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Introduction

In a remarkable numerical experiment, Odlyzko [Odl] found that the distribu-
tion of the (suitably normalized) spacings between successive zeroes of the Riemann
zeta function is (empirically) the same as the so-called CUE measure, a certain
probability measure on IR arising in random matrix theory. His experiment was
inspired by work of Montgomery [Mon], who determined the pair correlation dis-
tribution between zeroes (in a restricted range), and who noted the compatibility
of what he found with the CUE prediction. Recent results of Rudnick and Sarnak
[Ru-Sar] are also compatible with the belief that the distribution of the spacings
between zeroes, not only of the Riemann zeta function, but also of quite general
automorphic L-functions over Q, are all given by the GUE measure, or, as we shall
say, all satisfy the Montgomery-Odlyzko Law. Unfortunately, proving this seems
well beyond range of existing techniques, and we have no results to offer in this
direction.

However, it is a long established principle that problems which seem inaccessible
in the number field case often have finite field analogues which are accessible. In
this book we establish the Montgomery-Odlyzko Law for wide classes of zeta and
L-functions over finite fields.

To fix ideas, let us consider a special case, which none the less contains all
the essential phenomena, the case of curves over finite fields. Thus we consider a
finite field Fq, and a proper, smooth, geometrically connected curve C/Fq of genus
g. [For example, if we take a homogeneous form F(X, Y, Z) over IFq of degree d in
three variables such that F and its first partial derivatives have no common zeroes
in Fg, then the projective plane curve of equation F = 0 in P2 is such a curve, of
genus g = (d - 1) (d - 1)/2.] The zeta function of C/Fq, denoted Z (CIF., T), was
first introduced by Artin [Actin] in his thesis. It is the basic diophantine invariant
of C/Fq, constructed out of the numbers Nn := Card(C(Fq..)) of points on C with
coordinates in the unique field extension Fq Of F. of each degree n > 1. T As
a formal series over Q in one variable T, Z(C/Fq,T) is defined as the generating
series

Z(C/1Fq, T) := exp E NnTn/n
n>1

One knows that in fact Z(C/Fq,T) is a rational function of T, of the form

P(T)/(1 - T)(1 - qT),

where P(T) is a polynomial of degree 2g with Z-coefficients. By the Riemann
Hypothesis for curves over finite fields [Weil-CA], one knows that the reciprocal

i
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2 INTRODUCTION

zeroes of P(T) all have complex absolute value Sqrt(q), i.e., we have
2.9

P(T) = H(1 - ajT), with lajlc = Sqrt(q) for all j.
j=1

We write

aj = Sgrt(q)e'''i, 0 < cpj < 27r.

Renumbering, we may assume that

0 <W1 <W2 <... <W2g <27r.

The normalized spacings between the (reciprocal) zeroes of the zeta function of
C/IFq are the following 2g real numbers. The first 2g - 1 are

(g/1r)(22 - (P1), (g/ir)OP3 - W2), ... , (g/7r)('29 - (P29-1),
and the last is the "wraparound" spacing

(g/7r)(i7' + 27r - cp2g).

The spacing measure p = µ(C/IFq) attached to C/lFq is the probability mean
sure on IR, supported in IR>o, which gives mass 1/2g to each of the 2g normalized
spacings.

Before going on, we must first say what is the GUE measure on llt, cf. 1.0-2.
For this, we first pick an integer N > 1, and consider the unitary group U(N) of
size N. Given an element A in U(N), its N eigenvalues lie on the unit circle, and
we form the N normalized (to have mean 1) spacings between pairs of adjacent
eigenvalues, and out of these N spacings we form the probability measure on R
which gives mass 1/N to each of the N normalized spacings. This measure we
call g(A, U(N)), the spacing measure attached to an element A in U(N). We view
A H p,(A, U(N)) as a measure-valued function on U(N). One can make sense of
the integral of this function over U(N) against the total mass one Haar measure
dA on U(N): the result makes sense as a probability measure on IR, denoted

µ(U(N)) := f
U(N)

p(A, U(N)) dA.

One then shows that as N grows, the measures p.(U(N)) on IR have a limit which
is again a probability measure on R, which we denote p(univ), and call the GUE
measure.' One shows that its cumulative distribution function

CDFM(univ) (x) := J
dkt(umv)

I-no,x]

is continuous on R. [In fact, this measure has a density, which vanishes outside
R>o, and is real analytic on IR>o, cf. Appendix: Graphs for a picture.]

For the application to curves that we have in mind, we need to know that we
can obtain the GUE measure not just from the series of unitary groups U(N), but
also from any of the series of compact classical groups. Indeed, suppose we are
given any compact subgroup K of a given unitary group U(N). We can, for each
element A in K, form the spacing measure attached to A thought of as an element
of U(N). To remind ourselves that we do this only for elements of K, we denote
this measure E.c(A, K). Then we view A F-+ u(A, K) as a measure-valued function
on K, and we integrate this function against the total mass one Haar measure dA

'In the physics literature, this measure often carries Wigner's name
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INTRODUCTION 3

on the compact group K. The result, denoted p(K) : = fK p(A, K) dA, is itself a
probability measure on R.

We can perform this construction with K any of the compact classical groups,
U(N) or SU(N) or USp(2N) or SO(2N+ 1) or SO(2N) or O(2N+1) or O(2N) in
their standard representations. We show that for G(N) running over any of these
series of compact classical groups, the sequence of probability measures p(G(N))
on JR converges, as N grows, to the same measure p(univ), the GUE measure, that
we obtained as the large N limit of the p(U(N)) measures. [The case which will
be relevant to curves over finite fields will turn out to be the compact symplectic
groups USp(2N).]

Now let us return to a curve C/Fq over a finite field, of some genus g. Since
the spacing measure p(C/Fq) gives each of 2g points mass 1/2g, its CDF is a step
function, with 2g jumps. So it cannot possibly be the case that p(C/Fq) is equal to
the GUE measure, whose CDF is continuous. Moreover, as we shall see later in this
Introduction, over any finite field there are sequences of curves of increasing genus
whose spacing measures are arbitrarily close to the delta measure So supported at
the origin. So it is simply not true that the spacing measures of all curves of
large genus are close to the GUE measure. What we show is that "most" curves
of large genus over a large finite field have their spacing measure quite close to the
GUE measure, or in other words that "most" curves of sufficiently large genus over
a sufficiently large finite field satisfy the Montgomery-Odlyzko Law to an arbitrary
degree of precision.

To make this more precise, we need a numerical measure of how close two
probability measures on R, say p and v, are. For this, we use the Kolmogoroff-
Smirnov discrepancy, defined as the greatest vertical distance between the graphs
of their CDF's:

discrep(p, v) := Sup I CDF, (s) - I.
sinR

Notice that discrep(p, v) is a number which always lies in the closed interval [0,1],
just because CDF's of probability measures take values in [0, 1].

Now let us denote by Mg(Fq) the set, known to be finite, consisting of all
Fq-isomorphism classes of genus g curves over F. Our essential result about the
spacing measures p(C/Fq) attached to curves over finite fields, and their relation
to the GUE measure p(univ), is this:

Theorem (cf. 12.2.3). We have the double limit formula

lim lim (1/[Mg(Fq)[) discrep(p(univ), p(C/Fq)) = 0.
C in Mg(Fq)

More precisely, for any real e > 0, there exists an integer N(E) such that for any
genus g > N(s), we have the inequality

lim (1/1Mg(Fq)J) discrep(p(univ), p(C/IFq)) < gr-1/6.

C in Mg(FQ)

To see what this says concretely, pick a small E > 0, and fix a genus g > N(e).
Then for q sufficiently large, say q > M(E, g), we will have

{ (1/JM9(Fq)J) discrep(p.(univ), p(C/Fq)) < 2gc-1/s
C in Mg(F,q)
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To see what this last inequality means about "most" curves, pick any two positive
real numbers a and 3 with a +,3 = 1/6 - s. Denote by

Mg(F4)(discrep > g`Q) C Mg(Fq)

the set of those C in Mg(Fq) for which

discrep(µ(univ), t(C/Fq)) > g-°.

Then we easily infer from (**) above that

IMg(Fq)(discrep > g-')I/IMg(Fq)I 5 2g-3,

i.e., the fraction of curves in Mg(Fq) whose discrepancy exceeds g-a is at most
2g-)3, provided that g > N(s) and provided that q > M(s, g). In other words, if
g and then q are sufficiently large, then the probability is at least 1 - 2g-0 that
a randomly chosen curve in M9(FFq) has discrepancy < g-a. This is the sense in
which most curves of sufficiently large genus over a sufficiently large finite field have
a spacing measure which is arbitrarily close to the GUE measure.

To explain how one proves such results, we must now return to a discussion
of the GUE measure µ(univ) and its genesis from compact classical groups G(N).
Suppose we take a particular G(N), and an element A in G(N). How close is the
spacing measure u(A, G(N)) to the GUE measure? The answer is that "most"
elements A of a large G(N) have their spacing measures quite close to the GUE
measure, as the following "law of large numbers" shows.

Theorem (cf. 1.2.6). In any of the series of compact classical groups G(N) _
U(N) or SU(N) or USp(2N) or SO(2N+ 1) or SO(2N) or 0(2N + 1) or 0(2N),
we have

lim discrep(µ(A, G(N)),1(univ)) dA = 0.
'V"f (N)

More precisely, given e > 0, there exists an integer N(r) such that for any
N > N(e), we have

J discrep(g(A, G(N)), p(univ)) dA < NE-11s
G(N)

We also remark that the integrand above,

A F--+ discrep(tL(A, G(N)), p(univ)),

is a continuous (cf. 1.0.12) central function on G(N). This remark will allow us
below to apply Deligne's equidistribution theorem (cf. 9.2.6, 9.6.10, 9.7.10) in a
completely straightforward way.

The connection between Theorems 12.2.3 and 1.2.6 comes about through mon-
odromy, and Deligne's equidistribution theorem (9.6.10). Recall that the zeta func-
tion of a genus g curve C/F4 is of the form P(T)/(1-T)(1-qT), for P a polynomial
of degree 2g with the property that the auxiliary polynomial P(T/ Sqrt(q)) has all
its roots on the unit circle. However, the polynomial P(T/ Sgrt(q)) has a bit more
structure; namely, its 2g roots on the unit circle can be partitioned into g pairs
of inverses on the unit circle. One interpretation of this fact is that there
exists a conjugacy class i9(C/Fq) in the compact group USp(2g) such that

P(T/ Sqrt(q)) = det(1 - Ti9(C/Fq)).
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INTRODUCTION 5

Because conjugacy classes in USp(29) are uniquely determined by their characteris-
tic polynomials, there is a unique such conjugacy class 14(C/Fq) in USp(2g), which
we call the unitarized Frobenius conjugacy class attached to C/Fq.

Now fix an integer N > 1 and a genus g > 1. Consider a proper smooth family
it : C --+ S of genus g curves, parameterized by a scheme S which, for simplicity, we
assume to be smooth and surjective over Spec(Z[1/N]) with geometrically connected
fibres. We further assume that for every prime number p which does not divide N,
the geometric monodromy group of the family of curves

7r®FP :C®FP S(gyp
in characteristic p is the full symplectic group Sp(2g). Once we have made this
assumption about the monodromy of the family, Deligne's equidistribution theorem
(cf. 9.6.10) says the following. For each finite field Fq of characteristic not dividing
N, and each point s in the finite set S(Fg) of Fq-valued points of S, look at the
curve Cs/Fq named by the point s, and look at its unitarized Frobenius conjugacy
classes d9(Cs/Fq) in USp(2g). Then these unitarized Frobenius conjugacy classes
are equidistributed in the space USp(2g)# of conjugacy classes in USp(2g) for the
probability measure f1Haar on USp(2g)# which is the direct image from USp(2g) of
its normalized Haar measure, in the following sense: for any C-valued continuous
central function f on USp(2g), we have the limit formula

lim
edo

x(1/IS(Fq)I)
-ocq q

s in S(IF,)

f duHaar
USp(29)

In order to apply this to study the discrepancy for the curves over finite fields
C,/Fq which occur in our family, we have only to apply Deligne's equidistribution
theorem above to the continuous central function f on USp(2g) given by

A discrep(µ(A, USp(2g)), p.(univ)).

We know from Theorem 1.2.6 quoted above that, given c > 0, there is an N(e) such
that for g > N(E), we have, for this f, the estimate

JUSp(29)#
f dAHaar < gE-1/6.

So if our family C/S has g > N(s), and we use Deligne's equidistribution
theorem to calculate this integral, we find the estimate

lime to
x(1/IS(Fq)1) E discrep(lc(univ), µ(C3/Fq))<9E-1/6.- rimooq .

s in S(Fq)

In particular, if q is prime to N and sufficiently large, we will have
_(**) (1/IS(Fq)I) E discrep(1t(univ), µ(C3/Fq)) < 2gE-1/6

s in S(Fq)

To see what this means about the discrepancy of "most" curves in the family C/S,
pick a pair of positive real numbers a,,3 with a + 13 = 1/6 - E. Denote by

S(Fg)(discrep > g-a) C S(Fq)
the set of those s in S(Fq) for which

discrep(µ(univ),µ(C,/Fq)) > g-°`.
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Then we easily infer from (**) above that

IS(Fq)(discrep > g-°`)I/[S(Fq)I < 2g-1,

provided that g > N(e) and that q is prime to N and sufficiently large (how large
depends on the particular family C/S).

To obtain Theorem 12.2.3 stated above about Mg, we need only replace S(Fq)
in the above formulas by ,Mg(Fq). There are some technical difficulties to be
overcome in justifying this formal replacement; cf. 10.6 and 10.7 for an exhaustive
discussion of these difficulties and their resolution.

Once we know that "most" curves over finite fields have their spacing measure
close to the GUE measure, it is natural to ask if, given a finite field Fq, we can
exhibit a single explicit sequence of curves {Cg/Fq}g with Cg of genus g, whose
spacing measures p(Cg/Fq) approach the GUE measure p.(univ) as g - oc, in the
sense that limg.,, discrep(p(Cg/Fq), p(univ)) = 0. We do not know how to do this
at present.

To the extent that we can write down families (of varieties, of exponential
sums, of ...) over finite fields whose geometric monodromy groups are large clas-
sical groups, we will get results similar to those for curves for the behavior of the
discrepancy in these families as well. We work this out explicitly for universal fam-
ilies of abelian varieties (where the group is again Sp), of smooth hypersurfaces in
projective space (where the group is either Sp or 0), and for multi-variable Kloos-
terman sums (where the group is either Sp, SL or SO(odd)). Again in these more
general cases we do not know how to write down explicit sequences of objects of
the type considered whose spacing measures approach the GUE measure.

In the case of the Kloosterman sums Kl,,(,O, a in FQ) there is a plausible can-
didate for such a sequence.

Conjecture. Fix a finite field Fq, fix any choice of a in FQ and fix any choice
of the nontrivial additive character il' of Fq. Then the spacing measure

p(Kl,,(O, a in F'))

attached to Kln(O, a in F'), or more precisely to its L-function, tends to the CUE
measure as n - oo in the sense that

lim discrep(p(Kln(iP, a in FQ )), p(univ)) = 0.
n-oo

Suppose now that we fix an integer N > 1, and a large integer g. Suppose
that we are given a curve C/Z[1/N] which is proper and smooth with geometrically
connected fibres of genus g. For any prime p not dividing N, the reduction modp of
our curve C/Z[1/N] is a curve C ®Fp/Fp of genus g, which has a spacing measure
p(C ® Fp/Fp). When is it reasonable to expect that for most primes p which
are prime to N, the spacing measure p(C (9 Fp/Fp) is close to the GUE measure
p(univ)? When should we expect some other behaviour?

Given C/Z[1/N] as above, for every prime p not dividing N, we obtain a uni-
tarized Frobenius conjugacy class i9(C®Fp/Fp) in USp(2g). When is it reasonable
to expect that these classes t9 (C 0 Fp/Fp) are equidistributed in USp(2g)#, in the
sense that for any C-valued continuous central function f on USp(2g) we have

JUSp(29)
f(A)dA= lim (1/7r(X)) > f(t9 (C®Fp/Fp))?

p<X prime to N
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The Generalized Sato-Tate Conjecture is that this equidistribution (of
the classes t9(C (& IF,/F,) in USp(2g)*) holds whenever C/Z[1/N] has big arith-
metic monodromy, in the sense that for every prime 1, the action of Gal(Q/Q) on
H1 (C ® Q, QI) has image which is open in the group GSp(2g, Q) of symplectic
similitudes. As an immediate application of Theorem 12.2.3, we find:

Theorem. In the notations of Theorem 1. 2.6, let s > 0 and g > N(e). Suppose
C/Z[1/N] is a curve of genus g as above, which has big arithmetic monodromy.
Suppose the generalized Sato- Tate conjecture holds. Then we have the inequality

lim (1/7r(X)) discrep(p,(t9(C (& Fp/Fp)),µ(univ)) < ge-116
V__ E

p<X prime to N

Corollary. Suppose for each integer gi in an infinite subset r of Z>1, we
are given an integer Ni > I and a curve Cg;/Z(1/Ni] of genus gi which has big
arithmetic monodromy. Suppose the generalized Sato-Tate conjecture holds. Then
the double limit limi-_,,,, limx_,00 of

(1/7r(X)) E discrep(p(t9(Cg; ® Fp/Fp)), p(univ))
p<X prime to Ni

vanishes.

Question. Notations and hypotheses as in the corollary, suppose that all Ni
have a common value N, cf. pages 12-13 of this Introduction for examples of such
situations. What is the density of the set of primes p not dividing N for which

lim discrep(p,(t9(Cs (D Fp/Fp)), u.(univ)) = 0?
g-.oo in r

Presumably this need not hold for every prime p not dividing N.

Now let us turn to the opposite extreme, cases in which either we can prove or
we expect that the spacing measure is far from the GUE measure.

We first give, for every odd prime p, a sequence of curves over the prime field
Fp whose genera go to infinity and whose spacing measures converge to the delta
measure bo supported at the origin. For each power q = pf of p, we consider the
hyperelliptic curve Cq/Fp of equation

Cq:Y2=XQ-X.
This curve has genus g given by 2g = q - 1. Over Fq, this curve admits the Artin-
Schreier action X F-? X+ a, Y ,--F Y of the additive group of Fq. If we pick any prime
10 p, and decompose the cohomology group H1(Cq 0 Fq, Ql) under this action,
each of the q - 1 nontrivial additive characters t/i of Fq occurs with multiplicity
one. On the corresponding one-dimensional eigenspace, the FYobenius with respect
to Fq, Rob., necessarily acts as a scalar, and that scalar is none other than minus
the quadratic Gauss sum over Fq:

-Gq('0, X2) - O(x)X2(X),
x in Fq

where we have written X2 for the quadratic character of F'. Now it is elementary
that the quadratic Gauss sum Gq(?,b, X2) with any nontrivial 0 satisfies

(Gq(b, X2))2 = X2(-1)q.
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Moreover, both square roots occur as V) varies. Thus Frobq has precisely 2 distinct
eigenvalues on H'. To see what this means for Frobp, write q = pf. Then Frobq
is the f'th power of Frobp, and hence Frobp has at most 2f distinct eigenvalues on
W. This means that among the q - 1 = pf - 1 normalized spacings between the
reciprocal zeroes of the zeta function of Cq/Fp, all but at most 2f of the spacings
are equal to zero. Since 2f/(pf - 1) - 0 as f --* oo, we see that the spacing
measures u(Cr/Fp) approach 60 as f -r oo. Since the GUE measure is absolutely
continuous with respect to Lebesgue measure, it gives the origin mass zero. Hence
we have

discrep(µ(Cq/Fp), ja(univ)) > 1 - 2f /(pf - 1),

a crude quantification of the statement that u(Cq/Fp) is far from the GUE measure.
Here is another example, valid for any prime p > 0, of a sequence of curves

over IF,, whose genera go to infinity and whose spacing measures converge to So.
For each power q := pf of p, consider the degree q + 1 Fermat curve over IF, say.
Fermat(q + 1)/Fp, of homogeneous equation

Xq+l + Yq+l = Zq+1

This curve has genus g given by 2g = q(q - 1). It is elementary that over Fqz, this
curve has 1 + q3 points. [Hint: for x in lFq2 , xq+l is its norm to Fq, and the norm
map is surjective.] But we readily compute that

1+q3= 1+q2+2gq= 1+q2-2g(-q).
Thus the Weil bound is attained, and hence every eigenvalue of Frobg2 on Hl is
-q. Therefore Frobp has at most 2f distinct eigenvalues on Hl, while
dim Hl = pf (pf - 1), and we conclude as in the previous example that the spacing
measure u(Fermat(q + 1)/Fp) tends to 80 as f -* oo, and that

discrep(u(Fermat(q + 1)/Fp), u(univ)) > 1 - 2f /(pf (pf - 1)).

We now turn to a case in which we expect the spacing measure to be far from
the GUE measure. For each prime 1, consider the modular curve X0(1)/Z[1/1],
whose genus gj is approximately (1 - 1)/12. Choose any prime 1. When we de-
compose Hl := Hl (X0(1) ®0, Up) under the Hecke operators, we find a direct
sum of gj two-dimensional subspaces, corresponding to the gj different weight two
normalized (al (f) = 1) Hecke-eigenforms f = sn>l a,, (f )q7z on X0(1). For each
such eigenform f, and each prime p with p # 1 and p # 1', the characteristic poly-
nomial of Frobp on the two-dimensional Hecke eigenspace in Hl named by f is
x2 - ap(f ) X + p. We know by Deligne that Iap(f) I < 2 Sgrt(p), so the two eigen-
values of Frobp here are Sgrt(p)e±i1 U1, where t9p(f) is the unique angle in [0,7r]
such that ap(f) = 2 Sqrt(p) cos(t9p(f )). We denote by t9p in [0, 7r]9' the gj-tuple of
angles t9p (f) indexed by eigenforms f, and we view t9p as a conjugacy class in the
product group USp(2)91 = SU(2)9'.

This Hecke-eigenvalue decomposition of Hl is respected by Gal(Q/Q), and
forces the image of Gal(Q-/Q) to land in the subgroup of the gj-fold self product
GL(2, Qj,) 91 of GL (2, Q1,) with itself consisting of elements (A1, ... , Ag,) all of
which have equal determinants. According to Ribet [R.ib, 7.18], the image of
Gal(O/Q) is Zariski dense in this group. In view of Ribet's result, the natural
Sato-Tate conjecture for X0(1) is the assertion that the conjugacy classes {t9p}p,4j
in the product group SU(2)9i are equidistributed with respect to Haar measure
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in the sense that for any C-valued continuous central function h on SU(2)91, the
integral

91

f Jh(A) dA = h(x1,... , xg,) H(2/7r) sin2(xi) dxi
U(2)Bi o, ,,1Q i=1

can be computed as the limit

lim (1/r(X)) h('9 ).

Let us admit the truth of this Sato-Tate conjecture for Xo(l). We denote by

F(x) := (2/7r) J sin2(t) dt = (2x - sin(2x))/27r
[O.x1

the bijection from [0, 7r] to [0, 1] which carries the measure (2/7r) sin2(t) dt = dF on
[0, 7r] to uniform measure dx on [0, 1]. [We call F the straightening function for the
measure in question.] Given an element 0 in [0, 7r]91, we denote by F(t9) in [0,1]9'
the result of applying F component by component. The Sato-Tate conjecture for
Xo(l) says precisely that the gi-tuples {F(,dp)}pO1 in [0,1]91 are equidistributed
in [0, 1]9' for uniform measure. Arrange the components of F(t9p) in increasing
numerical order, say

0 < F(t9 )1 < F(19p)2 ... < F(9p)91 < 1.

The F-straightened spacing measure AF(Xo(l) ®Fp/1Fp) attached to Xo(l) ®Fp/Fp
is the measure of total mass 1 - 1/gl on R which gives each of the gl - 1 normal-
ized spacings sz := gl(F(i9p)i+1 - F(,Op)i) the mass 1/gi. An elementary analysis
of spacings between points in an interval which are randomly chosen for Lebesgue
measure shows that in this kind of question, the limiting answer is not the rather
exotic GUE, but rather the much more elementary and familiar exponential distri-
bution p(Poisson), the measure on R supported in R>o and given there by e-x dx.

Theorem. Assume the Sato-Tate conjecture above for all the modular curves
Xo(l)/Z[1/l],I any prime. Then the F-straightened spacing measures

[+F(XO(1) ®Fp/Fp)

are, for large 1, very near the Poisson measure u(Poisson) for most primes p # 1.
More precisely, the double limit liml limx.,o of

(1/7r(X)) E discrep(PF(Xo(l) (&Fp/1Fp), p(Poisson))
p<x,pal

vanishes.

Question. Is it true that for each prime p, we have

lim discrep(N,F(Xo(l) ®Fp/Fp), µ(Poisson)) = 0?
l-.00,10P

We now discuss another aspect of our work, the distribution in families of "low-
lying zeroes". [This terminology "low-lying zeroes" is inspired by the number field
picture, where we expect all the nontrivial zeroes to lie on a single vertical line, and
we measure height from the real axis. In the finite field case, where the normalized
zeroes lie on the unit circle, it would be more accurate to speak of "zeroes near 1".]
For simplicity, we will discuss only the case of curves. Recall that the zeta function
of a genus g curve C/FQ is of the form P(T)/(1 - T)(1 - qT), for P a polynomial
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of degree 2g with the property that the auxiliary polynomial P(T/ Sqrt(q)) has all
its 2g roots on the unit circle, and its 2g roots can be partitioned into g pairs of
inverses (C, 1/f). So we may write P(T) as

g

P(T) _ 11(1 - ajT)(1 - a_jT),
j=1

with

a_j=a aja_j=q.
If we pick the a j (rather than the a_ j) to lie in the upper half plane, we have

aj = Sgrt(q)et`j, 0 < fpj < 7r,

and with suitable renumbering the g angles pj in [0, 7r] may be assumed to be in
increasing order:

0 < <pl C'p2 < ... < cpg < 7r.

With this numbering, we refer to (g/7r)'j as the j'th normalized angle attached to
the curve C/Fq, or, if we like, attached to the unitarized Frobenius conjugacy class
19(C/Fq).

More generally, given any element A in USp(2g), we have
g

det(1 - TA) = fj (1 -Tei'j)(1 - Te-"' )
j=1

for a unique sequence of angles 0 < cpl < ip2 < - - - _< cp9 < it. For each integer
1 < j < g, the function on USp(2g) defined by

A -+'j := W3 (A)

is a continuous central function from USp(2g) to [0, 7r]. We refer to (g/7r)Wj(A) as
the j'th normalized angle attached to the conjugacy class of the element A. The
function

A - (gl7r)cpj(A)

is a continuous central function from USp(2g) to R>o.
If we take the direct image of normalized Haar measure µu on USp(2g) by

the map A - (g/7r)cpj(A), we obtain a probability measure on R supported in R>O,
which we denote v(j, USp(2g)).

There are analogous constructions for the other classical groups, cf. 6.9 for the
details, which give rise to probability measures v(j, G(N)) for 1 < j < N and
G(N) any of U(N), USp(2N), SO(2N + 1), SO(2N), 0-(2N + 1), O_ (2N + 2), all
on the real line and all supported in 11 >o. Now unlike the spacing measures, which
were "universal" in the sense that the large N limit existed and was independent
of which sequence of G(N)'s we ran through, these v measures do depend on the
sequence of G(N)'s chosen.

Theorem (7.5.5, 7.5.6). For each integer j > 1, there exist2 three probability
measures v(j), v(-, j), and v(+, j) on IR, supported in IR>0 and having continuous

2In fact, these measures all have densities, which for j = 1 are shown in Appendix: Graphs.
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CDF's, such that we have the following large N limit statements for convergence in
the sense of uniform convergence of CDF's:

v(j), if G(N) = U(N),

N
mo v(j, G(N)) = v(+, j), if G(N) = SO(2N) or O_ (2N + 1),

v(- j) if G(N) = USp(2N), SO(2N + 1), O_ (2N + 2).

Here is a convenient mnemonic to remember which sign in v(±, j) is given by
which orthogonal group series: the sign is the common sign of det(-A) for A in
either SO(2N) or O_ (2N+1) or SO(2N+1) or O_ (2N+2). Experts will recognize
this sign as being the sign in the functional equation of P(T) := det(1 - TA)
under T F-+ 1/T, which for orthogonal A is

Tdes(p)P(1/T) = det(-A)P(T).

To see what this means concretely for curves, fix an integer N > 1, and sup-
pose for each genus g > 1 we are given a proper smooth family 7r C9 -* Sg of
genus g curves, parameterized by a scheme S. which is smooth and surjective over
Spec(Z[1/N]) with geometrically connected fibres. We further assume that for ev-
ery prime number p which does not divide N, the geometric monodromy group of
the family of curves

ir®Fp:C9®Fp- S901Fp
in characteristic p is the full symplectic group Sp(2g). For example, we might take
N = 2, and for Cg/S, the universal family of hyperelliptic curves Y2 = f2g+,(X)
parameterized by the space S. := 7'128+I of monic polynomials f2g+1 of degree
2g + 1 with invertible discriminant.

Let now h(x) be any C-valued continuous function on R. By Deligne's equidis-
tribution theorem, for each integer j > 1, and each genus g we can compute
the integral

jf.R

as the limit

h dv (j, USp(2g)) := f
p(2g)

h((g/ir)(A))dA
S

lim
me co

N(1/ISg(lFq)I) h((g/'r)cpj(t9(Cg:s/Fq)))
+oo ,4 s in S(r'q)

Using the theorem above, about the large N limit of the measures v(j, USp(2g))
being v(--, j), we find that, for h(x) any bounded C-valued continuous function on
fig, we can compute the integral

JR g-oc
h((g/7r)cp7(A)) dA

as the double limit

lim lim (1/[Sg(1Fq)I) E h((g/ir)Wj(i9(Cg,s/Fq)))M -.W i e to Ng q , pr m
s in S(Fq)

If we look instead at universal families of hypersurfaces of even dimension, and
average over those whose functional equation (for the factor of its zeta function
corresponding to the primitive part of middle dimensional cohomology) has a fixed
sign s = ±1, we get double limit formulas for f f h dv(c, j). [Universal families

hd(v)(-, j) = lim
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of odd dimensional hypersurfaces have monodromy group Sp, so will lead only to
double limit formulas for ff h dv(-, j).]

We now leave the realm of what is proven, and discuss what might be true if, in
the double limit formulas above, we were to omit the inner limit over q. Again to fix
ideas, we return to the case of curves. Fix an integer N > 1, and an infinite subset
P of Z>1. Suppose for each genus g in P we are given a proper smooth family
it : Cs -* Sg of genus g curves, parameterized by a scheme Sg which is smooth
and surjective over Spec(Z[1/N]) with geometrically connected fibres. We further
assume that for every prime number p which does not divide N, and for every g in
r, the geometric monodromy group of the family of curves

7r 0 1Fp : Cg ®Fp - Sg ®lFp

in characteristic p is the full symplectic group Sp(2g). To further simplify matters,
we assume also that Sg(lFp) is nonempty for every prime p not dividing N, and for
every genus g in P.

We say that this collection of families {Cg/Sg}g in r weakly calculates the mea-
sure v(-, j) if, for every finite field lFq of characteristic prime to N, and for every
bounded continuous function h on R, we can calculate j h dv(-, j) as

nlim
1/ ]Sg(lFq)Il1

g<n in r g<n, in r sin Sg(!-q)

We say that this collection of families {Cg, Sg}g in r strongly calculates the
measure v(-, j) if, for every finite field Fq of characteristic prime to N, and for
every bounded continuous function h on ]lt, we can calculate fR hdv(-, j) as

lim (1/iSg(Fg)I)
i rg oo n

s in Sg(Fq)

It is elementary that if {Cg/Sg}g in r strongly calculates the measure v(-J),
then {Cg/Sg}g in r weakly calculates it as well. If for every finite field lFq of char-
acteristic prime to N, the cardinalities ISg(lFq)I grow fast enough that the ratios

(1/ISg(Fq)I) IS7(Fq)I
ry<g in r

stay bounded (as g varies over r, q fixed: the bound can vary with q), then the two
notions, strong and weak calculation of v(-, j), are equivalent.

Conjecture. Fix an integer N > 1, and an infinite subset r of Z>1. Sup-
pose for each genus g in r we are given a proper smooth family it : Cg - Sg of
genus g curves, parameterized by a scheme Sg which is smooth and surjective over
Spec(Z[1/N]) with geometrically connected fibres. Suppose that for every g in r
and for every prime number p which does not divide N, the geometric monodromy
group of the family of curves

7r®FP :C9®Fp-}S9®Fp

in characteristic p is the full symplectic group Sp(2g). Suppose also that Sg(Fp)
is nonempty for every prime p not dividing N, and for every genus g in P. Then
for every integer j > 1, the collection of families {Cg/Sg}g i,, r weakly calculates
the measure v(-, j). Moreover, if in addition we have limg-. in r IS9(lFq)I = 00
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for every finite field 1Fq of characteristic prime to N, then the collection of families
{Cg/S9}9 in r strongly calculates the measure v(-,.j).3

Let us give some examples of situations N, F, {Cg/Sg}g in r which satisfy all of
the hypotheses imposed in the statement of the conjecture.

1) N = 1, r = Z>1i M9,3K, universal family of curves with 3K structure (cf.
10-6).

2) N = 2, r = Z>1, 1 29+1 or 7.129 1, family Y2 = f2,+1(X) (cf. 10.1-18.3-4).
2bis) N = 2, r = Z>1 i 7l2g+2 or 7l2g+2, family Y2 = f2g+2(X) (cf. 10.1.18.4-5).
3) N = 2, r = z>1: write 2g to the base 2 as E some >1 2a, and define F2,29 (X)

as the corresponding product of cyclotomic polynomials D2o+1 (X) = (XV + 1):

F2,29(X) :_ ri (X25 + 1).
a in base 2 expansion of 2g

Take for C9 /S9 the one-parameter ("T") family of hyperelliptic curves of equation
y2 = (X - T)F2,29(X)-

4) N = 21 for l a prime, r = those integers g > 1 such that in the base l
expression of 2g, all the digits are either 0 or l - 1: write 2g to the base l as

some a>o(l - 1)1a, and define Fi,29(X) as the corresponding product of cyclo-
tomic polynomials (Di.+1(X). Take for C9/S9 the one-parameter (`7"') family of
hyperelliptic curves of equation Y2 = (X -T)Fl,2g(X). [Of course, if we take l = 2
in this example, we find example 3).]

5) N = 21 for l a prime, r = those g > 1 such that 2g = (1 - 1)la for some
integer a > 0. Take for C9 /S9 the one-parameter ("T") family of hyperelliptic
curves of equation Y2 . _ (X - W.

Notice that in examples 1), 2), and 2bis), we do have

lim IS9(1Fq)I = oo.g_ooinr
But in examples 3) through 5), the parameter space S9 is always a Zariski open
set in the affine line A', so ISg(]'q)I < q is uniformly bounded. The relevant sets
S9(Fq) are always nonempty, since both 0 and ±1 are always allowed parameter
values. _

The conjecture in the examples 2) and 2bis) (7-L version) can be viewed as a
statement about the low-lying zeroes of the L-functions of all quadratic extensions
of 1Fq(X). So seen, it has an analogue for Dirichlet L-series with quadratic char-
acter, which we will now formulate. Thus we take a quadratic extension K/Q,
of discriminant DK, corresponding to the quadratic Dirichlet character XK. We
assume that L(s, XK) satisfies the R.iemann Hypothesis. We write the nontrivial
zeroes of L(s,XK) (which by the (even!) functional equation occur in conjugate
pairs) as 1/2 ± i7K,J with 0 < 7K,1 < 7x,2 < 7x,3 < - -

Conjecture. The low-lying zeroes of Dirichlet L -functions with quadratic char-
acter weakly calculate the measure v(--, j), in the following sense. For any integer
j > 1, and for any compactly supported continuous C-valued function h on llt, we
can calculate the integral f1 h dv(-, j) as

l (1/I{K with DK <X}I) h(7K,ilog(DK)/27c).
K with DK <X

3This second part of the conjecture, about strong calculation, seems to us more speculative
than the first part.
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The measure v(-, 1) has a density which has the remarkable property of van-
ishing to second order at the origin, see Appendix: Graphs. Thus our conjecture
implies that L(s,XK) rarely has a zero at or even near the point 1/2. This sort
of behaviour was observed at a crude level by Hazelgrove, who seems to have been
the first to experiment numerically with zeroes of Dirichlet L-functions. The above
conjecture offers a precise version, and hints at the existence, in the global case,
of some remarkable analogue, yet to be discovered, of the symplectic monodromy
which in the function field case binds together the L-functions of quadratic exten-
sions of Fq(X).

For a global situation in which both measures v(--, 1) and v(+, j) arise, one
has elliptic curves over, say, Q, where some analogue of orthogonal monodromy
seems to enter. Let us grant that all elliptic curves over Q are modular, so that
their L-functions are entire, and let us assume further that these L-functions have
all their (nontrivial) zeroes on the line Re(s) = 1. For each integer n > 1, denote
by En the set of Q-isogeny classes of elliptic curves over Q with conductor NE = n,
and by E,,,+ and En,_ the subsets of En consisting of those curves whose L-functions
have an even or odd functional equation, respectively.

If E/Q has an even functional equation, the nontrivial zeroes of L(s, E/Q)
occur in conjugate pairs, and we write them as

1 ± 2'YK, j with 0 < 7E,1 < 'YE,2 < 'YE:3 < .. .

If E/Q has an odd functional equation, then 1 is a zero of L(s, E/Q), and the
remaining nontrivial zeroes of L(s, E/Q) occur in conjugate pairs: we write the
remaining zeroes as 1 ± iyE, j with 0 < 'YE,1 < 7E,2 S 'YE,3 < - ' '

Conjecture. The low-lying zeroes of L -Junctions of elliptic curves over Q
weakly calculate the measure v(+-j), in the following sense. For any integer j > 1,
and for any compactly supported continuous C-valued function h on R, we can
calculate the integrals f1 hdv(±, j) as follows:

JR

and

hdv(-, j) = lim
X-oo

n<X n<X,E in
h(7E,j log(NE)/27r),

J
hd(+,3) = lim (1/ > IEn,+I E h('YE,j log(NE)/27r).

X~00 n<X n<X,E in E,,+

As already remarked above, the measure v(-, 1) has a density which vanishes
to second order at the origin. So the conjecture for j = 1 predicts that among
L-functions of elliptic curves E/Q with odd functional equation, most should have
only a simple zero at s = 1 and no zeroes very near to s = 1. In particular,
just using the absolute continuity of v(-, 1) with respect to Lebesgue measure, the
conjecture implies that

lim 1/ iEn,_i E RE in En,_ with E,1 = 0}I = 0.X-.
n<X n<X

£,,,_

The measure v(+, 1) also has a density. Its density, unlike that of v(-, 1), is
nonzero at the origin. Nonetheless, v(+, 1) is absolutely continuous with respect to
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Lebesgue measure on JR. So our conjecture for j = 1 implies that among E/Q with
even functional equation, most should have no zero at s = 1, in the sense that

lim 1 1/ En,+ 1 ItE in En,+ with yE,l = 0}[ = 0.
X-.oo n<X n<X

If we also admit the conjecture of Birch and Swinnerton-Dyer that for E/Q the
rank of the Mordell-Weil group E(Q) is equal to the order of vanishing of L(s, E/Q)
at s = 1, then the above consequences of the conjecture imply in turn that

vlimo I{E in En,_ with rank (E(Q)) > 1}1 = 0,
n<X n<X

vl me i 1/ l£",++ {E in En,} with rank (E(Q)) > 0}I = 0.
n<X Jn<X

These last two statements together imply in turn that

lim
x00

n<X
{E in En with rank (E(Q)) > 2} = 0,

n<X

or, in words, zero percent of elliptic curves over Q have rank 2 or more. The truth
of this has recently been called into question; cf. [Kra-Zag], [Fer], [Sil]. However,
if our conjecture is correct, then the "contradictory" data is simply an artifact of
too restricted a range of computation.

This ends our venture into speculation and conjecture. We now turn to a
summary of the contents of this book. The book falls naturally into three parts.
The first part, which consists of Chapters 1 through 8, is devoted to the theory of
spacing measures on large classical groups. Chapter 1 is devoted to defining the
spacing measures which are our main object of study, and to stating the main results
about them. In Chapter 2, we define "naive" versions of the spacing measures which
we find more amenable to combinatorial analysis. We then formulate versions of
our main results for these "naive" spacing measures, and show that they imply the
main results stated in the first chapter. The remainder of Chapter 2, along with
all of Chapters 3 and 4, is devoted to successive reduction steps (2.9.1, 3.0.1, 3.1.9,
4.2.2-4) in proving the main results. By the end of Chapter 4 we are reduced to
proving the three estimates of 4.2.2 and the "tail estimate" 3.1.9, iv). In Chapter
5, we first recall Weyl's explicit formulas for Haar measure on the classical groups.
We then combine Weyl's formulas with a method of orthogonal polynomials (5.1.3)
which goes back to Gaudin [Gaudin]. Thus armed, we establish (in 5.8.3, 5.10.3
and 5.11.2) the three estimates of 4.2.2. Chapter 6 is devoted to the proof of the
tail estimate of 3.1.9, iv). To prove it, we introduce "eigenvalue location measures"
in 6.9, and in 6.10.5 we give a tail estimate for the first of these measures. We
then (6.11, 6.12) relate these measures to spacing measures, which allows us in
6.13 to prove the required tail estimate 3.1.9, iv). At this point, all (save 1.7.6) of
the results announced in Chapters 1 and 2 have been proven. The remainder of
Chapter 6 explores multi-variable versions of the eigenvalue location measures. In
Chapter 7 we form generating series out of the limit spacing measures, we prove
1.7.6, and we relate these generating series, in the case of one variable, to certain
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16 INTRODUCTION

infinite-dimensional Ftedholm determinants, which are themselves large N limits of
finite-dimensional Fi-edholm determinants. We use this theory to construct large N
limits of the (one-variable) eigenvalue location measures, and establish the relations
between the limit spacing measures and the limit eigenvalue location measures in
one variable. Chapter 8 is devoted to a discussion of these same questions in several
variables.

The second part of the book, which consists of Chapters 9 through 11, is de-
voted to algebro-geometric situations over finite fields which, by means of Deligne's
equidistribution theorem and the determination of monodromy groups, provide us
with "F'robenius conjugacy classes" in large compact classical groups which are suit-
ably equidistributed for Haar measure. In Chapter 9, we give various "abstract"
versions of Deligne's equidistribution theorem, in the language of pure lisse sheaves.
Roughly speaking, these theorems assert an equidistribution (for Haar measure) of
F'sobenius conjugacy classes in the space of conjugacy classes of a maximal compact
subgroup of the geometric monodromy group attached to the situation at hand. In
Chapters 10 and 11, we prove various families (of curves, of abelian varieties, of
hypersurfaces, of Kloosterman sums) to have geometric monodromy groups which
are large classical groups.

The third part of the book, which consists of Chapters 12 and 13, applies the
theory of the first part of the book to the families proven to have big monodromy
in the second part of the book. Chapter 12 looks specifically at GUE discrepancies
in these families, and Chapter 13 looks at the distribution of low-lying eigenvalues
in these same families.

The book concludes with two appendices. The first appendix, Densities, devel-
ops an approach to eigenvalue location measures through densities, determines their
large N limits, and presents a result of Harold Widom, that the large N limits of
the densities, and hence of the eigenvalue location measures, for the groups SU(N)
exist and are equal to those for U(N). The second appendix, Graphs, shows the
densities of the GUE measure and of a few of the one-variable eigenvalue location
measures.
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CHAPTER 1

Statements of the Main Results

1.0. Measures attached to spacings of eigenvalues

1.0.1. Fix an integer N > 1. Given an element A in the unitary group U(N),
all of its eigenvalues lie on the unit circle, so there is a unique increasing sequence
of angles in [0, 2ir),

such that

0 < W(1) < cp(2) < ... < p(N) < 27r,

det(T - A) = fl(T - exp(icp(j))).
i

The N nonnegative real numbers

'p(j+1)-W(j), forjN-1,
and

27r + cp(l) - cp(N),

are called the "literal" spacings between the adjacent eigenvalues of A. Their sum
is 27r, so their mean is 27r/N. By the normalized spacings between the adjacent
eigenvalues of A, we mean the N nonnegative real numbers Si,. . . , s.v, defined by

sj := (N/27r)(V(j + 1) -,p(j)), for j = 1,..., N - 1,

and

SN := (N/27r)(2zr + W (1) -p(N))

Their sum is N, so their mean is 1.

1.0.2. There are more general sorts of spacing data it will be convenient to
look at. To define these, we go back to the unique increasing sequence of angles in
(0, 21r),

0 < <o(1) < o(2) < < cp(N) < 27r,

such that

det(T - A) = fl(T - exp(icp(j))).
i

We can uniquely prolong the sequence i --s cp(i) to all integers i by requiring that
co(i + N) = W(i) + 27r. [This is just a convenient way to keep track of what happens
as we wrap around the unit circle. In this numbering system, we recover the
normalized spacings as

sj := (N/2ir)(v(j + 1) - w(j)), for j = 1, ... , N.]

17
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1.0.3. Given an integer r > 1, and a strictly increasing sequence

c : 0 < c(1) < c(2) < . . . < c(r)

of integers, which we will refer to as a vector c of "offsets", we start at one of
the eigenvalue angles Bp(i), and then walk counterclockwise around the unit circle,
stopping successively at the points cp(i + c(1)), cp(i + c(2)),.. -, cp(i + c(r)). The
distances we traverse in this r-stage journey form an r-vector,

(cp(i + c(1)) - + c(2)) - w(i + c{1)), ... , w(i + c(r)) - <p(i + c(r - 1)),

called the literal spacing vector with offsets c starting at Bp(i). The sum, over i = 1
to N, of these literal spacing vectors is

27r(c(1),c(2) - c(1), c(3) - c(2),...,c(r) - c(r - 1)).

1.0.3.1. We define the normalized spacing vectors with offsets c to be the N
vectors, indexed by i = 1 to N,
si(offsets c) :=

(N/27r) (W(i + c(1)) - p(i),'P(i + c(2)) - W(i + c(1)), . _ . , W(i + c(r)) - w(i + c(r - 1)))

Their mean is (c(1), c(2) - c(1), c(3) - c(2), . .., c(r) - c(r - 1)).
1.0.3.2. In the special case r = 1, c = 1, these normalized spacing vectors are

just the normalized spacings between adjacent eigenvalues.

1.0.4. We now use the sequence of normalized spacing vectors with offsets c
to define a probability measure p(A, U(N), offsets c) on R by decreeing that each
of the N spacing vectors si(offsets c) has mass 1/N. In other words,

µ(A, U(N), offsets c) := (1/N) (delta measure at s; (offsets c)),
3

r f dp(A, U(N), offsets c) :_ (1/N) E f (sj (offsets c))
J i

for any 1k-valued Borel measurable function f on 1k', i.e.,

u(A, U(N), offsets c)(E)

:= (1/N)(number of indices j such that s2(offsets c) lies in E),

for any Borel set E in W.

1.0.5. Given r >I and a vector c= (c(1),...,c(r)) in Z' of offsets,

0 < c(l) < c(2) < < c(r),

we attach to it two other vectors in Z', the vector

b := (c(1),c(2) - c(1),c(3) - c(2),...,c(r) - c(r - 1)),

which we call the vector of steps, and the vector

a:= b - (1, 1, ... ,1),

which we call the vector of separations. [The names are chosen as follows. In
the r-stage journey described by the vector of offsets, the i'th stage is to go from
the eigenvalue where we are to the b(i)'th eigenvalue which comes after it, so if we
think of ourselves as walking by stepping precisely on successive eigenvalues, then
the i'th stage takes us b(i) steps. The number a(i) is the number of intermediate
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eigenvalues which separate the starting point from the finishing point of the i'th
stage.] The step vector b has strictly positive components, the separation vector a
has nonnegative components. Either b or a determines c, by the formulas

c(i) = b(1) + b(2) + + b(i) = i + a(1) + a(2) + -- + a(i).

1.0.6. It will sometimes be convenient to refer to the normalized spacings
and to the measure defined by given offsets c in terms of the vector b of steps, or
in terms of the vector a of separations. Thus we define

sj (steps b) = sj (offsets c),

p.(A, U(N), steps b) := p(A, U(N), offsets c),

sj (separations a) = s j (offsets c),

p(A, U(N), separations a) := p(A, U(N), offsets c).

1.0.7. In the above discussion, we chose the angles Bp(i) for i = 1, ... , N in the
particular fundamental domain [0, 27r). Suppose instead we had fixed a real number
a, and chosen the angles in [a, a + 27r). Then the spacing vectors sj(offsets c) for
A computed using [a, a+ 27r) would be some cyclic permutation of those computed
using [0, 27r). But the measure t(A, U(N), offsets c) would be the same.

1.0.8. We now discuss the sense in which the probability measure
p(A, U(N), offsets c) depends continuously on A in U(N).

Lemma 1.0.9. 1) On U(N), each of the angles V(i) (computed using [0, 21r))
is a bounded, Borel measurable function. Each is continuous on the open set

U(N)[1/det(1 - A)]

of U(N) where 1 is not an eigenvalue. More generally, for each real or, the an-
gles computed using (a, a + 21r) are bounded, Borel measurable functions on U(N),
continuous on the open set U(N)[1/det(eta - A)].

2) For any r > 1, and any offset c in Z, and any real number a, each of
the N normalized spacing vectors st(offsets c) computed using [a, a + 27r) is a
Borel measurable R''-valued function on U(N), which is continuous on
U(N)[1/det(eta - A)].

3) Let f be an R-valued continuous (respectively Bored measurable and bounded)
function on W. Then the R-valued function on U(N)

A -, offsets c)
is continuous (respectively Borel measurable and bounded) on U(N).

PROOF. Assertion 1) is proven in the appendix, Corollary 1.8.5. Assertion 2)
results immediately from 1), given the definition of the spacing vectors in terms of
differences of the W(i)'s. For 3), we write

J f dp,(A, U(N), offsets c) := (1/N) f (sj (offsets c)).

If f is bounded and measurable on R', each term f(sj(offsets c)) is bounded and
measurable on U(N), hence also f f dp(A, U(N), offsets c).

Suppose now that f is continuous and bounded on IR'. If we compute angles
using [a, a+27r), each term f (sj(offsets c)) is continuous on U(N)[1/det(et° -A)],
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so A H f f du(A,U(N), offset c) is continuous on U(N)[1/det(e'° - A)]. These
open sets cover U(N) (any element of U(N) has at most N distinct eigenvalues),
hence the function A F-* f f du(A, U(N), offsets c) is continuous on U(N). QED

1.0.10. Given a positive Borel measure v on RT which has finite total mass,
its cumulative distribution function CDF is the R>0-valued function on R' defined
in terms of the v-measure of standard r-dimensional rectangles by

v((-oo, x]).

Given two such measures v and u on Rr, we define the discrepancy between them,
discrep(v, IL) by

discrep(v, u) := Sup, in ar I CDFA(x) I.

If both u and v have total mass at most m, then discrep(v, u) lies in the closed
interval [0, m].

Lemma 1.0.11. Fix an integer r >_ 1, and an offset c in zr. Let v be a proba-
bidity measure v on !R'' whose cumulative distribution function CDF is continuous.
Then the function

A F--> discrep(u(A, U(N), offsets c), v)

from U(N) to [0, 1] is continuous.

PROOF. It suffices to show that for every real number a, this function is con-
tinuous on the open set U(N)[1/ det(eia - A)]. On this open set, the individual
normalized spacing vectors si (offsets c) calculated using angles in [a, a + 27r) are
continuous functions. So the lemma results from the following lemma, which should
be well-known, but for which we do not know a reference.

Lemma 1.0.12. Fix r > 1, and a positive Bored measure v on Rr of finite
total mass whose cumulative distribution function is continuous. Fix an integer
N> 1, and define for each N-tuple P := x[1], ... , x[N] of points in Rr a measure
I.(P) on Rr by

u(P) (1/N) E (delta measure at x[j]).
i

The function

P F-} D(P) := discrep(u(P), v)

from RrN to [0, 1] is continuous.

PROOF. We will show that P k-r D(P) is continuous at any given point P in
RrN Thus let Pi be a sequence of points in R'N which tends to P. We must show
that

D(P) > limsupD(Pi), and liminfD(Pi) > D(P).

Suppose not. Then there exists a real number A > 0 such that either

lim sup D(Pi) > D(P) + A, or lim inf D(Pi) < D(P) - A.

Replacing the sequence Pi by a subsequence, we may further assume that either

D(Pi) > D(P) + A for every i, or D(PP) < D(P) -A for every i.
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The space R' is the increasing union of the countably many rectangles [-L, L]r,
L = 1, 2, 3, .... Since v is a measure, we have

v(lR') = jlim v([-L, L]r).

Therefore for large L we have

v([-L, L]') > v(1R') - A/100, and
each of the N II8r-components of P lies in [1 - L, L - 1]r.

We fix one such choice of L.
The cumulative distribution function of v is continuous, by assumption, so its

restriction to the compact set [-L - 1, L + 1]r is uniformly continuous. Therefore
we may choose a real a > 0 such that if x and y lie in [-L - 1, L + 1]' and are
within a of each other in the sense that sups Ixi - yiI < a, then

I A/100.

We may and will further suppose that a < 1.
Choose i such that Pi is, coordinate by coordinate, within a of P. Notice that,

because Pi is within a of P, both P and Pi lie in the rectangle [-L, L]'. This
rectangle contains all but at most A/100 of the mass of v, and it contains all the
mass of both µ(P) and u(Pi).

Suppose first that

D(Pi) > D(P) + A.

In view of the definition of D(Pi) as a sup, there exists some x in W such that

I g(Pi)((-oo, x]) - v((-oo, x)) I > D(Pi) - A/100 > D(P) + (99/100)A.

We first remark that each coordinate xi of x must be > -L. For if not, the rectangle
(-oo, x] has empty intersection with [-L, L]r, and hence has v measure < A/100,
and y(Pi) measure zero, so

I,(Pi)((-oo, x]) - v((-oo, x]) I = v((-oo, x]) < A/100,

which is nonsense.
It may not be the case that xi < L for each coordinate xi of x. We consider

the auxiliary point y with coordinates yi = min(xi, L). The rectangle (-oo, y] is
just the intersection of (-oo, x] with (-oo, L]r, and this last rectangle contains all
but A/100 of the mass of v, and all the mass of p(Pi). Therefore

0 < v((-oo, x)] - v((-oo, y]) < A/100,

A(A)((-oc, X]) = A(Pi)((-oo, y]),

and hence

Ip(Pt) ((-oo, y]) - v((-oo, y]) I > D(P) + (98/100)A.

What we have gained is that the point y lies in [-L, L]r.
We now consider the sign of the difference

'U (Pi) ((- 00, YD - V((- 00, YD

If this is positive, consider the point y + (E, E, ... , e), which we write simply y + a.
Because P is a close to Pi, (-oo, y+a] contains at least as many P-points as (-oo, y)
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contains P, points. Therefore

IL(P)((-00, y + 'FD - v((-oo, y + e]) > IU(Pi)((-oo, y1) - v((-co, y + e])
> IL(PP)((-00, y]) - v((-oo,y]) - (v((-oo,y+e]) - V((-00, YD)
> D(P) + (98/100)A - A/100 > D(P),

which contradicts the definition of D(P) as a sup.
If the difference

IL(Pi)((-oo, y]) - v((-oo, y])

is negative, we consider instead the point y-e. Because P is e close to P2, (- 00, y-e]
contains at most as many P-points as (-oo, y] contains P2 points. Just as above,
we find

v((-oo, y - e1) - IL(P)((-oc, y - e]) > v((-oo, y -d) - IL(Pi)((-oo, y])
> v((-oo, y]) - u(P)((-00, y1) - ii]) - v((-oo, y - e1))
> D(P) + (98/100)A - A/100 > D(P),

again a contradiction.
It remains to deal with the case

D(PP) < D(P) - A.

In view of the definition of D(P) as a sup, there exists some x in R' such that

[Ir,(P)((-oo, x]) - v((-oo, x])I > D(P) - A/100.

Exactly as above, we show that xi < -L for every coordinate xi of x, and that if
we replace x by y:= min(x, (L,. - -, L)), we have

IIp(P)((-oo, y]) - v((-oo, y])I > D(P) - 2A/100.

What we have gained is that the point y lies in [-L, L]'r.
If A(P) ((-oo, y]) - v((-oo, y)) is positive, then (-oo, y +s] contains as least as

many Pi-points as (-oo, y] contains P-points, and so we get

IIL(P,)((-oo, y +,5]) - v((-oo, y + e]) I > D(P) - 3A/100

(now use D(PP,) < D(P) - A)

> D(PP) + A - 3A/100 > D(P2),

again a contradiction of the definition of D(P2) as a sup.
If a(P) ((-oo, yl) - v((-oo, y]) is negative, then (-oo, y - e] contains at most

as many P;-points as (-oo, y] contains P-points, and this time we get

[It,(P2)((-oo, y - E]) - v((-oo, y - el) I > D(P) - 3A/100

> D(R) + A - 3A/100 > D(PP),

again the same contradiction. QED
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1.1. Expected values of spacing measures

1.1.1. Suppose now that we are given a compact group K, a continuous
unitary representation

p : K U(N),

and an offset c in Z' for some r > 1. Then for each element A in K, we have an
element p(A) in U(N), and its associated spacing measure p(p(A), U(N), offsets c)
on R'. When we wish to emphasize (K, p) rather than the dimension N of p, we
will denote this spacing measure by

p(A, K, p, offsets c) := p(p(A), U(N), offsets c).

We denote by HaarK the normalized (total mass 1) Haar measure on K.

1.1.2. We wish to define a probability measure p(K, p, offsets c) on lRr which
is in a suitable sense the "expected value" (:= integral against HaarK) of the func-
tion

A- u(p(A), U(N), offsets c) = p(A, K, p, offsets c)

from K to the space of probability measures on W.

1.1.3. Here is an entirely elementary way to do this. Each of the func-
tions sj(offsets c) is bounded and Borel measurable on U(N), so each composite
sj (offsets c) o p is bounded and Borel measurable on K. We define

u(K, p, offsets c) :_ (1/N) E(sj(offsets c) o
j

which is visibly a probability measure on R'.
By the very definition of u(K, p, offsets c), for any Borel measurable function

f on R'-, we have the formula

r
f f dp(K, p, offsets c) :=(1/N) J f(s3(offsets c)(p(A)))dHaarxrj x

d Haarx
=Jx ((1/N)>f(si(offsetsc)(P(A))))

r
/\

r
j l

- J [ J r f du(p(A), U(N), offsets c) ] d HaarK .

1.1.4. If the representation p is understood, we will omit it from the notation,
and write p(K, p, offsets c) simply as u(K, offsets c).

1.1.5. In what follows, we will be primarily concerned with the case when K
is one of compact classical groups U(N) or SU(N) or SO(N) or O(N) or, for N
even, the compact form USp(N) of Sp(N), in its standard representation.
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1.2. Existence, universality and discrepancy theorems
for limits of expected values of spacing measures:

the three main theorems

Theorem 1.2.1 (Main Theorem 0). Fix an integer r > 1, and an offset vector
c in Zr. Consider the expected value spacing measure p(U(N), offsets c) on lll''
attached to U(N). There exists a probability measure

p(univ, offsets c)

on ][i;'' to which the measures p(U(N), offsets c) converge as N -> oo, in the sense
that for any R-valued, bounded, Borel measurable function f of compact support on
]I8'', we have

f f dp(univ, offsets c) = lima J f dp(U(N), offsets c)-
IV-

The probability measure p(univ, offsets c) has a continuous cumulative distribution
function.

1.2.2. The use of the notation "univ" (for "universal") is justified by the next
theorem.

Theorem 1.2.3 (Main Theorem 1). Fix an integer r > 1, and an offset vector
c in Zr. Consider the expected value spacing measures p(G(N), offsets c) on W
attached to each of the following sequences G(N) of compact classical groups in
their standard representations:

U(N), SU(N), SO(2N + 1), 0(2N + 1), USp(2N), SO(2N), O(2N).

In each of these sequences of classical groups, the expected value spacing measures
p(G(N), offsets c) converge (in the sense above) to the same limit p(univ, offsets c)
(which by Theorem 1.2.1 above is a probability measure with a continuous CDF).

1.2.4. Fix an integer r > 1, and an offset vector c in Z'. According to
Theorem 1.2.1, p(univ, offsets c) has a continuous CDF. For each N, the [0, 1]-
valued function on U(N)

A H discrep(p(A, U(N), offsets c), p(univ, offsets c))

is therefore continuous on U(N), thanks to Lemma 1.0.11 above. So for any compact
group K and any continuous unitary representation p of K, the [0, 1]-valued function
on K

A i--+ discrep(p(A, K, p, offsets c), p(univ, offsets c))

is continuous on K.

1.2.5. In particular, for K = G(N) any of the compact classical groups in
their standard representations:

U(N), SU(N), SO(2N + 1), 0(2 + 1), USp(2N), SO(2N), 0(2N),

the function

A --r discrep(p(A, G(N), offsets c), p(univ, offsets c))

is a continuous function on G(N), with values in (0,1].
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Theorem 1.2.6 (Main Theorem 2). Fix an integer r > 1, an offset vector c
in Z' and a real number e > 0. There exists an explicit constant N(e, r, c) with the
following property: For G(N) any of the compact classical groups in their standard
representations,

U(N), SU(N), SO(2N + 1), O(2N + 1), USp(2N), SO (2N), 0 (2N),

we have the inequality

G(N)
discrep(µ(A, G(N), offsets c), p(univ, offsets c))d(HaarG(N))

Ne-1/(2r+4)

provided that N > N(e, r, c).

I.S. Interlude: A functorial property of Haar measure
on compact groups

Lemma 1.3.1. Let H and K be compact groups, and Tr : H -+ K a con-
tinuous group homomorphism which is surfective. Denote by HaarH and HaarK
the normalized (total mass 1) Haar measures on H and K respectively. Then
7r,+ HaarH = HaarK as Borel measures on K.

PROOF. Since it is surjective, and HaarH is translation invariant on H, its
direct image rr. HaarH is translation invariant on K. Thus irk HaarH is both trans-
lation invariant on K and of total mass 1, so it must coincide with HaarK. QED

Corollary 1.3.2. Let H be a compact group, r a compact normal subgroup
of H, and K a closed subgroup of H such that H = rK. Then for any bounded
measurable function f on HL which is invariant by r, we have

fdHaarg = IK

PROOF. We consider the quotient H/r ~ K/(r n K). By the lemma above,
we have

f fdHaarH = J fdHaarH/r = f fdHaarK/(rnK)
H H/r / (rnK)

JK f d HaarK . QED

1.4. Application: Slight economies in proving Theorems 1.2.3 and 1.2.6

1.4.0. We apply this last result 1.3.2 as follows. The various spacing measures
attached to an element A of the unitary group U(N) are the same for A and for
AA, for any unitary scalar A in S1, since multiplication by A simply rotates the
eigenvalues, but does not alter their spacings. So for each integer r > 1 and
each offset vector c in Z', the expected values of the "offsets c" spacing measures
will coincide for U(N) and for SU(N). [Take r to be the subgroup of scalars in
H = U(N), and K the subgroup SU(N).] Similarly, the expected values of the
"offsets c" spacing measures wil coincide for O(2N+1) and for SO(2N + 1). [Take
IF to be the subgroup {1, -1} of scalars in H = O(2N + 1), and K the subgroup
SO(2N+1).] This means that the SU(N) case of Theorem 1.2.3 is equivalent to the
U(N) case of it (i.e., to Theorem 1.2.1), and that the SO(2N+ 1) case of Theorem
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1.2.3 is equivalent to the O(2N + 1) case. Similarly, the discrepancy integrals in
Theorem 1.2.6 coincide for U(N) and SU(N), and they coincide for 0(2N + 1) and
SO(2N + 1). This means that the U(N) case of Theorem 1.2.6 is equivalent to the
SU(N) case of it, and that the O(2N + 1) case of Theorem 1.2.6 is equivalent to
the SO(2N + 1) case of it.

1.5. Application: An extension of Theorem 1.2.6

Lemma 1.5.1. Let N be an integer > 1, G(N) C H(N) compact groups in
one of the following four cases:

a) G(N) = SU(N) C H(N) C normalizer of G(N) in U(N),
b) G(N) = SO(2N + 1) C H(N) C normalizer of G(N) in U(2N + 1),
c) G(N) = USp(2N) C H(N) C normalizer of G(N) in U(2N),
d) G(N) = SO(2N) C H(N) C normalizer of G(N) in U(2N).

Let f be any bounded, Borel measurable function on the ambient group (i.e. on
U(N) in case a), on U(2N + 1) in case b), on U(2N) in cases c) and d)) which is
invariant by the subgroup S' of unitary scalars. In cases a), b), and c) we have

fH(N) fdHaar =
J0(N)

fdHaar.

In case d), we have either
!(N)

so

r

J
fdHaar = J fdHaarH(2N)

or

J(N) o
f d Haar =

J(2N)
f d Haar

H

depending on whether or not every element of H(N), acting by conjugation on
SO(2N), induces an inner automorphism of SO(2N).

PROOF. In cases a), b) and c), we claim that the normalizer of G(N) in the
ambient unitary group is S1G(N), while in case d) we claim this normalizer is
S10(2N). It is obvious that the named group normalizes G(N), what must be
shown is that the normalizer is no bigger. In other words, we must show that
H(N) C S1G(N) in cases a), b), c), and we must show H(N) C S10(2N) in case
d).

In case a), S1G(N) is U(N), so there is nothing to prove. In cases b) and c),
use the fact that the Dynkin diagram has no nontrivial automorphisms, so every
automorphism of G(N) is inner. So any h in H(N), acting by conjugation on G(N),
induces conjugation by some element g in G(N). Then h-1g commutes with G(N)
in its standard representation. As this representation is irreducible, h-1g must be
a scalar, and this scalar, being unitary, lies in S1. Thus H(N) C S1G(N).

Case d) requires some additional attention. If N is 1, one argues by inspection.
This case is left to the reader. If N > 2 and N # 4, there is one nontrivial
automorphism of the Dynkin diagram, and it is induced by conjugation by any
element of O_(2N). So any h in H(N), acting by conjugation on SO(2N), induces
conjugation by some element g in O(2N). Repeating the irreducibility argument
given above in the b) and c) cases, we get H(N) C S' 0 (2N).

It remains to examine case d) with N = 4. Here the Dynkin diagram has three
extreme points, and its automorphism group is the group E.3, acting by permutation
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of these three points. Think of these three extreme points as (the highest weights
of) the three 8-dimensional irreducible representations of Lie(SO(8)) (namely the
"standard" one Pstd and the two spin representations). The action of any h in
H(N) preserves the isomorphism class of pstd: indeed, for A in SO(2N) C U(2N),
and h in U(2N) which normalizes SO(2N),

pstd(hAh-1) := hAh-1 = hpstd(A)h-1.

Therefore conjugation by h is either inner, or it interchanges the two spin represen-
tations. In the first case, we have h in S1G(N). In the latter case, use the fact that
any element y_ of 0-(2N) also interchanges the two spin representations. Then
hy_ induces an inner automorphism, and hence hy_ is in S1G(N), whence h lies
in S10(2N), as required, even in the case N = 4.

In cases a), b) and c), the inclusions

G(N) c H(N) c S1G(N)
make clear that we have an equality of groups

S'H(N) = S1G(N).
Using this equality, we apply Corollary 1.3.2 to the situations

H(N) 'C S1H(N) and G(N) C S1G(N)
to infer that

LUV)

= fs'H(N) fdHaar = J fdHaar = J fdHaar,
H(N) JJJS'G(N) G(N)

as required.
In case d), we must distinguish two cases. If H(N) acts on SO(2N) through

inner automorphisms, we have the inclusion

G(N) c H(N) c S'G(N)
and we argue as above. If some h in H(N) induces a noninner automorphism,
then H(N) contains an element of S10_(2N), in which case the inclusion
G(N) C H(N) C S10(2N) forces the equality

S'H(N) = S10(2N),
and we apply Corollary 1.3.2 to the situations

H(N) C S'H(N) and O(2N) C S10(2N). QED

Applying this Lemma 1.5.1 to f the discrepancy function, we get

Corollary 1.5.2. Let N be an integer > 1, G(N) C H(N) compact groups in
one of the following four cases:

a) G(N) = SU(N) C H(N) C normalizer of G(N) in U(N),
b) G(N) = SO(2N + 1) C H(N) C normalizer of G(N) in U(2N + 1),
c) G(N) = USp(2N) C H(N) C normalizer of G(N) in U(2N),
d) G(N) SO(2N) c H(N) C normalizes of G(N) in U(2N).

Let r > 1 be an integer, c in U an offset vector. In cases a), b), c), we have

JH(N)
discrep(j. (A, H(N), offsets c), p,(univ, offsets c))d Haar

discrep(µ(A, G(N), offsets c), p(univ, offsets c))dHaar.
G(N)
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In case d), we have

f discrep(u(A, H(N), offsets c), u(univ, offsets c))d Haar
H(N)

= either

fSO(2N)
or

discrep(g(A, SO(2N), offsets c), u(univ, offsets c))dHaar

discrep(p,(A, O(2N), offsets c), u(univ, offsets c))dHaar,f (2N)

depending on whether or not H(N) acts by inner automorphism on SO(2N).

Thanks to this result 1.5.2, Theorem 1.2.6 yields formally:

Theorem 1.5.3 (Theorem 1.2.6 extended). Suppose Theorem 1.2.6 holds. Let
N be an integer > 1, G(N) C H(N) compact groups in one of the following four
cases:

a) G(N) = SU(N) C H(N) C normalizer of G(N) in U(N),
b) G(N) = SO(2N + 1) C H(N) c normalizer of G(N) in U(2N + 1),
c) G(N) = USp(2N) C H(N) C normalizer of G(N) in U(2N),
d) G(N) = SO(2N) C H(N) C normalizer of G(N) in U(2N).

For any r, c, a as in Theorem 1.2.6, with explicit constant N(s, r, c), we have the
equality

H(N)
discrep(u(A, H(N), offsets c), u( univ, offsets c))dHaar

< Ne-1/(2r+4)

provided that N > N(c, r, c).

I.G. Corollaries of Theorem 1.5.3

Corollary 1.6.1. Fix an integer r > 1, an offset vector c in Zr and a real
number 0 < e < 1/(2r + 4). For any positive real numbers a and /3 with

a+fi=1/(2r+4)-e,
and any N > N(e, r, c), then on H(N) the inequality

discrep(p(A, H(N), offsets c), u.(univ, offsets c) < N`°`

holds outside a set of measure < N-0.

PROOF. If discrep > N-1 on a set of measure > N-3, then already integrat-
ing over this set gives a contribution > N`19 to the integral, which cannot be
cancelled because discrep takes nonnegative values. QED

Corollary 1.6.2. Fix an integer r > I. Let Nn be any sequence of integers
with Nn > n2r+5. For each N > 1, pick one of the groups H(N) listed in Theorem
1.5.3, and form the product space fl,n H(Nn) with its product Haar measure. There
exists a set Z of measure zero in this product such that for every element (An)n
not in Z, and for every offset vector c in Z' , we have the eventual inequality

discrep(u(An, H(Nn), offsets c), u(univ, offsets c)) < n-1/(2r+5)

for alln>>0.
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PROOF. This follows from Corollary 1.6.1 and Borel-Cantelli. In Corollary
1.6.1, take

e = (2r + 5)-2(2r + 4)-1 - (2r + 5) -3 > 0,

a = (2r + 5)-2

Q = (2r + 5) -1 + (2r + 5) -3.

Then a + /3 + e = (2r + 4)-1, (2r + 5)a = (2r + 5)-1, and (2r + 5)/3 > 1. So the
series n(Nn)-15 converges. Fix an offset vector c in Zr. By Borel-Cantelli and
Corollary 1.6.1, in our product space, the sequences (An)n, for which

discrep(p(An, H(Nn), offsets c), p(univ, offsets c)) < Nn
for all n>> 0

form a set of measure one, whose complement we denote Z. Since
(NN)c' > (,n2r+5)c = nl/(2r+5), we have Nn' < n-1/(2r+5). Thus for (A7,),, outside
the set Z Uc Z, of measure zero, and for each offset vector c in Z.r, we have

discrep(p(An, H(Nn), offsets c), p,(univ, offsets c)) < Nn

for all n > 0. QED

1.6.3. We next fix an r > 1 and an offset vector c in Zr, and ask how far the
expected value measure p(H(N), offsets c) is from the limit measure

p(univ, offsets c).

Corollary 1.6.4. Let r > 1 be an integer, c in Zr an offset vector, and E > 0
a real number. For any integer N > N(s, r, c), and H(N) any of the groups listed
in Theorem 1.5.3, we have

discrep(p(H(N), offsets c), p(univ, offsets c)) < NE-1/(2r+4)

PROOF. For brevity, we denote

p := p(univ, offsets c),

µ(N) := p(H(N), offsets c),
µ(A, N) := p.(A, H(N), offsets c).

For any point x in R', we denote by R(x) the rectangle (-oo, x]. We have

Ip(N)(R(x)) - p(R(x))I = f
(N)

(u(A, N)(R(x)) - p(R(x)))dHaar
H

Ip(A, N)(R(x)) - p(R(x))IdHaarf (N)

(Sup, Ip(A, N)(R(y)) - p(R(y))I)dHaarf (N)

fH N)
I discrep(µ(A, N), µ)IdHaar

< NE-1/(2r+4)

Since this holds for all x, we have discrep(p(N), p) < NE-1/(2r+4). QED
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1.7. Another generalization of Theorem 1.2.6

1.7.1. Before stating the generalization, we explain the motivation. Consider,
for an A in U(N), its N normalized eigenvalue spacings

sj := (N121r)(co(j + 1) - cp(j))

If we are interested in the distribution of the sums of two adjacent spacings sj+sj+1,
we look at the "offset 2" spacing measure. But suppose we are interested in the
distribution of the differences of adjacent spacings, sj+l -sj, or more generally in the
distribution of some real linear combination of two adjacent spacings, asj +,)sj+1.
Then what we are asking about is this: take the spacing measures on K2 given
by the offset vector (1, 2), and take their direct images to R1 by the linear map
(x, y) H ax + fly. How do these measures on K1 behave? More generally, we might
take the direct images of our measures on R' by any surjective linear map to an
IRk

1.7.2. Another problem is this. Because we began by considering spacings,
our measures are measures on coordinatized Euclidean spaces W. Our notion of
CDF for measures on R" depends entirely on these chosen coordinates. Conse-
quently, the very notion of discrepancy depends on the choice of coordinates. The
continuity property 1.0.11 of the discrepancy function depends on the fact that
the measure "v" has a continuous CDF, but this property itself depends on the
coordinate system.

1.7.3. It is in order to deal with these two problems that we give the following
generalization of Theorem 1.2.6. Before stating it, we make a somewhat ad hoc
definition.

1.7.4. Given an integer r > 1, we say that a C1-diffeomorphism

x = (x,,...,X ) ~
is of bounded distortion if it is "bi-bounded" in the sense that there exist strictly
positive real constants , and q such that

77EIxil SEIoi(x)l <- ry: Ixil.
The basic example we have in mind of such a cp is a linear automorphism of R''.

1.7.5. Given a second integer k > 1 with k < r, we say that a C1 map
it:Rr -fIk

is a C1 partial coordinate system of bounded distortion if there exists a C1-diffeo-
morphism

of bounded distortion such that, denoting by

pr[{1, 2, ... , k}] : R' --4R k

the projection onto the first k coordinates, we have

7r=pr[{1,2,...,k}]ocp.

The basic example we have in mind of such a it is a surjective linear map.
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Theorem 1.7.6. Let r > 1 an integer, bin Zr a step vector with corresponding
separation vector a and offset vector c. Denote

'U := A(univ, offsets C).

Suppose given an integer k with 1 < k < r, and a surjective linear map

or, more generally, a partial C' coordinate system of bounded distortion
ir:IR',Rk

1) The measure 7r.jt on IRk is absolutely continuous with respect to Lebesgue
measure, and (hence, by 2.11.18) has a continuous CDF.

2) Given any real E > 0, there exists an explicit constant N(E, r, c, ir) with the
following property: For G(N) any of the compact classical groups in their standard
representations,

U(N), SU(N), SO(2N + 1), O(2N + 1), USp(2N), SO(2N), O(2N),

and for

µ(A, N) := i(A, G(N), offsets c), for each A in G(N),

we have the inequality
Lumir

, %J discrep(7r.,u(A, N), 7r.µ)d(Haarc(N)) < NE-1/(2r+4)

G(N)

provided that N > N(e, r, c,1r).

Theorem 1.7.6 will be proven in 7.1. It immediately implies:

Theorem 1.7.7. Let G(N) C H(N) be compact groups in one of the following
four cases:

a) G(N) = SU(N) C H(N) C normalizer of G(N) in U(N),
b) G(N) = SO(2N + 1) C H(N) c normalizer of G(N) in U(2N + 1),
c) G(N) = USp(2N) C H(N) C normalizer of G(N) in U(2N),
d) G(N) = SO(2N) C H(N) C normalizer of G(N) in U(2N).
For E, r, c, 7r as in Theorem 1.7.6, with explicit constant N(e, r, c, 7r), we have

the inequality

J discrep(ir u(A, H(N), offsets c), 7r. (univ, offsets c))d Haar
H(N)

< NE- 1/(2r+4)

provided that N > N(E, r, c, ir).

PROOF. The proof is identical to that of Theorem 1.5.3. QED

1.7.8. Exactly as in 1.6, Theorem 1.7.7 has the following three corollaries.

Corollary 1.7.9. Hypotheses and notations as in Theorem 1.7.7, for any real
numbers a and /j with

a+J3=1/(2r+4)-E,
and any N > N(e, r, c, 7r), then on H(N) any of the groups listed in Theorem 1.7.7,
the inequality

discrep(Tr.µ(A,H(N), offsets c)

of measure < N-0.
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Corollary 1.7.10. Fix an integer r > 1, an integer k with 1 < k < r, and
a surjective linear map Tr :

Rr
. 1Rk. Let N be any sequence of integers with

Nn > n2r+5 For each N > 1, pick one of the groups H(N) listed in Theorem
1.7.7, and form the product space fn H(N,,) with its product Haar measure. There
exists a set Z of measure zero in this product such that for every element (An)n
not in Z, and for every offset vector c in Zr, we have the eventual inequality

discrep(7r.µ(An,H(Nn), offsets c),7r.p(univ, offsets c)) < -1/(2r+5)
for all n >> 0.

Corollary 1.7.11. Hypotheses and notations as in Theorem 1.7.7, for any
integer N > N(E, r, c, 7r), and H(N) any of the groups listed in Theorem 1.7.7, we
have

discrep(7r.p(H(N), offsets c),7r.p(univ, offsets c)) < NE-1/(2r+4).

1.8. Appendix: Continuity properties of "the i'th eigenvalue"
as a function on U(N)

1.8.1. Given a nonempty set Z C C, and an integer N > 1, denote by PN,Z
the set of those monic polynomials of degree N in C[T] all of whose roots lie in Z.
Thus PN,r is the space of all monics of degree N in C[T], which we topologize by
viewing it as the space CN of coefficients, C with its usual topology. We topologize
PNv,z by viewing it as a subset of PN,C.

Lemma 1.8.2. If Z is bounded in C (resp. closed in C, resp. compact), then
'PN, Z is bounded in PN,c (resp. closed in Plv,e, resp. compact).

PROOF. If Z is bounded, the set PN,z is bounded, because the coefficients of
any element of PN,z are elementary symmetric functions of its N roots, all of which
lie in the bounded set Z.

Suppose Z is closed. To show that PN, z is closed in PN,o, we must show that
if f f,),, is a sequence of elements of PN,z which converges coefficientwise to some
monic polynomial f, then f has all its roots in Z. Suppose not, and let a not in Z
be a root of f . Then f,, (a) converges to f (a) = 0. But since a is not in the closed
set Z, its distance to Z, d(a, Z), is > 0. In particular, for any z in Z, we have

[a - zI > d(a, Z).

So for any g in PN.Z, say g(T) = fl(T - zz), we have

Ig(a)I = fI Ia - ziI > dist(a, Z)N.

Applying this to g = fn, we get I fn(a)I > dist(a, Z)N, so all the I fn(a)I are uni-
formly bounded away from zero, and hence the fn(a) do not converge to
1 (a) = 0.

The compactness assertion results from the first two, since in both C and C ',
compact is closed and bounded. QED

Lemma 1.8.3. Let a < b < a + 2Tr be real numbers, and denote by Z[a, b] the
closed interval in the unit circle which is the isomorphic image of the closed interval
[a, b] by the map x'--r exp(ix). Fix N > 1. Denote by [a, b]N(ordered) the subset of
[a, b]N consisting of those N-tuples (cpl, ... , (pn) of elements of [a, b] which satisfy

a < p(1) 5 cp(2) < ... < ,p(N) < b.
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Then the map

[a, b] N (ordered) ' PN, Z [a, b],

a < cp(1) < ci(2) < < cp(N) < b - fl(T - exp(icp(j)))
i

is bicontinuous. In particular, for 1 < i < N, the rule which to f in PN,Z[a,b]
attaches W(i) is a continuous function on PN,z(a,b]

PROOF. The source [a, b]'(ordered) is closed in the compact space [a, b]N, be-
ing defined by < inequalities, hence the source is compact. Thus both source and
target are compact. The map is obviously continuous, and obviously bijective.
Therefore it is bicontinuous. QED

Lemma 1.8.4. Fix a real number a. Consider the bijective map from PN,Si to
the space [a, a + 27r) N (ordered) which to f in PN,Si attaches the unique increasing
sequence of angles in [a, a + 27r),

a < W(1) < p(2) < < cp(N) < a + 27r,

such that

f (T) = fl(T - exp(up(j)))_
j

(1) This map is continuous on the open set P'r,sl-{et°} of PN:S' consisting
of those f with f (eia) # 0, and induces a homeomorphism from P,v,sl-{e'.} to
(a, a + 27r) N (ordered).

(2) For each integer k > 1, denote by Wk the locally closed set in PN,s' consist-
ing of those f which have a zero at T = eia of exact multiplicity k. This bijection
is continuous on Wk.

PROOF. It suffices to treat the case a = 0.
(1) Any element f in PN,St-{1} lies in PN,Z[E,2a-E] for some c > 0. If f --+ f

is a Cauchy sequence in PN,SI, we claim that each fn, itself lies in PN,Z[E/2,2a-E/2]
as soon as n >> 0. To see this, take any point a in Z[-e/2,,-/2]- Then we have

dist(a, Z[e, 27r - E]) > e/7r (the circular distance is > e/2),

and hence our f in PN,Z[e,2a-E] satisfies

If (a) I ? dist(a, Z[e, 27r - E])N > (E/7r)N.

But if f, is within b of f coefficient by coefficient, then for any a in S1 we have
I f.(a) - f(a)I < NS (because f,, - f has degree < N - 1, and all coefficients at
most S in absolute value). So if we choose S so small that NS < (E/7r)N, and n >> 0
so that f, is within S of f, then f,,(a) # 0 for any a in Z[-e/2, c, 2]. In particular,
each such fn, lies in PN,Z[E/2,2,,-E/2]

Because any Cauchy sequence in PN,S' which converges to an element of
PN,si-{1} has all far out terms in a single closed set PN,z[E,2 -E}, for some c > 0;
a function from PN,s, -{1} to a metric space is continuous if and only if its restric-
tion to each closed set PN,z[E,2n-E], e > 0, is continuous. Since the angles defined
using [0, 21r) are continuous on each E > 0, they are continuous on
PN,S1-{1}, as asserted.

(2) On the one point set WN, there is nothing to prove. On Wk, with k < N,
W(1) through o(k) are identically zero. Division by (T- 1)k is a continuous bijection
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from Wk to PN-k,s1-{1} For each i > 1, the function cp(i + k) on Wk is the
composition cp(i + k) (f) = Bp(i) (f I(T - 1)k) of the continuous (thanks to part (1))
function Bp(i) on PN-k,sl-{1} with the division map. QED

Corollary 1.8.5. On U(N), the N angles cp(i) defined using [0, 2ir) are contin-
uous on the open set U(N)[1/det(1-A)] of U(N) where 1 is not an eigenvalue. They
are also continuous on each of the N locally closed sets Mu1t=i of U(N) where 1
is a zero of the characteristic polynomial of fixed multiplicity i > 1. In particular,
they are all Borel measurable functions on U(N).
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CHAPTER 2

Reformulation of the Main Results

2.0. "Naive" versions of the spacing measures

2.0.1. Fix r > 1, and an offset vector c = (c(1),...,c(r)) in V. We do
not know how to do explicit calculations, say of expected values, with the spacing
measures p.(A, G(N), offsets c) we have defined. The problem is caused by the fact
that the eigenvalues of A lie on a circle, not on a line. For this reason, we will
define, case by case for each N > c(r), measures p.(naive, A, G(N), offsets c) on I8"
which have total mass slightly (when N >> 0) less than 1, but which are much
better adapted to calculation because they only involve points on a line.

2.0.2. The U(N) case. Here we assume N > c(r). Attached to A in U(N)
are its N angles in 10, 27r),

Here we use only the first N - c(r) of the normalized spacing vectors sz (offsets c),
i = 1, ... , N - c(r), i.e., precisely those which don't require wrapping around the
unit circle.

We define
N-c(r)

p(naive, A, U(N), offsets c) :_ (1/N) E (delta measure at sj(offsets c)),
j-i

a measure of total mass (N - c(r))/N on R .

2.0.3. The USp(2N) case. Here we assume N > c(r). The eigenvalues of A
in USp(2N) occur in N complex conjugate pairs, which we may write uniquely as
efiw(j) with N angles in [0, 7r],

0 < V(1) < cp(2) < ... < W(N) < 7r.

Each of these angles <p(i) is a continuous function of A in USp(2N).
For 1 < i < N -- c(r), we define the naive normalized spacing vectors

si (naive, offsets c) in terms of these angles in [0, 7r] by

s, (naive, offsets c)

(N/T)(P(i+c(1))- i(i),
We define

p.(naive, A, USp(2N), offsets c)
N-c(r)

_ (1/N) (delta measure at sj(naive, offsets c)),
j-1

a measure of total mass (N - c(r))/N on W.

35
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2.0.4. The SO(2N + 1) case. Here we assume N > c(r). In SO(2N + 1), 1
is an eigenvalue of every element A. The remaining eigenvalues of A occur in N
complex conjugate pairs, which we may write uniquely as eli`'(j) with N angles in
[0, 7r],

0<<p(1)5 <p(2)<...<cp(N)<7r.
Each of these angles W(i) is a continuous function of A in SO(2N + 1).

For 1 < i < N - c(r), we define the naive normalized spacing vectors
si (naive, offsets c) in terms of these angles in [0, ir] by

si(naive, offsets c):=

((N+I/2}/ )(w(i+
We define

µ(naive, A, SO(2N + 1), offsets c)
N-c(r)

_ (1/(N+ 1/2)) (delta measure at sj(naive, offsets c)),
j=1

a measure of total mass (N - c(r))/(N + 1/2) on 1[l;r.

2.0.5. The SO(2N) case. Here we assume N > c(r). The eigenvalues of A
in SO(2N) occur in N complex conjugate pairs, which we may write uniquely as
eli`P(j) with N angles in [0, ir],

0 < <p(1) < p(2) < < w(N) < in.

Each of these angles Bp(i) is a continuous function of A in SO(2N).
For 1 < i < N - c(r), we define the naive normalized spacing vectors

si (naive, offsets c) in terms of these angles in [0, ir] by
si(naive, offsets c) :=

,w(i+c(r))-W(i+c(r-1))).
We define

u(naive, A, SO(2N), offsets c)
N-c(r)

(1/N) (delta measure at sj(naive, offsets c)),
j=1

a measure of total mass (N - c(r))/N on Rr.

2.0.6. The O_ (2N+2) case. We assume N > c(r). We denote by O_ (2N+2)
the set of elements in O (2N + 2) of determinant -1. Of course O_ (2N + 2) is not a
group, but rather a principal homogeneous space under SO(2N+2), and O(2N+2)
is the disjoint union

O(2N + 2) = SO(2N + 2) U O_ (2N + 2).

We will denote by Haaro_ (2N+2) the restriction to O_ (2N + 2) of Haar measure
on O(2N + 2), but normalized so that O_ (2N + 2) has measure 1.

Any element A in O_ (2N+2) has both 1 and -1 as eigenvalues. The remaining
eigenvalues of A occur in N complex conjugate pairs, which we may write uniquely
as eti`P(j) with N angles in [0, ir],

0 < W(1) < <p(2) < < v(N) < ir.

Each of these angles W(i) is a continuous function of A in O_ (2N + 2).
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For 1 < i < N - c(r), we define the naive normalized spacing vectors
si (naive, offsets c) in terms of these angles in [0, 7r] ,by

s;(naive, offsets c)

(N1i)(cv(i+c(1))- P(i+c(r))-,p(i+c(r-1)))-

We define
..(naive, A, O_ (2N + 2), offsets c)

N-c(r)
(1/(N+ 1)) (delta measure at sj(naive, offsets c)),

j=1

a measure of total mass (N - c(r))/(N + 1) on IR'.

2.0.7. This concludes the case by case definition of the naive spacing measure
.(naive, A, G(N), offsets c) on IR', for c an offset vector in Zr, and N > c(r).
Denote by a and b in Z' the separation and step vectors corresponding to the offset
vector c. We will sometimes name this same measure by its a or b:

y(naive, A, G(N), separations a) := tc(naive, A, G(N), offsets c),

..(naive, A, G(N), steps b) .,(naive, A, G(N), offsets c).

[In following these measures under direct image by certain linear maps, it is the
"steps b" nomenclature which is most convenient. In expressing them as alternat-
ing sums of "correlations", it is the "separations a" nomenclature which is most
convenient.]

2.1. Existence, universality and discrepancy theorems
for limits of expected values of naive spacing measures:

the main theorems bis

2.1.1. Fix an integer r > 1, and an offset vector c in Zr. For N > c(r), and
G(N) any of U(N), SO(2N + 1), USp(2N), SO(2N), O_(2N + 2), we have defined
a naive spacing measure

..(naive, A, G(N), offsets c),

which is a positive Borel measure on Rr of total mass

(N - c(r))/N for U(N), USp(2N), SO(2N),

(N - c(r))/(N + 1/2) for SO(2N + 1),

(N - c(r))/(N + 1) for O_ (2N + 2).

By integration over G(N) with respect to normalized Haar measure, we define its
expected value

,u(naive, G(N), offsets c),

which is a positive Borel measure on IR' of total mass given above.

Theorem 2.1.2 (Theorem 1.2.1 bis). Fix an integer r > 1, and an offset vec-
tor c in Zr. For each N > c(r), consider the expected value measure

.(naive, U(N), offsets c) on Rr

attached to U(N). As N -4 oo, these measures tend to a probability measure

..(naive, univ, offsets c)
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in the sense that for any R-valued, bounded, Bored measurable function f of compact
support on ]E8r, we have

J
f dp(naive, univ, offsets c) = rlimo

J
f dp(naive, U(N), offsets c).

The probability measure u(naive, univ, offsets c) has a continuous CDF.

Theorem 2.1.3 (Theorem 1.2.3 bis). Fix an integer r > 1, and an offset vec-
tor c in Zr. For each N > c(r), consider the expected value spacing measures

p(naive, G(N), offsets c)

on R' attached to G(N) one of

U(N), SO(2N + 1), USp(2N), SO(2N), 0-(2N+2).

In each of these sequences, the expected value spacing measures

p(naive,G(N), offsets c)

converge (in the sense above) to the same limit measure

p(naive, univ, offsets c),

which is a probability measure with continuous CDF.

2.1.4. Fix an integer r > 1, and an offset vector c in Z'. For N > c(r), and
G(N) one of U(N), SO(2N+1), USp(2N), SO(2N), O_(2N+2), the [0,1]-valued
function on G(N)

A . -* discrep(p(naive, A, G(N), offsets c), p(naive, univ, offsets c))

is Borel measurable. For G(N) = U(N), it is continuous on the open set of full
measure U(N)[1/det(1 - A)]. For the other G(N), this function is continuous on
all of G(N) (because in all the non-U(N) cases, the individual angles Bp(i) in [0, rr]
are each continuous functions on G(N)).

Theorem 2.1.5 (Theorem 1.2.6 bis). Fix an integer r > 1, an offset vector c
in zr and a real number e > 0. There exists an explicit constant N, (C, r, c) with
the following property: for G(N) one of

U(N), SO(2N + 1), USp(2N), SO(2N), 0-(2N + 2),

and dA its total mass one Haar measure, we have the inequality

discrep(p(naive, A, G(N), offsets c),,u(naive, univ, offsets c)) dAf (N)

NE-1/(2r+4)

provided that N > N1(E, r, c).

2.2. Deduction of Theorems 1.2.1, 1.2.3 and 1.2.6
from their bis versions

Lemma 2.2.1. If Theorem 2.1.2 is true, then Theorem 1.2.1 is true, and the
limit probability measure p(univ, offsets c) of Theorem 1.2.1 is equal to the limit
probability measure p(naive, univ, offsets c) of Theorem 2.1.2.
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PROOF. The naive spacing measure t(naive, A, U(N), offsets c) differs from
ts(A, U(N), offsets c) in that it omits c(r) of the . spacing vectors, each of mass
1/N. So for any Borel measurable function f on Rr of compact support whose sup
norm is bounded by 1, we have the inequality

if U(N), offsets c) - JfdL(naive, A, U(N), offsets c) I < c(r)/N.

Integrating this inequality over U(N), we get the inequality

Jfdii(U(N), offsets c) - Jfdi(naive, U(N), offsets c)I < c(r)/N.

Let N - oo. According to Theorem 2.1.2,

ff dµ(naive, U(N), offsets c) --+ Ji d r(naive, univ, offsets c).

Since c(r)/N -+ 0 as N -+ oo, we deduce that

J f dp(U(N), offsets c) -4 Ji dp(naive, univ, offsets c).

As this holds for all f as above, we see that Theorem 1.2.1 holds, with limit measure
p(naive, univ, offsets c). QED

2.2.2. Before we deduce Theorems 1.2.3 and 1.2.6 from their bis versions, we
need to discuss a certain symmetry of R', namely the "reversing" map

rev: Rr Rr, rev(x1 i x2, ... , xr) (xr, xr-1 i ... , XI).

For r = 1, rev is the identity; for r > 2, rev is an involution.

2.2.3. Given a measure v on R', we denote by rev, v the measure

rev v(E) = v(rev-1(E)) = v(rev(E)),

the last equality because rev2 = id.

Lemma 2.2.4. Fix an integer r > 1, and an offset vector c in Zr. For every N,
the expected value spacing measure p.(U(N), offsets c) is invariant under reversal:

rev, p(U(N), offsets c) = p(U(N), offsets c).

PROOF. For A in U(N), its complex conjugate A has the complex conjugate
eigenvalues. So the N spacing vectors si(offsets c) for A are just the reversals of
those for A, listed in another order (the opposite order, if A has no eigenvalue 1).
Therefore their spacing measures are related by

p.(A, U(N), offsets c) = rev p.(A, U(N), offsets c).

Since A -- A is an automorphism of U(N), the normalized Haar measure on U(N)
is invariant under A Therefore the two measure-valued functions on U(N),

A F-+ p(A, U(N), offsets c)

and

A '--+ p.(A, U(N), offsets c) = rev p,(A, U(N), offsets c),

have the same expected value over U(N). QED
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Corollary 2.2.5. Suppose Theorem 1.2.1 holds. Then for every r > 1 and
every offset vector c in Z, the limit measure p.(univ, offsets c) is invariant under
reversal:

rev. g(univ, offsets c) = p.(univ, offsets c).

PROOF. By Theorem 1.2.1, p,(U(N), offsets c) -+ ki(univ, offsets c) as
N - oo. Applying reversal, we get

rev, u.(U(N), offsets c) - rev, p(univ, offsets c) as N --> oo.

But rev. p(U(N), offsets c) = g(U(N), offsets c). QED

Corollary 2.2.6. Suppose Theorem 2.1.3 holds. Then for every r > I and
every offset vector c in Zr' the limit measure p(naive, univ, offsets c) is invariant
under reversal.

PROOF. Theorem 2.1.3 implies Theorem 2.1.2, which in turn, by 2.2.1, implies
that Theorem 1.2.1 holds and that y(naive, univ, offsets c) is equal to
la.(univ, offsets c). Now apply the above corollary 2.2.5. QED

Lemma 2.2.7. Fix an integer r > 1, and an offset vector c in fir. For
N > c(r) and G(N) any of SO(2N + 1), USp(2N), SO(2N), 0-(2N + 2), the
measures µ(A, G(N), offsets c) and p.(naive, A, G(N), offsets c) are related as fol-
lows:

µ(A,G(N), offsets c)
= 1/2(µ(naive, A, G(N), offsets c) + rev. p(naive, A, G(N), offsets c))

+ (a positive Borel measure of total mass < (1 + c(r))/N). .

PROOF. For A in USp(2N).or SO(2N), the 2N eigenvalues occur in conjugate
pairs, N in the top half of the unit circle (i.e., angles in [0, ir]) and their N mirror
images in the bottom half of the unit circle. Our definition of the naive spacing
measure made use of those in the top half. Its reversal is precisely what we would
make using the spacings in the bottom half. In averaging them, we still omit the
2c(r) spacings which involve both top and bottom eigenvalues, each with mass
1/2N.

For A in SO(2N + 1), 1 is an eigenvalue, and the other 2N eigenvalues fall
into N pairs as above. This time the average of top and bottom omits 1 + 2c(r)
spacings, each with mass 1/(2N + 1).

For A in O_ (2N + 2), both ±1 are eigenvalues, and the other 2N eigenvalues
fall into N pairs as above. This time the average of top and bottom omits 2 + 2c(r)
spacings, each with mass 1/(2N + 2). QED

Corollary 2.2.8. Fix an integer r > 1, and an offset vector c in Zr. For
N > c(r) and G(N) any of SO(2N + 1), USp(2N), SO(2N), 0-(2N + 2), the
expected values p.(G(N), offsets c) and p.(naive, G(N), offsets c) are related as fol-
lows:

Ea(G(N), offsets c)

= 1/2(p.(naive, G(N), offsets c) + rev. p.(naive, G(N), offsets c))

+ (a positive Borel measure of total mass < (1 + c(r))/N).

