, 5.1.1 and Remarque on page
166]. This proves part (2a). The proof of part (2b) is entirely analogous
to the proof of part (2b) of Theorem 3.1 given in section 5.
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