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A NOTE ON RANDOM MATRIX INTEGRALS, MOMENT
IDENTITIES, AND CATALAN NUMBERS

NICHOLAS M. KATZ

Abstract. We relate Catalan numbers and Catalan determinants to random
matrix integrals and to moments of spin representations of odd orthogonal groups.

§1. Introduction. In their paper “Random matrix theory and L-functions at
s = 1/2”, Keating and Snaith give explicit formulas [3, (10), p. 94] for the matrix
integrals ∫

USp(2n)
det(1− A)s d A.

Here USp(2n) is the compact symplectic group of size 2n, d A is its Haar measure
of total mass one, and det(1− A) is computed for the standard representation of
A ∈ USp(2n) as a matrix of size 2n. Because the group USp(2n) contains the
scalar matrix −1, and because Haar measure is translation invariant, we have∫

USp(2n)
det(1− A)s d A =

∫
USp(2n)

det(1+ A)s d A.

Their formula, valid for s ∈ C with <(s) > −3/2, is∫
USp(2n)

det(1+ A)s d A = 22ns
n∏

j=1

0(n + j + 1)0(1/2+ s + j)
0(1/2+ j)0(1+ s + n + j)

.

We were particularly interested in the case when s is an integer r > −1. Out
of idle curiosity, we looked at what their formula gave for the case n = 1, when
USp(2) is the group SU(2), and for integer values of r > −1. For r = −1, 0, 1,
. . . , 9, we found the sequence

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16 796,

which is the start of the sequence of Catalan numbers Cn , indexed by integers
n > 0:

Cn :=
1

n + 1

(
2n
n

)
.

This made it seem likely that for every integer r > −1, we had the relation∫
SU(2)

det(1+ A)r d A = Cr+1.
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We will show the following.

THEOREM 1.1. For every integer r > −1, we have the relation∫
SU(2)

det(1+ A)r d A = Cr+1.

The Catalan numbers are themselves matrix integrals over SU(2). For integers
r > 0, we have

Cr =

∫
SU(2)

Tr(A)2r d A, 0 =
∫

SU(2)
Tr(A)2r+1 d A.

So, from Theorem 1.1, we have the identity, for integers r > 0,∫
SU(2)

Tr(A)2r+2 d A =
∫

SU(2)
det(1+ A)r d A.

For SU(2), we have the identity

det(1+ A) = 2+ Tr(A).

When we expand (2+ Tr(A))r by the binomial theorem, we find the following.

COROLLARY 1.2.

Cr+1 =
∑

06d6r/2

2r−2d
(

r
2d

)
Cd .

As we learned from Richard Stanley, this is Touchard’s identity, cf. [9, p. 472],
[6], and [8, solution 60 on p. 67].

We then looked at what the Keating–Snaith formula gave for the case n = 2,
i.e. for the group USp(4), and for integer values of r > −1. For r = −1, 0, 1,
. . . , 7, we found the sequence

1, 1, 3, 14, 84, 594, 4719, 40 898, 379 236.

Inspired by what had happened in the SU(2) case, we computed (using
Mathematica) the integrals ∫

USp(4)
Tr(A)2r+2 d A

for r = −1, 0, 1, . . . , 7, and found this same sequence. This led us to suspect
that we had the identity∫

USp(4)
det(1+ A)r d A =

∫
USp(4)

Tr(A)2r+2 d A

for every r > 0. We will show the following.
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THEOREM 1.3. For every integer r > −1, we have∫
USp(4)

det(1+ A)r d A =
∫

USp(4)
Tr(A)2r+2 d A.

However, this identity failed for every n > 3. Already for r = 1, the Keating–
Snaith formula gives ∫

USp(2n)
det(1+ A) d A = n + 1.

However, one knows that for every n > 2, one has∫
USp(2n)

Tr(A)4 d A = 3.

What is to be done?
It turns out that in order to understand the Keating–Snaith integrals∫

USp(2n)
det(1+ A)r d A

along these lines, we must introduce the compact spin group USpin(2n+ 1) (the
universal covering of the group SO(2n + 1,R) for the sum of squares quadratic
form) and its 2n-dimensional spin representation.

The general result is this.

THEOREM 1.4. For n > 1 and r > 0, we have the identity∫
USp(2n)

det(1+ A)r d A =
∫

USpin(2n+1)
Tr(spin(A))2r+2 d A.