PROOF. Integrate the previous Lemma 2.2.7 over G(N). QED
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Lemma 2.2.9. If Theorem 2.1.3 holds, then Theorem 1.2.3 holds, and the
limit probability measure p(univ, offsets c) of Theorem 1.2.3 is equal to the limit
probability measure p(naive, univ, offsets c) of Theorem 2.1.3.

PROOF. Suppose Theorem 2.1.3 holds. In view of Lemma 2.2.1 above and the
discussion 1.4.0, it suffices to prove Theorem 1.2.3 for the cases G(N) = SO(2N+1),
USp(2N), SO(2N), and 0_(2N) (these last two together trivially give the O(2N)
case).

By Theorem 2.1.3, we know that as N - oo, we have

p(naive, A, G(N), offsets c) -i p(naive, univ, offsets c).

c-aezc

Since p(naive, univ, offsets c) is invariant under reversal, by 2.2.6, we get

rev u(naive, G(N), offsets c) -; p(naive, univ, offsets c).

The assertion now follows from the above Corollary 2.2.8. QED

Lemma 2.2.10. Theorems 2.1.3 and 2.1.5 together imply 1.2.6.

PROOF. By Theorem 2.1.3, there is no need to distinguish between the mea-
sures p(naive, univ, offsets c) and p(univ, offsets c): they are equal. So we may and
will compute discrepancy from g(univ, offsets c). We begin with the case of U(N).
As already remarked in the proof of Lemma 2.2.1, p(naive, A, U(N), offsets c) dif-
fers from p(A, U(N), offsets c) in that it omits c(r) of the spacing vectors, each of
mass 1/N. In particular, the discrepancy between them is bounded by c(r)/N. So
by the triangle inequality for discrepancy (sup norm for differences of CDF's), we
have the inequality

discrep(p(A, G(N), offsets c), p(univ, offsets c))

< c(r)/N + discrep(p(naive, A, U(N), offsets c), p(univ, offsets c)).

Pick E > 0. Integrating over U(N), and using Theorem 2.1.5, we get

JC(N)
discrep(p(A, G(N), offsets c), p(univ, offsets c))d(Haarc(N))

< c(r)/N + N/2-1/(2r+4)

provided that N > N1 (E/2, r, c). But clearly there exists an explicit constant
M(E, r, c(r)) such that if N > M(E, r, c(r)), we have

(1 + c(r))/N + NE/2-1/(2r+a) < NE-1/(2r+4)

So Theorem 1.2.3 holds for U(N), with

N2(, r, c) := Sup(N1(E/2, r, c), M(E, r, c(r))).

Clearly there exists an explicit constant M1 (E, r) such that for N > M1 (E, r),
we have

(N - 1)e/2-1/(2r+4) < NE-1/(2r+4)

We define

N(E, r, c) := 1 + Sup(N2(e/2, r, c), M1 (E, r)).
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With this choice of N(e, r, c), one sees easily that Theorem 1.2.6 holds for the
other G(N) as well. The key in these cases is the relation 2.2.7:

p(A, G(N), offsets c)

= 1/2(,u(naive, A, G(N), offsets c)+rev,,u(naive,A,G(N), offsets c))
+ (a positive Borel measure of total mass < (I + c(r))/N),

together with the reversal invariance of µ(univ, offsets c), thanks to which we have
the equality of discrepancies

discrep(A(naive, A, G(N), offsets c), p,(univ, offsets c))

= discrep(rev. µ(naive, A, G(N), offsets c), p,(univ, offsets c)).

Using these together with the triangle inequality, we find that

discrep(g(A, U(N), offsets c),p.(univ, offsets c))

< (I + c(r))/N + discrep(jc(naive, A, G(N), offsets c), p(univ, offsets c)),

and the argument proceeds exactly as in the U(N) case. This proves Theorem
1.2.6 for SO(2N + 1), USp(2N), SO(2N) and O_ (2N + 2). [Indeed, in these cases
N2(e, r, c) would already work as our N(e, r, c). We only need the more conservative
N(e, r, c) defined above to handle the O_(2N) = O(2(N -1) +2) case.] As already
explained, the SU(N) and O(2N + 1) cases result formally from the U(N) and
SO(2N + 1) cases. The O(2N) case of Theorem 1.2.6 is just the average of the
SO(2N) and the O_ (2N) = O(2(N - 1) + 2) cases. QED

2.3. The combinatorics of spacings of finitely many points on a line:
first discussion

2.3.1. We give ourselves an integer N > 2 and a set X of N points on the
real line, in increasing order,

X : x(1) < x(2) < ... < x(N).

Formally, X is a nondecreasing map from the set {1, ... , N} to R. But we will
often speak of X as though it were a subset of 1[2 of cardinality N, which, strictly
speaking, is only correct if all the x(i) are distinct.

2.3.2. We fix a real number s > 0, and ask ourselves how many pairs of
adjacent, or 0-separated, points in X are at distance s from each other, i.e., how
many pairs of indices 1 < i < j < N are there for which

x(j)-x(i)=s and j-i=1?
We call this number Sep(O)(s).

2.3.3. We also ask how many pairs of points in X (not necessarily adjacent)
are at distance s from each other, i.e., how many pairs of indices 1 < i < j < N
are there for which

x(j)-x(i)=s?
We call this number Clump(0)(s).
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2.3.4. More generally, for each integer a > 0, we ask how many pairs of a-
separated points in X are at distance s from each. other, i.e., how many pairs of
indices 1 < i < j < N are there for which

x(j) -x(i) =s and j - i = a + l?

We call this number Sep(a)(s).

2.3.5. We also ask how many subsets of X of cardinality a+2 are there whose
endpoints are at distance s from each other, i.e., how many a + 2 tuples of indices
1 < i(O) < i(1) < . < i(a + 1) < N are there for which

x(i(a + 1)) - x(i(0)) = s?

We call this number Clump(a)(s).

2.3.6. Obviously, both Sep(a)(s) and Clump(a)(s) vanish if a >> 0 (in fact,
ifa>N-2).

2.3.7. The equations whose solutions are counted by Sep(a)(s) and
Clump(a)(s) make sense for all real s, but obviously have no solutions for s < 0.
So we define

Sep(a)(s) = Clump(a)(s) = 0 if s < 0.

Lemma 2.3.8. For every integer a > 0, we have the identity

Clump(a)(s) _ E Binom(b, a) Sep(b)(s).
b> a

PROOF. Clump(a) (s) is the number of (a + 2)-tuples of indices

1 < i(0) < i(1) < . < i(a + 1) <N
for which

x(i(a + 1)) - x(i(0)) = s.

Consider such an (a+2)-tuple. Its two endpoints are b := i(a+1)-1-i(0) separated
and at distance s, so these two endpoints are counted in Sep(b)(s). Between these
endpoints we have chosen one of the Binom(b, a) subsets of cardinality a of the b
intervening points. QED

Corollary 2.3.9. We have the identities of generating polynomials in an in-
determinate T,

E Clump(a)(s)Ta = Sep(b)(s) (1 + T)b,
a>O b>o

E Sep(b) (s)Tb = > Clump(a) (s) (T - 1)a.
b>O a>o

PROOF. The first identity is, coefficient by coefficient, the identity of Lemma
2.3.8. The second identity is obtained from the first by the change of variable
T'-T-1. QED

Equating coefficients of like powers of T on both sides of the second identity,
we obtain
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Corollary 2.3.10. For each integer a > 0, we have the identity

Sep(a)(s) = E(-1)n-a Binom(n, a) Clump(n)(s).
n>a

Key Lemma 2.3.11. For each integer a > 0 and each integer m > a, we have
the inequalities

m

1:(-I)n-a Binom(n, a) C1ump(n)(s) < Sep(a)(s) if m - a is odd,
n=a

m
Sep(a)(s) < E(-l)'`a Binom(n,a) Clump(n)(s) if m - a is even.

n=a

PROOF. Fix m > a. According to the previous corollary, we have

Sep(a)(s) = 1:(-1)n-a Binom(n, a) Clump(n)(s)
n>a

m

= E (-1)'-' Binom(n, a) Clump (n) (s)
n=a

+ (-1)n-a Binom(n, a) Clump(n)(s).
ve> m+l

So we must show that the tail has the correct sign, i.e., that

(-1)m+1-a E (-1)n-a Binom(n, a) Clump(n) (s) > 0,
n>mm4-1

(-1)n-'-1 Binom(n, a) Clump(n)(s) > 0.
n> m+1

We use Lemma 2.3.8 to write Clump in terms of Sep, and this becomes

Binom(n, a) 1: Binom(b, n) Sep(b)(s) > 0,
n>m+1 b>n

i.e.,

b

Sep(b)(s) E (-1)n-m-1 Binom(b,n) Binom(n,a) 2 0.
b>m+l n=m+1

Since each term Sep(b)(s) is nonnegative, it suffices to show that for fixed
b>m+l >a,we have

b

Binom(b, n) Binom(n, a) > 0.
n=m+1

At this point we make use of

Sublemma 2.3.12. For 0 < a < n < b, we have the identity

Binom(b, n) Binom(n, a) = Binom(b, a) Binom(b - a, n - a).

PROOF. Write binomial coefficients as ratios of factorials. QED
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Using the sublemma, this becomes

b

E (_1)n-m-1 Binom(b, a) Binom(b - a, n - a) > 0.
n=m+1

Factoring out Binom(b, a), this becomes

b

(-1)n-77'-1 Binom(b - a, n - a) > 0.
n=m+1

In terms of the quantities k := n - a, j := in + 1 - a, and l := b - a, this becomes

>(-1)k-i Binom(l, k) > 0.
k=j

This positivity results from

Sublemma 2.3.13. For integers 1 < j G 1, we have

E(-1)k-j Binom(l, k) = Binom(l - 1, j - 1).
k=j

PROOF. This is Pascal's triangle, read backwards. Explicitly, we have

Binom(l, k) = Binom(l - 1, k) + Binom(l - 1, k - 1).

So our sum telescopes:

I

>(-1)k -j Binom(l, k)
k=j

_ (-1)k-J Binom(l - 1, k) + >(-1)k-j Binom(l - 1, k - 1).
k=j k=j

In the first sum, the last (k = 1) term vanishes, and for k < Z the k'th term of the
first sum cancels the (k + 1)'st term of the second, leaving only the first (k = j)
term in the second sum. QED, for both 2.3.13 and 2.3.11.

2.4. The combinatorics of spacings of finitely many points on a line:
second discussion

2.4.1. We continue with our given integer N > 2 and our given set X of N
points on the real line, in increasing order,

X : x(1) < x(2) < . . . < x(N).

2.4.2. Fix an integer r > 1, and a vector s = (s(1),...,s{r)} in R7.
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2.4.3. Suppose we are given an offset vector c,

C = (C(1), . . . , C(r)),

in Zr, and the corresponding separation vector a,

a(1) = c(1) - 1, a(i) = c(i) - 1 - c(i - 1) for i > 2.

Using this data, we will now define two nonnegative integers

Sep(a)(s) and Clump(a)(s)

in such a way that for r = 1, these are exactly the quantities of the same name
discussed in the previous section. It will be obvious from the definitions that

Sep(a)(s) = Clump(a)(s) = 0 unless s has all s(i) > O.

2.4.4. Clump(a)(s) is the number of systems of indices

1 < i(0) < i(1) < ... < i(c(r)) < N

for which we have

x(i(c(1))) - x(i(0)) = s(1)

and

x(i(c(j))) - x(i(c(j - 1))) = s(j) for j = 2,...,r.

2.4.5. Sep(a)(s) is the number of systems as above which satisfy in addition
the requirement that

i(j)-i(j-1)=1 for j = 1,...,c(r).

2.4.6. We can also describe Sep(a)(s) as the number of systems of indices

1 < k(0) < k(1) < ... < k(r) < N

such that

and

and which satisfy

x(k(1)) - x(k(0)) = s(1)

x(k(j)) - x(k(j - 1)) = s(j) for j = 2,...,r,

k(1) - k(0) = c(1),

k(j)-k(j-1)=c(j) forj=2,...,r.
[Given the indices i(j) for j = 0,...,c(r), define k(0) = i(0), k(j) = i(c(j))

for j = 1,...,r. Given the indices k(j) for j = 0,...,r, define i(0) = k(0),

i(c(j)) = k(j) for j = 1, ... , r; there is then a unique way to define the terms
i(d) for the remaining values ofd so that i(I) - i(I - 1) = 1 for I = 1, ... , c(r).]

2.4.7. In order to state the analogues in this more general context of the
identities and inequalities given above for r 1 in the "first discussion" 2.3, we
will make use of the following notation.



C
/]

.32

°'o

r-1

2.4. COMBINATORICS OF SPACINGS: SECOND DISCUSSION 47

2.4.8. Given a = (a(1),...,a(r)) and b = (b(1),...,b(r)) in Z', we say that

a>0ifa(i)>0foreach i. We say that a>bifa-b>0. Ifa>0andb>0,we
write - -

r
Binom(b, a) := fj Binom(b(i), a(i)).

i=1

Given r indeterminates T1, ... , Tr, and a > 0 in Z' , we write
r r

Ta :_ [J(T)aMM), (T+- 1)a := fJ(T, ± 1) a(i).

We define

E(a) := a(1) + a(2) + ... + a(r).

For x a scalar (i.e., an element of a commutative ring R) we define
xa := xE(a)

in R.

Lemma 2.4.9. For every a > 0 in Zr, we have the identity

Clump(a)(s) = E Binom(b, a) Sep(b)(s).
b> a

PROOF. This is entirely analogous to the proof of Lemma 2.3.8. Clump(a)(s)
is the number of systems of indices

1 < i(0) < i(1) < ... < i(c(r)) < N

for which we have

x(i(c(1))) - x(i(0)) = s(1),

x(i(c(j))) - x(i(c(j - 1))) = s(j) for j = 2, ... , r.

Given the indices i(j) for j = 0,...,c(r), define k(0) = i(0), k(j) = i(c(j)) for
j = 1, ... , r. These indices are counted in Sep(b)(s) for b the separation vector of
components

b(i)=k(i)-1-k(i-1), fori=1,...,r.
Once the indices k(j) for j = 0, ... , r are marked, we recover our original point in
Clump(a)(s) by picking, independently for i = 1, ... , r, one of the Binom(b(i), a(i))
subsets of cardinality a(i) of the b(i) intervening points between k(i) and k(i - 1).
QED

Corollary 2.4.10. We have the identities of generating polynomials in r in-
determinates T1i ... , Tr,

E Clump(a)(s)Ta = Sep(b)(s)(1 + T)b,
a>O b>O

Sep(b)(s)T6 = C1ump(a)(s)(T - 1)a.
b>O a>O

PROOF. The first identity is, coefficient by coefficient, the identity of the
lemma. The second identity is obtained from the first by the change of variable
T - T-1. QED
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Equating coefficients of like powers of T on both sides of the second identity,
we obtain

Corollary 2.4.11. For each a > 0 in Z', we have the identity

Sep(a)(s) _ (-1)"-LBinom(n, a) Clump(n)(s).
n>a

Key Lemma 2.4.12. For each a > 0 in Zr, and each integer m > E(a), we
have the inequalities

(-1)n-a Binom(n, a) Clump(n)(s) < Sep(a)(s)
a<n,E(n)<m

i f m - E is odd, and

Sep(a)(s) (-1)n-' Binom(n, a) Clump(n) (s)
a<n,E(n) <m

if m - E(a) is even.

PROOF. Fix m > E(a). According to the previous Corollary 2.4.11, we have

Sep(a)(s) _ 1:(-1)n-6 Binom(n, a) Clump(n)(s)
n>a

(-1)' Binom(n, a) Clump(n)(s)
a<n,E(n)<m

+ E (- 1)'-' Binom(n, a) Clump (n) (s).
a<n,E(n)>m+l

So we must show that the tail has the correct' sign, i.e., that

(-1)"`+1_E(a) 1) n-' Binom(n, a) Clump(n) (s) 2! 0,
a<n,E(n)>m+1

i.e., we must show that

E (-1)m+1+E(n) Binom(n,a) Clump(n)(s) > 0.
a<n,E(n)>m+1

We use Lemma 2.4.9 to write Clump in terms of Sep, and this reduces to showing
that

(-1)m+1+E(n) Binom(n, a) 1: Binom(b,n) Sep(b)(s) > 0.
a<n,E(n)>m+1 b>n

Using Sublemma 2.3.12, this becomes the inequality

(_1)m+1+E(n) Binom(b, a) Binom(b - a, n - a) Sep(b) (s) > 0.
a<n,E(n)>m+l b>n

Since each term Binom(b, a) Sep(b)(s) is nonnegative, it suffices to show that for
fixed b > a, we have

E (-1)m+1+E(n) Binom(b - a, n - a) > 0.
a<n<b,E(n)>m+1



Q
M

M
M

M
il

(f
l

t
7
+

A
l

A
l

.+
i

2.5. COMBINATORICS OF SPACINGS: THIRD DISCUSSION 49

In terms of the vectors k := n - a and l := b - a in Zr, and the integer
m + 1 - E(a), this becomes the positivity statement

(-1)-, E (-1)k Binom(l, k) > 0.
0<k<1,E(k)>j

This positivity results from

Sublemma 2.4.13. For any integer j > 1, and any 1 > 0 in Z' with E(1) > 1,
we have

(-1)3 (-1)k Binom(l, k) = Binom(E(1) - 1, j - 1).
0<k<I,E(k)>j

PROOF. Consider the binomial expansion of

(1 + T)l J1 (1 + Ti)l(t) = f Binom(l(i), k(i))(Ti)k(i)
i i 0<k(i)<I(i)

Binom(l, k)Tk.
0<k <l

Setting all Ti equal to a single indeterminate S, and equating coefficients of like
powers of S, we find that for each integer a > 0, we have the identity

Binom(l, k) = Binom(E(l), a).
0<k<l,E(k)=a

So the subject of our discussion is

(-1)j (-1)k Binom(l, k)
0<k<i,E(k)> j

(-1)k Binom(l, k)
a>j 0<k<l

E(k)=a

(-1)aBinom(E(l),a)
a>j

_ (-1)a_2 Binom(E(1), a)

a> j

= Binom(E(l) - 1,j - 1),

thanks to Sublemma 2.3.13. QED, for both 2.4.13 and 2.4.12.

2.5. The combinatorics of spacings of finitely many points on a line:
third discussion: variations on Sep(a) and Clump(a)

2.5.1. We continue with our given integer N > 2 and our given set X of N
points on the real line, in increasing order,

X : x(1) < x(2) < . . . < x(N).
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2.5.2. Fix an integer r > 1, an offset vector

c = (c(1),...,c(r))

in Zr, and the corresponding separation vector a,

a = (a(1),...,a(r)),
a{1) = c(1) - 1, a(i) = c(i) - 1 - c(i - 1) for i > 2.

2.5.3. Out of this data, we define positive Borel measures (both will be finite
sums of delta measures) Sep(a) and Clump(a) on R' as follows. We have defined
the nonnegative integers Sep(a)(s) and Clump(a)(s) for any s in R' . For any Borel
set E in R", we define

Sep(a)(E) :_ > Sep(a)(s),
s In E

Clump(a)(E) := E Clump(a)(s).
sInE

2.5.4. For f any R-valued Borel measurable function on R', we define

Sep(a,f) := J f d Sep(a) f (s) Sep(a) (s),
.l s

Clump(a, f) := J f d Clump(a) f (s) Clump(a)(s),

(in both cases the sum over all s in R').

2.5.5. If we wish to emphasize the dependence of Sep(a, f) and Clump(a, f )
on the initial choice of N > 2 and the increasing sequence of real numbers

X : x(1) < x(2) < ... < x(N),

we will write Sep(a, f) and Clump(a, f) as

Sep(a, f, N, X) and Clump(a, f, N, X)

respectively.

2.5.6. Let us make explicit their dependence on X. We have

Clump(a, f, N, X) =

E f (x(i(c(1))) - x(i(O)), x(i(c(2))) - x(i(c(1))), ... , z(i(c(r))) - x(i(c(r - 1)))),

the sum over all systems of indices

1 < i(O) < i(1) < < i(c(r)) < N.

Sep(a, f, N, X) is the same sum, but with the range of summation restricted to
those systems of indices which in addition satisfy

i(j) - i(j - 1) = 1 for j = 1,...,c(r).

Lemma 2.5.7. For any integer N > 2, denote by RN(ordered) the dosed sub-
set o f RN consisting o f those points (x(1), ... , x(N)) which satisfy

x(1) < x(2) < < x(N).
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The "order" map RN RN(ordered) C RN, "arrange the coordinates in increasing
order",

X F4 order (X),

is a continuous map of RN to itself.

PROOF. To check that a map X - Y of topological spaces is continuous, it
suffices to exhibit a finite covering of its source X by closed sets Zi such that the
map restricted to each Zi is continuous. We apply this criterion, taking the closed
sets to be indexed by the elements of the symmetric group SN, the closed set Z,
being the set of those points (x(1), x(2),.. . , x(N)) which satisfy

x(a(1)) < x(v(2)) < ... < x(o-(N)).

Our map on Zo is certainly continuous, being the restriction to Za of the linear
automorphism of RN given by or. QED

Corollary 2.5.8. Let N > 2. The "order" map RN -* RN (ordered) makes
RN(ordered) the quotient space RN/EN in the category of topological spaces with
continuous maps, and also in the category of topological spaces with Borel measur-
able maps. Concretely, for any topological space Y, to give a continuous (respec-
tively Borel measurable) map F: RN - Y which is EN-invariant is the same as to
give a continuous (respectively Borel measurable) map G: RN(ordered) -+ Y, with
F and G determining each other by the rules

G:= FIRN(ordered), F(X) = G(order(X)).

PROOF. If we start with a EN-invariant F, then F(X) = F(order(X)) by
EN-invariance. As the point order(X) lies in RN(ordered), we have

F(order(X)) = G(order(X)) for G:= FIRN(ordered).

If F is continuous (respectively Borel measurable) on RN, then so is G on
RN (ordered). Conversely, given a continuous (respectively Borel measurable) map
G : RN(ordered) - Y, the composite X '--r F(order(X)) is EN-invariant, and is
continuous (resp. Borel measurable), because the "order" map is continuous. QED

Lemma 2.5.9. Fix an integer r > 1 and a separation vector a in Z". If f is
a continuous (respectively Borel measurable) function on R', then for each N > 2
the functions on RN(ordered)

X F-4 Sep(a, f, N, X) and X i--> Clump(a, f, N, X)

are each continuous (respectively Borel measurable).

PROOF. This is obvious from the explicit formulas for these functions as finite
sums of values of f at images of X under linear maps from RN to R. QED

2.5.10. We have defined Sep(a,f,N,X) and Clump(a,f,N,X) for X in
RN(ordered) We now extend them to be EN-invariant functions on X in RN,
by defining

Sep(a, f, N, X) := Sep(a, f, N, order(X)),
Clump(a, f, N, X) := Clump(a, f, N, order(X)).
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Lemma 2.5.11. Fix an integer r > 1 and a separation vector a in Zr.
1) If f is a continuous (respectively Borel measurable) R-valued function on

Wr, then for N > 2 the R-valued functions on RN

X i--* Sep(a, f, N, X) and X F--i Clump(a, f, N, X)

are each continuous (respectively Borel measurable) and EN-invariant.
2) For t in IR, denote by AN (t) the diagonal point (t, t, ... , t) in RN . The

functions

X H Sep(a, f, N, X) and X -, Clump(a, f, N, X)

are each invariant under additive translations X -+ X + AN (t), for all t in R.
3) Suppose f as a function on Rr has compact support, say supported in the

set {s in R' with Ei Is(i)I < a}. If N = 1 + r + E(a), then the function
F : X --* Sep(a, f,1 + r + E(a), X) = Clump(a, f,1 + r + E(a), X)

vanishes unless X in I81+r+E(a) lies within the tubular neighborhood

{ X in Rl+r+E(a) with Max Ix(i) - x(j)I < a}
l i, j

of the diagonal. Moreover, if f is bounded on Rr, then F is bounded on I[21+r+E(a),
and IIFII9up <- llflleup.

PROOF. Assertion 1) simply combines the previous two lemmas (2.5.7 and
2.5.9). Assertion 2) is an immediate consequence of the definitions. For assertion
3), by EN-invariance, we may suppose X is ordered:

x(1) < x(2) < . . . < x(N).

Consider the offset vector c in Zr corresponding to a. Because

N = 1 + r + E(a) = l + c(r),
there is only one index system to be considered in the definition of

Sep(a, f,1+r+E(a),X) = Clump(a, f,1+r+E(a),X)
:= f (x(1 + c(1)) - x(1), x(c(2)) - x(c(1)), ... , x(c(r)) - x(c(r - 1))).

For the unique point

s := (x(1 + c(1)) - x(1), x(c(2)) - x(c(1)), ... , x(c(r)) - x(c(r - 1)))

at which f in evaluated, we have, because X is ordered,

Is(i) I = x(c(r)) - x(O) = max Ix(i) - x(j)I. QED
t

Lemma 2.5.12. Fix an integer r > 1, a separation vector a > 0 in Zr, a Borel
measurable IR-valued function f on 1??, an integer N > 2, and a point X in RN.

1) We have the identity

Sep(a, f, N, X) = E(-1)n-a Binom(n, a) Clump(n, f, N, X).
n>a

2) If f > 0 as function on Rr, then for each integer m > E(a), we have the
inequalities

(-1)n_a Binom(n, a) Clump(n, f, N, X) < Sep(a, f, N, X)
aCn,E(n)<m
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if n - E(a) is odd, and

Sep(a, f, N, X) < (-1)"-a Binom(n, a) Clump(n, f, N, X)

if rn - E(a) is even.

PROOF, Assertion 1) is just a restatement of Corollary 2.4.11, and assertion 2)
restates the Key Lemma 2.4.12. QED

2.5.13. Given an integer N > 1, an integer n > land a subset T of {1, ... , N}
with Card(T) = n, written in increasing order

1 <t(1) <t(2) <... <t(n) < N,
we denote by

pr(T) : RN - R", X F-' pr(T)(X),

the linear map

(x(1), x(2), ... , x(N)) '-' (x(t(1)), x(t(2)), ... , x(t(n))).

Lemma 2.5.14. Let n and N be integers, both > 1. Suppose we are given
a continuous (respectively Borel measurable) R-valued function F on IIt" which is
En-invariant. Then the R-valued function F[n, N] on RN defined by

F[n, N] : X i-4 E F(pr(T)(X)),
Card(T)=n

the sum over all subsets T o f {1, ... , N} with Card(T) = n, is a continuous (re-
spectively Borel measurable) IR-valued function on IRN which is EN-invariant.

PROOF. If n > N, the sum is empty, and F[n, NJ vanishes. If n < N, each of
the Binom(N, n) maps pr(T) is continuous, so F[n, N] is continuous (respectively
Borel measurable). For a in EN and X in RN, aX is the point with coordinates
(aX)(i) := X(u-1(i)). So for any subset T, pr(T)(a(X)) is a permutation of
pr(a-1(T))(X). Since F is En-invariant, we have

F[n, N](aX) F(pr(T)(aX))
Card(T)=n

F(pr(a-1(T))(X)) = F[n,N](X). QED
Card(T)=n

Lemma 2.5.15. Fix an integer r > 1, a separation vector a > 0 in Zr, the
corresponding offset vector c in Z', a Borel measurable R-valued function f on ]lt',
an integer N > 2, and a point X in RN. We have the identity

Clump(a, f, N, X) = E Clump(a, f,1 + c(r), pr(T)(X))
Card(T)=1+c(r)

Clump(a, f,1 + r + E(a), pr(T)(X)),
Card(T)=1+r+E(a)

the sum over all subsets T o f {1, .. _ , N} of cardinality 1 + c(r) = 1 + r + E(a).

PROOF. Both sides are EN-invariant, so it suffices to check when X lies in
RN (ordered), in which case it is immediate from the explicit formula of 2.5.6. QED
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2.6. The combinatorics of spacings of finitely many points of a line:
fourth discussion: another variation on Clump(a)

2.6.1. We fix an integer r > 1, a separation vector a in Z', an integer
k > E(a), an IR-valued Borel measurable function f on R', an integer N > 2,
and a point X in RN. We define a real number

TClump(k, a, f, N, X) :_ E Binom(n, a) Clump(n, f, N, X).
n>a,E(n)=k

Lemma 2.6.2. Fix an integer r > 1, a separation vector a > 0 in Z, a Borel
measurable R-valued function f on 1lIr, an integer N > 2, and a point X in RN.

1) We have the identity

Sep(a, f, N, X) = (-1)k-E(a) TClump(k, a, f, N, X ).
k>E(a)

2) If f > 0 as function on Rr, then for each integer m > E(a), we have the
inequalities

E (-1)k-E(') TClump(k, a, f, N, X) G Sep(a, f, N, X)
m>k>E(a)

if m - E(a) is odd, and

Sep(a, f, N, X) 5 (-1)k-E(a) TClump(k, a, f, N, X )
m>k>E(a)

if m - E(a) is even.

PROOF. This is just Lemma 2.5.12 with terms collected according to the value
k of E(n). QED

Similarly, Lemma 2.5.15 gives

Lemma 2.6.3. Fix an integer r > 1, a separation vector a > 0 in Z', an
integer k > F, (a), a Borel measurable III;-valued function f on R', an integer N > 2,
and a point X in RN. We have the identity

TClump(k, a, f, N, X)

1: TClump(k, a, f, 1 +r + k, pr(T)(X)),
Card(T)=1+r+k

the sum over all subsets T of {1, ... , N} of cardinality 1 + c(r) = 1 + r + k.

2.7. Relation to naive spacing measures on G(N):
Int, Cor and TCor

2.7.1. We fix an integer r > 1, a separation vector a in Z', an integer
k > E(a), and an R-valued l3orel measurable function f on W of compact sup-
port. For G(N) any of U(N), SO(2N + 1), USp(2N), SO(2N), 0-(2N), and for A
in G(N), we will define real numbers

Int(a, f, G(N), A), Cor(a, f, G(N), A), TCor(k, a, f, G(N), A).

The names "Int", "Cor", and "TCor" are intended to evoke "integral", "correlation"
and "total correlation" respectively. We proceed case by case. We denote by c in
Zr the vector of offsets corresponding to the separation vector a.
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2.7.2. The U(N) case. Given A in U(N), we define X(A) in RN to be the
vector whose components X (A) (i) are the N angles in [0, 27r) of its eigenvalues,

O :S <p(1) < W(2) :S < W(N) < 27r.

It is immediate from the definitions that we have

j r d u(naive, A, U(N), offsets c) = (1/N) Sep(a, f, N, (N/21r)X (A)).

We define

Int(a, f, U(N), A) := f f du(naive, A, U(N), offsets c)

_ (1/N) Sep(a, f, N, (N/2-7r)X(A)),

Cor(a, f, U(N), A) (1/N) Clump(a, f, N, (N/2ir)X (A)),

TCor(k, a, f, U(N), A) := (1/N) TClump(k, a, f, N, (N/27r)X (A)).

2.7.3. The USp(2N) and SO(2N) cases. For G(N) either USp(2N) or
SO(2N), the eigenvalues of A in G(N) occur in N complex conjugate pairs, which
we may write uniquely as e*4w(1) with N angles in [0, n],

0 <_ p(l) < <P(2) <_ ... < W(N) < it.

Each of these angles Bp(i) is a continuous function of A in G(N). We denote by
X (A) in IRN the vector whose N components X (A) (i) are these N angles Bp(i). It
is immediate from the definitions that we have

J r f du(naive, A, G(N), offsets c) = (1/N) Sep(a, f, N, (N/7r)X (A)),

for G(N) either USp(2N) or SO(2N). We define

Int(a, f, G(N), A) := f du(naive, A, U(N), offsets c)
r

= (1/N) Sep(a, f, N, (N/7r) X (A)),

Cor(a, f, G(N), A) := (1/N) Clump(a, f, N, (N/ir)X(A)),
TCor(k, a, f, G(N), A) := (1/N) TClump(k, a, f, N, (Nlir)X (A)),

for G(N) either USp(2N) or SO(2N).

2.7.4. The SO(2N + 1) case. In SO(2N + 1), 1 is an eigenvalue of every
element A. The remaining eigenvalues of A occur in N complex conjugate pairs,
which we may write uniquely as with N angles in [0, ir],

0 < W < cp(2) < < W(N) < ir.

Each of these angles W(i) is a continuous function of A in SO(2N + 1). We denote
by X(A) in RN the vector whose N components X(A)(i) are these N angles Bp(i).
It is immediate from the definitions that for G(N) = SO(2N + 1) we have

1 f du(naive, A, G(N), offsets c)
JJJm

= (1/(N + 1/2)) Sep(a, f, N, ((N + 1/2)/7r)X(A)).
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We define

fInt(a, f, G(N), A) := f dp,(naive, A, G(N), offsets c)
r

= (1/(N + 1/2)) Sep(a, f, N, ((N + 1/2)/ir)X(A)),

Cor(a, f, G(N), A) (1/(N + 1/2)) Clump(a, f, N, ((N + 1/2)/7r)X(A)),

TCor(k, a, f, G(N), A) (1/(N + 1/2)) TClump(k, a, f, N, ((N + 1/2)/rr)X(A)),

for G(N) = SO(2N + 1).

2.7.5. The O_ (2N + 2) case. Any element A in O_ (2N + 2) has both 1 and
-1 as eigenvalues. The remaining eigenvalues of A occur in N complex conjugate
pairs, which we may write uniquely as efxw(i) with N angles in [0, 7r],

0 < W(1) < ip(2) < . < cp(N) < 7r.

Each of these angles Bp(i) is a continuous function of A in O_(2N). We denote by
X (A) in RN the vector whose N components X(A)(i) are these N angles cp(i). It
is immediate from the definitions that for G(N) = O_ (2N + 2) we have

ffdii(naive,AG(N), offsets c)
r

(1/(N + 1)) Sep(a, f, N, ((N + 1)/7r)X(A)).

We define
r

Int(a, f, G(N), A) := J f dp,(naive, A, G(N), offsets c)
R

= (1/(N + 1)) Sep(a, f, N, ((N + 1)/ir)X(A)),

Cor(a, f, G(N), A) (1/(N + 1)) Clump(a, f, N, ((N + 1)/ir)X (A)),

TCor(k, a, f, G(N), A)

for G(N) = O_ (2N + 2).

(1/(N + 1)) TClump(k, a, f, N, ((N + 1)/zr)X(A)),

Lemma 2.7.6. Fix an integer r > 1, a separation vector a in Z' an li.-
valued Borel measurable function f on 1[8'' of compact support, G(N) any of U(N),
SO(2N + 1), USp(2N), SO(2N), 0_(2N + 2), and A an element of G(N).

0) We have the identity

TCor(k, a, f, G(N), A) = Binom(n, a) Cor(n, f, N, A).
n>a,E(n)=k

1) We have the identity

Int(a, f, G(N), A) _ (-1)k-n(a) TCor(k, a, f, G(N), A).
k>E(a)

2) If f > 0 as function on R'', then for each integer m > E(a), we have the
inequalities

(-1)k-E(a) TCor(k, a, f, G(N), A) < tnt(a, f, G(N), A)
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i f m - E is odd, and

Int(a, f, G(N), A) < (-1)k-E(a) TCor(k, a, f,G(N), A)
m>k>E(a.)

if rn - E(a) is even.

PROOF. Assertion 0) is immediate from the definitions. The rest is just Lemma
2.5.12 in the new terminology. QED

2.8. Expected value measures via INT and COR and TCOR

2.8.1. We fix an integer r > 1, a separation vector a in Z', an integer
k > E(a), and an R-valued Borel measurable function f on R' which is bounded
and of compact support. For G(N) any of U(N), SO(2N + 1), USp(2N), SO(2N),
O_(2N), the three R-valued functions on G(N)

A '--+ Int(a, f, G(N), A) or Cor(a, f, G(N), A) or TCor(k, a, f, G(N), A)

are Borel measurable and bounded, thanks to Lemma 2.5.9 and the definitions.
The first two vanish for N < 1 + r + E(a), the last for N < 1 +r + k. We define
real numbers

INT(a, f, G(N)), Cor(a, f, G(N)), TCOR(k, a, f, G(N))

by

INT(a, f, G(N)) := f Int(a, f, G(N), A)dA
(N)

= f f f du.(naive, A, G(N), offsets c)dA,
(N)

COR(a, f, G(N)) f Cor(a, f, G(N), A)dA,

J
(N)

TCOR(k, a, f, G(N)) TCor(k, a, f, G(N), A)dA.
(N)

Denote by c in Z' the vector of offsets attached to the separation vector a. In
terms of the expected value measure

i(naive, G(N), offsets c) = y(naive, G(N), separations a)

on R', we have

INT(a, f, G(N)) =
J

f dp.(naive,G(N), offsets c).

Lemma 2.8.2. Fix an integer r > 1, a separation vector a in Z', an R-valued
Borel measurable function f on R'' which is bounded and of compact support, and
G(N) any of U(N), SO(2N + 1), USp(2N), SO(2N), O_ (2N + 2).

0) For each integer k > E(a), we have the identity

TCOR(k, a, f, G(N)) = E Binom(n, a) COR(n, f, G(N)).
n>a,(n)=k

1) We have the identity

INT(a, f, G(N)) _ (-1)k-Y(a) TCOR(k, a, f, G(N)).
k>E(a)
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2) If f > 0 as function on Rr, then for each integer m > E(a), we have the
inequalities

(-1)k-E(a) TCOR(k, a, f, G(N)) < INT(a, f,G(N))
m>k>E(a)

if m - E(a) is odd, and

INT(a, f, G(N)) < (-1)k- E(a) TCOR(k, a, f, G(N))
m> k> E(a)

if m - E(a) is even.

PROOF. Integrate Lemma 2.7.6 over G(N) - QED

2.9. The axiomatics of proving Theorem 2.1.3

Proposition 2.9.1. Consider the following conditions 1) and 2).
1) (existence of large N TCOR limits) For every integer r > 1, every sep-

aration vector a in Zr, every integer k > E(a), and every JR-valued Borel mea-
surable function f on R' which is bounded and of compact support, there exists a
real number TCOR(k, a, f, univ) such that for G(N) any of U(N), SO(2N + 1),
USp(2N), SO(2N), O_(2N + 2), we have

lim TCOR(k, a, f, G(N)) = TCOR(k, a, f, univ).
N-oc

2) (convergence of large N TCOR limits) For every integer r > 1, every sepa-
ration vector a in Z', and every R-valued Borel measurable function f on Rr which
is bounded and of compact support, the series

E TCOR(k, a, f, univ) l
k>E(a)

is convergent.
If both of these conditions hold, then Theorem 2.1.3 holds. For every integer

r > 1 and every separation vector a in Zr' the limit measure p.(naive, univ, sep.'s a)
on R' iis given by the explicit formula

f f dp(naive, univ, sep's a) = E (-1)k-F-(a) TCOR(k, a, f, univ),'k>E(a)
valid for every R-valued Borel measurable function f on R' which is bounded and
of compact support. We denote

INT(a, f, univ) :=
Nli

INT(a, f, G(N))

f dp(naive, univ, sep's a).

Moreover, if f > 0 as function on R'', then for each integer m > E(a), we have
the inequalities

E (-1)k-E(") TCOR(k, a, f, univ) < INT(a, f, univ)
m>k>E(a)

if m - E(a) is odd, and

INT(a, f, univ) < (-1)k-E(') TCOR(k, a, f, univ)
m>k>E(a)

if in - E(a) is even.
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PROOF. Fix the data r, a, f as above. Suppose that f > 0 on R'. For each N,
and each m > E(a) with M - 1 + E(a) mod 2, we have the inequalities

(-1)1'-E(a)TCOR(k,a, f, G(N)) < INT(a, f,G(N))
m>k>E(a)

E (-1)k-E(a) TCOR(k, a) f, G(N)).
m+1>k>E(a)

Fix m, and take the lim sup and the lim inf over N. By the existence of the large
N TCOR limits, we get the inequalities

(-1)k-E(a) TCOR(k, a, f, univ) < liminf INT(a, f, G(N))
m>k>E(a)

< limsuplNT(a, f, G(N)) (-1)k-£(a) TCOR(k, a, f, univ).
N m+1>k>E(a)

Now take the limit over m of these inequalities. Since the series

E (-1)k-E(a) TCOR(k, a, f, univ)
k>E(a)

converges, we find that limN_.,, INT(a, f,G(N)) := INT(a, f, univ) exists and is
equal to the sum of this series. Once we know INT(a, f, univ) exists for f > 0, the
inequalities above for finite m give the "moreover" conclusions upon passage to the
limit with N.

To pass from f > 0 to the general case, write f = f+- f_, with f+ := Sup (f, 0)
and f_ := Sup(-f,0). Applying the above argument to ft, one finds that
limN.,cINT(a, f, G(N)) exists for every bounded, Borel measurable f of com-
pact support on IRT (and is equal to the sum of the TCOR series). Therefore there
exists a unique positive Borel measure µ(naive, univ, rep.'s a) on ]RT such that for
all such f we have

f dµ(naive, univ, sep.'s a) = lim INT(a, f, G(N)),j N-yoo

cf. [Fel, page 243]. But this limit measure may be "defective", i.e., it may have
total mass strictly less than 1. [Indeed, it may vanish, as happens when one takes
a sequence of (delta measures concentrated at) points going off to infinity.]

2.9.2. Here is an argument to show that in our case, the limit measure, once
it exists, must be a probability measure. We first treat the case r = 1, and then
reduce the general case to the r = 1 case by a consideration of direct images.

Lemma 2.9.2.1 (Chebyshev). Fix an integer b > 1 (to be thought of as a step
vector in Z with r = 1). For any integer N > 1 and any A in G(N), consider the
measure µ(A, G(N), step b) on IR. For any Teal M > 0, we have the inequality

µ(A, G(N), step b) ((x in lR with jxj > MB)) < 1/M.

PROOF. The spacings s, ( step b) are nonnegative, and they are normalized to
have mean b. So u(A, G(N), step b) is supported in IR>o, and

fxdi(A,G(N), step b) = b.
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We must show that

p(A,G(N), step b)({x > Mb}) < 1/M.

We compute

b = fx d(A, G(N), step b) > J
>Mb}

x d(A, G(N), step b)
x

> f Mbdu(A, G(N), step b)
x>Mb}

= Mbp(A, G(N), step b) ({x > Mb}). QED

Corollary 2.9.2.2. Fix an integer b > 1. For any integer N > b and any A in
G(N), consider the measure p(naive, A, G(N), step b) on R. For any real M > 0,
we have the inequality

p(naive, A, G (N), step b)({x in R with I x I > Mb}) < 1/M.

PRooF. Indeed, for any (Borel measurable) set E, we have

p(naive, A, G(N), step b)(E) < p(A, G(N), step b)(E). QED

Corollary 2.9.2.3. Fix an integer b > 1. For any integer N > b and any A in
G(N), consider the measure p(naive, A, G(N), step b) on R. For any real M > 0,
we have the inequality

p.(naive, A, G(N), step b)({x in R with Ix4 < Mb}) > 1 - 1/N - b/N - 1/M.

PROOF. The measure p(naive, A, G(N), step b) has total mass

(N - b)/(N + A) = 1 - (b + A)/(N + A) > 1 - 1/N - b/N,

A being 0, 1/2 or 1 depending on which G(N) we are working on. QED

Lemma 2.9.2.4. Fix an integer b > 1. For any integer N > b, consider the
expected value measure p(naive, G(N), step b) on R. For any real M > 0, we have
the inequality

p(naive,G(N), step b)({x in R with lxi < Mb}) > 1 - 1/N - b/N - 1/M.

PROOF. Integrate the previous Corollary 2.9.2.3 over G(N). QED

Lemma 2.9.2.5. Fix an integer b > 1, and suppose that the limit measure
p(naive, univ, step b) on R exists. For any real M > 0, we have the inequality

p(naive, univ, step b)({x in R with lxi < Mb}) ? 1 - 1/M.

PROOF. Fix M, and take the limit as N , oo in the previous result. QED

Corollary 2.9.2.6. Fix an integer b > 1. If the limit measure

p(naive, univ, step b)

on IR exists, it is a probability measure.

PROOF. We already know it has total mass at most 1. By the above inequality,
it has total mass > 1 - 1/M for every M > 0. QED
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2.9.2.7. We now explain how to deduce the general case from the r = 1 case.

Lemma 2.9.2.8. Fix an integer r > 1 and a step vector b in Zr, with corre-
sponding offset vector c. For any integer N > E(b) and any A in G(N), consider
the measure p(naive, A, G(N), step b) on R"". For any real M > 0, we have the
inequality

p(naive, A, G(N), steps b)({x in R' with Jx(i) I > Mb(i) for some i}) < r/M.

PROOF. The set {x in R'' with ix(i)l > Mb(i) for some i} is the union of the
r sets Ei := {x in IR'' with Ix(i)l > Mb(i)}. So it suffices to show that

p(naive, A, G(N), steps b) (Ei) < 1/M.

By definition of direct image, we have

tz(naive, A, G(N), steps b) (Ei)

= pr[i]tµ(naive, A, G(N), steps b) ({x in R with Jxi > Mb(i)}).

But we know (by 2.11.10, to follow) that

tt(naive, A, G(N), step pr[i] (b) = b(i))

= pr[i], p(naive, A, G(N), steps b) + (pos. meas. of total mass < c(r)/N).

So we have the inequality

pr[i],p(naive, A, G(N), steps b)({x in R with ixj > Mb(i)})

< p(naive, A, G(N), step b(i))({x in R with Jxi > Mb(i)})

< I /M'

the last step by Corollary 2.9.2.2. QED

Lemma 2.9.2.9. Fix an integer r > 1 and a step vector b in Z', with corre-
sponding offset vector c. For any integer N > E(b) and any A in G(N), consider
the measure p.(naive, A, G(N), step b) on Rr. For any real M > 0, we have the
inequality

ti (naive, A, G(N), steps b)({x in Rr with Ix(i)1 < Mb(i) for all i})

> 1 - 1/N - c(r)/N - r/M.

PROOF. This is just the previous estimate applied to the complementary set,
together with the fact that the measure p(naive, A, G(N), steps b) has total mass
1 - 1/N - c(r)/N.

Lemma 2.9.2.10. Fix an integer r > 1 and a step vector b in Z', with cor-
responding offset vector c. For N > E(b), consider the expected value measure
p.(naive, G(N), step b) on k8' .

1) For any real M > 0, we have the inequality

u(naive, G(N). steps b)({x in IRT with ]x(i)1 < Mb(i) for all })

> 1 - 1/N - c(r)/N - r/M.
2) If the limit measure p(naive, univ, steps b) exists, then for real M > 0 we

have the inequality

p(naive, univ, steps b)({x in R' with Ix(i)I < Mb(i) for all i}) > 1 - r/M,

and p(naive, univ, steps b) is a probability measure.
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PROOF. Assertion 1) is obtained by integrating the inequality of the previous
lemma over G(N). To obtain 2), we fix M and take the limit of 1) as N -} oo.
This inequality shows that u(naive, univ, steps b) has total mass at least 1 - r/M
for every M, and hence has total mass at least 1. But it a priori has total mass at
most one. QED

2.9.3. These lemmas show that /(naive, univ, steps b) is a probability mea-
sure. In order to complete the proof of Proposition 2.9.1, it remains only to show
that p(naive, univ, steps b) has a continuous CDF. As explained in the appen-
dix 2.11.17, u(naive, univ, steps b) has a continuous CDF if and only if for each
i = 1, . . . , r, its direct image by pr[i] : R' - IR has a continuous CDF. Thanks to
Lemma 2.11.13, applicable because /(naive, univ, sep.'s a) is a probability measure,
we have

univ, steps b) = /(naive, univ, step b(i)).

Thus we are reduced to showing that each /(naive, univ, step b(i)) on IR has a
continuous CDF, i.e., to showing that this measure gives every point a in IR mea-
sure zero. Think of this limit measure as being achieved through the sequence
G(N) = U(N). Since the characteristic function of a point is a bounded Borel
measurable function of compact support, we have the limit formula

/(naive, univ, step b(i))({a}) =
N
lim /(naive,U(N), step b(i))({a}).

2.9.3.1. So it is sufficient to show that for every integer b > 1, every integer
N > b, and every a in IR, we have

/(naive, U(N), step b)({a}) = 0.

Lemma 2.9.3.2. For every integer b > 1, every integer N > b, and every a
in R, we have

1A (naive, U(N), step b) ({a)) = 0,

p(U(N), step b)({a}) = 0.

The measures p(naive, U(N), step b) and p(U(N), step b) on IR have continuous
CDF's.

PROOF. That the measures have continuous CDF's is equivalent to their giving
each single point {a} measure zero. This is automatic if a < 0, since spacings are
nonnegative. So we may restrict attention to the case a > 0.

The quantity /(naive, U(N), step b)({a}) is, by definition, an integral over
U(N):

/(naive, U(N), step b)({a})

/(naive, A, U(N), step b)({a})dHaaru(N) .f (N)

Similarly,

/(U(N), step b)({a})

/(A, U(N), step b)({a})dHaarU(N) .

U(N)
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So it suffices to show that the integrand vanishes outside a set of measure zero in
U(N). Let us introduce the N angles

0 < <p(1) < W(2) < < w(N) < 27r

of the eigenvalues of A. Then p.(naive, A, U(N), step b) ({a}) is (1/N) times the
number of indices 1 < i < N - b with

(N/21r)(cp(i + b) - p(i)) = a.

And p(A, U(N), step b)({a}) is (1/N) times the number of indices 1 < i < N with

(N/27r) ((p(i + b) - cp(i)) = a

(with the wraparound convention p(i + N) := 2ir + W(i) of 1.0.2).
Consider the actual eigenvalues ((j) = eiw(') of A, for j = 1, ... , N, extended

to all j in Z by periodicity: ((j + N) ((j). Denote by Q in S1 the point

2nia/NQ==e

Then a(uaive, A, U(N), step b)({a}) (resp. p.(A, U(N), step b)({a})) as function
of A is supported in the set of those A in U(N) for which there exists 1 < i < N - b
(resp. 1 < i < N) such that ((i + b)/((i) = 3. So both, as functions of A, are
supported in the union, over 1 < i # j < N, of the sets.ZZ,j of those A in U(N)
for which ((j)/((i) =)3. Let us call this finite union Z: thus Z := U1<t0- <rr Z.
We claim that Z has measure zero in U(N). The set Z is defined by conditions
on eigenvalues which are stable under the action of the symmetric group EN (this
group permutes the various Zij), so Z is the inverse image of a set Z in the space of
conjugacy classes of U(N), and we can compute the measure of Z by using the Weyl
integration formula. For U(N), the space of conjugacy classes is (S')'/EN, and
the direct image of Haar measure on (Sl)N/EN is (the restriction to EN-invariant
functions of) a certain measure on (S')', the well-known formula for which will
occupy us at great length later on. All that we need for now is that this Hermann
Weyl measure on (S1)N is absolutely continuous with respect to usual Lebesgue
measure (:= the Haar measure on (S') v viewed as a compact group). The inverse
image in (S1)N of the set Z in (S1)N/EN is the union, over 1 <i j < N, of the
sets

{( in (Sl)N such that ((j)/((i) = 01.

This set obviously has Lebesgue measure zero, being a hyperplane, so by absolute
continuity it has Hermann Weyl measure zero as well. Therefore Z has measure
zero in U(N). QED

This lemma in turn concludes the proof of Proposition 2.9.1. QED

2.10. Large N COR limits and formulas for limit measures

2.10.1. Since Proposition 2.9.1 is expressed entirely in terms of TCOR, the
reader may wonder what happened to COR. The answer is that nothing happened,
it's there also as a special case of TCOR.

From the definitions, we see that for an integer r > 1, a separation vector a in
Zr, and an 1R-valued Borel measurable function f on R' which is bounded and of
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compact support, we have the identities

Clump(a, f , N, X) = TClump(E(a), a, f, N, X) for N > 2, X in RN,

Cor(a, f, G(N), A) = TCor(E(a), a, f, G(N), A) for N > 2, A in G(N),

COR(a, f, G(N)) = TCOR(E(a), a, f, G(N)) for N > 2, for any G(N).

Proposition 2.10.2. Suppose that conditions i) and ii) of Proposition 2.9.1
hold. For every integer r > 1, every separation vector a in Zr, and every ]R-valued
Borel measurable function f on W which is bounded and of compact support, we
have:

1) There exists a real number COR(a, f, univ) such that for G(N) any of
U(N), SO(2N + 1), USp(2N), SO(2N), O_(2N + 2), we have

lim COR(a, f,G(N)) = COR(a, f, univ).
N -i 00

2) For each integer k > E(a), we have the identity

TCOR(k, a, f, univ) = E Binom(n, a) COR(n, f, univ).
n>a,E(n)=k

3) The series

E Binom(n, a)l COR(n, f, univ)j
n>0

is convergent, and we have the identity

f5v
f dt,t(naive, univ, sep's a)

E (-1)k-E(a) TCOR(k, a, f, univ)
k>E(a)

_ E(-1)F(n-a) Binom(n, a) COR(n, f, univ).
n>0

PROOF. Assertion 1) is the special case k = E(a) of condition i) of Proposition
2.9.1. Assertion 2) results from its finite N version (2.8.2, part 0), by passage to
the limit over N. For assertion 3), remark that in the sum

Binom(n, a) I COR(n, f, univ) 1,
n>o

only the terms with n > a have Binom(n, a) nonzero, so we could as well write the
sum as

E Binom(n, a) I COR(n, f, univ) I.
n>a

We write f as f+ - f- to reduce to the case f > 0. In this case, each individual
term COR(n, f, univ) > 0, so the convergence is equivalent, thanks to 2), to the
convergence of

E I TCOR(k, a, f , univ) I,
k»(a)
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which holds by condition ii). Once we have the absolute convergence, 2) gives the
equality

E (_1)k-E(a) TCOR(k, a, f, univ)
k>E(a)

= Binom(n, a) COR(n, f, univ),
n>O

and by Proposition 2.9.1 the first sum is the integral. QED

2.11. Appendix: Direct image properties
of the spacing measures

2.11.0. Throughout this appendix, G(N) is any of U(N), SO(2N + 1),
USp(2N), SO (2N), 0- (2N + 2).

Lemma 2.11.1. Fix an integer r > 1, and a step vector b in Zr. For any
integers 1 < i < j < r, denote by pr[i, j] Rr -+ lR1+1-i the projection

pr[i,j](x(1),...,x(r)) := (x(i),x(i+ 1),...,x(j))
For any integer N > 1, we have an equality of measures on Rj+1-i,

pr[i, j].µ(A,G(N), steps b) = p.(A,G(N), steps pr[i, j](b)).

PROOF. By definition, we have

µ(A,G(N), steps b) := ,a(pstd(A),U(M), steps b),

where Pstd : G(N) -4 U(M) is the standard representation of G(N). So it suffices
to treat universally the case when G(N) = U(N).

In terms of the offset vector c corresponding to the step vector b, the mea-
sure µ(A, U(N), steps b) is the average of the delta measures supported at the N
normalized spacing vectors

sk(steps b) := $k (offsets c), k = 1,... , N.

The direct image measure is the average of the delta measures supported at the
images of the points sk(steps b) under pr[i, j]. But the N points pr[i, j](sk(steps b))
are a cyclic permutation of the N points sk(steps pr[i, j](b)). QED

In the special case i = j, this gives

Corollary 2.11.2. Fix an integer r > 1, and a step vector b in 7.!. For any
integers 1 < i < r, denote by pr[i] : R- --4 IR the projection

pr[i](x(1), ... , x(r)) := x(i).

For any integer N > 1, we have an equality of measures on III,

pr[i].p(A, G(N), steps b) = a(A, G(N), step b(i)).

Lemma 2.11.3. Fix an integer r > 1, and a step vector b in Z7, with corre-
sponding offset vector c (thus c(r) = E(b)). Denote by

Sum[b] : IRc(r) Rr

the linear map

Sum[b](s(1),... , s(c(r))) :_ (x(1),. .. , x(r)),
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where

and

c(1)

X(1):= F, 3(j),
j=1

c(i)

X(1) := >2 s(j) for 2 < j < r.
j=1+c(i-1)

Then for any step vector B in Zc(r) and for any integer N > 1, we have an equality
of measures on fit',

G(N), steps B) = µ(A, G(N), steps Sum[b](B)).

PROOF. Entirely analogous to the proof of the previous lemma. QED

In the special case r = 1, this becomes

Corollary 2.11.4. Fix an integer r > 1, and a step vector b in Zr. Denote by
Sum : IRr --+ lR the map (x(1), ... , x(r)) x(j) For any integer N > 1, we
have an equality of measures on ]R,

Sum p(naive, A, G(N), steps b) = p(naive, A, G(N), step Sum(b)).

In particular, taking b = (1, 1, ... , 1) we get

Sum, µ(A, G(N), steps (1, 1, ... ,1)) = µ(A, G(N), step r).

Integrating the last two lemmas over G(N), we get the analogous results for
the expected value measures.

Lemma 2.11.5. Fix an integer r > 1, a step vector b in Z' with corresponding
offset vector c, and a step vector B in Zc(r) For any integers 1 < i < j < r, and
for any integer N > 1, we have an equality of measures on ]Rj+1-z,

pr[i, j].p(G(N), steps b) = p(G(N), steps pr[i, j](b)),

and we have an equality of measures on ]Rr,

Sum[b],u(G(N), steps B) = p(G(N), steps Sum[b](B)).

2.11.6. We now give the analogues of these results for the naive spacing
measures.

Lemma 2.11.7. Fix an integer r > 1, a step vector b in Z' , and c the corre-
sponding offset vector. For any integers 1 < i < j < r, denote by

pr[ig] : 1r .-r Ri+1-i

the projection

pr[i, j](x(1),... , x(r)) :_ (x(i), x(i + I),-, x(j))-

For any integer N > c(r), we have an equality of measures on Iltj+i-i

µ(naive,A,G(N), steps pr[i,j](b))
= pr[i, j],p,(naive, A, G(N), steps b) + (pos. meas. of total mass < c(r) IN).
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.PROOF. The measure u(A, G(N), steps b) is formed using N-c(r) naive spac-
ings sk(naive, offsets c) := sk(naive, steps b), each with mass 1/(N + A), where

A = 0 for U(N), USp(2N), or SO(2N),

A = 2 for SO(2N + 1),

A=1 for 0-(2N+2).

The images under pr[i, j] of these N-c(r) = N-E(b) naive spacings are N-c(r) out
of the total number N - E(pr[i, j] (b)) of naive spacings sk(naive, steps pr[i, j] (b))
defining u(naive, A, G(N), steps pr[i, j](b)). So we are "missing"

E(b) - E(pr[i, j](b)) < E(b) = c(r)

naive spacings, each with mass 1/(N + A) < 11N. QED

Lemma 2.11.8. Fix an integer r > 1, and a step vector b in Z', with corre-
sponding offset vector c (thus c(r) = E(b)). Denote by

Sum[b] : Rc(r) -. Ilt''

the linear map

Sum[b] (s(1), ..., s(c(r))) := (x(1), ..., x(r)),

where

x(1) E s(.9),
j=1

and

C(i)

x(i) s(j) for 2 < j < r.
j=1+c(i-1)

Then for any step vector B in Z°(') and for any integer N > 1, we have an equality
of measures on fir,

Sum[b].u(naive, A, G(N), steps B) = u(naive, A, G(N), steps Sum[b] (B)).

PROOF. Entirely analogous to the proof of the previous lemma, except this
time there are no "missing" spacings, since E(B) = E(Sum[b](B)). QED

2.11.9. Integrating the last two lemmas over G(N), we get the analogous
results for the expected value measures.

Lemma 2.11.10. Fix an integer r > 1, a step vector b in Z', and c the cor-
responding offset vector. For any integers 1 < i < j < r, denote by

pr[i,j] :
IRr -> Igj+l-i

the projection

pr[i,j](x(1),...,x(r)) :_ (x(i),x(i+ 1),...,x(j))
For any integer N > c(r), we have an equality of measures on I8j F1-a,

u(naive, G(N), steps pr[i, j](b))

= pr[i, j].u(naive, G(N), steps b) + (pos. meas. of total mass <c(r)/N).
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Lemma 2.11.11. Fix an integer r > 1, and a step vector b in with corre-
sponding offset vector c (thus c(r) = E(b)). Denote by

Sum[b] : R,(r) Rr

the linear map

Sum[b](s(1),... , s(c(r))) :_ (x(1), ... , x(r)),

where

c(1)

X(1)
j=1

and

e(i)

x(i) s(j) for 2 < j < r.
j 1+C(b-1)

Then for any step vector B in ZC(r) and for any integer N > 1, we have an equality
of measures on Rr,

G(N), steps B) = p(naive, G(N), steps Sum[b](B)).

2.11.12. We now see what happens in the large N limit.

Lemma 2.11.13. Fix an integer r > 1, a step vector b in Zr, and c the cor-
responding offset vector. For any integers 1 < i < j < r, denote by

pr[i,j] : Rr , Rj+1-'

the projection

pr[i, 3](x(1), ... , x(r)) := (x(i), x(i + 1), ... , x(?))-

Suppose that both of the limit measures

p.(naive, univ, steps b) and u(naive, univ, steps pr[i,j](b))

exist; and that the measure µ.(naive, univ, steps b) is a probability measure. Then
so is µ{naive, univ, steps pr[i,j](b)), and we have

pr[i, j],i,c(naive, univ, steps b) = p,(naive, univ, steps pr[i,j](b)).

PROOF. For finite N, the measure tc(naive, G(N), steps b) has total mass
(N-E(b))/(N+A), which tends to 1 as N , oo. Because of this, the standard argu-
ment [Fel, page 243] for proper convergence of probability measures [applied to the
sequence of probability measures ((N - E(b))/(N + a))-lµ(naive, G(N), steps b),
which converges properly to µ(naive, univ, steps b)] shows that for any bounded
continuous function on R'', we have

J
f du(naive, univ, steps b)

ti;r

f= lim f du.(naive, G(N), steps b).
N-.oo r
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Take now a continuous function g of compact support on IItj+l-i, and take for f
the function g o pr[i, j], which is a continuous bounded function on R''. Then the
above limit formula gives

dpr[i, j].u(naive, univ, steps b)g

= limes jRj}1 g dpr[i, j].p(naive, G(N), steps b).

By Lemma 2.11.10 above, we have

u(naive,G(N), steps pr[i,j](b))
= pr[i, j].p.(naive, G(N), steps b)+(pos. meas. of total mass < c(r)/N).

So we get

fRj+l-i g dpr[i, j].p(naive, G(N), steps b)

g du(naive, G(N), steps pr[i, j] (b)) + Error(N),
fR

7

+1-

with I Error(N)I < Ijgj[31p(c(T)/N). Therefore we get

JRJ + 1j
gdpr[i,j].u(naive, univ, steps b)

lim f g du(naive, G(N), steps pr(i, j](b))
N-oo j+i-,

gdu(naive, univ, steps pr[i, j](b)).f ,+i-;
Since this holds for every continuous g of compact support, we have the equality of
measures

pr[i, j].u(naive, univ, steps b) = p(naive, univ, steps pr[i,j](b)).

From this it follows that u(naive, univ, steps pr[i,j](b)) is itself a probability mea-
sure. QED

Lemma 2.11.14. Fix an integer r > 1, and a step vector b in Z', with corre-
sponding offset vector c (thus c(r) = E(b)). Denote by

Sum[b] : R '(r) --r Rr

the linear map

where

Sum[b] (s(1), ... , s(c(r))) := (x(1), ... , x(r)),

c(1)

x(1) E s(j),
j=1

and

c(i)

x(2) :_ E s(j) for 2 < j < r.
j=1+c(i-1)
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Fix a step vector B in Zc(r)Suppose that both of the limit measures

p(naive, univ, steps B) and p(naive, univ, steps Sum[b(B)])

exist, and that the measure p(naive, univ, steps B) is a probability measure. Then
so is p(naive, univ, steps Sum[b](B)), and we have

Sum[b].p(naive, univ, steps B) = p(naive, univ, steps Sum[b](B)).

PROOF. Entirely analogous to the previous proof, except easier, since this time
thanks to Lemma 2.11.1 there is no error term. QED

2.11.15. To conclude this appendix, we give the following lemma and corol-
laries, which are surely well-known, but for which we do not know an explicit
reference.

Lemma 2.11.16. Let r > 1 be an integer. A positive Borel measure p of R'
o f f i n i t e total mass has a continuous C D F i f and only for each i = 1, ... , r, and for
each real a, the translated coordinate hyperplane x(i) = a has p-measure zero.

Before giving the entirely elementary proof, we state the main applications we
have in mind (cf. the discussion 2.9.3).

Corollary 2.11.17. Let r > 1 be an integer. A positive Borel measure p on
Rr o f finite total mass has a continuous CDF i f and only i f for each i = 1, ... ,
the direct image measure pr[i].p on IR has a continuous CDF.

PROOF OF COROLLARY 2.11.17. Using the criterion of the lemma for having
a continuous CDF, this equivalence is immediate from the tautogous identity

p({x(i) = a}) = (pr[i].p)({a}). QED

Corollary 2.11.18. Let r > 1 be an integer. A positive Bore! measure p on R'
of finite total mass which is absolutely continuous with respect to Lebesgue measure
on Iltr has a continuous CDF.

PROOF OF COROLLARY 2.11.18. Absolute continuity forces each translated
coordinate hyperplane x(i) = a to have p-measure zero. QED

We now turn to the proof of Lemma 2.11.16.

PROOF OF LEMMA 2.11.16. Given e > 0 real, we write .(e) for the point
e) in IRT. If no confusion seems likely, we will write x + e to mean x+A(e).

We denote by F(x) x]) the CDF of the measure p.
Suppose first that p({x(i) = a}) = 0 for all i and all real a. Fix a point X in

W, and let {X,,},, be a sequence of points in RT converging to X. We must show
that F(X,) - F(X). Because X,, -> X, there is a sequence of strictly positive real
numbers En -i 0 such that X,, lies in the open interval (X - E,,,, X + e, ). Thus we
have

X - E,, < X,,< X + E,, and X - c, < X < X + F,a.
Because F is a CDF, it has the monotonicity property

F(x) < F(y) if x < V.

So we have

F(X - en) < F(X,,) < F(X + e,,) and F(X - sn) < F(X) < F(X + en).
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Therefore it suffices to show that F(X +e) ---> F(X) and F(X - en) -* F(X), for
any sequence of strictly positive real numbers en --'-O.

Again using the monotonicity property, it suffices to show that

F(X +1/n) -- F(X) and F(X - 1/n) -+ F(X).
The set (-oo, X) is the intersection of the decreasing sets (-oo, X + 1/n], so
F(X + 1/n) -- F(X) for F the CDF of any positive measure of finite total mass.

Because u({x(i) = a}) = 0 for all i and all a, for any point s in R' we have
u((-oo, s)) = u((-oo, s]) (since the difference is contained in the union of the
hyperplanes {x in R' with x(i) = s(i)}, each of which has u-measure zero). In
particular, F(X) = u((-oo, X)), and F(x - 1/n) = u((-oo, X - 1/n)) for each
n. The set (-oo, X) is the increasing union of the sets (-oo, X - 1/n), and u is a
measure, so F(X - 1/n) - F(X).

Suppose now that p has continuous CDF. We must show that u({x(i) = a}) = 0
for all i and all a. By symmetry, it suffices to treat the case i = 1. If r = 1, then

u({a}) = F(a) - u((-oo, a)) = F(a) - lim F(a - 1/n) = 0.

If r > 1, fix a large real number M, and consider the point

X = (a,M,M,...,M)
and the approaching sequence

Xn = (a- 1/n,M,M,...,M).
Because u is a measure, limn-,,. is the measure of

{YinlRr with Y(1) <Mfori=2,...,r}.
But F(X) = u((-oo, X]), so

F(X) - lim F(Xn)
72 4o0

= u({Y in R' with Y(1) = a and Y(i) < M for i = 2,... , r}).

Thus if F is continuous, we have

u({Y in lRr with Y(1) = a and Y(i) < M for i = 2, ... , r}) = 0

for every M, and hence u({Y in IR'' with Y(1) = a}) = 0. QED





CHAPTER 3

Reduction Steps in Proving the Main Theorems

3.0. The axiomatics of proving Theorems 2.1.3 and 2.1.5

Proposition 3.0.1. Suppose that both of the following conditions i) and ii)
hold.

i) (Convergence rate for TCOR's) For every integer r > 1, every separation
vector a in Zr, every integer k > E(a), and every R-valued Borel measurable func-
tion f on RT which is bounded and supported in Et Is(i) I < a, there exists a real
number

TCOR(k, a, f, univ)

such that for every G(N) as in 2.1.3 above, we have the estimate

I TCOR(k, a, f, G(N)) - TCOR(k, a, f, univ)l

< Binom(r + k - 1, r + E(a) -1)Ilf Ilsup(8a)k+T((ira)2 + a + 1 + lolog(N))/N.

ii) (Bound for finite N TCOR's) For every integer r > 1, every separation vector
a in Zr' every integer k > E(a), and every R-valued Borel measurable function f
on kt' which is bounded, supported in Ej Is(i)I < a, and every G(N) as above, we
have the estimate (independent of N)

I TCOR(k, a, f, G(N))I

< Binom(r + k - 1, r + E(a) - I) 11f Ilsup2(2a)k+T/(k + r)!.

Then conditions 1) and 2) of Proposition 2.9.1 are satisfied, and hence Theorem
2.1.3 holds.

PROOF. Assertion i) gives the existence of large N TCor limits (as well as an
estimate for the rate of convergence). Since the large N limit exists, assertion ii)
gives the estimate

TCOR(k, a, f, univ) I

< Binom(r + k - 1,r + E(A) - 1)I1fIlaup2(2a)k+' /(k + r)!.

The convergence of >k>E(a) I TCOR(k, a, f, univ) I follows easily. Indeed, since r
and E(a) are fixed, if we put d:= r + E(a) - 1, we get

Binom(r + k - 1, r + E(a) - 1) = Binom(r + k - 1, d) < Binom(r + k, d),
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whence

E I TCOR(k, a, f, univ) I
k> E(a)

< 2Il f Ilsap E Binom(r + k, d) (2a)k+T/(k + r)!
k>E(a)

2I1 f Ilsup Binom(n, d)(2a)'b/n!
n>6

= 211f Ilsup x the value at z = 2a of the entire function

(zd(d/dz)d/d!)(ez) = zdez/d!. QED

3.1. A mild generalization of Theorem 2.1.5: the cp-version

3.1.1. Fix an integer r > 1, and a step vector b in R', with separation vector
a and offset vector c. Denote by p the probability measure on !Rr

p := p(naive, univ, steps b) = p(univ, steps b)

given by Theorem 2.1.3. For each integer i with 1 < i < r, we denote by pi the
probability measure on R which is its i'th projection (cf. 2.11.13):

pi := pr[i].p = p(naive, univ, step b(i)) = p(univ, step b(i)).

The measure p is supported in (R>o)', and each pi is supported in ]R>o. By
Theorem 2.1.3, we know that each pi has a continuous CDF.

3.1.2. We wish to understand the role played by the choice of coordinates on
1R'. Thus we fix

cp : JIB' R' a homeomorphism of R',

x = (xi,...,x,.)' + (pp1(x)...... PT(x)),
which is "bi-bounded" in the sense that there exist strictly positive real constants
i and i such that

771:IxiI C E Iwi(x)I :S KE [xiI
The basic example we have in mind of such a W is a linear automorphism of W.

3.1.3. For each integer i with 1 < i < r, we denote by pi,,, the probability
measure on R which is the i'th projection of p in cp-coordinates:

pi,cp :_ (Wi):p.

We make the following assumption' 3.1.4:

3.1.4. For each i, the measure on R has a continuous CDF.

3.1.5. Attached to each point x in (R U {±oo})' is the set (a semi-infinite
rectangle in c,-coordinates)

R(x, cp) := {z in R' with Vi (z) < x(i) for all i}.

We will use the expression "semi-infinite 92-rectangle" to mean a set of this form.
If any coordinate of x is -oo, the set R(x, cp) is empty. If x is a finite point, i.e., a
point in R, we call R(x, gyp) a "semi-finite cp-rectangle".

'We will see in 7.0.13 that 3.1.4 automatically holds for cp any C1 diffeomorphism, in particular
for cp any linear automorphism of IR'.
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3.1.5.1. For vl and v2 any two measures on IR' of finite total mass, we define
their W-discrepancy

W-discrep(vl, v2) := Sup I vi (R(x, gyp)) - v2(R(x,,p)) I

x in (]RUf+oa1)''

Sup I vi (R(x, W)) - v2(R(x, W)) IxinR'
[A priori, the first Sup might exceed the second, since it takes more sets into
account. In fact, the two Sup's are equal, because for x in (IR U {+oo})r with some
coordinates +oo, R(x, gyp) is the increasing union of cp-rectangles R(xn, cp), for x the
point in R' defined by replacing each +oc coordinate in x by n. By the countable
additivity of measures, vi (R (x, gyp)) is the limit of vi (R(xn, p)), and similarly for
v2. Therefore for this fixed x, we have

Iv1(R(x, gyp)) - v2 (R(x, ,p))I = lim I vl (R(x>z, cp)) - v2(R(xn., gyp)) I ,n-oo
and each term I v1(R(xn, gyp)) - v2 (R (x,, cp)) I is bounded by the second, "smaller"
Sup.]

Theorem 3.1.6 (W-version of 2.1.5). Fix an integer r > 1, a step vector b in
ZT, and strictly positive constants e, rJ, and rc. There exists an explicit constant
N1 (e, r, c, 7J, rc) with the following property:

For any homeomorphism cp : RT --> IEFr,

x = (x1, ... , xr) - (pp1 (x), ... , lpr(x)),
which is "(rn, r£) bi-bounded" in the sense that

r, lxil s 1 Ivi(x)I <- r. E IxiI,
and which satisfies the property

(3.1.4) for each i, pi,w := (apt), js on IR has a continuous CDF,

for any N > N, (6, r, c,17, rc), for G(N) any of U(N), USp(2N), SO(2N + 1),
SO(2N), O_ (2N + 2), for µ the probability measure on III'

ju:= ,a(naive, univ, steps b) = Jt(univ, steps b),

and for

µ(A, N) := a(naive,A, G(N), steps b),

we have

-discrep(, c(A, N))dA <NEf
(,v)

Corollary 3.1.7. Hypotheses and notations as in 3.1.6, let J C { 1, 2, ... , r}
be any nonempty subset of the indices; say J is j1 < j2 < . . . < jk. Consider the
map

T'(J) :
IRT

- Rk, x h-) (1p.41 (x), 1p72(x)...... pj, (x))'

Then for N > N1(e, r, c, 77, rc), G(N) any of U(N), USp(2N), SO(2N+ 1), SO(2N),
O_ (2N + 2), we have

cp(J),Jr.(A, N))dA < NE-1/(2T+4)f (N)
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PROOF OF COROLLARY 3.1.7. We claim that we have the inequality

discrep(cp(J),ku, cp(J),u(A, N)) < cp-discrep(u, u(A, N)),

which when integrated over G(N) gives the corollary. This inequality holds for any
two measures of finite total mass vl and v2, i.e., we have

discrep(cp(J)*vl, <p(J)*v2) < W -discrep(vl, v2).

To see this, notice that for any x in Rk,

c'(J)-'(the "usual" rectangle R(x) in Ifl;k) = R(y, gyp)

for y in (]R U {+oo})r the point with coordinates yj; = xij and y,\ = +oo for A not
in J. Thus we get

j(w(J).vl)(R(x)) - (co(J)*U2)(R(x))1 = jvl(R(y,v)) -
(p-discrep(vl, v2). QED

3.1.8. The main task of this chapter is to prove the following proposition.

Proposition 3.1.9. Suppose that in addition to conditions i) and ii) of the
previous Proposition 3.0.1, the following conditions iii) and iv) hold:

iii) (Bound for variance of TCor as function of A in G(N)) For every integer
r > 1, every separation vector a in Zr, every integer k > E(a), and every ]R-valued
Borel measurable function f on Rr which is bounded, supported in Ei Is(i)I < a,
and every G(N) as above, we have the estimate

Var(A TCor(k, a, f, G(N), A) on G(N))

< [Binom(r + k - 1, r + E(a) - 1)11 f lIsup]2(3(8a)k+r + 65(8a)2k+2r)IN.

iv) (Estimate for the tail of the most classical spacing measure) There exist
explicit real constants A > 0 and B > 0 such that the limit measure

u(naive, univ, step 1)

on ]R satisfies

u(naive, univ, step 1)({Ixl > s}) < Ae-B,2 for every real s > 0.2

Then Theorem 3.1.6, the w-version of Theorem 2.1.5, holds.

PROOF. Because Theorem 2.1.3 holds (thanks to the previous proposition),
there is no need to distinguish between the limit measures u(naive, univ, steps b)
and u(univ, steps b). Our first task is to deduce from iv) a tail estimate for the
most general limit measure u(naive, univ, steps b).

Lemma 3.1.10. Suppose that Theorem 2.1.3 holds. Fix an integer r > 1, and
a step vector b in Z'. For any real s > 0, we have the inequality

u(univ, steps b)({x in Rr with 1x(i)I > sb(i) for some i})

< E(b) x u(univ, step 1)({jxj > s}).

In particular, if iv) holds, then for any real s > 0, we have

u(univ, steps b)({x in ]R' with jx(i)[ > sb(i) for some i}) < E(b) x Ae-B°2.

2We will show in 6.13.4 that we can take A = 4/3 and B = 1/8.
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PROOF. The set {x in lig' with Ix(i)I > sb(i) for some i} is the union of the r
sets Eti := {x in R' with Ix(i)I > sb(i)}. So we have

y(univ, steps b) ({E jx(i)I > sE(b)}) < tr,(univ, steps b)(Ei).
i

By definition of direct image, we have

y(univ, steps b)(Eti) = (pr[i].jc(univ, steps b))({Ixl > sb(i)})

= it (univ, step b(i))({IxI > sb(i)}),

the last equality by Lemma 2.11.13.
For any n > 1, denote by Iln the step vector (1,1,1, ... , 1) in 1R'. By Lemma

2.11.14, under the "sum of the coordinates" map Sum : R' - R, we have

Sum. p univ, steps p.(univ, step n).

Applying this with n = b(i), we get

µ(univ, step b(i)) ({jxj > sb(i)}) =y(univ, steps sb(i)}).

For each i, the set in Rb(i) where I Ei x(j)I > sb(i) lies in the union of the b(i) sets
Fj :_ {x in 1R'() with Ix(j)[ > s}. So again by definition of direct image, we have

µ(univ, steps Ab(i))({ j:x(j)J > sb(i)})
i

< Ep(univ, steps flb(i))({IxU)1 > s})
i

_ E(pr[j].fz(univ, steps Ilb(ti)))({Ix[ > s})
i

a(univ, step 1)({IxI > s})
i

= b(i)p.(univ, step 1)(&I > s}). QED

3.2. M-grid discrepancy, L cutoff
and dependence on the choice of coordinates

3.2.1. Throughout this section, we will assume that conditions i), ii) and iii)
of Propositions 3.0.1 and 3.1.9 hold, but we will not assume iv). The main result
of this section is Corollary 3.2.29.

3.2.2. We first explain our general strategy for dealing with discrepancy. Fix
the following data:

r > 1 an integer,
b in lR' a step vector, with separation vector a and offset vector c,

M > 2 a (large) integer, the "grid size",

L > E(a) a (large) integer, the "cutoff",
N > 1 a (large) integer, the "group size",

G(N), one of U(N), USp(2N), SO(2N + 1), SO(2N), O_ (2N + 2).
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Denote by p the probability measure on Iltr

p.:= p,(naive, univ, steps b) = p.(univ, steps b)

given by Theorem 2.1.3. We further fix

p : Rr
i r a homeomorphism of R',

x = (x17... , Xr) ' -p (p1(x), ... , Wr (x)),

which is "bi-bounded" in the sense that there exist strictly positive real constants
n and r) such that

it j IxiI C E Ipi(x)1 55 i I: lxtI

For each integer i with 1 < i < r, we denote by µi,w the probability measure on R
which is the i'th projection of p. in p-coordinates:

,w

We make the assumption 3.1.4:

3.2.3 = 3.1.4. For each i, the measure tLt,w on IR has a continuous CDF.

3.2.4. We denote by Gi,w the CDF of p.i,w. Because Gi,,p is continuous and
nondecreasing, with Gi,w(x) = 0 and limx_,, Gi,,,(x) = 1, there exists a
set Si of M + 1 distinct points in III U {±oo},

-oo = s(0, i) < s(1, i) < s(2, i) < < s(M - 1, i) < s(M, i) _ +oo

such that

Gi,w(s(j, i)) = j/M, for j = 0, ..., M.

We fix, for each 1 < i < r, a choice of such a set Si. The positive real number

(3.2.4.1) 0:= Max(Is(l,i)I, Is(M - 1,i)I)

is called the M-yp-grid diameter.
3.2.4.2. We view the set

S := S1 X S2 X ... X Sr C (R U {±oo})r

as a set of (M + 1)1^ grid points in (IR U {±oo})r, and call it the set of grid points,
or the set of M-cp-grid points relative to p. if confusion is possible. We say that a
grid point is finite if none of its coordinates is ±oo, i.e., if the point lies in Rr.

3.2.5. Attached to each point x in (R U {fool)' is the set (a semi-infinite
rectangle in cp-coordinates)

R(x, cp) :_ {z in 1Rr with cpi(z) < x(i) for all i}.

We will use the expression "semi-infinite cp-rectangle" to mean a set of this form.
If any coordinate of x is -oo, the set R(x, gyp) is empty. If x is a finite point, i.e., a
point in R', we call R(x, cp) a "semi-finite gyp-rectangle". The marked v-rectangles
are those attached to grid points. The semi-finite marked cp-rectangles are those
attached to the (M - 1)r finite grid points.
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3.2.6. Recall (3.1.5.1) that for vI and v2 any two measures on Rr of finite
total mass, we defined their gyp-discrepancy

W-discrep(vl,v2) Sup Ivi(R(x,w))-v2(R(x,zv))
x in (RU{loo})"

Sup Jvi(R(x,c')) - v2(R(x,tp))I
x in R''

3.2.7. We denote

Rmax :_ {z in Rr with s(1,i) < {pi(z) < s(M - 1,i) for all i}.

Lemma 3.2.8. We have the following inequalities:
1) u.(RT - Rm.) < 2r/M.
2) For any Borel measurable set E in W, and any Borel measure v on Rr of

total mass < 1, we have

W (E) - v(E) I
< 4r/M + ]u(E n Rmax) - v(E n Rmax)I + Ip(Rma) - v(Rmax)I.

PROOF. For 1), notice that R' - Rmax is contained in the union of the 2r sets

{z in RT with p4 (z) < s(1, i)}, i = 1, ... , r,

and

{z in Rr with cpi(z) > s(M - 1, i)}, i = 1, ... , r.

By construction of our M-cp-grid, each of these sets has p.-measure 1/M. The point
is that, by definition of direct image,

u({z in Rr with <pi(z) < s(1, i)}) _ ,,ci,,p((-oo, s(1, i))) = Gi,w(s(1, i)) = 1/M.

Now that we have proven 1), 2) is the special case X = Rr, K = Rm.,
e = 2r/M, of the following standard lemma, which is implicit in ]Fel, pages 243-
2441.

Lemma 3.2.9. Let (X, u) be a probability space, e > 0 real, K C X a measur-
able set with u(X - K) < E. For any measure v on X of total mass at most one,
and any measurable set E C X, we have

lu(E) - v(E)I
< 2e + la(E n K) - v(E n K) I + lµ(K) - v(K)I.

PROOF. Write E as the disjoint union

E_ (EnK) I I (E-EnK),
so

u(E) -v(E) =u(EnK)-v(EnK)+u(E-EnK) - v(E - En K).
Therefore we have

lµ(E) v(E)I <Ip,(EnK)-v(EnK)I+u(E-EnK)+v(E--EnK).
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p(E-EnK)+v(E-En K)
p(X - K) + v(X - K)

= p(X - K) + v(X) - v(K)
p(X-K)+1-v(K)

= p(X - K) + p(X - K) + p(K) - v(K)

< 2s + p(K) - v(K)
< 2e + I p(K) - v(K)I. QED

3.2.10. For vl and v2 any two Borel measures on Rr of finite total mass, we
define their "M-(p-grid discrepancy"

-discrep(vl, v2)

.= SUPseml-finite marked gyp-rectangles R Ivi (R n Rm.) - v2(R n R,na)I.

The M-cp-grid discrepancy is "easy" to calculate, in that it requires looking only at
the (M - 2)r semi-finite marked cp-rectangles none of whose coordinates is either
s(0, i) _ -oo (such rectangles being empty) or s(1, i) (such rectangles having empty
intersection with Rma,,), whereas the cp-discrepancy (cf. 3.1.5.1) takes the sup over
all cp-rectangles.

Lemma 3.2.11. Suppose given a semi-finite cp-rectangle R = R(x, p), x in W.
1) Among all marked gyp-rectangles contained in R, there is a maximal one, say

RI. Among all marked cp-rectangles containing R, there is a minimal one, say R2.
We have

RI C R CR2, Rl is semi finite or empty, and

p(R2) - p(Ri) < r/M.
2) p(R) - p(R n Rmax) << 2r/M.

PROOF. For each 1 < i < r, see where x(i) sits among the points of St: there
is a largest index j (i) such that

s(j(i),i) < x(i)
and a smallest index k(i) such that

x(i) < s(k(i), i).

It is clear that k(i) > j(i), and that k(i) is either j(i) or 1 + j(i), depending
on whether or not s(j(i), i) = x(i). We take for RI (resp. R2) the cp-rectangle
attached to the point sl (resp. 82) whose i'th coordinate is s(j(i), i) (resp. s(k(i),i))
for each i. These marked cp-rectangles obviously have the asserted maximality
and minimality properties, RI is semi-finite if no j(i) vanishes, and RI is empty
otherwise, Rl C R C R2, and R2 - Rl is contained in the union of the r sets
E4 :_ {z in Rr with s(j(i),i) < fpi(z) < s(k(i), i)}, for i = 1, ... , r. By the
definition of pi,w as direct image,

p(Ei) = pj,,, ((s(j(i), i), s(k(i), i)])
= Gi(s(k(i),i)) - Gi(s(j(i), i)) = k(i)/M - j(i)/M < 1/M,
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whence µ(R2) - µ(R1) < r/M, as required for 1). Statement 2) is immediate from
part 1) of the previous lemma 3.2.8. QED

Lemma 3.2.12. For v any measure on RT of total mass < 1, we have the
inequalities

o-discrep(µ, v) < 5r/M + Iµ(Rm ) - v(Rm )[ + M-W-discrep(µ, v),

Iu(Rmax) - v(Rmax)I <- M4p-discrep(p, v),

and

W -discrep(µ, v) < 5r/M + 2(M-c -discrep(µ, v)).

PROOF. Given a semi-finite cp-rectangle R = R(x, (p), x in R'', we find marked
gyp-rectangles R1 C R C R2 with µ(R2) - µ(R1) < r/M, thanks to the previous
lemma. So we have the inequalities

µ(Ri) < µ(R) < µ(R2) and v(RI) < v(R) < v(R2),

from which we infer

Ip(R) - v(R)I < Max(Iµ(R2) - v(Rl)I, Iv(R2) - A(RI)D.

From the inequality µ(R2) - µ(R1) < r/M, we get

I,(R) - v(R)I S r/M+Max(Iu(R1) - v(RI)I, Iv(R2) -,a(R2)1)-

For i = 1 or 2, we apply 3.2.9, to bound

Ij (R;) - v(R;,)I
< 4r/M + Ii(R, n Rmax) - v(X. n Rmax)[ + I1L(Rmax) - v(Rmax)I.

Thus we get

Ii,c(R) - v(R)I < r/M + Max(Ip(RI) - v(RI)I, Iv(R2) - µ(R2)I)
< 5r/M + Ii(Rmax) - v(Rmax) I

+ Max(Iµ(Ri n Rmax) - v(RI n Rmax)I, Iv(R2 n Rmax) - u(R2 n Rmax)I).

Although R2 need not be semi-finite, its intersection with Rmax is equal to
R3 n Rmax, for a semi-finite marked R3. [Indeed, if R2 is R(x), we can take R3
to be R(y) for y the finite grid point with coordinates y(i) = x(i) if x(i) < +00,
y(i) = s(M - 1,i) if x(i) _ +oo.] Therefore the inequality above gives us

I,(R) - v(R)I < 5r/M + I/1(Rmax) - v(Rmax)I + -discrep(,u, v).

Since this holds for all semi-finite R, we have

cp-discrep(µ, gyp) < 5r/M + Iµ (R..) -- v(Rmax)I + M-W -discrep(A, v).

W e note that Rmax is itself of the form R4 nRm , for R4 the semi-finite marked
cp-rectangle R(x, gyp) with x(i) = s(M - 1, i) for all i. Therefore we have

I1(Rmax) - v(Rmax) I <- M-cp-discrep(p, v).

Combining these last two inequalities, we get

cp-discrep(µ, cp) < 5r/M + v)). QED
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3.2.13. For each element A in G(N), we denote by p(A, N) the measure of
total mass (N - c(r))/(N + A) on R'',

p(A, N) := p(naive, A, G(N), steps b).

Applying the previous result, we get

Corollary 3.2.14. For any A in G(N), we have

,p-discrep(p, p(A, N)) < 5r/M + 2(M-io-discrep(p, µ(A, N))).

3.2.15. At this point, we recall (cf. 2.7.6, 2.8.2, 2.9.1) the combinatorial for-
mulas which express the measures

p(A, N) := p(naive, A, G(N), separations a),

µ(N) := p(naive,G(N), separations a),
1L:= p(naive, univ, separations a)

as an alternating sum of TCor's and TCOR's. For f an R-valued Borel measurable
function on R' of compact support, and A in G(N), we have

Int(a, f, G(N), A) := J r f du(A, N),
x

INT(a, f, G(N)) ffdi(N),

f
*

INT(a, f, univ) := f dµ,
r

Int(a, f, G(N), A) = E (-1)k-E(a) TCor(k, a, f, G(N), A),
k> E (a)

INT(a, f, G(N)) = 1` (-1)k-E(a) TCOR(k, a, f, G(N)),
k>E(a)

INT(a, f, univ) _ (-1)k-E(a) TCOR(k, a, f, univ).
k>E (a)

If in addition f > 0 as function on R', each of the terms

TCor(k, a, f, G(N), A), TCOR(k, a, f, G(N)), TCOR(k, a, f, univ)

is nonnegative, and for each integer m > E(a), we have the inequalities

(-1)k-E(a) TCor(k, a, f, G(N), A) < Int(a, f, G(N), A),
m>k>E(a)

E (-1)k-E(a) TCOR(k, a, f, G(N)) < INT(a, f, G(N)),
m>k>n(a)

(-1)k-E(a) TCOR(k, a, f, univ) < INT(a, f, univ),
m> k> E (a)



A
l

A
l

3.2. M-GRID DISCREPANCY

if m - E(a) is odd, and we have the inequalities

Int(a, f, G(N), A) < E (-1)k-E(a) TCor(k, a, f, G(N), A),
m>k>E(a)

INT(a, f, G(N)) (-1)k-E(a) TCOR(k, a, f, G(N)),
m>k>E(a)

INT(a, f, univ) (-1)k-E(a) TCOR(k, a, f, univ),
m>k>E(a)

if m - E(a) is even.
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Lemma 3.2.16. For f > 0 a nonnegative, bounded, Borel measurable function
of compact support on R', and L > E(a) a cutoff, we have the inequalities

INT(a, f, univ) - Int(a, f, G(N), A) I

< E I TCOR(k, a, f, univ) - TCor(k, a, f, G(N), A)
L>k>E(a)

+ TCOR(L, a, f , univ) + TCOR(L + 1, a, f, univ)

< E TCOR(k, a, f, G(N)) - TCor(k, a, f, G(N), A)j
L>k>£(a)

+ E ITCOR(k,a,f,G(N))-TCOR(k,a,f,univ)I
L>k>E(a)

+ TCOR(L, a, f, univ) + TCOR(L + 1, a, f, univ).

PROOF. The second inequality is immediate from the first, by the triangle
inequality. For the first, we argue as follows. Fix A in G(N). Let m _> E(a) be a
cutoff having the same parity as E(a). Suppose first that

INT(a, f, univ) > Int(a, f, G(N), A).

Then we have

0 < INT(a, f, univ) - Int(a, f, G(N), A)

< (-1)k- E(a) TCOR(k, a, f, univ)
m>k>E(a)

E (_1)k-E(a) TCor(k, a, f, G(N), A)
m-1>k>E(a)

< TCOR(m, a, f, univ)

+ E I TCOR(k, a, f, univ) - TCor(k, a, f, G(N), A)J.
m-1>k>E(a)

If L is m, this inequality trivially implies the asserted one. If L is m + 1, this
inequality for in + 2 trivially implies the asserted one.

Now suppose that

Int(a, f, G(N), A) > INT(a, f, univ).
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Then we have
0 Int(a, f, G(N), A) - INT(a, f, univ)

(-1)k-E(a) TCor(k, a, f, G(N), A)
m>k>E(a)

(-1)k-E(a) TCOR(k, a, f, univ)
m+1>k>E(a)

TCOR(m + 1, a, f, G(N))

+ E I TCOR(k, a, f , univ) - TCor(k, a, f, G(N), A)
m>k>E(a)

If L is either m or m + 1, this inequality trivially implies the asserted one. QED

3.2.17. It is the second inequality of 3.2.16 which will be useful to us. We
will use our estimate for the rate of convergence of large N limits of TCOR's to
estimate the terms of the second line, and our bounds on TCOR's to estimate the
terms of the last line. Let us recall a crude form of these bounds.

Lemma 3.2.18. Suppose that conditions i), ii) and iii) of Propositions 3.0.1
and 3.1.9 hold. For f > 0 a bounded, Borel measurable function of compact support
on IRr with If 1J61P < 1, supported in F,i jx(i) < a, we have the following estimates.

i) I TCOR(k, a, f, G(N)) - TCOR(k, a, f, univ) I

< (16a)k+r((7ra)2 + a + 1 + 10log(N))/N.

ii) ITCOR(k,a, f,G(N))I (4a)k+r/(k+r)!,

ii bis) I TCOR(k, a, f, univ) I (4a)k+r/(k + r)!,

iii) Sqrt(Var(A H TCor(k, a, f, G(N), A) on G(N)))

< (3(32a)k+r + 1)/ Sgrt(N).

PROOF. Use the trivial bound Binom(r + k - 1, r + E(a) - 1) < 2r+k-1 to get
i), ii) and iii) from their cited counterparts, and let N -4 oo to get ii bis) from ii).
QED

3.2.19. We now use these bounds for f the characteristic function of a set
R n Rmx, for R a finite marked cp-rectangle. Such an f is certainly supported in

Rn,,, :_ {z in 1Rr with s(1, i) < cpi(z) < s(M - 1, i) for all i}.

This set lies in the set

{z in IRr with [cpi(z)j < Max(Is(M - 1,i)j, Is(l,i)j) for all i},

which set in turn lies in the set

z in R' with E Icpi(z)l < Max(Js(M - 1,i)I, ls(1,i)1) := f3
i i

[Recall that

( :_ Max(ls(l, i% Is(M - 1, i)j)
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is the M-o-grid diameter, cf. 3.2.4.1.] In view of the dilational assumption on cp,
namely

rEIxil :! EIWi(x)I <K E1xil,

this last set, and hence Rmax, is contained in the set

{ x in R' with
l i J

For east of later reference, we record this fact.

Lemma 3.2.20. We have the inclusion

RR,ax C { x in Rr with Ixi1 < 0A
l i 1

It will be convenient to know that, 3/rl is not too small.

Lemma 3.2.21. If M > 4r, then,3/n > 1/10.

PROOF. Let a > 0. For f the characteristic function of any Borel set E
contained in the region jx, I < a, and a in Z the separation vector such that p
is p(univ, rep.'s a), we have, as recalled above,

A(E) = f du = INT(a, f, univ)
r

= E (-1)k-E(a) TCOR(k, a, f, univ),
k>E(a)

with the estimate

I TCOR(k, a, f, univ)I < (4a)k+,/(k + r)!.

Therefore we have the inequality

µ(E) < E (4a)k+T/(k + r)! < E(4a)k+r/(k + r)!
k>E(a) k>O

_ E(4a)k/k! < <`(4a)k/k! = e4a - 1.
k>r k>1

Take a = 0/i7, and E = R,,,,,. We know by 3.2.8, part 1), that

p(Rmax) > 1 - 2r/M,

so we obtain

1 - 2r/M < p(Rm ) < 1,

i.e.,

e40/n > 2 - 2r/M > 1.5.

Taking logs, we find 4(3/77 > log(1.5) > 0.405, whence I3/77 > 1/10. QED
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Lemma 3.2.22. For any Borel set R contained in Rmax, and for L > E(a) a
cutoff, we have the inequality

Ii(R) - p(A, N)(R)I
< E I TCOR(k, a, f, G(N)) - TCor(k, a, f, G(N), A) I

L>k>E(a)

+ 9(16)3/r1)L+r+2(1 + 2log(N))/N

+ (40/i1)L+r/(L
+ r)! +

(4,3/71)L+l+r/(L + 1 + r)!.

PROOF. For f the characteristic function of R, Lemma 3.2.16 gives

I,u(R) - µ(A, N)(R) I = I INT(a, f, univ) - Int(a, f, G(N), A) I

< I TCOR(k, a, f, G(N)) - TCor(k, a, f, G(N), A) I
L>k>E(a)

+ E I TCOR(k, a, f, G(N)) - TCOR(k, a, f, univ)I
L>k»(a)

+ TCOR(L, a, f, univ) + TCOR(L + 1, a, f, univ)

(using the bounds of 3.2.18 and 3.2.20)

< E I TCOR(k, a, f, G(N)) - TCor(k, a, f, G(N), A)I
L>k>E(a)

+ E (16/3/77)k+r((7rI /7)2 + )3/,j + 1 + 10 log (N)) IN
L>k>L(a)

+ (4,3/r1)L+r/(L + r)! +
(4(3/r1)L+1+r/(L + 1 + r)!.

Recall that /3/71 > 1/10, so 16/3/11 > 1.6 > 3/2. For a finite geometric series
EL>k>E(a)7k+r with ry > 3/2, we have

k+r < k+r = (,,,r+1+L

L>k>>E(a) L>kk>O

< ,yr+1+L/(_' - 1) < (?'l(?' - 1))'yr+L = (1 + 1/(?' - 1)),yr+L < 3,yr+L

Thus we have

(16)3/71)k+r((7r)3/11)2 + /3/r] + 1 + 10log(N))
L>k>E(a)

< 3(160/71)L+'((710/'1)2 +)3/17 + 1 + 10log(N))

< 3(160/r7)L+1(3(16,3/71)2 + 10 log(N))

< 3(16)3/?))L+1(3(16/3/71)2(1 + 2log(N)))

< 9(16/3/))L+r+2(1 + 21og(N)). QED
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Corollary 3.2.23. For each semi-finite marked gyp-rectangle R, denote by XR
the characteristic function of R fl R,,,ax. Then we have the inequality

M-gyp -discrep (p, tc(A, N) )

= SUPsemi-finite marked R Iu(R fl Rmax) - µ(A, N)(R fl Rmax)I
9(16,3/7t)L+r+2(1 + 21og(N))IN

+ (4I3/7))L+r/(L + r)! + (4,3/77)L+1+rI(L + 1 + r)!

+ E I TCOR(k, a, XR, G(N)) - TCor(k, a, XR, G(N), A)
R L>k>E(a)

the sum extended over the (M - 2)r finite marked (p-rectangles none of whose co-
ordinates is s(0, i) = -oo or s(1, i).

PROOF. For each of the (M - 2)' semi-finite marked cp-rectangles R for which
R fl Rmax is nonempty, the previous lemma gives an upper bound for the quantity
I,p(RflRmax) - IL.(A,N)(RflRmax)I as a sum of two positive terms A +B(R), with
A constant and B(R) depending on R. Each of these is bounded by A+ER B(R).
QED

Integrating over G(N), we obtain

Lemma 3.2.24. We have the estimate

M-cp-discrep(y, ti(A, N))dA
G(N)

< 9(160/77)L+r+2(1 + 2log(N))/N

+ (4Q/n) L+rl (L

f
+ r)! + (4a/i?) L+l+r/(L + I + r)!

+ E I TCOR(k, a, XR, G(N)) - TCor(k, a, XR, G(N), A) I dA.
R L>k>E(a) (N)

3.2.25. We now use Cauchy-Schwarz to estimate

fG(N)
I TCOR(k, a, XR, G(N)) - TCor(k, a, XR, G(N), A) I dA

Sqrt / I TCOR(k, a, XR, G(N)) - TCor(k, a, XR, G(N), A)I2 dA
G(N)

Sqrt(Var(A i-4 TCOR(k, a, XR, G(N)) on G(N))).

So from Lemma 3.2.24 we get

Lemma 3.2.26. We have the estimate

G(N)
M-cp-discrep(u., p(A, N)) dA

< 9(16J3/r7)L+r+2(1 + 2 log (N)) IN

+ (4/3/r))L+r/(L + r)! + (4,3/1?)L+1+r/(L + 1 + r)!

+ E Sqrt(Var(A w TCOR(k, a, XR, G(N)) on G(N))).
R L>k>E(a)
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Now plugging in the estimates for variance and TCOR's recalled above, with
f = XR and a =,3/i7, we find

Corollary 3.2.27. We have the estimate

M-<p -discrep(p, p(A, N)) dAf (N)

< 27( 160/77)L+,-+2/ Sqrt(N)

+ (4/3/r7)L+r/(L +r)! + (4j3/r1)L+T+r1(L + 1 + r)!

+ (M - 2) r 12(3203/17)L+rI Sqrt(N).

PROOF. We have, from the previous result,

IC(N)
M-cp-discrep(µ, p(A, N)) dA

< 9(16.8/r7)L+r+2(1 +2log(N))/N

+ (4)9l71)L+T/(L + r)! + (4.Iri)L+T+r/ (L + 1 + r)!

+ 1: 1: Sgrt(Var(A t-+ TCOR(k, a, xR, G(N)) on G(N)))
R L>k>E(a)

(using 3.2.18 and 3.2.20)

< 9(16./r7)L+r+2(l +2log(N))/N

+ (4)3/r1)L+r/(L + r)! + (4/3/r7)L+l+r/(L + 1 + r)!

+ 1: 1: (3(32.3/r7)k+r + 1)/ Sgrt(N)
R L>k>0

(using 320/x7 > 1)

9(16,3/r7)L+r+2 (1 + 2log(N))/N

+ (4/3/r1)L+rI (L + r)! +
(40/71)L+l+r/(L + 1 + r)!

+ (M - 2)7- E 4(32/3/,1)k+r/ Sqrt(N)
L>k>O

(using 32,3/77 > 3/2)

9(160/r7)L+7"+2(1 + 2log(N))/N

+ (4.8/r1)L+r/(L + r)! +
(40/77)L+l+r/(L + 1 + r)!

+ (M - 2)'12(32/3/17)L+r/ Sqrt(N).

Now use the fact that for any N > 1, we have

1/N < 1/ Sqrt(N),
log(N)/N< 1/Sqrt(N)

to bound (1 + 2log(N))/N by 3/Sgrt (N). QED
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Corollary 3.2.28. We have the estimate

J (N}
V -discrep(p, p(A, N)) dA

< 5r/M

+ 2(27)(16)3/rj)L+r+2/,Sgrt(N)

+ 2((4/3/7i)L+r/(L + r)! + (4)3/rj)L+l+r/(L + 1 + r)!)

+ 2(M - 2)x12(32/3/r7)L+r/Sgrt(N).

PROOF. We have the inequality (3.2.12, third inequality)

o -discrep(p, v) < 5r/M + 2(M-cp-discrep(µ, v)).

Integrate it over G(N) and use the previous result. QED

For ease of later computation, we record a very crude form of the previous
result.

Corollary 3.2.29. We have the estimate

f N)
to discrep(µ, ji(A, N)) dA

< 5r/M + 27(32I3/?7)L+r+2 (Mr/ Sgrt(N) + 1/(L + r)!).

PROOF. We bound 2 by 2r, so

2(27)(16Q/rj)L+r+2 < 27(32,13/zj)L+r+2

We bound (M - 2)r by Mr, so

2(M - 2)r12(32,3)L+r < 24Mr(32)3)L+r+2

We bound
2((40ij)L+r/(L + r)! + (40/r7)L+1+r/(L + 1 + r)!)

< 2T((4a1n)L+r + (4QI,l)L+1+r)I(L + r)! < (32,3/77)L+r+2/(L + r)!. QED

3.3. A weak form of Theorem 3.1.6

Proposition 3.3.1. Suppose that conditions i), ii) and iii) of Propositions
3.0.1 and 3.1.9 hold. Then the following weak form of Theorem 3.1.6 holds:

Theorem 3.3.2. Fix an integer r > 1, an offset vector c in Zr, with corre-
sponding separation vector a and step vector b, and a real numbers > 0. For any cp
as in 3.1.20 and satisfying 3.1.4, there exists an explicit constant N3 (e, r, c, cp) with
the following property: for G(N) any of

U(N), SO(2N + 1), USp(2N), SO(2N), O_(2N + 2),

and for

p.:= p(naive, univ, offsets c),

µ(A, N) := p(naive, A, G(N), offsets c)

we have the inequality

G(N)
cp-discrep(p, µ(A, N)) dA < e,
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provided that N > N3 (s, r, c, gyp) .

PROOF. For any grid size M > 4r, with M-cp-grid diameter denoted fl, and
any cutoff L > E(a), we have, by Corollary 3.2.29 above,

G(N)
cp-discrep(µ, p(A,N)) dA

< 5r/M + 27(32)3/r7)L+r+2{Mr/ Sgrt(N) + 1/(L + r)!).

We first choose M large enough that M > 4r and 5r/M < e/3. This choice of M
gives us a)3, namely the M-cp-grid diameter. The power series for 27x2ex,

27 x"`+2/n!,
n>0

is everywhere convergent, in particular at x = 320/rl. So the sequence, indexed by
L,

27(320/71) L+r+2/(L + r)!

tends to zero as L --1 oo. We choose L large enough that

27(32f3/7l)L+r+2/(L + r)! < e/3.

Finally, having chosen M and L, we need only take N so large that

27(32,3/71)L+r+2Mr/ Sqrt(N) < -/3. QED

3.4. Conclusion of the axiomatic proof of Theorem 3.1.6

3.4.1. We now make use of condition iv) of Proposition 3.1.9, the tail estimate
for the "classical" one variable spacing measure. We have restricted the use of the
tail estimate to this section in order to clarify what we can get without it, namely
the weak version 3.3.2 of Theorem 3.1.6 given above. Another reason for isolating
it is that, although we give a proof of it (6.13.4) at the level of the Weyl integration
formula, it seems to use to be somewhat deeper than our other three axiomatic
inputs. [We should mention here that the asymptotic behavior of the tail for large
s, not just an upper bound for it, was given by [Widom]. Presumably one could
make effective his result and so get from it the kind of tail estimate, valid for all
s > 0, that we require.]

3.4.2. Thus there exist explicit real constants A > 0 and B > 0 such that
the limit measure u(univ, sep. 0) = A(univ, step 1) on R satisfies

.c(univ, step 1)({I xI > s}) < Ae-$s' for every real s > 0.

We may and will assume that the constant A is > 1, and that the constant B is
< 1, cf. 6.13.4, where we show that we may take A = 4/3 and B = 1/8.

Lemma 3.4.3. Suppose M > 3. Then for C the constant

C := (1/rj)cr2E(b) Sgrt((1 + log(rAE(b)))/B),

the M-,p-grid diameter 0 satisfies

,3/77< C X Sgrt(log(M)).



'fi

3.4. CONCLUSION OF THE AXIOMATIC PROOF OF THEOREM 3.1.6 91

PROOF. Recall (3.2.4.1) that the M-gyp-grid diameter Q is defined as

)3:= E Max(Is(1, i)I, Is(M - 1,i)I),
i

where, for each i, s(1, i) < s(M - 1, i) are real numbers chosen so that

p({x in R' with (pi(x) < s(1, i)}) = 1/M,
p({x in lR' with cp;(x) > s(M - 1, i)}) = 1/M.

It will be convenient to introduce the quantities, for 1 < i < r,

A := Max(Is(1,i)I, Is(M - 1,i)I).

Our strategy to estimate /3 = E ,3i is to estimate separately each 3j.
We claim that for each i we have the inequality

p({x in RT with I(pi(x)I > Yi}) > 1/M.

Indeed, if /3t = Is(M - 1,i)I > Is(1, i)I, then we must have s(M - 1, i) > 0 (for if
s(M-1,i) <0then s(1,i) < s(M - 1, i) implies Is(1,i)I > Is(M-1,i)I) and hence

{x in Rr with I(pi(x)I > /3i) 3 {x in R' with (pi (x) > s(M - 1,i)}.

This latter set has p.-measure 1/M by construction.
If /3i = Is(l,i)I > Is(M - 1,i)I, then s(1,i) < 0 (because if s(l,i) > 0, then

s(1, i) < s(M -- 1, i) implies Is(M - 1, i) I > Is(l, i)I), and hence

{x in IRT with IVi(x)I > /3i} D {x in R" with (pi (x) < s(1,i)}.

This latter set has µ-measure 1/M, because by construction the set

{x in R' with (pi (x) < s(1,i)}

has p.-measure 1/M, and by the hypothesis 3.1.4 that pi,,p has a continuous CDF,
the set {z in Rr with (pi (z) = s(l,i)} has p-measure zero.

We next use the inequality

Ivi(x)II(pj(x)I <rcEIxil'
i j

which gives an inclusion

{x in it with I(pi(x)I > /3i} C {x in R' with r E I xjI > Ni)

C U{x in Rr With Ix3I > /3i/rcr}.

i

Therefore this union U j {x in R' with I x3I > ii/rr} has measure > 1/M, and hence
at least one of the unionees has measure > 1/rM. This says that for each i there
exists an index j such that

p({x in Rr With I xjj > /3i/rcr}) > 1/rM.

Now recall that the direct image measure Aj := pr[j]*p defined in terms of the
standard coordinates xl,... , xT on Rr of our spacing measure It = p.(univ, steps b)
is the measure p.(univ, step b(j)). According to 3.1.10, µj = µ(univ, step b(j)) has
the tail estimate

elj({IxI > sb(j)}) <- b(j)Ae-s2

,
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which we rewrite as

y({x in R' with jxjI > sb(j)}) < b(j)Ae-Bs2.

Taking s to be /3;/rcrb(j), we have the inequality

jr,({x in 1Rr with 1x3 > flt/rcr}) < b(j)Aexp(-B(J32/rcrb(j))2)

< E(b)Aexp(-B(Qt/rcr J>))2)

But recall that for each i there exists j such that

1/rM < u({x in R with lxjl > /3z/rcr}).

Thus we get, for each i, the inequality

1/rM < E(b)Aexp(-B(8i/rcrE(b))2),

i.e.,

exp(B(/3t/rcrE(b))2) < MrAE(b),

or, taking logs and remembering that M > 3 > e and A > 1,

B(/31/rcrE(b))2 < log(M) + log(rAE(b)) < log(M)(1 + log(rAE(b))),

(0j)' < log(M)(rcrE(b))2(1 + iog(rAE(b)))/B,

/3ti < Sgrt(log(M))(kr)(b)) Sgrt((1 + log(rAE(b)))/B).

Since ,3 = E4 Qt is the sum of r such terms, we get

i < rcr2E(b) Sgrt((1 + log(rAE(b)))/B) x Sqrt(log(M)) = 77C x Sqrt(log(M)),

for C the constant

C := (1 /ri)rcr2E(b) Sgrt((1 + 1og(rAE(b)))/B). QED

3.4.4. We now explain the idea of the argument, to show how the exponent
1/(2r + 4) arises. Using 3.2.29 and the above estimate for 3/71, we get

p -discrep(p, µ(A, N)) dAf (N)

< 5r/M + 27(32C)L+r+2 Sgrt(log(M))L+r+2(Mr/ Sqrt(N) + 1/(L + r)!).

We wish to pick M and L as functions of N so as to exploit this. Our rough idea,
which we will make precise in a moment, is to take

M=N", (L+r)!=N1

for positive real a and y to be determined. With such a choice, we have

log(M) = a log(N) = (a/y) log((L + r)!).

Before proceeding, let us explicate some standard inequalities.
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Lemma 3.4.5. Let e > 0.
1) Given real K > 0, there is an explicit constant N4 (E, K) such that

Kx+l < r(x)E for real x > N4(e, K).

We can take

N4(e,K) = 2 if K < 1,

N4 (E, K) = eK21` if K > 1.

2) There is an explicit constant N5(e) such that

(log(I'(x)))2+1 < r(x)1+E for real x > N5(e).

For e < 1/2, we can take N5(e) to be the unique real number s > ee for which
log log(s)/log(s) = e/2. For E > 1/2, we can take N5(e) to be N5(1/2).

PROOF. Both result from Stirling's formula, in the form [W-W, page 2531 that
for x > 0 real,

log(r(x)) = (x - 1/2) log(x) - x + log(Sgrt(27r)) + o(x),
with 0 < V(x) < 1/12x.

We will use the two following consequences of Stirling's formula. For x > 0,

log(r(x)) > (x - 1/2) log(x) - x + 1/2 + log(Sgrt(27r/e))
> (x - 1/2)(log(x) - 1),

and for x > 1,

log(r(x)) < (x - 1/2) log(x) - x + log(Sgrt(2ir)) + 1/12x

< (x - 1/2) log(x) - x + 1/12x

< (x - 1/2) log(x).

To prove 1), note first that if K < 1, then N4(E, K) = 2 works, because r(2) = 1
and r(x) is increasing in x > 2. If K > 1, we claim that

N4 (e, K) = eK2/£

does the job. Suppose that x > eK21E. Then x > e. By Stirling,

log(r(x)) > (x - 1/2)(log(x) - 1),

so it suffices to show that

(x + 1) log(K) < E(x - 1/2)(log(x) - 1),

i.e.

(1/e)log(K) < ((x - 1/2)/(x + 1))(log(x) - 1)

= (1 - (3/2(x + 1)))(log(x) - 1).

Since x > e > 2, (1 - (3/2(x + 1))) > 1/2, and log(x) - 1 > 0, and so it suffices if

(1/E) log(K) < (1/2) (log(x) - 1),

which is precisely the condition x > eK21E.
To prove 2), we may assume e < 1/2, since N5(1/2) will work as N,5 (e) for any

larger e. We now use also the inequality

log(r(x)) < (x - 1/2) log(x) for x > 1,
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so for x > ee we have

1 < log log(r(x)) < log(x - 1/2) + log log(x).

Thus to have (log(r(x)))x+i < r(X)1+E, it suffices to have

(x + 1)(log(x - 1/2) + loglog(x)) < (1 + E)(x - 1/2)(log(x) - 1),

i.e.,

log(x - 1/2) + loglog(x) < (1 + e)((x - 1/2)/(x + 1))(log(x) - 1).

So it suffices if

log(x) + log log(x) < (1 + E)(1 - 1/(2x + 2))(log(x) - 1),

i.e.,

1 + loglog(x)/log(x) < (1 + e)(1 - 1/(2x + 2)) (1 - 1/log(x)),

and for this it suffices if

1 + loglog(x)/log(x) (1 + e)(1 - 1/(2x + 2) - 1/log(x)).

For 0<E<1/2,we have e2=ee<e/2, so we have

I + E/2 = 1 + 2E/3 - e/6 < 1 + 2e/3 - 62/3 = (1 + 6)(1 - e/3).

So we need simply choose x > ee large enough that

log log(x)/ log(x) < E/2 and 1/(2x + 2) + 1/ log(x) < E/3.

For this, it is enough if x > ee satisfies

loglog(x)/log(x) < 612,

1/log(x) < 6/4,

1/(2x + 2) < 6/12.

Introduce the quantity t := log log(x). Thus t > 1. Then

log log(x)/log(x) =
to-' and 1/log(x) = e-t.

The function x H log log(x) is an order preserving bijection from (e', 00) to (1, 00).
The function t ,--+

to-' is strictly decreasing for t > 1 (its derivative,
e-t - to-t = e-t(1 - t) is < 0 for t > 1), so it defines an order reversing bijection
of (1, oo) with (0, 1/e). Thus the function

x H log log(x)/ log(x)

defines an order reversing bijection of (ee, oc) with (0,1/e).
Because E/2 < 1/4 < 1/e, there is a unique s > ee with log log(s) / log(s) = e/2.

For any x > s, we have log log(x)/log(x) < E/2. We define N5(,-) := s, and define
log log(s) (so ee-E = 6/2).

We must show that if x > s, then we also have

1/log(x) < 6/4 and 1/(2x+2)<5/12.

To show that 1/ log(x) < 6/4 if x > s, it suffices to show that 1/ log(s) < E/4, i.e.,
that e- < 6/4. Suppose not. Then e-E > 6/4, and so

6/2 = ee-E > eE/4,
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which implies 2 > , in which case we must have

2e-2 < ee-{ = E/2 < 1'/4,

which implies 8 < e2, which is false (e2 is 7.389... ). This contradiction shows that
if x > s, then 1/ log(x) < E/4.

We now show that if x > s, then 1/(2x + 2) < e/12. Again, it suffices to show
that 1/(2s + 2) < E/12. Since we just showed that I/ log(s) < E/4, it suffices to
show that 1/(2s + 2) < 1/3 log(s), which is equivalent to 2s + 2 > 3log(s). The
function

x F-4 2x + 2 - 3 log(x)

is strictly increasing for x > 3/2, and already at x = 2 it takes the value
6 - 3log(2) > 6-3 > 0. Ass > ee > 2, we must have 2s + 2 - 3log(s) > 0.
QED

3.4.6. With c > 0 fixed, apply the lemma with x = L + r + I and
K = 32CSqrt(a/-y). For L = r + 1 > Sup(N4(E, K), N5(E)), which in turn forces
N = ((L + r)!)1+7 to be impressively large, we get

(32C)L+r+2 Sgrt(log(M))L+r+2

_ (32C x Sqrt(a/7))L+r+2 Sqrt(log((L + r)!))L+r+2

< ((L + r)!)E((L + r) !)(1+E)/2 = Nry/2+37E/2

and thus

f (N)
cp-discrep(p, p(A, N))dA

< 5r/M + 27(32C)L+r+2 Sgrt(log(M))L+r+2(Mr/ Sgrt(N) + 1/(L + r)!)

< 5rN-° + 27N7/2+3ye/2 (Nra-1/2 + N--r)

= 5rN-0' + 27N''/2+3yE/2+ra-1/2 + 27N-'Y/2+37E/2

Let us now equate the three different exponents to which N occurs:

-a = (y/2)(1 + 3E) + ra - 1/2 = (y/2)(1 - 3E).
Equating the last two and then doubling gives

2y+2ra=1.
Equating the first and last and then doubling gives 2a = y(1 - 3E), so we find

2y + ry(I - 3E) = 1,

i.e.,

Thus we find

y = 1/(2 + r - 3rE),
a = y(1 - 3E)/2 = (I - 3E)/(4 + 2r - 6rm).

G(N)
cp-discrep(IL, p(A, N)) dA

< 5rN-° + 27N7/2+3ryE/2+ra-1/2 + 27N--y/2+3-IE/2

< (5r + 54)N-°
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with

a = (1 - 3E)/(4 + 2r - 6re),

provided that N is sufficiently large.

3.4.7. We now make precise this argument. Given E > 0, we will produce an
explicit constant N, (e, r, c, q, n) such that for N > N1 (E, r, c, n, r.), we have

,p-discrep(p, µ(A, N)) dA < NE-1/(2r+4)

We may and will suppose that e < 1/6, since otherwise the statement is trivially
true, and holds for all N > 1.

3.4.8. We define strictly positive real numbers a and y by

a = (1 - 3E)/(4 + 2r - fire),
y = 1/(2 + r - 3rE).

3.4.9. Now suppose that NO > 4r and that N'r > (E(a.) + r)!. We define the
grid size M > 4r to be the integral part of N. Thus

(1/2)N° < Na - 1 < M < Na.

We define the cutoff L > 1 + E(a) to be the largest positive integer L such that
N7 > (L + r - 1)!. Since n H n! is strictly increasing on integers n > 1, we have

(L + r)! > N' > (L + r - 1)! = (L + r)!/(L + r) > N7/(L+ r).

Using these inequalities, we infer that

log(M) < log(N°) _ (a/y) log(NI) < (a/y) log((L + r)!),

and hence

(32C)L+T+2 Sgrt(log(M))L+r+2

< (32C x Sgrt(a/y))L+r+2 Sqrt(log((L + 7-)!))L+r+2

Suppose L + r + 1 > Sup(N4 (e, K), N5 (E)), for K = 32CSgrt(a/y). Then we can
continue this chain of inequalities:

< ((L + r)!)-((L + r)!) 11+-,1/2 = ((L + r),)(1+3a)/2

_ (L + r)(1+3E)/2((L + r - 1)!)(1+3E)/2

< (L + r)(1+3E)/2Ny(1+3E)/2

We also record for use below the inequalities

1/M < 2N-°, 1/(L + r)! < N-1.
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3.4.10. Thus from 3.2.29 we get

p -discrep(,u, Ei(A, N)) dA
G(N)

< 5r/M + 27(32C)L+r+2 Sgrt(log(M))L+r+2(Mr/ Sqrt(N) + 1/(L + r)!)

< lOrN-° + 27(L + r)(1+3E)/2NY(1+3E)/2(Nra-1/2 + N--Y)

= IOrN-° + 27(L + r)(1+3E)/2(N-° + N-°),

the last equality by our calculated choice of a and ry.
Thus we have

G(N)
rp-discrep(i, i.(A, N)) dA

provided that N" > 2

< (l Or + 54(L + r)(1+3E)/2)N-°

< (10r + 54(L + r))N-°

_ (64r+54L)N-°,
and that Ni > (E(a) + r)!.

3.4.11. Suppose in addition that L + r > e2. We use

N7>(L+r--1)!=F(L+r)
and Stirling's formula to get

y log(N) > (L + r - 1/2) log(L + r) - L - r + log (Sqrt (27r))
= (L + r - 1/2)(log(L + r) - 1) + log(Sgrt(2ir/e))
> (L + r - 1/2)(log(L + r) --- 1)
>L+r-1/2>L,

and thus we have

G(N)
,p -discrep(p., µ(A, N)) dA < (64r + 547 log(N))N-°.

Finally, we choose N sufficiently large that

64r + 547log(N) < NE12.

Then we have

-discrep(p, µ(A, N)) dAf (N)

Returning to the definition of a, we see that
a - a/2 = (1 - 3c)/(4 + 2r - 6rE) - e/2

and hence

> (1 - 3E)/(4 + 2r) - e/2

= 1/(4 + 2r) - 3E/(4 + 2r) - E/2

> 1/(4 + 2r) - 3e/6 - e/2 = 1/(4 + 2r) - E,

97
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3.5. Making explicit the constants

3.5.1. Let us now make explicit how large we must take N, i.e., let us calcu-
late the constant Nl (E, r, c, 77, rc). We first review the various constants A, B, E(b),
7), rc, C, E, a, ry, K, N4(e, K), N5(E) which have arisen, and the constraints placed
upon N.

3.5.2. µ(univ, step 1)({IxI > s}) < Ae-B92 for real s > 0, with A > 1,
0 < B < 1 (in fact, we can take A = 4/3, B = 1/8).

3.5.3. a is u(univ, steps b) on P', separation vector a and offset vector c.

3.5.4. v: !R? -4 R' is a homeomorphism of ![2r,

x = ( X I,- .. , 2r) - (VI (X), ... , W, W),

which is "bi-bounded" in the sense that there exist strictly positive real constants rc
and rl such that -q E Ix; I < I JBpi (x) l < rz > Ixi 1. We may, at the cost of increasing
re, assume that rc/rj > 1. We assume that each (ept),,j2 has a continuous CDF.

3.5.5. C := Sgrt((1 + log(rAE(b)))/B), so C > 1.

3.5.6. 0 < E < 1/6.

3.5.7. a = (1 - 3e)/(4 + 2r - 6re).

3.5.8. ry = 1/(2 + r - 3rE).

3.5.9. a/y = (1 - 3E)/2 lies in (1/4,1/2).

3.5.10. K = 32C Sgrt(a f y); visibly K > 1.

3.5.11. K1+1 < r(x)e for real x > N4(E, K) = eK2/E.

3.5.12. (log(r(x)))'+1 < r(x)'+' for real x > N5(E).

3.5.13. N5 (E) = unique real s > ee with log log(s)/ log(s) = E/2.

3.5.14. N' > 2 and N" > (E(a) + r)! = E(b)!.

3.5.15. (1/2)N° < N" - 1 < M < N°; this defines M.

3.5.16. (L + r)! > N7 > (L + r - 1)!; this defines L.

3.5.17. L + r + 1 > Sup(N4(e, K), Ns(e)); this is equivalent to

r(L+r+1) > r(Sup(N4(E,K),N5(e)))

and is implied by

NI > r(Sup(N4(E, K), N5(E))).

3.5.18. L + r > e2; equivalent to

r(L + r + 1) > r(e2 + 1),

implied by

N7 > r(e2 + 1).
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3.5.19. 64r + 54ry log(N) < NE/2.
[In the discussion of L + r + 1 and of L + r, we use the well known fact that

r(s) is strictly increasing on [2, oo), and so defines an order preserving bijection of
[2, oo) with [1, oo). This is equivalent to the fact that log r is strictly increasing
on [2, oc). It holds because the derivative of log r is > 0 on [2, oo). One sees this
positivity from Gauss's integral formula [W-W, page 247) for

`1`(s) (logr)'(s) = f ((e/t) - (e-ts/(1 - e))) dt,
0.c)

in which the integrand is > 0 for s > 2. The positivity of the integrand is the
assertion that for s > 2 and t > 0, we have

1 - e-t > te-t
or equivalently that for u > 1 and t > 0 we have

1 - e-t - to-tu > 0.

View u > 1 as fixed. The function f (t) := 1 - e-t - to-tu vanishes at t = 0, and is
strictly increasing for t > 0, as its derivative at t > 0 is

e-t - e-tu + tue-tu > tue-tu > 0.

Therefore f (t) > 0 for t > 0, as required.]

3.5.20. We now look more closely at the last condition,

64r + 547log(N) < NE/2

Put x := log(NE/2) and write this condition as

128rs + 216ryx < 2Eex,

which is implied by

128r < ex and 216yx < sex.

Since x < ex/2 for x > log(4), these will both be satisfied if NE/2 > 4 and if

128r < N`/2 and 2167/E < NE/4

3.5.21. So the estimate

-discrep(, j (A, N)) dAf (N)

holds provided N is strictly larger than each of the following six quantities:

21/a,

(E(b)!)1/Y,

(P{Sup(N4(e, K), Ns(E)))1/7

(128x)2/£,

(216ry/E)4/E'

and we may take Nl (s, r, c, 71, r.) in Theorem 3.1.6 to be the sup of these six explicit
though gigantic quantities.
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CHAPTER 4

Test Functions

4.0. The classes T(n) and To(n) of test functions

4.0.1. For each integer n > 2, we denote by T(n) the R-vector space consist-
ing of all bounded, Borel measurable, lit-valued functions F on lR1 which satisfy the
following two conditions:

1) F is E7,-invariant,
2) F is invariant under additive translation by the diagonal vector

L1n (t) :_ (t, t, ... , t), for any tin R.

4.0.2. We denote by To(n) the subspace of T(n) consisting of those functions
F in T(n) which satisfy the additional condition:

3) F has "compact support modulo the diagonal" in the sense that there exists
a real a > 0 such that F(X) = 0 if Supij Ix(i) - x(j)I > a. [If F satisfies this
condition with a given a, we write supp(F) < a.]

4.0.3. Given Fin T(n), we denote by IIFIIsup its sup norm as function on R".
Under pointwise multiplication of functions, T(n) is a ring. For each real a > 0,
{F in T (n) with supp(F) < a} is an ideal, say I (a), in T(n). For a < 0, we have
1(a) C 1(/3), and To(n) = Ua>0I(a). We also have 1(a) = nQ>a I(0).

4.0.4. The motivation for introducing the class To(n) is given by the following
lemma.

Lemma 4.0.5. Fix an integer r > 1, a separation vector a > 0 in Z', and
an integer k > E(a). Let f be a bounded, Bored measurable, 1>.i;-valued function on
R' [respectively, which in addition is of compact support, and a > 0 a real number
such that f is supported in the compact set is in R' with Ei Is(i) I < a}]. Then

1) The function F on Rr+E(a)+1 defined by

F(X) := Clump(a, f, r + E(a) + 1, X)

lies in T(r + E(a) + 1) [resp, in To(r + E(a) + 1)], and satisfies

IIFllsup <- IIfllsup

[resp., and supp(F) < a].

2) The function G on R''+k+1 defined by

G(X) := TClump(k, a, f, r + k + 1, X)

lies in T(r + k + 1) (resp. in To(r + k + 1)], and satisfies

]IGIIsup < Binom(r + k -1, r + E(a) - 1) 11f Ils,,p

[resp., and supp(G) < a].

101
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PROOF. Since Clump(a, f,r + E(a) + 1,X) is symmetric in X by definition,
assertion 1) is just a restatement of Lemma 2.5.11. For assertion 2), we use the
definition

TClump(k, a, f, r + k + 1, X)

E Binom(n, a) Clump(n, f, r + k + 1, X).
n>a,E(n)=k

By 1) applied to each term Clump(n, f, r + k + 1, X), each Clump term lies in
T(r + k + 1), has sup norm < 11f Ilsup [resp. and has supp < a]. So it remains only
to prove

Sublemma 4.0.6. Fix an integer r > 1, a separation vector a > 0 in Z', and
an integer k > E(a). Then we have

E Binom(n, a) = Binom(r + k - 1, r + E(a) - 1).
n>a,E(n)=k

PROOF. For r = 1, there is nothing to prove. For r > 2, we argue as follows.
Recall first that for a fixed integer l > 1, the series (1-T)-1 is the generating series
for the number of monomials of degree d in I variables. Thus

(-1)d Binom(-I, d) = Binom(l - 1 + d, I - 1)

is the number of monomials of degree d in I variables. We restate this as saying
that, for 1, d integers > 0, Binom(l + d, 1) is the number of monomials of degree d
in l + 1 variables.

Now consider r sets of distinct independent variables, the i'th set consisting of
a(i)+1 variables. We will count the number of monomials in these E(a)+r variables
which are homogeneous of degree D. Any such monomial is multi-homogeneous,
i.e., it is homogeneous of some degree 8(i) in the variables from the i'th set, and
the degrees 8(i) are subject only to the condition that each 8(i) is a nonnegative
integer, and that E4 8(i) = D. Thus 8 :_ (8(1), ... , 8(r)) is a separation vector, and
E(6) = D. Now how many monomials in all the variables are multi-homogeneous
of multi-degree 8? This number is

(number of monomials of degree 6(i) in a(i) + 1 variables)

_ Binom(a(i) + 8(i), a(i)) Binom(a + 6, a).

So if we break up the monomials of degree D in E(a) + r variables according to
their multi-degrees, we get

Binom(D + E(a) + r - 1, E(a) + r - 1)
= number of monomials of degree D in E(a) + r variables

E Binom(a + 8, a).
6>0 with E(5)=D

Taking D = k - E(a), n = a + 6 gives the asserted identity. QED
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4.1. The random variable Z[n, F, G(N)] on G(N)
attached to a function F in T(n)

4.1.1. Given an integer n > 2, a function F in T(n), and an integer N > 1,
recall (2.5.14) that we denote by F[n, N] the function on RN defined by

F[n,N] : X --* E F(pr(T)(X)),
Card(T)=n

the sum over all subsets T of {1, ... , N} with Card(T) = n. Thus F[n, N] vanishes
for N < n, and F[n, n] is F itself.

4.1.2. It is immediate from the definitions that if F lies in T(n), then F[n, N]
lies in T(N). However, even if F lies in To(n), F[n, N] does not, in general, lie in
T (N).

4.1.3. Given F in T(n) as above, and an integer N > 1, for G(N) any of
U(N), SO(2N+ 1), USp(2N), SO(2N), O_(2N+2), and A in G(N), we will define
a function Z[n, F, G(N)] on G(N) as follows, cf. the definitions of Int and Cor in
2.7.2-5. Given A in G(N), we denote by X(A) in RN the N-tuple of its angles of
eigenvalues, cf. 2.7.2-5, and.we define:
if G(N) = U(N),

Z[n, F, G(N)](A) := (1/N)F[n, N]((N/2ir)X(A))

_ (1/N) F((N/21r) pr(T)(X(A))),
Card(T)=n

if G(N) = USp(2N) or SO(2N),

Z[n, F, G(N)](A) (1/N)F[n, N] ((N/ir)X (A))

_ (1/N) F((N/zr)pr(T)(X(A))),
Card(T)=n

if G(N) = SO(2N + 1),

Z]n, F, G(N)](A) := (1/(N + 1/2))F[n, N](((N + 1/2)/ir)X(A))

:=(11(N+112)) F(((N + 1/2)/7x) pr(T)(X (A))),
Card(T)=n

if G(N) = O_ (2N + 2),

Z[n, F,G(N)](A) := (1/(N+ 1))F[n, N](((N + 1)/7r)X(A))

:_ (1/(N + 1)) > F(((N + 1)/7r) pr(T)(X(A))).
Card(T)=n

4.1.4. It is obvious from these definitions and from Lemma 2.5.14 that
Z[n, F, G(N)] is a bounded, Borel measurable function on G(N). For the reader's
convenience, we record the relation of the random variable Z[n, F, G(N)] to the Cor
and TCor functions of 2.7.

Lemma 4.1.5. Fix an integer r > 1, a separation vector a in Zr, an integer
k > E(a), and a bounded R-valued Borel measurable function f on R''.

1) Denote by H in T(r + E(a) + 1) the function

H(X) := Clump (a, f, r + E(a) + 1, X).
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Then for every N > 2 and every X in RN we have

H[r + E(a) + 1, N] (X) = Clump(a, f, N, X),

and for every A in G(N) we have

Z[r + E(a) + 1, H, G(N)] (A) = Cor(a, f, G(N), A).

2) Denote by F in T (r + k + 1) the function

F(X) := TClump(k, a, f, r + k + 1, X).

Then for every N > 2 and every X in RN we have

F [r + k + 1, N] (X) = TClump(k, a, f, N, X),

and for every A in G(N) we have

Z[r + k + 1, F, G(N)J(A) = TCor(k, a, f, G(N), A).

PROOF. Immediate from 2.5.15, 2.6.3, and the definitions. QED

Remark 4.1.6. Although we have defined Z[n, F, G(N)] for F in T(n), it is
only for F in To(n) that we will be able to say much of interest.

4.2. Estimates for the expectation E(Z[n, F, G(N)J) and
variance Var(Z[n, F, G(N)J) of Z[n, F, G(N)] on G(N)

4.2.1. For any bounded Borel measurable 118-valued function f on G(N),
G(N) any of U(N), SO(2N + 1), USp(2N), SD(2N), D_ (2N + 2), we denote

12
f d Haar IE(f) := f d Haar, Var(f) := JG(N) f e d Haar

-(rG(N)

fJG(N)

The key estimate we need is the following:

Theorem 4.2.2. Let n > 2 be an integer, F in To(n), a > 0 a real number
such that supp(F) < a.

i) There exists a real number E(n, F, univ) such that for any N > 2 and any
G(N), we have

]E(Z[n, F, G(N)J) - E(n, F, univ)]

< 1IFIIsup(8a)n-1((7ra)2 + a + 1 + 10log(N))/N.

ii) For any N > 2 and any G(N) we have

IE(Z[n, F,G(N)])I IIFIIsup2(2a)n-1/(n - 1)1.

iii) For any N > 2 and any G(N) we have

I Var(Z[n, F, G(N)])I < (3(8a)n-1 +

Proposition 4.2.3. Suppose that Theorem 4.2.2 holds. Then conditions i)
and ii) of Proposition 3.0.1 hold, and condition iii) of Proposition 3.1.9 holds. In
particular, parts i) and ii) of Theorem 4.2.2 imply Theorem 2.1.3.

PROOF. In order to get the desired conclusions for the data k, a, f, and G(N),
simply apply Theorem 4.2.2 to n = r + k + 1 and the function

F(X) := TClump(k, a, f, r + k + 1, X)

in To(n), making use of the estimates 4.0.5 for IIFIIsup and supp(F), and of the
compatibility 4.1.5. QED
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Corollary 4.2.4. Suppose that Theorem 4.2.2 holds, and that the following
condition iv) holds.

iv) (estimate for the tail of the most classical spacing measure) There exist
explicit real constants A > 0 and B > 0 such that the limit measure

p(naive, univ, sep. 0)

on IR satisfies

ic(naive, univ, sep. 0)({lxl > s}) < Ae-Be2 for every real s > 0.

Then Theorem 3.1.6, the cp-version of 2.1.5, holds.

PROOF. In view of the previous result, this is just a restatement of 3.1.9. QED
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CHAPTER 5

Haar Measure

5.0. The Weyl integration formula for the various G(N)

5.0.1. We give first a case by case account of the explicit shape the Weyl
integration formula takes for each of the G(N). The version of the formula which
we need, especially in the non-U(N) case, is precisely the one given in [Weyl, pages
197 (7.4B), 218 (7.8B), 224 (9.7) and 226 (9.15)]. In all but the O_ (2N + 2) case,
this formula is, to a modern reader, a straightforward deciphering of the "intrinsic"
one given in [Bour-L9, §6, No. 2, Cor. 1]. The O_ (2N + 2) formula seems to have
been all but forgotten in modern times.

5.0.2. For A in G(N), we denote by X(A) in RN its vector of eigenvalue
angles, cf. 2.7.2-5. Thus for A in U(N), X (A) lies in [0, 27r)N, while in the other
cases, X (A) lies in [0, 71 N.

5.0.3. The U(N) case [Weyl, p. 197 (7.4B)]. An element A in U(N) is de-
termined up to conjugacy by its vector of angles X(A). Bounded, Bore] measurable
R-valued central functions g on U(N) are in one-one correspondence with bounded,
Borel measurable ]R-valued functions g on [0, 21r)N which are EN-invariant, via
g(A) = j(X (A)). We denote by p(U(N)) the measure on [0, 27r)N (with coordi-
nates x(i), i = 1, ... , N) given by

u(U(N)) (11N!) Ij lei2(,) - eiz(k)12 jI d(x(i)/27r).

7<k i

The Weyl integration formula asserts that for g a central function on U(N), corre-
sponding to a EN-invariant g' on [0, 27r) 'V, we have

gdy(U(N)).JU(N)
gdHaar =

Ja,2r}N

5.0.4. The USp(2N) case [Weyl, p. 218 (7.8B)]. An element A in USp(2N)
is determined up to conjugacy by its vector of angles X(A). Bounded, Borel mea-
surable 1R-valued central functions g on USp(2N) are in one-one correspondence
with bounded, Borel measurable R-valued functions g on [0, 7r]N which are EN-
invariant, via g(A) = g"(X (A)). We denote by p.(USp(2N)) the measure on [0, 7r] N
(with coordinates x(i), i = 1, ... , N) given by

1c(USp(2N))
2

(1/N!) (fJ(2cos(x(i)) - 2cos(x(j))) I [I((2/7r) sin2(x(i)) dx(i)).
i<j / i
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The Weyl integration formula asserts that for g a central function on USp(2N),
corresponding to a EN-invariant g" on [0, ir]N, we have

= US 2N
fo !N g du( p())f Sp(2N)

gdHaar

5.0.5. The SO(2N + 1) case [Weyl, p. 224 (9.7)]. An element A in
SO(2N + 1) is determined up to conjugacy by its vector of angles X (A). Bounded,
Borel measurable JR-valued central functions g on SO(2N+1) are in one-one corre-
spondence with bounded, Borel measurable R-valued functions g` on [0, Ir] N which
are EN-invariant, via g(A) = g(X(A)). We denote by p.(SO(2N + 1)) the measure
on [0, 7r] N (with coordinates x(i), i = 1, ... , N) given by

p.(SO(2N + 1))
2

:_ (1/N!)(fl([i + 2 cos(x(i))] - [1 + 2 cos(x(j))]) H((2/7r) sin2(x(i)/2) dx(i)).
i<J i

The Weyl integration formula asserts that for g a central function on SO(2N + 1),
corresponding to arEN-invariant j on [0, ir]N, we have

J
gdHaar = fdp(SO(2N + 1)).

SO(2N+1}

5.0.6. The SO(2N) case [Weyl, p. 228 (9.15)]. An element A in SO(2N) is
determined up to conjugation by elements in the ambient group O(2N) by its vector
of angles X (A). Bounded, Borel measurable k-valued 0(2N)-central (i.e., invariant
by O(2N) conjugation) functions g on SO(2N) are in one-one correspondence with
bounded, Borel measurable K-valued functions g on [0, ir] N which are E Ar-invariant,
via g(A) = g(X(A)). We denote by tc(SO(2N)) the measure on [0,7r]N (with
coordinates x(i), i = I,-, N) given by

2

y(SO(2N)) := (2/N!) (H(2cos(x(i)) - 2cos(x(j))) fl((1/2Ir) dx(i)).
L<7 i

The Weyl integration formula asserts that for g an 0(2N)-central function on
SO(2N), corresponding to a EN-invariant g on [0, Ir]N, we have

f gdHaar = gdp,(SO(2N)).
O(2N) f0,x)N

5.0.7. The O_(2N + 2) case [Weyl, p. 228 (9.15)]. An element A in
O. (2N + 2) is determined up to 0(2N + 2)-conjugation by its vector of angles
X (A). Bounded, Borel measurable R-valued O(2N + 2)-central functions g on
O_ (2N + 2) are in one-one correspondence with bounded, Borel measurable IR-
valued functions g on [0, 7r]1V which are EN-invariant, via g(A) = 4(X (A)). We
denote by p.(O_ (2N + 2)) the measure on [0, 7r] N (with coordinates x(i),
i = I,-, N) given by

p(O-(2N + 2)) := p.(USp(2N))
2

:_ (1/N!) (fl(2cos(x(i)) - 2cos(x(j))) fl((2/7r) sin2(x(i))dx(i)).
4<j i
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The Weyl integration formula asserts that for g an O(2N + 2)-central function on
0_ (2N + 2), corresponding to a EN-invariant g on, [0, ir] n', we have

f gdHaar=J gdp.(O_(2N+2)).
_(2N+2) (O,a

Remarks 5.0.8. 1) In all the cases, the measure p(G(N)) is visibly EN-invari-
ant. So for any (bounded, Borel measurable) function f on [0, 27r )N in the U(N)
case or on [0, 7r]N in the non-U(N) cases, both f and its EN-symmetrization have
the same integral against p(U(N)).

2) In the case of either SO(2N) or O_(2N), the normalized Haar measure
is, by its uniqueness, necessarily invariant under 0(2N)-conjugation. Therefore
any (bounded, Borel measurable) function f on SO(2N) or O_ (2N) has the same
integral against Haar measure as its 0(2N)-centralization, the function

x H f
(2N)

f (gxg-1) d Haar(g)-

5.1. The KN (X, y) version of the Weyl integration formula

5.1.1. In this section, we give another expression for the measure p(G(N)),
for G(N) each of U(N), USp(2N), SO(2N + 1), and SO(2N), which shows how it
is built up from the N = 1 case. [Since p(O_(2N + 2)) = jt(USp(2N)), we do
not discuss the 0_ (2N + 2) case separately.] This version of the Weyl integration
formula, which we learned from [Mehta] in the U(N) case, is what allows us to do
effective calculations of expectation and variance for the functions Z[n, F, G(N)].

5.1.2. We first recall the Vandermonde determinant. Given an integer
N > 1, and N elements f (1), ... , f (N) in a commutative ring R, the Vandermonde
determinant Vandermonde(f (1), ... , f(N)) is the N x N determinant whose (i, j)
entry is f (i)1 < i, j < N. One has

Vandermonde(f (1), ... , f(N)) _ (f (j) - f (i)).
i<j

Key Lemma 5.1.3 (compare [Mehta, 5.2.1]). Suppose that (T, p) is a mea-
sure space with a positive measure p of finite total mass. Let f be a bounded
measurable C-valued function on T with

IT
fIfI2d,=1.

Suppose that for every integer n > 1, there exists a monic polynomial in one variable
P,, (X) in C[X] of degree n such that the sequence of functions {cpn}n>o on T defined
by

Va 1/Sgrt(p(T)),
cp.:= PP(f) for n > 1,

is an orthonormal sequence:

J cp4ipj dp = 8,,i for all i, j > 0.
T

For any integer N _> 1, consider the N-fold product T- N. For each i = 1, ... , N,
denote by

pr[i] : T' --> T, t'--+ t(i),
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the i'th projection. Denote by KN(X, y) the function on T2

N-1
KN(x,y) E

"=0

For each integer n > 1, we define

D(n, N) := det"xn(KN (t(i), t(j))),

a function on 7-. We define

D(0, N) 1,

viewed as function on the one point space T°.
1) We have the identity of functions on TN

(1/ Sgrt(u(T))) Vandermonde(f (t(1)}, ... , f (t(N))) = detNxN(Wi-1(t(j))).

2) We have the identity of functions on TN

(1/lc(T))I Vandermonde(f(t(1)),..., f(t(N)))I2 = D(N,N).

3) For 1 < n < N, we have the identity of functions on 1n-1

IT D(n,N)(t(1),...,t(n))dµ(t(n)) _ (N+1 - n)D(n - 1, N).

4) For 1 < n < N, the function D(n, N) on T" is IIt-valued, nonnegative,
and symmetric, i.e., E"-invariant. For n > N, the function D(n,N) vanishes
identically.

5) For n > 1, let F be a (bounded, measurable, R-valued) function on T", and
for any N > 1 denote by F[n, N] the function on TN defined by

F[n, N](t(1),... , t(N)) := E F(t(i(1)), ... , t(i(n))).
1<i(1) <i(2) <... <i(n) <N

Denote by p(n, N) the measure on T' defined by

,a(n, N) :_ (1/n!)D(n, N) d41. . d{r,".

The measure µ(n, N)

JTN

is invariant by E, and we have the integration formula

F[n, N] d(N, N) _ f F d(n, N).
T

PROOF. 1) For n > 1, cp,, := PP(f) = f" + lower terms. This means that we
can pass from detNXN((Pi_1(t(j))) to the NxN determinant whose i'th row for i > 2
is (f(t(i))'-')j and whose first row is (cpo(t(j)))J = (1/ Sgrt(p(T)))(1,1, ... , 1), by
elementary row operations. Equating determinants, we get the assertion.

2) Taking the square absolute value of 1), we get

(1/la(T))I Vandermonde(f(t(1)),..., f (t(N)))I2

= I detNXN(Wi-1(t(j)))I2 = detN.N(Wi-1(t(j))) x detNxN(7Ti--1(t(j)))

= detNXN((i,j) - Wi-1(t(i))) x detNxN(Vi-1(t(j)))

= detNxN((i,j)- Eipk-1(t(i))tpk-1(t(j))) := D(N,N).
k
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3) From the orthonormality of the cpn's and the definition of KN, we get the
integration formulas

I. KN (t, t) d,u(t) = N,

KN (x, t)KN (t, y) dµ(t) = KN (x, y).

The first of these is precisely the n = 1 case of the assertion.
For n > 1, we expand D(n, N) by its n'th column:

n

D(n, N) = 1:(-1)k+nKN(t(k), t(n)) Cofactor(k, n).
k=1

The term with k = n is KN(t(n),t(n))D(n - 1,N), which integrates to give
N x D(n - 1, N).

It remains to see that for each of the n - I values of k from 1 ton - 1, the term
(-1)k+nKN(t(k), t(n)) x Cofactor(k, n) integrates to give -D(n - 1, N). For each
such k, we expand Cofactor(k, n) by its n'th row:

n-1
Cofactor(k, n)

= 1: (---1)n-1+1KN(t(n), t(l)) x Cofactor({n, k}, {l, n}},

where
1=1

Cofactor({n, k}, {l, n}} := the (n, l)-cofactor of Cofactor(k, n)

is the n - 2 x n - 2 matrix obtained by removing the indicated rows and columns.
So we obtain

(-1)k+nKN(t(k), t(n)) x Cofactor(k, n)
l n-1

_ [:(_1)k-1+IKN(t(n), t(l))KN(t(k), t(n)) Cofactor({n, k}, {l, n}}.1=11

The term Cofactor({n, k}, {l, n}} is just the (k, 1) cofactor of D(n - 1, N) (itself
the (n, n)-cofactor of D(n, N)), and KN(t(n), t(l))KN(t(k), t(n)) integrates to give
KN(t(k), t(l)). So after integration, we get

n-1

_ E(-1)k-1+'KN(t(k), t(l)) x (the (k,1) cofactor of D(n -- 1, N)),

which is precisely (-1) times (the expansion by minors along the k'th row of)
D(n - 1, N).

4) In view of the integration formula 3), it suffices, to treat the case n < N,
to show that D(N, N) is real, nonnegative, and symmetric in its N variables. This
is obvious from 2), since the Vandermonde determinant transforms under EN by
the sign character, and hence its square absolute value is symmetric, as well as real
and nonnegative.

To show that D(n, N) vanishes for n > N, think of D(n, N) as the n x n
determinant made from KN (x, y). Introduce functions zfiti on T for i = 0, ... , n - 1
by defining

;:=cp, for0<i<N-1, and

rbz:=0 forN<i<n-1.
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Then it is trivially true that

n-1
KN(x,y) _ E Oi(x)`i'iW),

i=o

and hence (cf. the proof of 2)) that

detnxn(KN(x(i), x(7))) detraxn(Vi-1(x(j)))12,

But as n > N, the last row of this last determinant is identically zero.
5) The En-invariance of p(n, N) is obvious from 4). If n > N, both Fl n, N]

and µ(n, N) vanish identically, so the integration formula is true but nugatory. For
n = N, there is nothing to prove. Suppose now that 1 < n < N. Consider the
integral

J F[n,N] x D(N,N)dp1--.dµ.N
TN

E F(t(i(1)),... , t(i(n)))D(N, N) dµ1- . dµN
TN

By symmetry of D(N, N) under EN, each summand is equal to

ITN
F(t(1),... , t(n))D(N, N) dµ1... dµN-

Using 3) successively to integrate out the variables t (N), t(N - 1), ... , t(n + 1), we
get

t(1), ... , t(n))D(N, N) dti1... dkN
41V F(

= (1)(2) . (N - n)
fT

n F(t(1),... , t(n))D(n, N) dµ1 , dµn

= (N - n)! fn F x D(n, N) dµ1- .. dµn.
JJJT

Since there are Binom(N, n) summands, we get

(1/N!) JTN Fn, N] x D(N, N) d1 . - . d

= (1/N!) Binom(N, n) (N - n)! IT" F x D(n, N) d1. . .

r
= (1/n!) J F x D(n, N) dµ1 - dµn. QED

T^

Remark 5.1.3.1. In part 5), if F is symmetric on Tn, then F[n, N] is sym-
metric on TN. In nearly all applications, the input function F will in fact be
symmetric, but this symmetry is not needed for the validity of part 5).

5.1.4. We now explain how to apply this lemma to rewrite the Weyl measure
fi(G(N)) as being the measure µ.(N, N) on TN for a suitable situation of the type
(T, µ, f) considered in the lemma. We proceed case by case.
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5.1.5. The U(N) case. The group G(1) = U(1) is abelian, so U(1) is its own
space of conjugacy classes. We take for T this space of conjugacy classes, viewed
not so canonically as being [0, 27r), endowed with the normalized Haar measure
u := dx/27r. For the function f, we take the function f (x) := e25, the character of
the standard representation of U(1). The powers fn, n in Z, are orthonormal, so
we may take P, ,(X) to be Xn. Since u has total mass 1, we have vi,, = f n for all
n > 0. For N > 1, the function KN (x, y) is

N-1
KN(x,g) E ein(x-v)

n=o

The measure u(U(N)) on TN = [0, 27r) N is equal to

jL(U(N)) (1/N!)
leix()) _ eix(k) 12 fld(x(i)/27r)

= (1/N!)l Vandermonde(f (x(1)), ... , f (x(N)))12 fl d(x(i)/27r)

= (1/N!) detNXN(KN(x(i), x(j))) fl d(x(i)/27r),
i

which is the measure u(N, N) attached to the data

(T = [0, 2n), u = dx/27r, f (x) = eix).

The measure u(n, N) attached to this data is

u(n, N) = (1/n!) detn,x,(KN(x(i), x(j))) d(x(i)/27r).

5.1.6. The USp(2N) case. The group G(1) = USp(2) = SU(2) has as its
space of conjugacy classes the space T :_ [0, 7r], and the Weyl measure on T is
(2/7r) sin2 (x) dx. We take for f the function

f (x) := 2 cos(x) = sin(2x)/ sin(x),

which is the character of the standard 2-dimensional representation of SU(2). The
group SU(2) has a single irreducible representation of each degree n _> 1 (namely
Symn-1 of the standard representation), whose character is

sin(nx) / sin(x) = 6n, odd + [: (eikx + -ikx).

1<k<n-1
k=n-1mod2

This formula makes it obvious that sin(nx)/sin(x) is a monic Z-polynomial of
degree n -- 1 in the quantity eix + e-'x = 2 cos(x). By the Peter-Weyl theorem (or
by trigonometry), we know that the functions sin(nx)/ sin(x) are orthonormal on
[0, 7r] for the measure u = (2/7r) sin 2 (x) dx. So we have

Wn = sin((n + 1)x)/ sin(x) for all n > 0.

For N > 1, the function KN(X, y) is therefore

N

KN (x, y) :_ (1/ sin(x) sin(g)) E sin(nx) sin(ny).
n=1
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The measure µ(USp(2N)) on TN = [0, 7r]N is equal to

2

(1/N!) (ll(2cos(x(i)) - 2cos(x())) fl((2/7r)sin2(x(i))dx(i))
(i<j i

_ (1/N!)I Vandermonde(f (x(1)), ... , f (x(N))) 12 [I((2/7r) sin2(x(i)) dx(i))
i

_ (1/N!) detNXN(KN(x(i), x(j))) fJ((2/7r) sin2(x(i)) dx(i)),
i

which is the measure .c(N, N) attached to the data

(T = [0, 7r], u. = (2/7r) sine (x) dx, f (x) = 2 cos(x)).

The measure ,u(n, N) attached to this data is

µ(n, N) _ (1/n!) detnxn(KN(x(i), x(j))) J((2/7r) sin2(x(i)) dx(i))
i

5.1.7. The SO(2N + 1) case. The group G(1) = SO(3) has as its space of
conjugacy classes the space T :_ [0, 7r], and the Weyl measure on T is

(2/7r) sin2(x/2) dx.

We take for f the function

f (x) := 1 + 2 cos(x) = sin(3x/2)/ sin(x/2),

which is the character of the standard 3-dimensional representation of 50(3). The
group SO(3) has a single irreducible representation of each odd degree 2n + 1
(namely Sym2n of the standard representation of SU(2), viewed as a representation
of SU(2)/(f1) = SO(3)), whose character is

sin((2n + 1)x/2)/ sin(x/2) = 1 + 1] (eik' + e-ikz:).
1<k<n

This formula makes it obvious that sin((2n + 1)x/2) / sin(x/2) is a monic Z-polyno-
mial of degree n in the quantity

1 + eix + e-tx = 1 + 2 cos(x) = sin(3x/2) / sin(x/2).

By the Peter-Weyl theorem (or by trigonometry), we know that the functions
{sin((2n + 1)x/2)/sin(x/2)}n>o are orthonormal on [0,7r] for the measure
u = (2/7r) sin2(x/2) dx. So we have

cpn = sin((2n + 1)x/2)/ sin(x/2) for all n > 0.

For N > 1, the function KN (x, y) is therefore

N-1
KN (x, y) = (1/ sin(x/2) sin(y/2)) E sin((2n + 1)x/2) sin((2n + 1)y/2).

n=O
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The measure i (SO(2N + 1)) on TN = 10, -7,]N is equal to

(1/N!) [J([1 + 2 cos(x(i))] - [1 + 2 cos(x(j))]) [J((2/ir) sin2(x(i)/2) dx(i))
(i<j i

= (1/N!) I Vandermonde(f (x(1)), ... , f (x(N)))I2 [J((2/ir) sin2(x(i)/2) dx(i))
i

(1/N!) detNXN (KN(x(i), x(j))) fI((2/ir) sin2 (x(i)/2) dx(i)),
i

which is the measure Ei(N, N) attached to the data

(T = [0, -7r], p _ (2/ir) sin2 (x/2) dx, f (x) = 1 + 2 cos(x)).

The measure p (n, N) attached to this data is

A(n, N) = (1/n!) detn,,,(KN(x(i), x(j)))1I((2/lr) sin2(x(i)/2) dx(i)).

5.1.8. The SO(2N) case. The group G(1) = SO(2) is the abelian group
U(1). The conjugation action of 0(2)/S0(2) = f1 on SO(2) is inversion. The
quotient of SO(2) by 0(2)-conjugation is the space T := [0, ir]. We take for p the
measure dx/2-7r on T, which has total mass 1/2, and is half of the direct image of
normalized Haar measure from SO(2). We take for f the function

f (x) := 2 cos(x) = eix + e-ice

which is the character of the standard 2-dimensional representation of SO(2). For
every n > 1, we define

f,, (x) := 2 cos(nx) = einx + e-inx

Each f, is the character of a representation Vn of SO(2) which is the sum of two
inequivalent irreducible representations, and for n# m the representations V,, and
V,,, have no common constituent. Intrinsically, the Vn for n > 1 are precisely the
restrictions to SO(2) of the nontrivial irreducible representations of 0(2).

It is obvious that fn(x) is a monic Z-polynomial of degree n in the quantity

f (x) = eix + e-`x = 2 cos(x).

By the Peter-Weyl theorem (or by trigonometry), we know that the functions
{2cos(nx)}n>i are orthonormal on [0,7r] for the measure ,u = dx/2ir. [It was
to insure this orthonormality that we chose ,a as we did,] So we have

cpn = 2cos(nx) for all n > 1.

But precisely because the measure p has total mass 1/2, we have

po(x) = Sqrt(2).

For N > 1, the function KN (x, y) is therefore

N-1
KN (x, y) = 2 + 4 E cos(nx) cos(ny).

n=1
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The measure i(SO(2N)) on T' [0,7r]N is equal to
2

(2/N!) [1(2 cos(x(i)) - 2 cos(x(j))) J [I((1/27r) dx(i))
i<j i

= (2/N!) I Vandermonde(f (x(1)), ... , f (x (N))) 12 [1((1/21r) dx(i))
i

= (1/N!) detNXN(KN (x(i), x(7))) fl((1/21r) dx(i)),
i

which is the measure µ(N, N) attached to the data

(T = [0, 7r], u = dx/27r, f (x) = 2 cos(x)).

The measure u(n, N) attached to this data is

µ(n, N) _ (1/n!) detfXf(KN(x(i), x(j))) fl((1/27r) dx(i)).
i

5.2. The LN(X, y) rewriting of the Weyl integration formula

5.2.1. In this section, we record the "euclidean" version of the formulas of
the last section, i.e., we write the measure µ(n, N) on [0, 27r)n or [0, 7r]n as an ex-
plicit "density", given by a determinant, times normalized (total mass 1) Lebesgue
measure.

5.2.2. The U(N) case. In this case, there is nothing to change. We define
N-1

LN(x, y) := KN (x, y)
ein(x-y)

n=o

The measure µ(n, N) on [0, 27r)n is

µ(n, N) _ (1/n!) detnxn(LN(x(i), x(j))) fJ(dx(i)/27r).

5.2.3. The USp(2N) (and O_ (2N + 2)) case. In this case, we define

LN(X,Y) 2 sin(x) sin(y)KN(x, y)
N

E 2 sin(nx) sin(ny).
n=1

The measure µ(n, N) on [0, 7r]n is

µ(n, N) = (1/n!) detnXn(LN(x(i), x(j))) [J(dx(i)/7r).

5.2.4. The SO(2N + 1) case. In this case, we define

LN (x, y) := 2 sin(x/2) sin(y/2)KN(x, y)
N-1

2 sin((2n + 1)x/2) sin((2n + 1)y/2).
n=0

The measure ti(n, N) on [0, 7r]n is

u(n, N) _ (1/n!) detnxn(LN(x(i), x(j))) J(dx(i)lir)
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5.2.5. The SO(2N) case. In this case, we define

LN(x,y) (1/2)KN(x,y)
N-1

= 1 + 2 cos(nx) cos(ny).
7L=1

The measure p (n, N) on [0, 7r]" is

µ(n, N) = (1/n!) detn < (LN(x(i), x(j))) [I(dx(i)l7r)

5.3. Estimates for LN (x, y)

Lemma 5.3.1. For every (x, y) in R2, and every N > 1, we have the estimate

ILN(x,y)I < N in the U(N) case,
ILN (x, y) I < 2N in the USp(2N), SO(2N + 1) and SO(2N) cases.

PROOF. Obvious from the expression of LN as a sum of trig functions. QED

Lemma 5.3.2. For every N > 1, LN (x) y) is a periodic of period 41r in each
variable separately, and viewed as a function on the probability space [0, 47r]2 with
normalized Lebesgue measure dxdy/167r2 it has L2 norm = Sqrt(N).

PROOF. The periodicity is obvious from the expression of LN as a sum of trig
functions (we need 47r for the SO(2N + 1) case), as is the L2 estimate. QED

Lemma 5.3.3. For every 1 _< n < N and every (x(1) , ... , x(n)) in R'L we have
the estimate

I det,,,(LN(x(i), x(j)))I < N" in the U(N) case,
I det"Xn(LN(x(i), x(j)))1 < (2N)" in the USp(2N), SO(2N + 1)

and SO(2N) cases.

PROOF. Interpret L"(x(i),x(j)) as the standard Hermitian inner product
(v(i),v(j)) of vectors in CN, where v(j) in CN is

for U(N) : (1 eix(i), e2ix(j)...
, ei(N 1)x(j)),

for USp(2N) : f(sin(x(j)),sin(2x(j)),...,sin(Nx(j))),

for SO (2N + 1) : v(sin(x(j)/2), sin(3x(j)/2),... , sin((2N - 1)x(j)/2)),

for SO(2N) : (1, f cos(x(j)), f cos(2x(j)), ... , f cos((N - 1)x(j))).
Since each vector v(j) has

IIv(j)112 < N in the U(N) case,

JIv(j)112 < 2N in the USp(2N), SO(2N + 1) and SO(2N) cases,

our assertion amounts to the well-known Hadamard inequality:

Lemma 5.3.4. Given n > 1 vectors v(1), ... , v(n) in a Hilbert space, we have
the inequality

I detnxn((v(i),v(j)))I < [1 IIv(i)I12.
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PROOF. The truth of the asserted inequality is invariant under scaling the
vectors v(i) by strictly positive real constants Yi. Indeed, under such scaling the
(i,j) entry is multiplied by Ni,3j, so each term in the full En expansion of the
determinant is multiplied by fi 3i/3o(i) = (lli /3i)2. This allows us to reduce to
the case where each vector v(i) is either zero or has llv(i)ll = 1. If any v(i) is
zero, the assertion is obvious, since both sides vanish. So we may assume that each
Ilv(i)II = 1, and we must prove that

I detnxn((v(i), v(j)))I < 1.

If the vectors v(i) are linearly dependent, say Ei aiv(i) = 0, then for every
j, )i ai (v (i), v (j)) = 0, so the determinant vanishes, and there is nothing to prove.
If the vectors v(i) are linearly independent, then the n x n matrix A := ((v(i), v(j)))
is the matrix of a positive definite Hermitian form (namely the Hilbert space in-
ner product) on the n-dimensional space spanned by the v(i), expressed in that
basis. Therefore the n eigenvalues A1, ... , An of A are real and positive. Therefore
I det Al = Hi Ai. By the inequality between the geometric and arithmetic mean, we
have

1/n

I detnxn((v(i), v(j)))I1/n = I det Al 1/n = (nA) < (1/n) ai

i i

_ (1/n) T ace(A) = (1/n) E(v(i), v(i)) = (1/n) E IIv(i)II2 = 1. QED

5.4. The LN (x, y) determinants in terms of the sine ratios SN (x)

5.4.1. It will be convenient to adapt the following notation. For x real and
N > 1 an integer, we define

(5.4.2) SN(x) := sin(Nx/2)/sin(x/2),

a Laurent polynomial in the quantity eix/2 with 7L coefficients.

5.4.3. The U(N) case. For each n > 1, we have

detnxar.(LN(x(i), x(j))) = detnxn(SN(x(i) - x(j)))
To see this, recall that

N-1

LN(x, y) E ein(x-e)
n=0

is the value atz=x - y of
(eiNz - 1)/(eaz - 1) = [eiNz/2 sin(Nz/2)]/[eiz/2 sin(z/2)]

= ei(N-1)=/2SA,(z).

Therefore the n x n matrix made from LN(x(i), x(j)) is conjugate to that made
from SN(x(i) - x(j)) by the diagonal matrix whose j'th entry is ei(N-1)x01/2

Remark 5.4.3.1. This formula makes visible the fact that

detnxn(LN(x(i), x(j)))

is real, a fact we know a priori because the matrix is hermitian.
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5.4.4. The USp(2N) (and O_ (2N + 2)) case. In this case, we have

LN(x,y) = (1/2)(S2N+1(x - y) - S2N+1(x+y))-
To see this, recall that

N

LN (x, y) := 2 sin(x) sin(y)KN (x, y) = E 2 sin(nx) nin(ny).
n=1

Subtract the cosine addition identities

cos(x + y) = cos(x) cos(y) - sin(x) sin(y),

cos(x - y) = cos(x) cos(y) + sin(x) sin(y),

to get

2 sin(x) sin(y) = cos(x - y) - cos(x + y).

Taking nx and ny in the above and summing over n, we get

The identity

gives

so we get

as asserted.

N

LAX, Y) _ cos(n(x - y)) - cos(n(x + y)).
n=1

N

sin((2N + 1)x)/ sin(x) = 1 + 2 j cos(2nx)
n=1

N

(1/2)S2N+1(x) = 1/2 + E cos(nx),
n_1

LN(x, y) = (1/2) (S2N+1(x - y) - S2N+1(x + y)),

5.4.5. The SO(2N + 1) case. /In this case, we have

LN (x, y) = (1/2) (S2N (x - y) - S2N (x + Y))

To see this, recall that

LN(x, y) := 2 sin(x/2) sin(y/2)KN (x, y)
N-1
E 2 sin ((2n + 1)x/2) sin ((2n + 1)y/2).
n=0

Again using the cosine addition formula, we rewrite this as
N-1

_ E cos((2n + 1) (x - y)/2) - cos((2n + 1) (x + y)/2).

n=0

The identity
N-1

sin(2Nx) / sin(x) = 2 cos((2n + 1)x)
n=0
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gives

N-1
(1/2)S2N(x) = E cos((2n+ 1)x/2),

n=o

so we get

LAX, Y) = (1I2)(S2N(x - y) - S2N(x + y)),

as asserted.

5.4.6. The SO(2N) case. In this case, we have

LN (x, y) _ (1/2) (S2N-1(x - y) + S2N+1(x + y))

To see this, recall that
N-1

LN(x, y) := (1/2)KN (x, y) =I+ E 2 cos(nx) cos(ny).
n=1

Using the cosine addition formula, we rewrite this as

N-1
= 1 + cos(n(x - y)) + cos(n(x + y)).

n=1

Now use the identity (cf. the USp(2N) case)

N

(1/2)S2N_1(x) = 1/2 + cos(nx),
n=1

to get the asserted identity.

5.5. Case by case summary of explicit Weyl measure formulas via SN

5.5.1. The U(N) case. The measure A(n, N) on [0, 27r)7' is

µ(n, N) = (1/n!) detn,,n(SN(x(i) - x(j))) fl(dx(i)/27r).

is

5.5.2. The USp(2N) and 0-(2N+2) cases. The measure µ(n, N) on [0,1r]n

µ(n, N) = (1/n!) detn,,n(LN(x(i), x(j))) [J(dx(i)/ir),
i

where

LN(x, y) = (1/2)(S2N+1(x - y) - S2N+1(x + Y))-

5.5.3. The SO(2N + 1) case. The measure A(n, N) on [0, zr]n is

µ(n, N) = (1/n!) detn,,n (LN (x(i), x(j))) [I(dx(i)/1r),

where

LN(x,y) = (1I2)(S2N(x - y) - S2N(x `!' y))
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5.5.4. The SO(2N) case. The measure i(n, N) on [0, ir]n is

µ(n, N) = (1/n!) detnx,,(LN(x(i), x(j))) fl(dx(i)/ir),

where
i

LN (x, y) = (1/2) (S2N-1(x - y) + S2N-1(2 + y)).

Remark 5.5.5. We have proven (Lemma 5.1.3, part 5) that the measures
µ(n, N) are En-invariant. On the other hand, this invariance is obvious from the
explicit formulas, since for any f (x, y), the determinant detnxn(f (x(i), x(j))) is
En-invariant.

5.6. Unified summary of explicit Weyl measure formulas via SN

5.6.1. In order to unify these formulas, we introduce the quantities
and e according to the following table:

G(N) A o p T E

U(N) 0 2 1 0 0

USp(2N) 0 1 2 1 -1
SO(2N + 1) 2 1 2 0 -1
SO(2N) 0 1 2 -1 1

O_ (2N + 2) 1 1 2 1 -1

The measure IL(n, N) on [0, air]' is

(1/n!) detnxn(LN(x(i), x(j))) fl(dx(i)/air)

with
i

A, o-,P,T

LN(x, y) = (a/2) [SpN+T (x - Y) + ESpN+T (x + y)]'

Remark 5.6.1.1. The attentive reader will have noticed that, in the U(N)
case, we have replaced [0, 27r)' by [0, 2ir]n. This change is harmless because the
measure

(1/n!) detnxn (LN (x(i), x(j ))) fl(dx(i)/o7r)
i

on [0, 27r]n is absolutely continuous with respect to Lebesgue measure, so it gives
the entire boundary measure zero.

5.6.2. With an eye to what will be useful later, we define

LN,-(x, y) (v/2)SpN+T(x - y) = (1/P)SpN+T(x - y),

LN,+(x, y) (ea/2)SpN+T (x + y)

Lemma 5.6.3. 1) For any (x, y) in R2, and any integer n > 1, we have

ILN,-(x,y)I <(2N+7-)/2=N+T/2<N+1,
I LN,+(x, y)I IeI(2N + T)/2 = IEI(N + T/2) < IEI(N + 1).

2) For any x in Rn, we have

Idetnxn(LN(x(i),x(j)))I (PN)n,
I detnxn(LN,- (x(i), x(j))) I < ((2N + T)/2)".
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PROOF. Assertion 1) is just the fact, obvious from its expression as a trigono-
metric polynomial, that JSN(x)[ < N for all real x. The first statement of 2) just
repeats Lemma 5.3.1. The second statement of 2) for U(N) is the same as the first,
and the second statement for other G(N) is the same as the first for U(2N + r).
QED

5.6.4. We denote by µ_ (n, N) the measure on [0, a7r]n given by

jt._(n, N) :_ (1/n!) detnxn(LN,-(x(i), x(j))) [I(dx(i)/a7r)
i

_ (1/n!) detnxn(SpN+T(x(i) - x(j))) [(dx(i)/27r).
i

This last expression shows that t_ (n, N) for G(N) is indeed a measure; namely, it
is the restriction to [0, a7r]n of the measure p(n, 2N+r) from U(2N+r) on [0, 27r]'.
It also reminds us that in the U(N) case, we have IC_ (n, N) = p.(n, N).

5.7. Formulas for the expectation E(Z[n, F, G(N)])

5.7.1. Given an integer n > 2, a function F in T(n), and an integer N > 1,
recall (from 2.5.14) that we denote by F[n, N] the function on RN defined by

F[n,N] : X ' E F(pr(T)(X)),
Card(T)=n

the sum over all subsets T of {1, ... , N} with Card(T) = n. Recall (from 4.1.3)
that Z[n, F, G(N)] is the function on G(N) defined by

Z[n, FG(N)] (A) (1/(N+A))F[n,N](((N+.1)/o7r)X(A))

(11(N +.\)) E F(((N+A)/a7r)pr(T)(X(A))).
Card(T)=n

Lemma 5.7.2. Given an integer n > 2, a function F in T(n), and an integer
N > 1, the expectation E(Z[n, F, G(N)]) is given by the integral

E(Z[n, F, G(N)]) _ (1/(N + A)) J F((N + A)x/our) dtc(n, N).

PROOF. The function A --* Z[n, F, G(N)I(A) is a symmetric function of X (A),
corresponding to the symmetric function

X i.-, (1/(N + A)) E F(((N + A)/a7r) pr(T) (X)),
Card(T)=n

so we may apply the Weyl integration formula to express it as the integral against
µ(N, N) of this function. But this function is of the form G[n, N], for G the
symmetric function

X F--? (1/(N + A))F(((N + )1)/a7r)X).

We then apply part 5) of the Key Lemma 5.1.3 to write the integral of G[n, N]
against u(N, N) as the integral of G against p(n, N). The "unified formula" is
just a rewriting of this, except that in the U(N) case the domain of integration is
[0, 21r]- instead of [0, 27r)'. But as already remarked in 5.6.1.1 above, the measure
u(n, N) is absolutely continuous with respect to Lebesgue measure, so it is the same
to integrate over [0, 21r]n as over [0, 27r) n. QED
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5.8. Upper bound for E(Z[n,F,G(N)J)

5.8.1. We now show that part ii) of Theorem 4.2.2 holds.

Proposition 5.8.2. Let n > 2 be an integer, F in To(n), a > 0 a real number
such that supp(F) < a. For any N > 2 and any G(N) we have

[E(Z[n, F, G(N)J)[ [IFIIsup(2/a)(2a/0,)1-1/(n - 1)!

IIFI[sup2(2a)1-1/(n - 1)!.

PROOF. We may assume n < N, since if not the function Z[n, F, G(N)] van-
ishes. By the previous lemma, we have

E(Z[n, F, G(N)]) = (1/(N + A)) J F((N + A)x/Qir) N).

By scaling, we may assume IIFIIs,,p = 1. Among all such F with supp(F) < a, the
expectation is largest when F is the characteristic function of the "a-neighborhood
of the diagonal" set

0(n, a) := {x in R" with Sup Ix(i) - x(j)I < a}.

Then F((N+,1)x/air) is the characteristic function of the set A(n, aa7r/(N+A)).
Thanks to 5.2 and 5.3.3, the measure j.(n, N) is dominated by (1/n!)(2N/Q)"

times normalized Lebesgue measure on [0, a7r]1. So we have

I E(Z]n, F, G(N)]) I = (1/(N + A))
J

F((N + .1)x/u-7r) dp(n, N)

f
!o O,r]n

< (1/n!)(2N/(1/(N + A)) F((N + A)x/air) ll((i)/r)
fDor]" i

_ (1/n!)(2N/a)1(1/(N + A)) J F((N + A)x) H dx(i)

_ (1/n!)(2N/a)'(1/(N + A)) Vol(L](n, a/(N + A)) n [0,1]1)

< (1/n!)(2N/a)"(1/N) Vol(A(n, a/N) n [0,1]1)

_ (1/n!)(2/a)"(N)"-1 Vol(A(n, a/N) n [0, 1]').
At this point we need the following

Lemma 5.8.3. For n > 2 and any real a > 0, we have
(1/n!) Vol(A(n, a) n [0,1]1) < an-1/(n - 1)!.

PROOF. The region 0(n, a) n [0, 1]1 is stable by the symmetric group E,
so (1/n!) Vol(0(n, a) n [0,1]1) is the volume of the region in ]R1 defined by the
inequalities

0 < x(1) < x(2) < < x(n) < 1,

x(n) - x(1) < a.

This region lies in the region

0<x(1)<1,
0 < x(1) < x(2) ... < x(n),

x(n) - x(1) < a.
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By the unimodular change of coordinates

y(0) = x(1),
y(i)=x(i+1)-x(1) fori=1,...,n-1,

this last region is the product

[0,1]x{yinlR' with

whose volume in R'z is that of the region

{y in R'-1 with 0 < y(1) < y(n - 1) < a}

in Rn-1. This last region is a fundamental domain for the action of En_1 on the
a-cube [0, a]n-1, so has volume an-'/(n - 1)!. QED

5.8.4. Using Lemma 5.8.3, applied with a/N, we get

(1/n!)(2/a)n(N)n-1 Vo1(o(n, a/N) n 10,1]n)
< (2/a)'(N)'z-1(a/N)n-1/(n - 1)! = (2/Q)nan-1/(n - 1)!,

which completes the proof of Proposition 5.8.2. QED

5.9. Interlude: The sin(7rx)/lrx kernel and its approximations

5.9.1. For an integer n > 2, and x in lR, we define

W(n)(x(1),..., x(n)) := detn,< (sin(ir(x(i) - x(j)))/zr(x(i) - x(j))).

Lemma 5.9.2. 1) For x in R, we have I sin(7rx)/7rxl < 1.
2) For n > 2 and x in Rn, we have JW(n) (x(1), ... , x(n))I < 1.

PROOF. For any fixed x in IR, we have the limit formula

sin(-7rx)/7rx = lira sin(Trx)/N sin(7rx/N)
N-oo

= N m(1/N)SN(21rx/N).

So we have the limit formula

W(n)(x(1),...,x(n)) =

N
modetnxn((1/N)SN((27r/N)(x(i) - x(j)))).

So 1) results from the estimate ISN(x)I < N, and 2) results from the U(N) case of
5.3.3 (via 5.4.3), by passage to the limit. QED

Lemma 5.9.3. For x real with Ixj < 1, we have

1(sin(x)/x) - 11 < x2/5.

PROOF, Expanding sin(x)/x in power series, we get

I(Sin(x)/x) - 11 = IE(-1)nx2n/(2n+ 1)!1 < >x2n/(2n+ 1)!.
n>1 I n>1

For Ixj < 1, each term x" is bounded by x2, so

I(sin (x)/x) - 11 < x2 (1/(2n+1)!,
n>1
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and

E1/(2n+1)!=e-1-1-1: 1/(2n)!'< e - 2 - 1/2! - 1/4!
n>1 n>1

< 2.72 - 2 - 1/2 - 1/24 < 1/5. QED

Lemma 5.9.3.1. For x real and M > 0 real, we have

11 - (x/Msin(x/M))I < (1/4)(x/M)2 if IxI < M.

PROOF. Changing variable, this becomes

I1 - (x/sin(x))I < x2/4 if IxI < 1.

By 5.9.3, we know that

I(sin(x)/x) - lI < x2/5 if IxI < 1.

Fix x, I x I < 1, and put A := sin(x)/x. Then IA - lI < 1/5, so IAI > 4/5, and

11 - A-1I = I(A - 1)I/IAI < IA - 1I/(4/5) <_ (x2/5)/(4/5) = x2/4. QED

Lemma 5.9.4. For x real and M > 0 real, we have

I sin(x)/x - sin(x)/Msin(x/M) I < (x/M)'/4 if IxI < M.

PROOF. We have Isin(x)I < IxI for all real x, and

I sin(x)/x - sin(x)/Msin(x/M)I = I sin(x)/xl I1 - (x/Msin(x/M))I.

Now apply the previous Lemma 5.9.3.1. QED

Lemma 5.9.5. For x real, b real and M > 0 real, if IxI < M we have

I sin(x)/x - sin((1 + 6)x)/Msin(x/M) I < 161 + (1 + 161)(x/M)2/4.

PROOF. We suppose IxI < M. We write the quantity to be estimated as

I sin(x)/x - sin(x)/M sin(x/M) + (sin(x) - sin((1 + 6)x))/M sin(x/M)I
< I sin(x)/x - sin(x)/Msin(x/M)I + I(sin(x) - sin((1 + 6)x))/Msin(x/M)I.

The first term is bounded by (x/M)2/4, by 5.9.4 above. We use the mean value
theorem and then 5.9.3 to estimate the second:

I(sin(x) -sin((1+6)x))/Msin(x/M)I < I6x/Msin(x/M)I

= I6+6(x/Msin(x/M) - 1)I < I6I + I6I(x/M)2/4. QED

Corollary 5.9.6. For any integer N > 1 and any G(N), we have:
1) For real x with Iirxl < N,

sin(7rx)/zrx - (N + .1)-1(a/2)SPN+T ((N + A)-1Q7rx) I

< 1/2N + (1 + 1/2N)(irx/2N)2.

2) For all real x,

I sin(7rx)/irx - (N + A)-1(Q/2)SpN+T((N + A)-'azrx) 15 1/2N + 2(irx/N)2.
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PROOF. Let us simplify

(N + A)-1(o/2)SPN+r((N + A)-'o7rx)

= (p(N + A))-1SN+r((P(N + A))-'2irx)

= sin((pN +T)7rx/(P(N + A)))/(p(N + A)) sin((p(N + A))-17rx).

Suppose first that 17rx/NI < 1. The first assertion is the special case

6 = (pN + T)l p(N + A) - 1 = (T - pA)l p(N + A), M = PN +,r

of the previous lemma, since in all cases 161 < 1/2N. It trivially implies the second.
If lirx/NI > 1, the second assertion holds trivially, since the terms being sub-

tracted have absolute values at most 1 and (pN + T)/(pN + pA) < 1 + 1/2N
respectively. QED

5.9.7. For each G(N) and for each integer n > 2, we define a function
W(n, N) on III" by

W (n, N) det, x,, ((N + A)-'LN,-((N + A)-'azrx(i), (N + A)-'o7rx(j))),

= detnx,,((N + A)-1(o/2)SPN+T((N + A)-'o-7r(x(i) - x(j)))).

By Lemma 5.6.3, part 2), we have

Lemma 5.9.8. For any G(N), any n > 2 and any x in Rn, we have

IW(n, N)(x)I < ((2N +T)/(2N + 2A) )n < (1 + 1/2N)n < 2n.

5.9.9. The next lemma shows that for fixed n, W (n, N) (x) is a good approx-
imation to W(n)(x), provided N is very large and x is near the diagonal.

Lemma 5.9.10. Fix integers n > 2 and N > 1, and a choice of G(N). Let
a > 0 be real, and x in IRn a point with Supt., Ix(i) - x(j) I < a. Then we have the
inequality

IW(n)(x) -W(n,N)(x)I < n! x n x 2"-' x (1/2N+2(ira/N)2).

PROOF. We are comparing the determinants of two n x n matrices, say A and
B, whose individual entries a(i, j) and b(i, j) are bounded respectively by 1 and
by (pN + T)/(pN + pA) < 1 + 1/2N < 2 in absolute value, and whose differences
Ia(i, j)-b(i, j)[ are bounded by 1/2N+2(7ra/N)2, thanks to the previous Corollary
5.9.6. So the result follows from (the t = 2, s = 1/2N + 2(7ra/N)2 case of) the
following crude lemma.

Lemma 5.9.11. Let n > 2 be an integer, and s > 0 and t > 0 real. Let
A = (a(i, j)) and B = (b(i, j)) in M,, (C) be n x n matrices with

Sup ja(i, j) I < t,
1.3

Sup l b(i, j) I < t,
1,3

Sup ya(i, j) - b(i, j) I < s-
%13

Then I det(A) - det(B)l < (n!)ntn-'s.
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PROOF. Expand out det(A) and det(B) and separately compare each of the n!
terms. For a fixed p in En, let a(i) := a(i, cp(i)), b(i) := b(i, cp(i)). The telescoping
sum

n
E 11 b(i) (b(j) - a(j)) II a(i) _ [f b(i) - a(i)
j=1 i<j i>j i i

is the sum of n terms, each bounded in absolute value by tm-ls. QED

5.10. Large N limit of E(Z[n, F, G(N)]) via the sin(7rx)/7rx kernel

Definition 5.10.1. Let n > 2 be an integer, F in To(n), a > 0 a real number
such that supp(F) < a. Define110,a]the real number E(n, F, univ) by

E(n, F, univ) = F(0, z)W (n) (0, z) dz(i).
"-'(order)

The integral is visibly independent of the auxiliary choice of a > 0 such that
supp(F) < a.

5.10.2. We now show that part i) of Theorem 4.2.2 holds, with the above
explicit formula for the large N limit E(n, F, univ).

Proposition 5.10.3. Let n > 2 be an integer, F in To (n), a > 0 a real number
such that supp(F) < a. For any integer N > 2 and any G(N), we have

[E(Z[n, F, G(N)]) - E(n, F, univ)

< JjFjj9up(8a)n-1((7ra)2 + a + 1 + l01og(N))/N.

PROOF. We will prove this in a series of three lemmas.
By Lemma 5.7.2, the expectation E(Z[n, F, G(N)]) is given by

E(Z[n, F, G(N)]) = (1/(N + A)) f F((N + A)x/v7r) dp(n, N)
o ,an]"

_ (1/n!(N + A)) F((N + A)x/ rir) detnxn(LN(x(i), x(j))) fl(dx(i)/cr7r).
fo,aw]"

We denote by E_ (Z(n, F, G(N)]) the integral

(5.10.3.1)
r

E_ (Z[n, F, G(N)]) = (1/(N + A))
J

F((N + A)x/7r) dµ_ (n, N)

_ (1/n!(N + A)) f F((N + .1)x/air) detnx,,(LN,_ (x(i), x(j))) ll(dx(i)/o7r).
0,a ri" " i

Lemma 5.10.4. Let n > 2 be an integer, F in To(n), a > 0 a real number
such that supp(F) < a. For N > 2 and any G(N), we have the estimate

]E(Z[n, F, G(N)]) - E_ (Z[n, F, G(N)I)

< IIFI[sup(8a)n-110log(N)/N.

PROOF. If G(N) is U(N), then p. (n, N) = p,_ (n, N), and there is nothing to
prove. In the other cases, we have o = 1, p = 2.
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We expand the n x n determinant of the LN (x, y) into n! terms of type
sgn((p) fl for p in En. Writing

LN(x, Y) = LNG-(x, Y) + LN,+(x, y),

we expand each n-fold product f1i LN(x(i), x(cp(i))) into 2n terms, corresponding
to which factors we replace by LN,_ (x, y) and which by LN,+(x, y). The choice of
all "-" gives the n x n determinant of the LN,- (x, y); the remaining (2n - 1)n!
terms are individually to be regarded as error terms. Thus the difference of the two
integrals is a sum, with signs, of (2n - 1)n! integrals of the form

(1/(N + A)) (1/n!) J F((N + A)x/rr) (H LN, f (x(2), x(cp(i))) H(dx(i)/?r),
!o'nl" i i

where in the product Ili LN,±(x(i), x(cp(i))), at least one ± is +. We choose one
particular term LN,+(x(io), x(cp(io))) which has the +, and use the trivial estimate

ILN,+(x,y)I < (1/2)(2N +,r) < (1/2)(2N+1) < N+1

to deal with the n-1 other terms. We also use the trivial estimate 1/(N+.1) < 1/N.
Thus each of (211 - 1)n! integrals is bounded in absolute value by.one of the form

(1/n! N) (N + 1)n-1 f IF((N + A)xl7r)I ILN,+(x(io), x(jo))I f (dx(i)l'ir).
i

Because supp(F) < a, ]F((N+.1)x/zr)I is supported in the region A(n,7ra/N)
defined by

Sup x(i) - x(j)I <rra/(N+A) <zra/N.
i,.7

So the above integral is bounded by

(1/n! N)(N + 1)n-111FIIgup f I LN,+(x(io), x(jo))I f (dx(i)/ir)
O,,r] n nA(n,7rcr/N)

By renumbering, we may assume that io = 1 and jo = 1 or 2. We pass to the
coordinates

x(1), 8(j) := x(j) - x(1) for j = 2,...,n.

In this coordinate system, each 16(j)] < 7ra/N, and so the domain of integration
[0, rr]n n 0(n, ira/N) lies in the product region

(0,7r] x [-Ira/N, Tra/N]n-1.

Thus

ILN,+(x(1), x(j0))I II(dx(i)/ir)IO,,r]"flA(n,7ra/N) a

LN,+(x(1), x(jo))]d(x(1)/ir)fO,tr] X [-ara/N,na/N]*'-1 i>2

{82N+T(2x(1) + 6(jo))Id(x(1)/2ir) fl(db(i)/n).
fO,,r] x ]-'ira/N,aa/N]"-1 i>2
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If jo = 1, the integrand is a function of x(1) alone, and this integral is

_ (2a/N)"-1 r [S2N+T(2x(1))Idx(1)/27r
[o,n]

_ (2a/N)'-1

J
I sin((2N + T)x)/ sin(x) I dx/21r.

[o,ir]

If jo = 2, the integrand is a function of x(1) and 6(2) alone, and the integral is

2x + 6) I dx/27r db/7rI52N+T((2a/N)--2 f
(flo'Irl[-'Aa/N,7ra/N] J

< (2a/N)n-1 Sup f I S2N+T (2x + 6)1 dx/27r
161<aw/N 0,7r]

< (2a/N)'-1 Sup J I sin((2N +'r)(x + 6/2)) / sin(x + 6/2)1 dx/27r.
i6i a7r/N o,7r]

Let us admit temporarily the truth of the following sublemma.

Sublemma 5.10.5. For any integer N > 2, and any real y, we have

I sin(N(x + y))/ sin(x + y)I dx/27r < 2 + log(N - 1).

By the sublemma, we have

ILN,+(x(io),x(?o))I [J dx@ /ir)f0, 7r] Rno(n, 7ra/N) i

(2a/N)s-1(2 + log(2N +,r - 1))
< (2a/N)n-1(2 +109(2N))

< (2a/N)n-1(5log(N)) (since N > 2).

Hence, retracing our steps, we find that

IE(Z[n, F, G(N)]) - F-(Z[n, F, G(N)J)I
< (2' - 1)n! (1/n! N)(N + 1)n-1IIFIIgup(2a/N)n-1(5log(N))

= IIFIIsup(2n - 1)(2a)n-1 ((N + 1)/N)7z-15log(N)/N
]IFII5up2"(4a)"-15log(N)/N

=
IIFIISUp(8a)"-1101og(N)/N.

QED for Lemma 5.10.4, modulo Sublemma 5.10.5.

PROOF OF SUBLEMMA 5.10.5. The function sin(Nx)/ sin(x) is periodic of
period 21r,,, so for any y we have

J`o,7r]

I sin(N(x + y))/ sin(x + y) I dx/27r

J I sin(N(x + y))/ sin(x + y)dx/2-ir,
r1

k7r,rj Isin(Nx)/sin(x)Idx/27r (by periodicity)

=j I sin(Nx)/ sin(x) I dx/7r (by evenness).
o,ir]
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Break up the interval [0, ir] into the 2N subintervals

II :_ [jir/2N,(j+1)ir/2N] for j =0,...,2N-1.
We get

f,0,7r]

2N-1
I sin(Nx)/ sin(x)I dx/ir = E J ] sin(Nx)/ sin(x) dx/7r.

j=0 h

We use the estimate [sin(Nx)/sin(x)I < N for the j = 0 and j = 2N - 1 terms.
We use the estimate [ sin(Nx)/ sin(x) [ < 11/ sin(x) I for the others. As each interval
Ij has dx/7r length 1/2N, this gives

2N-2
] sin(Nx)/ sin(x)I dx/7r < 1 + f I1/ sin(x) I dx/7r.

J0 n] I,

Because sin(x) in [0, rr] is symmetric about the midpoint 7r/2, the terms
f13 [1/sin(x)I dx/7r match in pairs (j and 2N - 1 - j), so we get

J
N-1

I sin(Nx)/ sin(x)I dx/n < 1 + 2 J I1/ sin(x)[ dx/7r.
j=1 3

For x in [0, it/2], we have x > sin(x) > 2x/ir, so on II above we have

1/sin(x) < 7r/2x < it/(2jir/2N) = N/j,

so

and thus we get

J
I1/sin(x)I dx/ir < (N/j)

J dx/7r = 1/2j,
r,

f
N-1

sin(Nx)/sin(x)Idx/ir < 1 + E 11j
2=1

N

<2+E1/j<2+log(N-1). QEDfor5.10.5.
9=2

Lemma 5.10.6. Let n > 2 be an integer, F in To(n), a > 0 a real number
such that supp(F) < a. For N > 2 and any G(N), if we define-

F(0, z)W (n, N)(0, z ) dz(i),E- (n, F, N, G(N)) := flo,al-I(order)

we have the estimate

IE_(n,F,N,G(N))-E_(Z[n,F,G(N)])I 2(2a)'

PROOF. Recall that E_ (Z[n, F, G(N)]) is the integral

(1/n! (N + A)) J F((N + A)x/Q7r) detn,, n(LN,_(x(i), x(j))) fl(dx(i)/a7r).

Making the change of variable

y = (N + A)x/azr,



1-
-

5.10. LARGE N LIMIT OF THE EXPECTATION 131

we may rewrite E- (Z [n, F, G(N) 1) as

(1/-n! (N + A)) J F(y) W (n, N) (y) II dy(i).
[0,N+a]^

A key point is that W(n, N) is itself a function in the class T(n), i.e., it is both
En-invariant [being of the form detnxn(f (y(i), y(j)))] and invariant by additive
translations by all On (t) :_ (t, ... , t) [because f (x, y) is of the form g(x - y)].

By the En-invariance, we may rewrite E- (Z[n, F, G(N)J) as

(1/(N + A)) f F(y)W(n, N)(y) fl dy(i),
[0,N+a] ^ (order) f

where [0, N + A]n (order) is the region

{y in Ian with 0 < y(1) < y(2) < . < y(n) < N + Al.

By the invariance of both F(y) and W(n, N)(y) by additive translation by
diagonal vectors A ,(t), we have

F(y) F(0, y(2) - y(1), ... , y(n) - y(1)),
W(n, N)(y) = W(n, N)(0, y(2) - y(1), ... , y(n) - y(1)).

Make the further change of variable

t = y(1), z(i) = y(i) - y(1) for i = 2, ... , n.

In the coordinates (t, z) our integral E_(Z[n, F, G(N)]) is

(1/(N + A)) r ( F(0, z)W (n, N)(0, z) fl dz(i) dt
l [0, N+ 1] (order)

= (1/(N + A)) f g(t) dt
o,N+a]

with

g(t) := r F(0, z) W (n, N) (0, z) jT dz(i).
[0,N+A-t]"-1(order) i

The function F has supp(F) < a, so for z in [0, N + A - t]n-I (order) the function
F(0, z) vanishes unless z(n) < a. Thus we may rewrite the inner integral g(t) as

..g(t) = F(0, z) W (n, N) (0, z) fJ dz(i)J0,min(a,N+A-t)]1 -1(order)

For any t in [0, N + Al, we have the bound

]g(t)1 < f IF(0, z)W (n, N)(0, z)I fI dz(i)
0,a]" '(order)

i

< (an-1/(n - 1)!)I]FII IIW(n, N)I1 < 2' (an-I/(n - 1)!)IIFIIsup

by 5.9.8, which also establishes that

I E- (n, F, N, G(N))[ < 2'(an-1/(n
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Suppose first that N + A > a. Then we have

(1/(N + A)) r g(t) dt
f[O,N+)]

f= (1/(N + A)) g(t) dt + (1/(N + A)) g(t) dt.
o,N+a-a] fN+A-a,N+a]

For tin [0, N + A - a], the inner integral g(t) is

f CrIn-l(order)
F(0, z) W (n, N) (0, z) J1 dz(i),

independent of t, and so the first term is

(1/(N + A)) J g(t) dt
[O,N+a-a]

_ ((N + A - a)/(N + A)) J F(0, z)W(n, N) (0, z) II dz(i)
O,a]n-I(order)

(a/(N + A))) E- (n, F, N, G (N)).

We may estimate the second term by

(1/(N + A)) g(t) dt
[N+a-a,N+a]

< (a/(N +,1))2"(a"-1/(n - 1)!)IIFIIsup < (2a)"IIFllsup/(n - 1)! N.