This result includes the identities for USp(2) = SU(2) and for USp(4).
Indeed, for n = 1 and 2, we have the accidents that USpin(2n + 1) is the
group USp(2n) and that the spin representation of USpin(2n+ 1) is the standard
representation of USp(2n).

§2. Proof of Theorem 1.4 via the Weyl integration formula. For a group G, we
denote by G# its space of conjugacy classes. When G is a topological group, we
topologize G# so that continuous functions on G# are precisely the continuous
central (invariant by conjugation) functions on G. The function det(1 + A) is
a continuous central function on USp(2n) with values in R>0, and the function
Tr(spin(A)) is a continuous central function on USpin(2n+ 1) with values in R.

An element A ∈ USp(2n) has n pairs of eigenvalues e±iθ j , j = 1, . . . , n, with
angles θ j ∈ [0, π], and A is determined up to conjugacy by the unordered n-
tuple of its angles θ j . So, a continuous (respectively Borel measurable and R>0-
valued) central function A 7→ f (A) on USp(2n)# is a continuous (respectively
Borel measurable and R>0-valued) function

f (θ1, . . . , θn)
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on [0, π]n which is invariant under the symmetric group Sn . For such a function
f , the Weyl integration formula, cf. [2, 5.0.4] or [11, (7.8B) on p. 218], asserts
that ∫

USp(2n)
f (A) d A =

∫
[0,π ]n

f (θ1, . . . , θn)µUSp(2n)

for µUSp(2n) the measure on [0, π]n given by

µUSp(2n) = (1/n!)
( ∏

16i< j6n

(2 cos(θi )− 2 cos(θ j ))
2
) n∏

i=1

(2/π) sin(θi )
2 dθi .

An element A ∈ SO(2n + 1,R) has the eigenvalue 1, and in addition it
has n pairs of eigenvalues e±iθ j , j = 1, . . . , n, with angles θ j ∈ [0, π], and
A is determined up to conjugacy by the unordered n-tuple of its angles θ j . So,
a continuous (respectively Borel measurable and R>0-valued) central function
A 7→ f (A) on SO(2n + 1,R)# is a continuous (respectively Borel measurable
and R>0-valued) function

f (θ1, . . . , θn)

on [0, π]n which is invariant under the symmetric group Sn . For such a function
f , the Weyl integration formula, cf. [2, 5.0.5] or [11, (9.7) on p. 224], asserts that∫

SO(2n+1,R)
f (A) d A =

∫
[0,π ]n

f (θ1, . . . , θn)µSO(2n+1,R)

for µSO(2n+1,R) the measure on [0, π]n given by

µSO(2n+1,R) = (1/n!)
( ∏

16i< j6n

(2 cos(θi )− 2 cos(θ j ))
2
)

×

n∏
i=1

(2/π) sin(θi/2)2 dθi .

Notice the similarity between the formulas for the measures µUSp(2n) and
µSO(2n+1,R). The only difference is that each factor sin(θi )

2 in the first is replaced
by sin(θi/2)2 in the second.

The key lemma is this.

LEMMA 2.1. The measures µUSp(2n) and µSO(2n+1,R) on [0, π]n are related
by the identity

µUSp(2n) =

( n∏
i=1

(2+ 2 cos(θi ))

)
µSO(2n+1,R).

Proof. This is immediate from the trigonometric identity

(2+ 2 cos(θ)) sin(θ/2)2 = sin(θ)2,

whose verification is left to the reader. 2
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The factor
∏n

i=1(2+ 2 cos(θi )) has the following two interpretations.

LEMMA 2.2. We have the following identities.
(1) For A ∈ SO(2n + 1,R) with eigenvalues 1 and n pairs of eigenvalues

e±iθ j , j = 1, . . . , n, with angles θ j ∈ [0, π],

(1/2) det(1+ A) =
n∏

i=1

(2+ 2 cos(θi )).

(2) For A ∈ USp(2n) with n pairs of eigenvalues e±iθ j , j = 1, . . . , n, with
angles θ j ∈ [0, π],

det(1+ A) =
n∏

i=1

(2+ 2 cos(θi )).