Thus we have

]E-(n, F, N,G(N)) - E_(Z[n, F, G(N)])I < 2(2a)"IIFIIsup/(n - 1)! N,

provided N + A > a.
Suppose now that a > N +A. Then the above estimate holds trivially. Indeed,

for any a, we have

IE-(Z[n,F,G(N)])I

I1(1/(N + A)) f g(t) dtl < 2n(a"-1/(n - 1)!)IIFIIsup,
o,N+a]

and we have already noted that

IE-(n,F,N,G(N))I < 2"(an-1 /(n - 1)!)IIFII6up.

Thus we find that

J E- (n, F, N, G(N)) - E-(Z[n, F, G(N)J) I <- 2"+lan-1IIFIIsup/(n -1)!.

Because a > N +A > N, we have 1 < a/N, so

2n+lan-1IIFIIsup/(n -1)! < 2(2a)"IIFIIeup/(n -1)! N. QED

Lemma 5.10.7. Let n > 2 be an integer, F in To(n), a > 0 a real number
such that supp(F) < a. For N > 2 and any G(N), we have the estimate

IE_(n,F,N,G(N))-E(n,F, univ)I
< n2 (2a)"-1(1/2N + 2(7ra/N)2) IIFII9up.
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PROOF. The difference is the absolute value of

F(0, z)(W(n, N)(0, z) - W(n)(0, z)) II dz(i).fO,a]"- i (order) i

The domain of integration has area a'-'/(n- 1)!. In it, we have, by Lemma 5.9.10,

I W (n)(0, z) - W (n, N) (0, z) I < n! x n x 2'x-1 x (1/2N+ 2(7ra/N)2),

and so the assertion is obvious. QED

5.10.8. We can now finish the proof of Proposition 5.10.3, by combining the
three lemmas. Taken together, they give an error of

IIFIIsup(8a)"-'10 log(N)IN

+ ]IF]ISUp2(2a)n/(n - 1)! N

+ IIFIIsupn2(2a)n-1(1/2N + 2(nra/N)2).

We leave the first alone, replace the second by the cruder

IIFIIsup(8a)n-1a/N,

and use n2 < 4n-1 and N > 2 to replace the third by

I]FIIsup (8a)n-1(1/2N + 2(7ra/N)2)

IIFIIsup(8a)n-1(1/N +
(ira)2/N)

= IIFIIsup(8a)n-1(1 + (.7ra)2)/N. QED

5.11. Upper bound for the variance

5.11.1. In this section, we show that part iii) of Theorem 4.2.2 holds.

Proposition 5.11.2. Let n > 2 be an integer, F in To (n), a > 0 a real number
such that supp(F) < a. For any N > 2 and any G(N) we have

I Var(Z[n, F, G(N)])I < (3(8a)n-1 + 65(8x)2"-2)(]]Fllsup)2/N.

PROOF. For A in G(N), with angles X (A) in [0, a7r]^`, Z[n, F, G(N)] (A) was
defined (in 4.1.3) by

Z[n, FG(N)](A) (1/(N+A))F[n,N](((N+.)/a7r)X(A))

(1/(N + A)) E F(((N + A)/air) pr(T)(X (A))).
Card(T) =n

For any function W on G(N), its variance Var(W) is defined as

Var(W):= / W2dHaar- f WdHaar
0(N) G(N)

So our first task is to square Z[n, F, G(N)] (A).
Let us fix F, N, G(N), and A in G(N), and denote

Z := Z[n, F, G(N)] (A).

For a subset T of 11, 2, ... , N} of cardinality n, we define

f(T) F(((N + A) /air) pr(T) (X (A))).
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Thus we have

(N+A)Z= 1: f(T),
#T=n

(N+A)2Z2 = > f(T)f(S).
#T=n,#S=n

We now break up this sum according to the value of C T U S:

Z2 = (N +A)-2 E E E f (T) f (S).
n<1<2n #C=1 C=TU

#T=n,# =n
For each subset C of {1, 2, ... , N} of cardinality 1, we define

h(C) :_ f (T) f (S).
C=TUS

#T=n, #S=n

Thus we have

Z2 = (N +),)-' 1: (N +,\)-' E h(C).
n<1<2n #C=1

For each l with n < l < 2n, it is tautological that the inner summand

(N + A)-1 h(C)
#C=1

is itself of the form Z[1,H1iG(N)](A) for H1 the function on R1 defined by

H1(X) F(pr(T)(X))F(pr(S)(X)).
{1,2....,1}=TUS
#T=n,#S=n

Thus we have

(5.11.2.1) Z[n, F, G(N)]2 = (N + A) Z[l, H1, G(N)].
n <1 <2n

Integrating over G(N), we get

(5.11.2.2) E(Z[n, F, G(N)12) = (N + A)-1E(Z[l, Ht, G(N)]).
n<1<2n

5.11.3. Our first task is to show that the terms with l < 2n are negligible.

Lemma 5.11.4. The function H1 lies in T(l), and

11H1 IIsu , < Binom(l, n) Binom(n, l -

If l < 2n, H1 lies in To (1), and supp (HI) !5 2a.

PROOF. The key is that F lies in To(n), with supp(F) < a. Because F lies in
T(n), i.e., is En-invariant and invariant by diagonal translation in R', we see easily
that H1 is E1-invariant and invariant by diagonal translation in R1, i.e., H1 lies in
T(l).

To get the asserted bound on look at the formula for H1 in terms
of F, each term of which is bounded by This formula for H1 in terms
of F has Binom(1, n) Binom(n,1 - n) terms. Pick first T, which can be any of
the Binom(l, n) possible subsets of {1, ... ,1} of cardinality n. Having picked T, S
m a y be any set of cardinality n which contains C(T) := {1, ... ,1} - T, a set of
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cardinality #C(T) = l - n. So picking S amounts to picking S - C(T), which may
be any subset of cardinality n - (I - n) = 2n - I of- T. Hence, given T, there are
Binom(n, 2n - 1) = Binom(n, I - n) choices for S.

Suppose now that I < 2n. We claim that supp(H1) < 2a. In each term
F(pr(T)(X))F(pr(S)(X)), the two sets S and T cannot be disjoint (because SUT
is {1, ... , l}, and I < 2n). So there is an index io which lies in both S and T. Any
index j with 1 < j < I lies in either S or T. If j lies in S, then F(pr(S)(X))
vanishes if ]x(io) - x(j)I > a, because supp(F) < a. If j is in T, then F(pr(T)(X))
vanishes if Ix(io) - x(j)I > a. So the product F(pr(T)(X))F(pr(S)(X)) vanishes if
Ix(io) - x(j)I > a for any j. By the triangle inequality, F(pr(T)(X))F(pr(S)(X)),
and hence Hi (X) itself, vanishes if there are any two indices j and k such that
Ix(k) - x(j)I > 2a. This means precisely that supp(Hj) < 2a. QED

Corollary 5.11.5. For I < 2n, we have the estimate

I(N + A)-'E(Z[l, H1, G(N)]) I

< (IIFIIs.p)2 Binom(l, n) Binom(n, I - n)2(2a)1-1/(I - 1)! N.

PROOF. Simply combine Proposition 5.8.2 with the above Lemma 5.11.4. QED

5.11.6. We now turn to a detailed look at the I = 2n term

(N + A)-'E(Z[2n, H2,,, G(N)]).

Lemma 5.11.7. We have the estimate

I(N + A)-'E(Z[2n, H2,,, G(N)]) - (E(Z[n, F, G(N)]))21

< (IIFIIsup)2 Binom(2n, n)42(4a)2n-2/N.

PRooF. We apply the general formula (5.7.2),

E(Z[n, F, G(N)]) = (1/(N + A)) F((N + A)x/a7r) dy(n, N),fo,,,]n
to find

(N + A)-1E(Z[2n, H2,,, G(N)])

= (N + A) -2 J H2, ((N +.1)x/a2r) dp(2n, N)
to

(N + A)-2 Integral(S, T),
SJ 1 T={1....,2n}

#S=#T=n
where Integral(S, T) is the integral

JIo:Qnl2,.
F((N + A) pr(T)(x)/air)F((N + A) pr(S)(x)/air) dp,(2n, N).

For brevity of notation, let us denote

x(T) pr(T)(x),
f (x) := F((N + A)x/a7r).

Then we may rewrite Integral(S, T) as

Integral(S, T) =
J

f (x(T)) f (r(S)) dp(2n, N).
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Because the measure p(2n, N) is E2n-invariant, and E2n acts transitively on the
set of all partitions (S, T) of J1,. .., 2n} into two disjoint subsets of cardinality n,
we see that Integral(S, T) is independent of (S, T). There are Binom(2n, n) such
partitions. Fixing one such (S, T), say ({1, 2, ... , n}, {n+ 1, n+2,..., 2n}), we have

(N + A)-'E(Z[2n, H2, G(N)])
= Binom(2n, n) (N + A)-2 Integral(S, T).

The measure p,(2n, N) is of the form (5.6.1)

(1/(2n)!) det2nX2n (LN (x(i), x(j))) fl(dx(i)/Q7r).

Let us denote
i

D(2n, N)(x) := det2fX2n(LN(x(i), x(j))).

Then we have

(N + A)-'E(Z[2n, H2n,, G(N)])

= Binom(2n, n) (N + A)-2 f f (x(T)) f (x(S)) dp.(2n, N)

(n! (N + A))-2 J f (x (T)) f (x(S))D(2n, N)(x) H(dx(i)/Qrr).
b

Expand D(2n, N)(x) := det2nX2n(LN(x(i), x(j))) as the sum of (2n)! terms

sgn(p) H LN (x(2), x(p(i)))
i

indexed by cp in E2n. We must distinguish two sorts of elements cp, those which
respect the chosen partition (S, T), and those which do not. We group the corre-
sponding terms,

Dresp(2n, N) (x) sgn(W) LN(x(i), x(p(i))),
pp respects SJ J_T i

and

Dnonresp(2n, N) (x) := E sgn(p) f LN (x(i), x((P(i)))
p does not respect SST i

Thus we have

(N + A)-1E(Z[2n, H2, G(N)J)

= (n! (N + A)) -2 f f (x(T))f (x(S))Dresp(2n, N)(x) fl(d (i)lrir)
p ,on!2n

f
i

+ (n! (N +,\))-2 f (x(T)) f (x(S))Dnonresp(2n, N)(x) H(dx(i)/cr7r).
o .n!2n

It is tautological that we have the product decomposition

Dresp(2n, N)(x) = D(n,N)(x(S))D(n, N)(x(T)).

From this, we see that

f(n! (N + A))-2 f (x(T)) f (x(S))Dresp(2n, N)(x) H(dx(i)/a7r)
o,crn!zn
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is the square of

(n! (N + A))-1 f (x)D(n, N)(x) fl(dx(i)la7r) = E(Z[n, F, G(N)]).
!p o.,r!,i i

Thus we have

(N + A)-1E(Z[2n, H2, G(N)]) - (E(Z[n, F, G(N)]))2

_ (n! (N + A))-2 f .f (x(T))f(x(S))Dnonresp(2n, N)(x) ll(dx(i)/Q7r).
o ,Qn]2n

5.11.8. It remains only to bound the "remainder" term

(n! (N + A)) -2
flo,aw]2

f (x(T)) f (x(S))Dnonresp(2n, N)(x) jl(dx(i)/a7r).

Lemma 5.11.7 will follow from

Lemma 5.11.9. We have the estimate

](n! (N + A))-2 J .f (x(T))f (x(S))Dnonresp(2n, N)(x) f j(dx(i)/air) I
l 1

(I I F l l sup) 2 Binom{2n, n) 42(4a)2,-2 IN.

PROOF. It suffices to show that for each cp in E2n which does not respect
(S, T), of which there are at most (2n)!, we have

(n! (N+,1))-2 f(x(T))f(x(S))f Liv(x(i),x(v(i))) 1I(dx(i)/air)I
2n i i

(JIFjjsup)242(4a)2n-2/(n!)2N.

Look at the cycle decomposition of W. At least one of its cycles contains elements
of both S and T. Renumbering, we may suppose that (S, T) is

({1, 2, ... , n}, {n + 1, n + 2, ... , 2n}),

that both 1 and n + 1 are in the same cp-orbit, and that cp(1) = n + 1. Because the
forward pp-orbit of n + 1 does not stay in T, there will be some n + a > n and some
b < n for which cp(n + a) = b. The idea is to pay special attention to the factor

LN(x(1), x(n+ 1))LN(x(n + a), x(b)),

and to use the trivial bound f LN(x(i), x(cs(i)))l < 2N, cf. 5.3.1, on the other 2n-2
terms in the product. So we have

I(n!(N+A))-21
!0,oir! 2" t t

< (2N)2n-2(n! (N + a))-2

X fp I f(x(T)) f(x(S))I IL,v(x(1), x(n + 1))LN(x(n + a), x(b))J lj(dx(i)/air).
vrr)2n

Make the change of coordinates

s=x(1), 8(i)=x(i)-x(1)fori=2,...,n,
t = x(n + l), E(i) = x(n + i) - x(n + l) for i = 2, ... , n,

and put

6(1) = E(1) = 0.
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Because supp(F) < a, f (x(S)) := F((N + A)x(S)/air) is supported in the region
Sups I8(i)I < oircr/(N + A) < aira/N, and similarly f (x(T)) is supported in the
region Sups Ie(i)I < aira/N. So we have

I f(x(T))f (x(S))I IL,,(x(1), x(n + 1))LN(x(n + a), x(b))[ H(dx(i)/a1r)[ ,12n i

(IIFIIsup)2 f Int2(E, 6) ll(d6(i)/air) fl(d-(i)/air)
i i

where

Int2(E,6) := J ILN(s,t)LN(t+e(a),s+8(b))Id(s/air)d(t/air).
J[o.an]2

Thus we have the inequality

if (x(T))f(x(S))I ILN(x(1), x(n + 1))LN(x(n + a), x(b))I ll(dx(i)/oir)

(IIF'IIsup)2(2a/N)2n-2 Sup I Int2(E,6)I.
C,s

But for any values of the E's and the 8's, we have, by enlarging the domain of
integration from [0, air]2r 4toa12 [0, 41r]2, the inequality

I Int2 (e, 6) I < 16 J ILN (s, t)LN (t + E(a), s + 8(b)) Id(s/4ir)d(t/4ir).
[0

By the Cauchy-Schwarz inequality on the probability space [0, 4ir]2, d(s/4ir)d(t/4ir),
we get

IInt2(E,6)I <16IILN(S,t)IILZIILN(t+e(a),s+b(b))IILZ.

The function LN (s, t) is periodic of period 4ir in each variable separately, and has L2
norm Sqrt(N), by 5.3.2. By the translation invariance and symmetry of Lebesgue
measure, we have

IILN(s,t)IIL2 = IILN(t + e(a), s+6(b))IIL2-

So we get

IInt2(E,6)I < 16N.

Tracing our way back, we get the required estimate, and so Lemma 5.11.9, and
hence Lemma 5.11.7. QED

5.11.10. We may now conclude the proof of Proposition 5.11.2. By com-
bining 5.11.4, 5.11.5, and 5.11.7, we find that I Var(Z[n, F, G(N)])I is bounded by
(IIFIIsup)2/N times

2n-1
Binom(I, n) Binom(n, I - n)2(2a)l-1/(I -- 1)!

I=n

+ Binom (2n, n)42 (4a) 2n- 2.

Let us admit temporarily that

Binom(l, n) Binom(n, I - n) /(I - 1)! < 3.
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Then our bounding factor is
2n-1

< 6 (2a)1-1 + Binom(2n, n)42(4a)2n-2.

1=n

In the partial geometric series, either the first term or the last term is largest,
depending on the size of 2a, so each term is bounded by the sum of the first and
last terms. We bound Binom(2n, n) by 22n (expand (1+1)2,, ). Thus our bounding
factor is

< 6n((2a)n-1 + (2a)2n-2) + 22n42(4a)2n-2

_ (6n/4n-1)(8a)n-1 + (6n/42n-2)(8a)2n-2 + 43(8a)2n-2

3(8a)"-1 + 65(8a)2n-2'

which proves the proposition. It remains to explain why

Binom(, n) Binom(n, l - n)/(l - 1)! < 3,
which in fact holds for all 0 < n < I < 2n. Expanding out in terms of factorials, it
amounts to

l < 3(1 - n)! (l - n)! (2n - 1)!,

which is the case r = 3 of the statement that, given r > 1 nonnegative integers
k(i), we have

(1/r) k(i) < [J(k(i)!).
i i

To see this, proceed by induction on r, the case r = 1 being clear. If any k(i)
vanishes, the r case is trivially implied by the r - 1 case. If all k(i) are _> 1, the
assertion results from the stronger assertion

(1/r) E k(i) < fj k(i) if all k(i) > 1,

which is obvious from writing k(i) as 1+x(i) and expanding out both sides. QED
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CHAPTER 6

Tail Estimates

6.0. Review: Operators of finite rank
and their (reversed) characteristic polynomials

6.0.1. The following lemma is well known, we give it for ease of reference.

Lemma 6.0.2. Let k be a field, V a k-vector space, and L : V -* V a k-linear
endomorphism which is of finite rank in the sense that the image space L(V) is
finite-dimensional. Then V has a unique direct sum decomposition

V = Vnilp ®Vnv

into L-stable subspaces such that L is invertible on Vnv and such that L is nilpotent
on V,,;ip. The subspace V,,,. 'is finite-dimensional.

PROOF. Since the image space L(V) is finite-dimensional, the decreasing se-
quence of subspaces L(V) D L2(V) D L3(V) D must stabilize, say

LN(V) = LN+1(V) = LN+k(V) for all k > 1.

Then LN(V) is finite-dimensional, and L maps it onto itself, so L is invertible on
LN (V). We will take V;,,,, to be LN(V), and we will take V,;]p to be Ker(LN). These
two subspaces have zero intersection in V, since their intersection is the kernel of LN
in LN(V), while L is invertible on LN(V). To see that Ker(LN)GLN(V) maps onto
V, take any v in V. Then LN(v) lies in LN(V) = L2N(V), say LN(v) = L2N(w) for
some win V. Thus LN kills v - LN (w), so v = (v - LN (w)) + LN (w), as required.

Suppose we have some other L-stable direct sum decomposition V = A T B
with L invertible on B and nilpotent on A. It suffices to show that A C Ker(LN)
and that B C LN (V) . Now LN (A) lies in LN (V ), but is killed by some power of
L, so LN(A) = 0, and thus A lies in Ker(LN). Since L is invertible on B, we have
B = LN(B), so B C LN(V). QED

6.0.3. Given an operator L on V of finite rank, we define its (reversed) char-
acteristic polynomial in 1 + Tk[T] by

det(1 - TLIV) := det(1 - TLIV,,,.).

6.0.4. For any L-stable subspace V0 of V with V;,,,, C Vo, e.g. for Vo = L(V),
we have

det(1 - TLIV) = det(1 - TLIV0).

6.1. Integral operators of finite rank: a basic compatibility between
spectral and Fredholm determinants

6.1.1. Suppose we are given a measure space X, a measure p on X of finite
total mass, and a bounded measurable function K(x, y) on X x X. We denote

141
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142 6. TAIL ESTIMATES

by K the integral operator f F--> f K(x, y) f (y) dp(y) on L2(X, µ). Its Fledholm
determinant det(1 + TK) is the formal series in 1 +TC([T]] defined by

det(1 + TK) = 1 + 1: (Tn/n!) J detnxn(K(x(i), x(j))) fl dp(i).
n>1 X

B.1.2. Suppose now that the kernel K(x, y) can be written as a finite sum
Ei=i fi(x)gj(y) with fi and gi bounded measurable functions on X. Then the
operator K is visibly of finite rank: its image lies in the span of the fi. Therefore
we may also speak of the determinant det(1 + TK) in the sense of operators of
finite rank, which is a priori an element of 1 + TC[T] C 1 +TC[[T]]. Let us refer
to this determinant as the spectral determinant.

6.1.3. The following lemma is well known. We give it for ease of reference.

Lemma 6.1.4. In the situation of 6.1.2, the Fredholm determinant is equal to
the spectral determinant.

PROOF. If K = 0, both determinants are the constant function 1. If not, pick
a basis can, ... , cpd of the C-span of the ft's. Expressing the fi in terms of these, we
get an expression of K(x, y) as E cpi.(x)ryi(y). So it suffices to treat universally the
case in which the fi are linearly independent. Then the image K(L2) lies in the
C-span of the fi, a K-stable subspace which has basis the fi. On this basis, K acts
as

fi - K(fi) = JX fj(x)gj(y)) fi(y) dj,(y) = aj,ifj,
a

where the coefficients aj,i are given by

a'j'i = fgjfid)A.

So if we denote by A then x n matrix (ai,j), the spectral determinant det(1+TK)
is equal to det(1 + TA), which is a polynomial of degree at most n.

Let us first check that the Fredholm determinant is also a polynomial of degree
at most n. This amounts to showing that

JX de tdxd(K(x(i), x(j))) II dp.(i) = 0 for d > n.
d

In fact detdxd(K(x(i), x(j))) vanishes identically for d > n. To see this, notice that
for any d > 1, the d x d matrix of functions K(x(i), x(j)) is a matrix product

fi(x(1)), ... , fn.(x(1))
fl(x(2)),...,fn(x(2))

fi(x(d)),...,fn(x(d))

of the shape

times

gl(x(1)),...,gj(x(d))

g2(x(1)),...,g2(x(d))

gn(x(1))......

gn(x(d))

(d rows by n columns) x (n rows by d columns),

intrinsically the matrix of an endomorphism of a d-dimensional space which factors
through an n-dimensional space, and hence has rank at most n. So if d > in, the
d x d determinant vanishes identically, as asserted.
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For each d = 1, ... , n, we must now compare the coefficient of Td/di in the two
sorts of det(1 + TK). On the Fredholm side, this coefficient is

J detdxd(K(x(i),x(j))) dp(i)
Xd i

d

1 dp(i) sgn(a) fl K(x(i), x(ai))}
Ld

= 1
or in Sd i=1

= fXdII d1(i) sgn(a) II fj {x(i})g(x(o (i))}.

o in Sd i=1 j=1

Expanding out the product, we find
d

11 d i s xi xai
J in [1,n]d Xd i or in Sd i=1

Putting like variables together, we rewrite this as
d

du(i) 1: (x(i))CJ(a-li) (x(i))
J in (1,n]d Xd o in Sd i=1

sgn(v) ft Ux fJ(i)gJ(v-1(i)) du')
J in !1,n]d a in Sd i=1

d

1: sgn(v) ft aJ(i),J(a-1(i))
J in !l,n]d or in Sd i=1

detdxd(aJ(i),J(j))
J in !1,n]d

In this last expression, the terms indexed by a J such that the set {J(1), ... , J(d)}
consists of less than d distinct elements all vanish. Indeed, if, say, J(1) = J(2), the
d x d matrix in question has the same first and second rows.

Now consider those J f o r which the set {J(1), J(2), ... , J(d)} is a given set
S = {s1i 82, ... , Sd} consisting of d distinct elements of {1, ... , n}. For a given S,
there are precisely d! distinct J giving rise to it, and for each the contribution is
the same, namely it is the S x S minor of the matrix A. Thus the coefficient of
Td/d! is equal to

d! (the S x S minor of A) = d! Trace(Ad(A)),
Sc nj, Card (S)=d

and this is precisely the coefficient of Td/d! in det(1 + TA). QED

6.2. An integration formula

6.2.1. Let us return to the situation of 5.1.3. Thus we are given a measure
space (X, p,) with µ a positive measure of finite total mass, and a bounded, Borel
measurable C-valued function f on X with

Jx°' fx21.
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We suppose that for every integer n > 1, there exists a monic polynomial in one
variable Pn(T) in C[T] of degree n such that the sequence of functions {cpn}n>o on
X defined by

cpo := 1/Sgrt(p.(X)),

W.:= PP(f) for n > 1,

is an orthonormal sequence:

fX cpiipj dp=bij foralli,j>0.

For any integer N > 1, consider the N-fold product XN. For each i = 1 , ... , N,
denote by

pr [i] :
XN -* X, x '- X(i)

the i'th projection. Denote by KN (x, y) the function on X2
N-1

KN (x, y) : _ E W. (x)iPn (1J)
n=0

For each integer n > 1, we define

D(n, N) := detnxn(KN(x(i), x(.7))),

a function on X". We denote by a(n, N) the measure on X" defined by

4(n, N) := (1/n!)D(n, N) dlii ... dA,,.

Lemma 6.2.2. In the above situation 6.2.1, let F : X - C be a C-valued
bounded measurable function on X. Fix an integer N > 1. Consider the integral
operator of finite rank on L2(X, p) with kernel KN(x, y)F(y). Consider also the
matrix-valued function

Finat:XN - NxN matrices,
Finat(x) := Diag(f (x(1)), f (x(2)), ... f (x(N))).

1) We have theidentity of polynomials in C[T]

t(1+TFinat(x)) t(N,N) det(1+TKN(x,y)F(y)JL2(X,p.)).JXN de

2) More generally, given finitely many C-valued bounded measurable functions
F1i ... , F on X, we have the identity

IXN det 4(N,N)=det(1+KN(x,y)TiFi(y)I L2(X,/2)

of polynomials in C[T1i... ,Tn].

PROOF. For any tin en, the integral operator KN(x, y) Ei tiFi(y) has image
contained in the C-span of the-functions WO, ... , cpN_1, an d the matrix coefficients
of its restriction to that space are polynomials (in fact linear forms) in t. So both
sides of the identity asserted in 2) are in fact polynomials in T. To see that they
coincide as polynomials, it suffices to show that they coincide as functions on C'.
To show that they coincide at a given tin Cn, it suffices to prove 1) for the function
>i tiFi, and then evaluate at T = 1.
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Assertion 1) is nothing other than Key Lemma 5.1.3, part 5), together with
the explicit formula for a Fredholm determinant.- Indeed, if we expand out the
integrand in terms of the elementary symmetric functions or, of N variables, we get

xN
det(JXN1 + TFinat (x))u(N, N)

= fl(1 +TF(x(i)))(N, N)
i

= 1 + Tn f vn,(F(x(1)), F(x(2)), ... , F(x(N)))p(N, N),
n>1 N

The function o- (F(x(1)), F(x(2)), ..., F(x(N))) on XN is of the form Gn[n,N] for
the symmetric function Gn on Xn defined by

x in Xn ,--+ fF(x(i)).

So by 5.1.3, part 5), we have

Ix N

Qn(F(x(1)), F(x(2)), ... , F(x(N)))p(N, N)

= IXN G[n, N](N, N) = fGn(n,N)

_ (1/n!) f
n

(hF(X(i)) detnxn(KN(x(i), x(3))) dul ... dun
X ti=1

x(.?))F(x(?))) dul ... dun,_ (1/n!) fX
n

and this last expression is precisely the coefficient of Tn in the Fredholm determi-
nant det (1 + TKN (x, y)F(y) jL2 (X, p.)). QED

6.3. Integrals of determinants over G(N) as Fredholm determinants

6.3.1. In this section, we give a very simple integral formula, which for a
step function reduces to a formula of T1acy-Widom [T-W, Thin. 6], and which for
a characteristic function goes back to [Gaudin) and [Mehta, A.7.21]. The only
novelty here is in the formulation of the result: once formulated, it very nearly
"proves itself".

6.3.2. We begin with an elementary instance of "functional calculus". Sup-
pose we are given a C-valued function f : S1 -> C on the unit circle. For each
N > 1, we can uniquely extend f to a function

F: U(N) - N x N matrices over C

which satisfies

F(Diag(a1,... , aN)) = Diag(f (al), ... , f (aN)),
F(ABA-1) = AF(B)A-1 for all A, B in U(N).

To see this, think of U(N) as Aut(V, (,)) for (V, (,)) an N-dimensional Hilbert
space. Then we define

F : Aut(V, (, )) - End(V)
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as follows. Any A in U(N) is semi-simple, so we have a direct sum decomposition
of Vas ®a in S1 Ker(A - A). We define F(A) to be the operator

(scalar multiplication by f (a) on Ker(A - a)).
Q in S1

Lemma 6.3.3. A C-valued function f on S' is continuous (resp. bounded and
Bones measurable), if and only if the extended function

F : Aut(V, (, )) --s End(V)

is continuous (resp. bounded for the operator norm, and Borel measurable) on
Aut(V,(,)).

PROOF. To show the "if", denote by Il the identity element in Aut(V, (, )).
Then we may recover f on S1 from its attached F on Aut(V, (,)) as the composite

Sl ZHZ1, Aut(V, (,)) L End(V) (11N) Trace,
C.

This makes clear that f has whatever good properties F does.
To show the "only if", begin with f on S1. For f bounded on S1, and any A

in Aut(V, (,)), the explicit recipe for f (A) on the eigenspaces of A shows that the
operator norm of f (A) is equal to the sup norm of f on S1:

111(A)II=I1fII .

Any continuous f on S1 = {z in C, Izi = 1} is the uniform limit of trigonometric
polynomials, i.e. of Laurent polynomials But for any such Laurent polyno-
mial f,, A'-4 f7z(A) is visibly a continuous function of A in Aut(V, (, )). By the
above norm equality, the sequence of functions A r-r f,, (A) on Aut(V, (, )) converges
uniformly to the function A H f (A), which is therefore continuous.

Here is an argument to show that if f is Borel measurable on S1, then its F is
Borel measurable on Aut(V, (, )). Inside the C-vector space of all C-valued functions
on Sl, consider the C-vector subspace, call it ,C, consisting of those f's whose F is
Borel measurable. It is trivial from the definitions that if a sequence of C-valued
functions g on S1 converges pointwise on S' to a C-valued function g on S', then
the sequence of associated functions G,a converges pointwise on Aut(V, (,)) to the
function G. Since a pointwise limit of Borel measurable functions on Aut(V, Q) is
again Borel measurable, the vector space C is closed under the operation of taking
pointwise limits: if each g is in C, so is g. We proved above that L contains all the
continuous functions. Therefore L contains all "Baire class 1" functions (functions
which are pointwise limits of continuous functions), all pointwise limits of Baire
class 1 functions, et cetera. Thus C contains all functions in all the successive Baire
classes, i.e., L contains all the Borel measurable functions. QED

6.3.4. With these preliminaries out of the way, we can state and prove our
integration formula. We begin with the unitary group, where the formulation is the
most natural.

Theorem 6.3.5. Let N > 1. Denote by KN(x, y) the kernel attached to U(N),
viewed as a function on S' x S1. For any bounded, Bored measurable function
f : S' -> C, consider the integral operator on L2(S1, ta), ju the normalized Haar
measure on S1, with kernel KN(x, y) f (y). Then we have the polynomial identity

U(N)
det(1 + TF(A)) dA = det(1 +TKN(x, y) f (y)IL2(S', µ)),
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where we have written dA for the normalized Haar measure on U(N).
More generally, given finitely many C-valued, bounded, Borel measurable func-

tions fl, ... , fn on S1, we have the identity

det 1 + ETTFF(A)) dA = det 1 + KN(x, y) ETi fi(y)jL2(S', µ)
fU(N) i i

o f polynomials in [ T i ,.. .. ,T, ].

PROOF. This results from the Weyl integration formula on U(N) in its KN(x, y)
form, together with 6.2.2. Just as in 6.2.2, it suffices to prove the first version. We
have

det(1 + TF(A)) dA

det(1 + TF(Diag(x(i),... , x(N))))t(N, N)JS1)N

ff/r (H(1 + T f (x(i))) µ(N, N)
4

det(1 + Tfmat(x))p(N, N)JS1)N

= det(1 +TKN(x, y) f (y)JL2(S1, p)). QED

Variant 6.3.6. Hypotheses and notations as in Theorem 6.3.5, suppose that
J C S1 is a Borel measurable set outside of which all the functions fi vanish. Then
we have the identities

IU(N)
det(l + TF(A)) dA = det(1 +TKN(x,y)Tf (y)JL2(J,PIJ)),

det I 1 + ETTFF(A)) dA = det 1 + KN(x, y) ETi fi(y)JL2(J, p,JJ) .

)U(N) ` i / i

PROOF. Again it suffices to prove the one-variable version, so what must be
shown is that if f vanishes outside J, then we have

det(1 + TKN (x, y)Tf (y) JL2(S1, A))
= det(1 + TKN(x, Y) f (y) IL2(J, uIJ)).

This is obvious coefficient by coefficient from the explicit integral formula for the
coefficients of a Fredholm determinant. QED

Corollary 6.3.7 (Compare [Gaudin], [Mehta, A.7.27}, and [T-W, discus-
sion preceding Theorem 6]).

1) Let J C Sl be a Borel measurable set. We have the identity

det(l +TKN(x, y) IL2(J, tJJ)) = 1:(1 +T)n eigen(n, J, U(N)),
n>6

where eigen(n, J, U(N)) is the normalized Haar measure of the set

Eigen(n, J, U(N)) C U(N)

consisting of those elements A exactly n of whose eigenvalues lie in J.
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2) More generally, given a collection ,7 o f r > 1 pairwise disjoint Bored measur-
able subsets Jl, ... , J, of S1, with characteristic functions x,,, we have the identity

det (1+TKN(x,y)ETixJ,(y)IL2 ( Jj, iiyJi
\\

(1 +T)7L eigen(n, ,7, U(N)),
n>O in Zr

where for each n > 0 in Z", eigen(n, ,7, U(N)) is the normalized Haar measure
of the set Eigen(n, J, U(N)) C U(N) consisting of those elements A exactly ni of
whose eigenvalues lie in Ji for each i.

PROOF. To prove the single J case, apply the previous result to f the char-
acteristic function of J. Then the integrand det(1 + TF(A)) is equal to (1 + T)n
precisely on the set Eigen(n, J, U(N)), so we have

f det(i + TF(A)) dA = E(1 + T)' eigen(n, J, U(N)).
U(N) n>0

On the other side, we have

det(1 +TKN(x, y)f(y)IL2(J, p.IJ)) = det(1 +TKN(x, y)IL2(J,,IJ)),

exactly because f is the characteristic function of J. To do the ,7 case, apply
the previous result to the functions fi := XJi. Because the Ji's are disjoint,
the integrand det(1 + Ei TiFi(A)) takes the value (1 + T)' precisely on the set
Eigen(n, J, U(N)). QED

6.3.8. We now turn to the other G(N), where the formulation is more cum-
bersome. Thus we fix an integer N > 1, and take G(N) to be one of SO(2N + 1),
USp(2N), O_ (2N + 2), SO(2N). In the discussion 5.1.5-8 of the Weyl integration
formula for these G(N), the measure space (T, u) which underlay the theory had
T = [0, 7r], and the measure W was given by the following table:

G(N) measure p on [0, 7r]
USp(2N) (2/ir) sin (x) dx
SO(2N + 1) (2/1r) sin2(x/2) dx
SO(2N) dx/2ir
O_ (2N + 2) (2/7r) sin2 (x) dx

We denote by KN (x, y) the KN-kernel on [0, 7r] attached to G(N).

Theorem 6.3.9. Fix an integer N > 1, and take G(N) to be one of
SO(2N + 1), USp(2N), O_ (2N + 2), SO (2N). Let f : [0, ir] -> C be a bounded,
Borel measurable function on [0, zr] with f (0) = f (7r) = 0. We extend f by zero to
a function F on [0, 2ir) = S1. Viewing each G(N) inside its ambient unitary group
U(2N + 2A) of the same size, we consider the composite map

G(N) C U(2N + 2A) - {(2N + 2a) x (2N + 2a) matrices},
which we continue to denote A '--s F(A). Then we have the integration formula

G(N)
det(1 + TF(A)) dA = det(1 +TKN(x, y) f (y) IL2(T, p)),
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where we write dA for the normalized Haar measure on G(N).
More generally, given finitely many C-valued bounded measurable functions

h7 ... , fn on [0, 7r], each of which vanishes/at the endpoints, we have the identity

fG(N) det I+TF(A) } dA=det I I+KN(x,y)Tf(y)IL2(T,p)
fff

o f polynomials in C[TI, ... ,TT].

PROOF. As in the proof of the U(N) case, the several variable version results
from the one-variable version. Given an element A in G(N), denote by W(A) in
[0, 7r]N its "vector of eigenvalue angles".

0 < W(1) (A) < cp(2) (A) < < <p(N)(A) < 7r

as defined in 2.0.3-6. Then the eigenvalues of A are the 2N + 2A numbers
et=w(j)(A) j = 1, ... , N,

together with

{1 if G(N) is SO(2N + 1)}, {±1 if G(N) is O_(2N + 2)}.

Because f (0) = f (7r) = 0, we have F(1) = F(-1) = 0, so the only eigenvalues of A
at which F is possibly nonzero are the ei`p(2)(A), j = 1.... , N. Thus F(A) has as its
possibly nonzero eigenvalues precisely the N quantities F(eiV(i)(A)), j = 1, ... , N.

But tautologically we have f (x) = F(etz) for any x in [0, 7r], so we have

det(1 + TF(A)) = fl(I + Tf(p(j)(A))) = det(1 +Tfmat(cp(A))).
3

Thus we have

fdet(1 + TF(A)) dA = det(1 +Tfmat(cp(A))) dA
(N)f (N}

= det(1 +T fmat(x))iLL(N, N) = det(1 +TKN(x, y)f (y)I L2(T, g)). QED
N

Variant 6.3.10. Hypotheses and notations as in 6.3.9, denote by LN (x, y) the
kernel attached to G(N) in 5.2.3-5. Then

JG(N)

and

det(1 + TF(A)) dA = det(1 + TLN (x, y) f (y) 1L2 ([0,7r], dx/7r)),

detr1+Y:TIFF(A) J dA=det[1+LN(x,y) Tif,(y)IL2([0,-7r],dx/7r))_
1G(N) i fff i

PROOF. Again it suffices to prove the one-variable statement, i.e., to show that

det(1 +TLN (x, y) f (y) L2 ([0, 7r], dx/7r))

= det(1 +TKN(x, y)f(y)IL2([0, 1r ,lt))

But the measure ti is of the form D(x) dx/7r, and LN(x, y) is defined to be
D(x)D(y)KN (x, y), so the identity is obvious coefficient by coefficient. More intrin-
sically, the map "multiplication by D(x)" is a unitary isomorphism from L2 ([0,7r], ju)
to L2([0, 7r], dx/7r) which carries the integral operator on L2([0, 7r], j.t) with kernel
KN(x, y)f (y) to that on L2 ([0, 7r], dx/7r) with kernel LN(x, y) f (y). QED
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Variant 6.3.11. Hypotheses and notations as in 6.3.9, suppose that J C 1017r]
is a Borel measurable set outside of which all the functions fi vanish. Then we have
the identities

13(N)

and

det(1 +TF(A)) dA= det(1 +TKN(x, y) f (y) I L2(J,A))

det 1 +>TiFi(A))
JG(N)

= det(1 +TLN(x, y) f(y)IL2(J,dx/ir)),

dA = det (1 + KN(x, y) j:Tzfl(y)[L2(J, µ)
i ffJ

l
= det (1 + LN(x, y) ETi fi(y)[L2(J, dx/ir) ] .

6.3.12. Here is another version of the result for G(N) which does not im-
pose the "vanishing at the endpoints" condition. Its only disadvantage is that
the integrand is specific to the particular G(N) in question, rather than being the
restriction to G(N) of a single integrand on the ambient unitary group.

Proposition 6.3.13. Suppose f is a bounded, Borel measurable function on
[0, ir]. Given an element A in one of SO(2N+ 1), USp(2N), 0_(2N+2), SO(2N),
with "angles"

0 < p(1) (A) < p(2) (A) < ... < W(N) (A) < in,

form the expression

fl (1 + Tf (,p(j)(A))),
i

which for variable A is a bounded, Borel measurable function on G(N) (the individ-
ual cp(i)(A) are continuous functions of A for these G(N)). Let J be a measurable
subset of [0, ir] outside of which f vanishes. Then we have the integration formulas

(1 +T f (p(j)(A))) dA = det(1 +TK1v(x, y) f (y)I L2(J, J U)),

= det(1 + TLN (x, y) f (y) IL2(J, dx/lr)).

Similarly for several fi, all of which vanish outside of J:

J (H(1+Tifi(,p(j)(A))))dA=det(1+KN(x,y)1: Tifi(y)IL2(J,A))
G(N) i i

= det (1 + LN (x, y) E Ti fi(y) IL2 (J, dx/7r)).
i

PROOF. Immediate from 6.2.2 and the Weyl integration formula. QED

6.3.14. Exactly as in the U(N) case above, we find

Corollary 6.3.15 (Compare [Gaudin], [Mehta, A.7.271, and [T-W, discus-
sion preceding Theorem 6]). Let G(N) be one of SO(2N + 1), USp(2N),
0_(2N + 2), or SO(2N).
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1) Let J C [0, 7r] be a Borel measurable set. We have the identity

det(1 + TLN (x, y) I L2(J, dx/7r)) = J:(1 + T)n eigen(n, J, G(N)),
n>O

where eigen(n, J, G(N)) is the normalized (G(N) gets total mass one) Haar measure
of the set Eigen(n, J, G(N)) C G(N) consisting of those elements A exactly n of
whose angles {cp(i)(A)}^'_1 lie in J.

2) More generally, given a collection 3 of r > 1 pairwise disjoint Borel mea-
surable subsets J1, ... , J, of [0, ir], with characteristic functions Xj,, we have the
identity

det (1 + LN (x, y) E TjX, (y) I L2 U Ji, dxl 7rt
i i

_ (1 + T)n eigen(n, 3, G(N)),
n>0 kn Z'

where for each n > 0 in Zr, eigen(n, ?, G(N)) is the normalized Haar measure
of the set Eigen(n, J, G(N)) C G(N) consisting of those elements A exactly ni of
whose angles {g (i)(A)}N 1 lie in Ji for each i = I,-, r.

6.4. A new special case: O_ (2N + 1)

6.4.1. In previous discussions, we never considered separately the case of
O_ (2N+1) = (-1)SO(2N+1), because our main interest was in spacings, and these
are insensitive to replacing A by -A. Moreover, the Haar measure on O_ (2N + 1)
(i.e., the restriction from O(2N + 1) of its Haar measure, but normalized to give
O_(2N + 1) total mass one) is, via the bijection A i--+ -A of SO(2N + 1) with
O_(2N + 1), just the (direct image of) Haar measure on SO(2N + 1). However,
when we come to questions of location of eigenvalues, the situation is no longer
the same for SO(2N + 1) as for O_ (2N + 1).

6.4.2. Let us be more precise. Given an element B in O_(2N + 1), there is
a unique sequence of N angles

0 < rp(1)(B) < p(2)(B) < ... < cp(N)(B) < Tr

such that the 2N + 1 eigenvalues of B are {-1} together with the 2N quantities
efiv(j)(B) j = 1, ... , N.

6.4.3. On the other hand, the element A := -B lies in SO(2N + 1), and its
eigenvalues are thus { 11 together with the 2N quantities

-etiW(i)(B) = ei,retiV(j)(B) = e}i("-v(j)(B)) j = 1 ..., N.

So the angles of A are related to those of B := -A by

V(j) (A) = it -,p(N + 1 - j) (B).

In other words, the involution x '-- 7r - x interchanges the angles of A with those
of B.

Lemma 6.4.4. Let f be a C-valued, bounded, Borel measurable function on
[0, lr), and denote by g the function on [0, 7r] defined by

g(x) =f(7r-x).
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Then we have the identity

O_(2N+1) ri (1+Tf(cp(j)(B))) dB

(rI(1 +Tg(cp(j)(A))) 1 dA,
ISO(2N+1)

and similarly for several fi's:

1 +1
JO(2N+1) 11

a7

Ti fi(cp(j)(B)) dB

T(j)(A)) dA.(1+

6.4.5. Combining 6.4.4 with our integration formula 6.3.15 for SO(2N + 1),
we obtain

Corollary 6.4.6. Denote by LN(X, Y) the LN kernel for SO(2N + 1). Denote
by G(N) the kernel

GN(x, y) := LN(7r - x, lr - y).

1) For f any C-valued, bounded, Borel measurable function on [0, ir], and any
Borel measurable subset J C [0, 7r] outside of which f vanishes, we have the identity

O_(2N+1)
rl(1+Tf(cp(j)(B))) dB

= det(1 +TGN(x, y)f(y) I L2(J, dx/ir))
In particular, taking for f the characteristic function of J, we have the identity

E(1 + T)' eigen(n, J, O_ (2N + 1)) = det(1 + TGN (X, y) JL2 (J, dx/ir)).
n>O

2) Similarly, for several fi, all of which vanish outside of J, we have

dB(1+f1(u)(B))))
fo(2N+1)

= det (1 + GN (x, y) E T'ifi (y) I L2 (J, dx/ir)) .

\` i
In particular, given a collection 9 of r > 1 pairurise disjoint Borel measurable
subsets J1, ... , J, of [0, ?r), and taking for the fi their characteristic functions X Ji,
we have the identity

det I 1 + GN (x, y) E TjXJ; (y) I L2 (yixiit))
i i

E (1+T)' eigen(n,3,O_(2N+1)),
n>O in Z'
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where for each n > 0 in Z', eigen(n, 3, O_ (2N + 1)) is the normalized Haar mea-
sure of the set Eigen(n, J, O_ (2N+ 1)) C O_ (2N+1) consisting of those elements
B exactly ni of whose angles {cp(i)(B)}N 1 lie in Ji for each i = 1, ...,r.

6.4.7. We will refer to GN (x, y) as the LN kernel for O_ (2N + 1). It differs
by a quite interesting sign from the LN kernel for SO(2N+1), as we will now show.
Recall (5.4.5) that the LN kernel for SO(2N + 1) is given in terms of the function
SN(x) := sin(Nx/2)/sin(x/2) by the formula

LN(x, y) = (1/2) (S2N(x - y) - S2N(x + y)).

Lemma 6.4.8. The LN kernel for O_ (2N + 1) is given by

GN(x, y) = (1/2)(S2N(x - y) + S2N(x + y))

PROOF. We readily calculate

GN (x, y) := LN (7r - x, 7r - y)
_ (1/2)(52N((7r - x) - (7r - y)) - S2N((7r - x) + Or - y)))
_ (1/2)(S2N(y - x) - S2N(27r -- (x + y))).

So our assertion comes down to the two identities

S2N(x) = S2N(-x), S2N(27r - x) _ -S2N(x)

But for any integer j, Sj(x) is an even function of x, and satisfies

Sj(27r - x) _ (-1)j+1Sj(x)-

Let us deduce this last identity from the representation theory of SU(2). Remember
that Tj(x) := Sj(2x) is the character (trace of Diag(e' , e')) of the j-dimensional
irreducible representation pj of SU(2), which is

Symm3-1(std2).

Since the element -1 acts as the scalar -1 in std2, it acts as the scalar (-l)j-1 in
Symm7-1(std2) = pj. Therefore for any A in SU(2), we have

pj(-A) = (-1)j-lpj(A),

and taking traces gives

Trace(pj(-A)) = (-1)j-1 Trace(pj(A)).

If A = a-), -A is SU(2)-conjugate to Diag(ei("-), e-i(-)), whence
Tj07r - x) = (-1)j-1Tj(x), as required. QED

8.4.9. For ease of later reference, we record here the fact that the LN kernel
for O_ (2N + 1) does indeed provide for O_ (2N + 1) the analogue of the integration
formulas of 5.1.3, part 5), and 5.5.

Lemma 6.4.10. Let 1 < n < N be integers. Let F be a C-valued, bounded,
Borel measurable function on [0, 7r]" which is En-invariant, and denote by F[n, N]
the function on [0, 7r]N defined by

F[n, NJ (t(1), ... , t(N)) := E F(t(i(1)),... , t(i(n))).
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For B in O_ (2N + 1), denote by X (B) in [0, 7r]" its vector of angles of eigenvalues.
Denote by dB the total mass one Haar measure on 0- (2N+1). Denote by GN(x, y)
the kernel

GN(x,y) _ (1/2)(S2N(x - y) + S2N(x + y))-

Denote by p(n, N) the measure on [0, ir]n defined by

Ei(n, N) = (1/n!) x(j))) fl(dx(i)/ir).

Then we have the integration formula

f F[n,N](X(B)) dB = f Fdµ(n, N).O_(2N+1)
[0,7r]

PROOF. This results immediately from the corresponding integration formula
on SO(2N + 1), applied to the function H(X) := F(ir R,, - X) on [0, 7r]n. We have,
by 5.1.3, part 5), 5.5.3, and 6.4.8,

fO(2N+1)
11[n, N] (X (A)) dA

_ (1/n!) f H(x(1),... , x(n)) detnx,z(LN(x(i), x(?))) fl(dx(i)/ ),
0,"r i

for LN(X,Y) the kernel (1/2)(S2N(x -Y) - S2N(x +Y)) = GN(Ir - x, 7r - y).
Making the change of variable B := -A, we have

H[n,N](X(A)) = H[n,NJ(irf,, - X(B)) = F [n, NJ (X (B)),

and the first integral becomes
p

H[n,N](X(A)) dA = J F[n, N](X(B)) dB.
O(2N+1) O_(2N+1)

Make the change of variable x(i) s-a 7r - x(i), and recall that

GN(x,y) LN(r - x, 7r - y).

The second integral becomes

(1/n!) H(x(1),... , x(n)) x(j))) fl(dx(i)/7r)
f,n]"

r
i

_ (1/n!) f F(x(1), ... , x(n)) det ...(G,v(x(i), x(j))) H(dx(i)/ir).
J [°,,r1" i

Thus we find the asserted integration formula. QED

6.5. Interlude: A determinant-trace inequality

Lemma 6.5.1. For real x in [0,1], we have the inequality

. 1-x <e-x.
PROOF. For x = 1, the assertion is obvious. For x in [0, 1), the assertion is

equivalent to

e' < 1/(1 - x)

which is obvious from the power series expansions. QED
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Corollary 6.5.2. Suppose that Al > A2 > A3 > is a decreasing sequence
of real numbers in [0, 1], such that Ei Ai converges, 'say to S. Denote by E(T) the
entire function 111(1 + Ai.T), and consider its power series expansion around the
point T = -1, say

E(T) = 1: (1 +T)nEn.
n>O

Then the expansion coefficients E all lie in [0, 11, E. En = 1, and we have the
(crude) estimate

0 < E < 2'e-5/2.

We have the more precise estimates

0 < E0 < e-s,

and

0 < En < (e/n)nSne-S for each n satisfying 1 < n < S.

PROOF. Write E(T) as Fji((1 - Ai)+Ai(1 +T)) to see that each E" is > 0. If
we evaluate E(T) = rji(1 +AiT) = E,,>0(1+T)nE, at T = 0, we get > E = 1.
Thus each En lies in [0, 1].

To estimate the E, we argue as follows. We have

E0 = E(-1) = fl(l - Ai) < 11 e-"; = c-s
i i

To estimate En, for n > 1, we use the calculus of residues. By the Cauchy formula,
for any real r > 0 we have

p
En = (1/27ri) J (E(T)/(1 +T)n) dlog(1 + T)

I1+'rl=r

(E(rezo - 1)/(rebV)n) d,= (1/27x) f
0,2ir1

so we have

IEnI < (1/21r)
J

JE(rea - 1)/(reT1?)nI
[0.2n]

< (r-n) Sup IE(rei1 - 1)[.
tI

Take r < 1. Then for any real i9 we have

IE(re"° - 1)I = 111(1 - Ai) + Ai(re"')I < fl((' - Ai) + rAi)

i i

_ fJ(1 - (1 - r)Ai) < f1 e-(1-r),\, = e-(1-r)s = e-sers
i

Thus we find that for each n > 1 and each r in (0, 1], we have an estimate

0 < E. < e-ScVS/rn.

If we take r = 1/2, we get the asserted estimate En < 2ne-s/2_

The attentive reader will have noticed that for n > S, this estimate for En is
worse than the trivial estimate En < 1. The most extreme instance of this failure
of our method is when S = 0: then all Aj = 0, so E(T) is the constant function 1,
Eo=l, and En=Oforn>1.
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To analyse the general case, we fix S > 0 and n > 1, and we view e-sera/rn as a
function of the strictly positive real variable r. This function is strictly decreasing
in (0, n/S), attains its minimum at r = n/S, and is then strictly increasing in
(n/ S, oo). So if S > n we may take r = n/S (remember we need r < 1). But if
S < n, our function is decreasing on (0, 1), so the "best" r is r = 1, giving only the
trivial estimate En < 1. QED

6.5.3. If we take the Ai to be the eigenvalues of an operator A of finite rank,
then E(T) becomes det(1 + TA), S becomes Trace(A), and we get

Corollary 6.5.4 (determinant-trace inequality). Let A be an endomorphism
of finite rank of a C-vector space, all of whose eigenvalues are real numbers in
[0, 1]. Put S := Trace(A). Denote by E(T) the characteristic polynomial

E(T) := det(1 + TA),

and consider its expansion around T = -1,

E(T) = E(1 +T)"ET.
n>o

Then the expansion coefficients E all lie in [0, 1], En En = 1, and we have the
(crude) estimate

0 < En < 2ne-S"2.

We have the more precise estimates
0<E0<e-s

and

0 < En < (e/n)nSne-S for each n satisfying I < n < S.

6.6. First application of the determinant-trace inequality

6.6.1. Recall that for each integer N > 1, SN (x) is the function
N-1

sin(Nx/2)/ sin(x/2) _ ei(N-1-2j)x/2

i-0
We defined kernels SN (x, y) and S±,N (x, y) as follows:

SN (X, y) := SN (x - Y),

S±,N (x, y) := SN (x, y) ± SN (-x, Y)-

For real a and real s > 0, we define integral operators

KN,,,,, the integral operator with kernel SN (x, y) on L2 ([a, a + s], dx/2ir),

K±.N,, := the integral operator with kernel S±,N(x, y) on L2 ([0, s], dx/27r)
= the integral operator with kernel

(1/2)S±,N(x, y) _ (1/2)(SN(x, Y) ± SN(-x, y))
on L2([0, s], dx/7r).

Lemma 6.6.2. For real s in [0, 2ir], and any real a, the integral operator
KN,,,,,, on L2([a, a + s], dx/2ir), whose unitary isomorphism class is independent
of a, is positive (and hence self-adjoint) of finite rank, and all its eigenvalues lie
in [0, 1]. Its Fredholm determinant E(N, T, s) is equal to its spectral determinant.
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PROOF. The integral operator KN,s,a is of finite rank, because its kernel is a
finite sum of terms f(x)g(y). So its spectral determinant is equal to its Redholm
determinant. To show that all its eigenvalues lie in [0, 1), it suffices to show that
this operator is positive, and of operator norm < 1. We have an orthogonal direct
sum decomposition

L2([a, a + 21r], dx/27r)

= L2([a, a + s], dx/27r) ® L2([a + s, a + 27r], dx/27r).

We denote by P(s) the orthogonal projection of L2([a,a + 27r],dx/2ir) onto
L2 ([a, a + s], dx/27r), and by KN,a the integral operator on L2 ([a, a + 27r], dx/2n)
with kernel SN (x, y). Then we have the direct sum decomposition

P(s) o KN,n o P(s) = KN s,a ® 0.

To show that KN,s,a is positive and of operator norm < 1, it suffices, using the
direct sum decomposition, to show that P(s)oKN,aoP(s) is positive and of operator
norm < 1. To show this, it suffices in turn to show that KN,a is positive and of
operator norm < 1. But KN,a is unitarily conjugate (via multiplication by the
function ei(N-1)x/2) to the operator given by the kernel

O<j<N-1

So it suffices to show that this operator is positive and of operator norm < 1. But
this last operator is an orthogonal projection (onto the span of the N functions
e-'jx, 0 < j < N - 1), so is certainly a positive operator of norm < 1. QED

6.6.3. Since the function SN(x) is even, the kernel KN satisfies

KN(x, -y) = KN(-x,y),
and hence the operator KN,2,,a=-s on L2([-s, s], dx/27r) respects the subspaces of
odd and even functions.

6.6.4. More precisely, we have the orthogonal decomposition

L2([-s, s], dx/27r) = L2([-s, s], dx/27r)even ® L2([-s, s], dx/21r),,dd,

f f++f-,
with

f± (x) := (1/2)(f(x) If(-x)).

6.6.5. Via the isometric isomorphisms

Restriction : L2([-S, s])dx/27r)even L2([0, s], dx/ir),
Restriction : L2([-s, s], dx/27r)odd L2([0, s], dx/7r),

we get an orthogonal direct sum decomposition

(6.6.6) L2 ([-S, s], dx/2ir) = L2([O, Sl, dx/ir) (D L2([0, s], dx/7r),

of spaces and of operators

(6.6.7) KN,28,a= = K+,N,s ED K-,N,s-

FYom this direct sum decomposition, we obtain
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Corollary 6.6.8. For real s in [0, 7r], and each choice of ±, the integral oper-
ator K±,N,, on L2([0, s], dx/7r) with kernel

(1/2)(SN(x, y) ± SN(-s, y))
is of finite rank, positive and self-adjoint, and all its eigenvalues lie in [0, 1]. Its
Fredholm determinant E±(N, T, s) is equal to its spectral determinant. We have
the product formula

E(N, T, 2s) = E+(N, T, s)E_ (N, T, s).

6.6.9. Our next task is to compute the traces of these operators.

Lemma 6.6.10. 1) For any real s in [0, 7r] and any integer N > 1, we have
the exact formula

Trace(KN,2,) = Ns/7r.

2) For any real s in (0, 7r/2] and any integer N > 1, we have the estimates

I Trace(K±,N.,) - Ns/27r1 < (1/21r)(1 + (7r/2)1 log(sN)I).

PROOF. By the compatibility of spectral and Fredholm determinants for an
integral operator K on a finite measure space (X, tc) with a bounded kernel
K(x, y) = E', ft(x)g, (y) of finite rank, its trace is the integral of K(x, y) over the
diagonal:

(x, x)Trace(K) = Ix K

Since the function SN(x) := sin(Nx/2)/sin(x/2) takes the value N at x = 0,
the kernel SN(x,y) := SN(x - y) when restricted to the diagonal is the constant
function N, and hence we get

'Irace(KN,2,) = f SN (x, x) dx/27r = f N dx/27r = Ns/7r.
-s,s] -5'91

Similarly, we get

Trace(K±,N,s)
r

_ (1/2)
J

SN (x, x) dx/7r ± (1/2)
J

SN(-x, x) dx/7r
[0,s] [o,s]

_ (1/2) J Ndx/7r ± (1/2) f SN(-2x) dx/7r
lo ,s] [o:s]

(sin (Nx)/ sin(x)) dx.= Ns/27r f (1/27x) f
o,s]

It now suffices to prove the estimate

LS]
I sin(Nx)/ sin(x) I dx < 1 + (7r/2)1 log(Ns) 1,

provided that s lies in (0,7r/21 and N > 1.
The integrand I sin(Nx)/ sin(x) I is bounded by N (think of sin(Nx)/ sin(x) as

the character of the N-dimensional irreducible representation of SU(2)), so we have
the trivial estimate

I sin(Nx)/sin(x)I dx < Ns.
[d,s]
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For s < 1/N, this gives what we need. For s > 1/N, break the interval [0, s]
into [0, 1/N] and [1/N, s], and use the inequality above to bound the integral over
[0, 1/N] by 1. It remains to check that

11/N,sJ

for s in [1/N, 7r/2].

I sin(Nx)/ sin(x) I dx < (7r/2) log(Ns)

For x in [0, 7r/2], we have sin(x) > 2x/7r. Since I sin(Nx) 1 for all real x, we
have

J I sin(Nx)/ sin(x) I dx < f (7r/2x) dx =
[1/Ns] 1/N,s)

as required. QED

6.6.11. We can now apply the determinant-trace inequality 6.5.4 to estimate
the expansion coefficients En (N, s) and E±,,, (N, s) of the Fredholm determinants
of these operators around the point -1. Thus we define

(6.6.12) det(1 +TKN,a) = E(N,T, s) := E E,,(N, s)(1 +T)n,
rz

(6.6.13) det(1 +TKf,N,s) = E±(N,T, s) E±,n(N, s) (1 + T)n.

Proposition 6.6.14. 1) For any real s in [0, 7r], any integer N > 1, and any
integer n > 0, we have the estimate

0 < En (N, 2s) < 2n exp(-Ns/21r),

2) For any real s in (0, 7r/2], any integer N > 2 with (N - 1)s > 12, and any
integer n > 0, we have the estimate

0 < E± ,,,(N, s) < 2- exp(-(N + 1)s/87r).

PROOF. For 1), we have Trace(KN,2a) = Ns/7r, and we use the crude form of
the determinant-trace inequality. For 2), we use the inequality

I Trace(K±,.N,a) - Ns/2-7rI < (1/27r) (1 + (7r/2)I log(sN)I)

to infer that

Trace(K±,N,e) > Ns/27r - (1/27r)(1 + (7r/2)I log(sN)I)

= (N + 1)s/47r + {(N - 1)s/47r - (1/27r)(1 + (7r/2)1 log(sN)I)}

= (N + 1)s/47r + (1/47r){(N - 1)s - 2 - 7rl log(sN)I}

= (N + 1)s/41r + (1/47r){(N - 1)s - 2 - 7rl log(s(N - 1))I - in log(N/(N - 1))}
> (N + 1)s/47r + (1/41r){ (N - 1)s - 2 - 7rl log(s(N - 1))I - 7r log(2)}.

For real x > 12, we have x - 2 - 7r log(x) - 7r log(2) > 0 (check numerically at x = 12
and observe that this function is increasing in x > 7r). So for (N-1)s > 12 we have
Trace(K±,N,s) > (N + 1)s/47r, and we use the crude form of the determinant-trace
inequality. QED

6.7. Application: Estimates for the numbers eigen(n, s, G(N))

6.7.1. Fix an integer N _> 1, G(N) any of U(N), SO(2N + 1), USp(2N),
SO(2N), O_ (2N + 2), O_ (2N + 1). Recall the table of auxiliary constants (with a
new entry for O_(2N+ 1) in accordance with 6.4.8):
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G(N) A Q P T E

U(N) 0 2 1 0 0

USp(2N) 0 1 2 1 -1
SO(2N + 1) a 1 2 0 -1
SO(2N) 0 1 2 -1 1

O_ (2N + 2) 1 1 2 1 -1
O_ (2N + 1) 1

2
1 2 0 1

6.7.2. Let us recall that kernel LN (X, y) attached to G(N) in 5.5 and 6.4.8.
It is given by the following table:

G(N) LN (x, y)

U(N) no ein(X-Y) = SN(x, y)ei(N 1)(x-1)/2

other G(N), i.e., (0/2)[SPN+r(x - y) + ESPN+r (x + y)], i.e.,
SO(2N + 1) (1/2) (S2N(x - y) - S2N(x + y))
USp(2N) or O_ (2N + 2) (1/2)(S2N+1(x - y) - S2N+1(x + y))

SO(2N) (1/2)(S2N+1(x - y) + S2N-1 (x + y))
0-(2N + 1) (1/2) (S2N(x - y) + S2N (x + Y))-

6.7.3. Given an integer n > 0, and a Borel measurable set ,7 in [0, a7r], we
defined the subset

Eigen(n, 7, G(N)) C G(N)

to consist of those elements A in G(N) exactly n of whose angles

0 < ,p(1) < V(2)< .. < W(N)<27r if G(N) = U(N),
0 < cp(1) < p (2) W(N) < it for the other G(N),

lie in J. We defined

eigen(n, ,7, G(N)) := Haar measure of Eigen(n, 5, G(N)),

the measure normalized to give G(N) total mass one.

6.7.4. When .7 is the closed interval [0, s], for some real s in [0, air], we write

Eigen(n, s, G(N)) := Eigen(n, [0, s], G(N)),

eigen(n, s, G(N)) := eigen(n, [0, s], G(N)).

6.7.5. Thus Eigen(0, s, G(N)) is the locus defined by

cp(1) > s.

For 1 < n < N - 1, Eigen(n, s, G(N)) is the locus defined by

zp(n)<sand cp(n+1)>s.
For n = N, Eigen(n, s, G(N)) is the locus defined by

cp(N) < s,

and for n > N, Eigen(n, s, G(N)) is empty.
Combining the tables above with 6.3.7, 6.3.15, and 6.4.6, we get the following.
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Proposition 6.7.6. Fix an integer N > 1, G(N) any of U(N), SO(2N + 1),
USp(2N), SO(2N), O_ (2N + 2),0- (2N + 1). For s real in [0, o-7r], the polynomial

E(1 + T)" eigen(n, s, G(N))
n>O

is equal to the following Fredholm determinant:

G(N)

U(N)
SO(2N+1)
USp(2N) or O_ (2N + 2)
SO(2N)
O_(2N + 1)

Fredholm det giving En>0(1 +T)n eigen(n, s, G(N))
E(N, T, s)
E- (2N, T,
E_ (2N + 1, T, s)
E+(2N - 1, T, s)
E+(2N, T, s)

More explicitly, we have the following table:

G(N)
U(N)
SO (2N + 1)
USp(2N) or O_ (2N + 2)
SO(2N)
O_ (2N + 1)

eigen(n, s, G(N))
E, (N, s)
E_,n(2N, s)
E_,7,(2N+1,s)
E+,n(2N - 1, s)
E+,7L(2N, s)

6.7.7. Putting this together with the estimates 6.6.14, we get the following
estimates.

Proposition 6.7.8: Estimates for eigen(n, S, G(N)). 1) For any real s in
(0, 7r], any integer N > 1 and any integer n > 0, n < N, we have

eigen(n, 2s, U(N)) < 2' exp(-Ns/27r).

2) For any s in (0, 7r/2], any integer N > 2 with (2N - 2)s > 12, and any
integer n > 0, n < N, we have

eigen(n, s, SO(2N + 1)) 2n exp(-(2N + 1)s/87r),

eigen(n, s, USp(2N)) 2n exp(-(2N + 2)s/87r),

eigen(n, s, 0-(2N + 2)) 2' exp(-(2N + 2)s/87r),
eigen(n, s, SO(2N)) < 2n exp(-2Ns/8Ir),

eigen(n, s, O_(2N + 1)) 2n exp(-(2N + 1)s/87r).

6.7.9. In terms of the auxiliary quantities a and A,

G(N) A r

U(N) 0 2

USp(2N) 0 1

SO(2N + 1) 2 1

O_ (2N + 2) 1 1

SO(2N) 0 1

O_(2N+1) a 1

we can rewrite the previous result more compactly as
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Lemma 6.7.10. 1) For any real s in (0, ir], any integer N > 1 and any integer
n > O, n < N, we have

eigen(n, as, U(N)) < 2' exp(-aNs/4ir).

2) For any s in (0, 7r/2], any integer N > 2 with (2N - 2)s > 12, and any

integer n > 0, n < N, we have

eigen(n, as, G(N)) < 2n exp(-o (N + A)s/47r)

for G(N) each of SO(2N + 1), USp(2N), O_(2N + 2), SO(2N), O_(2N + 1).

6.7.11. After the change of variable from s to sir/(N + A), we find the fol-
lowing slightly cruder but more useful form.

Lemma 6.7.12. For any integer N > 2, any integer n in [0, N], and any real
s in [8/ir, N/21, we have the estimate

eigen(n, sair/(N + A), G(N)) < 2"e-°s'

for 0(N) any of U(N), SO(2N + 1), USp(2N), O_(2N + 2), SO(2N), O_(2N + 1).

6.8. Some curious identities among various eigen(n, s, G(N))

Lemma 6.8.1. Fix a real number s in (0, ir]. The polynomials E(N,T, s) and
E+(N,T, s) have the following degrees in T:

degT E(N,T, 2s) = N,

degT E_ (2N + 1, T, s) = N,

degT E+ (2N - 1, T, s) = N,

degT E_ (2N, T, s) = N,

degT E+ (2N, T, s) = N.

PROOF. By 6.7.6, these are the polynomials

E (1 + T)' eigen(n, as, G(N))
n>O

for G(N) respectively U(N), USp(2N), SO(2N), SO(2N + 1), O_ (2N + 1). The
sets Eigen(n, as, G(N)) are empty for n > N. For n = N and s > 0, the set
Eigen(N, as, G(N)) has nonzero Haar measure, because it contains an open neigh-
borhood of Il for the four groups, and an open neighborhood of -1 for O_ (2N + 1).
QED

6.8.2. The curious identities are these.

Lemma 6.8.3. 1) For each integer N > 1, and each real s in [0, ir], we have
the following measure identities:

eigen(0, 2s, U(2N - 1)) = eigen(0, s, SO(2N)) x eigen(0, s, USp(2N - 2))

= eigen(0, s, SO(2N)) x eigen(0, s, O_(2N)),

and

eigen(0, 2s, U(2N)) = eigen(0, s, SO(2N + 1)) x eigen(O, s, O_ (2N + 1)).
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2) More generally, for each integer n > 0, we have the identities

eigen(n, 2s, U(2N - 1))

E eigen(a, s, SO(2N)) x eigen(b, s, USp(2N - 2))
a+b=n

1: eigen(a, s, SO(2N)) x eigen(b, s, O_(2N)),
a+b--n

and

eigen(n, 2s, U(2N))

E eigen(a, s, SO(2N + 1)) x eigen(b, s, O_ (2N + 1)).
a+b=n

PROOF. Expand out in powers of 1 + T the identities

E(2N - 1, T, 2s) = E+(2N - 1, T, s)E_ (2N - 1, T, s),
E(2N,T,2s) = E+(2N,T,s)E_(2N,T,s). QED

Question 6.8.4. Is there an intrinsic proof of these rather mysterious measure
identities? The U(2N - 1) identity is reminiscent of the equality of dimensions

dim(U(2N - 1)) = dim(SO(2N) x USp(2N - 2)),

i.e.,

(2N - 1)2 = (2N)(2N - 1)/2 + (2N - 2)(2N - 1)/2.

On the other hand, the U(2N) identity does not seem to have a dimensional coun-
terpart. And the equality of dimensions,

dim(U(2N)) = dim(SO(2N) x USp(2N)),

which is the dimensional consequence of the decomposition

V®2 = A2(V) ® SYm2(V)

for a 2N-dimensional vector space V, does not seem to have a measure formula to
go along with it.

6.9. Normalized "n'th eigenvalue" measures attached to G(N)

6.9.1. For G(N) any of U(N), SO(2N + 1), USp(2N)SO(2N), O_ (2N + 2),
O_(2N + 1), and A in G(N), we have its sequence of angles

0 < , p ( 1 ) < W ( 2 ) < if G(N) = U(N),
0 < <p(1) < w(2) < ... < w(N) < it for the other G(N).

In terms of the auxiliary constants A and r we define its sequence of normalized
angles

0<t9(1) <t9(2) < <t9(N) <N+A
by

t9(n) :_ (N+.1)V(n)/cir.
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Concretely,

t9(n)

t9(n) (N + 1/2)V(n)/7r = (2N + 1)W(n)/21r

for U(N),

for SO(2N + 1),

t9(n) := Neo(n)/7r = 2Ncp(n)/2rr for USp(2N) or SO(2N),

t9(n) (N + 1)W(n)/7r = (2N + 2)p(n)/27r for O_(2N + 2),

?9(n):= (N + (2N + 1)cp(n)/27r for O_ (2N + 1).

We will view the t9(n) as functions from G(N) to IR. For U(N), each 79(n) is Borel
measurable, and its restriction to the A with det(1 - A) nonzero is continuous (by
1.8.5). On the other G(N), each t9(n) is continuous.

6.9.2. It is worth pointing out that, unlike the normalized spacings (1.0.1),
the normalized angles of an element A of G(N) depend on A as an element of
G(N), not just on A as an element of the ambient unitary group. For example,
in SO(2N + 1), every element A has 1 as an eigenvalue, and so there is a shift in
numbering:

t9(n)(A in SO(2N + 1)) = t9(n + 1)(A in U(2N + 1))

for 1 < n < N. Similarly, in 0-(2N + 2), every element A has both ±1 as
eigenvalues, and again there is a shift in numbering:

V(n) (A in O_ (2N + 2)) = t9(n + 1)(A in U(2N + 2))

for 1 < n < N. In the case of A in USp(2N) or SO(2N), the eigenvalue 1 occurs
with even multiplicity 2k, and there is a shift in numbering which depends upon
this multiplicity:

t9(n)(A in SO(2N) or USp(2N)) = t9(n + k)(A in U(2N))

for 1 < n < N. The only slightly redeeming feature is that for G(N) one of
U(N), USp(2N), O_ (2N+1) or SO(2N), the set G(N) [1/ det(1-A)] of elements for
which 1 is not an eigenvalue has full measure one, and for G(N) one of SO(2N+1) or
O_ (2N + 2), the set G(N) [1/ det'(1-A)] of elements A for which 1 is an eigenvalue
with multiplicity one has full measure one.

6.9.3. For G(N) any of U(N), SO(2N + 1), USp(2N), SO(2N), O_ (2N + 2),
O_ (2N + 1) and any integer n with 1 < n < N, we define a probability measure

v(n, G(N))

on IR, supported in [0, N + A], by

(6.9.4) v(n, G(N)) := t9(n), Haarc(N)

Thus v(n, G(N)) is the probability measure on IR whose cumulative distribution
function CDF (n,G(N)) is

(6.9.5) Haar measure of {A in G(N) with '0(n) < s}.

It is convenient to work also with the tails of some of these measures. Recall that
for any probability measure p on IR, its tail, Taily, is the function on IR with values
in [0, 1] defined by

Tail, (s) := 1 - CDF1, (s) = u((s,oo)).
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Thus we have

(6.9.6) Tail (n,G(N))(s) = Haar measure of {A in G(N) with t9(n) > s}.

Lemma 6.9.7. For N > 2, G(N) any of U(N), SO(2N + 1), USp(2N),
SO(2N), O_ (2N + 2), O_ (2N + 1), and real sin (0,N+ A), we have the iden-
tities

1) eigen(O, so--7r/(N + A), G(N)) = (s)
= I -

2) for1<n<N-1,
eigen(n, so-7r/(N + A), G(N))

= CDF (n,c(N)) (s) - CDF (n+1,c(N)) (s)

= Tail,(n+l,c(N))(s) -

3) eigen(N, so-7r/(N + A), G(N)) = (s)-

Equivalently, we have the identities, for 1 < n < N,
n-1

4) (s) _ eigen(j, soar/(N + A), G(N)).
j-o

PROOF. The set {A in G(N) with t9(n) > s} is the set

{A in G(N) with < n - 1 normalized angles in [0, s]}
n-1

H
j=0

n-1
= J__L

j=a

{A in G(N) with exactly j normalized angles in [0, s] }

Eigen(j, sair/(N + A), G(N)),

and its complement {A in G(N) with t9(n) < s} is the set

{A in G(N) with > n normalized angles in [0, s]}

{A in G(N) with exactly j normalized angles in [0, s]}
i>n

Eigen (j, sazr/ (N + A), 0(N)).
j>-

Taking the Haar measures of these sets, and remembering that for j > N the set
Eigen(j, so-7r/(M + A), G(N)) is empty, gives the assertions. QED

Proposition 6.9.8: Tail Estimates for v(n, G(N)). For any integer
N > 2; any integer n in [0, N], and any real s in [8/1r, N/21, we have the estimate

2ne-ar9/a

PROOF. This is immediate from 6.7.12, thanks to the formula 6.9.7, part 4),

n-1

(s) = eigen(j, sair/(N + A), G(N)). QED
j=D
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6.10. Interlude: Sharper upper bounds for eigen(0, s, SO(2N)),
for eigen(O, s, O_(2N + 1)), and for eigen(0, s, U(N))

Proposition 6.10.1 (compare [Mehta, 6.8]). For each N > 1, and each real
s in [0, 7r], we have the inequality

-

eigen(0, s, SO (2N)) <
(cos2(s/2))N2

N/2 < (1 - (S/7r)2)N2-N/2

PRooF. It is tautological that the measure of Eigen(0, s, SO(2N)) is the inte-
gral

dp(N, N)

for the measure µ(N, N) attached to SO(2N). Rather than expand this out in terms
of the LN kernel, we will go back to the Weyl integration formula on SO(2N) in
its original form as found in [Weyl, page 228, (9.15)] and recalled in 5.0.6. Thus
the measure of Eigen(0, s, SO(2N)) is

(2/N!) J ([1(2cos(x(i))-2cos(x(j)))
(9+fIN i<1

In terms of the quantities t9(i) := x(i)/2, this becomes
)

2

(2/N!) J (fl (2cos(2z9(i)) - 2cos(2t9(j)))
(s/2.7r/2JN N i<j

Using the identity

(2 cos(t9))2 = 2 cos(2t9) + 2,

we may rewrite this as

11(dx(i)/27r).
i

(dt9 (i) /7r)

2

(2/N!) (fl(4c2(i)) -4 COS2 (,9(j))) H(dt9(i)/7r).
II N i<j i

We now express this integral in terms of wi := cos2(t9(i)). The map

'0 H cos2(t9) := w

is an orientation-reversing bijection of 10, 7r/2] with [0, 1], and

dw = -2 cos(t9) sin(19) dt9 = -2 Sgrt(w(1 - w)) dig.

Thus our integral becomes

J
2

(2/N!) (fl(4toi - fl(dw;/27rSgrt(wi(1 - wi))).
6:co52(9/2))N

To clarify what is going on, let us introduce, for any real A in (0, 1], the integral
I(A) defined as

2

,(A) f (N) (ll(4wi - 4wj) fl(dwi/ Sgrt(wi(1 - wi))),
!o,A)N (i<j i
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where

f (N) =_ (2/(27r)NN!):
Thus 1(0) = 0, and Eigen(0, s, SO(2N)) = I(cos2(s/2)), for sin [0, 7r]. In particular,
taking s = 0, we see that I(1) = 1. We claim that

I(A) A

for A in [0, 1]. This is clear for A = 0. For A > 0, write wi as Azi for zi in [0, 1].
Making the change of variable, we get a factor of A2 from each of the N(N - 1)/2
terms (4Azi -4Azj), and a factor of Al/2 from each of the N terms d(Azi)/ Sgrt(Azi):

I (A) = f (N) J!0 1)N
(H(4Azi - 4Azj)

2<j

_ [AN(N--1/2)]f(N)

< [AN(N-1/2)]f(N)
[0,I)

)

2

(d(Az=)/ Sgrt(Azi(1 - Azi)))

2

11(4zi - 4zj) I fJ(dzi/Sgrt(z.i(1 - Azi)))
i<j / i

2

11(4zi - 4zj) H(dzi/ Sgrt(zi(1 - zj))),
(i<j i

the last inequality because 1/ Sgrt(1 - Azi) < 1/ Sgrt(1 - zi). Taking A to be
cos2(s/2), we get the asserted estimate

eigen(0, s, SO(2N)) < (cos2(s/2))rv2-N/2.

To get the final inequality, recall that for x in [0, 7r/2], we have the inequality

2x/7r < sin(x) < x.

Thus for s in [0.7r] we have

cos2(s/2) = 1 - sin2(s/2) < 1 - (s/7r)2. QED

6.10.2. A similar argument leads to the next estimate.

Proposition 6.10.3. For each N > 1, and each real s in (0, 7r], we have the
inequality

eigen(0, s, 0- (2N + 1)) < (cos2(s/2))"'2+N/2 < (1 - (s/7r)2)N2+n'/2.

PROOF. By the i9 '-, 7rr - 19 symmetry relating the angles of an element B in
O_ (2N + 1) to those of the corresponding element -B in SO(2N + 1), we have

eigen(0, s. 0- (2N + 1)) := eigen(0, [0, s], O_ (2N + 1))

= eigen(0, [7r - s, 7r], SO(2N + 1)).

To calculate eigen(0, [7r - s, 7r], SO(2N + 1)), we return to Weyl's form of the Weyl
integration for SO(2N + 1), as given in [Weyl, page 224, (9.7)] and recalled in
5.0.5. We have

eigen(0, [7r - s, 7r], SO(2N + 1))
2

(1/N!) (fl(2cos(x(i)) - 2cos(x(j))) 11((2/7x) sin2(x(i)/2) dx(i)).
4,n-s}N i<j i
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In terms of the quantities t9i := x(i)/2, this becomes
2

(1/N!) (H2cos2t9i) - 2cos(2t9j)) fl((4/7r) sin2(i9i) di9i).
L/2_/2N i<j

Again using the identity

(2 cos(t9) )2 = 2 cos(2,0) + 2,

we may rewrite this as

r
2

(1/N!) l (H(4coS2() - 4cos2(19j)) fl((4/ir) sin2(0i) dt9i).
!(),n/2-s/2}-' ' i<j i

Now make the change of variable wi := sin2(t9i). We have

dwi = 2 sin(i9i) cos(t9i) dt9i = 2 Sgrt(wi (1 - wi)) di9i.

Thus we have

(4/7r) sin2(t9i) dt9i = (4/7r)wi dwi/2 Sgrt(wi(1 - wi))

= (2/ir) Sgrt(wi/(1 - wi)) dwi,

and our integral becomes
2

g(N)
J

(ll(4wi - 4wj) } fl(Sgrt(wi/(1 - wi)) dwi),
!O,sin2(n/2-s/2})N i<j / i

with

g(N) := 2N/N!7rN.

For real A in j0, 1], we denote by 1(A) the integral defined by
2

I (A) := 9(N) (H(4wi - 4wj) rj (Sgrt(wi/(1 - wi)) dwi)
! )N (i<j

Thus 1(0) = 0, and

Eigen(0, s, SO_(2N + 1)) = I(sin2(7r/2 - s/2)), for sin [0, 7r].

In particular, taking s = 0, we see that I(1) = 1. We claim that

I(A) < AN2+N12I(1).

Making the substitution wi =Azi, we get a factor of A2 from each of the N(N-1)/2
terms (4wi - 4wj)2, and a factor x312 from each of the N factors Sgrt(wi) dwi.
And as before we have Sgrt(1/(1 --- Azi)) < Sgrt(1/(1 - zi)). Taking A to be
sin2(7r/2 - s/2), we get the inequality

eigen(0, s, O_ (2N -1- 1)) < (sin2 (7r/2 - s/2))N2+N/2

But sin(7r/2 - s/2) = cos(s/2), and we conclude as in the proof of 6.10.1 above.
QED

Proposition 6.10.4. For s real in [0, 7r], and any integer N > 1, we have the
estimate

eigen(0, 2s, U(N)) < (1 - (s/7r)2)N(N+1)/4
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PROOF. From 6.8.3, we have

eigen(O, 2s, U(2N - 1)) = eigen(0, s, SO(2N)) x eigen(0, s, USp(2N - 2))

for N > 1. But eigen(0, s, USp(2N-2)) lies in [0, 1], because it is the Haar measure
of a subset of USp(2N - 2). So we have

eigen(0, 2s, U(2N - 1)) < eigen(0, s, SO(2N)) < (1 - (8/7r)2)N2-N/2,

the last inequality by 6.10.1.
Similarly, we have

eigen(0, 2s, U(2N)) = eigen(O, s, SO(2N + 1)) x eigen(0, s, O_(2N + 1)),

which gives

eigen(0, 2s, U(2N)) < eigen(0, s, O_ (2N + 1)) < (1 - (s/7r)2)N2+N/2

this time using 6.10.3. QED

Corollary 6.10.5 (tail estimate for v(1, U(N))). For any integer N > 1 and
any real s > 0, we have

Tail (1,u(N))(s) < e_s2/4.

PROOF. The measure v(1, U(N)) is supported in [0, N], so its tail vanishes for
s > N. Thus the assertion is trivially correct for s > N. By definition, we have

Tail, (l u(N)) (s) = eigen(0, 27rs/N, U(N)).

By the above estimate we have

eigen(0, 27rs/N, U(N)) < (1 - (s/N)2)N(N+1)/4

For s in [0, N], (s/N)2 lies in [0,1], so by the inequality 1 - x < e_y for x in [0,1]
(cf. 6.5.1), we find

(1 - (S/N)2)N(N+1)/4 < exp(-(s/N)2)N(N+1)/4

// < exp(-(s/N)2)N2/4 = e_82/4. QED

6.11. A more symmetric construction
of the "n'th eigenvalue" measures v(n, U(N))

6.11.1. Consider the product group U(1) x U(N), and on it consider, for each
integer n with 1 < n < N, the function

Fn,:U(1)xU(N)-*R>0cR
defined by

F,, (e''"P, A) := normalized distance from e"7 to the n'th eigenvalue of A which

one encounters starting at ex ' and walking counterclockwise
around the unit circle, measuring distances so that the unit
circle has circumference N.

Lemma 6.11.2. The direct image of normalized Haar measure on U(1) x U(N)
by the map Fn is the measure v(n, U(N)) on R.
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PROOF. In terms of the n'th normalized angle 0(n)(A) attached to an element
A in U(N), we have

F.(& , A) =

So if we denote by

yr : U(1) x U(N) -> U(N)

the surjective homomorphism

7r(e"', A) :=

we have a commutative diagram

U(1) x U(N)
F`}

R

Since 7rx Haar = Haar for any surjective homomorphism of compact groups (by
1.3.1); the assertion is obvious from the transitivity of direct image:

Fns Haaru(1)xu(,v) = z9(n).7r. Haaru(i)xu(,v)

= 19(n). Haaru(N) := v(n, U(N)). QED

6.12. Relation between the "n'th eigenvalue" measures v(n, U(N))
and the expected value spacing measures p(U(N), sep. k)

on a fixed U(N)

6.12.1. Before proceeding, it will be useful to have the following elementary
but useful version of integration by parts.

Lemma 8.12.2 (Tail integration lemma). Let k be a probability measure on
D2>o. For any positive, increasing C°° function f : ll8>0 -* lR>o with f (0) = 0, e.g.
f (x) := x', any n > 1, we have the integration formula

J f'(s) Tailu(s) ds = f f (x) dp(x).
o,oc)

More generally, let g :R>o --r IR>e be any positive Bored measurable function, with
indefinite integral G(x) := f[o s[ g(s) ds. Then we have the integration formula

J g(s) Tail,, (s) ds = f G(x) dk.(x).
0,x) 0,c. )

PROOF. The second statement for g := f' implies the first for f, so it suffices
to prove the second. The functions g(s) and Tail,(x) are both positive and Borel
measurable, so both sides make sense as elements of R>0 U {+oo}. It is there that
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the asserted equality holds. We have

f
g(s) Tail, (s) ds f g(s) J

dp(x) dsf0,oo)

r f
o,ca)

g(s) d-9 dp(x) = J

)I

/J r
= If

rII

f

soo,c) o

g(s) ds dµ(x)
o<s<e<oo o

= J G(x) du(x) _ f G(x)
(0,00) [o,-)

the last equality because G(O) = 0. QED

6.12.3. We now turn to the subject proper of this section. We begin with
the simplest, and in many ways the most important, case.

Proposition 6.12.4 (compare [Mehta, 5.1.16a,b,c, A.8]). For any integer
N > 1, we have an equality of measures on R>a

v(1, U(N)) = TaU, (U(N), step 1) (s) ds.

PR.ooF. Both measures are supported in [0, N], so it suffices to show that they
agree on all Borel measurable subsets of [0, N]. For this, it suffices to show that
for every positive, bounded, Borel measurable function g : III>o - IR>o of compact
support, we have

f g dv(1, U(N)) = f g(s) Tailu(U(N). step 1) (s) ds.
0,00) o ,oc)

Let us denote by G the indefinite integral G(x) := f[0'.1 g(s) ds, so that by the tail
integration Lemma 6.12.2 above we have

fo,oo)

g(s) Tailt,(U(N), step 1) (s) ds = f G(x) d p(--).
J [o, cc)

Thus we are reduced to showing that

f gdv(1, U(N)) = f Gdu(U(N)), step 1).
o,cc) O,oo)

The idea is to express both integrals as integrals over U(N) against Haar mea-
sure, and then to show that the integrands coincide outside a set of Haar measure
zero. In the case at hand, we will show the integrands agree on the set U(N)Ceg of
"regular elements" in U(N), i.e., those with N distinct eigenvalues.

The description 6.11.2 of v(1,

f
U(a direct image from U(1) x U(N) gives

f gdv(1, U(N)) =
J[(N) o. 2x)

The definition 1.1.3 of u(U(N), step 1) as an expected value over U(N) of the
measures p(A, U(N), step 1) gives

Gdp,(A.. U(N), step 1) dA.Gdp,(U(N), step 1) =
(4),00)O,00) U(N)

We will now show that for each A in U(N)reg, we have

f g(,d(1)(e-11A)) dip/21r =
J

Gdp(A, U(N), step 1).
0,2 r) [0,00)
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Let us denote by

0 < W(1) < W(2) < ... < p(N) < 27r

the (nonnormalized) angles of A, and put W(N + 1) = 27r + W(1). For k = 1, ... , N,
let

sk = (N/27r)(W(k + 1) - W(k))

be the normalized spacings of A. Let us denote by

Sk := (W(k), W(k + 1)] C U(1)

the half open interval between the k'th and (k + 1)'st eigenvalues of A (counting as
we start counterclockwise from the origin in U(1)).

By definition of p.(A, U(N), step 1), we have

G dp(A, U(N), step 1) = (1/N) E G(sk).f(0:DO) k

The integral over S' is

J g((1)(etA)) d/21r = f g((1)(etA))
oi 27C) k k

We will show that for each k we have

9(1)(eA)) d/27r = (1/N)G(sk).g(

The key point is that when the variable W is in the interval Sk, then the first
eigenvalue past W has angle W(k + 1), and the normalized distance from W to it is
(N/27rr)(W(k + 1) - W). So for each k we have

J g(79(1)(e-Z1A)) dW/27r = f g((N/27r)(W(k + 1) - W)) dW/27r
Sx (cp(k), v(k+1)]

9((N/27r)(W (k + 1) - W(k) - W)) dW/27r

g(sk - NW/27r) dW/27r
(0,w(k+1)-c (k)1

= g(sk - x) dx/N = f g(x) dx/N = (1/N)G(sk). QEDf0.8kl 0.sx)

6.12.5. A similar argument gives

Proposition 6.12.6 (compare [Mehta, 5.1.16a,b,c, A.8]). For any integer
N > 1, and any integer r with 1 <- r <- N, we have an equality of measures
onR>o

T

E U(3, U(N)) = Tail, (U (N), step r) (S) ds.
J=1

PROOF. We adopt the notations of the previous proof. Exactly as above, we
reduce to showing that for each regular element A in U(N), we have

f g('d (7)(e-"1 A)) dW/27r = G dIL(A, U(N), step r).
J=1 lO,2n) o' O°)
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The second integral is given by
N

G d,u(A, U(N), step r) := (1/N) E G(sk + 3k+1 + + Sk+r-1)
IU,c) k=1

The first expression we rewrite as a sum over the intervals Sk:
r N

dcp/27r.E g('d
(9)(e-11A))

dip/27r = 1 fsk
j=1 2n) J=1 k=1

For cp in the interval Sk, the j'th eigenvalue after cp is cp(k + j), and the nor-
malized distance from cp to it is

(N/27r)(cp(k + j) - cp) _ (N/27r%p(k + j) - w(k + 1)) + (N/27r)(,p(k + 1) - (p)
j-1

_ Sk+1 + (N/27r)(cp(k + 1) - cp).
I=1

So exactly as in thf eprevious proof we find

9{'d (j)(e-t``A)) dip/27r
k

g(x) dx/N
i-3 Bk+I;Ei-O $k+1)

/ 7-1 1-('Sk+L)).
_ (1/N) I G (Sk+1) - G

Summing over k and j, we get the required telescoping. QED

Corollary 6.12.7. For N > k > 2, the measure v(k, U(N)) on R>o is given
by

v(k, U(N)) = (Tail,,,(U(N), step k)(t) -Tailp(U(N), step k-1)(t)) dt.

6.12.8. We now return to the measures v(k, U(N)) and p(U(N), step k).

Corollary 6.12.9. For any integer n > 1, and any integer N > n, we have
the integration formula

Tailp(U(N), step n) (t) dt = n.
loco)

FIRST PROOF. Each measure v(k, U(N)) with 1 < k < N is a probability
measure on ll$, supported in 1[8>0.

SECOND PROOF. By the tail integratiJ n lemma above, we have

fo,.) Tailµ(u(N), step n) (t) dt = w'-)
x dp(U(N), step n)(x).

The measure p.(U(N), step n) on IR is supported in 10, N], because it is the integral
over U(N) of the function A i-+ p(A, U(N), step n), and each p(A, U(N), step n)
is tautologically supported in [0, N]. So we may rewrite the integral in terms of the
characteristic function X(o,N] of the interval (0, NJ as

f x dp(U(N), step n)(x) = f xx(o,N1(x) djc(U(N), step n)(x).
0,00) > o
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Here the integrand xX(o,Nl (x) is a bounded Borel function, so by the definition of
u(U(N), step n) as an integral over U(N), this integral is

fUN)
xx(o.N](x) du(A, U(N), step n)(x)) dA

x du (A, U(N), step n)(x) dA,j (N} (fR"'

the last equality because each measure u(A, U(N), step n) has support in [0, N].
The innermost integral is equal to n, because for each A the mean of its normalized
n-step spacings is tautologically equal to n (cf. 1.0.3). QED

6.13. Tail estimate for u(U(N), sep. 0) and p(univ, sep. 0)

Proposition 6.13.1. For any real s > 0, and any integer N > 1, we have the
estimate

Tailp(U(N), Sep. 0) (S + 1) <
e-32/4

PROOF. The function Tailju(U(N), sep. 0)(s) is decreasing, so we have

Tail,(U(N), sep. 0) (8 + 1) Tailp(U(N), sep. 0) (x) dx
f [s,s+1]

rr(1, U(N)) (by 6.12.4)
[8,8+1]

Y(1, U(N)) := (s)
[s,oo]

< e-82/4

the last inequality by 6.10.5. QED

Corollary 6.13.2 (Tail Estimate). For any reals > 0, and any integer N > 1,
we have the estimate

Tailg(U(N). sep. 0)(S) <
el/4e-32/8

< (4/3)e-82/8.

PROOF. For 0 < s < 1, we have e1/4-32/8 > el/8 > 1, but Tail takes values in
[0, 1]. For s > 1, we know that Tail(s) < e-(s-1)2/4, so we need only check that

e-(3-1)2/4 < el/4-s2/8 for real s > 1,

i.e.,

1 < e1/4+(3-1)2/4-82/8 for real s > 1.

But this holds for all real s, since

1/4 + (s - 1)2/4 - 82/8 = (1/8)(2 + 2(s - 1)2 - s2) = (1/8)(s - 2)2 > 0. QED
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6.13.3. We now pass to the large N limit,

Proposition 6.13.4 (Tail estimate for .t(univ, sep. 0)). For real s > 0, the
measure p,(univ, sep. 0) has the tail estimate

Tailp(univ, sep. 0)(s) <
(4/3)e-32/s.

PROOF. For fixed s > 0, we have

Tallµ(univ, sep. 0)(s) := 1 - FA(univ, Sep. 0)([0, s])

= 1 - slit p.(U(N), sep. 0)([0, s])

= li m(1 - E.t-(U(N); sep. 0)([0, s]))

= Ali m Tail,,(U(N), -p. 0) (S),

so the result follows from the finite N tail estimate above. QED

Corollary 6.13.5. For any integer r > 1, and for any step vector b in Z', the
measures p(univ, steps b) and p(U(N), steps b), N > 2, satisfy the tail estimate

Et({x in Rr with jx(i)l > sb(i) for some i}) < E(b)(4/3)e-32/8,

for every real s > 0.

PROOF. This follows from the tail estimate for the case r = 1 = b proven above
by the argument used in the proof of 3.1.10. QED

In particular, in one variable we have

Corollary 6.13.6. For any integer b > 1, the measures a(univ, step b) and
µ(U (N), step b), N > 2, on R satisfy the tail estimates

Tailp(univ, step b)(s) < b(4/3)e-s2/8b2,

Taily(U(N), step b) (s)
b(4/3)e-52/"2.

6.14. Multi-eigenvalue location measures,
static spacing measures and expected values
of several variable spacing measures on U(N)

6.14.1. Given an element A in U(N), we have defined in 1.0.1 its sequence
of angles

0<tp(1) <cp(2) <...<tp(N) <21r,

and then extended the definition of W(i) to all integers i by requiring

W(i + N) = W(i) + 27r.

Up to now, we have taken the point of view that we start at the origin in S'
and walk counterclockwise around the unit circle without looking back, noting the
eigenvalues of A as we pass them. Now we allow ourselves to look both ways from
the origin, i.e., we consider the angles cp(i) with i negative as well as positive. For
1 - N < i < N, these angles satisfy

-27r < tp(1 - N) < ... < gyp(-1) < W(0) < 0 < tp(1) < p(2) < ... < W(N) < 27r.
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6.14.2. In terms of the complex conjugate A of A in U(N), we have

,G(O)(A) _

-w(2){A),
cp(1 - k)(A) _ -cp(k}(A},

for every integer k.

6.14.3. For every integer n, we define the n'th normalized angle t9(n) of A in
U(N) by

t9(n) (N/27r)cp(n),

and we denote by Fn : U(1) x U(N) -* R the map defined by

F,,(&', A) :=

6.14.4. We first define multi-eigenvalue location measures. Given an integer
r > 1 and a vector c in zr with

c(1) < c(2) < < c(r),

we denote by v(c, U(N)) the probability measure on R' which is the direct image
of Haar measure by the map U(N) - 1r defined by the normalized angles

A F-, (t9(c{1}), ... , 0(c(r))).

Thus

v(c, U(N)) :_ (t9(c(1)}, ... ,19(c(r))). Haaru(N) .

We call v(c, U(N)) the multi-eigenvalue location measure for the eigenvalues
named by the vector c.

Lemma 6.14.5. Suppose given an integer r > 1, and a vector c in Z' with

c(1) < c(2) < ... < c(r).

The measure v(c, U(N)) is supported in (K>o)r(order). For any nonempty subset

S={1<Sl<...<sk<r}
of the index set {1, ... , r}, we denote by

pr[S] : Rr , RCard(S)

the projection onto the named coordinates. We have an equality

pr[S].v(c, U(N)) = v(pr[S](c), U(N))

of measures on RCacd(S)

PROOF. A tautology. QED
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6.14.6. Exactly as in 6.11,2, we have a more symmetric description of the v's
in terms of the F7,'s.

Lemma 6.14.7. Suppose given an integer r > 1, and a vector c in Zr with

c(1) < c(2) < ... < c(r).

In terms of the map

(Fc(1),... , Fi(r)) : U(1) x U(N) - Rr,

we have

v(c, U(N)) = (Fc(1), ... , F"(r))* Haaru (1) x u(N)

6.14.8. We next define "static spacing measures". Given an integer r > 2
and a vector c in Z' with

c(1) < c(2) < ... < c(r),

consider the map U(N) -r Wr-1 given by

(t9(c(2)) - t9(c(1)),t9(c(3)) - 0(c(2)),...,t9(c(r)) - t9(c(r - 1))).

We denote by e(c, U(N)) the probability measure on kFr-1 given by

(0(c(2)) - t9(c(1)), t9(c(3)) - t9(c(2)), ... , t3(c(r)) - t9(c(r)) - t9(c(r - 1))). Haaru(N).

We call t; (c, U(N)) the static spacing measure for the eigenvalues named by the
vector c.

Lemma 6.14.9. Under the "successive subtraction" map

SuccSub : R1' ]($r-1,

(x1, ... , xr) (x2 - x1, ... , 2,- - xr-1),

we have

SuccSub v(c, U(N)) = l; (c, U(N)).

PROOF. A tautology. QED

Corollary 6.14.10. In terms of the map

(FF(2) - FF(1), ... , Fc(r) - Fc(r-1)) : U(1) x U(N) Rr-l,
we have

e(c, U(N)) _ (F,:(2) - F"(1),..., Fc(r) - Fc(r-1))» Haaru(1)xU(N) .

PROOF. Immediate from the last two lemmas, by the transitivity of direct
images. QED

6.14.11. We now turn to the relations between the multi-eigenvalue location
measures, the static spacing measures, and the expected value spacing measures.

Proposition 6.14.12. Fix an integer N > 2. Let a > 0 and b > 0 be integers.
Consider the integer vector

[-a, b + 1] :_ (-a, l - a, 2 - a,. .. , 0,1,-, b + 1) in 7Za+b+2

and the associated multi-eigenvalue location measure
+b+2b + 1], U(N)) on IiBQ
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This measure is related to the expected value spacing measure

p,(U(N), sep. Oa+b+1) on Ra+b+l

as follows. Denote by L : ][$a+b+l --3 1Ra+b+2 x ,- L(x), the linear map defined as
follows: given a vector x :_ {x(-a} ... , x(b)), its image L(x) is the vector whose
components are given by

(L(x))(-j)
!=1

for j = 1, ... , a,

(L(x))(0) = 0,
j-1

(L(x))(j) =Ex(l), for j = 1,...,b+ 1.
I=0

[Strictly speaking, we should denote this map La,b, since it depends on both a and
b, not just on the integer a + b + 1.)

Given a nonnegative Borel measurable function f > 0 on Ra+b+2, denote
by F the nonnegative Borel measurable function on Ra+b+l whose value at
x := (x(-a), ... , x(b)) is given by the Lebesgue integral

F(x) := f
O,x(D)]

f (L(x) - t n) dt := Jx(0) I 4,11 f(L(x) - tx(O) 1) dt.

Then we have the identity

Fdµ(U(N), sep. 0a+b+1).f a
f du([-a, b+ 11, U(N)) =

12.+b+2+6+2

PROOF. The idea of the proof is that already used in proving 6.12.4 and 6.12.6,
namely to express both integrals as integrals over U(N) against Haar measure, and
then to show that the integrands coincide on the set U(N)`C of "regular elements"
in U(N), i.e., those with N distinct eigenvalues.

The definition 6.14.7 of v([-a, b+ 11, U(N)) as a direct image from U(1) x U(N)
gives

I f dv([-a, b + 1], U(N))

f t9(b + 1)(e-"'A)) d(cp/2tr) dA.J (N) [D.2a)

The definition 1.1.3 of µ(U(N), sep. Oa+b+2) as the expected value over U(N) of
the measures p(A, U(N), sep. Oa+b+2) gives

Fdp(U(N), seP- Oa+b+1)

U(N)
Fdp.(A,U(N), sep. 0a+b+1)J dA.

We will show that for A with N distinct eigenvalues, we have

110,2n)
f (t9(-a) (e-t1A), ... , t9(b + 1)(e-"0A))d(W/27r)

Fdµ(A,U(N), sep. 0a+b+1).
Ea+b+,
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Let us denote by W(i) := cp(i)(A) the (nonnormalized) angles of A, defined for all i
in Z. For each i, let

si = (N/27r)(,p(i + 1) - cp(i))

be the i'th normalized spacing of A. Let us denote by

Si :_ (cp(i), cp(i + 1)] C U(1)

the half open interval between Bp(i) and W(i + 1).
By definition of p(A, U(N), sep. 0a+b+i), we have

f F dp(A, U(N), sep. 0a+b+1) _ (1/N) E F(s1, sj+1, , S1+a+b),
o+n+

1 mod N

which we rewrite as

_ (1/N) E F(SI-a, 51+1-a, ... St+b).
1mod N

We claim that for each integer 1, we have

9(b + 1)fS1 f (19

= F(S1-a, 31+1-a ... , St+b)

For zp in the interval S1, and j > 1, the j'th eigenvalue after cp is 92(I + j), and
the normalized distance from p to it is

(N/27r)(9P(I + j) -,p)
= (N/27r)(,p(I + 1) - cp) + (N/27r)(W(i + j) - w(I + 1))

j-1
_ (N/27r)(,p(I + 1) - 1p) + E Sk+1

k=1

'S(8k+l) - (N/27x)(92 -,p(I)).
k-0

For j > 0, the j + 1st eigenvalue before cp is W(I - j)., and minus the normalized
distance from cp to it is

i
-(N/27r)(92 - w(l)) - L S1-k.

k-I

The point is that for co in S1, the vector

{19(-a)(e 0(b + 1)(e-"PA))

is equal to

L(s1-a, 91+1-a, ... , SI+b) - (N/27r)(9 - W(I)) ll.

As co runs over S1, the parameter (N/27r)(cp - ip(1)) runs from 0 to s1. Thus we get

j f 0(b + d(Ncp/27x)
,

- f (L(81-a, S1+1-a, ... , 31+b)- t ll) dt,fO.stl

which, by the very definition of F, is equal to F(S1_a, S1+1-a, ... ,'S1+b). QED
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Corollary 6.14.13. Hypotheses and notations as in 6.14.12, let Y be a topo-
logical space, and let it : R"5+2 --s Y be a Borel measurable map such that
7r(x - t ll) = 7r(x) for all x := (x(-a),... , x(b + 1)) in Ra+b+2 and all t in R.
Then we have equalities of measures on Y,

7r,v([-a, b + 1], U(N)) _ (7r o L)*(Ix(0)Iti(U(N), sep. Oa+b+I))

= (ir o L)*(x(O)p(U(N), sep. 0a+b+1))

PROOF. For g a positive Borel measurable function on Y, and f the function
x H g(7r(x)) on lRa+bf+2, the invariance of it under tIl translation gives

= f (L(x) - tA) dt := J g(zr(L(x) - tft )) dtF(x) :

g(it (L(x))) dt = jx(0) l g(,7r(L(x))).
[0x(0}]

Using
p

Proposition 6.14.12, we get

r g dir*v([-a, b + 1], U(N))
Y

= f f dv([-ab + 1], U(N)) = J F d(U(N), Sep. 0+b+1)
a+b+2 a+b+,

jx(0)Ig(ir(L(x))) dµ(U(N), sep. Oa+b+1)

f
R

= g d(,rr o L)(I x(0)Iu.(U(N), sep. 0a+b+1))

This shows the first equality. But the measure u(U(N), sep. 0a+b+1) is supported
in (1R>o)d+b+1, so we have the trivial equality

Ix(0)jp(U(N), sep. 0a+b+1) = x(O)12(U(N), Sep. Oa+b+1)

of measures on R"+6+1. QED

Corollary 6.14.14. Let r > 1 be an integer. On lR' with coordinates x(1),...,
x(r), for each integer i = 1, ... , r, the measure x(i)p.(U(N), sep. 0r) on R' is equal
to the static spacing measure ([1 - i, r + 1 - ij, U(N)).

PROOF. For each a > 0, b > 0 with a + b = r - 1, consider the successive
subtraction map

it := SuccSub : Ra+b+2 Ra+b+l = lRr

which is visibly invariant under tIl translation. In coordinates X(-a), ...,X(b+1)
on R+b+2, the previous corollary gives

SuccSub v([-a, b + 1], U(N))

= (SuccSub oL),,(X (O)tb(U(N), sep. 0a+b+1))

But the composite map

SuccSuboL : Ra+b+1 iRa+b+l

is the identity, so we get

Succsub. v([-a, b + 1], U(N)) = X(O)p(U(N), sep. 0a+b+1).
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The coordinates x(1),.. . , x(r) on R- = 1$a+b+l are related to the X(i) by

x(i) = X(i - 1 - a),'

so we get

SuccSub. v([-a, b + 1], U(N)) = x(a + 1)p.(U(N), sep. Oa+b+1),

1;([-a, b + 1], U(N)) = x(a + 1),u(U(N), sep. Or).

Taking successively a = 0, 1, ... , r - 1 gives the assertion. QED

6.14.15. Taking r = 1, we get perhaps the most striking corollary.

Corollary 6.14.16. The measure xu(U(N), sep. 0) on Ik is equal to the static
spacing measure 1;((0,1), U(N)) on Ik, i.e., the direct image of Haar measure on
U(N) by the map A '--* the normalized spacing so of A which contains the point 1
on the unit circle,

6.14.17. For higher r, we get a description of xu(U(N), step r) as a sum of
all the r-fold static spacing measures corresponding to the r different r-fold spacings
which contain the point 1 on the unit circle.

Corollary 6.14.18. The measure xu(U(N), step r) is the sum of the static
spacing measures t; ((a - r, a), U(N)), a = 1.... , r.

PROOF. We know (by 6.14.14) that for i = 1, ... , r we have

x(i)µ(U(N), sep. Or) i, r + 1 - i], U(N)).

Summing over i, we get
r

x(i) u(U(N), sep. 0,.) _ l; ([1 - i, r + 1 - i], U(N)),
S-1 i=1

an equality of measures on R r. Take the direct image to III by the map
Sum : Rr - lk, (x(1),...,x(r)) 1--p 1 x(i). On the left, we have

T

Sum. x(i) u(U(N), sep. Or)
:=1

= Sum,*(Sum"(x)u(U(N), sep. Or))

= x Sum. u(u(N), sep. Or)
= xu(U(N), step r).

On the right, we have the tautological relation

Sum,, l;([1 - i, r + 1 - ij, U(N)) = ((1 - i, r + 1 - i), U(N)).

Reindexing by taking a to be r + 1 - i, we get the assertion. QED

Remark 6.14.19. This expression of xp,(U(N), step r) as the sum of r prob-
ability measures gives yet "another" proof that

xu(U(N), step r) = r,f
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or equivalently that

Jfo ) Tailu(U(N), step r)(t) dt = r,

cf. the proof of 6.12.9.

6.14.20. Here is the several variable version of the above result.

Proposition 6.14.21. Fix an integer N > 2. Let r > 1 be an integer, and c
in Z' an offset vector,

0 < c(1) < c(2) < ... < c(r).

Denote by 0 G c in Zr+1 the vector (0, c(1), ... , c(r)), and define

c(O) := 0.

For each i = 1, ... , r, define

d(i) := c(i) - c(i - 1).

Then for each i = 1, ... , r, the measure x(i)tc(U(N), offset c) on Rr is the sum of
d(i) static spacing measures

c(i)-1
x(i) i(U(N), offset c) = (0 G c Ilr+1, U(N)),

9=c(i-1)

corresponding to the d(i) different spacing vectors of offset c whose i'th constituent
spacing contains the point 1 on the unit circle.

PR.ooF. By the result 6.14.14 in c(r) variables, in R'(' for every integer a with
1 < a < c(r) we have

x(a)µ(U(N), sep- oc(r)) _ e([1- a, c(r) + 1- a], U(N)).

Take the sum of these equalities as a runs from c(i - 1) + 1 to c(i):
c(i)

E x(a)p.(U(N), sep. 0c(r))
a=1+c(i-1)

c(i)

E ([1 - a, c(r) + 1 - a], U(N)).
a=1+c(i-1)

Now take the direct image to Rr of this equality by the map "successive partial
sums" : SPSG : R'(r) -+ Rr given by

c(i)

1: x(a)(x(a))acl,...,c(r)
a=1+c(i-1)

to obtain the asserted identity. QED

It is perhaps worth pointing out the following special case.

Corollary 6.14.22. Notations and hypotheses as in 6.4.21, suppose in addi-
tion that c(1) = 1. Then we have

x(1) i(U(N), offset c) = (0 ® c, U(N)).
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6.15. A failure of symmetry

6.15.1. One might think that "by symmetry",'all the static spacing measures
of given offset coincide. This is not the case. We will illustrate this in the simplest
case, that of the nearest neighbor static spacing measures e((i, i + 1), U(N)) for
various values of imodN, any N > 2. Given A in U(N), we denote by si(A),
i mod N, its N normalized spacings

si(A) := (N/27r)(cp(i + 1)(A) -W(i)(A)).

So viewing A " si(A) as a function on U(N), we have

(si). HaarU(N) = ((i, i + 1), U(N)).

We do have the relations

si(A) = s_i(A)

for each i mod N. Because Haar measure is invariant under the automorphism
A A of U(N), these relations imply that we have equalities of measures

e((i, i + 1), U(N)) = e((-i,1 - i), U(N))

for every i mod N.

Question 6.15.2. Are these the only R-linear relations among the N measures
((i, i + 1), U(N)), i.e., are the measures t; ((i, i + 1), U(N)) with 0 < i < [N/2]
R-linearly independent?

Proposition 6.15.3. Fix an integer N > 2. The N measures

t; ((i, i + 1), U(N) ), i mod N,

are not all equal.

PROOF. We argue by contradiction. The sum of these measures is

Np(U(N), sep. 0);

indeed this was how we saw back in 1.1.3 that the expected value measures
p(U(N), sep. 0) made good sense. So if all these measures coincide, each is equal
to p(U(N), sep. 0). But the N'th one is xp(U(N), sep. 0). Therefore we find an
equality of measures

p(U(N), sep. 0) = xp(U(N), sep. 0).

Multiplying both sides by xk for any integer k > 0, we find

xkµ(U(N), sep. 0) = xk+1p(u(N), sep. 0).

Therefore for all k > 0 we have

xkp(U(N), sep. 0) = p(U(N), sep. 0).

Integrating both sides over R, we find that p(U(N), sep. 0) has all its moments 1.
Since these moments grow slowly, p(U(N), sep. 0) is the unique measure with these
moments, and hence p(U(N), sep. 0) must be equal to 61, the delta measure at the
point 1. Therefore each measure t;((i, i + 1), U(N)) is 61. This means that outside
a set of measure zero in U(N), every element of U(N) has all of its normalized
spacings equal to 1, in other words is conjugate to an element of the form

(a unitary scalar) x (the diagonal matrix Diag(e2ib'IN, j = 1, .
. . , N)).
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Taking traces, we conclude that outside a set of measure zero in U(N), the trace
vanishes (remember N > 2, so Ej e2"t3/N = 0). But the trace is nonzero at the
identity, so must be nonzero in a nonempty open set. But any nonempty open set
has nonzero Haar measure. Contradiction. QED

6.15.4. Let us treat the U(2) case explicitly, since here the failure of the
symmetry intuition is perhaps the most shocking. The Weyl integration formula in
this case asserts that if we view the space of conjugacy classes in U(2) as the space
of pairs of angles in order

0 < cp(1) < ,p(2) < 27r,

then the (direct image from U(2) of) Haar measure is the measure

(1/27r)2[eiw(2) - e2w(1)12 dcp(1) dp(2).

We reparameterize this space by passing to coordinates W(1) and x = cp(2) - W(1).
In these coordinates the space of conjugacy classes is

(p(1) > 0, x > 0, W(1) + x < 27r,

and the measure is

(1/27r)21etx - 112 dp(1) dx.

The normalized spacing t9(2) - r9(1) is (N/27r)x = x/7r. Thus for f a function on
1[8, we have

ff(x) d(t9(2) - t9(1))* Haaru(2)

_ (1/27x)2 JJ f (x/7r)I 11 2 dcp(1) dx

= (1/27x)2 J
(f(0,21r-x)

f ( x/7r)I etx - 112 dx
[0 2")

= (27r - x) f(x/7r)l e2x - 112 dx(1/27x)2 f0,2")

= (2 - x/x) f(x/7r)leix - 1I2d(x/7r)(1/2)2 f
0,2")

= (1/2)2 f (2 - t)f(t)le2"' - 112 dt
0,2)

=
1

(1/2)2 ! (2 - t) f (t) (2 - 2 cos(7rt)) dt
JJ [0,2)

(2 - t) f (t) sin2(7rt/2) dt.
[0,2)

Thus we have

(t9(2) - t9(1)) HaarU(2) = 1[0:,2)(t)(2 - t)sin2(irt/2) dt.
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In the same cp(1), x coordinates, the normalized spacing 19(3) - t9(2) is equal to
2 - x/Jr,f since the sum of the two normalized spacings is 2. Thus we have

f (x)d(19(3) - 19(2)). HaarU(2)

= (1/21r)2 Jf f (2 - x/1r)I e" - 112 dco(1) dx

dW(1)) f (2 - x/7r)lex _ 112 dx= (1/27x)2 f
,2ir) (fto.27r-m)

= (1/21r)2 f (27r - x) f (2 - x/7r)leix - 112 dx
[0 2ir)

(2-t)f(2-t)sin2(7rt/2)dtf0,2)

= f tf (t) sin2(7r - 7rt/2) dt
0,2]

= f tf (t) sin2 (7rt/2) dt,
02]

and thus

(19(3) -19(2)) HaarU(2) ='(o 2] (t)t sin2(irt/2) dt.

Thus we see explicitly that

(19(3) - 19(2)) HaarU(2) # (t9(2) -19(1)), Haaru(2) .

Adding these two, we get 2µ(U(2), sep. 0), so we must have

µ(U(2), sep. 0) = I(0,2] (t) sin2(7rt/2) dt.

6.16. Offset spacing measures and their relation
to multi-eigenvalue location measures on U(N)

6.16.1. Given an integer r > 1, we denote by

Off : II8r Rr

the linear automorphism of ][i;r defined on x = (x(1), ... , x(r)) in Rr by

Off(x) = (x(1),x(1) + x(2), x(1) + x(2) + x(3),...),

i.e., Off(x) is the vector whose j'th component is E1<i<j x(i). The inverse auto-
morphism is y Diff(y), defined by

Dill (y) (x) =
y(1), for i = 1,
y(i) - y(i - 1), for i = 2, ... , r.

6.16.2. Given a Borel probability measure µ on Rr, we denote by

Off := Off/A

the direct image of µ by the automorphism Off : lllr --+ l[$r. For any bounded, Borel
measurable function f (x) on li', we have the tautological integration formula

j f(x)d(Off ) =
fRr

f (Off (x)) dp
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6.16.3. We now fix a separation vector a in Z', with corresponding step
vector b := a + Ii, and corresponding offset vector c := Off(b). For any N > 2,
we have the spacing measure p(U(N), offsets c) on W. In this section, we will be
concerned with the "offset spacing measure"

Off a(U(N), offsets c) := Off. µ(U(N), offsets c).

Just as p(U(N), offsets c) was defined as the expected value over U(N) of the
measures µ(A, U(N), offsets c) attached to elements A of U(N), so the measure
Off µ(U(N), offsets c) is the expected value over U(N) of the measures
Off µ(A, U(N), offsets c).

Lemma 6.16.4 (compare Lemma 6.14.5). 1) For any nonempty subset S of
{1,2,...,r}, denote by

pr[,Sl: R' --.o RS

the projection onto the named variables. Then we have

pr[S].(Off p.(A, U(N), offsets c)) = Off A(A, U(N), offsets pr[S](c))

for every A in U(N), and

pr[S].(Off µ(U(N), offsets c)) = Off p.(U(N), offsets pr[S](c)).

2) The measures Off t(A, U(N), offsets c) and Off p(U(N), offsets c) on R"
are supported in (}R>0)r(order).

PROOF. For both 1) and 2), the assertion for Off p(A, U(N) offsets c) is tautolo-
gous, and the assertion for Off µ(U(N), offsets c) results from this one by integration
over U(N). QED

6.16.5. The main result of this section is the relation of the offset spacing
measure to the multi-eigeuvalue location measure u(c, U(N)). In the case r = 1,
where Off : IR -+ R is the identity, this relation is 6.12.6. Here is the general case.

Proposition 6.16.6. Fix integers r > 1 and N > 2, and denote

n = 1r := (1,1, 1,-, 1) in R.

For any nonnegative Borel measurable function g > 0 on W, denote by G the
nonnegative Borel measurable function G > 0 defined by the Lebesgue integral

G(x) := r g(x - tl) dt := lx(1)l r g(x - tx(1) Il) dt.
[o,x(1}} [0,1}

Fix an offset vector c in Zr:

1 <c(1) <c(2) < .. <c(r).
For each integer k with 0 < k < c(1) - 1, c - kIl is again an offset vector, and we
have the

f
idf

G d Off (U(N), ofsets c)
,. 0<k<c{1}-1 '

PROOF. The idea of the proof is that already used in proving 6.12.4, 6.12.6,
and 6.14.12, namely to express the integrals involved as integrals over U(N) against
Haar measure, and then to show that the integrands coincide on the set U(N)1e9.
of elements with N distinct eigenvalues.
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The definition of v(c, U(N)) as a direct image from U(N) x U(1) gives

f r
g dv(c, U(N))

f V (c(r)) dAf (N) f0,2n)

for any offset vector c. The definition of Off u(U(N), offsets c) as the expected
value over U(N) of the measures Off u(A, U(N), offsets c) gives

f Gd Off u(U(N), offsets c)

f
/ r l

= {
J

Gd Off µ(A, U(N), offsets c)) dA.
(N) \ R' 111

We will show that for each A in U(N) with N distinct eigenvalues, we have

offsets c)

ur f (a9(c(1) - k)(e-"RA),.. .,i9(c(r) - k)(e-i1A))d(W/21r).
0<k<c(1)-1f0,2i)

To show this, we proceed as follows. Denote by W(i) := cp(i)(A) the (nonnor-
malized) angles of A, defined for all i in Z. For each i, let

si := (N/27r)(W(i + 1) - tp(i))

be the i'th normalized spacing of A, and let

Si := (,P(i), W(i + 1)] C U(1)

be the half open interval between Bp(i) and V(i + 1). By definition of
Off u(A, U(N), offsets c), we have

N f G d_Off u(A, U(N), offsets c)
Rr

E G(st+1 + S1--2 + ... + 81+c(1)) ... , 51+1 + 51+2 + ... + Si+c(r))
imodN

Let us introduce the scalars

Si,a,b si+i, if a< b,
a<i<b

:=O, if a > b.

Then

N J G d Off u(A, U(N), offsets c)r
G(si,l,c(l), Si,1,c(2), ... , Si,l,c(r))

imodN

1 mod N

where we denote by si,l,c the vector (si,1,c(1), S1,1,c(2), ... , 81,1,c(r)).
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Now recall the definition of G in terms of g, to see that

G(si I c} = r g(si,n,, - t1) dt

g(sifo tIl)dt.

.(1)] into c(1) disjoint intervalsWe break the interval (0, si l e

(0, (0, E sl+i] _ _I (sl,1,k, Si,1,k+1]
1<i<c(1) 0<k<c(1)-1

Thus we get

G(si,l,r) = f g(si >i - tIl) dt
0<k<c(1)-1 (ei,t,k, st,t,k+11

1:_ 9(51,1,c - 81,1,k- 11 - tll) dt.
O<k<c(1)-1 f(0.*L,k,k+11

At this point, we observe that we have the relations

81, 2'C - $I, 1'k 1 = 81+k,1,c-kI, Si,k,k+1 = Sl+k,O,l = 51+k-

So the previous identity becomes

fG(81,1,c) = L. 9(Sl+k,n,c-kI - tIl) dt.
0<k<c(1)-1 o,st+kl

Summing over l and shifting l by k, we obtain

N
J

G d Off µ(A, U(N), offsets c)

o ,tE Y f
0<k<c(1)-1 i mod N ]

So we are reduced to showing that for each k with 0 < k < c(1) - 1, we have

(1/N) f 9(si,1 k1 - t1') dt
imodN O

f (19(c(1) - k)(e-l`PA)...... 0(c(r) - k)(e-i9A)) d(cp/27r).- f.,2x)

This is a statement about the offset vector c - k 1 1, so it suffices to treat universally
the case when k = 0, i.e., to show that for any offset vector c in Z' we have

(1/N) E f g(si, j,, - t1) dt
l mod N [O,st]

f (6(c(1))(c A), ... , fl(c(r))(e-swA)) d(tP/21r).f0,2,r)
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To show this, it suffices to show that for each I we have

f
sl

9(sj, tIl) dt._ (1/N) f
lo,si)

But this is a tautology: as V runs in (cp{I),cp(1 + 1)], 3(c)(e-a`'A) runs from si,Q,
to si,1,c - sI1. QED

Corollary
r

r

6.16.7. The relation

J
GdOff p(U(N), offsets c) _ > f gdv(c- kIl,U(N))

0<k<c(1)-1 r

for G(x) defined as the Lebesgue integral G(x) := flo
X(1)1

g(x -tf) dt, remains valid
if we allow g to be a Bores measurable function of polynomial growth (or indeed any
Bore! measurable function which is bounded on compact sets).

PROOF. The measures involved are all probability measures of compact sup-
port. Because we have measures of finite mass, we may extend the proposition
from nonnegative Borel functions g to bounded Borel functions f, and using the
compact support we may extend to any Borel functions g whose restrictions to all
compact sets are bounded, in particular to Borel functions of polynomial growth.
QED

6.17. Interlude: "Tails" of measures on R''

6.17.1. Let r > 1 be an integer, p a Borel probability measure on W. For s
in R', we defined the rectangle R(s) C R' as

R(s) := {x in R' such that x(i) < s(i) for i
and we defined the cumulative distribution function (CDF) of u by

CDF,,,(s) := p(R(s)).

6.17.2. We now define, for s in R'', a "tail rectangle" T(s) in R'' by

T(s) := {x in R' such that x(i) > s(i) for i = I,-, r}.
For r = 1, T(s) is just the complement of R(s), whence the terminology "tail".
For r = 2, R(s) is a closed third quadrant and T(s) is the "opposite" open first
quadrant. Here is the r = 2 picture:

T{s)

R(s)
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6.17.3. We define the tail function of u, Tail,,, by

Tailu(s) := 1.c(T(s)).

Lemma 6.17.4. Let r > 1 be an integer, p a Borel probability measure on Rr.
Denote by [-1] : Rr -4 Rr the map x F-4 -x.

1) We have

CDFI-1],µ(-s) = li Tailµ(s - (1/n)11),

Tail ,,(s) = lim CDFs - (1/n) Il).n-oo

2) The measure u is determined by its tail function.
3) The following conditions are equivalent:

3a) Tailµ is continuous,
3b) CDF[_1].µ is continuous,
3c) CDFµ is continuous.

Moreover, if these equivalent conditions hold, then for every s in Rr we have

Taill,(s) = CDFI_ll,µ(-s) = 14({x in R' with x(i) > s(i) for all i}).

PROOF. We first prove 1). It is tautologous that

CDF[-1],,,(-s) = p({x in Rr such that - x(i) < -s(i) for all i})

= u({x in Rr such that x(i) > s(i) for all i})

=u (n{xinR' such that x(i) > s(i)-1/n for alli}
n>1

=µ n T(s-(1/n)1)
1

Because p has finite mass, the measure of this decreasing intersection is

lim Tail,,(s - (1/n) J I).noo
Similarly,

Tailµ(s) = u({x in Rr such that x(i) > s(i) for all i})

= u({x in Rr such that - x(i) < -s(i) for all i})

= u U {x in RT such that - x(i) < -s(i),- 1/n for all i}
n>1 J

lim u({x in Rr such that - x(i) < -s(i) - 1/n for all i})
n-oo
lim CDFI-1l,µ(-s - (1/n)11).

Assertion 2) follows from the first formula of 1), which shows that Tail,, determines
CDFI-11,,,, which in turn determines [-1],u and then lc itself. To prove 3), we
argue as follows. If Tailµ is continuous, then by 1) we have

CDF(-1).F+(-s) = Tailµ(s),
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which shows that CDF1_11,, is continuous. CDF1_11., is continuous if and only
if each hyperplane x(i) = a has zero, if and only if each hyper-
plane x(i) = a has p-measure zero, if and only if CDFy is continuous. Finally, if
CDF1_11., is continuous, then by 1) we have Tailu(s) = CDF1_1),,(-s), whence
Tails is continuous. The final assertion results from the equality

Tailµ,(s) = CDF1_1),y(-s)

proven above, along with the explicitation of CDF1_11.,(-s). QED

Lemma 6.17.5. A real-valued continuous function F(s) on RT' with values in
[0, 1] is Tally for some Borel probability measure p on 1R' with a continuous Tail if
and only if F satisfies the following three conditions:

1) limn. F(n1) = 0.
2) limn-,,,, F(-n1) = 1.
3) F satisfies the Lebesgue-Stieltjes positivity condition (which expresses that

the rectangle (s, s + t] is to have nonnegative measure): For every s in R", and for
every t in (R>0)r, we have

12 ... r ` iinSsubsets S of { }

E (_1)Card(S)F I s + E t(i)e(i)) > 0.

PROOF. It is elementary that if p is a Borel probability measure with Tail,
continuous, then F(s) := Taily(s) satisfies these conditions. Conversely, given a
continuous F which satisfies these conditions, we define G(s) := F(-s). Then G
satisfies the usual conditions to be the CDF of a Borel probability measure, say v,
with a continuous CDF, and if we take p := then p has tail F. QED

Corollary 6.17.6 (Limit Lemma). Let r > 1 be an integer, {pn}n>1 a se-
quence of Borel probability measures on 118', each of which has a continuous tail
function. Suppose that the sequence of functions {Tail,,,}n converges uniformly on
R' to some function F. Then F is continuous, and there exists a unique Borel
probability measure p on Rr whose tail function is F. For any bounded continuous
function g on 118x, we have the limit formula

1..
g dp = lim JI g dpn.

n-oo Rr

PROOF. Let us write Fn := Tail,,,. The uniform convergence of Fn to F
shows that F is continuous, takes values in [0, 1], and satisfies the Lebesgue-Stieltjes
positivity condition 3) of the previous lemma. To construct p with Tails = F, it
suffices to show that F satisfies conditions 1) and 2) of the previous lemma as
well. For each n, the function of one real variable x i--+ Fn(xl) := pn(T(xl)) is a
decreasing function of x, which is 1 at -oo and 0 at +oo. By the uniformity of the
convergence of F,, to F, x i--4 F(xl) has these properties as well, and so satisfies 1)
and 2) of the previous lemma.

Once we know that F is Tail, for some Borel probability measure p with a
continuous tail, we use the relations

Tail,,,(-s), CDF1_I].,(s) = Tail,(-s),
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to see that the measures [-1]ypn converge properly to the probability measure p,
from which it follows [Fel, page 243] that

f9d([_1]4.t) = lif
for every bounded continuous g. Applying this to the function g(-x) gives the
asserted relation

fR1
g dpm. QEDg dp = limo JRr

6.17.7. There is a simple Moebius inversion relation between CDF's and
Tail's.

Lemma 6.17.8. Let r > 1 be an integer, p a Borel probability measure on fir.
For each subset S of {1,2,...,r}, denote by pr[S] : R' , RS the projection onto
the named coordinates, with the convention that R0 = {O} for S = 0. Then for s
in Rr we have the inversion formulas

Tail, (s) = E
SC{1,2,...,r}

(-1)#S CDFpr[S].F,(pr[S](s)),

SC{1,2,..,r)
(-1)#5Tailpr(s).,, (pr[S](s))

PROOF. Fix s in ]Rr. For each j = 1, ... , r, denote by Xj and pj the char-
acteristic functions of the half-planes x(j) < s(j) and x(j) > s(j) respectively.
Then xj + pj = 1, the characteristic function of R(s) is fl3 Xj = flj(1 - pj),
and the characteristic function of T(s) is fj pj = Tjj(1 - xj). Similarly, for. each
S c {1,2,...,r}, the characteristic function of pr[S]-1(R(pr[S](s))) is llj ,r, S Xj,
and the characteristic function of pr[S]-1(T(pr[S](s))) is f1j i. S pj. The asserted
inversion formulas are obtained by expanding

XR(s) _ fl Xj = (1 - pi)
j j

and

XT(s) = HPi = 11(1 - Xi)
j j

respectively by the binomial theorem, and integrating against p. QED

Corollary 6.17.9. Let r > 1 be an integer, {pn}n>1 and p Borel probability
measures on R'. The following conditions are equivalent.

1) For every subset S of {1, the sequence of functions {Tailpr(Sj. }n
converges pointwise (respectively uniformly) to Tailpr(Sj.p..

2) For every subset S o f {1, 2, ... , r}, the sequence of functions {CDFpr[S]. kn In
converges pointwise (respectively uniformly) to CDFpr(S].p.

6.18. Tails of offset spacing measures
and tails of multi-eigenvalue location measures on U(N)

Proposition 6.18.1. Fix an integer r > 1 and an offset vector c in Z',

I < c(1) < c(2) < < c(r).
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For each integer N > 2, and each s in IR' with s(1) > 0, we have the relation

E Tailu(c-k1,U(N)) (s) = TailOffp(U(N), offsets .)(S + 1) dt,
0<k<c(1)-1 J]0°O]

P1tooF. Fix s in R'' with s(1) > 0. We apply 6.16.6 with the nonnegative Borel
function g taken to be the characteristic function of the tail rectangle T(s). Then
for t in lR, the function x '-* g(x - t Il) is the characteristic function of the rectangle
T(s + to ). The general relation

1 J
g dv(c -- k ll, U(N)) =

J
G d Off a(U(N), offsets c)

0<k<c(1)-1 R' Rr

becomes, for this choice of g, the relation

i Tail,(e_k1,U(N))(s)
0<k<c(1)-1

= fR1 f g(x - tb) dt doff p(U(N), offsets c).
` [0,x(1)] /

Because the measure Off µ(U(N), offsets c) is supported in (lllti>o)'(order), in par-
ticular it is supported in x(1) > 0, so we may rewrite this integral as

=
g(x - t 1l) dt) d Off Et(U(N), offsets c)f ',x(1)>0 (f[O,X(I)l

d Off a(U(N), offsets c) dt.
ptr xR,x(1)>t>0,x>s+t1

Because s(1) > 0, the condition x > s+tl implies x(1) > t, so we may rewrite the
integral as

d Off u(U(N), offsets c) dt
>O,x>s+t1IRrxIR,t(fRr,X>S+tn

= J d Off a.(U(N), offsets c)dt
[O,oo]

Corollary 6.18.2. Hypotheses and notations as in 6.18.1 above, for s in R'
with s(1) > 0, we have

TailOff,,(U(N), offsets c)(3)

1` Tailv(c-kn,U(N))(S)
ti 0<k<c(1)-1
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PROOF. Indeed, for e > 0 in R we have

1: TaiL(c-k1,U(N))(s + el )
0<k<c(1)-1

Tailo ff u(U(N), offsets ) (s + IF 1 + t 1) dt
fo>00I

Tailoff u(u(N), offsets e) (s + t 1) dt.
I E oo]

So we readily compute the difference

(Tail,,(,--k1,u(N)) (s + e 1) - Tail,,(c-kIl,U(N)) (s))
0<k<c(1)-1

Tailoff u(U(N), offsets ) (s + t 1) dt.
[0,e]

Dividing by a and letting E - 0 gives the assertion for the derivative from above.
Similarly, for small e, the vector s - ER still has first coordinate > 0, so we have

E Tailv(c-k1,U(N))(s - e1)
0<k<c(1)-1

f Tailoff µ(U(N), offsets c) (S - e 1 + t1) dt- 00]

Tailoff µ(U(N), offsets c) (s + t l) dt.

So we readily compute the difference

(Tailv(c-k1,U(N))(s - el) -
0<k<c(1)-1

= TaIloff µ(U(N), offsets c) (s + t 1) dt.

Dividing by -E and letting e - 0 gives the assertion for the derivative from below.
QED

6.19. Moments of offset spacing measures
and of multi-eigenvalue location measures on U(N)

Proposition 6.19.1. Fix an integer r > 1 and an offset vector c in Zr,

1 < c(1) < c(2) < . . < c(r).

For each integer N > 2, we have the following relations among moments: for any
polynomial function H(x) on Rr which is divisible by x(1) as a polynomial, denote
by h(x) the polynomial

h:= (Y' 8/8x(i) H.

Then for such an H we have the relation
r

f h dv(c - kll, U(N)) =
J

H d Off s.(U(N), offsets c).
0<k<c(1)-1 r R*
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PROOF. This is seen most easily by writing H as an R-linear sum of monomials

x(1)a(1) H(x(i) - x(i - 1))a(i)
i=2

with a in Z' having a(1) > 1 and all a(i) > 0. For H an individual such monomial,
we have

r
h:= (>2a/ax(i)) H = a(1)x(1)a(l)-1[J(x(i) - x(i - 1))a{i}

i i=2

For x(1) > 0, we recover

H(x) := J h(x - tB) dt.
[o,x(1)1

Since the measure Off tt(U(N), offsets c) is supported in x(1) > 0, the assertion
results immediately from 6.16.7, applied to the polynomial function h. QED

6.20. Multi-eigenvalue location measures for the other G(N)

6.20.1. For G(N) one of SO(2N + 1), USp(2N), SO(2N), O_(2N + 2), or
O_ (2N + 1), and A in G(N), we have defined its angles

0 < co(1)(A) < (2) (A) < - < W(N) (A) <

and its normalized angles

t9(i)(A) := (N + A),p(i)(A)/rr, i = 1, ... , N.

Given an integer r > 1, an offset vector c in Zr,

0 < c(1) < c(2) < - < c(r),

and an integer N > c(r), we denote by v(c, G(N)) the probability measure on Rr
which is the direct image of total mass one Haar measure on G(N) by the map
G(N) -+ Rr defined by the normalized angles

A - (6(c(1)), ... , 79(c(r))).

Thus

v(c, G(N)) :_ (0(c(1)), ... , t9(c(r))). Haara(N)

6.20.2. Exactly as in the case of U(N), cf. 6.14.5, we have

Lemma 6.20.3. Suppose given an integer r > 1, and an offset vector c in Z'.
For any nonernpty subset

of the index set {1, ... , r}, we denote by

pr[S] : Rr . RCard(S)

the projection onto the named coordinates. We have an equality

pr[S].v(c, G(N)) = v(pr[S](c),G(N))

of measures on ]ftcard(S)
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Proposition 6.20.4. Given an integer r > 1, an offset vector c in Zr,
0 < c(1) < c(2) < . < c(r),

and an integer N > c(r), for G(N) any of U(N), SO(2N + 1), USp(2N), SO(2N),
O_ (2N + 2), O_ (2N + 1), the measure v(c, G(N)) on Rr is absolutely continuous
with respect to Lebesgue measure.

PROOF. Denote by S the subset {c(1),. .. , c(r) } of {1, 2, ... , N}. Then

v(c, G(N)) = pr]S].v((1, 2, ... , N), G(N)).

Now pr [S]. (Lebesgue measure on RN) is absolutely continuous with respect to
Lebesgue measure on R, so it suffices to show that v((1, 2, ..., N), G(N)) is abso-
lutely continuous with respect to Lebesgue measure on RN. This is obvious from
the fact that the Hermann Weyl measure on T/W, viewed as a W-invariant measure
on T, is absolutely continuous with respect to Haar measure on T. QED

Corollary 6.20.5. Hypotheses and notations as in 6.20.4 above, the measure
v(c, G(N)) has a continuous CDF and hence (by 6.17.4) has a continuous tail.

PROOF. In view of 2.11.17, it suffices to show that each one-variable projection
pr[i].v(c,G(N)) = v(c(i),G(N)) on R has no point masses, and this is guaranteed
by the absolute continuity of v(c(i), G(N)) with respect to Lebesgue measure. QED



CHAPTER 7

Large N Limits and Fredholm Determinants

7.0. Generating series for the limit measures u(univ, sep.'s a)
in several variables: absolute continuity of these measures

7.0.1. Let us fix an integer r > 1, and a bounded, Borel measurable 1Y-valued
function f on ](fir of compact support. For any separation vector a in Z', with
corresponding offset vector c, the measure

,a(univ, sep.'s a) = µ(naive, univ, sep.'s a)

is given (2.10.1) by

f dp (univ, sep.'s a)
fR'

= E(-1)n(n-a)Binom(n, a) COR(n, f, univ).
n>O

Lemma 7.0.2. Suppose that f on 1R is supported in s(i) a. For any
separation vector n in V', we have the estimate

I COR(n, f, univ) I < IIf IIsuP (a)r+F-(,)/(r + E(n))!.

If n corresponds to the offset vector c, so c(r) = r + E(n), we have the formula

COR(n, f, univ) = J H(0, z)W(r + E(n) + 1)(0, z) H dz(i),
[p aIr+E(. )(order)

where

H(x(0), x(1), ... , x(c(r)))
= f (x(c(1)) - x(0), x(c(2)) - x(c(1)), ... , x(c(r)) - x(c(r - 1))).

PROOF. Because f has compact support, the function

H(X) := Clump(n, f, r + r, (n) + 1, X)
:= f (x(c(1)) - x(0), x(c(2)) - x(c(1)),... , x(c(r)) - x(c(r - 1)))

lies in 7o(r + E(n) + 1), cf. 4.0.5. According to 4.1.5, for every A in G(N) we have

Cor(n, f, G(N), A) = Z[r + E(n) + 1, H, G(N)] (A).

Integrating over G(N), we get

COR(n, f, G(N)) = E(Z[r + E(n) + 1, H, G(N)]).

If we take G(N) to be U(N), then 5.8.2 gives (because or = 2 for U(N)) the estimate

I E(Z[r + E(n) + 1, H, G(N)])I IIHIIsup(a)r+E(n)/(r + E(n))!

IIf IIsuP(a)r+F(n)/(r + E(n))!.

197
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Taking the limit over N and using 5.10.3, we get the asserted estimate for
I COR(n, f, univ)], and the asserted formula

COR(n, f, univ) = E(r + E(n) + 1, H, univ)

H(0, z)W (r + E(n) + 1)(0, z) II dz(i). QED
[O,a]' (")(order}

i

Proposition 7.0.3. Fix an integer r > 1. For any separation vector a in Zr,
the measure

p(univ, sep.'s a) = p(naive, univ, rep.'s a)

on R' is absolutely continuous with respect to Lebesgue measure.

PROOF. It suffices to show that any bounded set E c IRr of Lebesgue measure
zero has a(univ, rep.'s a)-measure zero. Denote by f the characteristic function of
E. In view of the fundamental identity 2.10.2,

f dp(univ, rep.'s a)
R

= D-1)£("-Q) Binom(n, a) COR(n, f, univ),
n>O

it suffices to show that COR(n, f, univ) = 0 for n > 0 in Z'. For this, we use the
identity of the previous lemma,

COR(n, f, univ) H(0, z)W (r + E(n) + 1) (0, z) fl dz(i),
J, ti

where c is the offset vector corresponding to n, and

H(x(0), x(1), ... , x(c(r)))
= f(x(c(1)) - x(0),x(c(2)) - x(c(1)),...,x(c(r)) - x(c(r - 1))).

So it suffices if H(0, z) as function on IR`(r) is the characteristic function of a set of
Lebesgue measure zero in IR'(r). To see this, view Rc(r) as IRr x Rr(r)-r via coordi-
nates (the z(c(i))'s, the other z(j)'s), and recall the inverse linear automorphisms
Off and Duff of IRr (cf. 6.16.1). Then H(0, z) is the characteristic function of the
product set Diff (E) x RcQED

7.0.4. Let us now consider the formal power series in r variables

Gr(T)(f) = Gr(T1,... ,Tr)(f)

defined by

Gr (TI, ... , Tr) (f) E COR(n, f, univ)Tn.
n>O

Lemma 7.0.5. For any bounded, Borel measurable R-valued function f on Rr
of compact support, the formal power series G r (T) (f) is everywhere convergent.



7.0. GENERATING SERIES FOR LIMIT MEASURES 199

PROOF. If f is supported in E Is I < a, then by the previous lemma Gr(T) (f )
is term by term majorized (denoted temporarily as <<<) by

E ar+E(n)Tn/(r + E(n))! <<< ar E aE(n)T' /(r + E(n))!
n>0 n>0

< Ci ar(n)T+n/E(n)I
<<<

r J(n)Tn / (Hi)!))
n>0 n>0 i

= ar exp (a Ti QED

Lemma 7.0.6. For any bounded, Borel measurable R-valued function f on Rr
of compact support, and any separation vector a in Z' , we have

rep.'s a)

= JJ((d/dTi)a(')/a(i)!)Gr(T1, ..,Tr)(f)I011 T,=-i.

i

Equivalently, we have the identity of entire functions of r variables

G,(T)(f) _ (1+T)nfdp(univ, sep.'s n),
n>0 in Zr 12

with the usual notational convention (1 + T)n := jji(1 + T,i)n(i),

PROOF. In view of the definition of Gr(T), this is just a compact restatement
of 2.10.2. QED

7.0.7. Given a point s in (R>0)' , we denote by R(s) the rectangle [0, s] in
(R>o)r, and by IR(,) its characteristic function. Given an offset vector c in Z', we
define

Domain(c, s) C (R>o)c(r) (order)

to be the set of those points 0 < x(1) < x(2) < < x(c(r)) which satisfy

x(c(1)) < s(1),

and

x(c(i)) - x(c(i - 1)) < s(i) for i = 2, ... , r.

Lemma 7.0.8. For each separation vector n in Zr, with corresponding offset
vector c, and for each s in (R>o)r,f we have the identity

COR(n, IR(,), univ) = W(1 + c(r))(0, z) fl dz(i),
omain(c,s) i

and the estimate

I COR(n, IR(,), univ) I < (E(s))r+E(n)/(r + E(n))!.

PROOF. This is just 7.0.2, applied to the function f = IR(,), whose a is E(s)
and whose H(0, z) is the characteristic function of Domain(c, s). QED
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Lemma 7.0.9. For each separation vector n in Zr, with corresponding step
vector b and offset vector c, the function

s F--' COR(n, IR(9), univ)

is the restriction to (R>0)r of an entire function of s which is divisible by fi s(i)6(i)
(and hence in particular divisible by fli s(i)). For s in Cr, we have

I COR(n, IR(s), univ) I

< 11(,s(i)jb(i)/b(i)!)) Sgrt(1 + c(r))1+c(r) exp((1 + c(r)) E ls(i)I7r).

PROOF. We first prove everything except the estimate for complex s. That it
is entire will result from the formula

COR(n, IR(e), univ) = f W(1 + c(r)) (0, z) 11 dz(j),
omain{c,s) j

and the fact that W(1 +c(r))(0,z) is the restriction to 1[8c(r) of an entire function
of z. Let us begin with an s in (]!t>o)r. If any of the coordinates s(i) of s vanishes,
Domain(c, s) has Lebesgue measure zero, and COR(n, IR(s), univ) = 0. Thus it
suffices to study

s'-+ COR(n, IR(s), univ)

for s in (R>o)r. To do this, we introduce the difference variables

x(1) = z(1),
x(j) = z(j) - z(j - 1) for 2 < j < c(r).

Seen in the x variables, Domain(c, s) is the region Region(c, s) defined by the in-
equalities

c(i)

all x(j) > 0, and x(j) < s(i) for i = 1,...,r,
j=1+c(i-1)

with the convention that c(0) = 0. We define an entire function of x's by

V (c(r)) (x) := W (1 + c(r)) (0, z).

We define scalars t(j), j = 1, ... , c(r), by

t(j) := s(i) if 1 + c(i - 1) < j < c(i),
and we make the further change of variables

x(j) = t(j)u(j), j = 1, ... , c(r).

In the u coordinates, we have

COR(n, IR(s), univ) = f V(c(r))(tu) fJ(t(j) du(j))
egion(c,1)

J

j

= (flt(i) V(c(r))(tu) H du(j)
eg

(Hs(i)) V (c(r))(t1L) 1l 1 du(j),
egion(c,1) j
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where Region(c, 1) is the region of u space defined by the inequalities

c(i)

allu(j)>0, and E u(j) < 1 for i=1,...,r.
j=l+c(i-1)

Thus it suffices to show that

V(c(r))(tu) du(j)J egion (c, l)

is an entire function of t. To see this, expand the entire function V(c(r))(x) in
an everywhere convergent power series, say >,,, A,,,xw. For fixed t, we may apply
dominated convergence to integrate term by term over the compact Region(c, 1):

V(c(r))(tu) du(i)
Region(c,l) i

=
!

Aw(tu)w IT du(i)
w i

f
_ Aw(t)w f uw H du(i).

w JJJRegion(c,1)

To see that this last series in t is everywhere convergent, we argue as follows.
The region Region(c, 1) is contained in the unit cube [0,1]c('), so I u'°I < 1 in the
integral. Moreover, Region(c, 1) has Euclidean volume 1/ fi b(i)!; this amounts to
the statement that for any integer n > 1, the region of lR' defined by

all x(i) > 0, E x(i) < 1

has volume 1/n!. To see this, use the variables z(i) _ >j<ix(j), in which this is
the region [0,1]"(order),

0 < z(1) < z(2) < < z(n) < 1,

which has volume 1/n!, being, up to a set of measure zero, a fundamental domain
for the action of E on [0, 1]'. Thus we may estimate

uw fj du(i)
Region(c,l) i

< 1R.gion(c,l) fi du(i) = 1/ 11 b(i)! < 1,
i i

and so the series E,,,, A,, (t)w fRegion(c,1) u"' jji du(i) is dominated term by term by
the entire function Ew A,,,(t)w = V(c(r))(t).

It remains to prove the estimate asserted for complex s. We use the formula

COR(n, IR(s), univ) _ n s(i)b(i) J V(c(r))(tu) fl du(j),
egion(c,1)

and remind the reader that t in CC(r) is the vector

(s(1) repeated b(1) times, . . . , s(r) repeated b(r) times).
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From this, we get

I COR(n, IR(9), univ)I

(ri Is(i)Ib(i)) f I V (c(r))(tu)I f du(j)
egion(c,1)

Is(i)Ib(i) Sup IV(c{r})(tu)I f du(j),
u in Reglon(c,1) egion(c,1)

(fl(lsi) I/b(i)!)
u in R

Sup
l} I V

(c(r))(tu)I.
o

Thus it s uffices to establish the inequality

IV(c(r))(ut)I < Sgrt(1 + c(r))1+c(r) exp ((1 + c(r)) Is(i)17r

for t in CC(r) and u in Region(c, 1).
In the c(r) variables z(j) u(i)t(i), 1 < j < c(r), and with z(O) := 0,

we have

V(c(r)) (ut) = W(1 + c(r))(0, z) = det(A),
A:= (f (z(i) - z(j))}o<i,j<c(r), f(x) = sin(7rx)/irx.

Thus each entry of the matrix A is of the form

f (+-(a partial sum of u(j)t(j)'s)).

From the power series expansion of f (x) = sin(7rx)/7rx, we see that for complex
x we have

f (x) I = I sin(7rx)/7rxl = E(-1)n(7rx)2n/(2n + 1)!
n>O

IirxI2n/(2n)! < > I7rxln/n! = exp(irIxI).
n>00 n>0

Since exp(x) is increasing for real x, we have

I f (±(a partial sum of u(j)t(j)'s))I < exp E Iu(j)t(j)I7r .

But recall that for those j with 1+c(i-1) < j < c(i), we have t(j) = s(i). Moreover,
because u lies in Region(c, 1), we have all u(j) ? 0, and ri(+) (i_1) u(j) < 1. Thus
we have

r
Iu(i)t(j)I'r _ EEu(j)Is(i)Iir < Is(i)IIr.

j i=1 j i

Thus V(c(r))(t) is a determinant of size 1 + c(r), each of whose entries is bounded
in absolute value by exp(F_i Is(i)Iir). The Hadamard determinant inequality

Ian n x n determinant (ai, j) I < (n1"2 Max lai,j I)'

gives the asserted estimate. QED



Q
.'

.i:

r-4

7.0. GENERATING SERIES FOR LIMIT MEASURES 203

Proposition 7.0.10. For each integer r > 1, the series

Gr(T, s) := Gr(T)(IR(,)) Tn Cor(n, IR(s), univ),
n>0

which for each s in (!!Y>o)r is an entire function of T in Cr, is the restriction to
Cr x (R>0)r of an entire function on C2r which is divisible by f: s(i).

PROOF. We know that each coefficient COR(n, IR(s), univ) is an entire func-
tion of s which is divisible by Ilt s(i), and hence each finite sum

E T71 Cor(n, IR(g), univ)
I>n>0

is an entire function of (T, s) which vanishes when any s(i) = 0. Since a uniform
limit of holomorphic functions is holomorphic, it suffices to check that the series

E T' Cor(n, IR(s), univ)
n>O

converges uniformly on compact sets in C2r. For then the limit series will be entire,
and it will vanish when any's(i) = 0, so will be divisible by Ft s(i).

To do this, pick a real number M > 1, and suppose all IT;I < M and all
Is(i)] < M. Then

I COR(n, IR(,), univ) I

(H(M1)lb(i)i)) Sgrt(1 + c(r))1+c(r) exp((1 + c(r))rM7r)

E(b)!/ fl b(i)!J (M1;(b)/E(b)!) Sgrt(1 + c(r))1+c(r) exp((1 + c(r))rM7r)

< rE(b)(ME(b)/E(b)!) Sqrt(1 + c(r))l+,(r) exp((1 + c(r))rMIr).

Recalling that c(r) = E(b) > r > 1, we have 1 + c(r) < 2c(r), so we may continue

< Sgrt(1 + c(r))1+`(r) exp(2c(r)rMir)

= ((exp(2rMir)rM)"-(b)/E(b)!) Sqrt(1 + E(b))1+F'(b)

The number of step vectors b with a given value of E(b) is trivially bounded by
(E(b))r-1, since each b(i) is an integer in [1, E(b)], and the last one b(r) is determined
by the first r - 1. Thus if all IT,I < M and all js(i)I < M, we have, summing over
possible values k of E(b),

ITn Cor(n, IR(s}, univ)
n>0

kr-1Mk-r(exp(2rM1r)rM)k(Sgrt(1 + k)1+k/k!)
k>r

E kr-1Mk(exp(2rM1r)rM)k(Sgrt(1 + k)1+k/k!)
k>r

E kr-1(exp(2rMir)rM2)k(Sgrt(1 + k) l+k/k!).

k>0
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So it suffices that the function of one variable

E k''-1Xk(Sgrt(1 + k)1+k/k!)
k>O

be entire. This function is the result of applying (X d/dX )r-1 to

E Xk(Sgrt(1 + k)1+k/k!),
k>0

so it suffices that this last function be entire. This is immediate from Stirling's
inequality (cf. the proof of 3.4.5)

log(r(x)) > (x - 1/2)(log(x) - 1) for real x > 0. QED

Corollary 7.0.11. For each integer r > 1, and each separation vector n in
Z', the cumulative distribution function (CDF) of the measure U(univ, rep.'s n),

s in (R>o)' - Et(univ, sep.'s n)(R(s)),

is (the restriction to (R>o)r of) an entire function on Cr which is divisible by
IIi s(2).

PROOF. Obvious from 7.0.6 and the fact that Gr(T, s) is entire and divisible
by fi s(i). QED

Proposition 7.0.12. For each integer r > 1, and each separation vector n in
Z'', consider the entire function p(n; s) o f (s(1), ... , s(r)) defined by

p(n, s) = (H(d/ds(i))) (p(univ, sep.'s n)(R(s))).

The measure µ(univ, sep.'s n) on R' is the direct image (i.e., extension by zero)
from (R>o)r of the measure on (R>o)r given by

p(n; s) [I ds(i).

PROOF. Let us denote temporarily by f (n, s) the entire function

f (n, s) := p(univ, sep.'s n)(R(s)).

For s in (R>0)', p(n, s) is real and > 0, because it is the limit, as e > 0 goes to zero,
of p.(univ, sep.'s n)(f i[s(i), s(i) + e])/eT. So p(n; s) 11i ds(i) is a positive measure
on (It>o)'.

We know that p(univ, sep.'s n) is supported in (R>0)' , so it suffices to show
that it coincides with p(n; s) 11i ds(i) on (R>0)''. Since f (n, s) vanishes whenever
any s(i) = 0, the fundamental theorem of calculus together with the previous
corollary gives, for any s in (R>o)T,

f (n, s) =
ffl,[0,8(t)]

p(n; x) dx(i),

f ,u(univ, sep.'s n) = J p(n; x) dx(i)
R(s) R(s)

for every rectangle R(s) in (]!t>o)'. Thus our two Borel measures on (1R>0)' agree
on all rectangles R(s), hence must be equal as Borel measures on (lit>o)' . QED
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Corollary 7.0.13. 1) For each integer r > 1, and each separation vector n
in Zr, the measureu(univ, sep.'s n) on 1Rr is absolutely continuous with respect to
Lebesgue measure.

2) For any C' diffeomorphism of IBr,

V : Rr - 11Pr, 0(x) = (W,(x), ... , 0r(x)),
we have:

2a) The direct image measure cp.u(univ, sep.'s n) is absolutely continuous with
respect to Lebesgue measure.

2b) Each of the direct image measures (cpt).u(univ, sep.'s n) on R is absolutely
continuous with respect to Lebesgue measure, and so in particular has a continuous
CDF.

PROOF. 1) The absolute continuity was proven above in 7.0.3. It is also ob-
vious from the explicit formula for u(univ, sep.'s n) as the extension by zero of
p(n, x) f1 dx(i).

For 2a), we argue as follows. Since W is a C' diffeomorphism, the Jacobian
formula

(V-1).(Lebesgue measure fl dx(i)) = det(&pz/ax(j)) dx(i)
rxr

i s

shows that (W-1).(Lebesgue measure) is absolutely continuous with respect to
Lebesgue measure. But (gyp-1).u(univ, sep.'s n) is absolutely continuous with
respect to (gyp-1). (Lebesgue measure), just by transport of structure from 1), so
(W-1).u(univ, rep.'s n) is absolutely continuous with respect to Lebesgue mea-
sure on R'. Replacing p by cp-1, we find that cp.u(univ, sep.'s n) is absolutely
continuous with respect to Lebesgue measure.

For 2b), consider the i'th projection pr[i] : R" -+ R. For any Borel set E in R of
Lebesgue measure zero, its inverse image pr[i]-1(E) in I8r certainly has Lebesgue
measure zero. Therefore if v is any Borel measure on R' which is absolutely contin-
uous with respect to Lebesgue measure, its direct image pr[i].v on 118 is absolutely
continuous with respect to Lebesgue measure on R. Applying this to the measure
v = W.p(univ, sep.'s n), we find that

pr[i].v = pr[i].w.p.(univ, sep.'s n) = (Wi).u(univ, sep.'s n)

is absolutely continuous with respect to Lebesgue measure. QED

7.1. Interlude: Proof of Theorem 1.7.6

Let us recall the statement.

Theorem 1.7.6. Let r > 1 be an integer, b in Zr a step vector with corre-
sponding separation vector a and offset vector c. Denote

A:= u(univ, offsets c).

Suppose given an integer k with 1 < k < r, and a surfective linear map

7r:118r-4Rc,

or, more generally, a partial C' coordinate system of bounded distortion
7r:118r-.R

1) The measure 7r.u on Rc is absolutely continuous with respect to Lebesgue
measure, and (consequently) has a continuous CDF.
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2) Given any real e > 0, there exists an explicit constant N(e, r, c, ir) with the
following property: For G(N) any of the compact classical groups in their standard
representations,

U(N), SU(N), SO(2N + 1), O(2N + 1), USp(2N), SO(2N), O(2N),

and for

u(A, N) := p.(A, G(N), offsets c), for each A in G(N),

we have the inequality

discrep(7r*p,(A, N), 7r*p.) dA < Nc-1/(2r+4),
C(N)

provided that N > N (s, r, c, ir) .

PROOF. We first "complete" it : IR' - IRk to a CI-diffeomorphism of bounded
distortion cp : R' _ Rr in such a way that for J:= {1, 2, ... , k}, we have

it = pr[J] o W.

To prove assertion 1), we use the fact (7.0.13) that µ on Rr is absolutely con-
tinuous with respect to Lebesgue measure yr on IItr. It is then tautological that
7r*p is absolutely continuous with respect to 'Tr*vr. We claim that 7r*vr is absolutely
continuous with respect to Lebesgue measure vk on gk. To see this, use the fact
that 7r*vr = pr[J]*cp*vr. Because cp is a C1-diffeomorphism, the Jacobian rule gives
cp*vr = (the Jacobian of cp-1)vr, and hence (p*vr is absolutely continuous with
respect to vr. Taking direct image by pr[J], we get that 7r*vr is absolutely contin-
uous with respect to pr[J]*vr on R. But pr[J]*vr on R' is absolutely continuous
with respect to Lebesgue measure vk. Indeed, yr is a product: V. = vk x V,-k, so
pr[J]*vr is a product

pr[J]*vr = vk x (direct image from Rr-k to R° of vk_r).

More explicitly, if k = r, then pr[J]*vr = vk. If k < r, then pr[J]*vr is the measure
on IItk defined on Lebesgue measurable sets E by

(pr[J]*Lr)(E) = vr(E x Rr-k) = 0 if vk(E) = 0,
=ooifvk(E)>0.

To recapitulate, 7r*vr is absolutely continuous with respect to pr [J],, v,, and pr [J]. v,
on 1[Sk is absolutely continuous with respect to Lebesgue measure vk. Hence 7r*µ
is absolutely continuous with respect to Lebesgue measure. The continuity of its
CDF then results from 2.11.18.

To prove assertion 2), we first reduce to the case k = r by using it = pr[J] o W.
We then use the trivial inequality that for any two Lebesgue measures v1 and v2 of
finite total mass on I[tr, we have

discrep(pr[J],vl, pr[J]*v2) < discrep(v1, v2),

cf. 3.1.7.
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that

Applying this inequality to vi and v2 the measures cp. p.(A, N) and V. p., we find

N), 7r.p.) dAf (N)

discrep(pr[J]*cp,µ(A, N), p,) dAJ (N)

J discrep(cp.p(A, N), dA.
(N)

We now wish to apply Theorem 3.1.6, which says that

discrep(cp.p.(naive, A, N), cp. p.) dA < NE-1/(2r+4)

provided that N > N, (e, r, c, ri, rc), where r£ is the L1 norm of cc, and is the L1
norm of cp-1. The hypothesis 3.1.4 of 3.1.6 holds by part 1), according to which
W,,µ has a continuous CDF, or, what is the same (by 2.11.17), each pr[i].cp.µ has a
continuous CDF.

We also apply the same result with cp replaced by e o rev, where rev : R k - Rk
is the "reverse the coordinates" automorphism of Rk. This gives us the inequality

discrep(cp. rev. p.(naive, A, N), (p. rev. µ) dAf (N)

< Nc-1/(2r+4)

provided that N > Nl (e, r, c, ij, x). As already noted in 2.2.8 and 2.2.6, we have

rev* p.=p,
p(A, N) = (1/2) (rev. A(naive, A, N) + µ(naive, A, N) )

+ a positive Borel measurable of total mass < (1 + c(r))/(N - 1).

Apply W. to these equalities. We get

cp. rev, p. = cp. p,

cp. p(A, N) = (1/2)(w* rev* p(naive, A, N) + cp.µ(naive, A, N))

+ a positive Borel measure of total mass < (1 + c(r))/(N - 1).

By the triangle inequality for discrepancy (L,,. norm of differences of CDF's), we
get

discrep(cp.p.(A, N),,p.p)

< (1 + c(r))/(N - 1)
+ (1/2) discrep(cp. rev. (naive, A, N), cp. rev. µ)

+ (1/2) discrep(cp.p,(naive, A, N), W. y).

Integrating this inequality over G(N), we get

G(N)
discrep(cp. p,(A, N), W. p) dA

< (1 + c(r))/(N - 1) + Ne-1/(2r+4)
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provided N > Ni (e, r, c,??, rc), Thus if we take N so large that all three of the
following conditions hold,

N > Ni(e/2,r,c,r),rc),
N6/2-1/(2r+4) < (1/2)NE-1/(2r+4)(1

+ c(r))/(N - 1) < Ne/2-1/(2r+4)
,

we get

N), go ) dA < NE-i/(2r+4)

G(N)

So we may take

N = Max(Ni (F/2, r, c, n, rc), 22/6,1 + (1 + c(r))6/5). QED

7.2. Generating series in the case r = 1:
relation to a Fredholm determinant

7.2.1. We specialize now to the case r = 1, and discuss in detail the measures
on ![t

(7.2.1.1) Pa := µ(univ, sep. a), a = 0,1, ... ,
the classical spacing measures. In this case, the general formulas of 7.0.1 and 7.0.2
specialize to

(7.2.1.2) f dµa = E(-1)n Binom(n, a) COR(n, f,
n>O

,

and

(7.2.1.3)

COR(n, f, univ) = f f (z(n + 1))W(n + 2)(0, z) H dz(i),
z

for any bounded measurable f of compact support on R. The series GI (T, s) is
given by

Gi (T, s) E Tn Corn, IR(3), univ)
n>o

(7.2.1.4) _
> T f W(n+2)(0,z) fJ dz(i)
n>o 0<z(1)<...<z(n+1)<s

f_ E(Tn/(n + 1)!) W (n + 2) (0, z) H dz(i).
n>o o e ]n+1

Thus for each integer a > 0 and each real s > 0 we have the identity

(7.2.1.5)
CDF,,a (s) := J dp(univ, sep. a)

[o,e]

= ((d/dT)a/a!)G1(T, s)IT=-1.
Equivalently, we have the series expansion

(7.2.1.6) Gi (T, s) = E(1 +T)n CDF,,, (s),
n>O

for (T, s) in C x ][t>o.
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Lemma 7.2.2. For each integer n > 1, consider the function en(s) on IIt>o
defined by

en(s) :=
J

W(n)(x) fl dx(i).

1) The function en is the restriction to R>o of an entire function of s, which
is divisible by Sn and which satisfies the estimate

len(s)I < IsIn exp(nlsl7r) Sqrt(n)' for all s in C.

2) For n = 1, we have el (s) = s.
3) For n > 0, we have

(d/ds)(en+2(s)/(n + 2)!) = COR(n,'R(3) univ)

= (1/(n + 1)!) / W (n + 2) (0, z) II dz(i).
!110,31.41

a

PROOF. To prove 1), notice that en(0) = 0. For s > 0, we make the change of
variable sy(i) = x(i), so that

fen(s) := J W(n)(x) dx(i) = sn W(n)(sy) Jf dy(i).
o ,s 0. 11"

The rest of the proof of 1) is entirely similar to the proof of 7.0.9, and is left to
the reader. Assertion 2) is obvious, since W (l) (x) = det1 x 1(f (x - x)) = f (0), with
f (x) = sin(7rx)/7rx, and f (0) = 1. To prove 3), which is an identity between entire
functions, it suffices to check for s in IR>0. We view en (s) as

f W(n)(x) fl dx(i),
0,-, i

and expand to second order: we introduce e with e2 = 0, and compute

en(S + c)r- en(S)

JW(n)(x) fl dx(i) - W (n) (x) dx(i)
[o,s+El' i 0,3]'

_ W(n)(x) [J dx(i)

=
e

J o s]n-
W (n) (x(1), ... , x(i - 1), s, x(i + 1), ... , x(n)) H dx(i)

7tE W (n) (s, x(2), ... , x(n)) fJ dx(i),
Jo sl -1

s

the last step using the fact that W (n) is En-invariant. To conclude, we use the fact
that W (n) (x) is invariant under both

and

X --r x + On (t) := x + (t, t, ... , t)

to make the change of variable x i--* s - x, which carries

W (n) (s, x(2),. - -, x(n)) - W (n) (0, s - x(2), ... , s - x(n) ),
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and preserves the domain of integration. Thus we get

(d/ds)(en(s)) = n

40,81-1
W(n)(0,s - x(2),...,s - x(n))fl dx(i)

= n
r
J,s]^-1 W (n)(0, x(2),..., x(n)) H dx(i)

[O

= n! COR(n - 2, f, univ). QED

Proposition 7.2.3. The series

E(T, s) := 1 + Ten(s)/n!
n>1

is the restriction to C x R>o of an entire function of (T, s), and

(d/ds)E(T, s) = T + T2G1(T, s).

PROOF. The proof that E(T, s) is entire is entirely similar to the proof of
7.0.10 that GT(T, s) is entire, and is left to the reader. The asserted formula for
(d/ds)E(T, s) results from parts 2) and 3) of 7.2.2. QED

7.2.4. By definition, we have

fE(T, s) := 1 + E T-(1/n!) W (n) (x) fl dx(i)
n?1 O,s]R i

(7.2.4.1)
= 1 + T-(1/n!) J detnxn(K(x(i), x(j))) fl dx(i)

n>1 [0 s]"

for K(x, y) the kernel

(7.2.4.2) K(x, y) := sin(7r(x - y))/7r(x - y).

Because K(x, V) = K(x + a, y + a) for any a, for each n we have

(7243)
detnxn(K(x(i), x(.9))) [J dx(i)

i

= detnxn(K(x(i), x(j))) fl dx(i).fa,a+s]^

Thus we find [W-W, page 215, 11.211 the apparently miraculous

Identity 7.2.5. For any real a, and any real s > 0, consider the integral
operator K,,a with kernel K(x, y) := sin(ir(x - y))/7r(x - y) acting on the space
L2 ([a, a + s], dx):

(K.,.f)(x) := J K(x, y) .f (y) dy
[a,a+s]

This operator has a well defined Fredholm determinant, and we have the identity

E(T, s) = det(1 + TK,,a).

[For s = 0, L2 ([a, a + s], dx) is the zero space, and this identity says 1 = 1.)

Remark 7.2.6. For fixed s and variable a, all the operators K,,a are isomet-
rically isomorphic, via the translation isomorphisms from L2 ([a,, al + s], dx) to
L2 ([a2, a2 + s], dx). We put the "a" in the notation because we will have occasion
to consider also kernels which are not translation-invariant.
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7.3. The Fredholm determinants E(T, s) and E±(T, s)

7.3.1. In the preceding section, we considered'the kernel

K(x, y) := sin(7r(x - y))/ir(x - y).

In this section, we will consider also the kernels

K+ (x, y) K(x, y) + K(-x, y),
K- (x, y) := K(x, y) - K(-x, y)

In terms of these kernels, we define integral operators K28, K+,3 and K_,, as follows,
for each real s > 0:

K28 := the integral operator with kernel K(x, y) on L2([-s, s], dx),

Kf,, := the integral operator with kernel K±(x,y) on L2([0, s], dx).

7.3.2. It is proven in 7.10.1 that the above integral operators K23 and K±,3
are positive operators of trace class, whose determinants agree with their
spectral determinants.

7.3.3. We have an orthogonal decomposition

L2([-s, s], dx) = L2([-s, s], dx)even ® L2 ([-s, s], dX)odd)

f = f+ + f-,
with

f-± (x) :_ (1/2)(f(x)± f(-x)).
Both of the subspaces are stable by the integral operator K2 because, sin(x)/x
being an even function, we have

K(x, -y) = K(-x, y).

7.3.4. Via the isometric isomorphisms

(I/ Sqrt(2)) Restriction : L2([-s, s], dx)even °-i L2([0, s], dx),

(1/ Sgrt(2)) Restriction : L2([-s, s], dx)odd = L2([0, s), dx),

we get the isometric isomorphisms

K28[L2((-s, S]dx)even K+,,[L2([0, s), dx),

K2.JL2([-s,s]dx)add = K-,a[L2([0,s],dx).

7.3.5. We define the Fredholm determinant

E± (T, s) := 1 + E T'(1/-n!) r det,,xn(K L(x(i), x(j))) H dx(i).
n.>1 J(0,31" i

By 7.10.1, E±(T,s) is also the spectral determinant

(7.3.5.1)
Ef (T, s) = det(1 +TK±,, IL2 (0, s], dx) )

= det(l + TK2,IL2([-s, s], dx)pa,ity f)

Exactly as in proving 7.0.10, one proves that E-+(T, s) is (the restriction to C x R>0
of) an entire function of (T, s). Explicitly, writing

(7.3.5.2) ef,n(s) := flo'-91- x(j))) fl dx(i),
i
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we have the estimate (compare 7.2.2; here each matrix entry is at worst twice as
large)

(7.3.5.3) Ie±,n.(s), < Isln exp(2nlslir) Sgrt(n)n for all s in C.

In view of the decomposition

(7.3.5.4) L2([-s, S], dx) = L2([-S, S], dx)even ® L2([-s, s], dx)odd

and the spectral interpretation of the Flredholm determinants in question, we have
(by 7.10.1, part 4) the identity

(7.3.5.5) E(T, 2s) = E+(T, s)E_(T, s).

Notice that at s = 0, all three spaces in the decomposition above are the zero space,
so we have

(7.3.5.6) 1 = E(T, 0) _ E+ (T, 0) = E_ (T, 0),

and the above identity reduces to 1 = I x 1.

7.3.6. It will be convenient to name the coefficients of the series expansions
of these functions around the point T = -1. Thus we define entire functions of s,
En(s) and E+,,, (s), for each integer n > 0 by

E(T, s) = E (I +T)nE, (s),
n>o

E+(T,s) = E(1 +T)nE±,n(s),
n>0

or equivalently,

E7(s) ((d/dT)'/n!)E(T,s)IT=_1,
E±,n.(s) := ((d/dT)n/n!)E±(T, s)1-r=_1.

7.3.7. We will see shortly, in 7.5.3, that the functions E7(s) and E±,n(s)
have exponential decay for large real s. Much stronger results are available, cf.
[Widow], [T-W] and [B-T-W], who give detailed asymptotics of these functions
for large real s.

7.4. Interpretation of E(T, s) and E+ (T, s) as large N scaling limits
of E(N, T, s) and E±(N, T, s)

7.4.1. Recall from 5.4.2 that for each integer N > 1, SN(x) is the func-
tion sin(Nx/2)/ sin(x/2) = >N01 ei(N-1-2i)x/2 We defined kernels SN(x, y) and
S,L,N(x, y) as follows:

SN (x, y) SN (x - y),
Sf,N(x, Y) SN(x, y) f SN(-x, y)
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7.4.2. For real a and real s > 0, we defined integral operators

KN,e,., the integral operator with kernel SN (x,y) on L2 ((a, a + s], dx/27r),

K±,N,g the integral operator with kernel S±,N(x, y) on L2([0, s], dx/27r)
= the integral operator with kernel

(1/2)S±,N(x, y) = (1/2)(SN(x, y) f SN(-x, y))
on L2 ([0, s], dx/7r).

[For s = 0, the spaces L2([a, a+s], dx/27r) and L2([0, s], dx/7r) are the zero spaces.]
For fixed s > 0 and variable a, all the operators KN,8,« are isometrically equivalent.

7.4.3. We defined (variants of) characteristic polynomials

E(N,T, s) := det(1 +TKN,9, ,) (independent of a),

E±(N,T, s) := det(1 +TK±,N,9)

7.4.4. Explicitly, we have the formulas

E(N,T,s) = 1: (Tk/k!)f detkxk(SN(x(i),x(A).) fl( (i)/21r),
k>O O s]"

E+(N,T,s) = E(Tk/k!) I detkxk(S±,N(x(i),x(?))) fl(dx(i)/27r),
k>O [0,B1k i

with the convention that a 0 x 0 determinant is 1. These are polynomials in T of
degree at most N. [For s = 0, these polynomials are identically 1.] Their coefficients
are controlled by the following lemma.

Lemma 7.4.5. Given integers N > 1 and k > 1, the functions Ak,N(s) and
A±,k,N(s) defined for real s > 0 by the integrals

detkxk(SN(x(i), x(j))) fl(dx(i)/27r)I s] i

and

detkx k (S±,N (x(i), x (j) )) fj(dx(i)/21r)
i

respectively are the restriction to ]R>o of entire functions of s, which are both
bounded in absolute value by

Is/27rlk Sgrt(k)k(2N)k exp(kNls1/2)

for all s in C.

PROOF. At s = 0, all these integrals vanish. If s > 0, then by the change of
variable x(i) = sy(i), our integrals become

(s/27r)k
J

detkxk(SN(sy(i), sy(j))) dy(i)
(o, ll k a

and

(s/27r)k J detkxk(S±,N(sy(i), sy(j))) fJ dy(i)
0 ,11k i

respectively, which makes clear that the functions are entire in s. The function
SN(x) _ ? Olea(N-1-20x/2 obviously satisfies ISN(x)[ < Nexp(NIxl/2) for all
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x in C. So for complex s, but x and y in [0,1]k, the entries SN(sy(i), sy(j)) and
Sf,N(sy(i),sy(j)) of the determinants are bounded by

[SN(sy(i), sy(j))I < N exp(NIsI/2),

IS±,N(sy(i), sy(j))I < 2Nexp(NIsI/2)-
The Hadamard determinant inequality now gives the asserted bounds, cf. the proof
of 7.0.9. QED

Proposition 7.4.6. For any fixed real number a, the three sequences of entire
functions of (T, s)

E(N,T,27rs/(N+a)), E+(N,T,27rs/(N+a)), E_(N,T,27rs/(N+a))
indexed by integers N > Max(2, -a) converge to the entire functions E(T, s),
E+ (T, s), and E_ (T, s) respectively, uniformly on compact subsets of C2.

PROOF. For N large, the ratio N/(N + a) < 2. For any such N, the coefficient
of Tk/k! in any of the N'th terms is bounded on complex s by

(4IsI Sgrt(k)e2ils])k,

as is immediate from 7.4.5. The same bound holds for the coefficient of T"/k! in
E(T, s) or E±(T, s) by 7.2.2 and 7.3.5.3.

Using these estimates, we see that given M > 0 and E > 0, there exists an inte-
ger L such that in the region (ITI < M, IsI < M), each of the functions in question,
namely either E(T, s) or E±(T, s) or one of its finite N alleged approximatts with
N large enough that N/(N+a) < 2, is approximated within e by the sum of its first
L terms as a series in T with coefficients functions of s. So we need only prove that
the coefficients of individual powers of T converge uniformly on compact subsets of
the complex s plane. Let us do this explicitly for, say, E± (T, s), the E(T, s) case
being entirely similar. Fix an integer k > 1. The coefficient C±,k($) of Tk/k! in
E+(T, s) is

detkxk(K±(x(i),x(j)))f dx(i)f0,8] k i

detkxk(sK+(sy(i), sy(j))) dy(i).Jo l]k

The coefficient of Tk/k! in E±(N, T, 27rs/(N + a)) is

detkxk(S±,N(x(i), x(j))) H(dx(i)/21r),f0,2as/(N+a)]k i

which by the change of variable x(i) = 27rsy(i)/(N + a) becomes

detkxk((s/(N + a))S-1,N(21rsy(i)/(N + a), 27rsy(j)/(N + a))) H dy(i).
[o,i]k i

The determinant is integrated over a compact region, so it suffices that as N - oo,
the determinants converge uniformly, for y in [0, 1]k and s in a compact set of C,
to

detk1, k(sK+(sy(i), sy(j))).

So it suffices for each of the individual entries

(s/(N + a))S±,N(27rsy(i)/(N + a), 27rsy(j)/(N + a))



.a
.

w
-4

boo
C

14

ti.

7.5. LARGE N LIMITS OF THE MEASURES v(n,G(N)) 215

to so converge to sK±(sy(i), sy(j)). This in turn reduces to the standard fact that
for s in a compact subset of C we have uniform convergence of

(1/(N + a))SN(27rs/(N + a)) = sin(irsN/(N + a))/(N + a) sin(7rs/(N + a))
to sin(7rs)/7rs. QED

7.5. Large N limits of the measures v(n, G(N)):
the measures v(n) and v(±, n)

Proposition 7.5.1. For s > 0 real, n >_ 0 an integer, and G(N) any of U(N),
SO(2N + 1), USp(2N), SO(2N), O_ (2N + 2), O_ (2N + 1), the limit

urn eigen(n, v7rs/(N + A), G(N))
N--.oo

exists. In terms of the expansion coefficients Eslgn(e),n{s) defined by

Esign(e) (T, s) _ E(1 +T)'+Esign(,),n(s),
n>O

Esign(a),n(s) := ((d/dT)n/n!)Esign(e)(T, S)IT=-1,
we have the limit formula

Esign(e),n(5) -
N

mo eigen(n, oars/(N + A), G(N)).

Explicitly, we have the limit formulas

lin eigen(n, 21rs/N, U(N)).1) En (s) = Nn
2) E_,n(s) = limo eigen(n, 21rs/(N + 1/2), SO(2N + 1)).

N-o
3) E_,n (s) = lim eigen(n, irs/N, USp(2N))

IV-too

lim eigen(n, irs/(N + 1), 0_ (2N + 2)).
N-.oo

4) E+,n(s) = Nlim eigen(n, irs/N, SO(2N))
-oo
lim eigen(n, 7rs/(N + 1/2), O_ (2N + 1)).

N-cc
Moreover, the convergence is uniform on compact subsets of JR>a.

PROOF. This is a simple application of Proposition 7.4.6, together with the
fact that if one has convergence, uniformly on compact sets, of a sequence of entire
functions fn -) f of several complex variables, then for any analytic differential
operator D with entire coefficients, the sequence D(ff) converges, uniformly on
compact sets, to D(f).

According to 6.7.6, for 0 < s < or, we have

eigen(n, s, G(N)) = ((d/dT)'z/n!)Esign(e)(PN + r,T, SAT=-1-

Resealing, we find that for N > s > 0 we have

eigen(n, oars/(N + A), G(N))

= ((d/dT )n/n!)Egig (e.) (pN + r, T, ors/(N + A))IT=-1

= ((d/dT)n/n!)Estgn(e)(PN + r, T, 21rs/p(N + A))IT=-1.

Thanks to 7.4.6, we have convergence

aign(e) (pN + T, T, 21rslp(N + A)) -. E,;g.(e)(T, s),
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uniformly on compact sets of C2. Applying ((d/dT)n/n!) and evaluating at T = -1
gives the asserted limit formulas, with uniform convergence on compact subsets of
R>o. QED

Remark 7.5.2. For any G(N), and any real s with 0 < s < air, we have the
relation

1 = eigen(n, s, G(N)),
n>O

simply because the sets Eigen(n, s, G(N)) are a partition of G(N). In view of 6.7.6,
this amounts to the statement that

1 = Esign(E) (PN + r, T, S) IT=o,

which is obvious from the definition of Eg;g,,(E) (PN+r, T, s) as a modified character-
istic polynomial det(1 + T(Something)). Similarly, the series E(T, s) and E±(T, s),
being modified Fredholm determinants, satisfy

I = E(O, s) = Ef (0, s),

or equivalently,

n>0 n>O

So we get the not entirely obvious relation

(7.5.2.1) 1 = lim eigen(n, airs/(N + A), G(N)),
n>O

for every real s > 0.

Corollary 7.5.3. For any real s > 0, and any integer n > 0, we have the
estimates

0 < En(s) < 2n exp(-s/2),

0:5 E±,n(s) < 2'exp(-s/4).

PROOF. Combine the estimates of 6.7.8 for eigen(n, s, G(N)) with the above
limit formulas. QED

Corollary 7.5.4. For s > 0 real, n > 1 an integer, and G(N) any of U(N),
SO(2N + 1), USp(2N), SO(2N), O_ (2N + 2),O-(2N + 1), the limits

lim Tail,(,, (s), lim
N-.oo N-oo

exist, and we have the following limit formulas:
n-1

1) Alien Tail, (n,G(N)) (S) _ Es'lgn(E) i (s)
j=0

2) lim CDFv(n. G(N)) (s)
N-.oo

j>n
Esign(e),j (S),

n-1

3) lim CDF, (n,G(N)) (s) = 1 - Esign(e),j (s).
j=0

Moreover, the convergence is uniform on ]R>o.
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PROOF. Fix n > 1. The limit formula for Tail, (n,G(N)) (s) results from its finite
analogue 6.9.7, part 4),

n-1

Tail, (n,G(N)) (s) = eigen(j, soir/(N + A), G(N)),
j=0

valid for N > n, using the limit formulas of 7.5.1,

(S) ri mo eigen(j, airs/(N + )), G(N)),

for j = 0, 1, . . . , n-1. The uniformity on compact subsets of R>0 of the convergence
for each of these n limits gives the same uniformity for the Tail limit formula. But
since we have the tail estimate 6.9.8,

0 < Tail, (n, G (N)) (s) < 2ne-° 4

the convergence is necessarily uniform on R>o: given e > 0, choose S large enough
that 2ne-S14 < e, and then take No large enough that, for all N > No,
Tail (n,G(N)) (s) is within e of the limit for sin [0, S].

The limit formulas 2) and 3) with uniformity are equivalent to 1), because

CDF (.n,G(N))(s) = 1 -

and because (by 7.5.2) we have

1 = E E.ig,,(,),,, (s). QED
n>0

Proposition 7.5.5. For every integer n > 1, there exist positive Bore! proba-
bility measures on R,

v(n) and v(±, n),

supported in R>0, and having continuous CDF's whose restrictions to R>0 are
entire, such that

1) limN., v(n, U(N)) = v(n),
2) limN.,,, v(n, SO (2N + 1)) = v(-, n),
3) limN.,,,, v(n, USp(2N)) = v(-, n),
4) limN.., v(n, SO(2N)) = v(+, n),
5) limN.,, v(n, 0- (2N + 2)) = v(-, n),
6) limN_, v(n, O_ (2N + 1)) = v(+, n),

in the sense of convergence of cumulative distribution functions which is uniform
on R>0. The cumulative distribution funcitions of these measures are given by the
explicit formulas

n-1
CDF,,(n)(s) = 1 - E Ej(s),

j=0
n-1

CDF, (:L,n)(s) = 1 - E E±,j(s).
j-0

The tails of these measures satisfy the estimates

0 < Tail,(,) (s) < 2ne-s/2'
/40 < Tail (±,n)(s) < 2'e-a.
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PROOF. In the previous result, we proved that
n-1

lim CDF (n,G(N))(s) = 1 - Esign(e},j(s)N-oo
j=0

with convergence uniform on ]I1>o. Consider the limit function

n-1

s f-4 lim 1 - > Esign(e),j(s),N-roo
j=0

say f (s). This f is a nondecreasing function on 1IL>0 with values in [0, 1], because it
is the pointwise limit of such functions. We claim that f (0) = 0. This follows from
the fact 7.3.5.6 that Esign(E)(T) 0) = 1, so its expansion coefficients around T = -1
are given by Esign(E), j (0) = bj,o, and hence we find

n-1 n-1

f (0) = 1 - E Esign(e),j (0) = 1 (i+o) = 0.
j=0 j=1

Moreover, f is the restriction to R>0 of an entire function, so in particular it is
continuous. As it vanishes at s = 0, we may extend f to all of R as a continuous
nondecreasing function from JR to [0, 1] by decreeing that it vanish for s < 0. From
the tail estimate 6.9.8, we see that the function 1 - f (s) satisfies

0 < I - f (s) < 2n exp(-os/4)

for s > 0. Therefore f is the CDF of a positive Borel probability measure [namely
the Lebesgue-Stieltjes measure for which every interval [a, b] or (a, b] or (a, b) gets
measure f (b) - f (a).] Its tail is the function 1 - f (s), which, as noted just above,
satisfies the asserted tail estimate. QED

Proposition 7.5.6. For any integer n > 1, and G(N) any of U(N),
SO(2N + 1), USp(2N), SO(2N), O- (2N + 2),O-(2N + 1), we have:

1) The measures v(n, G(N)), v(n) and v(f, n) have moments of all orders, and
each of these measures is uniquely determined by its moments.

2) For any continuous function f (x) of polynomial growth, we have the limit
formula

N m ff(x) dv(n, G(N)) =
J

f (x) dv(sign(E), n),

Nimo Jf(x)dv(n,U(N)) = f f (x) dv(n)li

J f (x)dv(n, SO(2N + 1)) = ff(x)du(_,n),

Nu
11(x) dv(n, USp(2N)) = Jf(x) dv(-, n),

slim ff(x) dv(n, SO(2N)) = 11(x) dv(+, n),
-oo

lim fl(s) dv(n, O-(2N + 2)) = 11(x) dv(-, n),
IV-00
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lim 11(x) dv(n, O-(2N + 1)) = f f(x) dv(+, n).
N-»oo

PROOF. We have uniform tail estimates for the measures v(n, G(N)) and
v(sign(e), n), and uniform convergence of their CDF's. So the proposition results
from the case A = 1 of the next three standard lemmas, which we give for ease of
reference.

Lemma 7.5.7. Let 71 be a positive Borel measure on R under which finite
intervals have finite measure. Suppose that there exist strictly positive real constants
A, B, and A such that for every real s > 0, we have the tail estimate

r1({x in III with IxI > s}) < Ae-BBB.

Then 71 has moments of all orders, i.e., the functions Ix I' lie in Ll (R, 71) for all
integers n > 0. If in addition A > 1, then rl is uniquely determined by its moments
mn := ff xn dr1, n = 0, 1, ... .

PROOF. If n = 0, then

dr1 = r)(R) =,q({0}) + 71({x in I[8 with jxI > 0}) < r1({0}) + A.

If n > 1, then IxIn vanishes at 0, and we readily calculate

f Ixln dr= IxIn drj
+
E f IxlnJ{0) k>O k<Ixl<k+l

xnd
- k>O k<ixI<k+l

'J (k+1)ndrl
k>0 f k<jxI <k+1

E(k + 1)n dr1

k>O
a< E(k + 1)nAe-13k

k>0

= A + J(k + l)nAe-Bk'

k>1
f<A+A>J (x+2)ne"'dx

k>>1 [k-1,k]

A+AJ (x+2)"e-Bxadx
lo,oo)

=A+A (x+2)

f
[l,oo)

< A + 3"A + 3nA J xne-BxA dx
[1>cG)

< A+3nA+3TAf xn+le-Bxa dx/x
[l,,e)
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(now set y := Bxa)

= A + 3nA + 3nA(1/),) f (y/B)(Aedy/y

B,oo)

<A+3nA+3zA(1/A)B-(n+1)/A f y(n+l)/ae-vdy/y
{O,oo)

= A + 311A + 3nA(1/A)B-(n+l)/-\r((n + 1)/A).

This shows that all moments exist. Now it is known [Fel, page 487] that a sufficient
condition for 77 to be determined by its moments mn is that the series

E Mnxn/n!

built from its absolute moments
n

Mn, := f lxln dr7

have a nonzero radius of convergence. If A > 1, then our estimate, together with
Stirling's formula, shows that this condition is satisfied, and that for A > 1 this
series is entire. QED

7.5.8. For ease of later reference, let us record a several variable version of

this result.

Lemma 7.5.9. Let r > 1 be an integer, and rj a positive Borel measure on 1R'
which gives finite measure to compact sets. Suppose that there exist strictly positive
real constants A, B, and A such that for every real s > 0, and every i = 1,-, r,
we have the tail estimate

pr[i].77{{x in R with lxi > s}) := 77({x in Rr with Ix(i)I > s}) < Ae-B'l.

Then rl has moments of all orders, i.e., for all n > 0 in 7?, the functions
IxIV :_ [iIx(i)In(i) lie in Ll(Rr,77). If in addition A > 1, then r) is uniquely
determined by its moments Mn := fR,. xn d77, n > 0 in 7L'.

PROOF. For real s > 0, let us denote by E(s) C Rr the closed set

E(s) := {x in Rr with Max jx(i)[ < s},
b

For each i = 1,...,r, we denote by Ej(s) C Rr the closed set

Ei(s) := {x in Rr with Ix(i)l < s}.

Our hypothesis is that f o r s > 0 real, f o r each i = 1, ... , r we have

77 (Rr - E'(s)) < Ae-

Now E(s) is the intersection of the Ei(s), so R'-E(s) is the union of the Rr-E1(s),
and hence we have

77(Rr - E(s)) < rAe-Bsa

For n = 0, we use the fact that E(0) = {0} to write

fR Jx,n d77 = i7(R) = 71(E(0)) + 77(iltr - E(0)) < 71({0}) + rA.
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For n > 0 and # 0, Ixln vanishes at 0, and we readily calculate

d77
= xInd +E

E
x]ndfr I E(D) ]

k>D (k+l)-E{k)
I

IxIn dr)- k>O E(k+1)-E(k)

(k+1)E(n)d1
k>D E(k+1)-E(k)

J(k + 1)F(n) 1IRR--E(k) dr1
k>O

J(k + 1)Y(n)rAe-8k"

k>O

< r[A+ 31 (n)A + 1)/A)],

the last inequality obtained just as in the proof of the previous lemma. This shows
that all moments exist. A sufficient condition [Fel, page 463; the same "analyticity
of the Fourier transform in a neighborhood of R' in Cr" works for any r] for 77 to
be uniquely determined by its moments is that the series in r variables

E Mnxn/n!
n>O in Zr

made from the absolute moments Mn := f f,. Ixln dry converge in a nonempty open
polydisc around the origin. If A > 1, then our estimate for Mn, together with
Stirling's formula, shows that this condition is satisfied, and that if A > 1 this
series is entire. QED

7.5.10. Given (A, B, A) in (R>D)3, we say that a positive Borel measure rl
on R' which is finite on compact sets has exponential decay of type (A, B, A) if it
satisfies the hypotheses of the previous lemma for this choice of (A, B, A).

Lemma 7.5.11. Let r > 1 be an integer, (A, B, A) in (]!t>o)3, and 77k, k > 1,
a sequence of positive Borel measures on W', each of which has exponential decay
of type (A, B, A). Suppose that

lim rik(IRT) = 1.

Suppose further that the sequence of cumulative distribution functions CDF,Ik (x)
converges, uniformly on compact subsets of Rr, to some function F(x) on Rr.
Then F(x) is the CDF of a positive Borel probability measure boo on Rr which
has exponential decay of type (A, B, A). For any R-valued continuous function f on
W which has polynomial growth, i.e. which satisfies

If(x)I = 0((1 + IIxII)d), IIxii I IX(i)l,

for some integer d > 0, we have

lim,
k

f fdrlk= f rfdrl.
IIt R
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PROOF. First, we should remark that each nk has finite total mass (it has
moments of all orders, in particular a zeroth moment), so each CDF,,,k is well-
defined as an R>o-valued function on 112x. To show that F(x) is the CDF of a
positive Borel measure, it suffices, by the Lebesgue-Stieltjes construction, to check
that F(x) satisfies the Lebesgue-Stieltjes positivity condition, and that F(x) is
continuous from above in the sense that F(x + sIlr) F(x) as 6 --f 0+. The
positivity results from the fact that F is the pointwise limit of functions with this
positivity. The continuity from above of F at any given point x in 112' results from
the fact that F is, in a neighborhood of x, the uniform limit of functions which are
continuous from above.

Once 77 exists, then for any rectangle R(x) = (-oo, x/] in R', we have

77oo(R(x)) = li ]77k(112r) - nk(R' - R(x))].

Taking x to be slr with s > 0, we have E(s) C R(slr), so

0 < 77k(Rr - R(sUr)) G nk(R' - E(s)) < rAe-$3X,

so we get

rAe-Bea 1 rAea.77o0(R(sfr)) > [kk.R]lim -
Taking s large, we see that 77,, has total mass at least one. To show that r7c. has
mass at most one, we argue as follows. Because R' is the increasing union of the
R(slr), %0(112') = So it suffices to show that for fixed n,
r7o0(R(nlr)) < 1. But

i (R(nfr)) = him nk(R(nlr)) ! kkm r/k(R') = 1.

Therefore 97,, is a probability measure.
We must now show that

77,(R' - Ei(s)) < Ae-Bea.

View Ei(s) as the increasing union of Ei(s) n E(n), as n --> oo. For fixed n, think
of 112' as the disjoint union of E(n) and R' - E(n). We have

7100 (Rr - Ei(s))

= 77oo(E(n) - Ei(s) n E(n)) +71.((1R' - Ei(s)) n (R' - E(n)))
< n,(E(n) - Ei(s) n E(n)) + 77(1[2' - E(n))
= 77(E(n) - Ei(s) n E(n)) + 1 - r7.(E(n))
= ki [71k(E(n) - Ei(s) n E(n)) + 1 -7/k(E (n))]

= klim {(rlk(E(n) - Ei(s) n E(n)) +nk(R') - nk(E(n))]

lim. 71k(E(n) - Ei(s) n E(n)) + 77k(Wr - E(n))]= k
< rAe-Bn.' + lim 77k(E(n) - Ei(s) n E(n))

k no

< rAe-Rn' + lim. gk(Rr - Ei (s))k
00

< rAe-Bn' + Ae-BSA.

Letting n get large, we get the asserted inequality.
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Let us say that a real s > 0 is a continuity point for r},, if the nondecreasing
function s '-+ rl,,,, (E(s)) from IR>o to (0,1] is continuous at s. There are at most
countably many points at which this function is discontinuous (because for each
k > 1 there are at most k points where it jumps by more than 1/k). Denote by
E(s-) the half open rectangle thus lnterior(E(s)) C E(s-) C E(s).
For s a point of continuity of 77,,,, all three sets have the same 71',.-measure. Similarly,
each 77k, having finite mass, has at most countably many points of discontinuity.
Thus every s outside a countable set is a point of continuity for every '/k and for
tlw

Suppose now that f is a continuous function on IR'' with polynomial growth. For
any continuous f, and any real s > 0, f restricted to E(s) is uniformly continuous.
For all rectangles R = (a, b] contained in E(s), the sequence 77k (R) converges to
77oa (R). The usual argument [Fel, pages 243, 244] of partitioning E(s-) into finitely
many small half open rectangles (a, b] on each of which f is very nearly constant
shows that for any s which is a point of continuity of all rln and of we have

lim f f dl)k = lim / f drlk = J f di. = J f dr1c..
k-oo E(s) k-too f E(s-) f E(s-) E(s)

For any measure rl with exponential decay of type (A, B, A), and any function f
with If (x)I < C(1 + IIx[I)d, we have

fRr_E(s)
f drl

k j0 fE+k+1-E(s+k)

:5 1: If I dii
k>o E(s+k+l)-E(s+k)

f drl

d

C f (1+Ix(i)I drl
k>0 E(s+k+1)-E(s+k)

< C(1 + r(s + k + 1))d drl

k>O J
E(.

s+k+1)-E(s+k)

< C(1 + r(s + k + 1) )d f dr
k>O {-E(s+k)

< E C(l + r(s + k +
1))dAe-B(s+k)A

k>O

C(r(s + k + 2))dAe-B(s+k)'
k>O

Let us denote by [s] the integer part of s, so [s] < s < [s] + 1. Then we have

Since the series

f do < ACrd E (k + 3)de-B0.

k> lsl

ACrd E(k + 3)de-Bka
k>O
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is convergent, its tails go to zero, so given e > 0 there exists n such that for any
s>n,

f d71
R' -B(s)

< ACrd J> + 3)de-Bk' < E
k>n

for all n of exponential decay (A, B, A) and all f with If (x) I < C(1 + IIxII)d. Fix
a choice of s > n which is a point of continuity for all the nk and for nom. We can
choose ko such that

JN(s)
fdTlk - fE(s) fd?