The spin representation of USpin(2n+1) does not descend to SO(2n+1,R),
but its tensor square spin⊗2 does. In terms of the standard representation std2n+1
of SO(2n + 1,R) and the double covering projection map

p : USpin(2n + 1)→ SO(2n + 1,R),

one knows [10, Lemma 6.6.2] that

spin⊗2
=

( n∑
i=0

3i (std2n+1)

)
◦ p.

Each representation 3i (std2n+1) is self-dual, and hence isomorphic to
32n+1−i (std2n+1). So, we have

2spin⊗2
=

(2n+1∑
i=0

3i (std2n+1)

)
◦ p.

For A ∈ SO(2n+1,R) (indeed, for A ∈ GL(2n+1,C)), we have the identity

Tr
(2n+1∑

i=0

3i (A)
)
= det(1+ A).

So, for any B ∈ USpin(2n + 1) lying over A, we have

Tr(spin(B))2 = (1/2) det(1+ A).

For any continuous function g on SO(2n+1,R), with pullback function G :=
g ◦ p on USpin(2n + 1), we have∫

USpin(2n+1)
G(A) d A =

∫
SO(2n+1,R)

g(A) d A,
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simply because the direct image of Haar measure is Haar measure for any
surjective homomorphism of compact groups; cf. [2, Lemma 1.3.1].

Putting this all together, we have, for r > −1,∫
USp(2n)

det(1+ A)r d A =
∫
[0,π ]n

( n∏
i=1

(2+ 2 cos(θi ))

)r

µUSp(2n)

=

∫
[0,π ]n

( n∏
i=1

(2+ 2 cos(θi ))

)r+1

µSO(2n+1,R)

=

∫
SO(2n+1,R)

((1/2) det(1+ A))r+1 d A

=

∫
USpin(2n+1)

Tr(spin(A))2r+2 d A.

This concludes the proof of Theorem 1.4.

Remark 2.3. The odd moments of the spin representation all vanish:∫
USpin(2n+1)

Tr(spin(A))2r+1 d A = 0

for all r > 0. Indeed, this integral is the multiplicity of spin in the representation
spin⊗2r, a representation which descends to SO(2n + 1,R). Hence, all of
its irreducible constituents also descend to SO(2n + 1,R). But none of
these irreducible components can be isomorphic to spin, because the spin
representation does not descend to SO(2n + 1,R).

§3. A Catalan determinant interpretation

THEOREM 3.1. For integers n > 1 and r > 0, we have the (equivalent)
identities ∫

USpin(2n+1)
Tr(spin(A))2r d A = det

n×n
06i, j6n−1

(Cr+i+ j ),∫
SO(2n+1,R)

2−r det(1+ A)r d A = det
n×n

06i, j6n−1

(Cr+i+ j ),∫
USp(2n)

det(1+ A)r d A = det
n×n

06i, j6n−1

(Cr+1+i+ j ).

Proof. This is simply a matter of comparing the Keating–Snaith formula for∫
USp(2n)

det(1+ A)r d A

with the formula, cf. [5, Theorem 3] and [1, p. 21, line 6], of Gessel–Viennot
for the Catalan determinant, and checking that the two formulas give the same
answer. Each is a product of n terms. The individual terms do not quite match,
but their ratios turn out to have product one. 2
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Remark 3.2. For n = 1, 2, 3, 4, 5, these sequences of n × n Catalan
determinants indexed by r appear in the On-line Encyclopedia of Integer
Sequences [7] as the sequences A000108, A005700, A006149, A006150,
A006151, respectively. The interpretation of A000108, the sequence of Catalan
numbers, as the even moments of the standard representation of SU(2), is
classical. The interpretation of A005700 as the sequence of even moments of
the standard representation of USp(4) occurs in [4, (11) on p. 131]. For higher
n, the moment interpretation of these determinants seems to be new. Is it?

§4. A question. Our proof of Theorem 1.4,∫
USp(2n)

det(1+ A)r d A =
∫

USpin(2n+1)
Tr(spin(A))2r+2 d A,

via the Weyl integration formula, comes down to the trigonometric identity of
Lemma 2.1. From the point of view of representation theory, the first integral is,
for r > 0, the multiplicity of the trivial representation in the r th tensor power
of the exterior algebra 3(std2n) :=

⊕2n
k=03

k(std2n) as a representation of
USp(2n). The second integral is the multiplicity of the trivial representation in
the (2r + 2)nd tensor power of the spin representation of USpin(2n+ 1). Is there
a representation-theoretic proof that they are equal?
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