1

<

for k > ko. Then we have

If fdtlk-f fdq.1 <3E
Rr r

for all k > ko. Since e > 0 wasr arbitrary, we get

lim 1 f drlk = r f dry.. QED
k-. cc Rr 1R''

Corollary 7.5.12. Hypotheses and notations as in Lemma 7.5.11 above, sup-
pose we are given in addition an integer n > 1 and a continuous map
co : If2' --+ R' which is of polynomial growth of degree d in the sense that for
some real 'C > 0, IIW(x)II < C(1 + IIxII)d Let

D := Sup(7)k(lRr)).
k

Then we have:
1) The direct image measures W.nk and WY71oo are of exponential decay

(A', B', A/d) with

B' = B/(2araCAld) and A' = Max(rA, DeB'(C2d)'.1d)

2) For any continuous function f of polynomial growth on R'G, we have

lim f f d(cp+rTk) = f f d(cp.71.).
n

PROOF. Assertion 2) is obvious from the final assertion of the lemma, since for
71 any of nk or noo, we have

j f f (f) dn,
n Rr

and the function ,p* (f) := f o V is of polynomial growth on W. To check assertion
1), write ep(x) = (Wl (x),. .., cpn(x)). For any measure 71 on III' of exponential decay
(A, B, A) and total mass < D, we have

in R with IxI > C(1 + 5)d})

77({x in 1R' with IWi(x)I > C(1 + s)d}).

But we have

I Wi(x)I IWl(x)I = IIW(x)II <_ C(1 + IIxII)d,
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so if x in R' has I cpti(x)[ > C(1 + s)d, then lixil > s, so x lies in 1[tr - E(s/r). Thus
we have

{x in i with IVi(x)I > C(1 + 3)d} C I[1;T - E(s/r),

and hence

(pr[i].cp.vl)({x in R with InI > C(1 + s)d}) < n(lE8'' -- E(s/r)) < rAe

For s > 1, put t = C(1 + s)d, so s = (t/C)1/d - 1. Because s > 1, we have
(t/C)Ild > 2, and hence (t/C)1/d - 1 > (1/2)(t/C)1/d. Thus fort > C2d, we have

in R with Jx[ > t}) < rAe'a(((t/C)lid-1)/r)a

<
rAe-B((1l2)(t/C)lid/r)' = rAe-B t

t < C2d, we have the trivial estimate

(pr[i].9 17)({x in R with JxJ > t}) < D < A'e-B'(C2d)a/d < A'e-BIO,d

as required. QED

7.5.13. Here is a second application of these general results on convergence
of moments.

Proposition 7.5.14. Let r > 1 be an integer, and b in Z' a step vector.
1) The measures p.(univ, steps b) and p.(U(N), steps b), N > 2, on R'' have

moments of all orders, and each of these measures is uniquely determined by its
moments.

2) For any continuous function f (x) on R' of polynomial growth, we have the
limit formula

lim f f (x) dp.(U(N), steps b) = f f (x) dp,(univ, steps b).

PROOF. Thanks to 6.13.5, these measures are all of exponential decay

(A, B, A) = ((4/3)E(b), (1/8) Supi(b(i)), 2),
so the first assertion follows from 7.5.9. According to 1.6.4, the CDF's of the
measures p,(U(N), steps b) converge uniformly to the CDF of p(univ, steps b), so
the second assertion results from 7.5.11. QED

Corollary 7.5.15. For each i = 1, ... , T, the first moments of these measures
are given by

fx(i)dt(U(N),
r

steps b) =
J

x(i) du.(univ, steps b) = b(i).

PROOF. For finite N, this reduces by direct image to the r = 1 case, in which
case it is proven in 6.12.9. Now take the large N limit, using 2) above. QED

7.6. Relations among the measures p,n and the measures v(n)

7.6.1. In order to manipulate these objects more conveniently, we introduce
three entire functions on C2:

F(T, s) (1 + T)(E(T, s) - 1)/T,
F± (T, s) :_ (1 +T)(E±(T, s) - 1)/T.
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These functions are entire because E(0, s) = E± (0, s) = 1, and they visibly vanish
at T = -1. Their higher derivatives at T = -1 are given by

Lemma 7.6.2. For each real s > 0, we have the identities

F(T, s) = E(1 + T)n CDF,(n) (s),
n>1

F, (T, s) = E(1 +T)n CDF (±,n)(s).
n>1

PROOF. We will write out the proof for F(T, s). The F± cases are exactly the
same and are left to the reader. Since F(T, s) is, for fixed s, entire in T, it suffices
to show that the asserted series expansion is valid in a neighborhood of T = -1.
We begin by writing the power series expansion of E(T, s) around T = -1:

E(T, s) = E(1 + T)nEn(s).
n>O

Multiplying by 1 + T, we get

(1+T)E(T,s) _ (1+T)nE,, (s)
n>1

Multiplying by

1/T = -1/(1 - (1 + T)) E(1 + T)n,
n>O

we find

(1 +T)E(T, s)/T = - E(1 +T)n E Ej(s).
n>1 O<j<n-1

By 7.5.5, we may rewrite this as

(1 +T)E(T, s)/T = E(1 1)

n>1

_ {E(1 + T)n CDF,,in) (s)} - (1 + T)n
n>1 n>1

_ ty:(l + T)n CDF,(n)(s)} - (1+T)/(1 - (1+T))
n>1

_ {(i + T) CDF()(s)} +(1+T)/T,
n>1

so we get

(1 + T)E(T, s)/T - (1 +T)/T = (1 + T)n QED
n>1

Lemma 7.6.3. We have the identity

(d/ds)F(T, s) = (1 + T) - (1 +T)G1(T, s) + (1 +T)2G1(T, s)

of entire functions on C2.
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PROOF. This results from the fundamental relation 7.2.3

(d/ds)E(T, s) = T +T2G1(T, s)

and the definition of F(T, s) as

F(T, s) := (1 +T)(E(T, s) - 1)/T.

We readily calculate

(d/ds)F(T, s) = (1 +T)(d/ds)E(T, s)/T

= (1+T)(T+T2G1(T,s))/T
= (1 + T) (1 + TG1 (T, s))

=(1+T)(1--G1(T,s)+(1+T)G1(T,s)). QED

Corollary 7.6.4. The restrictions to R>o of the CDF's of the measures v(n)
for n > 1 and of the measures

An := u(univ, sep. n)

for n > 0 are related by

1) (d/ds) 1 - CDFI,,,,,

and for each n > 2,

2) (d/ds) CDF,(n) =

Equivalently, on 1[2>o we have the formulas

3) Tailu = (d/ds) for n > 0,
O<j<n

or

4) Tail., (s) _ - E (n + 1 - j) (d/ds)Ej (s) for n > 0.
O<j<n

We have the identities of measures on IR>o
n

5) ) v(j + 1) = Tailu (s) ds.
j=0

In statements 1) through 4), derivatives at s = 0 are taken from above.

PROOF. The first set of formulas 1) and 2) are just the spelling out of the
identity

(d/ds)F(T, s) = (1 + T) - (1 +T)G1(T, s) + (1 +T)2G1(T, s),

together with the expansions

F(T, s) = E(1 + T)n

and

n>1

G1(T,s) = 1: (1+T)'CDF,(s).
n>O
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Because each un is a probability measure, Tail,,, = 1 - CDFA , so 3) results from
1) and 2) by partial summation, and implies them by successive subtraction. The
next one 4) is equivalent to 3), as one sees by applying d/ds to the relations

n-1
CDF (n) (s) = 1 - E E7 (s) for n > 1.

i-a
The final one 5) is just the integrated form of 3). QED

Remarks 7.6.5. Since v(n) is a positive measure, its CDF is a nondecreasing
function, so (d f ds) CDF (n) > 0. So we learn that 1- CDFuo > 0, which we already
knew, and we learn that for each n > 0,

CDFu >
This we also see directly, as follows. Already at the level of individual elements A
of U(N) with N > n + 1, we claim that

CDF,(A,U(N), sep. n) >_ CDF,2(A,U(N), sep, n+1)

Indeed, in terms of the sequence of angles of A,

0:5 W(1) < W(2) <- ... < W(N) < 27r,

extended to all integers by W(j + N) = W(j) + 27r, we have the tautological formula

N X CDFu(A,U(N), sep. n)(S)

= Card{indices i with 1 < i < N and W(i + n + 1) - W(i) < 27rs/N},

which makes obvious that for fixed s, CDFu(A,U(N), sep. n)(s) is a decreasing func-
tion of n.

7.7. Recapitulation, and concordance with the formulas in [Mehta)

7.7.1. For real s > 0, with derivatives at s = 0 taken from above, we have
the following summarizing list of formulas:

(7.7.1.1) E(T, s) = det(1 +TKS,,),
(7.7.1.2) E(T, 0) = 1,

(7.7.1.3) E(T, s) = E(1 +T)TEn(s),
n>o

(7.7.1.4) En(s) =
N

mo eigen(n, 27rs/N, U(N)) for n > 0,

(7.7.1.5) F(T, s) (1 +T)(E(T, s) - 1)/T,

(7.7.1.6) F(T, s) _ E (1 + T)n CDF (n) (s),
n>1

(7.7.1.7) v(n) :=
N

mo-9(n).(Haas measure on U(N)) for n > 1,

n-1
(7.7.1.8) CDF,(n)(s) = 1 - ER (s) for n > 1,

j=0

n-1

(7.7.1.9) E ER(s) for n > 1,

j=o

(7.7.1.10) Eo(s) = I -
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(7.7.1.11) En(s) = CDF,.(n)(s) - CDF,(+1)(s) for n > 1,

(7.7.1.12) GI(T, s) = 2(1 +T)n CDFI,,,, (s),
n>O

(7.7.1.13) (d/ds)E(T, s) = T +T2G1(T, s),

(7.7.1.14) (d/ds)F(T, s) = (1 + T) - (1 +T)G1(T, s) + (1 +T)2G1(T, s),
(7.7.1.15) µ,,, := p(univ, sep. n),

(7.7.1.16) (d/ds) 1 - CDFuo,

(7.7.1.17) (d/ds) CDF,,,_, for n > 2,

(7.7.1.18) Tailun = E (d/ds) (d/ds) Tail,(j)
1<j<n+1 1<j<n+l

E (n + 1 - j)(d/ds)Ej(s) for n> 0,

O<j<n

(7.7.1.19) Tail µ (s) ds = v(j) as measures on R>0.
1<j<n+1

7.7.2. We see from formulas 7.7.1.1-2 and 7.7.1.13 above that knowing E(T, s)
is equivalent to knowing GI (T, s), and from 7.7.1.12 that knowing G1 (T, s) is equiv-
alent to knowing all the measures µQ. If we compare these equations with those in
[Mehta, 5.1.16-18 and A.7.27], we find the following concordance between Mehta's
objects and ours:

range of validity Mehta's ours

n > 0 E2(n,s) En(s)
n > 0 F2 (n, s) (d/ds)
n > 0 F2(n,s)ds u(n + 1)
n > 0 p2 (n, s) (d/ds) CDF,, (s)
n > 0 p2(n,s)ds ttn

It is interesting to note that Mehta [Mehta, discussion page 84, discussion page
88, appendix A8] defines his p2(0, s) as a conditional probability. He then speaks
of p2(0, s) ds [Mehta, 5.1.38] as though it were equal to what we have defined as
the spacing measure po. At finite level N, the justification for doing so is provided
by 6.12.4.

7.8. Supplement: Fredholm determinants and spectral determinants,
with applications to E(T, s) and E+ (T, s)

7.8.1. In this supplement, we give some basic compatibilities between Fred-
holm determinants and spectral determinants of integral operators.
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7.8.2. Recall from 7.3 that

E(T, s) _ (1 +T)"En,(s),
n>O

E±(T, s) _ E(1 + T)T'Et,n(s),

n>O

where E(T, 2s) and E±(T, s) are the Fredhoim determinants

E(T, 2s) det(1 +TK2aI L2([-s, s], dx)),

E± (T, s) := det(1 +TKf,s1L2([O, s], dx)),

for K2a the integral operator on L2 ([-s, s], dx) with kernel

K(x, y) := sin(ir(x - y))/ir(x - y),

and for K±,3 the integral operator on L2([0, s], dx) with kernel

K±(x, y) := K(x, y) ± K(-x, y).

Because sin(7rx)/7rx is an even function, the integral operator K2a preserves the
subspaces of odd and of even functions. We have an isometric isomorphism

K±,aIL2([a, S], dx) = K2,,IL2([-s, s], dx)parity ±

7.8.3. It is technically convenient to interpret all of our operators as acting
on a single space, which here we will take to be L2(R, dx). For each real s > 0, we
have an orthogonal direct sum decomposition

L2 (R, dx) = L2([-S, s], dx) ® L2 (R - [-s, s], dx).

7.8.4. We denote by P(s) the orthogonal projection of L2(Il, dx) onto
L2([-s, s], dx). Concretely, if we denote by I9 the characteristic function of the
interval [-s, s], then for f in L2 (R, dx) we have

P(s)(f) = If.
7.8.5. We also have an orthogonal direct sum decomposition into odd and

even functions,

L2(IR, dx) := L2 (IR, dx)even ® L2(IR, dx)odd

The corresponding orthogonal projections are denoted P(±). These projections
both commute with P(s). We denote by

P(±, s) := P(±)P(s) = P(s)P(±)
the orthogonal projection of L2 (IR, dx) onto L2 ([-s, s], dx)parity f

7.8.6. We denote by K the integral operator on L2 (III, dx) given by the kernel

K(x, y) := sin(7r(x - y))/7r(x - y).

7.8.7. For real s > 0, we define operators K(2s) and K(±, s) (sic) on
L2 (R, dx) by

K(2s) = P(s) o K o P(s),
K(±, s) = P(f) o K(2s) o P(±)

= P(±, s) o K o P(±, s) = P(s) oP(±)oKoP(±)oP(s).
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7.8.8. In terms of the decomposition

L2(IR, dx) = L2([-S, s], dx) ® L2(R'- [-s, s], dx),

we have

K(2s) = K2,IL2([-s, s], dx) ® 0.

7.8.9. In terms of the further decomposition

L2(R, dx) = L2([-s, s], dx)even ® L2([-s, s], dx)odd ® L2(R - [-s, s], dx),

we have

K(+, s) = K2BIL2([-s, s], dx)even ® 0 E 0,

K(-, s) = 0 ® K2.IL2([-s, s], dx)odd ® 0.

Thus the operators K(2s) and K(±, s) are compact for all real s > 0.

Lemma 7.8.10. The operator K on L2 (III, dx) is the Fourier transform of the
orthogonal projection P(7r). In particular, K is itself an orthogonal projection, with
both kernel and range of infinite dimension.

PROOF. The operator K is convolution with the function k(x) := sin(irx)/irx.
The Fourier transform on L2(R, dx), defined by

FT(f)(y) (27r)-1/2 f f(x)eixydx,

R

is an isometry, whose square is f f_ := the function x --F f (-x). Because of the
normalizing factor, the relation of FT to convolution is

FT(f * g) = (27r) 1/2FT(f)FT(g) = FT(f)FT((27r)1'2g).

One readily calculates that for the function I,,- := the characteristic function of
[-7r, 7r], we have FT(I,) = (27r)1/2k. By inversion, we have FT((27r)1"2k) = In. So
taking g := k, we get

FT(K(f)) = FT(f * k) = FT(f)FT((27r)1/2k) = P(7r)FT(f)-

In other words, we have FT o K = P(7r) o FT, or K = FT-1 o P(7r) o FT. QED

Corollary 7.8.10.1. The operator K is self-adjoint, positive, and of operator
norm 1. For real s > 0, each of the compact operators K(2s) and K(±, s) is
self-adjoint, positive, and of operator norm < 1.

PROOF. We know that K is a nonzero orthogonal projection, and any such is
self-adjoint, positive, and of operator norm 1. For any second orthogonal projection
P, the operator PKP remains self-adjoint and positive, and of operator norm < 1.
Apply this with P either P(s) or P(±, s). QED

Corollary 7.8.10.2. The operators K(±) := P(±) o K o P(+) are the Fourier
transforms of the orthogonal projections P(±, 7r), so in particular they are orthog-
onal projections with kernels and ranges of infinite dimension.

PROOF. The projections P(±) commute with Fourier transform. QED

Lemma 7.8.11. In the strong topology on operators on L2(R, dx), we have

lim P(s) = 1, the identity operator f i--' f.
3 -.+oo
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PROOF. This is the statement that for any f (x) in L2(R, dx), the truncated
functions 1e (x) f (x) tend to f (x) inf L2(R, dx), i.e., that for f in L2 (R, dx) we have

lim I f (x)12 dx = 0.s+oo yl>s

The integral in question is a decreasing function of s > 0, so it suffices to check for
integer values of s. But the series

If(x)I2dx
n>a n+l>-I3I>n

is convergent (to fR If (x) I' dx), so its tails go to zero. QED

Corollary 7.8.12. In the strong topology on operators on L2(ll8,dx), we have

lim K(2s) = K,
s-++oo

lim K(f, s) = K(±).S+oo

PROOF. This is obvious from lim,,+ P(s) = 1 and the formulas

K(2s) = P(s) o K o P(s),
K(f, s) = P(s) o K(±) o P(s).

Indeed, for any bounded operator L, we have

L = lim P(s) o L o P(s).
s-.+oo

The point is that all the operator norms IIP(s)oLII are uniformly bounded (by IILII,
as the P(s) are projections), so the assertion is obvious from the identity

L - P(s) o L o P(s) = (1 - P(s)) o L + (P(s) o L) o (1 - P(s)),

cf. [Riesz-Sz.-Nagy, §84, top of page 201]. QED

7.9. Interlude: Generalities on Fredholm determinants
and spectral determinants

7.9.1. For any positive, self-adjoint compact operator L on a separable Hilbert
space H, one knows that its spectrum a(L) is a countable subset of the closed real
interval [0, IILII] which contains IILII and which has no nonzero limit points. One
knows further that for every nonzero A in a(L), the subspace

U Ker(L - A)n
n

has finite dimension m(A) > 1, called the multiplicity of A, cf. [Reed-Simon, VI.15]
and [Riesz-Sz: Nagy, §§93-951. If we write down each nonzero A in the spectrum
as many times as its multiplicity m(A), proceeding by decreasing size of A, we get
a list which starts with I[LII and which is either finite or countable:

1ILII=A,>A2>....

We adopt the convention (which is reasonable only in the infinite-dimensional con-
text) that if the list is finite, say of length N, then

N,.:=0 for i > N.
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Thus we may speak unambiguously of the n'th eigenvalue An of L, for every
integer n > 1. If H is infinite dimensional, then by the Hilbert-Schmidt the-
orem [Reed-Simon, VI.16] there is an orthonormal basis {en}n>1i such that
Len = .1nen, and the an tend to zero as n - oo.

7.9.2. In this generality, there is nothing one can say about the rate of decay
of the An: any real sequence a1 > A2 > ... with limit 0 is the sequence of eigenvalues
of some compact, positive, self-adjoint L. Indeed, if we choose an orthonormal basis
{en}n>1, the operator v '--* En An (en, v)en does the job, cf. [Reed-Simon, VI,
Problem 45 (a)] for the compactness. In particular, the series > An may diverge, so
in general the formal expression j1n>1(1+AnT) fails to make sense, even as a formal
power series in 1 + TIR[[T]]. Notice, however, that if > An converges (and hence
converges absolutely, as all An > 0), then the formal expression jZn>1(1+.1nT) is an
entire function, in the sense that the sequence of polynomials {rj1<n<k(1+AnT)}k
converges uniformly on compact subsets of C, cf. [W-W, 3.341].

7.9.3. Under what circumstances can we be sure that E An converges, so that
j1n>1(1 + ART) is an entire function of T? A trivial case is when there are only
finitely many nonzero An's. The next simplest case, and one that will be adequate
for our purposes, is this.

Lemma 7.9.4. On ?-l := L2([a, b], dx) for a compact interval [a, b], let L be
a positive self-adjoint compact operator given by a self-adjoint kernel L(x, y) on
[a, b] x [a, b] which is continuous. Denote by {an}n its sequence of eigenvalues. Then
E A, converges, and the entire function 11n>1(1 + ART) is equal to the Frrdholm
determinant

det(1 +TLIN) := 1 + ET" (1/n!) detnxn(L(x(i), x(j))) fl dx(i).
n>1 f[a,bl^ i

PROOF. Denote by an orthonormal set of eigenfunctions for the
nonzero An's. Then by Mercer's theorem [Riesz-Sz.-Nagy, §98] each tpn is a
continuous function, and the series development

L(x, y) = E AnWn(x) n(Y)
n

is uniformly convergent. In particular, the series

L(x, x) = A iVn(x)'7n(x)
n

is uniformly convergent, so may be integrated term by term to give

L(x, x) dx = An.
[a,b] n

This shows that E An converges, and hence that j1n>1(1 + ART) is an entire func-
tion of T, to which the partial products f 1<n<k(1 + A T) converge uniformly on
compacta. - -

Now consider the Fredholm determinant

det(1 +TLIN) := 1 + E Tn(1/n!) J detnxn(L(x(i), x(j))) dx(i),
n>1 a,bl"
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which we know [W-W, 11.21] to be an entire function. We claim that

det(1 + TL 171) _ H (1 + AnT).
n>1

If L has only finitely many nonzero An's, the series En AncpR(x)ipn(y) has finitely
many terms, and the asserted identity is 6.1.4. In the general case, for each k > 1
define

Lk(x,y) E
n<k

Then Lk converges uniformly to L as k --+ oo, by Mercer's theorem. Looking at the
formulas for the individual coefficients of a Fredholm determinant, we see that

det(1 +TLk[7I) - det(1 +TL[N)

in the sense of coefficient by coefficient convergence. But for each finite k we have

det(1 + TLk IR) = 11 (1 + AnT),
1<n<k

so we have

II (1 + A, T) -, det(1 +TL[n),
1<n<k

coefficient by coefficient. Therefore the power series around T = 0 of the two entire
functions jln>1(1+AnT) and det(1+TLJR) are identical, and hence these functions
are equal. QED

7.9.5. This result 7.9.4 motivates the following definition. Suppose we are
given a bounded operator on a separable Hilbert space N. We say that L is "positive
of trace class", or PTC, if both the following conditions are satisfied:

1) L is positive, self-adjoint, and compact.
2) E an converges.

For such an L, F1,,>1 (I + A, T) is an entire function. We define its spectral deter-
minant, denoted det(1 +TL[N), by

det(1 + TLIN) fl (1 + ART).
n>1

Scholie 7.9.6 0) When N is L2 ([a, b], dx) for a compact interval [a, b], and
L is a positive self adjoint integral operator given by a continuous kernel L(x, y),
then L is PTC, and its Fivdholm determinant as integral operator coincides with
its spectral determinant.

1) The zero operator on any H is PTC, with spectral determinant identically 1.
2) If Li on fl is PTC for i = 1, 2, then Ll (D L2 on Ni ' N2 is PTC, and we

have the product formula

det(1 + T(L1 ® L2) IN1 ® 7l2) = det(1 + TL1 IN1) det(1 + TL2 [N2).

3) If Li on Hi is a bounded operator for i = 1, 2, and if LI ®L2 on H1 3N2
is PTC, then so is each Li on fi, and we have the product formula

det(1+T(L1 ®L2)1N1 ED {2) =det(1+TL117-11)det(1+TL2IN2).

4) If L on H is PTC, and if L1 on ?(1 is isometrically isomorphic to L on 71,
then LI on Ni is PTC, and their spectral determinants are equal.
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7.10. Application to E(T, s) and E+(T, s)

Lemma 7.10.1. For each real s > 0, the operators

K2s onL2([-s, s],dx),

Kim,, on L2 ([0, 31, dX),

K2s on L2([-S, S], dx)parety

K(2s) on L2(R,dx),
K(f, s) on L2(IR, dx)

are all PTC. The Fredholm determinants

E(T, 2s) := det(1 +TK2s1L2([-s, s], dx)),

E± (T, s) det(1 +TK+,,JL2((0, s], dx)),

are related to each other and to the spectral determinants by
1) E±(T, s) := det(1 + TK25IL2([-s, s], dx)parity f),
2) E(T, 2s) = det(1 + TK(2s) IL2 (R, dx)),
3) E±(T, s) := det(1 +TK(±, s) IL2(IR, dx)),
4) E(T, 2s) _ E+ (T, s)E_(T, s).

PROOF. Once we know that all the operators in question are PTC, 1) follows
via Scholie 7.9.6, 4), from the isometric isomorphism

Kf,3IL2([O, S], dx) = K23IL2([-s, s], dx)parity f

and 2), 3) and 4) follow from the direct sum decompositions of 7.8.8 and 7.8.9,
using parts 1) and 2) of Scholie 7.9.6.

For real s > 0, each of the compact operators K(2s) and K(±, s) is self-adjoint
and positive, by 7.8.10.1. From the direct sum decomposition

K(2s) = K25IL2([-s, s], dx) ® 0

it follows that K2s on L2 ([-s, s], dx) is positive (as well as compact and self-adjoint),
so by 7.9.4 it is PTC. Applying Scholie 7.9.6, 2), we get that K(2s) is PTC. From
the orthogonal decomposition K(2s) = K(+, s) (D K(-, s) we get, using Scholie
7.9.6, 3), that K(±, s) is PTC. Then from

K(+, s) = K28I L2 ([-s, s], dx)even f 0 ®0,

K(-, s) = 0 ED K2,IL2([-s, s], dx)odd E 0,

we infer, via Scholie 7.9.6, 3), that each K2sI L2([-s, s], dx) parity ± is PTC. Using
the isometric isomorphism

K±,3 IL2([0, s], dx) = K25 IL2([-s, s], dx)parity f,

we get, via Scholie 7.9.6, 4), that Kf,, on L2([0, s], dx) is PTC. QED

7.11. Appendix; Large N limits of multi-eigenvalue location measures
and of static and offset spacing measures on U(N)

7.11.1. We begin with a result valid for all the G(N).

Proposition 7.11.2. Let N > 1, G(N) any of U(N), SO(2N + 1), USp(2N),
SO (2N), O_ (2N + 2), O_ (2N + 1). Given any integer r > 1 and an offset vector
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c in Zr, the mufti-eigenvalue location measure u(c, G(N)) on R'' has the following
tail estimate. For real s > 0,

v(c,G(N))({x in R' with some Ix(i)l > s}) < (r(i)) exp(-ors/4).
i

PROOF. The set {x in Rr with some lx(i)l > s} is the union of the r sets
{x in IR' with 1x(i) I > s}, i = 1, ... , r. Since pr[i],,v(c, G(N)) = v(c(i), G(N)), we
are reduced to the case r = 1, which is 6.9.8. QED

7.11.3. In the special case of U(N), we have a stronger result.

Proposition 7.11.4. Let N > 1. Given an integer r > 1 and a vector c in Zr
with

c(1) < c(2) < - < c(r),

the mufti-eigenvalue location measure v(c, U(N)) on R" has the following tail esti-
mate. Denote

d(i) := max(c(i),1 - c(i)),
D max(d(i)).

For real s > 0, we have

v(c, U(N))({x in R' with some 1x(i) I > s}) < rD2(8/3) Sgrt(7r)e_82/16D2.

PROOF. Just as above, we reduce to treating the one variable case v(c(i), G(N))
for any c(i) in Z. To treat c(i) < 0, we use the fact that under complex conjugation
A A on U(N) we have

t9(1 - k)(A) = -T9(k)(A), for every integer k.

So for the one variable measures we have

v(c(i), U(N)) = [x - -x]'v(1 - c(i), U(N)).

So we are reduced to treating the one-variable measure v(b, U(N)) for a single b > 1.
To do this, use the relations 6.12.6

b

E v(j, U(N)) = Tail (U(N), step b) (3) ds
j=1

and the estimates 6.13.6,

2/8b2Tailp(U(N), step b) (a) S b(4/3)e-a.
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Then for s > 0, we have

f (b, (N))
s,oo)

b

< j u(j, U(N))
(soo)

Taii,,(U(N), step b) (x) dx
(s,00)

e-x2/Sb2 dx< b(4/3)
J 3cc)

f e x2/isb2e-z2/16b2b(4/3) dx
(s,oo)

c_x2h16b2 dxb{4/3)e32/1652 j ,oo)o

(now set t := x/4b)

= b(4/3)e-32/16b24bJ
a-t2

dt
(0>00)

= b(4/3)e-32/16b22b1 a-t2 dt
iP

= b2(8/3) Sgrt(7r)e-32/1sa2. QED

7.11.5. We now give some large N limit results whose proofs do not depend
on the previous Fedholm theory.

Proposition 7.11.6. Let a > 0 and b > 0 be integers, r := a+b+2. Consider
the integer vector

[-a,b+1] := (-a,1-a,2-a,..., 0,1,...,b+1) inZa+b+2,
and the associated multi-eigenvalue location measure

v([-a, b + 1], U(N)) on u r.

For any Borel measurable function f on lR' of polynomial growth, the limit

lim f f dv([-a, b + 1], U(N))
N-oo r

exists. Moreover, if we denote by F the function on Rr-1 defined by the Lebesgue
integral

F(x) := J f (L(x) - tfl) dt :_ [x(0) I f f (L(x) - tx(0) ft) dt,
[0x(0)1 0,11

then this limit is equal to fRr_' Fd/t(univ, sep. 0r_1).
There exists a Borel probability measure v([-a, b + 1]) on 1W? which has expo-

nential decay of type (A, B, 2) and for which we have

lim 1 r f dv([-a, b + 1], U(N)) = Jr f dv([-a, b + 1])

for every Borel measurable f of polynomial growth. The measure v([-a, b + 1]) is
unique with these properties, and is the unique measure with its moments.
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PROOF. We adapt the notations of 6.14.12. Given a Borel measurable f on I8'
of polynomial growth, we have the function on R"-1

F(x) := J f (L(x) - tIl) dt := Ix(0)I I f (L(x) - tx(0) ]1) dt,
[0,x(0)] [0,1]

which is itself a Borel measurable function of polynomial growth, and we have the
identity

jfdv([_ab+1]U(N)) J
Fdp(U(N), sep. -1).

" 1

Let us admit temporarily the following assertion:

7.11.7. For any Bored measurable function F of polynomial growth, we have
the limit formula

N r f 1 F dp.(U(N), sep. 0r-1) = J r_ F dµ(univ, sep. 0,.-1).
,.

Then we have

Fdtc(univ, sep. 0,._1),lim f f dv([-a, b + 11, U(N)) = JR-1
N--oo ¢2r

which proves the first statement. The assignment

f " Fdt.s(univ, sep. Or-1),
fRr-1

restricted to f's which are characteristic functions xE of Borel sets in W, defines
a Borel measure, which we define to be v([-a, b + 1]). All positive Borel functions
f of polynomial growth are integrable against this measure, precisely because the
same is true for the measure p(univ, sep. 0r_I) in virtue of its exponential decay
at oo.

To see that v([-a, b + 1]) has exponential decay of type (A, B, 2), we use the
general shape of the transformation

F(x) := f f (L(x) - tIl) dt,
[0.x(0)1

and the fact that µ(univ, sep. nr-1) has exponential decay of this same type.
Fix s > 0 real. If for some i in [-a, b + 1] the function f is supported in the set

Ez,8 := {x in gr with Ix(i)I > s(a + b + 2)},

then the function F vanishes in

{x in fl r-1 with [x(j)[ < s for all j in [-a, b]).

If If I < 1 everywhere, then we have

[F(x)[ < ]x(0)I.
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Taking f to be the characteristic function of E,,8, we get

v([-a, b+ 1])(Es,.3) =
J r-1

F du(U(N), sep Or-1)

Fdu(U(N), sep. Or-1)
'-1, some !x(7)I>_e

IR
Ix(O)I du(U(N), sep. Or-1)-

To estimate these integrals, think of the region Ix(j)I > s as the disjoint union over
n > 0 of the regions {Ix(j)I > s,n < Ix(O)I < n+11, say R(j,s,n). On R(j,s,n)
the integrand is bounded by n + 1, so we have

J r_
Ix(O) I dp(U(N), sep. Or-1)

R 1 {x(j)I>s

E(n+ 1)a(U(N), sep. Or-1)(R(j, s,n)).
n>O

E (n+ 1)p(U(N), sep. Or-1)(R(j,s, n))
n>o,n<s+1

+ (n+ 1)u(U(N), sep. Or_1)(R(j,s,n)).
n>s+1

Now use the fact that u(U(N), sep. OQ+b+2) has exponential decay of explicit type
(4/3,1/8,2), by 6.13.2. The first sum is bounded by

(s + 3)2u(U(N), sep. 0r-1)({x with jx(j)I > s}) < (s + 3)2(4/3)e_82 .

The second sum is bounded by

E (n + 1)u(U(N), sep. 0r_1)({x with Ix(0)I > n})
n>s+1

(n +
1)(4/3)e-n2

< (4/3)
J

(x + 2)e-xa dx.
n>s+1 LS

For any B > 1/8, there exists an explicitable A such that both of these upper bounds
are bounded by Ae-892. This shows that our limit measure has the asserted decay.
It follows by 7.5.7 that our limit measure is determined by its moments, and hence
is unique. QED modulo proving 7.11.7.

7.11.8. It remains to prove 7.11.7.

Lemma 7.11.9. For any integer r > 2, and any Borel measurable function F
on R-1 of polynomial growth, we have the limit formula

lim Fdu(U(N), sep. O,_1) = f Fdp(univ, sep. Or_1).
N-oo ,_1 r _1

PROOF. Because all the measures u(U(N), sep. Or_1) and u(univ, sep. Or-1)
have the same tail estimate, given any F of polynomial growth, and given any
c > 0, we can pick a single constant s such that the integral of F over the re-
gion E j Ix(i)j > s is at most c for any of these measures. On the compact set
E; Ix(i)I < s, our function is bounded. On this set our integrals converge, by 1.2.2.
QED for 7.11.9, and with it 7.11.7 and 7.11.6.
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7.11.10. The same argument gives

Corollary 7.11.11 to Lemma 7.11.9. For any integer r > 1, for any sepa-
ration vector a in Z', and for any Borel measurable F on R'' of polynomial growth,
we have the limit formula

N mo F dp(U(N), sep. a) = jFdiu(univ, sep. a).
e

Proposition 7.11.12. The limit measure v([-a, b+1]) on R '+b+2 is absolutely
continuous with respect to Lebesgue measure.

PROOF. We must show that if E C ]Ra+b+2 is a Borel set of Lebesgue measure
zero, then E has u([-a, b + 1])-measure zero. Passing to characteristic functions,
it suffices to show that for any nonnegative Borel function f on Ra+b+2 for which
&-+b+2 f (Y) dy = 0, we also have fRa+b+2 f du([-a, b+1]) = 0. But this last integral
is equal to

L+b+l Fdp(univ, sep. 0a+b+1),

where F(x) is the function on Ra+6+1 defined by

F(x) = J f(L(x) - t R) dt := Ix(0) J f (L(x) - tx(0)1) dt.
[0,x(0)] 0,1]

The measure p(univ, sep. 0a+b+1) is absolutely continuous with respect to Lebesgue
measure on ]Ita+1+1 (by 7.0.13), so it suffices to show that F vanishes almost every-
where for Lebesgue measure. This is equivalent, F being nonnegative, to showing
that

f3t.+b+ I

To see this, notice that we have

F(x) dx = 0.

1(( F(x)dx= Ja (fto f(L (x)-tll)dtdx
aa+b+l +b+1 ,x(0)) /

- fR,+b+1'X(0)>0 (4*0)) f(L(x) - tIl) dtI dx

+J
(J[0 ,x(0)]

f(L(x)-ti)dt dx.
Ba+b+1,x(0)<0

In the second term, the inner integral is f[o _x(o)] f (L(x) + t][) dt, so all in all we
have

F(x) dx = I_ + I+,

where

I+ :_ f (L(x) ± t Il) dt dx.
(4'-(0)1

We now rewrite I+ as

f(L(x)ft]])dtdx.
Ra+b+1 xa,x(0)>t>of
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Because f is nonnegative, we have

0 < I+ < f f (L(x) f t Il) dt dx.
a+b+l xR

The key observation now is that for either choice of sign +-, the map

Ra+b+l x R

(x,t) --ti L(x) ± tIl,

is a linear isomorphism. Thus the direct image of Haar measure dt dx on Ra+b+1 x R
by this map is a Haar measure dy on IIBa+b+2, and we tautologically have

/ 6tb+l
>,R 12f(L(x) ± t 1l) dt dx =

J°+b+a
f (y) dy.

R

But our hypothesis is precisely that this last integral vanishes. Therefore each of
If = 0, and so fRo+b+l F(x) dx = 0. QED

Proposition 7.11.13. Given an integer r > 1 and a vector c in Z' with

c(1) < c(2) < ... < c(r),

consider the multi-eigenvalue location measure v(c, U(N)) on W. For any Borel
measurable function f on lR' of polynomial growth, the limit

Noo f ,, f dv(c, U(N))
R

exists. There exists a Borel probability measure v(c) on IR' which has exponential
decay of type (A, B, 2) and forf which we have

lim f dv(c, U(N)) = j f dv(c)
N-oo " r

for every Borel measurable f of polynomial growth. The measure v(c) is unique
with these properties, and is the unique measure with its moments. Moreover, the
measure v(c) on Rr is absolutely continuous with, respect to Lebesgue measure.

PROOF. This is immediate from the previous result. Indeed, if we pick integers
a, b both > 0 such that -a < c(1), c(r) < b+1, then the measures v(c, U(N)) on IItr
are the direct images of the measures v([-a, b+ 1], U(N)) on Ra+b+2 by the partial
coordinate projection pr[c] : Ra+b+2 -, Rr. We define v(c) to be pr[c],v([-a, b+1]).
Then by 7.5.12, all the measures v(c, U(N)) and v(c) are of the same exponential
type (A, B, 2), because this was the case for v([-a, b + 1], U(N)).

With this definition of v(c), the convergence of integrals for f a Borel function
of polynomial growth on II2'' is immediately reduced to the previously treated case
when c is [-a, b + 1], since for such an f, the composite f o pr [c] is such a function
on Ra+b+2. The uniqueness follows exactly as in 7.11.6 above.

That v(c) is absolutely continuous with respect to Lebesgue measure on RT
follows from the formula

v(c) = b + 1]),

together with the absolute continuity, proven above, of v((-a, b + 1]) with respect
to Lebesgue measure dy on 1ll;a+b+2_ So pr[c]xv([-a, b+ 1]) is absolutely continuous
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with respect to pr[c].(dy). But pr[c].(dy) is absolutely continuous with respect to
Lebesgue measure on Rr, because up to an (R>e)x factor, Lebesgue measure on

Ra+b+2 c i r x Ra+6+2-r

is the product of Lebesgue measure on the factors, so pr[c] -'(any Borel set of
Lebesgue measure zero in Rr) has Lebesgue measure zero in 1Ra+6+2. QED

Proposition 7.11.14. Given an integer r > 2 and a vector c in Zr with

c(1) < c(2) < < c(r),

consider the static spacing measure C(c, U(N)) on Itr-t

For any Bored measurable function f on R'-1 of polynomial growth, the limit

lim J f d(c, U(N))
N-.oo r-1

exists. There exists a Borel probability measure e(c) on Rr-1 which has exponential
decay of type (A, B, 2) and for which we have

limo f - f d(c, U(N)) J f d (c)
'' 1

r

for every Borel measurable f of polynomial growth. The measure e(c) is unique
with these properties, and is the unique measure with its moments.

PROOF. We know that (c, U(N)) is obtained from v(c, U(N)) by taking di-
rect image by the map SuccSub : IRr --+ ]EPr-1, cf. 6.4.9. We define C(c) to be
SuccSub. v(c). The proof is now identical to that of the result above. QED

7.11.15. With these limit results, we can now take the large N limits of
various relations proven in 6.14 for finite N.

Proposition 7.11.16 (large N limit of 6.14.16). The measure

xii(univ, sep. 0)

on lR is equal to the static spacing measure C((0, 1)) on IR.

Proposition 7.11.17 (large N limit of 6.14.18). For any r > 1, the measure
xµ(univ, step r) on lR is the sum of the static spacing measures e((a - r, a)),
a = 1, , T.

Proposition 7.11.18 (large N limit of 6.14.21). Let r > 1 be an integer, and
c in Zr an offset vector,

0 < c(1) < c(2) < .. < c(r).

Denote by 0 ®c in Z'" the vector (0,c(1), ... , c(r)), and define

c(0) := 0.

For each i = 1,...,r, define

d(i) := c(i) - c(i - 1).
Then for each i = 1,... , r the measure x(i)p(univ, offset c) on Rr is the sum of
d(i) static spacing measures

c(i)-1

x(i),u(univ, offset c) _ l:(0 ®c - j Ilr+1).
j=c(i-1)
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Corollary 7.11.18.1. Notations and hypotheses as in 7.11.18, suppose in ad-
dition that c(1) = 1. Then we have

x(1)p(univ, offset c) = (O G c).

7.11.19. We can also take the large N limit of 6.16.7.

Proposition 7.11.20 (large N limit of 6.16.7). For any integer r > 1, and
for any offset vector c in Z', the offset spacing measure

Off p.(univ, offsets c) := Off.(p(univ, offsets c))

on W is related to the measures v(c - k J I), 0 < k < c(1) - 1, as follows. For every
Borel measurable function g on RIB'' of polynomial growth, we have the function

G(x) := g(x-t1)dt,
l 10,x(1)1

which is itself a Borel measurable function of polynomial growth, and we have the
identity

gdv(c-kR).J GdOffp(univ, offsets c)= 1 f
r 0<k<c(1)-1

PROOF. By 7.11.13, we have

J gdv(c-kl)= lim J gdv(c-kf,U(N)).N-oo
o<k<c(1)-1 ' 0<k<c(1)-1 '

By 7.11.11 we have

f(GJ G d Off (univ, offsets c) = o Off)dc(univ, offsets c)Rr
(G oOff)dtc(U(N), offsets c)= lim fR,

N-V-oo

= lim f r G d Off p(U(N), offsets c).
N-+oo R

Thus the asserted result is indeed the limit of its finite N analogue 6.16.7. QED
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CHAPTER 8

Several Variables

8.0. Fredholm determinants in several variables
and their measure-theoretic meaning (cf. [T-W])

8.0.1. Suppose we are given a topological space J, a Borel measure p, on J of
finite total mass, and a bounded measurable function F(x, y) on J x J. [In practice
J will be a closed interval in ]E8 and p will be a constant multiple of usual Lebesgue
measure dx.] We denote by F, or FJ, the integral operator

f F-> (the function x " J F(x, y) f (y) dp(y))
J

on L2(J, dµ) with kernel F(x, y). The operator 1 + FJ on L2 (J, du) has a well-
defined Fredholm determinant, given by the explicit formula

(8.0.1.1) det(1 + FJ) = 1 + > (1/n!) J det,t,<n(F(x(i), x(j))) fJ dp(i).
n>1

i
8.0.2. Fix an integer r > 1, and r disjoint (possibly empty) Borel measurable

subsets 11, I2, ... , Ir of J. For j = 1, . . . , r, we denote by x --r X;(x) the character-
istic function of I?, viewed as a function on J. Given r complex numbers T1 i ... , T,.,
we consider the bounded measurable function E, T; X; (y)F(x, y) on J x J, and the
corresponding integral operator Ej Tjxj (y)FJ on L2 (J, dp.).

Lemma 8.0.3 (cf. [T-W]). The &edholm determinant

dot (1+Tx()F1)

is an entire function of (T1 i ... , Tr), given (in usual multinornial notation) by the
power series

det (1+Tx(Y)FJ)

= 1 + Y, (Tn/n+.) f detr(n)XE(n) (F(x(i), x(j))) fl du(i)
n>U,ni40 in Zr lIk(Ik)" (k) i

PROOF. That this series is an entire function of T results from the Hadamard
estimate (W-W, page 213, 11.1]

I detE(,)XE(n)(F(x(i),x(j)))I <E(fl)E(n)/2(Sup(IF(x,y)D)E(n)

JxJ

and Stirling's formula.

245
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To prove the identity, we first reduce to treating the case when all the Ij's are
nonempty.

If all the Ij are empty, we are asserting that 1 = 1, which is correct. In general,
if say 11, 12, ... , Ik are nonempty and Ij is empty for j > k, let I<k denote the
k-tuple (11,12, ... , Ik). Then both

det 1 +ETjXj(y)Fj

and

1+ E (Tn /n!)f detE(n)XE(n)(F(x(i),x(j))) H dµ(i)
n>O,nOO in Z' lk(Ik)n(k) i

are functions of T1, ... , Tk alone, and these functions are

det (1+Tx(Y)FJ
j<k

and

1 + (Tn/n!) f detE(n)xE(n)(F(x(i),x(j))) [J dµ(i)
n>O,n#0 in Zk l jck(Ij)" (-'

respectively. So it suffices to treat the case, possibly with lower r, when all the Ij
are nonempty.

Thus we now suppose all the Ij are nonempty. We use the general formula for
a Fredholm determinant recalled above, which gives

det (1+1x()FJ)

(Tkxk(x(i))F(x(i)fl= I + E(1/11) J detixi x(j)) H d(i).J k i

So what we must show is that for each integer I11 1, we have the identity

detixl (>TkXk(xU))F(x(i), x(j)) J II du(i)
k / i

(Ta/n!)
J detE(n)XE(f.)(F(x(i),x(j))) J1 dp(i).

11 (Ik) (k)

To see this, we compute the value of

dettxl (TkXk(xu))F(x(i)x(j)))
k J

at a point x in Ji. We distinguish cases, according to which coordinates x(j) of the
point x he in which of the sets Ik, and which lie in none of the Ik.

First of all, if some x(jo) lies in none of the 1k, then for every i we have

1: TkXk(x(jo))F(x(i),x(jo)) = 0,
k
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and hence

detixi (: TkXk(x(j))F(X(i),x(j)) = 0,
k

because the jo'th column is identically zero.
It remains to treat those points x where every component x(j) lies in some

(necessarily unique, by disjointness) 'k. Given such a point, for each k we denote
by Jk the set of those indices j for which x(j) lies in 'k, and for each j we denote
by k(j) the unique index such that x(j) lies in Ik(j). The sets {Jk} attached to x
form a partition of the set { 1, 2,..., 11, and the cardinalities

n(k) := Card(Jk)

form a partition of 1.
At x, we have

ETkXk(x(j))F(x(i),x(j)) = Tk(j)F(x(i),x(j)),
k

and hence, at x we have

dettxl ( TkXk(x(j))F(x(i), x(j)) = detlxt(Tk(j)F(x(i), x(j)))
k

I fITk(J) ) dettxt(F(x(i),x(j)))

= (fl(Tk)C-'k)ard() det(F(x(i) ,x(j)))

= T deti 1(F(x(i), x(j))),

for n in Z' the vector of cardinalities n(k) = Card(Jk).
Thus we obtain

(1/l!) r detixi (j:TkXk(x(j))F(x(i),x(j)) 11 dp(i)
J k i

E T" fdetri{F(x(i), x(j))) II d(i),
partitions {Jk )k

the sum over all partitions {Jk} of the set {1, 2, ... , l}, and in which we have
written fllk(rk)n(k) to denote integration over the subset of JI consisting of those x
for which x(j) lies in Ik for j in Jk. However, the integrand detixl(F(x(i), x(j))) is
a symmetric function of its variables x(1), ... , x(I), so by symmetry we may group
together all the l!/n! partitions {Jk} which give rise to the same cardinality vector
n. Thus we obtain

(1/1!) it detixi (TkXk(X(j))F(x(i),x(j))) fl d!1(i)
k i

E (T"/n!) detjxi(F(x(i), x(j))) [J dp(i). QED
n>O in Z' ,E(n)=I rIk(Ik)n(k) i
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Corollary 8.0.4. For any Bored measurable subset Jo C J which contains all
the Ij's, in particular for J0 Ij, we have an equality of Fredholm determi-
nants

det 1+ETjxj(y)Fj =det(1+1: Tjxj(y)F,p),
J 7

with the convention that the empty determinant is 1.

PROOF, This is obvious from the explicit formula. QED

Remark 8.0.5. More conceptually, if we take J0 := JJ Ij and denote by to
the complement in J of J0, then we have an orthogonal direct sum decomposition

L2 (J, dlz) = L2 (Jo, du) ®L2 (Io, du),

in which Ej Tjxj(y)F, kills L2(Io, du). Thus the "2 x 2 matrix" of Fj in this
decomposition is lower triangular, of the form

(Fj" 01
* 0

So the result should follow from a reasonable spectral interpretation of these de-
terminants.

8.1. Measure-theoretic application to the G(N)

8.1.1. We fix an integer N > 2, and take for G(N) any of U(N),
SO(2N + 1), USp(2N), SO(2N), O_(2N + 2), O_ (2N + 1). We have the associ-
ated kernel LN(x, y) attached to G(N) in 5.2 and 6.4.

8.1.2. Fix an integer r > 1, and an ordered r-tuple T of disjoint (possibly
empty) measurable subsets Il, . . , I, in the space

[-7r, 7r), for U(N),

[0, 7r], for any other G(N).

Given n > 0 in 76', recall from 6.3.7, 6.3.15, and 6.4.6 that we denote by

Eigen(n, I, G(N)) C G(N)

the set of those elements A in G (N) such that for each j = 1, ... , r, exactly n(j)
of its angles

0 < W(l) < cp(2) < . < W(N) < 27r if G(N) = U(N),

0 < cp(1) < W(2)< - < cp(N) < ,r for the other G(N),

lie in the prescribed set Ij. If some Ik is empty, then Eigen(n, I, G(N)) is empty
unless n(k) = 0.
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8.1.3. It is convenient to be able to speak of Eigen(n,T, G(N)), defined by
the above recipe, for any vector n in Z'. This set is empty unless n > 0. We have

G(N) = JEigen(n,T, G(N)),
n

the elements of G(N) apportioned according to how many of their angles lie in
the various Ik's. For example, in the extreme case that all the Ik are empty,
G(N) = Eigen(O,T, G(N)), and for n # 0 we have Eigen(n,T, G(N)) = 0. The set
Eigen(n,T,G(N)) is empty if E(n) > N. We denote by

eigen(n,T,G(N)) := Haar measure of Eigen(n,T,G(N)),

the Haar measure normalized to give G(N) total mass one.

Lemma 8.1.4 ([T-W]). For N > 2, and G(N) any of U(N), SO(2N + 1),
USp(2N), SO(2N), O_ (2N + 2),0- (2N + 1), we have the identity

det 1 + J:TjXj(y)LNJL2 HIj,(dx/))
= det 1 + E Tj X j (y) L N JL2 ([0, , air), dx/a7r)

E (1 + T)n eigen(n,T, G(N)).
n> O in Zr

PROOF. That the first two Fredholin determinants coincide has already been
remarked above in 8.0.4. That the last two agree is 6.3.7 for U(N), 6.3.15 and 6.4.6
for the other G(N). QED

8.2. Several variable Fredholm determinants
for the sin(lrx)/7rx kernel and its ± variants

8.2.1. Fix an integer r > 1. Given two vectors s, t in (1R>0)' which are
"intertwined" in the sense that

0 < s(l) < t(1) : 5
.
t ( 2 )

we denote by T(s, t) the r-tuple of disjoint (and some possibly empty, if r is at least
2) intervals in [0, t(r)] given by

Ij (s(?), j = 2, ... , r.

8.2.2. Recall the kernels

K(x, y) := sin(ir(x - y))/ir(x - y),

K+ (x, y) K(x, y) + K(-x, y),
K- (x, y) := K(x, y) - K(-x, y).
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8.2.3. We define several variable Fredholm determinants

E(T,s,t):=det 1+>T,,Xi(y)K(x,y)IL2([O,t(r)],dx)
i

and

E±(T,s,t):=det 1+ETjXi(y)Kf(x,y)IL2([0,t(r)],dx)

8.2.4. For fixed s, t, we know (by 8.0.3) that these are entire functions of T.
For ease of later reference, we denote by En(s, t) and by E±,n(s, t) their expansion
coefficients around the point all Ti = -1:

E(T,s,t)= E
n>0 in Zr

(1+T)nEn(s,t),

Ef (T, s, t) _ E (1 + T)nE±,n (s, t).
n>0 In Zr

Lemma 8.2.5. For each r > 1, E(T, s, t) and E± (T, s, t) are (the restrictions
to Cr x (the subset of (R>0)2' consisting of pairs of intertwined vectors) of) entire
functions on C3'

PROOF. We will do the case of E(T, s, t), the E± case being entirely similar.
Expand E(T, s, t) as a series in T, say

E(T, s, t) = 1 + Bn(s, t)TT.
n>0 in Zr,noo

The coefficient Bn(s, t) is, by 8.0.3, the integral

(1/n!) f7-
/

detr(n)XE(n)(K(x(i),x(j)))11 dx(i),
l lk i

where the variables are taken in the various Ik by some choice of an r-tuple of
disjoint subsets Ji of {1, ... , E(n)} such that Card(JJ) = n(i) for each i = 1, ... , r.
To parameterize the intervals Ik, we make the following change of variable in this
integral:

x(k) = S(lk) + (t(Ik) - s(Ik))z(k) if k lies in J.
In terms of these variables, Bn (s, t) is the integral

(1/n!) [J(t(i) - s(i))n(t) V(n, s, t, z) fJ dz(i),
i i

where V (n, s, t, z) is the entire function of (s, t, z) defined by

V (n, s, t, z)

:= detE(n) XE(n) (K(s(li) + (t(li) - s(li))z(i), s(li) + (t(li) - s(li))z(j))).

This makes obvious that each individual coefficient Bn(s, t) is an entire function of
(s, t). It remains to show that the series

1 + 1] Bn(s, t) Tn
n>0 in Zr,n540
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converges uniformly on compact subsets of C3". This amounts to a decent estimate
for the coefficients Bn(s, t). As recalled in the proof of 7.0.9, we have the inequality

I sin(7rx)/-7rxl < exp(irJxl) for any x in C.

From this, we get that for z in [0,we have the estimate

I.(s(li) + (t(li) - s(li))z(i), s(ly) + (t(1) - s(lj))z(j))I
< exp(irI(s(li) + (t(li) - s(li})z(i)) - (t(l.i) - s(lj))z(A)I)

<exp (7r (4IsiI+2tiI))
\\\ i

from which by Hadamard's determinant inequality we get

IV (n, s, t, z)I < E(n)r(n)'2 exp 7r 4(isii + 2 It(i)l
i i

Thus we get

I B. (s, t)T'l I
{n!

< (fi(n) {n)/2/n!} 7 It(i) - s(i)In,i) exp (ir (4 Is(i)I + 2 It(i)I
)\\

< (F,(n)n{n)/2/n!)An,

For A the r-tuple A(i) = ITil It(i) - s(i)lexp(ir(4Ej Is(j)I + 2Ej It(j)l)). So it
remains only to observe that, by Stirling's formula, the series

E (E(n)r(n)/2/n!)An

n>O in V'

is an entire function of A in Cr. QED

8.3. Large N scaling limits

8.3.1. Fix one of the series U(N), SO(2N + 1), USp(2N), SO(2N),
O_ (2N + 2), O_ (2N + 1). Fix also an integer r > 1, and two vectors s, t in
(R>o)T which are "intertwined" in the sense of 8.2.1. For N >> 0, we have
vrrt(r)/(N + A) < air, so the intertwined vectors u7rs/(N + A), Girt/(N + A) give
us an r-tuple of disjoint intervals in [0, c7r],

T(s, t, G(N)) I(cirs/(N + A), cart/(N + A)),
11 = (cirs(1)/(N + A), cirt(1)/(N +.1)],
13 = (eiirs(j)/(N + A), cirt(j)/(N + A)] for j = 2, ... , r.
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8.3.2. We form, using the LN kernel appropriate to G(N),

G(N) LN (x, y)

U(N) N-1 ein(x-Y)
n=0

= SN (X - y)ei(N

other G(N), i.e., (a/2) [SpN+T (x - y) + ESN+r (x + 01, i.e.,
SO(2N + 1) (1/2)(S2N(x - y) - S2N(x+y))
USp(2N) or O_ (2N + 2) (1/2)(S2N+1(x - y) - S2N+1(x + y))

SO(2N) (1/2)(S2N-1(x - y) + S2N-1(x + y))
0-(2N + 1) (1 /2)(S2N(x - y) + S2N (x + y))

the corresponding several variable F redholm determinant

E(T, s, t, G(N)) := det 1 + ETjxj(y)LN]L2([0, u7r], dx/Q7r)
j

Each such determinant is a polynomial in T whose coefficients, we will show below,
are entire functions of (s, t). According to 8.1.4., its expansion around the point all
Ti=-1 is

E(T, s, t, G(N)) _ (1 + T)n eigen(n, Z(s, t, G(N)), G(N)).
n>0 in Z*,E(n)<N

According to 8.0.3, its expansion around the origin is

E(T, s, t, G(N)) = 1 + A, (s, t, G(N))V,
n>0 in Zr11<E(n)<N

where Bn (s, t, G(N)) is given by the integral

(1/n!) J detE(n)xE(n)(LN(x(i), x(j))) fl(dx(i)/orr).
l1k(Ik)n k) i

Lemma 8.3.3. For G(N) one of U(N), SO(2N + 1), USp(2N), SO(2N),
O_(2N + 2),O_(2N + 1) the coefficients Bn(s,t,G(N)) are (the restriction to
{points (s, t) in (R>0)2r which are intertwined} of) entire functions, which for
(s, t) in C2r are bounded by

IB.(s,t,G(N))I

< I1/n!I (ii It(i) - s(i){n(i) )(E(n) E(^)/2) (3,xp(3,(4Ej,(i)I +2E It(i)I)))
E(n).

ti

PROOF. The coefficient Bn(s,t,G(N)) is the integral

(1/n!) 'tI(Ik) det( )XE()(LN(x(i), x(j))) fl(dx(i)/cir),
(k)

i

where

I1 = [oirs(1)/(N + A), v7rt(1)/(N +A)],

forj=2,...,r,
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and where the variables are taken in the various Ik by some choice of an r-tuple of
disjoint subsets J i of {1, ... , E(n) } such that Card(Ji) = n(i) for each i = 1, ... , r.
Let us temporarily define

A=Q7r/(N+A), B=A/vzr= 1/(N+A).
To parameterize the intervals Ik, make the following change of variable in this
integral:

x(k) = A(s(lk) + (t(lk) - s(Ik))z(k)) if k lies in JIk,

x(k)/vr = B(s(lk) + (t(lk) - s(1k))z(k)) if k lies in JIk.

In terms of these variables, Bn(s, t, G(N)) is the integral

(1/n!) II(t(i) - (i))n(i)
!O,1]E

V(n, s,t, z, G(N)) dz(i),
c°I i

where V(n, s, t, z, G(N)) is the entire function of (s, t, z) defined by

V(n,s,t,z,G(N))

:= detE(n)xE(n)(BLN(A(s(1i)+(t(1i) - s(di))z(i)), A(s(lj) + (t(13) - s(lj))z(j)))).

[Strictly speaking, this formula for Bn(3, t, G(N)) is a priori correct only if
s(i) < t(i) for each i. However, in the case s(i) = t(i) for some i, it is still
correct, since both

r
(1/n!)

J
detE(n)xS(n)(LN(x(i),x(j))) fl(dx(i)/ nr)

!lk (Ik)"(k) i

and

(1/n!) fJ(t(i) - (i))n(i) flo V (n, s, t, z, G(N)) dz(i)
i

vanish if n(i) > 0, while if n(i) = 0 the interval Ii is irrelevant to both.)
By the Hadamard determinant inequality, it remains to show that for z in

[0,1)1'(n), we have

IBLN(A(s(li) + (t(li) - s(1i))z(i)), A(s(lj) + (t(1j) - s(13))z(j)))1

<3exp (37r (41s(i)I+2It(i)I))

To see this, recall from 7.4.5 that for x in C, we have

ISN(x)I < Nexp(NIx1/2).

In view of the formulas defining LN in terms of SPN+T, we have

I LN(x, y)I (2N + 1) exp((pN + 1)(1x1 + lyl)) for (x, y) in C2,

and hence

I BLN(Ax, Ay) I = I(1/(N +.1))LN(a7rx/(N +..), u ry/(N +.\)) I
((2N + 1)/(N + a)) exp(((pN + 1)/(N + a))(oir)(IxI + IyI))

< 3exp(37r(Ixl + IyI))
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This gives

IBLN(A(s(li) + (t(li) - s(li))z(i)),A(s(i;) + (t(1) - s(t,))z(j)))I

< 3 exp 37r (41s(i)I+2It(i)I))
as required. QED

8.3.4. In order to be able to state more easily the estimate given in the
next result, it is convenient to denote by Do (x) the entire function of one complex
variable

1Do(x) := 1 + E xnnn/2/n!,
n>1

and to names its "tails"

Dk(x) := E xnnn12/n!
n>k

for each integer k > 1.

Proposition 8.3.5. Fix one of the series G(N) = U(N), SO(2N + 1),
USp(2N), SO(2N), O_(2N + 2), or O(2N + 1). As N - oo, the sequence
E(T, s, t, G(N)) of entire functions of (T, s, t) converges, uniformly on compact sub-
sets of Car, to

E(T, s, t), if G(N) = U(N),
E+(T, s, t), if G(N) = SO(2N) or O_ (2N + 1),

E_ (T, s, t), if G(N) = USp(2N) or SO (2N + 1) or 0- (2N + 2).

Moreover, if we define

IIx11 Ix(i)I

for x in Cr, then each of the entire functions E(T, s, t, G(N)), as well as each of the
limits E(T, s, t) and E±(T, s, t), has the following property: for each integer t > 0,
its power series LLn>0 in Zr Cn(s, t)Tn around T = 0 satisfies

IC.(s t)T"I
n>O in Z'',E(n)>l

< IDl(rllTll(IItII + IIsII)(3exp(31r(411s11 +211t11))))

for all (T, s, t) in C3r

PROOF. The asserted majorization is immediate from 8.3.3, which majorizes
the n'th term IC.(s,t)TnI by

ITn/n!I fj It(i) - s(i)In('')(r,(n)F(n)/2) (3exp(37r(4E Is(i) I + 2 E
It(i)I)))'(n)

i i L

<- (IITII(IIt11 + Ilsll)(3exp(37r(411s11 +211t1U)))E(n)(E(n)E(n)/2)/n!.

Grouping together all terms with a given value k of E(n), and taking into account
the identity (equate coefficients in exp(x)r = exp(rx))

rk/k! = 1/n!,
n>O in Zr,E(n)=k
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gives the asserted estimate. The proof of convergence is entirely analogous to the
proof of 7.4.6, and is left to the reader. QED

8.3.6. We denote by E,,(s, t, G(N)) the entire functions of (s, t) defined as
the expansion coefficients of E(T, s, t, G(N)) around the point all Ti = -1:

E(T, s, t, G(N)) = E (I + T)TEn(s, t, G(N)).
n>O in Zr,E(n)<N

Thus (by 8.1.4) for s and t in (IR>o)' and intertwined, we have

En(s, t, G(N)) = eigen(n, I(s, t, G(N)), G(N)).

Applying the differential operator argument used in the proof of 7.5.1, we obtain
the following corollary.

Corollary 8.3.7. Fix n > 0 in Z. As N -+ oo, the sequence of entire func-
tions En (s, t, G(N)) converges, uniformly on compact subsets of C2,' to

En (s, t) if G(N) = U(N),
E+.n(s, t) if G(N) = SO(2N) or O_ (2N + 1),
E_,n(s,t) if G(N) = USp(2N) or SO(2n+ 1) or O_(2N+2).

In particular, for s and t in (IR>o)' and intertwined, we have the limit formulas

En(s, t) = limo eigen(n, T(s, t, U(N)), U(N)),

E+,n(s, t) = l eigen(n,I(s, t, G(N)), G(N))

for G(N) = SO(2N) or O_ (2N + 1),

and

E_,n(s, t) _ slim eigen(n, I(s, t, G(N)), G(N))
-oo

for G(N) = USp(2N) or SO(2N + 1) or O_ (2N + 2).

8.3.8. It will be convenient to have a more uniform version of this conver-
gence.

Lemma 8.3.9. Hypotheses and notations as in Proposition 8.3.5 above, each
one of the entire functions E(T, s, t, G(N)), as well as each of the entire functions
E(T, s, t) and E± (T, s, t), has the following property: for every integer l > 0, its
power series En>o in Zr(1 +T)nAn(s, t) around the point all Ti = -1 satisfies

(1 + JTI)'IIAn(S,t)I
n>U in Z'',E(n)>l

< IDI(r(2r + IITII)(IftII + IIsII)(3exp(3ir(4llsll + 211thf)))),

where by (1 + ITI)n we mean fi(1 + ITiI)n(i).

PROOF. Fix s and t, and denote by f (T) := f (T, s, t) one of the entire functions
E(T, s, t, G(N)), or E(T, s, t) or E± (T, s, t). We consider the two expansions

f (T) _ CnTn = An(1 +T)'L.
n>o in Zr n>O in

Zr
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We first solve for An's in terms of Cn's. We have

AnT"` = E Cn(T - 1)n
n>0 in Zr n>O in Zr

Cn (-1)n-m Binom(n, m)Tm
n>O in Z'' O<m<n

E Tm (-1)n-m Binom(n, m)Cn,
m>O in Zr n>m

and hence we obtain

and hence

so

Am = E Binom(n, m)Cn,
n>m

IAmI < Binom(n,m)ICnI,
n> m

E (1 + ITI)mIAmI
m>0 in Z' ,E(m)>l

< (1 + IT1)m E Binom(n, m)ICnI
m>0 in Z1,E(m)>1 n>m

ICnI E Binom(n, m)(1 + ITI)m
n>0 in Z'',E(n)>I O<m<n,E(m)>l

< E ICI Binom(n,m)(1 + ITI)m
n>0 in Z' ,E(n)>l O<m<n

ICnI(2 + ITI)n
n>0 in Z'',E(n)>I

According to the previous result, we have

ICnI IT1n <- IDi(rIITII(IItII + IISII)(3exp(31c(4II911 +211thI))))
n>0 in Z',E(n)>l

Replacing T by 2 + ITI := the point with coordinates 2 + 1TTI, and noting that
2 + ITI has 11(2 + ITI)II = 2r + IITII, we get the asserted estimate. QED

Proposition 8.3.10. Fix a nonempty subset W of {n > 0 in Z'J, and G(N)
one of U(N), SO(2N + 1), USp(2N), SO(2N), O_ (2N + 2),O-(2N + 1).

1) The series

Ew(s,t,G(N)) :_ E En(s,t,G(N))
n in W

as well as the series

Ew(s,t) :_ > En(s,t)
nin W

and

E±,w(s,t) := E E±,n(s,t),
n in W

converge uniformly on compact subsets of C2'r, to entire functions of (s, t).
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2) As N --r oo, the sequence of entire functions Ew (s, t, G(N)) converges,
uniformly on compact subsets of C2r, to

Ew(s, t) if G(N) = U(N),
E+,w (s, t) if G(N) = SO(2N) or O_ (2N + 1),
E_ w(s, t) if G(N) = USp(2N) or SO(2N + 1) or O_ (2N + 2).

PROOF. For 1), the uniform convergence on compacta results immediately from
the growth estimates of the previous result, with T = 0. To prove 2), we use these
estimates to reduce, just as in the proof of 7.4.6, to treating the case when W
consists of a single n, in which case it results from 8.3.7. QED

8.4. Large N limits of multi-eigenvalue location measures
attached to G(N)

8.4.1. Exactly as in 6.14.1 and 6.20.1, for G(N) any of U(N), SO(2N + 1),
USp(2N), SO(2N), O_ (2N + 2), O_ (2N + 1), and A in G(N), we have its sequence
of angles

0 < W(l) < p(2) < . . . < p(N) < 27r if G(N) = U(N),
0<W(1)< cp(2) < ... < cp(N) < n for the other G(N)

and its sequence of normalized angles

0<r9(1) <t9(2) <... <19 (N) <N+A,

defined by

t9(n) := (N + .\)w(n)/a7r.

Concretely,

t9(n) := NW(n)/21r for U(N)

t9(n) (N + 1/2)v(n)/7r = (2N + 1)cp(n)/27 for SO(2N + 1) or O_ (2N + 1)

t9(n) := NW(n)/-7r = 2Ncp(n)/27r for USp(2N) or SO(2N)

79(n) (N + 1)cp(n)/7r = (2N + 2)cp(n)/2ir for O_ (2N + 2).

8.4.2. Given an integer r > 1, an offset vector c in Zr,

0 < c(1) < c(2) < ... < c(r),

and an integer N > c(r), recall that we denote by u(c,G(N)) the probability
measure on R' which is the direct image of total mass one Haar measure on G(N)
by the map G(N) -> W defined by the normalized angles

A'-' (t9(c(1)), ... , t9(c(r)))

Thus

v(c, G(N)) :_ (t9(c(1)), ... , 79(c(r)))* Haara(N)

The measure v(c,G(N)) is supported in (]i8>o)r(order).
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8.4.3. Given a point s in (lR>o)T(order), we denote by .7(s) the r-tuple of
disjoint intervals

I = [0, s(1)],
I3 = (s(j -1),s(j)] for j =2,...,r.

For n in Z', we define the set Eigen(n, s, G(N)) C G(N) to be the set of elements
A in G(N) such that for each i = 1, ... , r, A has exactly n(i) normalized angles in
the interval Ii. We define eigen(n, s,G(N)) to be the normalized Haar measure of
the set Eigen(n, s, G(N)). The set Eigen(n, s, G(N)) is empty unless n > 0.

8.4.4. If N > s(r), the set Eigen(n, s, G(N)) is related to the sets of 8.1.2 as
follows. We denote

,7(s, G(N)) := ,(airs/(N + A)),
an r-tuple of disjoint intervals in [0, air]. Then

Eigen(n, s, G(N)) := Eigen(n, .7(s, G(N)), G(N)),

eigen(n, s, 0(N)) := eigen(n,.7(s, G(N)), G(N))

for every n in Z' .

Lemma 8.4.5 (CDF's and tails of v(c,G(N))). Suppose given an integer
r > 1, an offset vector c in Zr, a point s in (R>o)T(order), an integer N > c(r),
and G(N) one of U(N), SO(2N+1), USp(2N), SO(2N), O_(2N+2), O_(2N+ 1).

1) We have the identity

G(N)) (S) eigen(n, s, G(N)).
n>0 in Zr,Off(n)>c

2) We have the identity

Tail (,G(N)) (s) _ eigen(n, s, G(N)).
n>0 in Z',Off(n)<c

PROOF. The key point is that, because s lies in (1[8>o)T(order), for each
i = 1, ... , r, the closed interval [0, s(i)] is the disjoint union of the intervals Ik,
1 < k < i, in .7(s). Therefore we can describe the set Eigen(n, s, G(N)) as
the set of those A in G(N) such that for each i = 1, ... , r, A has exactly
n(1) + n(2) + - + n(i) (= Off(n)(i)) normalized angles in [0, s(i)].

Using this, we prove 1) and 2). By definition, CDF (,,G(N))(s) is the Haar
measure of the set

{A in G(N)I79(c(i))(A) < s(i) for i = 1,...,r}

{A in G(N) IA has > c(i) normalized angles in [0, s(i)], for i = 1, ... , r}

Eigen(n, s, G(N)).
n in Zr,Off(n)>c

Taking the Haar measures of both sides gives 1).
Similarly, Tail, (,,G(N)) (s) is the Haar measure of the set

{A in G(N) Id(c(i)) (A) > s(i) for i = I,-, r}

{A in G(N)JA has < c(i) normalized angles in [0, s(i)], for i = 1,... , r}

I Eigen(n, s, G(N)).
n in Z'',Off(n)<c
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Taking the Haar measures of both sides gives 2). QED

Remark 8.4.6. In the above result, the CDF is given as an infinite sum of
eigen's, but the tail function is a finite sum of eigen's.

8.4.7. The previous result computed the CDF and tail of v(c, G(N)) at points
s in (IR>o)r(order). Because the measure v(c, G(N)) is supported in (IR>o)''(order),
and has a continuous CDF (by 6.20.5), both its CDF and its tail are determined
by their values there, as the next lemma shows.

Lemma 8.4.8. Let v be any Borel measure of finite total mass on IRr which is
supported in (IR>o)''(order).

1) Ifs in 1R' has some s(i) < 0, then CDF,(s) = 0.
2) For s in (18>o)r, denote by SuccMin(s) the point

(Min,>I s(3), Min,>2 s(?), ... , Min,>r s(3))

in (IR>o)"(order). Then

3) If s in IRr, denote by Max(O, s) the componentwise maximum. If Tail is
continuous, then

Tail, (s) = Tail,(Max(0, s)).

4) For s in (IR>o)r, denote by SuccMax(s) the point

(Maxi<i s(.1), Max,<2 s(9), , Max,<r s(7))
in (IR>o)r(order). Then

Tail,,(s) = Tail, (SuccMax(s)).

PROOF. 1) For s not > 0, the rectangle R(s) has empty intersection with
(IR>o)r, so a fortiori it has empty intersection with (IR>o)r(order). 2) For s > 0, the
rectangles R(s) and R(SuccMin(s)) have the same intersection with (IR>o)'(order).
3) If Tail,, is continuous, is also (by 6.17.4) the measure of the "closed tail
rectangle" T(s) := {x in R' with x(i) > s(i) for i = 1, ... , r}. For any s, the closed
tail rectangles T(s) and T(Max(0, s)) have the same intersection with (IR>o)r, so a
fortiori with (IR>o)r(order). 4) For s > 0, the rectangles T(s) and T(SuccMax(s))
have the same intersection with (IR>o)' (order). QED

8.4.9. Fix an integer r > 1. Given s and t intertwined in (IR>o)r,

0 < s(1) < t(1) < s(2) < t(2) < ... < s(r) < t(r),
we defined in 8.2.3 the several variable Fredholm determinants

E(T, s, t) and E± (T, s, t).

8.4.10. We now specialize this general choice of r successive intervals to a
choice of r adjacent intervals, which begin at the origin. Thus we give ourselves a
point s in (IR>o)r(order),

0 < s(1) < s(2) < ... < s(r).
We wish to consider the r-tuple of intervals

h = [0, s(1)],

Ii=(s(i-1),s(i)] fori=2,...,r.
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To put this in the E(T, s, t) context, we denote

Strunc := (0) s(1), s(2), ... , s(r - 1)).

Then strum and s are intertwined, and we define

E(T, s) .= E(T, Strung s)

Ej(T, s) := E±(T, Strung s).

8.4.11. We denote by En(s) and by E±,n(s) their expansion coefficients
around the point all Ti = -1:

E(T, s) _ (1 +T)"En(s),
n>0 in Z'

E+(T, s) _ E (1 + T)nE±,n(s).
n>0 in Z'

In the case r = 1, this notation is compatible with that of 7.3.6 and 7.5.1.

8.4.12. Similarly, for each G(N), we denote by

E(T, S, G(N)) := E(T, Strunc, s, G(N)),

and by En(s,G(N)) its expansion coefficients around the point all Ti = -1:

E(T, s, G(N)) = (1 +T)'En(s, G(N)).
n>0 in Zr

Thus for s in (1R>o)T(order), we have

E. (s, G(N)) = eigen(n, s, G(N))

for every N > s(r).

8.4.13. Since the map s + (strunc, s) is holomorphic, we get from 8.3.5 the
following result.

Lemma 8.4.14. The functions E(T, s, G(N)), E(T, s) and E± (T, s) are the
restrictions to Cr x (R>o)T(order) of entire functions on C2T. As N -} oo, the
sequence E(T, s, G(N)) of entire functions of (T, s) converges, uniformly on com-
pact subsets of C2r, to

E(T, s), if G(N) = U(N),

E+(T, s), if G(N) = SO(2N) or O_(2N + 1),

E_(T, s), if G(N) = USp(2N) or SO(2N + 1) or O_(2N + 2).

From 8.3.10, we get

Proposition 8.4.15. Fix a nonempty subset W of In > 0 in Z'}, and G(N)
one of U(N), SO(2N + 1), USp(2N), SO(2N), 0-(2N + 2),0- (2N + 1).

1) The series

EW (s, G(N)) :_ En (s, G(N))
n in W

as well as the series

Ew(s) E. (s)
n in W
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and

E±,w(s) E±,n(s),
n in W

converge, uniformly on compact subsets of Cr, to entire functions of S.
2) As N oo, the sequence of entire functions Ew (s, G(N)) converges, uni-

formly on compact subsets of C', to

Ew(s) if G(N) = U(N),

E+,w(s) if G(N) = SO(2N) or O_ (2N + 1),

E_,w(s) if G(N) = USp(2N) or SO(2N + 1) or O_(2N + 2).

8.4.16. We now turn to the question of taking large N limits of the measures
v(c, G(N)), for can offset vector.

Proposition 8.4.17. Fix an integer r > 1, and an offset vector c in Zr. There
exist Bored probability measures v(c) and v(±, c) on Rr, supported in (R>oy(order)
and having continuous CDF's, such that

lim v(c, G(N)) = v(c), if G(N) = U(N),
N-oc

v(+, c), if G(N) = SO(2N) or O_(2N + 1),

= v(-, c), if G(N) = USp(2N), SO(2N + 1), 0- (2N + 2),

in the sense of uniform convergence of both CDF's and of tail functions on R'.
As functions on (IR>o)r(order), the CDF's and tail functions of these measures are
(the restrictions to (IR>o)r(order) of) entire functions on C', given by the explicit
formulas

CDF, (f,c) (s)

Tai1v(c,G(N)) (s) =

Tail,(,) (s) _

E En (s, G (N)),
n>0 in Z'',Off(n)>c

n2:0 in Zr,Off(n)>c

E E±,n(s),
n>0 in Z'',Off(n)>c

E E. (s, G(N)),
n>0 in Zr,Off(n)<c

E En(s),
n>0 in Zr,Off(n)<c

1: E±,n(s)
n>0 in Zr,Off(n)<c

The measures v(c) and v(±, c) have exponential decay (A, B, A) with A = 2c(T),
B = 6/4, and A = 1. For any continuous function f of polynomial growth on Rr,
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we have the limit formulas

Jf dv(c) =

J
fdv(+, c) _

f fdv(-, c) =

lim. f f dv(c, U(N)),

slim. J f dv(c, G(N)) for G(N) = SO(2N) or 0- (2N + 1),
-oo

Nymo
1

f dv(c, G(N))

for G(N) = USp(2N), SO(2N + 1), or 0-(2N + 2).

The measures v(c) and v(±, c) are determined by their moments.

PROOF. Consider the measure v(c, G(N)) on K'. Its one variable projections
are given by 6.20.3,

pr[i].v(c, G(N)) = v(c(i), G(N)),

and these satisfy the tail estimate 6.9.8,
2c(i)e_08/4 < 2c(')e-314.

So v(c, G(N)) has exponential decay (A, B, A) = (2c(T), /4, 1).
We first claim that as N - oo, the CDF's of the v(c, G(N)) converge uniformly

on IRT. In view of their uniform exponential decay, it suffices to show uniform
convergence on compact subsets of W. In view of 8.4.8, it suffices for this to show
uniform convergence on compact subsets of (R>0)''. For s in (R>o)T, and N > s(r),
we have (by 8.4.5)

(s) eigen(n, s, G(N))
n>0 in Zr,Off(n)>c

En(s, G(N))
n>0 in Zr,off(n)>c

= Ew(s,G(N))

for W the set {n > 0 in Zr' Off(n) > c}, so the required convergence is 8.4.15. A
similar argument, with W now taken as the finite set {n > 0 in Zr, Off(n) < c},
shows that as N -f oo, the tails of the v(c, G(N)) converge uniformly on R''.

The result now follows from 7.5.11 and 6.20.4 (combined with 2.11.18). QED

Remark 8.4.18. As proven in 7.11.12, the measure v(c) on ]R'' is absolutely
continuous with respect to Lebesgue measure. That this also holds for the mea-
sures v(±, c) will be proven in AD.4.4.1. It amounts to the statement that these
measures give measure zero to the hyperplane x(l) = 0 and to the hyperplanes
x(i) - x(i - 1) = 0 for i = 2, .. . , r, but the proof is along different lines.

Corollary 8.4.19. Suppose given an integer r > 1, and an offset vector c in
Zr. For any nonempty subset

S

of the index set {1,. .. , r}, we denote by

pr[S] : RT - Rcard(S)
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the projection onto the named coordinates. We have equalities

pr[S]«v(c) = v(pr[S](c))

c) = v(f, pr[S](c))

of measures on RCard(S)

PROOF. Use the previous result together with 6.20.3, which gives the finite N
analogue, to see that both of the measures in question agree on bounded continuous
functions. QED

8.5. Relation of the limit measure Off p.(univ, offsets c)
with the limit measures v(c)

Proposition 8.5.1. Fix an integer r > 1, and denote

fi := $,.:= (1,1, ... ,1) in RT.

For any Bored measurable function g on lR'' of polynomial growth, denote by 0 the
Borel measurable function of polynomial growth defined by the Lebesgue integral

G(x) := f (x - tl) dt := x(1) I J g(x - tx(1)) dt.
0,2(1)] 0,1]

Fix an offset vector c in Zr:

1 < c(l) < c(2) < < c(r).

For each integer k with 0 < k < c(1) - 1, c - kA is again an offset vector, and we
have the identity

J G d Off p,(univ, offsets c) = f g dv(c - kIl ).R0<k<c(1)-1 '
PROOF. By 7.11.11 and 8.4.17 applied to the left and right sides respectively,

this is the large N limit of 6.16.7. QED

8.5.2. Once we have this result, we get

Proposition 8.5.3. Fix an integer r > 1 and an offset vector c in U,

1 < c(1) < c(2) < ... < c(r).

For any s in R'' with s(1) > 0, we have the relation

E Tail (c-kn) (s) = f Tailovofsets (s + t l) dt.
0<k<c(1)-1 0'°O]

PROOF. Repeat the proof of 6.18.1, using the previous result in place of 6.16.6.
QED

Corollary 8.5.4. Hypotheses and notations as in 8.5.3 above, for any s in R'
with s(1) > 0, we have

Tai1offju (univ, offsets c)(s) = - Tai1(c-k1)(s)
0<k<c(1)-1

PROOF. Repeat the proof of 6.18.2. QED
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Proposition 8.5.5. Hypotheses and notations as in 8.5.3 above, we have the
following relations among moments: for any polynomial function H(x) on Rr which
is divisible by x(1) as a polynomial, denote by h(x) the polynomial

h := E a/ax(i)) H.

Then we have the relation

T, h dv(c - k L) = H d Off p(univ, offsets c).
O<k<c(1)-1 r r

PROOF. Repeat the proof of 6.19.1. QED

8.5.6. The following lemma is standard.

Density Lemma 8.5.7. Let r > 1 be an integer, U C lRr an open set, and p
a Borel probability measure on Rr. Suppose that

1) p is supported in the closure U of U.
2) The boundary a(U) := U - U has Lebesgue measure zero.
3) The measure p on IRr is absolutely continuous with respect to Lebesgue mea-

sure.
4) The restriction to U of the function Tail,, is C°°.
Then u is the extension by zero of its restriction to U, and on U the measure

p is given in coordinates x(1), . . . , x(r) on the ambient R' by

r r
(-1)r H alax(i) (Tail,,) fl dx(i).

-1 i-1

PROOF. Already hypotheses 1), 2) and 3) imply that p is the extension by zero
of its restriction to U. It remains to see that if in addition Tail,, is COO on U, then
p, on U is given by the asserted formula. To see this, we use the fact that for s in
U and for t > 0 in lRr, the measure of the rectangle (s, s + t] is equal to

Sof 12...r iinSsubsets { }

E (_1)C d(S) Tail,, s + E t(i)e(i) I .

For t sufficiently small, all of the points s + Ei in s t(i)e(i) lie in U.
Because Tail,, is COO in U, we see by iterating the fundamental theorem of

calculus r times that this alternating sum is equal to the integral over the rectangle
(s, s + t] of the differential form

r
(-1)7' rl a/ax(i) (Tail,,) II dx(i).

i=1 i=1

Therefore both pIU and (-1)r(fl 1 a/ax(i))(Tail,,) fa_1 dx(i)IU agree as Borel
measures on U, because they give the same measure to all rectangles in U. QED

Proposition 8.5.8. Let r > 1 be an integer, c in Zr an offset vector. Denote
by U C Rr the open set 0 < x(1) < x(2) < . . . < x(r), whose closure U is
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(R>o)r(order). Let us define functions F(c, x) and P(c, x) of x in U by

r

F(c, x) := (-1)r

r
P(c, x) := (-1)r na/ax(i) (TallOffp(univ, offsets c))

i=1

Then
1) v(c) is the extension by zero of the measure F(c,x) rjr1 dx(i) on U.
2) Off p(univ, offsets c) is the extension by zero of the measure

P(c, x) HIz 1 dx(i) on U.
3) Both F(c, x) and P(c, x) are the restrictions to U of entire functions on Cr,

which are related by

P(c, x) _ F(c - k Il, x).
i 0<k<c(1)-1

PROOF. Apply the previous lemma to v(c) and to Off t(univ, offsets c) to get
statements 1) and 2). Statement 3) then follows by applying the differential oper-
ator (-1)r(f2-1 alax(i)) to the identity

TailOff y(univ, offsets c) (x) = - (3/x(i)) E Tail,(,-,l&)
i 0<k<c(1)-1

proven in 8.5.4. QED

Corollary 8.5.9. Let r > 1 be an integer, c in Zr an offset vector. The
measure p(univ, offsets c) is the extension by zero of its restriction to the open set
(Ilt>O)r, where it is given by P(c, Off(x)) f 1 dx(i).

PROOF. Apply Off* to the previous description of

Off p(univ, offsets c) := Off. p(univ, offsets c),

and use the fact that Off* Off. is the identity. Since Off-1(U) is (R>o)r, we find
that p(univ, offsets c) is the extension by zero of its restriction to the open set
(R>o)r, on which it is given by

r r
Off* (P(c, x) fl dx(i) = P(c, Off(x)) O 4 ti dx(i)

i=1 i=1

= P(c, Off(x)) fj dx(i),
i=1

the last equality because Off is unipotent. QED

Remark 8.5.10. If we combine these last results with 8.4.17, according to
which for x in U we have the finite sum formula

Tail,(,) (x) = E E. (x),
n>0 in Z'',Off(n)<c
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we get explicit formulas for both F(c, x) and P(c, x) as finite sums of higher deriva-
tives of the functions For F, we get

r
1)TF(c,

x) = E (flo/ox(i)) (En(x))-
n>O in Z'',ofl(n)<c i=1

To state the result for P, let us introduce, for n > 0 in Zr and for c an offset vector
in Z', the nonnegative integer

N(n, c) := the number of integers k with 0 < k < c(1) - 1
such that Off (n) < c - k A.

Then we get
(_1)r+1P(c, x)

(a/ax(i)) a/ax(i)) N(n.,c)E.(x).
n>O in

In the case r = 1, we recover the formulas tabulated in 7,7, where we labeled by the
separation, whereas here we label by the offset, i.e., µa there is p(univ, offset a + 1)
here.
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CHAPTER 9

Equidistribution

9.0. Preliminaries

9.0.1. In this chapter, we will review the basic equidistribution results proven
by Deligne in [De-Weil II, 3.5].

9.0.2. Recall [SGA 1] that for any connected scheme X, and any geometric
point of X (i.e., i; is a point of X with values in some algebraically closed field), we
have the profinite fundamental group 7r, (X, ), which classifies finite etale coverings
of X. For variable (X, ) as above, formation of 7r1 is a covariant functor. As in
classical topology, for any two geometric points j, and S2 of X, there is the notion of
a "path" from C1 to '2, which induces an isomorphism from 7rl(X,b1) to irl(X, 2).
This isomorphism is independent of the chosen path up to inner automorphism
of either source or target. In the special case when X is the spec of a field k, a
geometric point C is an algebraically closed overfield L of k, and 7r1(X, C) is just
the galois group Gal(k3eP/k), k3eP denoting the separable closure of k in L. In the
particular case of a finite field, or more generally of a connected scheme X whose
7r1 is abelian, the group 7rl (X, i;) is canonically independent of base point, and may
be denoted 7r1(X) with no ambiguity.

9.0.3. When the connected scheme X is normal, it is irreducible, say with
generic point 71 := the spec of its function field K. In terms of an algebraic
closure K of K, viewed as a geometric generic point 7 of X, the group 7r1(X, ) is
the quotient of Gal(KSe"/K) which classifies those finite separable L/K with the
property that the normalization of X in L is finite etale over X.

9.0.4. When k is a finite field, say of cardinality q, then Gal(k9eP/k) is canoni-
cally the group 2, with generator the "arithmetic Frobenius" automorphism x F -* xq
of k3eP. The inverse of this generator is called the "geometric Frobenius", denoted
Fk-

9.0.5. Suppose now that X is a connected scheme, with geometric point ,
that k is a finite field, and that x in X(k) is a k-valued point of X, which we view
as a morphism x : Spec(k) -> X. So if we pick a separable closure k'P of k, and
denote by x the k-valued point lying over x, we get a canonical homomorphism

7rl (Spec (k)) - 7rl (X, T).

If we compose this with any isomorphism iri (X, x) = 7r1(X, C) given by a path, we
get a homomorphism

7r1(Spec(k)) - 7r, (X, )

which is well-defined up to inner automorphism of the target. The image of Fk
in irl(X, ) is thus well-defined up to conjugacy: its conjugacy class in zrl (X, C) is

267
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called the Frobenius conjugacy class, denoted Fk,,, attached to the finite field
k and to the k-valued point x in X(k).

9.0.6. Let us now recall the basic set-up for Deligne's equidistribution theo-
rem. We are given a finite field k, a smooth, geometrically connected scheme X/k
of dimension d > 0, a prime number I invertible in k, and a lisse Q1-sheaf F on X of
rank r > 1, which for our purposes we may define to be an r-dimensional, continu-
ous Q1-representation p of 7rl (X, !) (intrinsically in GL(.Fv)). [This definition of a
lisse Q1-sheaf, as a continuous Q1-representation p of 1r1(X, rj), makes sense on any
normal connected scheme X, and later in this chapter (in 9.3.1) such more general
X's will come into play.]

Remark 9.0.7. We should mention here the fact that any compact subgroup
of GL(r, 01), in particular the image p(lrl(X, rl)), lies in GL(r, Ea) for some finite
extension Ea of Q1, so this definition agrees with the one given in [De-Weil II,
1.1.1], where it was required that p land in some GL(r, Ea). This fact, which does
not seem to appear in the literature, has been repeatedly rediscovered. We first
learned it from Sinnott in 1989, and then again from Pop in 1995. Here is a Haar
measure version of Pop's argument, which was based on Baire category. Since Q1
has only finitely many extensions of any given degree n inside a fixed QI, we can
find a countable sequence of finite extensions of Q1, say El :_ `SCI C E2 C E3 C ,

whose union is (e.g.,(e.g., take for En the compositum inside Q1 of all finite extensions
of Q1 of degree < n). Then for each n, Gn := GL(r, E,,) is a closed subgroup of
G = GL(r,Q1), we have G,, C G is the union of the G,,. Now apply the
following lemma.

Lemma 9.0.8 (Pop). Let G be a topological group, which is the increasing
union of a countable sequence of closed subgroups G,,. Then any compact subgroup
K of G lies in some G.

PROOF. For each n, Kn := K fl G is a closed subgroup of K, we have
Kn C K is the union of the K,,. We claim that K is equal to some
Kn. To see this, consider the Haar measure u on K of total mass one. Since K
is the increasing union of the measurable (because closed) subsets Kn, we have
1 = µ.(K) = limn-,, p(Kn). Pick n large enough that µ(Kn) > 1/2. Then
K = Kn, for if not there exists a left coset ?'K,, of Kn in K which is disjoint
from Kn, and then K contains -rKn, and so

1 = 1i(K) ? /2(Kn) + .t('yKn) = 2p(Kn)
(the last equality by the translation invariance of µ), contradiction. QED

9.0.9. We denote 7ie°m(X ) :_ zrl(X ®k k,), or just 01"' X/k is un-
derstood, and call it the geometric fundamental group. Writing

7r1

for ir1(X, i7), we
have the fundamental exact sequence

1 -a irf°' - ir1 d gi Gal (/k)(_ via Fk) - 1.

9.0.10. We fix an embedding c of fields U1 -> C. For any real number w, we
say that F is 1-pure of weight w if, for every finite overfield E of k, and for every
point x in X(E), all the eigenvalues of p(FE,x) have, under the complex embedding
t, complex absolute value Card(E)w/2. We say that .F is pure of weight w if it is
c-pure of this same weight w for every choice of t.
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9.0.11. For any integer n, we denote by Q1(n) the lisle, rank one Q1-sheaf on
Spec(k) which, as character of Gal(k/k), takes the value Card(k)-" on Fk. Thus
Q1(n) is b-pure of weight -2n, for any t. More generally, for any unit a in the
ring of integers of 01, we denote by ,adeg" the lisle, rank one Q1-sheaf on Spec(k)
which, as character of Gal(k/k), takes the value a on Fk. Thus O1(-n) is "adegn
for a = Card(k)". For each embedding i. : 01 -ti C, "adeg" is L-pure of weight
2log(It(a)J)/1og(Card(k)), which might (e.g., if a is transcendental) vary wildly
with t. If we choose an N'th root of Card(k) for some N, we may speak of the
lisse rank one sheaves 01 (M/N) for any rational number MIN in (11N)Z. For any
X/k as above, we denote by '01(-n) and "adeg" the lisse, rank one QI-sheaf on X
obtained by pullback. As characters, their values on Frobenius conjugacy classes
FE,x are given by Card( E)n and by adeg(E/k) respectively. Given any lisse .F as
above, we denote by .F(-n) and F ® adeg the tensor products of F with Q1(-n)
and "adeg" respectively.

9.0.12. Given F on X as above, we denote by GgeO,n the Q1-algebraic group
defined as the Zariski closure of p(7r1 (X ®k k)) in GL(r). It is a fundamental result
of Deligne [De-Weil II, 3.4.1 (iii)] that if F is c-pure of some weight w, then F
is completely reducible as a representation of iri(X ®k k), and hence that Ggeomn is
reductive. It then follows from a result of Grothendieck [De-Weil II, 1.3.9 and the
first four lines of its proof] that Ggenm is in fact semisimple (in the sense that its
identity component is semisimple, or equivalently that its Lie algebra is semisimple).

9.0.13. Given F on X as above, there are compact(ly supported) cohomology
groups H,(X ®k k, F), which are finite-dimensional Q1-spaces on which Gal(k/k)
acts continuously, and which vanish unless i lies in [0, 2d). For any integer n, or
any l-adic unit a, we have

®k k,.F(n)) HH(X ®k k,.F)(n),

H,'(X (9 k k, .F ® adeg) = Hi(X (& k,.F) ®deg,

a kind of trivial projection formula. Moreover, H2d(X ®k k,.F(d)) is canonically
the coinvariants under 7rgeom in .F, i.e.,

H2d(X ®k k,.F) (F,,. om)(-d).

Moreover, if X is in addition affine, then H,',(X ®k k,.F) vanishes unless i lies in
[d, 24; this is the Poincare dual of the Lefschetz affine theorem, that a d-dimensional
affine variety over an algebraically closed field has cohomological dimension < d.

9.0.14. The diophantine interest of these compact cohomology groups is given
by the Lefschetz trace formula, in which for ry a conjugacy class in irl we write
Trace(yI.F) := Trace(p(-y)): for any finite overfield E of k, we have

1: Trace(FE,xIF) := E Trace(p(FE,x))
x in X(E) x in X(E)

_ (-1)i Trace((Fk)deg(E/k)IHci(X ®k k,.F))
i
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9.0.15. Suppose now in addition that .F is t-pure of weight w. Then the
fundamental result of Deligne in [De-Weil II, 3.3.1 and 3.3.10] is that for each i,
the compact cohomology group Hi (X ®k k, .F) is mixed of weight < w + i, in the
sense that every eigenvalue of Fk on this cohomology group has, via t, complex
absolute value < Card(k)(-+i)/2. Taking for .F the constant sheaf Q j, which is
t-pure of weight zero for any choice of t, we see that HH(X ®k k, Qi) is mixed
of weight < i, while the description of HHd in terms of irge°n'-coinvariants shows
that HHd(X ®k k, 01) (-d), the one-dimensional space on which Fk acts as
Card(k)d. The Lefschetz trace formula then gives that for every finite extension E
of k,

(9.0.15.1) Card(X(E)) = E(-1)1 Trace((Fk)deg(E/k) I Hc(X ®k k, Q1))'
i

Putting the HHd term to the other side, and denoting

hl{X ®k k, I) := dime Hi: (X ®k

we get the Lang-Weil estimate [Lang-Weil]

Card(X(E)) - Card(E)dI h'(X ®k k, Qi) Card(E)i/2
i<2d

(9.0.15.2)

( E h'(X®k k,ci)) Card(E)(2d-1)/2.
i<2d /

9.0.16. Consider now the case when .F is t-pure of weight zero, and in which
7rioO`n acts irreducibly and nontrivially, or more generally without nonzero co-
invariants, in the representation p corresponding to F. In view of the descrip-
tion (cf. 9.0.13) of Hid in terms of irgeOm-coinvariants, this means precisely that
H2d(X ®k k,.F) = 0. The Lefschetz trace formula then gives, for every finite ex-
tension E of k,

Trace(FE,x 1.F)

(9.0.16.1)
x in X(E)

E (-1)i Tra.Ce((Fk)deg(E/k) IHi(X Ok k, F)),
i<2d

with HH t-mixed of weight < i. This gives the following inequality of complex (via
t) absolute values, for every finite extension E of k:

(9.0.16.2)

Trace(p(FE,x))
x in X (E)

h'(X ®k Card(E)i/2
i<2d

5 ®k k,.F)) Card(E)(2d-I)/2.

i<2d JJJ

9.1. Interlude: zeta functions in families:
how lisse pure.F's arise in nature

9.1.1. Before embarking on an exposition of Deligne's equidistribution theo-
rem for lisse, t-pure sheaves ,F, we first explain the most fundamental way such .F
arise in nature.
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9.1.2. To begin, let us recall the most basic facts about zeta functions of
general varieties over finite fields, and their expression by l-adic cohomology. We
begin with a finite field k, and a scheme X/k which is separated and of finite type.
Inside (any choice of) k, k has a unique extension kn of each degree n > I. We
denote

Nn := Nn(X/k) := Card(X(kn)).

The sequence of integers Nn(X/k) is the most basic diophantine invariant of X/k.
They are most meaningfully packaged in the zeta function of X/k, defined as the
formal series in one variable T

Zeta(X/k, T) := exp NnT7B/n
n>1

in 1+TQ[[T]].

This series also has an Euler product expression, over the closed points of X. For
X/k as above, a closed point x of X is an orbit of Gal(k/k) acting on the set X (k)
of k-valued points of X. The degree of a closed point x, denoted deg(x), is the
cardinality of the corresponding orbit. Thus the closed points of degree dividing a
given integer n > 1 are precisely the orbits of Gal(k/k) on the set X(kn). So if we
denote by

Bn := Bn(X/k) := the number of closed points of degree n,

we have the identities

Nn = >TBr.
rI n

These identities are then equivalent to the Euler product expression

Zeta(X/k, T) = (1 - Tde9(x))-1,

closed points x of X

which in turn shows that Zeta(X/k, T) lies in 1 +TZ[[T]]. By a fundamental result
of Dwork [Dw], Zeta(X/k, T) is a rational function of T, i.e., lies in Q(T), and, in
lowest terms, is of the form A(T)/B(T) with A and B in 1 + TZ[T]. In particular,
the reciprocal zeroes and poles of the zeta function are algebraic integers.

9.1.3. We now turn to Grothendieck's l-adic cohomological approach to the
zeta function. For any prime number l invertible in k, Grothendieck et al. defined
[SGA 1, 4, 41, 5], for such an X/k, compact cohomology groups Hi, (X ®k k, 0l),
which are finite-dimensional Q1-spaces on which Gal(k/k) acts continuously, and
which vanish unless i lies in [0, 2 dim(X)].

9.1.4. Before going further, notice that each H.(X ®k k, Q1), thought of as a
finite-dimensional Q1-space on which Gal(k/k) acts continuously, may be thought
of, tautogously, as a lisse Q1-sheaf on Spec(k). This point of view will be of vital
conceptual importance below.
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9.1.5. The Lefschetz trace formula [Gro-FL, SGA 4a, Rapport] for X/k,
recalled in 9.0.15.1 above, asserts that for each n > 1,

(9.1.5.1) Nri = E(-1)i Trace((Fk)"]H'(X (Dk k,'0r)) in Q1.
i

This formula for given X/k and all n is equivalent to the formula

2 dim(X)

(9.1.5.2) Zeta(X/k, T) _ [J det(1 - (gk k, 0I))(->)'+1

i=0

an identity in 1 + TQI[[T]] which we call the 1-adic cohomological expression of
the zeta function. It is known [SGA 7, Expose XXI, Appendice, 5.2.21 that the
individual factors have coefficients in the ring of all algebraic integers, i.e., that
the eigenvalue a of Fk on H,(X ®k k, 01) are algebraic integers. Deligne's main
result in Weil II, [De-Weil II, 3.3.4], applied to X/k, gives that H,(X (9k k, 0j)
as lisse Q1-sheaf on Spec(k) is mixed of integer weights w in [0, i], in the sense that
it is a successive extension of lisse 01-sheaves on Spec(k) each of which is pure of
some integer weight in [0, i]. Concretely, this means that for any eigenvalue a of
Fk on HH(X ®k k, 01), there is an integer w in [0,i], called the weight of a, such
that lr,(a)I = Card(k)-"2 for any complex embedding c of the field of all algebraic
numbers. We should remind the reader that, for a general X/k, it is (conjectured
but) not known that for each i, the individual l-adic factor

det(I -TFkIH'(X ®k,))
lies in Z[T] and is independent of the auxiliary choice of l invertible in k.

9.1.6. We now assume that in addition X/k is proper, smooth, and geomet-
rically connected, of dimension d > 0. In this case, we have Poincare duality: the
cup-product pairing

H.z (X ®k k,01) x Hid t(X ®k k, 0I) -' HCd(X ®k 04(-d)

is a perfect pairing which is Gal(k/k)-equivariant. Since -Q,(-d) is pure of weight
2d, and each H. is mixed of weight < i, it follows from this duality that each
Hvi (X ®k k, fit) is pure of weight i, cf. [De-Weil II, 3.3.9].

9.1.7. Thus for X/k proper, smooth and geometrically connected of dimen-
sion d > 0, each Hi(X ®k k, 0r), thought of as a finite-dimensional Qi-space on
which Gal(k/k) acts continuously, is a lisse QI-sheaf on Spec(k) which is pure of
weight i.

9.1.8. From this purity, we see that there can be no cancellation in the coho-
mological expression of the zeta function, that all the reciprocal zeroes (respectively
poles) of the zeta function are pure of some odd (resp. even) weight, and that for
each i the individual factor

det(1 -TFkIH,(X ®k 1, 01))

is independent of l and lies in 7G[T], because it can be recovered intrinsically from
the zeta function by looking at the zeroes (for i odd) or poles (for i even) of the
zeta function which lie on the complex circle of radius Card(k) -i/2.
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_ 9.1.9. If we fix a choice ak of q1/2 in 01, we may form the lisse rank one
Q1-sheaf

(9.1.9.1) 01(-1/2) := (ak)deg

on Spec(k), and its tensor powers 01(-i/2) :_ (01(-1/2))®', i in Z. We then form
the Tate-twisted cohomology groups Hi (X Ok k, 01) (i/2), which are pure of weight
zero. On these twisted groups, cup product induces Gal(k/k)-equivariant perfect
pairings

{9.1.9.2}
Ok k, 01}(i/2) x Hid-'{X Ok k, 1)((2d - i)/2)

Hr2d(X ®k l)(d) - 1
In particular, the twisted middle dimensional cohomology group

Ha (X (9k k,01)(d/2)

is autodual. Because cup product obeys the usual sign rules, this autoduality is
symplectic if d is odd, orthogonal if d is even.

9.1.10. Now let us consider not a single X/k which is proper, smooth, and
geometrically connected, but rather a family of such, by which we mean a proper
smooth morphism 7r : X -, S with geometrically connected fibres. We fix a prime
number 1, and we assume that S is a connected normal 7L[1/1]-scheme which is
separated and of finite type over Z[1/1]. For each field k, and each k-valued point s
in S(k), the fibre X9/k of X/S at the point s is proper, smooth and geometrically
connected. For each i, the compact cohomology group Hi(XS Ok k, Q1) with its
continuous action of Gal(k/k) is a lisse Q1-sheaf on Spec(k), which, if k is finite, is
pure of weight i. How are these sheaves related for various fields k, and for various
k-valued points s of S?

9.1.11. The answer is given by the specialization theorem for the cohomology
of the fibres of a proper smooth morphism [SGA 4, XVI, 2.2], which in turn
depends on the proper base change theorem [SGA 4, XII, 5.1 (iii) and 5.2 (iii)]
and the smooth base change theorem [SGA 4, XVI, 1.1 and 1.2]. For each i there
is a lisse Q1-sheaf, denoted R'7ri01i of rank denoted bi, on S, i.e., a continuous
finite dimensional Q1-representation pi., of 7rI(S) to GL(b2iQ1), with the following
interpolation property:

9.1.11.1. For every field k, and every point s in S(k), viewed as a morphism
s : Spec(k) -, S, the pullback s*(R'7r,i1), i.e., the composite representation

Gal(k/k) = 7r, (Spec(k)) - Irk (S) -* GL(bi, 01)

of Gal(k/k), is isomorphic to the sheaf on Spec(k) given by HH(XS Ok k,01) with
its continuous action of Gal(k/k).

9.1.12. Let us make several remarks here. First of all, if we take for k the
function field KS of S, and for s in S(KS) the generic point q of S, then 7rI(S) is a
quotient of Gal(KS/Ks). So a representation of 7r1(S) is determined by its pullback
to Gal(Ks/Ks). Therefore there is at most one lisse QI-sheaf on S which has the
stated interpolation property (9.1.11.1), even for the single test case (Ks, ). So
we could rephrase the theorem in to parts, as saying that
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(X,j ®K5 Ks, Q) as representation of Gal(KS/Ks) is "unramified on S"1) Hri
in the sense that it is trivial on the kernel of the surjection Gal(Ks/Ks) - 7r1(S),
and hence factors through this surjection, and thus defines a lisse Qj-sheaf on S,

2) the lisse sheaf on S defined in part 1) has the stated interpolation property
(9.1.11.1).

9.1.13. The second remark is this. Take for k a finite field, s in S(k). On the
one hand, we defined a Frobenius conjugacy class Fk,e in 7r1 (S), so we may speak
of the characteristic polynomial

det(1 - TFk,,IR'7nQj) det(1 -Tpi,I(F'k,9))

On the other hand, we defined s*(Ri7rjQj) as a lisse sheaf on Spec(k), so we
may speak of

det(1 - TFkIs*(R'7ri0j)).

It is tautologous that we have the equality

det(1 - TFk,9IR'7r,Qj) = det(1 -TFkIs`(Riirj0j)).

It results from the specialization theorem that we have the equality

det(1 - TFkIs`(Ri7riQj)) = det(1 ®k k,01)).

Putting these last two equalities together, we find the fundamental compatibility

(9.1.13.1) det(1 -TFk,3IRiirlQj) = det(1 - ®k .

In the extreme cases i = 0 and i = 2d, for each fibre Xs/k, we have

H°(X., ®k k, 01) = 01,
Hr2 d(X9 ®k k,01)(d) = 01,

as representations of Gal(k/k). We may infer that the lisse rank one Q1-sheaves
R°7rr0j and R2d7r1Qj(d) are both isomorphic to Q1, i.e., trivial as characters of
7rj (S). To check this, it suffices by Chebotarev to show that both are trivial on all
Frobenius conjugacy classes Fk,,, and this triviality is given by 9.1.13.1 above.

9.1.14. The cup product pairings

(R'7r,ij)(i/2) x (R2d-u.7r,jai)((2d - i)/2) - (R2d7ri0j)(d) - 01
are perfect pairings of lisse sheaves, pure of weight zero, which induce on fibres the
cup product pairings of 9.1.9.2. In particular, (Rd7r,Qj)(d/2) is autodual, symplec-
tically for d odd and orthogonally for d even.

Scholie 9.1.15 Let X/S be proper and smooth with geometrically connected
fibres all of dimension d > 0, with S normal, connected, and of finite type over
76[1/1]. The lisse Q1-sheaves Ri7rPQj on S vanish for i outside [0, 2d], Ri7r,Qj is
of pure weight i, R°7r,Qj L 01, R2d7r,01 Qj(-d), and Rdir!Qj(d/2) is autodual,
symplectically for d odd and orthogonally for d even. For each finite field k, and
each point s in S(k), we have

det(1 - TFk,BIR'1r,Qj) = det(1 -TFkIH,(X8Ok k,Q1))

Taking the alternating product over i, we get
2 dim(X)

Zeta(X.,/k,T) = 11 det(1
-TFk,sIRi7r,Qj)(-1)i}1.

i=o
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9.1.16. Just to make this entirely down to earth, let us consider the case
when X/S is a family of proper smooth geometrically connected curves C/S of
genus g, i.e., the case d = 1 of the above discussion. The above formula for the zeta
functions of the fibres boils down to this: for any finite field k, and any s in S(k),
we have

Zeta(C8/k, T) = det(1 - TFk,81R'lrlQ1)/(1 - T)(1 - Card(k)T),

det(1 - TFk,8IR11r,Q1) = det(1 - TFk J H.' (C®®k k, 01)),

and the twisted sheaf R17rrQ,(1/2) is symplectically self-dual of rank 2g, and pure
of weight zero. This sheaf R17r,Q1(1/2) is perhaps the archetypical example of a
lisse Q1-sheaf which is pure of weight zero.

9.2. A version of Deligne's equidistribution theorem

9.2.1. We can now state and prove a useful version of Deligne's equidistri-
bution theorem. We return to our basic setup: k is a finite field, X/k is smooth
and geometrically connected of dimension d > 0, 1 is invertible in k, t is a complex
embedding of 01, and F is a lisse QI-sheaf on X, which we suppose to be t-pure of
weight zero. As above, we denote by Ggeom the Zariski closure of p(lrgeOm), which
is a semisimple algebraic group over 01 (by (De-Weil II, 1.3.9 and the first four
lines of its proof] and the t-purity of .F). We now make the following assumption:

(9.2.1.1) under p, we have p(7r1) C Ggeo,n(01)

9.2.2. We will use this assumption in the following way. For any finite-
dimensional Q1-representation

A : Ggeom -. GL(m)

of the algebraic group Gg,,,,,, the composite representation A o p of 7r1,

1r1 -+ Ggeom (01) - GL (m, 01)

"is" a lisse Q1-sheaf, denoted A(.F), on X, with the property that for every element
ry in n1, we have

Trace(-yIA(.F)) = Trace(A(p('y)))

9.2.3. Via t, we may speak of the group Ggeom(C), which we may view as
a complex Lie group. Because Ggeom is sernisimple, there exists in Gg,,m(C) a
maximal compact subgroup K, and any two such are conjugate.

9.2.4. Our next task is to define Frobenius conjugacy classes in the compact
group K. For any finite extension E of k, for any x in X (E), and for any choice
of a Frobenius element FE,, in 7r1, the image tp(FE,x) in Ggeom(C) has all its
eigenvalues on the unit circle (.F being t-pure of weight zero). We do not know that
p(FE,x) is semisimple, i.e., diagonalizable, but if we pass to its semisimple part
p(FE,x)" is the sense of Jordan decomposition, we obtain an element t(p(FE,x)")
of Ggeom(C) which is semisimple with unitary eigenvalues, and which hence lies in
a compact subgroup of Ggeom{C) (e.g., it lies in the topological closure of the cyclic
group it generates, which is such a compact subgroup). Therefore t(p(FE x)") is
Ggeom (C)-conjugate to an element of K. Using the fact that Ggeom and Ggeom (C)
have the "same" finite-dimensional representation theory, the unitarian trick (that
Ggeom(C) and K have the "same" finite-dimensional representation theory) and
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the Peter-Weyl theorem (that K-conjugacy classes are separated by the traces of
finite-dimensional representations of K), one shows easily [De-Weil II, proof of
2.2.2] that the element of K obtained this way is well-defined up to K-conjugacy.
In other words, the Gg,,,,(C)-conjugacy class of t(p(FE,x)ss) meets K in a single
K-conjugacy class. We denote this K-conjugacy class r9(E, x), and think of it as
the generalized "angle" of tp(FE,x)

9.2.5. We can now state a version of Deiigne's equidistribution theorem. This
version is similar to the one given in [Ka-GKM, 3.61, where we assumed in addition
that X/k was an affine curve. There we used the Euler-Poincare formula to prove
3) below, giving an expression for the constant here denoted C(X ®k k, .F) in terms
of the breaks of .F at each of the points at infinity. In that case, denoting by g the
genus of the complete nonsingular model X of X, by N the number of k-points in
X - X, say xi for i = 1, ... , N, and by ri the largest break of .F at xi, we found
that

C(X®kk,.F)=2g-2+N+ri

would work in 3). The idea of bounding the constant in the general case, as we do
here in 4) below, we learned from Ofer Gabber.

Theorem 9.2.6 (compare [De-Weil If, 3.5.3], [Ka-GKM, 3.6]). Let k be a
finite field, X/k a smooth, geometrically connected scheme of dimension d > 0, 1
a prime number invertible in k, t a field embedding of 01 into C, and F a lisse
Q1-sheaf on X of rank r > 1 corresponding to an r-dimensional continuous Q -

erepresentation p of irl. Denote by Ggeom the Zariski closure of p(ir' "). Assume
that F is t-pure of weight zero, and that p(rri) lies in Gg...... (01). Denote by K a
maximal compact subgroup of Ggeom(C). Then we have the following results,

1) The Probenius conjugacy classes z9(E, x) defined in 9.2.4 above are equidis-
tributed in the space of conjugacy classes of K, in the sense that for any continuous
C-valued central function f on K, we have the limit formula

fK f d Haar = Card(X(E))) E f (79 (E, x)),
x in X(E)

the limit taken over finite extensions E of k large enough that X (E) is nonempty.
2) For any finite-dimensional irreducible nontrivial C-representation A of K,

deduced via t and restriction to K from a finite-dimensional irreducible nontrivial
Q1-representation A of Ggeom, we have the inequality

E h'(X®kk,A(.F))Card(E)
x in X(E)

for all finite extensions E of k.
3) There exists an integer C(X ®k k, F) with the property that for any finite-

dimensional '0I-representation A of Ggeom, we have the inequality

E h4(X Ok k, A(.F)) < dim(A)C(X Ok k, .F).
i

4) Pick a finite extension Ea of Qj such that p lands in GL(r, Ea). Denote by
Oa the ring of A-adic integers in Ea, and by IFa the residue field of OA. Pick an
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Oa-form.Foa of.F, and consider the lisse 1FA-sheaf -Fmod a := .F0 /).Fox Choose
any finite etale galois covering (not necessarily connected) Y of X ®k k, say

cp: Y -+ X ®k k,

such that cp* (.Fmod a) on Y is trivial. Then C(X (9k k,.F) h'(Y, FA), the sum
of the mod A Betti numbers of Y, "works" in 3) above.

5) For A(X ®k k) h' (X (9k k, 01) and C(X (&k k, F) as in 4) above,
for every irreducible nontrivial representation A of K, and every finite extension E
of k with Card(E) > 4A(X ®k k)2, we have the estimate

(1/Card(X(E))) Trace(g(i9(E,x)))
x in X(E)

<2 dim(A)C(X (&k k, F)/ Card(E)112

PROOF. Statement 2) follows from [De-Weil II] and the Lefschetz trace for-
mula for the sheaf A(.F) on X/k, namely that for every finite extension E of k we
have

Trace (A(p(FE,,,)))
x in X (E)

_ 1(-1)iTraCe((Fk)deg(E/k)I (X (9k k,A(F))).

In this equality, the left hand side we may rewrite as

E Trace(A(p(FE,x))S9) = E Trace(A(p(FE. )39)),
x in X(E) x in X(E)

whose image under t is precisely E. in x(E) ` race(A(i9(E,x))). What about the
right hand side? For A irreducible and nontrivial, we have

H,2 d(X Ok k, A(F)) = 0,
and the sheaf A(.F) is t-pure of weight zero (Ggeom being semisimple, A(.F) is a sub-
quotient of some tensor power .F®n of .F). Thus by the main result of [De-Weil III,
each group Hi (X ®k k,A(.F)) is t-mixed of weight < i. So we get

Trace(A(i9(E, x)))
x in X(E)

< h'(X ®k k, A(.F)) Card(E) i12

< h'(X ®k k, A(.F)) Card(E) i/2
i<2d-1

< h'(X ®k k, A(.F)) Card(E)(2d-i)/2.

Now that we have proven 2), we turn to proving 1). We first analyze when we
can be sure X(E) will be nonempty. By the Lang-Weil estimate (9.0.15.2), if we
denote by A(X 0j) := Ei<2d h'(X ®k k, 01) the sum of all but the highest l-adic
Betti numbers of X, we have the inequality

I Card(X(E)) -- Card(E)dl < A(X Ok k) Card(E) (2d-1)/2

for every finite extension E of k. So X (E) is nonempty provided that

Card(E)112 > A(X Ok k),



C
7,

'I,

278 9. EQUIDISTRIBUTION

and if Card(E)I'2 > 2A(X ®k k) we have

Card(X(E)) > Card(E)d/2.

So by 2) we have

(1/Card(X(E))) E Trace(A(#(E, x)))
x in X (E)

< h' (X (9k k, A(.F))[Card(E)d/ Card(X(E))]/ Sqrt(Card(E))

hC(X (&k k, A(.F))2/ Sgrt(Card(E)).

Once we have this estimate, then 1) follows by the Peter-Weyl theorem, which
assures us that every continuous C-valued central function f on K is a uniform limit
of finite sums of trace functions of irreducible, finite-dimensional representations of
K. To prove 1), it suffices to check individually the case that f is either the constant
function 1, in which case there is no need to pass to a limit, or the case when f is
the trace function of an irreducible nontrivial representation A, in which case the
integral fK Trace(A(k)) dk = 0, and the finite E-sum is 0(1/ Sqrt(Card(E))) by
this last estimate.

To prove 3) and 4), we argue as follows. We must show that for any finite-
dimensional 0I-representation A of GgeOm, we have the inequality

®k A(.F)) < dim(A) h'(Y, IF,).

Fix one such A. It is defined over some finite extension H of our already cho-
sen Ea. If we work over OH, using the OH-form F0, ®da OH, its reduction
(moo, (&n,, OH) ®OH HA is just the extension of scalars a) ®!F, IHIa, and hence
itself becomes trivial as IHIa-sheaf on the same Y. Since

H,'(Y,1HIa) = H, (Y, F,\) OF,\ HA

we have E, h'(Y,1Fa) = t h'(Y,1Hla). So it suffices to treat universally the case in
which the representation A is also defined over Ea. _

Since cp : Y -> X Ok k is finite etale galois, say with group r, for any Q1-sheaf
Qon X®kkwe have

Hc(X ®k k, Hc(Y, W *9)r

so we have a trivial inequality h'(X®kk, Q) < h'(Y, cp'Q). The sheaf A(F) is a sub-
quotient of some tensor power F®7z of F, so cp*A(.F) is a subquotient of
Pick an Oa-form A(.F)na of A(F). We claim first that the lisse IFa-sheaf A(.F)mod a
defined as the reduction modA of A(T)OA has W"(A(.T)n,(,da) a successive exten-
sion of the constant sheaf IFa by itself on Y. To see this, let U be any connected
component of Y, and 'y any element of 7r1(U, some base point). By hypothesis,
the characteristic polynomial of -y on W'.F, which is a priori a monic polynomial of
degree r = rank(F) with OA-coefficients, is certainly congruent mod A to (T - 1)f,
because y acts trivially mod A. Therefore the characteristic polynomial of y on
cp'.F®" is monic with OA-coefficients and mod A is (T - 1)''". Consider the char-
acteristic polynomial of y on W*A(.F). It is monic with OA-coefficients, and it



'.3

9.3. UNIFORM VERSION OF THEOREM 9.2.6 279

divides the characteristic polynomial of -y on cp*,F'01. Therefore the characteris-
tic polynomial of y on W*A(.F), mod A, is a divisor- of (T - 1)"', and hence must
itself be congruent mod A to (T - 1)dim(A) Since a representation is determined
up to semisimplification by its characteristic polynomials, it follows that on each
connected component U of Y, p*A(F)mod A is a successive extension of constant
sheaves FA. Writing the long exact cohomology sequence attached to a short exact
sequence of FA-sheaves on Y, say

0->A- B-C-+0,
we see that

hC'(Y, B) < hC'(Y, A) + >2 hC(Y, C).

This yields

h'(Y, (P*A(Y),nod A) _< dim(A) hC'(Y, FA)

By universal coefficients, i.e., by the long exact cohomology sequence attached to
the short exact sequence of sheaves on Y

0 -> W*A(f)0 -3 p*A(F)o - *A(F)moda - 0,

we have for each i the inequality

h'(Y,ip*A(F)) < h'(Y,W*A(.7)modA)

Combining this with the already noted inequality

h'(X ®k k, A(.F)) < h'(Y, cp*A(F)),
i i

we find the asserted inequality

hC(X Ok k, A(.F)) < dim(A) E hC'(Y, IF),).

Statement 5) is immediate from 2), 3), 4) and [Lang-Weil). QED

9.3. A uniform version of Theorem 9.2.6

9.3.1. In the version of Deligne's equidistribution theorem given above, we
were concerned with questions of equidistribution for a suitable .7 on a single X/k.
We now turn to the question of uniformity, when we allow X/k to vary in a family.
Thus we fix a prime number 1, and a connected normal Z[1/1]-scheme S which is
separated and of finite type over Z[1/l]. In fact, our principal application will be
to the case when S is Spec(Z[1/1]) itself. Over S we give ourselves a smooth X/S
all of whose geometric fibres are connected of common dimension d > 0. On X,
which is normal and connected, we pick a geometric point l;, and give ourselves
a lisle Qi-sheaf 2 of rank r > 1, corresponding to an r-dimensional continuous
Q,-representation p of the fundamental group Trl (X, C). For each finite field k of
characteristic different from 1, and each point s in S(k), the restriction T9 of .F to
the fibre X3 of X/S at s is a lisse Q1-sheaf of rank r on a smooth, geometrically
connected scheme X9/k of dimension d over a finite field k in which I is invertible.
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9.3.2. We first give two standard uniformity lemmas.

Lemma 9.3.3. There exists an integer A(X/S) such that for all finite fields
k, and all k-valued points s in S(k), we have the inequality

A(X, (9k k) h4 (X®®k k, i) < A(X/S).
i<2d

PROOF. This is immediate from the constructibility of the higher direct images
with compact support R` f,Q1 for f : X --i S the structural morphism, together with
proper base change. QED

Lemma 9.3.4. Pick a finite extension Ea of Qt such that p(7r1(X, )) lies in
GL(r, EA), an 0.\ -form Fo, of F, and a finite etale galois W : Y X such that
cp* (,Foa l ).Fo,) is trivial as lisse F,\-sheaf on Y. [Thus for all finite fields k, and all
k-valued points s in S(k), the sheaf w*((Fca)$/A(Foa)s) is trivial as lisse F.\ -sheaf
on Ys, so a fortiori is trivial on Y, ®k k.] There exists an integer C(X/S,F) such
that for all finite fields k, and all k-valued points s in S(k), we have the inequality

C(X3 ®k k, 77s) -_ hc(Y3 ®k k, FX) < C(X/S, .F).

PROOF. This is immediate from the constructibility of the higher direct images
with compact support RigllF, for g : Y -p S the structural map. QED

9.3.5. We now fix a semisimple Qi-algebraic subgroup G of GL(r), which we
assume satisfies the following condition (9.3.5.1):

9.3.5.1. The given r-dimensional representation of G is irreducible ("G is an
irreducible subgroup of GL(r)"), and the normalizer of G in GL(r) is G,,,. G.

9.3.6. The standard examples of such G in GL(r) are the special linear group
SL(r), for r > 3 the full orthogonal group O(r), for r odd the special orthogonal
group SO(r), and for r even the symplectic group Sp(r).

9.3.7. Fix a field embedding i of Q into C. We assume that the sheaf F on
X satisfies the following conditions (9.3.7.1) and (9.3.7.2):

9.3.7.1. For every finite field k and every k-valued point s in S(k), there
exists a real number ws such that F, on X9/k is c-pure of weight we.

9.3.7.2. For every finite field k and every k-valued point s in S(k), the geo-
metric monodromy group Gge°n,,s attached to F3 on Xe/k is conjugate in GL(r)
to G.

9.4. Interlude: Pathologies around (9.3.7.1)

In all known examples which "occur in nature" and in which (9.3.7.1) holds;
the weight w, is independent of s. Here is an artificial example, worked out in a
discussion with Bill McCallum, where the weight ws does in fact vary with s. In
this example, the rank r will be one, X/S will be S/S (thus each 7rgeOm(X,) will
be trivial), and G will be the identity subgroup {1} of GL(1). To begin, we pick a
prime number l which does not split completely in the Gaussian field Q(i). Thus l is
either 2 or a prime l = 3 mod 4, and Qt (i) is a field which is quadratic over Qj, with
ring of integers Z [i]. The scheme S will be the spec of the ring R := Zf l/2l, i]. Over
this ring, we have the elliptic curve E/R given by the (affine) equation y2 = x3 - x.
Each maximal ideal of R is principal and has a unique generator 7r which lies in Z[i],
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is prime to 1, and which satisfies it _ 1 mod(1 + i)3 in 7Z[i]. As was already known
implicitly to Gauss (cf. [Weil-NS]), the curve E/R has complex multiplication by
Z[i], and the Frobenius endomorphism of E OR (R/irR) is (the reduction mod 7r
of) complex multiplication by 7r. Now consider the 1-adic Tate module TI(E): it is
a free of rank one ZI [i]-module on which 7r1 (S) acts linearly and continuously by
a continuous (7GI[i])'-valued character, say XI El R, of 7r1(S). For each prime it in
Z[i] which is prime to 21 and with it _ 1 mod(1 + i)3, the arithmetic Frobenius at
in, call it V,, acts on TI(E) as in. Thus XI.E/R(`pn) = in for every maximal ideal (7r)
of S. On the geometric Frobenius F.F at 7r, we have XI. E/R (Fr) = 1/7r.

The character X2 E/R : 7rI(S) -r (7L2[i])" has image the subgroup

1 + (1 + i)3Z2[i].

To see this, notice that because the image is closed, it suffices to show that the image
contains the dense subset consisting of the elements in 7L[i] which are
1 mod(1 + i)3. But by unique factorization in 7L[i], these are precisely the products
of gaussian primes 7r with the same property. We define

L2,E/R := 1092 oX2 E/R.

Thus L2,E/R : 71 (S) - (1+i)3Z2[i] is a continuous surjective homomorphism onto
the free rank two 7L2-module M2 := (1 + i)3Z2[i].

For 1 _ 3 mod 4, the character X1, E/R : nl(S) -ti (ZI [i])" is surjective. To see

this, notice that, by unique factorization, a dense subgroup of (ZI[i])" is generated
by

{i,1 + i, all Gaussian primes in _ 1 mod(1 + i)3 and prime to 1}.

Since the image of XI E/R contains all of the latter elements, it suffices to show
that i and 1 + i are each congruent mod any power 1n of I to an element of Z[i]
which is 1 mod(1 + i)3 and prime to 1. To do i, use i + 12x(1 - i). To do 1+i, use
1 + i + 12n+1i. We define

LIE/R := logl o(X1, E1R
)1'-1

Thus L1,E/R : 7r1(S) --4 17L1[i) is a continuous surjective homomorphism onto the
free rank two Z1-module MI := 17LI[i].

Since L1,E/R mod 1 is onto M1/1M1i and Frobenius elements attached to closed
points fill any finite abelian quotient of 7r1(S), there exist gaussian primes 7r and
p such that LI,E/R(7r) and LI,E/R(p) mod! form an F1-basis of M1/1M1. Hence
LI,E/R(7r) and LI,E/R(p) form a Z1-basis of M1. Now consider the continuous 1+lZ1-
valued character T1 : MI - 1 + 1Z1 defined by

7-I(aL1,E/R(lr) + bL1,E/R(p)) = (1 + 1)-b for a, b in Z1.

Finally, consider the composite homomorphism

T I o L , : 7 r , -9 1 + 1Zl C 7L1 C
QI

.

If we view this homomorphism as a lisse, rank one Q1-sheaf C on S, then for any
choice of b, Gs is c-pure of weight zero at the closed point s corresponding to (7r),
and L8 is t-pure of nonzero weight 2 log(1 + 1)/ log(pp) ("log" here the logarithm of
Napier) at the closed point s corresponding to (p).
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Once we have this G on S, we can take an l-adic F on an X/S which satisfies
(9.3.5.1), (9.3.7.1), and (9.3.7.2) with a single w, and twist by G, i.e., pass to
.F®f *.C for f : X --4S the structural map. The resulting situation.F®f *.C on XIS
still satisfies (9.3.5.1), (9.3.7.1), and (9.3.7.2), but now with a w9 which depends
nontrivially on s. For a concrete example of such an 17 on an XIS, take X/S to
be the spec of the ring R[T, 1/(T(1-T))]. Consider over X the Legendre family of
elliptic curves £/X, in which E-{0g} is defined by the equation y2 = x(x-1) (x-T),
with structural map g : E -> X. Take for F the sheaf R1g!Q1. This F is lisse on X
of rank two [SGA 4, XVI, 2.21 t-pure of weight one for every choice oft [Hasse),
and on each geometric fibre of X/S the GgeO,, is SL(2) [Ig].

There is another, even simpler, example of such pathology, worked out in a
discussion with Ofer Gabber. Take a prime number 1, take S := Spec(Z[1/1]), and
consider the l-cyclotomic character x1 : 7r1(S)ab = Z'. Define p :_ (x1)'(1-1). Then

p maps 7rl(S)a' onto the subgroup 1+2127[ of Z1. We have p(FF) = p1(L-1) for each
prime p 0 1. Because p takes values in 1+212761, which is a 74-module, we can speak
of the powers pa for any a in 761. Let us enumerate in increasing order the primes
pi other than 1, pl < p2< . We claim that for all but at most countably many
choices of a in 761, the values {p'(Fp,)}i>1 in 1+21274 are algebraically independent
over Q. The following argument is due to Ofer Gabber. It suffices to show that for
each integer n > 1, there are at most countably many a in 761 for which the n values
{pa(Fp,)}1<i<n are algebraically dependent over Q. To prove this, we argue as
follows. To say that the n values {pa(FF,)}1<i<n are algebraically dependent over
Q is to say there exists a nonzero polynomial P in Z/[XI, ... , which vanishes at
the point {pa(F,)}1<i<.. For fixed i, the map a F-> pa(pa) is 1-adically analytic in
the sense that there exists a power series

fi(T) in Z1[[1T]]

such that for a in Z1i we have fi(a) = pa(FF,). (Indeed, the 1-adic log of p(Fp,) lies
in 212761, so (1/1) log(p(Fp,)) lies in 21761, call it b1, and we have

pa(pi) = exp(a - log((pi)1(1-1))) = exp(labi) with bi in 21761.

For any bi in 21 1, the series exp(Xbi) lies in 761[[X]].)
Therefore P({pa(Fpi)}1<i<n) is the value at T = a of a power series fp(T)

in Z1[[1T]]. If such a power series is not identically zero, then (by Weierstrass
preparation in the ring Z,[[T]]) fp(T) has at most finitely many zeroes in {t in C1
with llltI]1 < 1}. In particular, fp(T) is either identically zero or it has at most
finitely many zeroes in 761. Since there are only countably many P's, it remains
only to show that there are no nonzero P's for which fp(T) vanishes identically.
So suppose we have such a nonzero Pin 76[X1, ... , X7,.], say P AWXW with
A,,, in Z. Then for every a in 761, we are to have

E Aw f (pi)wj1(I-1)a = 0.
w

i LY 1

In particular, for each integer k > 0 we are to have

A,,,
(II.)wl))c = 0.
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Now by unique factorization in Z, the integers

n(w) := fl(pi)W'ic(I-4

i

are all distinct, i.e., n(w) n(v) if v w in Z", So if we have at most N
distinct values of w, say we, ... , WN_1 i for which A,, is possibly nonzero, then taking
k = 0,1, 2, ... , N - 1 we see that the N x N matrix whose k'th row is {n(wt)' }i
annihilates the column vector {Aw; }i. But this matrix is invertible, because its
transpose is the Vandermonde matrix attached to the N distinct integers n(wi) for
i = 0, ... , N - 1. Therefore all Aw, vanish, and hence P vanishes identically.

Pick an arbitrary sequence ri of strictly positive real numbers. There exists
a sequence xi of algebraically independent (over Q) elements in C with Ixil = ri
(proof: for each n, the algebraic closure of Q(xi with i < n) in C is countable, but
the circle of radius r,,, is uncountable). Now pick one of the uncountably many a
in 7L! for which the values pa (Fr,) are algebraically independent over Q. For any
sequence xi of algebraically independent (over Q) elements in C, there exists an
embedding c of 01 into C which maps p( F,,) to xi for every i. For such an t,
the G on S corresponding to pa will have i-weight 2log(ri)/ log(pi) at pi. Thus by
varying z we can achieve any sequence wi,, of real numbers as the sequence of the
t-weights of L at the pi.

9.5. Interpretation of (9.3.7.2)

Here is another way to think about the condition (9.3.7.2). According to a
result of Pink [Ka-ESDE, 8.18.2], there is a dense open set U in S such that for
any geometric point u of U, the geometric monodromy group Ggeom,u attached to
the restriction of 97 to the geometric fibre Xu is equal to Gseom,i , the group attached
to the restriction of F to the geometric generic fibre Xj7 of X/S. Moreover, for any
geometric points of S, Ggeom,s is conjugate in GL(r) to a subgroup of Ggeom,n-

If (9.3.7.2) holds, we claim that Ggeom,. is itself (a GL(r) conjugate of) G.
Indeed, since U is a nonempty scheme of finite type over Z[1/1], it contains k-
valued points for some finite field k in which l is invertible, e.g., any closed point of
U underlies such a point, with k the residue field. Taking for u a geometric point
in U lying over such a k-valued point, we see from (9.3.7.2) and Pink's result that
GgeOm,i7 is (a GL(r) conjugate of) G. We see further that for every closed point s of
S, Ggeom, is conjugate to Ggeom,,,. Conversely, suppose that Ggeom, is conjugate
to G, and that for every closed point s of S, the group Gget,n, g, a priori conjugate to
a subgroup of Ggeom,?, is in fact conjugate to Ggom,. q itself. Then (9.3.7.2) holds.

9.6. Return to a uniform version of Theorem 9.2.6

9.6.1. Suppose now that both (9.3.5.1) and (9.3.7.2) hold. Pick a geometric
point on X-jT, and consider the fundamental groups of X, of the generic fibre X.
of X/S, and of the geometric generic fibre Xff of X/S, namely

irj(X, S). ir1(X,,. e), 71(Xn, C)

Both of the first two groups are quotients of the absolute galois group of the function
field of X, so the inclusion of X,, intoCX induces a surjective homomorphism

ir1(X,,S) - 7r
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On the other hand, the short exact sequence

I - 7r1(X'f, ) - W1(Xn, 0 - 7r1(77, T!) -* 1

shows that 7r1(Xj, ) is a normal subgroup of 7r1(X,I, l;). Therefore p(7r1(X,,, C))
normalizes p(7r1(XiT, l;)) and hence also normalizes its Zariski closure Ggeom,,F? = C.
So by (9.3.5.1) we have

P(7r1(X, , )) C (Gm . G)(0I).

Because the map 7r1(X,1, 7r1 (X, Z;) is surjective, we must have

P(7r P(ir1(X,7,C)) C (Gm G)(01).

Therefore for any finite-dimensional 0I-representation A of the algebraic group
Gm G, we may form the lisse QI-sheaf A(2) on X.

9.6.2. We now assume that (9.3.5.1), (9.3.7.1) and (9.3.7.2) all hold. Because
G is semisimple, its center Z(G) is finite. Since G is an irreducible subgroup of
GL(r), Z(G) consists entirely of scalars, i.e., Z(G) = G n G,,,., intersection inside
GL(r). So if we denote by N the order of Z(G), we have

We may now define a homomorphism of Oi-algebraic groups

multipG : Gm G - G,,,,,

[3gIQN.
We use the notation "multipG" because when G is either the orthogonal or symplec-

tic group, then N = 2, G, G is the group of orthogonal or symplectic similitudes,
and "multipG" is precisely the "multiplicator" character of the similitude group.
Of course, if G is SL(r), then N = r, G,,,. G is GL(r), and in this case "multipG"
is the determinant.] The "multipG" character sits in a short exact sequence

1-rG-r
Lemma 9.6.3. In the situation .F on X/S above, with (9.3.5.1), (9.3.7.1) and

(9.3.7.2) assumed to hold, fix a finite field k, and a k-valued point s of S. There
exists an I-adic unit a, in QI such that on X3/k, the representation p ® adeg of
7r1 (X,) corresponding to the twisted sheaf Y, ® adeg maps the entire group 7r1 (X,),
and not just 7r1 (X9), to G, i. e., we have (p®adeg)(7r1(X,)) C G(QI). The choice
of a, is unique up to multiplication by an N'th root of unity. For any such a

® adeg is c-pure of weight zero.

PROOF. Pick any element Fk in 7r1(X,) which maps onto Fk in Gal(k/k). We
are given that p maps 7r1(Xv) to G(QI). Since (Fk)'-7r1(X3) is dense in 7rl (X,), the
requirement on a, is precisely that (p(& adg)(Fk) lie in G(0I), i.e., that a,p(Fk) lie
in G(PI). Since a,p(Fk) is in any case an element of Gm -G, this last condition holds
if and only if multipG(a,p(Fk)) = 1, i.e., if and only if (a,) N multipa(p(Fk)) = 1.

Because the composite multipG -p is a continuous Ol -valued character of the
compact group 7r1(X), it has values in the subgroup of l-adic units. In particular,
multipG(p(Fk)) is an l-adic unit in Q1. Thus a, is any N'th root of the I-adic unit
1/ multipG(p(Fk)).
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It remains to see that F, ®adeg is t-pure of weight zero. Since Y, is assumed
t-pure of some weight w87 F8 ® ad'9 is t-pure of weight

wl,, = w, + 2log(Ji(aJ)/log(Card(k)).
Therefore we can recover rwl,8i which we claim to be zero, as the t-weight of

C G(0,) and G, being semisimple, hasdet(F8 ®a9eg). Since (p ®a9eg)(7rl(X,))
finite image under the determinant, we see that det(p (& aseg) is of finite order as
character of 7r1(X,). Therefore det(p (9 aeeg) is t-pure of weight zero for any t, and
hence rw1,8 = 0, as required. QED

Remark 9.6.4. Here is a more conceptual approach to the question addressed
in Lemma 9.6.3. We claim that the composite character of iri(X)

multipG oP : 71 (X) - 01

factors through nl (S). To see this, denote by i the generic point of S, by a
geometric point of S lying over 17, and by a geometric point of X. As proven in
[Ka-Lang, Lemma 2], we have a right-exact sequence

n1(X*r, ) -> 7r1(X, e) - nl (S, ;I) -, 1.

So it suffices to show that multipG op is trivial on irl(XX,6). But we have already
seen above that multipc op is trivial on every geometric fibre of X/S. Therefore
multipc op factors through some character X of 'al (S).

9.6.5. For k a finite field and for s a k-valued point of S, the character adeg
of 7rl(s) found in the lemma above is precisely an N'th root of X-'Iir, (s). So if X`
has an N'th root, say T, as a character of ir1(S), then p ® T maps the entire group
irl(X,), and not just irl(Xx), to G, for every finite-field-valued point s of S.

9.6.6. Unfortunately, a Q1 -valued character x of 7rl(S), for S a normal con-
nected scheme of finite type over Z[1/1], does not have an N'th root in general. For
example, consider the case when S is the spec of 7[1/1], and x is the l-cyclotomic
character

Xz : nl (S)ab - Zl
Finding an N'th root of xi as character of 7rl(S) amounts to finding a continuous

homomorphism T from Z to Ot which maps each element of Z to an N'th root
of itself. If l is odd, the group Z is the product of the cyclic group jul_1 of I - 1'st
roots of unity with the pro-1 cyclic group generated by 1 + 1. There is no problem
finding an N'th root of 1 + I which lies in 1 + ACa for a suitable finite extension
Ea of Qt. But the restriction of T to ui_l must map 1c!_1 to itself {just because T
is a group homomorphism), and this is possible if and only if the N'th power map
is surjective and hence bijective on i.e., it is possible if and only if N is prime
to I - 1. A similar analysis in the case I = 2, where Z is {±1} x (1 + 4Z2) shows
that an N'th root of X2 exists if and only if N is odd. In particular, for any prime
I, xj does not have a square root as character of ir1(Spec(Z[1/I])).

9.6.7. An elementary but useful fact is that one can always take an N'th root
of x up to a character of finite order. Let S be any connected scheme, Oa the ring of
integers in a finite extension EA of Q1, and X : Trl (S) -F Oa a continuous character.
Write Oa as the product ("Teichmuller decomposition") of (roots of unity in Oa of
order prime to 1) with the group 1 + \Oa of principal units, say x = Teich(x)(x).
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Correspondingly, we get a product decomposition of x as Teich(x), a character
of finite order prime to 1, times (x), a character with values in 1 + AOa. Now
1 + AOa is a Zi-module, and it is finitely generated, since it contains with finite
index 1 + IAOA, which via the logarithm is isomorphic to IAOA, which is ZI-free
of rank r = deg(EI/QI). The torsion subgroup of 1 + AO is the group of those
l-power roots of unity which he in Ea, so is a finite cyclic group of order l' for some
integer a > 0. So as Z1-module, we have

1 + Ao,\ = (9L/lnZ) ® (Z1)r,

corresponding to some choice of a generator S of jla and a choice of r elements
U1,... , u, of 1+AOA which project onto a ZI-basis of (1+AO,)/torsion. Via such a
choice, we get a further product decomposition of (x) as (x)snit, 111 u°{, where ui
is a character of 7ri (S) with values in Z1, and (x)finite is a character of order dividing
1a. Choose for each i an N'th root vi of ui with vi itself a principal unit in Q1. Then
,r :_ rl 1 v°i is a

i!x-valued
character of nl(S), and x/rN = Teich(X)(X)enste is

of finite order, as required.

9.6.8. Choose a maximal compact subgroup K in G(C). For each choice of a
finite field k with Card(k) > A(X/S)2 in which l is invertible, of a k-valued point s
in S, of an l-adic unit a8 such that ase$ ® .FS has its arithmetic monodromy inside
G, and of a k-valued point x in X., (k) (a set which is nonempty by the hypothesis
that Card(k) > A(X/S)2), the earlier discussion of a9 L9 0 .F8 on X8/k gives a
Frobenius conjugacy class in K, which we denote 0(k, s, a., x)-

9.6-9. We denote by µ(k, s, as) the probability measure on the space K# of
conjugacy classes in K defined by averaging over the Ftobenius conjugacy classes
t9 (k, s, as, x) as x runs over X.(k):

Et(k, s, as) :_ (1/ Card(X8(k)))
x in X,(k)

Theorem 9.6.10. Suppose we are given (1, X/S, .F, t, G) as above, such that
the conditions (9.3.5.1), (9.3.7.1) and (9.3.7.2) are all satisfied. For any sequence
of choices of data (ki, si, asp) as above in which Card(ki) increases to infinity, the
measures ,a(ki, si, asi) on K# converge weak * to the measure 0 on K# which is
the direct image of normalized (total mass one) Haar measure on K, i.e., for any
continuous C-valued central function f on K, we have

I. f d Haar = ilirn(1/ Card(Xey (ki))) f si) a8i)x)).
x in X,.(ki)

More precisely, if A is any irreducible nontrivial representation of K, and (k, s, as)
if any datum as above with Card(k) > 4A(X/S)2, and C(X/S,.F) is the constant
introduced in 9.3.4, then we have the estimate

JKTrace(A)
d i(k, s, as) 2C(X/S,F) dim(A)/ Card(k)112

PROOF. Once we choose a finite etale galois Y/X which trivializes the reduction
mod A of an integral form F0 of F, the geometric fibres YS/XS trivialize the
reductions mod A of the integral forms (ages ®F0 )s of aaeg ®.F8 on X6, precisely
because when we pull back adeg from X8 to X91 it becomes trivial. It now suffices
to apply part 5) of Theorem 9.2.6 fibre by fibre. QED
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Remark 9.6.11. The merit of the "more precise" estimate

JTrace(A) dp(k, s, a.,) 2C(X/S, F) dim(A)/ Card(k)1/2
K#

is that the error term is O(dim(A)/ Card(k)1/2). A weaker assertion, but one still
adequate (compare the proof of 9.2.6) to give the equidistribution as Card(k) --> oo,
is that for each irreducible nontrivial representation A of K there exists a constant
D(X/S, F, A) such that for all (k, s, a,) as above we have

Trace (A) dp(k, s, a5) < 2D(X/S,.F, A)/ Card(k)1/2.

fK*
To obtain this weaker statement directly, observe that any irreducible represen-
tation A of G extends to a representation A of G,,,, G. [Indeed, because A is
irreducible it must map the center Z(G) = Gm n G = AN to the scalars, hence
AI,uN must be of the form 3 H /3 l1 for a unique integer n in [0, N - 1]. So we
have A(/3g) = /3nA(g) for any 3 in AN. Therefore we may define A on G by
A(13g) :_ /3'' A(g).] We then form the lisse Q1-sheaf A(,F) on X. On each geometric
fibre X- of X/S, we have A(F)-g- = A(FS) = A((aseg So for A irreducible
nontrivial we may take for. D(X/S,.F, A) the sup over geometric points s of S of
the quantity Eo<t<2d hc(X- , A(F)v). This sup is finite by proper base change and
the constructibility of the sheaves Ri fi (A(-F)) on S, for f : X --+ S the structural
morphism.

9.7. Another version of Deligne's equidistribution theorem
9.7.1. We suppose given a prime number 1, an embedding c of Ql into C, a

connected normal Z[1/1]-scheme S of finite type over Z[1/1] with generic point ?l and
geometric generic point rl, a smooth X/S with all fibres geometrically connected of
some common dimension d _> 0, a geometric point C of XfT, and a lisse Ql-sheaf F
on X, of rank r > 1, corresponding to an r-dimensional continuous representation

p : ir1(X, ) -* GL(r, Ui).

9.7.2. We suppose given two semisimple Qi-algebraic subgroups of GL(r),

C C Garith C GL(r),

and we suppose that G is a normal subgroup of Garith of finite index. We denote
by P the finite group We further suppose

(1) C GarithA), and is Zariski dense in Garith
(2) p(ir1(Xn,C)) C G(1i).
(3) For every finite field k, and every k-valued point s of S, the group Ggto,n

for Fs := .FIX,, is (conjugate in GL(r) to) G.
(4) F is t-pure of weight zero.

9.7.3. By (1), the composite homomorphism

CarithA) - P
is surjective. By the right exact homotopy sequence

'KI(X?,S) - 7r1(S,r7) -* 1,

we see as above that the surjective map 7r1(X, ) -N IF factors through 7r, (S, -q), say
as A : 7r1(S, rq) P. For a finite field k and a k-valued point s of S, we denote by
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y(k, s) the conjugacy class in r of A(Fk,s). By Chebotarev, each conjugacy class in
I' is a y(k, s) for suitable data (k, s). Moreover, among all (k, s) with given y(k, s),
Card(k) is unbounded. [Proof: Write N := 1 + Card(I'), so yN = y for any y in
r. For a finite field k, denote by kN/k the extension of k of degree N. For s in
S(k) C S(kN), we have (Fk,s)N = FkN,s and hence y(k, s) = y(kN, s).]

9.7.4. Pick a maximal compact subgroup K of G(C). Since K is a compact
subgroup of Garith (C), we may pick a maximal compact subgroup Karith of Garith (C)
which contains K. Since K C Karith n G, and Karith fl G is a compact subgroup
of G, we have K = Karith n G by the maximality of K. Because Karith is Zariski
dense in G, it maps onto the finite quotient r, and hence Karith/K - r.

9.7.5. For any finite field k, any k-valued point s of S, and any k-valued
point x of Xs, L(p(Fk,,)83) is a conjugacy class in Garith() which is semisimple
with unitary eigenvalues, and hence defines a conjugacy class, which we denote
-9(k, s, x), in Karith. The image of this conjugacy class in I' we temporarily denote
y(k, s, x). The class y(k, s, x) in r is also the image in r viewed as Garith/G of the
conjugacy class of p(Fk,x). As noted above, the image in r of any class in Trl(X)
depends only on its image in 7ri(S). So the class in F of p(Fk,:,:) depends only on
the image Fk,8 of Fk,x in irl (S). Hence this class y(k, s, x) is equal to the class
denoted y(k,s) in 9.7.4 above.

9.7.6. The surjective homomorphism Karith --> r induces a surjective map of
the spaces of conjugacy classes (Karith)# i 1'#. For each conjugacy class y in r*,
we denote by Card(y) its cardinality, viewing -y as a subset of r. We denote by
(Karith,-y)# C (Karith)# the inverse image of y, and we denote by Karith,.y C Karith
the set of those elements in Karith whose image in r lies in the class y. Thus
(Karith)# is the disjoint union of the open and closed sets (Karith,.)#, and Karith
is the disjoint union of the open and closed sets Karith,-y, each of which is open and
closed in Karith.

9.7.7. We denote by tL the Haar measure on Karith of total mass Card(r);
this is the Haar measure on Karith which gives K total mass one. We denote by u#
the direct image of u on (Karith)#, and for each y in r#, we denote by p(y)# the
restriction of iL# to (Krith,-y)#. Thus lL(y)# gives (Karith,-y)# total mass Card(y).
We may also view p.(-y)# as the direct image on (Karith,.y)# of the restriction to
Karith,.' of the Haar measure t.t on Karith, by the natural map Karith,.y (Karith,y)#,

Lemma 9.7.8. Let A : Karith --4 GL(V) be an irreducible finite-dimensional
C-representation of Karith. Denote by VK C V the space of K-invariants.

1) Either VK = 0 (in which case the restriction of A to K is a sum of irreducible
nontrivial representations of K) or VK = V (in which case A is a representation
of the quotient r).

2) If VK = 0, then for any element g in Karith, we have

Trace(A) du. = 0,
gK

and for any y in r#, we have

fw.i.")*
Trace(A) dp.(y)# = 0.
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3) If VK # 0, i.e. if A is a representation of I', then for any -y in I'#, we have

!K.rkh,n }#
Trace(A) du(y)# = Card (-y) Trace(A(y)).

PROOF. For 1), observe that since K is normal in Kaz.ith, VK is a Karith-stable
subspace of V, so is either 0 or V by irreducibility. For 2), denoting by dA the
normalized Haar measure on K, we have

r
fgK Trace(A) d t = fK Tace(A(gA)) dA =

J
Trace(A(Ag)) dA

K

= Trace {the endomorphism v i--r J A(A) (A(g) (v)) dA I .

But for each v in V, the integral fK A(A)(A(g)(v)) dA lands in VK, hence vanishes.
The second assertion of 2) is the sum of instances of the first, applied to a set of
lifts 9 in Karith of the elements of y in IF. Assertion 3) is a tautology. QED

9.7.9. For each finite field k with Card(k) > A(X/S)2 and each k-valued
point s in S, we denote by u(k, s) the measure of total mass Card(y(k, s)) on
(Karith,ry(k,s))# defined by averaging over the Frobenius conjugacy classes 0(k, s, x),
each of which lies in (Karith,y(k,s))#, as x runs over X3 (k), and then multiplying by
Card(y(k,s)):

u(k, s) :_ (Card(y(k, s))/ Card(Xs(k))) Y, St9(k,s,.x)

z in X,(k)

Theorem 9.7.10. Suppose we are given (l, X/S,.F, t, G, Garith) as above, such
that the conditions (1), (2), (3) and (4) of 9.7.2 are all satisfied. Fix a conjugacy
class y in r*. For any sequence of choices of data (ki,si) as above with each
Card(ki) > A(X/S)2, with each y(ki, si) = -y and in. which Card(ki) increases to
infinity, the measures u(ki, si) on (Karith,.y)# converge weak * to the measure u(y)#
on (Karith,y)#, i.e., for any continuous C-valued central function f on Karith, we
have

f f d(y)# f
Karith,7)# Karith-,

lim f dti(ki, si)i__ K( rrith,y)#

Jim (Card(y)/ Card(X3, (ki))) f (?3(ki, si, x)).
s in X,s(k;)

More precisely, if (A, V) is any irreducible representation of Karith, if (k, s) is any
datum as above with Card(k) > 4A(X/S)2 and y(k, s) = y, and if C(X/S, .F) is
the constant introduced in 9.3.4 above, then we have the estimate

J Trace(A) du(k, s) - f Trace(A) dp(y)#

< 2C(X/S, F) dim(V/VK)/ Card(k) 1/2.

PROOF. By Peter-Weyl, every continuous C-valued central function f on Karith
is the uniform limit of finite C-linear combinations of traces of irreducible represen-
tations of Karith, so it suffices to prove the "more precisely" estimate. In the case
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when VK = V, i.e., when A is a representation of I', we are asserting the identity

Trace(A) dtc(k, s) = J
Trace(A) dp(y)1.

(Kaith.7) ` (Knrich.7 #

This holds because both sides are equal to Card(y) Trace(A(y)). In the case when
VK = 0, we are asserting that

" lKarlt h.7)#
Trace(A) da(k, s) f < 2C(X/S,.7-) dim(V)/ Card(k)I/2.

This results from the uniformity Lemma 9.3.4 applied to F on X/S, and from the
Lefschetz trace formula and Deligne's main result [De-Weil II, 3.3.1 and 3.3.10],
applied to the lisse sheaf A(.F) on X, which on each geometric fibre of XIS is b-pure
of weight zero and has its H.2d(X3-, A(F)3) = 0. QED

Remark 9.7.11. When Garish is a finite group, i.e., when Karith is finite,
this theorem is simply an effective version, which is uniform in a family, of the
Chebotarev density theorem [Lang-LSer, Thm. 1] for finite etale galois coverings
of smooth varieties over finite fields, cf. [Chav] for a recent application of that
theorem. To see this, fix a conjugacy class y of r, and fix a subset W of Karith,,
which is stable by Karith-conjugation. Taking for f the characteristic function of W,
we find that for all (k, s) with y(k, s) ='y and with Card(k) >> 0, the percentage of
k-valued points x in X,(k) whose Frobenius conjugacy class under p lands in W is
approximately Card (W)/Card (Karith,y). Let us make explicit the constants which
emerge.

Lemma 9.7.12. Let G be a finite group, and W C G a subset stable by con-
jugation. Denote by x i--* charw (x) the characteristic function of W. Then in the
expression of the central function chary, as a C-linear sum of traces of irreducible
representations A of G, say

charw(x) _ c(W, A) Trace(A(y)),
irred A

we have the inequalities

[c(W, A) I < dim(A).

PROOF. Use the orthonormality of the functions Trace(A) on G for the total
o computemass one Haar measure d Haar on

f
G t

c(W, A) = chary, Trace(A) d Haar .

The inequality Jc(W,A)I < dim(A) is now obvious, since the integrand is itself
pointwise bounded in absolute value by dim(A). QED

Theorem 9.7.13. Hypotheses and notations as in Theorem 9.7.10 above,
suppose in addition that Karith is finite. Let y be an element of 174, and W a
subset of Karith,, which is stable by Kith -conjugation. Given (k, s) with
Card(k) > 4A(X/S)2 and with y(k, s) = y, we have

I Card(W)/ Card(Karith,,) - Card({x in X., (k) I t9(k, s, x) in W))/ Card(X,(k))I

2C(X/S,.7=) Card(Karith)/ Card(y) Card(k)1/2

I/2< 2C(X/S, F) Card(Karith)/ Card(k) _
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PROOF. We apply Theorem 9.7.10, taking for f the characteristic function of
W. Since W lies in Karith.-y, it is tautologous that

J(K_j,h")*
and that

f dµ(7)# = Card(W)/Card(K),

f dµ (k, s)
(Karich.ti )#

= Card(y) Card({x in X3(k) I t9(k, s, x) in W})/ Card(X8(k)).

Write f as Eirred rep's A of Kartth C(W, A) Trace(A). By Lemma 9.7.12, we have
Ic(W, A)I < dim(A). The individual integrals are given by

,I1ace(A) dµ(7)# = Card(y) Trace(A(y)), A trivial on K,
fKarith,,)# 110, A nontrivial on K.

For the measure µ(k, s), we have the equality

Trace(A) dp(k, s) = Card(7) T4ace(A(7))
(Karlth,7)#

if A is trivial on K, and we have the estimate

Trace(A) dµ(k, s) < 2C(X/S, F) dim(A)/ Card(k)1/2

if A is nontrivial on K. Using the estimate

Ic(W, A) I < dim(A),

and the identity

dim(A)2 = Card(Karith),
irred A

we get

Card(W)/Card(K) - Card(y) Card({x in X,, (k) I t9(k, s, x) in W})/ Card(X,5(k))

f dA('Y)# - f f d1i(k, s)fKarith,.y)# (Karith,-y)#

< 2C(X/S,.77) Card(Karith)/Card(k)1/2

Dividing through by Card(-/), we find the asserted inequality. QED
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CHAPTER 10

Monodromy of Families of Curves

10.0. Explicit families of curves with big Ggeom

10.0.1. Our first task is to give an example, for every genus g > 1, and for
every finite field k, of a one parameter family of curves of genus g in characteristic
p whose geometric monodromy is as big as possible. In all the examples, the
parameter space will be a nonempty open set U of Spec(k[T]), the affine T-line A'
over k, and the family, a proper smooth map 7r : C --+ U all of whose geometric
fibres are connected, proper smooth curves of genus g, will have the property that
for every prime number 154 p, the group Ggeom for the lisse 01-sheaf R'ir,Qj on U
is Sp(2g).

10.1. Examples in odd characteristic

10.1.1. We first give, for each genus g > 1, a construction valid in any char-
acteristic p # 2. Fix a finite field k of characteristic p # 2, and a polynomial f (X)
in k[X] of degree 2g which has all distinct roots in k. [For example, we may take
for f an irreducible monic polynomial of degree 2g, i.e., the monic irreducible over
k for any field generator of the extension of degree 2g.] Take as family of curves,
with parameter T, the family of hyperelliptic curves with affine equation (there is
a single point at infinity)

y2 = f(X)(X -T).
[To get an affine neighborhood of the point at infinity, one passes to the coordinates
U := 1/X and V:= Y/Xs+l. In terms of the polynomial fCev(U) f (X)/X29 in
k[U] of degree 2g (or 2g - 1 if f (0) = 0) with all distinct roots in k, the equation
becomes

V2 = Ufrev(U)(1- TU),
with the origin (U = 0, V = 0) as the point at infinity.]

10.1.2. The curve Y2 = f (X) (X - t) is nonsingular of genus g so long as t
avoids being a zero of f, so we may and will take U to be Spec(k[T][1/f (T)]).

10.1.3. However, it will be important for the proof that is big to think
about this curve for all values of T. Thus we denote

C'ff := the hypersurface Y2 = f (X) (X - T) in A2 X Al,

pr : C -+ A' the map (X, Y, T) --* T.

This will be our main object to study. We also denote

Cart' := the hypersurface V2 = Ufrev(U) (1 - TU) in A2 x A',

7raff : Caff -- Al the map (U,V,T) --> T.

293
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294 10. MONODROMY OF FAMILIES OF CURVES

The open set of C8ff where X is invertible is isomorphic, as scheme over A', to the
open set of Caff where U is invertible, by (X, Y, T) r-r (1 /X,Y/Xg+1, T). We define
rr : C -i Al by glueing together C and C1 along this common open set. Over U,
'r is a proper smooth map whose geometric fibres are connected curves of genus g.

10.1.4. We now turn to a detailed study of the sheaf F := RI pr! 02 on A'.
In it, we will make use of the following two general lemmas.

Lemma 10.1.5. Let k be an algebraically closed field in which 1 is invertible.
For any integer n > 1, any affine smooth connected S/k of dimension n + 1, e.g.,
S = An+I any hypersurface V in S, (i.e., V is defined by the vanishing of a nonzero
global function on S) and any i < n - 1, we have ]Fl) = 0 and Ql) = 0.

PROOF. With either lFl or 0l as coefficients, we have the excision long exact
sequence

,(S) -+ H.4(V) -,H,1

Because both S and S - V are affine, smooth and connected of dimension n + 1,
we have Hi(S - V) = HA(S) = 0 for i < n, by the Poincare dual of the Lefschetz
affine theorem [SGA 4, XIV, Thm. 3.1 and Cor. 3.2]. So the result is immediate
from the excision sequence. QED

Lemma 10.1.6. Let k be an algebraically closed field in which l is invertible.
Let C/k be an affine, smooth, connected curve. Suppose we are given an integer
n> 0 and a k-morphism f: V - C, such that

a) V is a hypersurface in an affine smooth connected k-scheme of dimension
n + 2,

b) for each algebraically closed overfield L of k, and each L-valued point t of
C, there exists an affine smooth connected L-scheme of dimension n + I in which
f -1(t) is a hypersurface.

Then
1) the sheaves R' f!QI on C vanish for i < n,
2) the sheaf Rn f!Ql on C. has no nonzero punctual sections, i. e., denoting by

j : U -s C the inclusion of a nonvoid open set on which R7t f!Ql is lisse, the natural
map

Rnf!Ql - j»j*Rnf!Ql
is injective, or equivalently, H°(C, Rn f!Q1) = 0, cf. [Ka-SE, 4.5.2].

PROOF. The first assertion is immediate from proper base change and the
previous lemma applied to each geometric fibre. For the second, we consider the
Leray spectral sequence for R f!,

Ei'b = H (C, ail}.

The only possibly nonzero E2 terms have a in [0, 2] (cohomological dimension of
curves) and b > n (by part 1). The only such term with a + b = n is E2'n. The
only possibly nonzero differentials are dq'n+m+l -1 E2n },n+l for m > 0.
Thus we have

H°(C, Rnf!Ql) = E°'"` = Eon = H" 0,

the last vanishing by the previous lemma, applied to V. QED
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Remark 10.1.7. A useful special case of 10.1.6 is a nonconstant function
f : V --> A' with V/k affine smooth and connected of dimension n + I. [V is
a hypersurface in V x A', and each geometric fibre of f is a hypersurface in V,
since f - t never vanishes identically.]

10.1.8. Applying this lemma 10.1.6 to Caff, which is a hypersurface in A3,
and the morphism pr : C -- A', whose fibres are hypersurfaces in A2, we find
that R° pr, 01 = 0, and that RI pr, 0d has no nonzero punctual sections.

Lemma 10.1.9. The restriction to U of the sheaf.F := Rl pr, 01 on A' is lisse
of rank 2g and pure of weight one. At geometric points of AI - U, the stalk of .'F
has dimension 2g - 1. The restriction to U of R2 pr, 01 is the sheaf Q1(-1), and
the cup-product pairing

F(U x FJU --+ R2 pr, Q1JU = 01(-1)

is a perfect symplectic autoduality of .F with values in 01(-1). In particular, Gg,,m
for F)U is a subgroup of Sp(29).

PltooF. Since F has no nonzero punctual sections, it is lisse precisely at those
points of Al where its stalk has maximum dimension. By proper base change, the
stalk .F at a geometric point tin L = A' (L), L some algebraically closed extension
of k, is the compact cohomology group

Yt = H,, (pr-1{t},01) = H, ((Y2 = f(X)(X - t)),01).

If t lies in U, i.e., if f (t) # 0, this curve is the complement of a single rational point
oa in a proper smooth geometrically connected curve Ct of genus g. Since there is
a single missing point, the inclusion induces an isomorphism

H'(Y2 = f(X)(X -t),jU1) = H1(Ct,Q1)
Thus the stalks of ,F have dimension 2g at points of U. This shows that F)U is lisse
of rank 2g, and also that F(U is pure of weight one, by the Riemann hypothesis for
curves over finite fields [Weil-CA, §IV, No. 22, page 701.

If t does not lie in U, then f (t) = 0, so t lies in k, f is divisible by X - t, say
f (X) = g(X)(X - t), and g is a polynomial of degree 2g - 1 with g(t) yl- 0, and g
has 2g - I distinct roots in k. Then pr-'(t) is the curve of equation

Y2 = (X - t)2g(X).

Let us temporarily denote by C the curve of equation Y2 = g(X). Then we have

C - {the two points (X = t,Y = ±g(t)112)} ?' pr-1(t) - {(X = t,Y = 0)}.
But C is the complement of a single point oo in a proper smooth connected curve
of genus g - 1, so

h' (C - {the two points (X = t, Y = ±g(t)1/2)}, 1) = 2g - 2 + 2 = 2g.

Thus we have

h' (pr-1(t) - {one point (X = t,Y = 0)}, i01) = 2g.

In the excision sequence, say with Q1-coefficients, for the inclusion of
pr-1(t) - {one point} into pr-1(t), we have H°{pr-1(t)) = 0 by 10.1.5, as pr (t)
is a hypersurface in A2, and H.1 ({point}) = 0 trivially, so we get a short exact
sequence

0 - H° ({point}) - Hc', (pr-1(t) - {point}) -> H,1 (pr-1(t)) --> 0.
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This gives the asserted value 2g - 1 for h'(pr-I(t)).
Over U, the morphism is smooth of relative dimension one, with geometri-

cally connected fibres, so the sheaf R2 pr, 011 U is the geometrically constant sheaf
Qt(-1), cf. 9.1.13. The cup-product pairing

FlU x FIU -* R2 pry 01IU = 01(-1)

is an alternating pairing of lisse sheaves. To show that it is nondegenerate, it suffices
to check nondegeneracy on a single (or on every) geometric fibre of pr over U. But
for tin U, we have already noted that pr-1(t) is of the form Ct - {oo}. The inclusion
induces an isomorphism

Hcl (pr-1(t), !} He (Ct, 01),

and, dually, restriction induces an isomorphism of cohomology without support,

H1(Ct,01) H1(Pr-1(t),01)-
Thus the canonical "forget supports" map is an isomorphism

,
(Pr-1(t),

01)
H1(Pr-I

(t}, 01),Hrl

and so our cup product becomes the cup product pairing

H,1 (Pr-1(t), 0t) x H1(Pr-1(t),

which is nondegenerate by Poincare duality. QED

10.1.10. We could also have deduced directly all the assertions about F'I U
by relating F directly to the sheaf R'ir1Q1 for 7r : C --+ AI, which over U is a proper
smooth relative curve of genus g.

Lemma 10.1.11. The inclusion of C into C as schemes over AI induces
isomorphisms Ri pr, 01 = R'ir.01 for i = 1 and i = 2.

PROOF. The complement of CaR in C is the oo section, id : A' - AI as scheme
over AI. The lemma is immediate from the excision sequence

Rl pr, Q! --> RtirA - R` idr Q! -i .. ,

in which the restriction map R°7r.Q1 R° id. 01 = 01 is surjective (check fibre by
fibre: each fibre of is nonvoid), and in which Ri id. Q! = 0 for i > 0. QED

Lemma 10.1.12. The lisse sheaf.F on U is everywhere tame, i.e., it is tamely
ramified at all the points at oo of U.

PROOF. The Euler-Poincare formula [Ray] for a lisse F on U asserts

X(U ®k k,.F) = rank(F)X(U ®k 01) - E Swan,, (F).
points x at 00

Now F is tame at x if and only if Swan, (F) = 0. As each term Swan2(F) is a
nonnegative integer, F is everywhere tame if and only if

X(U ®k k,.77) = rank(F)X(U ®k k, 01),

i.e., if and only if

Xc(U ®k k, R1 Pr. Qt) = 2g(1 - 2g).

By the Leray spectral sequence, we have

Xc(Pr-1(U) ®k k, 01) = Xc(U ®k , R2 Pr, !) - Xr(U ®k k, R' pr, 01).
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As noted in the proof of 10.1.9, the sheaf R2 pr, is the geometrically constant
sheaf 01(-1), so we have

xc(pr(U) ®k k, 01) = xc(U ®k k, 01) - Xc(U ®k k, R1 pr, 01)l J

=1-2g-Xc(U ®k k, R1
So F is everywhere tame if and only if we have

Xc(pr-1(U) Ok k, 01) = (1 - 2g)2.

But we have a disjoint union decomposition of the total space C8ff Ok k into
pr-1(U) ®k k, and the 2g singular fibres pr-1(t) as t runs over the zeroes of
f . Each singular fibre pr-1(t) has h2 = 1, because h' does not see points, and
pr-1(t) - {(X = t, Y = 0) } is of the form (complete smooth connected curve of
genus g-1)-{3 points}. So each singular fibre pr-1(t) has X, = 1-(2g-1) = 2-2g.
Thus we have

Xc(Ceff' (&k U1) = Xc(pr-1(U) Ok k,01) + 2g(2 - 2g).

So F is everywhere tame if and only if we have
xc(Cafl' ®k,k, 01) = (1 - 2g)2 + 2g(2 - 2g) = 1.

So we are reduced to proving that the hypersurface Y2 = f (X) (X - T) in A3 ®k k
has Xc = 1. By the change of variable Z := X - T, this becomes the hypersurface
y2 = Z f (X) in A3 ®k k with coordinates X, Y, Z. On the open set where f (X)
is invertible, Y is free, and we can solve for Z as Y2/ f (X). Thus this open set
is the product U x A1, with coordinates X, Y. On the (reduced) closed set where
f (X) = 0, we have Y = 0, and Z is free, so this set is an (f = 0 in Al) x A1, with
coordinates X, Z. Thus we find that Y2 = Zf (X) has

xc=Xc(UxAl)+xc((f =0inAI) xA1)=(1-28)x1+(2g)x 1=1. QED

Lemma 10.1.13. At each geometric point t of Al - U, the local monodromy
of F is either trivial or is a unipotent pseudoreflection.

PROOF. Given a k-valued zero t of f, pick a geometric point in its formal
punctured neighborhood Spec(k((T - t))). The inertia group (local monodromy
group at t) 1(t) := Gal(k((T - t))-P/k((T - t))) = 7r1(Spec(k((T - t))), 7) acts on
F. Denoting by j : U -+ Al the inclusion, it is tautological that the stalk of j,j*F
at t is the space (Fq)r(t) of invariants under I(t). Since F has no nonzero punctual
sections, we have F C j* j `F, so we get

F1 C ()C )Iltl C . .

Since Ft has codimension one in either 1(t) acts trivially or (F;1)I (t) is a codi-
mension one subspace.

In the latter case, 1(t) acts through pseudoreflections with this fixed space.
Since 1(t) acts through Sp(2g) and Sp(2g) C SL(2g), these pseudoreflections must
be unipotent. Therefore the monodromy is tame (being pro-l), and the action is
through the maximal pro-l quotient Z1(1) of 1(t), any generator 7t of which acts as
a unipotent pseudoreflection. QED

Lemma 10.1.14. The group Ggeom for FlU is either trivial or is a connected
subgroup of Sp(2g) generated by unipotent pseudorefiections.
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PROOF. Because .F is everywhere tame, it is a representation of the tame quo-
tient 7r""' (A' ®k k - {zeroes of f }). This group is topologically generated by all
conjugates of all local monodromy groups I (t) at all zeroes of f, since the corre-
sponding quotient classifies finite etale coverings of Al ®k k which are tame at oo,
and any such covering is trivial. Although Ggeom is defined as the Zariski closure of
p(7r'..), it also the Zariski closure of any dense subgroup of Hence Ggeom
is the Zariski closure in Sp(2g) of a group generated by some (possibly empty) list
of pseudoreflections. For each pseudoreflection g on the list, consider the one pa-
rameter subgroup X9 := exp(tlog(g)) of Ggeocn. Then Ggeom is equal to the group
generated by finitely many of these one parameter subgroups, and, being generated
by connected subgroups, is itself connected. QED

Lemma 10.1.15. The lisse sheaf FJU is irreducible as a 0t-representation of
7geom (U).

PROOF. The question is geometric, so we may make a preliminary extension
of finite fields to reduce to the case when f has all its roots in k. We will ap-
ply the diophantine criterion for irreducibility, cf. [Ka-RLS, 7.0.3]. Since .Fl U
is pure of weight one, it is semisimple as representation of 7rgeOm. So by Schur's
lemma, we must show that End(.F) has precisely a one-dimensional space of zrgep1'-
invariants, or equivalently (End(.F) being semisimple) a one-dimensional space of
irge°m-coinvariants, i.e., we must show hl (U ®k k, End(F)) = 1. Since F is self-dual
toward Q1(-1), End(.F) _ F 0 .F' = F and so we must show

h2(U®k k,.F®.F) = 1.

As ,F ® .F on U is pure of weight 2, the group H,2, (U ®k k, F ® .F) is pure of
weight 4. The symplectic pairing F (9 .F --> fit(-1) induces a surjective map of
Cal (i/k) -modules

H,': (U ®k k, .F (9 .F) H,2 (U Ok (-1)) = Q! (-2),

which we must prove to be an isomorphism. Since H' (U ®k k, F ® .F) is mixed
of weight < 3, and H° (U ®k k, .F ® F) = 0, this amounts, via the Lefschetz trace
formula, to proving that for any finite extension E of k, we have an estimate

Card(E)2 - E (Trace(FE,tl.F))2 = O(Card(E)3/2).

t in E,f(t)40

As .F is mixed of weight < 1 on all of A', if we add the terms (Trace(Fa,tJ.F))2
for the 2g possible bad t values in E, we change our sum by O(Card(E)), so it is
equivalent to prove that

Card(E)2 - (Trace(FE,tl.F))2 = O(Card(E)3/2).

tin E

In fact, we will see that this is O(Card(E)), cf. [Ka-RLS, 7.1.1] for the meaning
of this improvement.

For each t in E, the curve pr-1(t) is y2 = f (X) (X - t), which over k has
H° = iUI(-1), so by the Lefschetz trace formula on pr-1(t) and proper base change,
we have

Card(E) - Race (FE,tJ.F) = Card(pr-1(t)(E)).
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But we can count the E-points on Y2 = f (X) (X - t) by summing over X in E and
seeing for each how many square roots f (X)(X - t) has in E. So if we denote by
x the quadratic character of E', extended to be 0 at 0, we have

Card(pr-1(t)(E)) = (1 + x((x - t)f (x))),
x in E

and hence we get

- Trace(FE,t(.'F) _ x((x - t) f (x)).
zIn E

Therefore we have

E (Trace(FE,t I.F))2 x((x - t) f (x))
tinE tinT xinE )

2

= i x((x - t)f(x)(z - t)f(z))
t in Ex,z in E

E x(f (x)f (z)) E x((x - t) (z - t)).
x,z in E tin E

The innermost sum is, for given x and z in E, related to the number of E-points
on the quadric curve Qx,z of equation Y2 = (T - x)(T - z) by the same character
sum method used above:

Card(Q,,,z(E)) = Card(E) + > x((x - t)(z - t)).
tin E

If x = z, then Qx,x is Y2 = (T - x)2, two lines crossing at (x, 0), and has
2 Card(E) - 1 E-points. If x z, then Qx,,z is the finite part of a smooth quadric
curve with 2 rational points at oo, and so has Card(E) - 1 E-points. Thus we find

1: x((x - t)(z - t)) = Card(E) - 1, if x = z,
t in E

=-1, if x#z.
Thus we get

i x(f(x)f(z)) x((x - t)(z - t))
x.zinE tinE

1: x(f (x)f (z)) Card(E) - E x(f (x)f (z))
x=z in E x,z in E

= Card(E) E x(f (x))2 - x(f (x)f (z))
X in E x,z in E

2

= Card (E) (Card (E) - 2g) - x(f (x))x

in E

By the Riemann hypothesis for the curve Y2 = f (X) over E, the last term
(ix in E x(f (x)))2 is itself O(Card(E)). QED

Theorem 10.1.16. The group Ggeom forFj U is Sp(2g), i.e., the one-parame-
ter family of curves Y2 = f(X)(X - T) with parameter T has biggest possible
geometric monodromy group, namely Sp(2g).
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300 10. MONODROMY OF FAMILIES OF CURVES

PROOF. Combining the previous two lemmas, we find that Ggeom is a connected
irreducible subgroup of Sp(2g) which contains a unipotent pseudoreflection. Thus
Lie(Ggeo,n) is an irreducible Lie-subalgebra of the symplectic Lie algebra SP(2g)
which is normalized by a unipotent pseudoreflection. By the Kazhdan-Margulis
theorem [Ka-ESDE, 1.5], Lie(GgeOm) is all of SP(2g), and hence Gg..m, a priori
a subgroup of Sp(2g), is all of Sp(2g). QED

Remark 10.1.17. A faster but more "high tech" approach to .F is to view
it as the restriction to U of the middle convolution GX. midCX(f) on Al in the
sense of [Ka-RLS, 2.61. It follows [Ka-R.LS, 3.3.6] from this description and its
relation to Fourier transform that .F is geometrically irreducible, that at each finite
singularity the local monodromy is a unipotent pseudoreflection, and that at oo the
local monodromy is (-1) times a unipotent pseudoreflection. In the next section,
we will give examples in characteristic two, where we do not know any way to avoid
the Fourier transform theory.

Variant 10.1.18 (universal families of hyperelliptic curves).

10.1.18.1. For each integer d > 1, let us denote by Rd the space of monic
polynomials of degree d with all distinct roots. Concretely, ltd is the open set in
Ad with coordinates a0, a1, ... , ad_ 1 (thought of as the coefficients of the monic
polynomial f (X) := Xd + >. i<d aiXt) where the discriminant of that polynomial
f (X) is invertible. Thus for any field k, 7-1d(k) is precisely the set of square-free
monic polynomials f of degree d in one variable over k.

10.1.18.2. For each genus g > 1, we have a family of genus g hyperellip-
tic curves over W,2,+1[1/21, the fibre over a point f being the curve of equation
Y2 = f (X). We need to invert the prime 2 for this curve to be nonsingular.] In
view of 10.1.17, which tells us that various one-parameter subfamilies of this family
already have geometric monodromy as large as possible, namely Sp(2g), we find

Theorem 10.1.18.3. In any odd characteristic p, and for any genus g > 1,
the family of genus g hyperelliptic curves y2 = f (X) over R2_,+1 0 lFp has largest
possible geometric monodromy group Sp(2g).

10.1.18.4. For the sake of completeness, let us also spell out what happens
if we consider hyperelliptic curves of genus g of equation y2 = f (X) with f monic
and square-free of degree 2g + 2. Let us denote by ?-ld the space of not-necessarily
monic degree d polynomials Fi<d aiXi with ad invertible and with discriminant
invertible. If we "factor out" ad, i.e., write f as adfmonic, we see that 7-(d = G. X 7{d

Theorem 10.1.18.5. 1) In any odd characteristic p, and for any genus g > 1,
the family of genus g hyperelliptic curves Y2 = f (X) over 7g2g+2 (9 lF, has largest
possible geometric monodromy group Sp(2g).

2) In any odd characteristic p, and for any genus g > 1, the family of genus
g hyperelliptic curves Y2 = f (X) over 7129+2 0 F p has largest possible geometric
monodromy group Sp(2g).

PROOF. We first show that 1) implies 2). Indeed, if 1) holds, then because
Sp(2g) is connected, if we pull back our family to the finite etale double convering of
?-129+2®1Fp defined by taking a square root, say ad, of ad, d := 2g+2, the geometric
monodromy group remains Sp(2g). But over this double covering, the universal
curve y2 = (ad)2fmonic(X) is isomorphic (replace Y by Y/ad) to Y2 = fmonic(X)
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In other words, the universal family here becomes isomorphic to the pullback from
7{d ® Fp via the map f t-> fmonie of 7ld[cad] ® F, to 7-ld ® Fp. Since the geometric
monodromy group can only decrease after pullback, it must be at least Sp(2g) for
the family over 7{d ® F. But Ggeom is a subgroup of Sp(2g) in any case, so it must
be Sp(2g) over Rd ®Fp.

It remains to prove 1). For this, we argue as follows. Denote by U C 7{2g+1
the open set consisting of polynomials f which in addition have constant term f (0)
invertible. Then for every prime p, U®Fp is a nonempty,and hence dense, open set
of 7I2g+1®Fp. Therefore the restriction to U®Fp of the universal family Y2 = f (X)
over leg+1 ® IF,, has the same GgeO3ni namely Sp(2g), thanks to 10.1.16.

We then rewrite the universal curve over U, namely Y2 = f (X), as
(Y/X9+1)2 = (1/X)(1/X2g+1)f(X) = (1/X)freversed(1/X)

If we make the change of variable Y = Y/X9+1, X = 1/X, we get

(Y)2 = X freversed(X).

Thus we have embedded U in 7 t29+2 as the closed set consisting of polynomials
whose constant term vanishes. Since the restriction from 71!2g+2 ® Fp to this em-
bedded U®F, already has biggest possible Ggeom, namely Sp(2g), the Ggeom on all
of 712g+2 ®Fp can be no smaller, and, being a subgroup of Sp(2g), must be Sp(2g).
QED

10.2. Examples in characteristic two
Z10.2.1. For each genus g > 1, we work over the parameter space - Lumin

G S T 1 Tm,F2 := pec( 2[ , / ]), \<rVM2
and we consider the one-parameter family of Artin-Schreier curves

Y2 - Y = X2s-1 + T/X.

This is (the complement of two disjoint sections (0, oo) and (oo, oo) in) a proper
smooth relative curve Tr : C -> Gm,F2 of genus g over Gm,F2 . We denote by F the
sheaf R11riQi.

Theorem 10.2.2 ([Sut]). For each genus g > 1, the Ggeom for. on is
Sp(2g), i.e., the family of genus g curves over G,.,,,F2 given by the affine equation
Y2 - Y = X 29-1 + T/X has biggest possible geometric monodromy group, namely
Sp(2g)

PROOF. We will sketch the proof, and refer the reader to [Sut] for full details.
For each t 0. the curve in question is a finite etale connected 76/22-covering of
the Gm of X, which is fully ramified over both 0 and oo. Denote by Vi the unique
nontrivial additive character of F2 (') (0) = 1,0 (1) = -1). For each finite extension
E of F2i denoteE := zp o TraceE/F2, Then for each point tin Ex, we have

Card(Ct(E)) = 2 + E (1 +'OE(x2g-1 + t/x)),
xin EX

and hence

`Irace(FE.t I.F) = - E E(x2g-1 + t/x).

xin Ell
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Since Card(Ex) is odd, and each value of 1,E is ±1, this trace is an odd integer. In
particular, it is never zero.

From the trace expression, we see that F has the same trace function as G := the
Fourier transform By Fourier theory [Lau-TF], G is lisse
On Gm,F2 and irreducible as 7rgeom-representation, hence a fortiori irreducible as
7r1-representation. Because F and G are lisse sheaves on with the same
trace function, their 7r1-semisimplifications are isomorphic. Therefore F is itself
7r1-irreducible, and hence Jr is isomorphic to G as a lisse sheaf on Cm,F,,By

the known local monodromy structure of a Fourier transform due to Lau-
mon, the local monodromy of F at 0 is a unipotent pseudorefiection [Ka-ESDE,
7.6.3.1]. So again by the Kazhdan-Margulis theorem, it suffices to show that F is
Lie-irreducible.

To show that T is Lie-irreducible, we rule out the other possibilities. If F is
not Lie-irreducible, then by [Ka-MG, Prop. 1] it is either geometrically induced,
or is geometrically a tensor product G ® ?-t of lisse sheaves, with g Lie-irreducible
and with 1-1 of rank > 2 and having finite Ggeom. If F were geometrically induced,
then it would be arithmetically induced, at least after possibly passing to a larger
finite field, and this would force its trace to vanish on a set of positive density.
Since its trace function is nowhere vanishing, F cannot be geometrically induced.
A unipotent pseudoreflection cannot be a tensor product A ® B with both A and
B of size > 1, so if F is G ® 7-l, either G or 7-t must be of rank one. As 7-L has
rank > 2, we must have G of rank one. But any G of rank one has finite Ggeom,
and so F = G ® 71 has finite Ggeom, which is impossible, because a unipotent
pseudorefiection is not of finite order. QED

Remark 10.2.3. Instead of the family y2 - Y = X 29-1 + T/X, we could
consider the family y2 - Y = f (X) + T/X for any monk polynomial f of degree
2g - 1. Sutor's result remains true, and the proof is identical, cf. [Sut].

10.3. Other examples in odd characteristic

10.3.1. Fix an odd prime p and an integer d > 3 prime to p. Choose a monic
polynomial f (X) in 1Fp of degree d whose second derivative f" does not vanish
identically, e.g., Xd + X2. Let A and B be indeterminates, and denote by . in
IFp[A, B] the discrizninant of the polynomial f (X) + AX + B. One can show that A
is nonzero, cf. [Ka-ACT, 3.5]. Over the open set Spec(Fp [A, B] [1/0]) of A2 where
A is invertible, consider the two parameter family of hyperelliptic curves of affine
equation

Y2=f(X)+AX+B.
If d is odd, say d = 2g + 1, this is (the complement of a single section at oo of) a
proper smooth family of connected curves of genus g. If d is even, say d = 2g + 2,
this is (the complement of two disjoint sections at o0 of) a proper smooth family of
connected curves of genus g. In both cases, it is proven in [Ka-ACT, 5.4 (1) and
5.17 (1) respectively] that for any 1 6 p, (the sheaf R17riQ1 attached to) this family
has Ggeom = Sp(2g).

10.3.2. We can give one-parameter examples with big monodromy by spe-
cializing A. Recall [Ka-ACT, 5.5.2] that a polynomial g(X) over a field k whose
degree d is invertible in k is called "weakly superrnorse" if its derivative g'(X)
has d - 1 distinct zeroes in k, and if g separates the zeroes of g`. It is proven in
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[Ka-ACT, 5.151 that, given a polynomial f over lFp as above (degree prime to p, f"
nonzero), there is a nonzero polynomial D(A) in lF,[A] such that for any extension
field k of Fp, and for any a in k with D(a) # 0, the polynomial f (X) + aX over
k is weakly supermorse. It is further proven [Ka-ACT, 5.7 for d odd, 5.18 for d
even] that if g(X) in k[X] is weakly supermorse of degree d prime to p, the one
parameter family of hyperelliptic, genus g := [(d - 1)/2] curves

y2 = g(X) - T

over Spec (k[T][1/heroes a of g,(T - 9(a))]) has, for any 1 7-4 p, its sheaf R17r,Q1
everywhere tame, with Gg.m = Sp(2g).

10.3.3. Given an odd prime p and an integer g > 1, at least one of 2g + 1
or 2g + 2 is prime to p. Take one such as d, say take d = 2g + 1 unless p divides
2g + 1, in which case take d = 2g + 2. We get a two parameter family of genus g
curves over Spec(lFp[A, B] [1/A]) such that, for any l # p, we have Ggeom = Sp(2g).
If we specialize A to a nonzero a of the polynomial D(A) in an extension field k of
Fp, we get a one-parameter family of genus g curves over a nonvoid open set of Al
over k such that, for any 154 p, we have G$eom = Sp(2g).

10.3.4. Here is a very simple example of such a one parameter family. Given
an integer d > 3, consider the one parameter family

Y2=Xd-dX-T.
In any characteristic p which does not divide d(d - 1), the polynomial Xd - dX
is weakly supermorse. So for any such p, this is a one parameter family of genus
g:= [(d- 1)/2] curves over the nonvoid open set Spec(IFp[T,1/(Td-1 - (1-d)d-1)])
of Al over lFp such that, for any l p, we have GgeOm = Sp(2g).

Remark 10.3.5. Suppose we are given any proper smooth family of geomet-
rically connected curves of genus g > 1, it : C --+ X, where X is smooth, with ge-
ometrically connected fibres, over a normal connected S of finite type over Z[1/l].
We put F := R'irrQ1. For each finite field k, and each s in S(k), either choice of
Card(k)1/2 in 01 allows us to define Fs(1/2) on X. This sheaf on X,, is, via cup
product, symplectically self-dual toward the constant sheaf Q1, so we automatically
have that for it, p(ir1(X9)) lies in Sp(2g). Thus if we know that Ggeom for every
FIX, is Sp(2g), we are automatically in a position to apply to J= Theorem 9.6.1
with as taken to be any choice of 1/ Card(k)1/2.

10.4. Effective constants in our examples

10.4.1. In our characteristic p 54 2 examples of type Y2 = f (X) (X - T), the
sheaf F on U is tame, and U ®k k is F1 - {2g + 1 points}. So we may take the
constant C(U ®k k, ) in part 3) of 9.2.6 to be 2g - 1.

10.4.2. In our characteristic two example, the sheaf F on G,,,,,F2 is tame at
0, and at oo all its breaks are (2g - 1)/2g, as follows from the Fourier transform
theory, cf. [Sut] or [Ka-ESDE, 7.5.4]. So we may take the constant
to be (2g - 1)/2g.
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10.4.3. In our characteristic p # 2 examples of type y2 = g(X) - T with g
weakly supermorse of degree d prime to p, the sheaf F on U is tame, and U ®k k is
A' - {d - 1 points}. So we may take the constant C(U ®k k, F) to be d - 2. For
the two parameter examples of type Y2 = f (X) + AX + B, we do not know an
explicit upper bound for the constant C(A2[1/A] ®7p FP,F).

10.5. Universal families of curves of genus g > 2

10.5.1. In this section, we fix an integer g > 2. Given an arbitrary scheme S,
by a "curve of genus g over S" we mean a proper smooth morphism it : C --r S whose
geometric fibres are connected curves of genus g. It is well-known that (because
some curves have nontrivial automorphisms, e.g., hyperelliptic curves) there is no
"universal family" of curves of genus g, i.e., the functor M. from (Schemes) to
(Sets) defined by

Mg(S) := {S-isomorphism classes of curves of genus g over S}

cannot be representable. For if Mg existed as a scheme, then for any extension
L/K of fields, the natural map from M9(K) to M9(L) would be injective. This
would imply that if two curves over K become isomorphic over L, they must already
be isomorphic over K. This is nonsense, already for R C C, or Q C Q(i). Consider
the two genus g curves given by the affine equations

Y2 = X2g+2 + 1 and - Y2 = X2g+2 + 1

over Q. Over C, indeed over Q(i), these two curves become isomorphic: just replace
Y by iY. But they are not IR-isomorphic (and hence not Q-isomorphic), because the
first curve has a plethora of IR-valued points (two for each choice of X in IR U {oo})
while the second curve has none.

10.5.2. To get a similar example for Fp C Fp2 with p an odd prime, take f (X)
in Fp[X) an irreducible polynomial of degree 2g + 1, and take a in FP a nonsquare.
Consider the genus g curves over Fp given by the affine equations

Y2 = f(X) and y2 = of (X).
These become isomorphic over Fp2, but they are not Fp-isomorphic, because they
have different numbers of Fp points. To see this, compare the quadratic character
sum expressions for their numbers of F1,-points, namely

P+1+ X2(f(x)) and p+1- X2(f(x)).

xInF xin Fp

We must see that Ex in F,, X2(f(x)) is nonzero. Since f is irreducible over Fp, f (x)
is nonzero for x in Fp, and each term X2 (f (x)) is ±1. As the number p of terms is
odd, Lx in F, X2(f (x)) is odd, hence nonzero.

10.5.3. To get a similar example for F2 C F4, take for f (X) any irreducible
polynomial of degree 2g + 1 in F2 [X] (or indeed any polynomial of degree 2g + 1 in
F2(X] with no zeroes in F2), and consider the genus g curves over F2 given by the
affine equations

Y2 - Y = f (X) and Y2 - Y + 1 = f (X) .

These curves become isomorphic over F4 (replace Y by Y + ,Q, with /32 - /3 = 1).
They are not F2-isomorphic because the first has only one F2-point (the point at
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oo), while the second has five F2-points (the point at oo and the four points (x, y)
in A2(F2)).

10.5.4. It is also well known that this sort of problem, arising from auto-
morphisms, is the only thing that "keeps" M. from being representable. Roughly
speaking, for any reasonable ["relatively representable" in the sense of [Ka-Maz,
4.2]] notion of "auxiliary structure", say P, on curves of genus g, and which is rigid-
ifying (in the sense that a pair (C, p) consisting of a curve of genus g together with
a P-structure has no nontrivial automorphisms), the functor M9,P from (Schemes)
to (Sets) defined by

S - {S-isomorphism classes of pairs

(C/S a curve of genus g, p a P-structure on C/S)}

is representable. Let us explain this general principle.

10.5.5. Fix an integer n > 1. Given a scheme S on which n is invertible,
and a genus g curve C/S, denote by J/S its Jacobian. Recall that a (raw) level
n structure on J/S is a list of 2g points e1, ... , e29 in J(S) [n], which, on each
geometric fibre of J/S, forms a Z/nZ-basis of the group of points of order n on
that fibre. Equivalently, a "raw level n structure" on J/S is an isomorphism
a : (Z/n24. J[n] of group-schemes over S. We define a level n structure on
C/S to be a raw level n structure on its Jacobian.

10.5.6. One knows that for n > 3, a curve C/S/Z[l/n] of genus g > 2
together with a level n structure has no nontrivial automorphisms. Let us recall
the proof. Because n > 3, n has a divisor which is either an odd prime 1 or is
4. So it suffices to treat the case when n is either an odd prime 1, or is 12 with
1 = 2. One reduces successively to the case when S is the spectrum of a ring R
which is noetherian, then complete noetherian local, then artin local, then a field
k, the last reduction using the fact that, because g > 2, C/k has no nonzero global
vector fields. One further reduces to the case when k is algebraically closed. Again
because g > 2, any automorphism -y of C/k is of finite order. If -y is nontrivial, it
has at most finitely many fixed points, so in C x C its graph r, and the diagonal
A intersect properly, with intersection multiplicity A - ]Py equal to the sum, over
the fixed points of -y, of the strictly positive multiplicity of each fixed point. In
particular, we have

But we can use the Lefschetz trace formula to calculate this intersection multiplicity:

A rry = 2(-1)iTrace(yIH'(C,Zi)).
L

Both H° and H2 are Z1-free of rank one, and -y acts trivially. The assumption that
-y fixes the points of order I (or 12 if 1 = 2) on the Jacobian means precisely that
y acts trivially on HI/1H1 (or on H1/12H1 if I - 2). Since -y is of finite order on
H1, which is ZI-free of rank 2g, Serre's lemma [Serre-Rig] shows that -y acts as
the identity on H1. Thus we have

A . r, = E(-1)` Trace(yIH'(C, Z1)) = 2 - 2g < 0,
i

contradiction. Therefore -y is trivial, as required.
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10.5.7. A fundamental fact, cf. [De-Mum], is that the functor nMg on
(Schemes/Z[1/n]) defined by

S {S-isomorphism classes of pairs

(C/S a curve of genus g, a a level n structure on C/S)}

is representable, by a scheme quasi-projective over Z(1/n].

10.5.8. Once we have this basic representability result, the representability
of M9 for any relatively representable, rigidifying P follows easily. One considers,
over Z[1/n], the moduli problem M,,.p where one imposes both a level n structure
and a P-structure on the curve. It is representable over Z[1/n], because ,.M9 is
representable, and P is relatively representable. The finite group GL(29, Z/nZ)
acts on M,,v through its action (g, am) g-' on the level n structure. The
quotient ,M_,p/GL(2g, Z/nZ) can be shown (use descent theory to descend the
universal curve and its P-structure, cf. [Ka-Maz, 4.7]) to represent Mg,-p®zZ[1/n].
If we repeat this construction with two relatively prime values n1 and n2 of n > 3,
and glue together over Z[1/nin2], we get the required A4, ,-p.

10.5.9. The problem with working with an auxiliary level n structure when
thinking about curves of genus g over, say, a finite field k = lFq in which n is
invertible, is this. It is almost never the case that a curve of genus g over Fq admits
a level n structure over the same Fq, even if n is a small prime 1. First of all,
the Weil pairing would force F. to contain the l'th roots of unity, i.e., would force
q - 1 mod I. Even if q - I mod 1, there is still a serious obstruction: the numerator
of the zeta function of C/Fq is forced to be congruent to (1 - T)29 mod 1, a highly
unlikely event. Let us illustrate by example just how unlikely.

10.5.10. Suppose 1 is an odd prime. Fix g > 1, fix a finite field of odd char-
acteristic IF, with q =- 1 mod 1, and fix a polynomial f (X) in F. [X] of degree 2g
with all distinct roots in Fq. Consider the family of genus g curves of equation
Y2 = f(X)(X - A) over U := Spec(Fq[A][1/f(A)]). According to [Yu], the "modl
representation" pi of irl(U) (defined by R1ir1(Ft)) maps 7rgeom onto Sp(2g,Fi). It
also maps the entire 7r1 to Sp(2g, Fi), because q - 1 mod 1. By 9.7.10, applied
to Karith := the image of Sp(2g, Fl) in any faithful Q1-representation A, and to
the composite 01-representation A o pl of 1r1, we know that for large finite exten-
sions E of Fq, the fraction of points a in U(E) for which the curve of equation
y2 = f (X) (X - a) over E has its numerator of zeta equal mod l to (1 - T)'9 is
approximately the ratio

Card{g in Sp(2g, FI) I det(1 - Tg) = (1 - T)2g mod l}/ Card(Sp(2g, Ft))

= Card({unipotent elements in Sp(2g, Fl)}/ Card(Sp(2g, Fl))
g-1

= 19/ 11((129-2i - 1)(12g-2i - 12g-2i-1)/(1 - 1))
i=0

g-1

= 19/192 fl (129-2i - 1)

i=0 1

19/192(12 - 1)9(9+1)/2 = 1 /192-9(12 - 1)9(9+1)/2

1/(12)9(9-1)/2(12 _ 1)9(9+1)/2 < 1/(12 - 1)92.
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10.5.11. Here is an even simpler example, again valid in any odd character-
istic p, which shows the rarity of having a rational level two structure. Fix a genus
g > 1, and introduce 2g + 1 indeterminates Ai, i = 0, ... , 2g. Denote by A the
discriminant of the universal monic polynomial of degree 2g + 1,

2g

funiv (X) := X29+1 + > AiX i
i=0

Consider the family of genus g curves

Y2 = funiv(X)

over the open set U29+1 := A29+1[1/A] := Spec(Z[1/2][the Ai][1/A]) of the space
of coefficients where funiv has all distinct roots and where 2 is invertible. For
any field k of odd characteristic, a k-valued point s of U2g+1 is precisely a monic
polynomial fk,,(X) of degree 2g + 1 over k with 2g + 1 distinct roots in k. The
curve y2 = f k,e (X) over k admits a level two structure over k if and only if the
polynomial fk,,(X) splits completely over k.

10.5.12. If k is a finite field Fq, there are exactly q2g+1 - q29 points in
U2g+1(FQ), and exactly Binom(q, 2g + 1) of them split completely over F.. So the
percentage of points sin U2g+1(Fq) for which the corresponding curve Y2 = fk,,(X)
admits a level two structure over k is the ratio

29

Binom(q, 2g + 1)/(q2g+1 - q2g) = (1/(2g + 1)!) [J(1 -
i=2

< 1/(2g + 1)!.

/q)

10.6. The moduli space Mg,3K for g > 2

10.6.1. In order to avoid the irrationality problems encountered with level n
structures, we will work systematically with the notion of a "3K structure". Given a
curve C/S of genus g > 2, say it : C --+ S, one has on C the relative canonical bundle
Kc,s, namely the line bundle, sometimes denoted we/s or SZC/s, of relative one-
forms. One knows that in genus g > 2, 3K is very ample, cf. [De-Mum, Thm. 1.2
and Corollary], for the harder case of stable curves. More precisely, it*((Kc,s)®3)
is a locally free Os-module of rank 5g - 5 whose formation commutes with arbitrary
change of base T - S, and sections of 7r.((Kc/s)®3) define a closed S-immersion
of CIS into the relative projective space lPs(7r,((Kc1s)®3)) over S.

10.6.2. Let us also recall that for C/S of genus g > 2, the functor from
(Schemes/S) to (Groups) defined by

T/S H the group Aut(C xSTIT)

is represented by a group-scheme Autc/s which is finite and unramified over S, cf.
[De-Mum, Thm. 1.11] for the harder case of stable curves. In particular, for k a
field and C/k a curve of genus g > 2, AutC/k is a finite etale group-scheme over k,
and Aut(C/k) := Autc/k(k) is a finite group.
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308 10. MONODROMY OF FAMILIES OF CURVES

10.6.3. Given C/S of genus g > 2, we define a 3K structure on C/S to
be an Os-basis of rr.((Kc/s)®3), or equivalently an isomorphism of Os-modules

(Os)5g-1 = ir.((KC/S)®3). Since 7r.((KC/s)®3) is locally free on S, any C/S
admits a 3K structure Zariski locally on S (rather than etale locally, as was the
case with level structures). In particular, a level 3K structure on a genus g > 2
curve over a field, C/k, is simply a choice of a k-basis of the 5g - 5 dimensional
k-vector space H°(C, (cl,,k)®3). Thus not only does C/k admit a 3K structure
over k, but the set of all its 3K structures over k is principal homogeneous under
the group GL(5g - 5, k).

10.6.4. We claim that a 3K structure rigidifies a curve of genus g > 2. Be-
cause Kc1s ;= 52C/s and hence (KC/S)®3 are canonically attached to C/S, any
automorphism cc of C/S induces an automorphism of 7r.((Kc/s)®3), which in turn
induces an automorphism of P(1r.((Kc/S)®3)) under which the tri-canonically em-
bedded C/S is stable, and undergoes the automorphism cp with which we began.
So if rp induces the identity on 7r.((Kc1s)®3), cp must be the identity on C/S.

10.6.5. Therefore for each genus g > 2 the functor Mg,3K is representable,
thanks to the preceding discussion 10.5.8. But we should point out here that it is a
serious anachronism to use the representability of M. to deduce that of Mg,3K,
since the representability of the latter is historically prior to that of ,M9. In-
deed, J 4g,3K is a minor variant of the moduli problem that is the starting point in
Mumford's construction [Mum-GIT, Chapter 5, §2, Prop. 5.1] of M. as a coarse
moduli space. Mumford begins with the representable (by what he calls H3 in
[Mum-GIT], but Hyo in [De-Mum]) moduli problem of tri-canonically embedded
curves of genus g. Mumford's Hgo is the (Zariski sheafification of the) moduli prob-
lem of genus g curves C/S together with a 3K structure on C/S given only up
to multiplication by a unit in I'(S, Os)". Since Hg is representable [Mum-GIT,
Prop. 5.1], our moduli problem .M9,3K, being a Gm-bundle over H9, is itself rep-
resentable. To construct Mg (denoted Mg in [De-Mum]) as coarse moduli space,
Mumford has to pass to the quotient of H- by the group PGL(59 - 5), or equiv-
alently pass to the quotient of M9,3K by the group GL(5g - 5). It is exactly this
hard step which we are not taking, and indeed do not want to take.

10.6.6. Given any field k, we have the following tautological interpretation
of the set M9,3K(k) of its k-valued points:

Mg,SK(k) = {k-isomorphism classes of pairs

(C/k of genus g, a a k-basis of Ho(C, (SZ1C/k)®3M

10.6.7. We have a morphism of functors, "forget the 3K structure",

M9,3K ' Mg,
so for any field k a map

Mg,3K(k) --a M_,(k),
k-isomorphism class of (C/k, a) --* k-isomorphism class of C/k.

Lemma 10.6.8. Let k be a finite field, g > 2 an integer, and C/k a (proper
smooth and geometrically connected) genus g curve over k. There are exactly

Card(GL(5g - 5, k))/ Card(Aut(C/k))
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points in M9,3K(k) whose underlying curve is k-isomorphic to C/k, i.e., the fibre
of the map

Mg,3K(k) - M9(k),
over the point given by C/k has Card(GL(5g - 5, k))/Card(Aut(C/k)) points.

PROOF. The group GL(5g - 5, k) acts transitively on the fibre, and the sta-
bilizer of any point (C/k, a) in the fibre is the group Aut(C/k), viewed inside
GL(5g - 5, k) by its action on a. QED

Corollary 10.6.9. Let k be a finite field, and g > 2 an integer. We have the
"mass formula"

1: 1/ Card(Aut(C/k)) = Card(Mg,3K(k))/ Card(GL(5g - 5, k)).
C/k in MB(k)

Theorem 10.6.10 (Deligne-Mumford). For g > 2, Mg,3K is smooth over Z
of relative dimension 3g - 3 + (5g - 5)2, with geometrically connected fibres.

PROOF. It is proven in (Mum-GIT, Prop. 5.3] that H9 is smooth over Z. That
it is of relative dimension 3g - 3 + (5g - 5)2 - 1 is immediate from the deformation
theory of curves. It is proven- in [De-Mum, §3] that the geometric fibres of H9 /7G
are connected. So the asserted theorem results from the fact that M9,3K is a
G,,,-bundle over Hg(). QED

Theorem 10.6.11. Fix a genus g > 2, and denote by 7r : C - Mg,3K the
universal curve with 3K structure. For any prime number 1, consider the lisse sheaf
YI := R17r!QIIM9.3K ®z Z[1/l]. On any geometric fibre Of Mg,3K OZ Z11/11/Z11/111
its geometric monodromy group is Sp(2g).

PROOF. By Pink's specialization theorem [Ka-ESDE, 8.18.2], and the a priori
inclusion of Ggeom in Sp(2g) noted above in 10.3.5, the characteristic zero case
follows from the characteristic p case. In the characteristic p case, it suffices to
treat the Fp fibre, since for any connected scheme X over an algebraically closed
field k, and any algebraically closed overfield E of k, and any geometric point x of
X ®k E, the map 7r1(X ®k E, x) -* 7r1(X, x) is surjective.

As noted above, it suffices to show that YI IM9,3K ®z ll'p has Ggeom D Sp(2g).
For this, it trivially suffices to exhibit a connected U/Fp and a map

f : U - .M9,3K Oz Fp,

such that f *.FI on U has Gg,,11, = Sp(2g). We have given examples of families
cp : C --+ U of genus g curves whose parameter space U is a nonvoid open set in Al
over F. such that for all 154 p, Ggeom for R1V1Q1 is Sp(2g). Since any vector bundle
on an open set of A' over a field is trivial, C/U admits a_3K structure. Choosing
one, we get a classifying map, say f : U -' .Mg33K Oz Fp, such that C/U is the
pullback of the universal family. By proper base change, R1co101 is the pullback
f ".F1. QED

Lemma 10.6.12. Fix a genus g > 2. For any algebraically closed field k, and
for any curve C/k of genus g, Card(Aut(C/k)) < 4492.

PROOF. If k is not of characteristic 2, the points of order 4 on the Jacobian
rigidify C/k, so we get Aut(C/k) C GL(2g,Z/4Z). If k has characteristic two, the
points of order 3 give Aut(C/k) C GL(2g, F3). QED
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Lemma 10.6.13. Let S be a noetherian scheme, C/S a curve of genus g > 2.
There is an open set U<1 of S which is characterized by the following property: a
point s in S lies in U<1 if and only if for the corresponding curve C9/ac(s) we have
Auto,/K(s) _ {e}. More generally, for any integer i > 1, there is an open set U<i
of S which is characterized by the following property: a point s in S lies in U<i
if and only if the curve C/Y(s) has Autos/rqsi of rank < i, i.e., if and only if
Card(Aut(C, ®rc(s)/ms(s))) < i.

PROOF. Consider the group-scheme G := AUtc/S. It is finite over S, so it is
the relative Spec of a coherent sheaf, say G, of Os-algebras. For each point s of S,
Autos/,.(s) is the Spec of the finite etale K(s)-algebra G ®os rc(s). So to say that
Autce/r.(s) = {e} is precisely to say that dim(G (9os rc(s)) = 1. But for any point
s, dim(G ®os ic(s)) > 1, just because the coordinate ring of a group is nonzero. So
our U<1 is the set of points s at which dim(G ®Os ac(s)) < 1. Similarly, the set U<i
is the set of points s at which dim(G Oos K(s)) < i. Let us recall why such a set is
open. The general fact is that for any integer i > 0, and for any coherent sheaf G
on any noetherian scheme X, the set U := {x in X at which dim(G ®o,, rc(x)) < i}
is Zariski open in X. This question is Zariski local on X, so it suffices to treat
the case in which there exists a presentation of g as the cokernel of a map of free
OX-modules, say A : (Ox)P -i (OX)Q. Then U is the set of points at which the
rank of A is > q - i, and its complement is the closed set of X defined by the
vanishing of all the (q - i) x (q - i) minors of A. QED

Theorem 10.6.14. Let g > 3. Over any algebraically closed field k, there
exists a genus g curve C/k with no nontrivial automorphisms. Equivalently, the
open set U<1 in M9,3K of curves with no nontrivial automorphisms meets every
geometric fibre of Mg,SK/Z.

PROOF. We first reduce to treating the case k = Fp for each prime p. This will
obviously take care of any k of positive characteristic. It will also show that U<1 is
nonempty, and hence that U<1 contains the generic point of Mg,3K, which lies in
.Mg,3x ® Q. Therefore U<1 meets Mg,3K 0 Q as well, and this takes care of any k
of characteristic zero. _

So we may suppose that k is IFP. Since Mg,3x 0 k is smooth and connected, it
has a generic point s7, and a corresponding generic curve C,,/rc(rl). Let us denote by
r the rank of the finite etale ,j)-group-scheme Autc,/,c(g), i.e., r is the cardinality
of Aut(Cn/K(rl)). Now consider the dense open set U<,. 0 k of Mg33K 0 k. Over
it, the coherent sheaf G (whose relative Spec is Aut) has constant fibre dimension
r. As U<r ® k is reduced, being smooth over a field, G is locally free of rank r on
U<r ®k. Therefore Aut IU<r ®k is fiat, and hence finite etale, over U<,. ® k. So over
a finite etale connected covering V/U<r. ®k, Aut becomes a constant-group--scheme
Gv for some finite group G of order r.

The pullback C/V of the universal curve still has Ggeom = Sp(2g), because
restriction from Mg,3K ® k to the dense open set U<r 0 k does not change Ggeom,
and pullback to a finite etale cover does not change (Gg,,m)°. The finite group G
acts by functoriality as automorphisms of Fi IV, and hence G commutes with the
action of 7rl(V, v), and hence with the action of Sp(2g), on the stalk F,,,, at any
chosen geometric point v in V. Pick one such v, and denote by C the corresponding
curve. Since the standard representation of Sp(2g) is irreducible, G acts as scalars
on H1(C,,, Ol), say yin G acts as the scalar x(y) in µr(01). As the action is faithful,
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it identifies G with the cyclic group pr(Qt). For any automorphism ry of any curve C
over an algebraically closed field in which l is invertible, one knows, by the Lefschetz
trace formula for powers of -y, that the polynomial det(T-yjH' (C, Qt)) lies in ZIT].
Therefore (T -X('y))29 lies in Z[T]. Looking at the coefficient of T2g-1, we see that
2gx(y) lies in Z. Thus X(ry) is a root of unity in Q, and hence X(7) = ±1. Taking
ry to be a generator of G, we see that r is either 1 or 2. If r = 1, we are done.

If r = 2, the nontrivial element ry in G acts on H1(C,,, 01) as -1. This means
precisely that C, is hyperelliptic. [The quotient has genus zero (its H1 is the
G-invariants in H'(C,,,01)), and hence C is hyperelliptic, in the sense of being a
generically etale double covering of IF". Conversely, given a generically etale double
covering C/IF1 over an algebraically closed field of characteristic # 1, the attached
involution o of C must act as -1 on H1(C,Q1), since the quotient C/(o) is a P1.]
Since the curve C depends only on the point u in U<2®k lying under v in V, we find
that every curve in the open dense set U<2 ® k of Mg,3K 0 k is hyperelliptic. But
the hyperelliptic locus is closed under specialization (use the above characterization
of hyperelliptics as those admitting an involution which is -1 on H1), so every
curve in Mg,3K ® k is hyperelliptic. This is well known to be impossible, because
we have 2g - 1 < 3g - 3 provided g > 3.

Let us recall the argument in odd characteristic. Every hyperelliptic curve
of genus g over an algebraically closed field of odd characteristic is isomorphic to
Y2 = X (X - 1) f (X), with f monic of degree 2g - 1, and with f (O) f (1)A(f) 0 0.
The space of such f's is a dense open set in the A2g-1 of coefficients. On such
a curve, the holomorphic one-form dX/Y has divisor (2g - 2)00 as section of the
canonical bundle K. So (dX/Y)®3 as section of 3K has divisor (6g - 6)00. Using
the Riemann-Roch notation L(D) := H°(I(D)-1), we have

H°(3K) = L((6g - 6)oo)(dX/Y)®3,

a basis of which is {Xi for 0 < i < 3g - 3, YXi for 0 < i < 2g - 4}(dX/Y)03.
Using this basis as a base point a, to be moved by GL(5g - 5), we get a classifying
map between k-schemes,

(open in A2g-1) x GL(5g - 5) -t Mg,3K ®k,

(f, g) i-- (Y2 = X (X - 1) f (X), basis a o g-1)

which is surjective on geometric points. Comparing dimensions of source and target,
which are 2g - 1 + (5g - 5)2 and 3g - 3 + (5g - 5)2 respectively, we see that this is
impossible for g > 3.

In characteristic two, the argument is similar, except that now every hyper-
elliptic curve of genus g > 2 is isomorphic to a member of one of a finite number of
explicit families of hyperelliptic curves. These are the families

g-1

Y2 - Y = Poo(X) + Po(1/X) + P1(1/(X - 1)) + i Pi(1/(X - Q'i)),
i-2

with each P a (possibly zero) polynomial whose only possibly nonvanishing terms
are of odd degree, and with degrees satisfying

E (1 + deg(P)) = 2g + 2
nonzero P

and

deg(PP) > deg(Po) > deg(Pi) > ... > deg(Pg-1).
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One verifies easily that each allowed choice of degrees leads to a family which
depends on < 2g - 1 parameters. For instance, the most generic family is

g-1

Y2 - Y = bc.X + bo/X + b1 /(X - 1) + b/(X - ai),
t-2

which depends on g + 1 bi's and on g - 2 ai's. The most special family is

Y2 -Y = Pa0(X),

with P an odd polynomial of degree 2g + 1, which has only g + 1 coefficients.
QED

Remark 10.6.15. A more constructive proof of this theorem would be to write
down, for any genus g > 3 and in any characteristic p, an explicit curve which has
no nontrivial automorphisms. Recently, this was done by Poonen [Poon-Curves],
who exhibits curves of every genus g > 3 over every prime field FP with no nontriv-
ial automorphisms over 1FP. His curves are (the complete nonsingular models of)
cubic branched covers of V. [The idea of looking at such trigonal curves was also
suggested independently by Mochizuki.]

10.6.16. For some but not all genera g, one can use the theory of Lefschetz
pencils to write down, in every characteristic p, an explicit family of genus g
curves whose general member has no nontrivial automorphisms.

10.6.17. Let us first illustrate the simplest case, that of smooth plane curves.
For g a triangular number 0, 1, 3,6, 10,... , (d - 1)(d - 2)/2 with d > 3, a smooth
hypersurface C of degree d in IP2 has genus g, and its canonical bundle Kc is the
restriction to C of 0(d - 3). For d > 4, Kc is very ample, already being so on f°2,
and hence C is not hyperelliptic. Moreover, for any d > 1, 0(d) defines a Lefschetz
embedding of IF2 [SGA 7, XVII, 2.5.1 for the case d > 2, the case d = 1 being
trivial], so there exist Lefschetz pencils of degree d curves in P2.

10.6.18. It is a general fact that for a Lefschetz pencil of curves of genus g
on a simply connected projective smooth surface S, the group is Sp(29).
(To see this, notice first that S, being simply connected, trivially satisfies the hard
Lefschetz theorem LV of [SGA 7, XVIII, 5.2.2]. Then apply [SGA 7, XVIII,
6.5.2.1, 6.6 and 6.7] to conclude that GgeOm is the Zariski closure of an irreducible
subgroup of Sp(29) generated by unipotent pseudoreflections, hence by Kazhdan-
Margulis Ggeom must be Sp(2g)]. So by the monodromy argument above, for any
Lefschetz pencil of nonhyperelliptic curves on a simply connected surface S, all but
at most finitely many of the curves in the pencil have no nontrivial automorphisms.
To avoid having to write an explicit Lefschetz pencil on S, we consider the family
of all smooth hyperplane sections of S. In this family, which is as explicit as S is,
all members in a dense open set have no nontrivial automorphisms. Taking S := IF2
in its d-fold embedding, we find that "most" smooth curves of degree d > 4 in p2
have no nontrivial automorphisms.

10.6.19. Given a genus g > 4, is there an explicit projective, smooth, simply
connected surface S whose general hyperplane section is a nonhyperelliptic curve
of genus g? We have just seen that for g a triangular number (d - 1)(d - 2)/2, the
answer is yes. As Shin Mochizuki pointed out to us, the answer is also yes if g > 4
is not prime. For we may write g as (a - 1)(b - 1) with a and b both at least 3,
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and take S to be P1 x P1 in its O(a, b) embedding into p(a+1)(b+1)-1. A general

hyperplane section C of S, i.e., a general hypersurface of bidegree (a, b) in P' x 1P1,
has genus (a - 1)(b - 1), and its KC is the restriction to C of O(a - 2, b - 2). As
both a, b > 3, Kc is very ample and hence C is not hyperelliptic. [If a or b were 2,
C would be hyperelliptic, being of degree 2 over one of the P' factors.] For any a, b
each > 1, O(a, b) defines a Lefschetz embedding. [To check this, it suffices by [SGA
7, XVII, 3.7] to show that over any algebraically closed field k, given any k-valued
point xo of PI x 1P1, there is a hypersurface of bidegree (a, b) in PI x P1 which has
an ordinary double point at xo. Moving xc by an automorphism of IPl x 71, we
may assume x0 to be (0, 1) x (0, 1). In projective coordinates (X, A) and (Y, B)
on the two factors, the equation XAa-IYBb-1 = 0 does the job.] Thus there
exist Lefschetz pencils of smooth curves of bidegree (a, b) in P1 x P1. As explained
above, all but at most finitely many curves in such a pencil have no nontrivial
automorphisms. In particular, for any genus g = (a - 1)(b - 1) with a and b both
at least 3, a general smooth curve of bidegree (a, b) in P' x P1 is a curve of genus
g with no nontrivial automorphisms.

Remark 10.6.20. In genus two, every curve is hyperelliptic, and hence U<1
is empty. The first part of the argument shows that the generic value of r is either
1 or 2. Thus for g = 2, U<1 is empty, and U<2 meets every geometric fibre of
M2,3K/Z.

Corollary 10.6.21. Fix a genus g > 3, and denote by it : C -+ Mg,3K the
universal curve with 3K structure. Denote by

Mg,3K,aut<1 C Mg,3K

the open set parameterizing curves which geometrically have no nontrivial automor-
phisms, i.e.) Mg,3K,aut<1 is the open set U<1 of 10.6.13 for the universal curve.
Then we have

1) Mg,3K,aut<1 meets every geometric fibre of Mg,3K/7G in a dense open set
which is smooth and connected.

2) For any prime number 1, consider the lisse sheaf

Tt B11tlQtIMg,3K,aut<1 ®z ZG[1/l].

On any geometric fibre of Mg,3K,aut<1 ®z Z[1/l]/Z[1/1], its geometric monodromy
group is Sp(2g).

PROOF. Since Mg,3K,aut<1 is open in Mg,3Ki and the geometric fibres of
Mg.3K/Z are smooth and connected, hence irreducible, the intersection of
Mg,3K,aut<1 with a geometric fibre is either empty or is open dense and irreducible,
so itself smooth and connected. The intersection is not empty, by 10.6.14. Assertion
2) results from 1) and from 10.6.1, because Ggeom for .Ft is the same on a geometric
fibre of Mg,3K ®z Z[1/l]/Z[1/l] as it is a nonvoid open set of that geometric fibre.
QED

10.6.22. For each g > 3, we denote by

Mg,3K,aut>2 := Mg,3K - Mg,3K,aut<1 C Mg33K

the (reduced) Zariski closed subset of Mg,3K parameterizing curves which geomet-
rically have nontrivial automorphisms. Thanks to 10.6.14, the geometric fibres of
Mg,3K,aut>2/Z are of strictly positive codimension in those of Mg33K/Z. Applying
the Lang-Weil method, we get the following lemma.
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Lemma 10.6.23. For each integer g > 3, denote by

d(g) := 3g - 3 + (5g - 5)2,

the relative dimension of Mg,3K/Z. There exists constants A(g) and B(g) such
that for any finite field Fq, we have the inequalities

Card(Mg,3K,aut<1(Fq)) - qd(9), A(g)gd(9)-1I2

Card(Mg,3K,,ut>2(Fq)) C B(g)gd(g)-1,

Card(Mg.3K(Fq)) - gd(9)I < (A(g) +B(g)q-1/2)gd(9)-1/2.

PROOF. Since Mg,3K,aut<1/7L has smooth, geometrically connected fibres of
dimension d(g), we get the first inequality if we take for A(g) the maximum of the
constants

A(g,1) := Max# j 1: hc(Mg,3K,aut<1 ®Z Fp, 01)
i<2d(g)

for two different values of 1, say 2 and 3. Each constant A(g,1) is finite by the
constructibility of the Ri1r[1/lj!Qi for ir[1/1] the structural map

Mg,3K,aut<1 ®Z Z[1/l] Z[1/1].

Similarly, since Mg,3K,aut>2/Z has geometric fibres of dimension < d(g), we
get the second inequality if we take for B(g) the maximum of the constants

B(g, 1) Max:= j E hc(M9,3K,aut>2 ®Z FP' 0l )
i<2d(g)-2

for two different values of 1. The third inequality results by adding the first two.
QED

Remark 10.6.24. Let g > 3. For q > A(g)2, Mg,3K,aut<_1(Fq) is nonempty,
i.e., over every finite field Fq of sufficiently large cardinality there exists a genus
g curve which geometrically has no nontrivial automorphisms. As noted above,
Poonen [Pooh-Curves] has shown that there is such a curve over every prime field
F.

Lemma 10.6.25. Let g > 3. Denote by D(g) any upper bound for the order
of the automorphism group of a genus g curve (e.g., we have seen in 10.6.12 that
44g2 is such an upper bound). For any finite field k, denote by M9(k) the set of
k-isomorphism classes of genus g curves C/k, by Mg,aut<1(k) the subset of M9(k)
consisting of those C/k which geometrically admit no nontrivial automorphism, and
by M9,aut>2(k) the complement .A49(k) -Jtulg,aut<1(k)-

1) We have the mass formulas

E 1/ Card(Aut(C/k)) = 1

C/k in M9,auc<i (k) C/k in My aus<, (k)

= Card (Mg,3K,aut<1(k))/ Card(GL(5g - 5, k))
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and

1: 1/ Card(Aut(C/k))'
C/k in

Card (Mg,3x,aut>2(k))/ Card(GL(5g - 5, k)).

2) We have the equality

Card(Mg,aut<1(k)) = Card (Mg,3x,aut<I(k))/ Card(GL(5g -- 5, k)),

and the inequalities

Card(Mg,aut>2(k)) < D(g) Card(Mg,3x,aut>2(k))/ Card(GL(5g - 5, k)),

Card (Mg,aut>2(k)) > Card (M9,3K,aut>2(k))/ Card(GL(5g - 5, k)).

PROOF. The mass formulas of 1) are immediate from 10.6.8. They trivially
imply 2), since for C/k in Mg,aut<1(k), we have 1/ Card(Aut(C/k)) = 1, and for
C/k in Mg,aut>2(k) we have the inequality 1 > 1/Card(Aut(C/k)) > 1/D(g).
QED

Corollary 10.6.26. Notations as in the above three lemmas, fix g > 3. Denote
by E(g) the constant E(g) ::= 2D(g)B(g). For any finite field Fq with q > 4A(g)2,
we have

Card(Mg,aut>2(Fq))/ Card(Mg,aut<1(Fq)) < E(9)1q-

PROOF. By the two previous lemmas, we have

Card(Mg,aut> 2 (Fq)) / Card(Mg,aut <1(Fq) )

< D(g) Card (A4g.SK.aut>2(Fq))/ Card(M9,3K,aut<1 (Fq))

< D(g)B(g)gd(g)-1/(qd(g) - A(g)gd(g)-1/2)

= D(g)B(g)lq(1 - A(g)q-1/2)

< D(g)B(g)/q(1 - 1/2) = 2D(g)B(g)/q = E(g)/q. QED

10.7. Naive and intrinsic measures on USp(2g)#
attached to universal families of curves

10.7.1. Fix an integer g > 1, a finite field k = hq, and a choice ak of a real
square root of Card(k) = q. [Since we are choosing here a real square root, we could,
of course, choose the positive one, and the reader is welcome to make that choice.
But it is well to keep in mind that either choice works just as well. Moreover, if
we first make a choice in 01 of a square root of Card(k), and then transport it to
R via a field embedding t C, we certainly have no idea of which real square
root we end up with.]

,10.7.2. Given a genus g curve C/k, its zeta function has the form

P(T)/(1 - T)(1 - qT),

with P(T) of degree 2g. By the Riemann Hypothesis for curves over finite fields,
we know that there exists a conjugacy class t9(k, ak, C/k) in USP(2g)# with the
property that

P(T) = det(1 - akT3(k,ak,C/k)).
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Because elements of USp(2g2)# are uniquely determined by their characteristic
polynomials, the conjugacy class z9(k, ak, C/k) in USp(2g)# is uniquely determined
by this property. We call it the unitarized Frobenius conjugacy class attached to
C/k.

10.7.3. We define the "naive" probability measure p(naive, g, k, ak) on
USp(2g)# by averaging over the unitarized Frobenius conjugacy classes of all the
k-isomorphism classes of genus g curves C/k, each counted with multiplicity one:

,u(naive, g, k, ak) := (1/ Card(Mg(k))) E S,y(k,«j,C/k)-
C/k in M9(k)

10.7.4. We define the "intrinsic" probability measure tz(intrin, g, k, ak) on
USp(2g)# by averaging over the unitarized Frobenius conjugacy classes of all the k-
isomorphism classes of genus g curves C/k, but now counting C/k with multiplicity
1/ Card(Aut(C/k)):

i(intrin, g, k, ak)

(1/ Intrin Card(Mg (k))) (1/Card(Aut(C/k)))6,0(k,Q,,,C/k),
C/k in M9(k)

where we have put

IntrinCard(.Mg(k)) 1/Card(Aut(C/k))
C/k in M9(k)

= Card(Mg,3K(k))/ Card(GL(5g - 5, k)),

the last equality by 10.6.9.

Lemma 10.7.5. (1) The rational number IntrinCard(Mg(k)) is an integer,
namely

IntrinCard(M9(k)) = Card(Image(.Mg(k) - Mg(-E))).

(2) More precisely, for each point in this image, we have the identity

1 = E 1/ Card(Aut(C/k)).
C/k in M9(k) having image E in Mg(k)

(3) The image of Mg(k) in .M9(k) consists precisely of the points in M9(k)
which are fixed by the action of Gal(k/k).

PROOF. Consider the natural map .Mg(k) - M9(k), and collect terms
1/ Card(Aut(C/k)) according to which fibre C/k lies in. Then we see that (2)
implies (1). To prove (2), we argue as follows. Pick one C/k, and denote by C/k
the curve gotten from C/k by extension of scalars. Denote by F the Frobenius en-
domorphism Frobc/k of C/k. As explained in [Serre-GACC, VI, §1, Prop. 1 and
§2, Prop. 2], the k-isomorphism class of C/k is determined by the k-isomorphism
class of the pair (C/k, F). But any A in Aut(C/k) defines an isomorphism from
(C/k, F) to (C/k, AFA-1) = (C/k, AA-(4)F), q denoting Card(k). Any other
form Cl/k gives rise to a Frobenius F1 of C/k which must be of the form BF, for
some B in Aut(C/k), and the k-isomorphism class of C1/k is the class of Bmod
the twisted inner action of Aut(C/k) on itself which has A map B to ABA-(4).

Thus the k-isomorphism classes of the k-forms C1/k of 01-k are in bijective
correspondence with the twisted conjugacy classes in Aut(C/k), and for C1/k
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with Frobenius FB, Aut(C1/k) is the twisted centralizer of B, i.e., Aut(Ci/k) is
{A in Aut(C/k)IABA-(q) = B}. So our asserted identity is a familiar one from
finite groups: we have an action of the finite group G = Aut(C/k) on the finite set
X = G (by twisted conjugation), and we are writing

Card(X)/Card(G) = > Card(orbit)/ Card(G)
orbits of G in X

1: 1/ Card(Fixer in G of x).
rep's x in X of X/G

To prove (3), we argue as follows. It is obvious that the image of M9(k)
lies in the Gal(k/k)-fixed points of M,(k). Suppose that a point X/k is fixed by
Gal(k/k), i.e., suppose there exists a k-isomorphism W : X - X(q). All the data
(X/k, cp, Aut(X/k)) is defined over some finite extension k of k. bet us denote by
d the order of Aut(X/k). Then cp : X -+ X(?) defines a descent from k,,d to k of
(X viewed over ®k To see this, just notice that the composite

W (Q°-')x- (q)

is an automorphism of X, call it a, and hence is defined over k,,. The composite
(9) (Qd°-I)X 4 X(q) ... X

(qvd)

= X
is

a(q(d-1)v)a(q(d-2)Y) ... a(q')a = ad = id, as required. QED

10.7.6. We now return to the measures

1i.(naive, g, k, ak) and p(intrin, g, k, ak).

For g > 3, it is natural to compare both of these measures to a third one

p(aut < 1, g, k, ak),

where we average only over the curves which geometrically have no nontrivial an-
tomorphisms. For k such that Mg,aut<1(k) is nonempty, e.g., if Card(k) > A(g)2,
we define

p.(aut < 1, g, k, ak) :_ (1/ Card(Mg,aut<1(k))) 6V(k,ak,C1k)
C/k in Mg,.st<1(k)

10.7.7. It is a simple matter to express these last two measures

J.(intrin, g, k, ak) and 1C(aut < 1, g, k, ak)

in terms of Mg,3K and Mg,3K,aut<1 respectively.

Lemma 10.7.8. 1) Suppose that > 2. The measure p(intrin, g, k, ak) is given
by the formula

g(intrin, g, k, ak) _ (1/ Card(Mg,3K(k))) s19(k,ak,C/k)
(C/k:a) in Mg,3K(k)

2) Suppose that g > 3, and that Mg,aut<1(k) is nonempty. The measure
p,(aut < 1, g, k, ak) is given by the formula.

p,(aut < 1, g, k, ak)

_ (1/ Card (My,3K,aut <I (k)))
(C/k,a) in M1.3K,su1<1 (k)
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PROOF. This is immediate from 10.6.8 and 10.6.25. QED

10.7.9. Suppose now that g > 3. Using the previous lemma, we can make
explicit the relation of these measures to those which occur in 9,6.10. Fix a prime
number 1, and an embedding t of 0I into C. We take S to be Spec(Z[1/1]), we
take XIS to be either M9,3K[1/l]/Z[1/l] or M9,3K,aut<1[1/l]/Z[1/l] respectively,
we denote by 7r : C --p X the corresponding universal curve, we take .F on X to be
R11r,QI, and we take G to be Sp(2g). The constant A(X/S) may be taken to be
A(g) in the case of Mg,3K,aut<1[1/l]/Z[1/l], and may be taken to be A(g) + B(g)
in the case of Mg,3K[1/l]/Z[1/l], cf. 10.6.23.

10.7.10. For a finite field k in which l is invertible, there is a unique point s
in S(k). An 1-adic unit ae such that (,')deg ® .Fs has its arithmetic monodromy
inside G is precisely a choice of 1/ Sqrt(Card(k)) inside Qi. Under the chosen
embedding t of 0I into C, 1/a3 goes to a choice of ak, [The other choice -as of
as gives the other choice -ak of ak.] In view of the basic compatibility 9.1.13.1,
it is tautologous that for Card(k) > A(X/S)2, the measure 1I (k, s, a9) occurring in
9.6.10 is the measure on USp(2g)# given by

p(intrin, g, k, t(1/as)), for X/S = M9,3K [1/l]/Z[1/1],

.t(aut < 1, g, k, t(1/as)), for X/S = Mg,3K,aut<1 [1/l]/Z[1/l].

10.7.11. We define constants C(g) and Caut<i (g) as follows. Pick two differ-
ent values of 1, say 2 and 3. The constant C(g) is the maximum of the constants
C(Mg.3K[1/1]/Z[1/l],R17r,QI) for l = 2 and I = 3. The constant Caut<1(g) is the
maximum of the constants C(Mg,3K,aut<1R11r! ) for l = 2 and l = 3.

Theorem 10.7.12. Fix a genus g > 3. For any finite field k with

Card(k) > (A(g) + B(g))2 (resp. Card(k) > A(g)2)

and any choice ak of Sqrt(Card(k)) in R, consider the measure p(intrin, g, k, ak)
(resp. the measure µ(aut < 1, g, k, ak)) on USp(2g)#. In any sequence of data
(ki, akt) with Card(ki) increasing to infinity, the sequence of measures

p,(intrin, g, ki, aki) (resp. tr,(aut < 1, g, ki, ak,))

converges weak * to the measure it# on USp(2g)# which is the direct image from
USp(2g) of normalized Haar measure, i.e., for any continuous C-valued central
function f on USp(2g), we have

f d Haar = lim f f du(intrin, g, kt, aki )f Sp(2g) i- o° Sp(29)#

= lim f dp(aut < 1, g, ki, ak)
t oo

J
USp(29)#

More precisely, if A is any irreducible nontrivial representation of USp(2g), and
(k,ak) is as above with Card(k) > 4(A(g) + B (g))2 (resp. Card(k) > 4A(g)2), we
have the estimates

Trace(A) dp,(intrin, g, k, ak) < 2C(g) dim(A)/ Card(k)1/2,f Sp(29)#
-
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Trace(A) dit(aut < 1, g, k, ak) dim(A)/ Card(k)1"2.

PROOF. The "more precisely" estimates trivially imply the weak * convergence,
and they result in turn from the "more precisely" estimates of 9.6.10, applied to
Mg,3K[1/l]/Z[1/l] (respectively to Mg,3x,aut<I[1/l]/Z[1/l]) with l = 2 for k of odd
characteristic, and with l = 3 for k of characteristic two. QED

10.7.13. We now compare both the naive measure µ(naive, g, k, ak) and the
intrinsic measure p(intrin, g, k, ak) to the measure p(aut < 1, g, k, ak), using Lemma
10.6.23.

Lemma 10.7.14. Let g ? 3. For any (k = Fq, ak) with q > 4A(g)2, and any
C-valued /function f on USp(2g)#l, we have the inequalities

J f dp(naive, g, k, ak) - ! f dp(aut < 1, g, k, ak) < 2E(g) II f Its"p/q,

ffdi(intrini9kiak) - f f dp(aut < 1, g, k, ak) 2E (g) II f II5.P/q.

PROOF. Fix a choice of (k = Fq,ak) with q > 4A(g)2. Denote by Z the finite
set Mg(X), and by X and Y its nonempty subsets Mg,aut<i(k) and Mg,aut>2(k)
respectively. For z = C/k in Z = .M9(k), denote by

V(z) := the conjugacy class i9(k, ak, C/k) in USp(2g)#,
a(z) := the real number 1/ Card(Aut(C/k)) in (0,1].

According to 10.6.23, we have

#Yl#X < E(g)lq
We readily compute

r
ffdt(naive9kak) - J

f dp(aut < 1, g, k, ak)

(1/#Z) E f (t9(z)) - (1/#X) f (t9(x))
z x

(1/#Z) E f (t9(x)) + (1/#Z) f ('g(y)) - (1/#X) f ('d(x))
a V x

< (1/#Z) f (t9(x)) - (1/#X) E f (9(x)) l + (1/#Z) f ('d(y))
x y

_ (#Y/#Z) (1/#X) E f ow) + (#Y/#Z) (1/#Y) f ow)
x V

< 2(#Y/#Z)IIf1lsup < 2(#Y/#X)IIfII5Up < 2E(g)Ilflisup/q.

Similarly, we have

- ffd/(aut < 1, g, k, ak)
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1 / (#x+Ea)) a(y) f ('d(y))
v b

10. MONODROMY OF FAMILIES OF CURVES

(1/(#X + a(y)))(1: f (t9 (x)) + E a(y) f (t9 (y))) - (1/#X) E f (?9 (x))
x b x

1 / #X + y a(y) ) E f (19(x)) - (1/#X) f (,O(X))
x

= Y a(y)/ (#X + Y a(y)

Y b

(1/#X) E f ('d(x))
X

+ a(y)) / (#X + > a(y))

< 2 a(y)) / (#X + a(y) I) 1Ff I18uP

< 2(#1'/#X) IIf IIauP < 2E(g)IIf IIgup/q. QED

Theorem 10.7.15. Fix a genus g > 3. For any finite field k with
Card(k) > A(g)2, and any choice ak of Sqrt(Card(k)) in R, consider the mea-
sure

Et(naive, g, k) ak)

on USp(2g)#. In any sequence of data (ki, akj with Card(ki) increasing to infinity,
the sequence of measures u(naive, g, ki, ak,) converges weak * to the measure p,# on
USp(2g)# which is the direct image from USp(2g) of normalized Haar measure,
i.e., for any continuous C-valued central function f on USp(2g), we have

f dµ( naive, g, ki, akt )f f d Haar = lim f
P(29)#SP(29) s-' O° S

More precisely, if A is any irreducible nontrivial representation of USp(2g), and
(k, ak) is as above with Card(k) > Max(4A(g)2, E(g)2), we have the estimate

LSP2Q)*
Trace(A) dp(naive, g, k, ak)I < (2Caut<1(g) + 2) dim(A)/ Card(k)1/2.

PROOF. The weak convergence results from the asserted estimate. The esti-
mate results in turn from the corresponding estimate for jt(aut < 1, g, k, ak) proven
above, its comparison to µ(naive, g, k, ak) and the fact that for f := Trace(A),
11f 1I$up = dim(A). QED

10.8. Measures on USp(2g)# attached to universal families
of hyperelliptic curves

10.8.1. Fix an integer g > 1, a finite field k = Fq, and a choice ak of a real
square root of Card(k) = q. Fix an integer d > 3. For each square-free monic
polynomial over k of degree d, say f in 1-la(k), we have the hyperelliptic curve of
genus g :_ [(d - 1)/2] over k of equation y2 = f(X). Exactly as in 10.7.2, this
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curve, call it Cf/k, has a unitarized Frobenius conjugacy class ?9(k, ak, Cf/k) in
USp(2g)#. We define the hyperelliptic probability measure u(hyp, d, g, k, ak) on
USp(2g)# by averaging over the unitarized Frobenius conjugacy classes of all the
curves Cf/k, f in fla(k):

p(hyp, d, g, k, ak) := (1/ Card(Hd(k))) 6,9(k,aj;>Cf/k)
C/k in " (d(k)

Applying 9.6.10 to the universal family over 'Hd, and using 10.1.18.2 for odd d and
10.1.18.5 part 2) for even d, we find

Theorem 10.8.2. Fix an integer d > 3. Define g [(d-1)/21. For any finite
field k of odd characteristic p, and any choice ak of Sqrt(Card(k)) in Il8, consider
the measure t.(hyp, d, g, k, ak) on USp(2g)#. In any sequence of data (ki, ak;) with
Card(ki) odd and increasing to infinity, the sequence of measures p.(hyp, d, g, ki, ak,)
converges weak * to the measure p,# on USp(2g)# which is the direct image from
USp(2g) of normalized Haar measure, i.e., for any continuous C-valued central
function f onf USp(2g), we have

r
f d Haar = lim

J f dµ(intrin, g, ki, ak; )
Sp(29) t '°o rUSp(2g)#

= lim
ooUJ

f dp(aut < 1, g, ki, ak, ).
Sp(29)#

More precisely, there exist constants A(d) and C(d) with the following property: if
A is any irreducible nontrivial representation of USp(2g), and (k, ak) is as above
with Card(k) > A(d), we have the estimate

1/2f Trace(A) d, g, k, ak) < 2C(d) dim(A)/ Card(k)
J USp(2g)#
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CHAPTER 11

Monodromy of Some Other Families

11.0. Universal families of principally polarized abelian varieties

11.0.1. Fix an integer g > 1. Over an arbitrary scheme S, we consider an
abelian scheme 7r : A -+ S, or A/S for short, of relative dimension g, its dual
abelian scheme AtIS, and a normalized Poincare line bundle P on A x S At, i.e., a
Poincare bundle given with a trivialization t : OAt = PI{OS} x At of PI{OS} x At.
Recall that a principal polarization (respectively a polarization of degree d2, for an
integer d > 1, the case d = 1 being precisely a principal polarization) of A/S is an
isomorphism (respectively an isogerty of degree d) W : A -s At of abelian schemes
over S such that the line bundle L(W) := (id xcp)*P on A/S is relatively ample.
One knows that G(cp) induces the map 2rp, that G(cp)®3 is relatively very ample
on A/S, that 7r.,(G(cp)13) is a locally free OS-module of rank 69 (resp. (6d)9) and
hence that G(yp)®3 embeds A/S into the relative ll'sB-1 (resp. p(6d)9-1) given by
lPs(7r*(G(cp)®3)) [Mum-GIT, Ch. 6, §2, 6.13]. An isomorphism p : (A/S, VA)
(B/S,WB) of polarized abelian schemes over S is an S-isomorphism p : A -, B
of abelian schemes such that p*(G(W)) °L C(W) as line bundles trivialized along
the zero section of A (such an isomorphism, respecting the given trivializations,
is unique if it exists). In particular, an automorphism p of a polarized (A/S, cp)
induces an automorphism p of it (G(<p)®3), and p is determined by p". Therefore
we may rigidify a polarized (A/S, w) by imposing the additional structure of an
Os-basis a of rr(G(cp)®3): we call a a 3L structure. The merit of a 3L structure,
as opposed to a usual level structure via points of finite order, is that when S is a
field k, any polarized (A/k, gyp) admits a 3G structure a over the same field k.

11.0.2. We will be particularly interested in the moduli of principally polar-
ized abelian schemes. We denote by Abg,prin,3c the functor on (Schemes)

Abg,prin,3,c (S) := {S-isomorphism classes of triples (A/S, W, a)}

with A/S an abelian scheme of relative dimension g, cp a principal polarization of
A/S, and a a 3G structure on A/S.

Theorem 11.0.3 ([Mum-GIT, C-F]). The functor Abg,prin,ac is represent-
able by a scheme which is smooth over Z with geometrically connected fibres of
dimension g(g + l)/2 + 629.

PROOF. To prove the representability, it suffices to do so over 7G[1/n] for two
relatively prime values of n. For n > 3, consider the "raw" level n moduli prob-
lem Abg,prin,raw n, principally polarized A/S/Z[1/n] together with a raw (ignor-
ing the level n structure, namely 2g sections of A[n](S) which, on
each geometric fibre, form a Z/nZ-basis. It is representable by a scheme smooth
and quasiprojective over Z[l/n], everywhere of relative dimension g(g + 1)/2, cf.
[Mum-GIT, Thm. 7.9 and the remark following it] and [C-F, 6.8]. Over this, the
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moduli problem Abb,prin,1C,raw n, where one imposes both a raw level n structure
and a basis a of irr(r(V)®3), is represented by the total space of a GL(69) torsor.
One constructs Abb,prin,3c OZZ1/n by dividing Abb,prin,3C,raw n by the free (because
the 3C structure rigidifies) action of GL(2g, Z/nZ). This construction shows that
Abb,prin,3c ®zZ[1/n] is smooth over Z[1/n], everywhere of the asserted dimension,
namely g(g + 1)/2 + 629. Taking n = 3 and n = 4, and patching over Z[1/121, we
get Abb,prin,3C over Z, smooth and everywhere of the asserted dimension.

To show that Abb,prin,3L over Z has geometrically connected fibres, it suffices
to do so after we extend scalars to Z[1/n, (n] for two relatively prime values of
n > 3. There we consider the more usual notion of a symplectic level n structure
on a principally polarized A/S, namely the giving of 2g sections e1i fl,... , e9, f9 of
A[n] (S) which, under the en-pairing, satisfy

(et, e?) = 1 = (ft, fj) for all i, 3,

(ej,fJ)=1 ifi#j, (et,fz)=Sn foralli.

The corresponding moduli problem Abg,prin,n /Z[1/n, (,,,] is known to be smooth
and quasiprojective with geometrically connected fibres of dimension g(g + 1)/2
(C-F, 6.8]. Therefore the combined moduli problem Ab9,prin,3c,n /Z[1/n, (n], rep-
resented by the total space of a GL(69) torsor over Abg,prin,n) itself is smooth over
Z[1/n, Cn] with geometrically connected fibres of dimension g(g + 1)/2 + 629. The
space Abg,prin,3c ®zZ[1/n, (n] is the quotient of Abg,prin,3c,n /Z[1/n, (7z] by the free
action of the group Sp(2g, Z/nZ), so a fortiori its geometric fibres are geometrically
connected as well. QED

Theorem 11.0.4. Consider the universal family

iruniv : A - Abg,prin,3,C

of principally polarized abelian varieties with a 3C structure. For every prime 1,
consider the lisse sheaf

YI := R' (-runiv)!UI l Abg,prin,3c [1/1]-

On every geometric fibre of Ab9,prin,ac[1/l]/Z[1/1], the geometric monodromy group
of .F'i is Sp(29).

PROOF. The eln-pairings from the principal polarization define an alternating
autoduality

.Fi X .FI - QI (-1),

so we have an a priori inclusion of Ggeom in Sp(2g). So it suffices to exhibit, for
each g > 1 and each prime p, a family A/U of principally polarized abelian varieties
over a nonvoid open set U in Al over 1Fp whose geometric monodromy is Sp(2g)
for every 1 # p, cf, the proof of 10.6.1. For this we may use the Jacobians of our
one-parameter families of curves (y2 = f2g (x) (x - t) in odd characteristic, or of our
family y2 -y = x29-1 + t/x in characteristic 2), whose Ggeom we have proven to be
Sp(2g). QED

11.1. Other "rational over the base field" ways
of rigidifying curves and abelian varieties

11.1.1. Given an abelian scheme A/S of relative dimension g, one knows that
A[n] is a finite flat group scheme over S of rank n29. Let us denote by Aff(A[n]) its
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coordinate ring, the Os-locally free of rank n29 sheaf of Og-algebras whose Specs is
A[n]. Suppose now that (A/S, cp) is a (not necessarily, principally) polarized abelian
scheme. The following lemma is well-known.

Lemma 11.1.2 ("Serre's lemma", cf. [Serre-Rig], [Mum-AV, IV.21, Thm.
5]). For any n > 3, A[n] rigidifies (A/S, cp), in the sense that any automorphism a
of (A/S, gyp) which induces the identity on A[n] is the identity.

PROOF. By a standard spreading out of the data (A/S, gyp, a) we reduce to the
case when S is of finite type over Z. Then by rigidity [Mum-GIT, Ch. 6, §1, 6.1
applied to X = Y = A, f = a-1], we reduce to the case when S is the spectrum of a
finite field Fq. Then 7r.(L(cp)03) = H°(A,.C(w)'O3) is a finite-dimensional Fq-vector
space. Since it rigidifies (A/Fq, cp), we have an inclusion of groups

Aut(A/Fq, gyp) C Autgq (H°(A,,C(ep)®3)).

Therefore the entire group Aut(A/Fq, gyp) is finite, and hence our polarized auto-
morphism or is of finite order, say ak = 1 in End(A). The hypothesis is that or - 1
kills A[n], and therefore or - 1 = nb for some bin End(A). But any endomorphism
b has algebraic integer eigenvalues (:= roots of its "characteristic polynomial",
the unique monic Z-polynomial Pb(T) whose values at integers m are given by
Pb(m) = deg(m - b), cf. [Mum-AV, IV.19, Thm. 4]). Therefore the eigenvalues
of or = 1 + nb are both roots of unity and lie in 1 + hence are 1. But an
endomorphism satisfies its characteristic polynomial [Mum-AV, W.19, Thm. 4],
and hence (o-- 1)29 = 0 in End(A). Thus a satisfies both ak = 1 and (a-1)29 = 0
in End(A). But in Q[T] the g.c.d. of the polynomials Tk -1 and (T -1)29 is T- 1,
so a = 1 in End(A) ®Q. But End(A) is flat over Z, so or = 1. QED

11.1.3. Let us call an Os-basis of Aff(A[n]) an aff[n]-structure. Repeating
mutatis mutandis the arguments given above in the case of 3.C-structures, we find

Theorem 11.1.4. For any integers g > 1 and n > 3, the moduli problem on
(Schemes) given by S r-> (S-isomorphism classes of principally polarized abelian
schemes A/S of relative dimension g together with an aff[n]-structure} is repre-
sentable by a scheme Abg,prin,aff[n] which is smooth over Z with geometrically con-
nected fibres of dimension g(g + 1)/2 + n49. For each pair l p of distinct prime
numbers, the sheaf .FI R1(7Tuniv)!Q1 on Ab9,prin,aff[n[ ®Fp has Ggeom = Sp(2g).

11.1.5. Another way to rigidify rationally is by means of de Rham cohomol-
ogy.

Lemma 11.1.6. Over any Z[1/2]-scheme S, a polarized abelian scheme
(A/S, gyp) is rigidified by its HDR(A/S), in the sense that a polarized automorphism
a which induces the identity on HDR(A/S) is the identity.

PROOF. To see this, we argue as follows. By spreading out and rigidity, it
suffices to treat the case when S is the spectrum of a finite field k of character-
istic p > 2. In this case, we know by Oda's thesis [Oda] that HDR(A/k) is the
Dieudonne module llD(A[p]) of A[p], a result which today we may think as the re-
duction modp of the equality of H,r;s(A/W(k)) and lD(A[pO°]), cf. [Messing]. So
if a fixes HDR(A/k), it induces the identity on A[p], so by 11.1.2 we have a = 1 on
A. QED
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11.1.7. So again we get

Theorem 11.1.8. For any integer g > 1, the moduli problem on

(Schemes/Z[1/2])

given by S F-> {S-isomorphism classes of principally polarized abelian schemes A/S
of relative dimension g together with an OS-basis of HDR(A/S)} is representable
by a scheme Abg prin,DR which is smooth over Z[1/2] with geometrically connected
fibres of dimension g(g + 1)/2 + 4g2. For each prime p # 2 and each prime 10 p,
the sheaf F := R1 (7runiv)!QI on Abg,prin,DR ®FP has Ggeom = Sp(2g).

11.1.9. An even simpler way to rigidify rationally is via the invariant one-
forms WA/S :_ Ir=PA/s

Lemma 11.1.10. Over any Z[1/6]-scheme S, a principally polarized abelian
scheme (A/S, cp) is rigidified by itsWA/S, in the sense that a polarized automorphism
a which induces the identity on WA/s is the identity.

PROOF. Again we reduce to the case when S is the spectrum of a finite field
k of characteristic p > 3. The idea is to reduce to the previous case by making use
of the Hodge filtration

0 - WA/k -# HDR(A/k) - H1 (A, CA) -} 0.

To do this, we use the fact that the principal polarization provides an alternating
autoduality ( , ) on HDR(A/k) for which or is an isometry, under which WA/k is
isotropic, and which makes H' (A, OA) the dual of WA/k. Therefore if a is 1 on
WA/k, by duality we also have that or is 1 on HI (A, CA). Looking at the Hodge
filtration, we see that (a - 1)2 kills HDR(A/k). Viewing HDR(A/k) as ID(A[p]), we
get that (a - 1)2 = pb for some b in End(A). Looking at eigenvalues, we see that
those of a are roots of unity which are 1 mod Sgrt(p)OU. Asp is at least 5, any
such root of unity is 1, and we conclude as above that a = 1. QED

11.1.11. The same arguments as above now give

Theorem 11.1.12. For any integer g > 1, the moduli problem on

(Schemes/Z[1/6])

given by S '--p {S-isomorphism classes of principally polarized abelian schemes A/S
of relative dimension g together with an OS-basis of WA/S} is representable by a
scheme Abg,prin,w which is smooth over Z[1/61 with geometrically connected fibres
of dimension g(g + 1)/2 + g2. For each prime p # 2,3 and each prime l # p, the
sheaf T( := on Abg,prin,u, (9-Pp has Ggeom = Sp(2g).

11.1.13. In the case g = 1, we recover Weierstrass normal form. For g = 1,
the principal polarization is unique, given by I-1(0). So the moduli problem
Abi.prin, , /Z[1/6] is that of elliptic curves together with a nowhere vanishing dif-
ferential. It is represented by the spectrum of the ring Z[1/6,g2,g3]]1/A], A the
discriminant (g2)3 - 27(83)2, and over it the universal (E, w) is

(y2 = 4x3 - g2x - 93, dx/2y),

cf. [De-CEF]. It would be interesting to see explicitly what the moduli space
Abg,prin,w /Z[1/6] looks like for higher g.
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11.1.14. Since a curve of genus g > 2 is rigidified by its Jacobian, we can also
make variants M9,DR/Z[1/2] and Mg,,.,/Z[1/6] respectively of Mg,3K/Z, where
instead of imposing a 3K structure we impose an Os-basis of HDR(C/S), or an
OS-basis of 7r.S2c/s respectively. Again the same arguments as in 10.6.11 above
give

Theorem 11.1.15. For any integer g > 2, the moduli problem on

(Schemes/Z[1/2])

given by S " {S-isomorphism classes of curves C/S of genus g together with an
Os-basis of HDR(C/S)} is representable by a scheme Mg,DR which is smooth over
Z[1/2] with geometrically connected fibres of dimension 3g - 3 + 4g2. For each
prime p 2 and each prime 1 # p, the sheaf Fj := on M9,DR ® Fp
has Ggeom = Sp(2g)-

Theorem 11.1.16. For any integer g > 2, the moduli problem on

(Schemes/Z[1/6J)

given by S s--> {S-isomorphism classes of curves C/S of genus g together with
an CS-basis of 7r.St3js} is representable by a scheme Mg,,,, which is smooth over
Z[1/6] with geometrically connected fibres of dimension 3g - 3 + g2. For each prime
p # 2,3 and each prime 1 # p, the sheaf Fl := on Mg,,,, 0 F, has
Ggeom = Sp(2g).

11.2. Automorphisms of polarized abelian varieties

11.2.1. Suppose we are given an abelian scheme A/S. The functor in groups
Auts(A/S) on (Schemes/S) defined by T '--> Aut(A x s T/T) is representable by a
group scheme locally of finite type over S, thanks to the existence of the Hilbert
scheme, cf. [FGA, Expose 221] and [Mum-GIT, Ch. 0, §5]. This group scheme
satisfies the valuative criterion for unramifiedness (thanks to rigidity [Mum-GIT,
Ch. 6, §1, 6.1]), as well as that for properness (because over a discrete valuation
ring, an abelian scheme is the Neron model of its general fibre), but Auts(A/S) is
very far from being of finite type over S in general. For example, start with any S,
and with any A/S. Consider the n-fold product An/S := A xS A xs ... xs A for
any n > 2. We have an obvious action of the infinite discrete group GL(n, Z) on
A"/S.

11.2.2. On the other hand, if we take a polarized abelian scheme (A/S, w),
the functor of polarized automorphisms is represented by a closed sub-group scheme
Auts(A/S, cp) of Auts(A/S). The following lemma is well-known.

Lemma 11.2.3. The group scheme Auts(A/S, cp) is finite and unramified over
S, with geometric fibres of rank < 4492.

PROOF. We first reduce to the case when S is noetherian, or even of finite type
over Z. The question is Zariski local on S, so we may assume further that the
polarization cp is everywhere of some degree d2 on S, and that we have chosen an
Os-basis of -r.(C(cp)®3). Then Auts(A/S,cp) is a closed subgroup of

AutS(-7rr(,C((p)13)) GL((6d)g)s,

so certainly is of finite type over S. Since it is valuatively proper over S, it is in
fact proper over S. So it suffices that it have finite geometric fibres over S. By
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rigidity, the geometric fibres are valuatively unramified. As they are of finite type,
they are unramified, and thus (being over a field) etale. So it suffices that for any
point s of S with values in an algebraically closed field k, the group

Auts(A/S, cp) (k) = Aut(A,/k, cp8)

be finite. But for any n > 3 invertible in k, A,[n](k) rigidifies (A8/k,cp,), so
#Aut(A,/k, cp,) divides #GL(2g,Z/n7L). Taking n = 3 or 4, we get the asserted
bound. QED

11.2.4. For curves of genus g > 3, most have no nontrivial automorphisms.
Of course, every polarized abelian scheme (of relative dimension > 0) admits ±1 as
automorphisms. In the next two lemmas, we show that in general ±1 are the only
automorphisms. Exactly as in 10.6.13, we have

Lemma 11.2.5. Let S be a noetherian scheme, (A/S, cp) a polarized abelian
scheme over S. There is an open set U<2 of S which is characterized by the following
property: a point s in S lies in U<2 if and only if for the corresponding cp,)
we have Aut,l.l(A,/x(s),cpS) _ {±1}. More generally, for any integer i > 2, there
is an open set U<t of S which is characterized by the following property: a point s
in S lies in U<j if and only if for the corresponding (A8/rc(s), cp,) the finite etale
tc(s) -group scheme AutK(S)(A.In(s), cps) has rank < i.

Lemma 11.2.6. Let g > 1. Over every algebraically closed field k there exists
a 9-dimensional principally polarized abelian variety (A/k, cp), in fact a Jacobian,
whose automorphism group Aut(A/k, cp) is {±1}.

PROOF. Pick a prime 10 invertible in k. Take one of our families C/U of
curves of genus g over a nonvoid open set of Al over k whose Ggeon, is Sp(2g)
for every l invertible in k. [If k is of characteristic zero, take the family of curves
y2 = (x29-1) (x-t). It has Ggeo,,, = Sp(2g) in every characteristic p not dividing 2g,
and hence, thanks to Pink [Ka-ESDE, 8.18), it also has big Ggeor in characteristic
zero.} At the cost of passing to a nonvoid open set U0 of U, and then passing to
a finite etale covering V of U0, we get a family C/V with Ggeon, still Sp(2g) and
in which the finite group scheme Autv(Jac(C/V), canonical polarization) is finite
etale and constant on V. We claim that this constant group is the group {±1}.
Once this is proven, then for any k-valued point v in V, the Jacobian of C has
{fl} as its polarized automorphism group.

Because Sp(2g) is absolutely irreducible in its standard representation, any
polarized automorphism a of Jac(C/V) must act on H'(Cv/QI0) as a scalar, call
it (. Because or has finite order, this scalar is a root of unity. But the trace of a on
H1 (C,, QIo) lies in Z [Mum-AV, IV.19, Thm. 41, so 2gt; lies in Z, so (is a root of
unity in Q, so C is ±1, and hence a is ±1. QED

11.3. Naive and intrinsic measures on USp(2g)# attached to universal
families of principally polarized abelian varieties

11.3.1. Fix an integer g > 1, a finite field k = 1F., and a choice ak of a
real square root of Card(k) = q. Given a g-dimensional abelian variety A/k, with
Frobenius endomorphism denoted FA/k, or simply F, its (reversed) characteris-
tic polynomial of Frobenius is a 7L-polynomial P(T) of degree 2g, with constant
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term 1, uniquely determined by the property that for every integer m we have
P(m) = deg(1 - mFA/k). For every I invertible in k, we have

P(T) = det(1 - TFIH'(A ®k k, i5i)).

Its relation to the zeta function of A/k is slightly clumsy to express in naive terms.
If we factor P(T) _ fl(1 - T,3i), then for each n > 1 we have

deg(1 - F") = [J(1 - (.ai)n)

_ E(-1)zTrace (A'(FJ)IA'(H1)).
i

More conceptually, the zeta function Zeta(A/k, T) is the alternating product

11 det(1 - TFIHi(A ®k k,
0I))(-1)`+1,

i

and Hi = Ai(H').

11.3.2. By the Riemann Hypothesis for abelian varieties over finite fields,
we know that there exists a conjugacy class i9(k, ak, A/k) in USp(2g)# with the
property that

P(T) = det(1 - akTz9(k, ak, A/k)).

Because elements of USp(2g)# are uniquely determined by their characteristic poly-
nomials, the conjugacy class t9(k, ak, A/k) in USp(2g) # is uniquely determined by
this property. We call it the unitarized Frobenius conjugacy class attached to A/k.

11.3.3. We denote by Abg,prin the functor S F--r {S-isomorphism classes of
principally polarized (A/S, gyp) of relative dimension g}. This functor is not repre-
sentable, because it tries to classify objects with automorphisms. Nonetheless, for
k a finite field, the set Abg prin(k) is finite, and we have the following mass formula,
entirely analogous to that of 10.6.9:

# Abg,prin,3c(k)/#GL(6g, k) _ 1/# Aut(A/k, cp).
(A/k,'F) in Abv,orin(k)

If k has odd characteristic, we have the de Rham variant

# Abg,prin,DR(k)/#GL(29, k) = 1` 1/# Aut(A/k, cp).
(A/k,rp) in Abg,pr,n(k)

If k has characteristic > 5, we have the w variant

# Ab9,prin,w(k)/#GL(g, k) = E 1/# Aut(A/k, cp).
(A/k,cp) in Abg,pr;n(k)

11.3.4. Exactly as we did in the case of curves, we define the "naive" proba-
bility measure ..(naive, g, prin, k, ak) on USp(2g) # by averaging over the unitarized
Frobenius conjugacy classes of all the k-isomorphism classes of principally polarized
g-dimensional A/k, each counted with multiplicity one:

.,(naive, g, prin, k, ak )

(1/#(Abg,prin(k))) 6,0(k,ak,A/k)-
(A/k,cp) in Ab9 r;,,(k)
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11.3.5. We define the "intrinsic" probability measure p(intrin, g, prin, k, ak)
on USp(2g)# by averaging over the unitarized Frobenius conjugacy classes, but
now counting (A/k, gyp) with multiplicity 1/# Aut(A/k, gyp):

lt(intrin, g, prin, k, ak)

(1/ Intrin Card (Abg,prin (k))) (1/#Aut(A/k,W))6,9(k,a,,,A/k),
(A/k,W) in Aby prin(k)

where we have put

Intrin Card(Abg,prin (k)) 1/# Aut(A/k, cp)
(A/k,W) in Abg,prin(k)

# Ab9,prin,3L(k)/#GL(6g, k)

11.3.6. Exactly as in the case of curves we have the following two lemmas,
cf. 10.7.5 and 10.7.8.

Lemma 11.3.7. (1) The rational number IntrinCard (Abg,prin(k)) is an inte-
ger, namely

Intrin Card (Abg,prin (k)) = Card (Image(Abg,prin(k) Abg,prin(k))).

(2) More precisely, for each point in this image, we have the identity

1 = E 1/ Card(Aut(A/k, cp)).
(A/k,cp) in Ab,,,prin(k)i in Abs,prin('K)

(3) The image of in Abg,prin(k) consists precisely of the points in
Abg,prin(k) fixed by Gal(k/k).

Lemma 11.3.8. The measure µ(intrin, g, prin, k, ak) is given by the formulas

p(intrin, g, prin, k, ak)

= (1/ Card(Abg,prin,3L(k))) 6,9(k,ak,A/k)
(A/k,,p,a) in Ab9,p,1 ,3G(k)

_ (1/ Card(Abg,prin,affln)(k)))

x E 60(kak,A/k)i for n > 3,
(A/k,<p,a) in Abg,prin,affini(k)

(1/ Card(Abg,prin,DR(k)))

X E Sz9(k,ak,A/k), if char(k) > 2,
(A/k,cp,a) in Abg,pri..,DR(k)

_ (1/ Card(Abg,prin,w(k)))

X E a,3(k:ak,A/k), if cbar(k) > 3.
(A/k,r,a) in

11.3.9. Exactly as explained above so laboriously in the case of curves, for
each integer g > 1 there exist constants A(g) and C(g) so that we have the following
theorem.

Theorem 11.3.10. Fix an integer g > 1. For each finite field k, and each
choice ak of Sqrt(Card(k)) in R, consider the measures on USp(2g)# given by

p,(intrin, g, prin, k, ak) and y(naive, g, prin, k, ak).
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In any sequence of data (ki,ak,) with Card(k2) increasing to infinity, the two
sequences of measures

p(intrin, g, prin, ki, ak;) and µ(naive, g, prin, ki, ak; )

both converge weak * to the measure p# on USp(2g)# which is the direct image
from USp(2g) of normalized Haar measure, i.e., for any continuous C-valued central
function f on USp(2g), we have

Trace(A) dp.(intrin, g, prin, ki, ak, )f f d Haar = lira f
Sp(2g) 2- Sp(2g)#

= lim r f dp(naive, g, prin, ki, aki ).
oo .l USp(2g)*

More precisely, if A is any irreducible nontrivial representation of USp(2g), and
(k, ak) is as above with Card(k) > 4A(g)2, we have the estimates

Trace(A) dy(intrin, g, prin, k, ak)f Sp(29)*

and

JUSp(29)#
Trace (A) da(naive, g, prin, k, ak)

2C(g) dim(A)/ Card(k)1/2,

:52C(g)dim(A)/Card(k)1/2.

11.4. Monodromy of universal families of hypersurfaces

11.4.1. In this section, we will consider smooth hypersurfaces X of degree
d > 2 in ]?n+1, n > 1. Recall that over a finite field k = ]Fq, the zeta function of
such an X/k has the form:

n

if n is odd: P(T)/ fJ(1 - q2T),
i-o

if n is even: 1/P(T) fJ(1 - q--T),
i=0

where P(T) is a Z-polynomial with constant term one, of degree

prim (n, d) :_ (d - 1) ((d - 1)n+l - (-1)n+1)/d.

Pick a choice ak of Sgrt(Card(k)n) in R. For n odd (resp. even), we know by
[De-Well 11 that there is a conjugacy class 6(k, ak, X/k) in USp(prim(n, d))#
(resp. in 0(prim (n, d))#) such that

P(T) = det(1 - akTl9(k, ak, X/k)).

In both of the groups USp and 0, conjugacy classes are determined by their char-
acteristic polynomials, so 19(k, ak, X/k) is uniquely determined by P(T) and by the
choice of ak. We call it the unitarized Frobenius conjugacy class attached to X/k.
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11.4.2. The cohomological reason for these facts is this. Fix a prime l invert-
ible in k, which now could be any field. For n odd, the only nonzero odd-dimensional
cohomology group Ht(X ®k k, 01) is Hn, it has dimension prim(n, d), and the cup-
product is a nondegenerate alternating form

Hn(X (Dk k, 01) x Hn(X (9k k, 01) -, Hen(X®k, k, 01) - 01(-n).

The only nonzero even-dimensional cohomology groups Ht (X ®k k, Q1) are the
groups H2k for k = 0,.. . , n, with each H2k _t 01(-k).

11.4.3. For n even, the situation is just slightly more complicated. There is
no nonzero odd-dimensional cohomology, and the nonzero even-dimensional coho-
mology other than Hn, which we will discuss in a moment, is H2k = 01(-k) for
k = 0, ... , n, k n/2. For H', the restriction map

Hn((pn+1)k,O1) - Hn(X ®k k,01)
is injective. Its target, by means of cup-product, is equipped with a nondegenerate
symmetric pairing

Hn(X (&k k,01) x Hn(X ®k k,01) - H2n(X (9k n).

Its source H"((IFn+1)k,Q1) is canonically Q1(-n/2), and any nonzero element 77 in
its image in Hn(X (9k k, 01) has rl n # 0. We define the subspace

Prirnn(X ®k k, 0I) C Hn(X ®k k, 01)

to be the orthogonal of any such 97. Thus we have a direct sum decomposition

Hn(X ®k k,Q1) = Prim" (X ®k k, 01) ® Hn((1Fn+1)k,
Q1),

and the restriction to Primn(X ®k k, Q1) of the cup-product pairing is a nondegen-
erate symmetric form

Prim" x Prim" - H2n(X ®k k, 01) - 01(-n).

The dimension of Prim' (X ®k k, 01) is prim(n, d).

11.4.4. Now let us consider the universal family it : Xn,,d --' xn,d of smooth,
degree d hypersurfaces in Pn+1. To write this family explicitly, we begin with
the universal form of degree d in n + 2 homogeneous variables X1, ... , Xn+2,
say F(X) := E A,,,XW with indeterminate coefficients A,,,, one for each of the
Binom(n + 1 + d, d) monomials X' of degree d in the n + 2 variables Xt. As was
well known in the last century, there exists a universal homogeneous form A in the
A,,,, with Z-coefficients, the "discriminant" of the form E AWX w, whose nonvan-
ishing at a field-valued point is equivalent to the smoothness of the corresponding
hypersurface.

11.4.5. Let us recall the interpretation of A as the equation of the "dual
variety". Think of a hypersurface of degree d in Pn+1 as being a hyperplane
section of the image, call it V, of the d-fold Segre embedding of Pn+1 into IPN,
N := Binom(n + 1 + d, d) - 1, by means of monomials of degree d, and consider
the dual projective space IP" to IPN, Inside V x 1P" we have the incidence variety
Z consisting of those pairs (v in V, H a hyperplane in IPN) such that H is tangent
to V at v. Viewed over V, Z is a pN-1-d"" V bundle, so as a scheme Z is irre-
ducible, and it is proper and smooth over Z with geometrically connected fibres of
dimension N - 1. The dual variety Vv is defined to be the image in IF" of Z by
the second projection. Thus for any field k, a k-valued point of P", i.e. a degree d



C
A

D

ca
r

F
'.

11-4. MONODROMY OF FAMILIES OF HYPERSURFACES 333

hypersurface in (P'+') (9z k, lies in V" if and only if it is singular. Because Z is
irreducible and proper over lP", V" is a closed irreducible subset of lP". We endow
V" with its reduced structure. So endowed, V" is a reduced and irreducible closed
subscheme of 1P", which surjects onto Spec(Z) (because Z did), and hence, being
reduced and irreducible, is flat over Z. So V" as a subscheme of 1P" must be the
schematic closure in IP" of the subscheme (V") ®z Q of (Pv) ®z Q, which is known
[S GA 7, XVII, 3.3, 3.5, and 3.7.1] to be an irreducible hypersurface. So concretely,
to obtain V", one writes the equation over Q for this hypersurface, and then one
scales the equation by a Q"-factor so that it has integer coefficients which generate
the unit ideal (1) in Z. This scaled equation, well-defined up to ±1, is the equation
for V", and is the desired A.

11.4.6. The point of view of the dual variety makes obvious the existence, in
any characteristic, of smooth hypersurfaces in IP"+1 of any degree d > 2. Alterna-
tively, one can show the existence by writing down the following explicit equations,
the last of which we learned from Ofer Gabber:

k

d = 2, n + 2 = 2k even: XiXi+k,
i=1

d= 2,n+2=2k+1 odd:
k

(X2k+1)2 + XiXi+k,
i=1

n+2

d > 3 prime top: (Xi)
i=1

n+1
d > 3 divisible by p: (X1)d + X,(Xi+I)d-1

i=1

11.4.7. The universal family has parameter space fn,d := the open set in the
projective space of the A,,, where A is invertible, and over it the universal family
7r : Xn,d - fn,d is the hypersurface of equation E A,,,X "' inpn+2 x zfn,d, mapping
to 7-ln,d by the second projection. Because there are smooth hypersurfaces of every
degree and dimension in every characteristic, the discriminant A is not identically
zero in any characteristic. So each geometric fibre of ln,d/Z is a nonvoid open set
in a projective space of dimension Binom(n+ 1 +d, d) -1, so in particular is smooth
and connected of dimension Binom(n + 1 + d, d) - 1.

11.4.8. For each prime 1, we define a lisle Q1-sheaf Prim' on fn,d [1/1] as
follows. For n odd, we take

Prim' := Rn7r!Q,1Hn>d[1/1]

For n even, the sheaf Rn,,,O,1N.f,,d[1/1] receives injectively the geometrically con-
stant sheaf fit(-n/2)n, which is the Hn of the ambient p,+2, and we define
Prim' C Rn7rmQ1Ifn,d[1/1J to be its orthogonal. So for n even, we have

Rn7rrQIIxn,d(1/11 = Qi(-n/2)rc dfl/Il Prim" .

In both cases, cup product provides an autoduality

Prim" x Prim' -r Qi (-n),

which is alternating for n odd, and symmetric for n even.
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Theorem 11.4.9 ((De-Weil II, 4.4.1]). Suppose that d >_ 3, that n >_ 1, and
that (n, d) (2, 3). For any prime 1, the lisse sheaf Prim' on 1t,,,d[1/l] has, on
every geometric fibre of f,,,a[1/1]/Z[1/1], the group Ggeom given by

Sp(prim(n, d)), if n odd,

O(prim(n, d)), if n even.

PROOF. In view of the cup-product autoduality, Ggeom is a priori a subgroup
of the named group. Let us examine the situation in a given characteristic p # 1.
By a standard Bertini argument, e.g. using [Ka-ACT, 3.11.1], if we restrict the
lisse sheaf Prim' on 7{,,,d 0 lFp to a sufficiently general line, we do not change its
monodromy, so in particular we do not change its Ggeom. But there exist Lefschetz
pencils of degree d hypersurfaces in ll"+1 for every d > 2 (by [SGA 7, XVII, 2.5.1,
4.1 and 4.2]), and any sufficiently general line in l,,,d ® lFp is a Lefschetz pencil,
so it suffices to show that a sufficiently general Lefschetz pencil has the asserted
Ggeom. For n odd, that Ggeom is Sp is proven in [De-Weil 11, 4.4.1]. For n even,
it is proven there that either Ggeom is the full orthogonal group 0, or that it is a
finite irreducible subgroup of O. It is this last case we must rule out, and it is in
order to rule it out that we have to exclude the case n = 2, d = 3 of cubic surfaces,
where we do in fact get a finite group.

So we consider the situation n even > 2, d > 3, n(d - 2) > 4. If a general
Lefschetz pencil has finite Ggeo,,,, call it G, then the sheaf Prim' on 71n,d 01Fp
has this same finite G as its Ggeorn. But G is irreducible, and it is normalized
by all Fkobenii Frobk,x at all finite-field valued points x of 7-L,,,d 0 F. As G is
finite, the automorphism Ad(Frobk,,,) of G is of finite order, so some power of
Frobk,1 commutes with G, hence is scalar. But (Card(k))-"/2 Frobk,x is orthogonal,
and a power of it is scalar. As the only orthogonal scalars are ±1, we see that
all eigenvalues of Frobk,x are of the form (Card(k))'V2(a root of unity). This in
turn forces the p-adic Newton polygon to be a straight line, for every smooth
hypersurface of degree d in lF'+2 in characteristic p. By a result of Deligne and
Illusie [III-Ord, Thin. 0. 11, we know that for a sufficiently general such hypersurface,
its p-adic Newton polygon is equal to its Hodge polygon, and hence can be a straight
line only if, over C, a smooth hypersurface X of degree d in lPn+1 has its Prim"
entirely of Hodge type (n/2, n/2). There is a simple recipe for calculating the
dimensions prima''-a of the Hodge pieces Prima''-a of Prim', namely prima,n-a

is the number of monomials X21 in n + 2 variables which satisfy

1<wi<d-1 foralli,
1: wi = (a+1)d.

[In this description, wi H d - wi implements Hodge symmetry.]
It follows from this description that the least a for which prima,n-a # 0, the

"Hodge co-level" of Prim', is given by the recipe [SGA 7, XI, 2.8], cf. also [Ka-TA,
2.7],

a + 1 = the least integer > (n + 2)/d.

Thus for Prim' not to be entirely of type (n/2, n/2), we need the Hodge co-level
< n/2 - 1, i.e., we need n/2 > (n + 2)/d, or equivalently n(d - 2) > 4, and this is
precisely what we have assumed. QED
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11.5. Projective automorphisms of hypersurfaces

11.5.1. By a projective automorphism of a degree d hypersurface XIS in
lP"l, we mean one induced by an automorphism of the ambient P+1, i.e., by an
S-valued point of PGL(n + 2) which stabilizes X/S. We denote by

Proj Aut(X/S) C PGL(n+ 2)(S)

the group of projective automorphisms of X/S. Over the base 71n,d, we may
form the group scheme Proj AutXn

d/xn,d, which represents the functor on
(Schemes/%,,,d) which attaches to an S-valued point it : S --> fn,d the group
Proj Aut(X,/S) for Xn/S the pullback by 7r of the universal family. Clearly
Proj Aut is a closed sub-group scheme of PGL(n + 2)n,,,d. Our aim is

d/xn,d
to show that Proj Autx d/x ,d is finite and unramified over 1-Ln,d, for n > 0 and

d > 3 with the single exception (n, d) = (1, 3), in which case we have the finiteness,
but must invert 3 to have the unramifiedness. The unramifiedness will come from
the following result.

Theorem 11.5.2 (Bott, Deligne, Kodaira-Spencer, Matsumura-Monsky).
Suppose n > 0 and d > 3, and that (n,d) # (1,3). Then for any field k, and
any smooth hypersurface X/k of degree d in lEll+1, we have H°(X,Tx/k) = 0.

PROOF. For n = 0 there is nothing to prove, since TX = 0. Suppose next that
n = 1. Then X is a smooth plane curve of degree d > 4, of genus
g = (d - 1)(d - 2)/2 > 3, and its tangent bundle TX/k is a line bundle of de-
gree 2 - 2g < 0, hence has vanishing H°.

For n > 2, there are two different proofs, both of which are well-known to the
experts, but for neither of which do we know an explicit reference.

11.6. First proof of 11.5.2

11.6.1. In characteristic zero, this was proven by Kodaira-Spencer [K-S,
Lemma 14.2]. by a beautiful inductive argument which, as Ofer Gabber remarked, is
valid over any field, except that it requires as input a form of Kodaira vanishing on
Fn+1 due to Bott [Bott]. This same vanishing was later proven in arbitrary charac-
teristic by Deligne [De-CCI, Thm. 1.1]. Let us recall briefly the Kodaira-Spencer
argument, and the statement of the required input.

11.6.2. We work over a field k. Given a smooth S/k everywhere of relative
dimension v + 1 > 1, and a divisor D C S with D/k smooth, DerD(S/k) is the
subsheaf of Ts/k = Der(S/k) consisting of those derivations which map the ideal
sheaf I(D) of D to itself. In local coordinates x 1 ,.-. , x,+1 on S/k in which D is
xl = 0, DerD(S/k) is Os-free on x18/8x1 and on the 8/axe, 2 < j < v + 1. The
Os-dual of DerD(S/k) is denoted 11'/k(logD). Dual to the inclusion of DerD in
Ts/k is the inclusion

SOS/k C Qlslk (log D).

In local coordinates, QS/k(log D) is Os-free on d log(x1) := dxl/xl and on the dxi,
2 < j < v + 1. For i > 0, we define the locally free Os-modules

SZs/k (log D) := Ai (52,'s/k (log D)).
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In local coordinates, we have

StS/k(logD) = Sts/k + (dxl/x1)Sls/k

I(D) ®os SlS/k(logD) = xlsts/k + (dx1)Sts//k.

We have natural inclusions

I (D) ®Os 1l /k(log D) C SZS/k C I1S/k (log D).

For every i, we have both the Poincare residue short exact sequence

residuei 0 -+ Sts/k Sts/k(logD) -+ flD/k 0,

and the restriction short exact sequence

restrict; 0 - I(D) ®os 1s/k(log D) --, Sts/k GD/k 0,

(with the usual convention that for i < 0, any flavor of Stb is 0). As D/k is smooth,
everywhere of dimension v, we have

TD/k - Stp/k ®(KD/k)® 1,

because both sides are HomoD (fID/k, OD).

11.6.3. We apply this to D = our smooth, degree d hypersurface X in
S = P:= P"+1, in which case I(D) is Op(-d), Kx/k is Ox(d - n - 2), and

Tx/k = StX/k(n + 2 - d).

So what we wish to prove is that

H°(X, 1 7 (n + 2 - d)) = 0.

This is the case k = 0 of the following statement C(k),

C(k): Hk (X, S2X/k-k(n + 2 - (k + 1)d)) = 0.

The Kodaira-Spencer idea is to prove C(k) for all k by descending induction, and
to prove simultaneously another statement A(k),

A(k): X )(log - (k + 1)d)) = 0,

by deducing them both from two other vanishing statements B(k) and D(k) on
F := IPn+1/k,

B(k): Hk(Pn+1, cfn/kl-k(n + 2 - (k + 1)d)) = 0,
P,

nD(k):

Hl

k(Fn+1/k (,n + 2 - (k + 1)d)) = 0.

11.6.4. Indeed, the restriction short exact sequence, twisted termwise by

Oi(n+2 - (k+1)d),
namely

0 SZP/k-l (log X)(n + 2 - (k + 2)d) -S2p/k -1(n + 2 - (k + 1)d)
onX/k-1(n + 2 - (k + 1)d) -p 0,

gives a long exact cohomology sequence which shows that

B(k) and A(k + 1) together imply C(k).
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The residue short exact sequence residue.-k, twisted termwise by

Op(n + 2 - (k + 1)d),

namely
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0 Stp/k (n + 2 - (k + 1)d) -> (log X)(n + 2 - (k + 1)d)

S2X/k-1(n + 2 - (k + 1)d) - 0,

gives a long exact cohomology sequence which shows that

C(k) and D(k) together imply A(k).

So if B(k) and D(k) hold for all k, then we are left with the implications

A(k + 1) = C(k) = A(k).

Since A(k) holds trivially for large k, e.g. for k > n, we conclude that both A(k)
and C(k) hold for all k.

11.6.5. That both B(k) and D(k) hold for all k, provided that n > 2 and
d > 3 (or that n = 1 and d > 4), is easily checked to be a special case of the
vanishing theorem of Bott [Bott] over C and Deligne [De-CCI, Thm. 1.1] over any
field: given three integers (a, b, c), the group Ha(1Pn+1, S2Pjk(c)) vanishes except in
the following cases:

a=0, andeitherc>b>Oorc=b=O,
1<a<n,b=a andc=0,
a=n+l,b>0andeitherb-c>n+l or both b=n+landc=0.

This concludes the first proof.

11.7. Second proof of 11.5.2

11.7.1. We continue to suppose that n > 2, and that F(X1, ... , Xia}2) is the
form of degree d which defines X. For each i = 1, ... , n - 2 we write

F. := 8F/8X1.

On p:= pn+1 over k, we have the basic short exact sequence

0-+ Q1-+ Or(-1),+2-4 op 0,

with the dual short exact sequence

(i) O -op -Oe(1)n+2-fTp-+O.

Concretely, this sequence says that global vector fields on P are of the form

Lini 8/OX ,

with Lini a linear form in the Xj's, with the single relation that E X18/8X1 = 0
as vector field on P.
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11.7.2. This sequence, being locally split, restricts to any closed subscheme
X to give an exact sequence

0->Ox ->Ox(1)n+2 -+Tp1X -40.

For smooth X, denoting by I(X) the ideal sheaf of X, we have the normal bundle
short exact sequence on X

0 -Tx ->Tp1X Hom0X(I(X)/I(X)2,Ox) -, 0.

For X our smooth hypersurface of degree d, the map "multiplication by F" gives
Op(-d) = 1(X), i.e., we have a short exact sequence

(ii) 0-+ Op(-d)-- OF-*Ox->0.
The normal bundle short exact sequence on X becomes

0-+Tx -iTpX - Ox(d) - 0.
On global sections, we have an exact sequence

(iii) 0 - H°(X,Tx) -> H°(X,Tp1X) -> H°(X,Ox(d)).

To compute H°(X,TpIX), we use the short exact sequences on IP

(iv) O - Tp(-d) - - Tp - TpI X - 0

and the (-d) twist of (i)

(v) 0 - Op(-d) --+ Op (I - d) n+2 - Tp(-d) -s 0.

11.7.3. Since IP is IPn+1 with n > 2, Ht(IP, Op(j)) vanishes for i = 1 and i = 2,
for every integer j, and it vanishes for i = 0 if j < 0. So we infer from (v) that
Ht(IP,Tp(-d)) vanishes for i = 0 or 1, and then from (iv) that

H°(IP,Tp) = H°(X,Tp1X).

From (ii)(-d), we get

H°(IP, OP(d))/kF = H°(X, Ox (d)).

So all in all, (iii) becomes

0 --> H°(X,Tx) H°(IP, Tp) -- s H°(IP, O?(d))/kF,

the map given by

Lint a/axt Lint Ft mod kF.
Y i

11.7.4. So for n > 2 and d > 3, the vanishing of H°(X,Tx) amounts exactly
to the statement that the only solutions in H°(IP, Op(1)n+2) B k of the
equation

Lint Ft = AF

are k-proportional to the Ruler identity solution >t X1FF = dF. We will see that
this statement is in fact valid for any n > 0, d > 3, with the single exception of
n = 1, d = 3, where every smooth plane cubic in characteristic 3 is a counterexam-
ple.
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11.7.5. It is this last statement which is proven, for n > 2 and d > 3, by
Matsumura and Monsky in [Mat-Mon, pages 34$-352], although they do not
relate it there to the vanishing of H° (X, Tx ), and indeed in a remark they say
that they do not know if this vanishing holds in positive characteristic! For the
convenience of the reader, we will recall their argument.

Lemma 11.7.6 ([Mat-Mon, pages 348-352]). Let n > 0, d > 3. Over any
field k, let F be a form of degree d in n+2 variables Xt, which defines a nonsingular
hypersurface in P"+1. If n = 1 and d = 3, suppose also that char(k) # 3. Then the
only solutions ({Lint}i, A) in H°(P"+1, Or (1)"+2) ® k of the equation

Lini FF = AF

are k-proportional to the Euler identity solution >i XtFF = dF. If n = I and d = 3
and char(k) = 3, then for every smooth place cubic F, there are solutions which are
not proportional to the Euler solution.

PROOF. The general fact which we need is Maca.ulay's unmixedness theorem,
that if G1, . . . , G, are 1 < r < n + 2 homogeneous forms of degrees di > 1 in
n + 2 variables over a field k whose zero locus in P"+1 has dimension < n + 1 - r,
then (C1,... , G,.) is a regular sequence in the polynomial ring k[X1,... , X"+2]: G1
is nonzero, and for 2 < i < r, Gi is not a zero divisor in k[X's]/(G1, ... , Ga_1).
[For a local algebra proof, apply [A-K, III, 4.3 and 4.12] successively to infer that
the Gi form a regular sequence in the power series ring k[[X's]], and then infer
the polynomial result by looking degree by degree.] The corollary of Macaulay's
unmixedness theorem that we need is the following. If in addition all the Gt are
homogeneous of the same degree d - 1 > 2, then for any 0 < k < d - 2, there are
no nontrivial relations F, H1G; = 0 with Hi forms of degree k (since in any such
relation, each H,, must lie in the ideal generated by the G; with j i, and every
nonzero homogeneous element of this ideal has degree > d - 1).

Suppose first that the degree d is invertible in k. Then correcting any solution
of Ei Lint F, = AF by (A/d) (the Euler solution), we must prove that

Lin,F,=0

has no nonzero solutions in linear forms Lint. But in this case, the Euler iden-
tity shows that F is in the ideal of the Ft, so the smoothness of F shows that
F1, ... , F,,+2 have no common zero in P"+1 As the Fi have degree d -1 > 2, there
are no nontrivial linear relations >i Lini Pi = 0, by Macaulay.

Suppose now that d = 0 in k. The Euler relation becomes

XtFi = 0.

The existence of this relation shows that the Fi must in fact have some common
zeroes in P1+1. Therefore in any relation

LiniFF=AF,

we must have A = 0, for otherwise F would vanish at any common zero of the
Ft, contradicting its nonsingularity. We must show that any solution {Lint}i of
> t Lint Fi = 0 is k-proportional to {X,}i. For this k-linear question, we may
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extend scalars from k to any overfield, and so we may assume that over k there are
smooth hyperplane sections of our hypersurface. By a linear change of coordinates,
we may assume that Xn+2 = 0 is one such. Then (F1, ... , F,+ 1, F) have no common
zeroes in lP1+1. For by assumption there are none with Xn+2 = 0, but at any with
Xn+2 nonzero the Euler relation shows that Fn+2 also vanishes, contradicting the
nonsingularity of F. Therefore (F1, ... , F,+ 1, F), and hence also (F1, ... , Fn+1),
form a regular sequence in k[X1, ... , X,+21-

Now suppose we have a nontrivial relation >i Lint Fi = 0. We first remark that
we must have Linn+2 nonzero by Macaulay, because (F,,. . . , Fn+1) form a regular
sequence. If Linn+2 is proportional to Xn+2, then subtracting a multiple of the
Euler identity, we get a new relation in which Linn+2 = 0, so by the first remark
the new relation is trivial, which means our original relation was proportional to
the Euler relation.

Suppose Linn+2 is not proportional to Xn+2. Look at the relation with degree
2 coefficients among F1, ... , Fn+2 given by

0 = Linn+2 E X-FF - Xn+2 E Lint FF = E (Linn+2 Xi - Xn+2 Lint)FF.
i<n+1

If d > 4, then by Macaulay there are no nontrivial relations among (Fl, ... , Fn+1)
with degree two coefficients, which means precisely that we have

Linn+2 Xi = Xn+2 Lint in k[X's]

for i = 1, ... , n + 1. Taking i = 1, we see that Xn+2 divides Linn+2 X1, and hence
that Linn+2 is proportional to Xn+2, contradiction.

If d = 3, we argue as follows. By Macaulay the only degree two relations
Ei<n+l HiF, = 0 among (F,,. - -, Fn+1) have each Hi in the ideal generated by the
Fj with j # i, j < n + 1. By degree, each Hi is a k-linear combination of these Fj.
Thus we have

Hi := Linn+2Xi - Xn+2Lini = E ai,jFj, coef's ai:j in k,
j$i, j <n+1

for i = 1, . . . , n + 1. We next show that the Hi are linearly independent over k.
To prove this, observe that as Linn+2 is not proportional to Xn+2, Linn+2 contains
some other variable Xj, for some 1 < n + 1. Then Linn+2 Xi contains the monomial
X1Xt, but Xn+2 Lini cannot contain it, because X,+2 Lint contains only monomials
divisible by Xn+2. For j i, j < n+l, neither Linn+2 Xj nor Xn+2 Linj can contain
XIX2. Thus among the Hj, Hi is the unique one which contains X1Xj, and hence
the Hi, 1 < i < n + 1, are linearly independent over k. Since the Hi are in the
k-span of the Ft, they are a basis of that k-span. Hence each Ft, 1 < i < n + 1, is
in the k-span of, and hence in the ideal generated by, the Hi. But each Hi lies in
the ideal (Xn+2, Linn+2), so we find that all the Ft, 1 < i < n + 1, vanish on the
codimension 2 linear space Linn+2 = Xn+2 = 0 in lPn+1. If n > 2, this is a variety
of strictly positive dimension. But (F1,.. . , Fn+1, F) have no common zeroes in
lPn+1, and hence (F1, ... , Fn+1) can have only a finite set of common zeroes in
1Pn+l, contradiction.

If d = 3 and n = 1 (and d=0ink, the case we are in the middle of treating), we
argue as follows. We may replace k by its algebraic closure. Thus k is algebraically
closed of characteristic 3. Then every nonsingular plane cubic over k is projectively
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isomorphic either to a member of the family

µ(X3 - Y3 + Z3) + XYZ = 0, any A in k",

or to the single curve

Y2Z-X3+XZ2=0,
the two cases according to whether the elliptic curve we get after choosing an origin
is ordinary or supersingular.

In the case of the µ family, F1 = YZ, F2 = XZ, F3 = XY, and so we have the
non-Euier relation

YF2-ZF3=0.
In the case of the supersingular curve Y2Z-X3+XZ2 = 0 (which the attentive

reader will notice is essentially the n = 1, d = 3 case of Gabber's example 11.4.6
of a nonsingular hypersurface of degree d in Pr`+2 over an IFp with pid), we have
F1 = Z2, F2 = 2YZ, F3 = Y2 + 2X Z. But here we have the relation

YF1+ZF2=0.
In other words, for any smooth plane cubic in characteristic three, there is a

nonzero global vector field on 1P2 (Y8/8Y - a/8Z and Y$/8X + Z8/8Y respec-
tively in our examples), i.e., a nontrivial automorphism of 1P2 over k[e]/E2 which is
the identity mode, and which induces a nontrivial automorphism of our curve over
k[r]/s2 which is the identity mode.

Let us explore this characteristic 3 phenomenon a bit further. In the ordinary
case, this pathology arises from the action of the group scheme µ3 on 72 in which

maps (X, Y, Z) _ (X, (Y, (2Z). This action preserves the equation

u(X3-Y3+Z3)+XYZ=0.
For p nonzero in k, if we take the point (1, 1, 0) as origin, we get an elliptic curve E..
In this curve, the points (1, (, 0) with (in µ3 form a sub-group scheme. The above
action of p.3 on 1P2 induces the translation action of {s3 on E,,. [To see the truth
of the last two statements simultaneously, pick any k-algebra A, and any element
( in µ3(A). The action of Son p2 carries (1, 1, 0) to the point P(() := (1, (, 0) and
induces an automorphism, call it t((), of E., which reduces to the identity over
Ared (because ( becomes 1 in Ared). If we follow t(() with translation by -P((),
we get an automorphism of E. as elliptic curve (because it fixes the origin) which
is the identity over ATd, so by ridigity is the identity over A. Thus t(() on E. is
translation by P((). Therefore t((1(2) = t((1) ot((2) is both translation by P((1(2)
and translation by P((1) + P((2), and hence P((1(2) = P((1) + P((2).] Taking A
to be k[f]/s2, and (= 1 + E, we see that the vector field Y8/8Y - Z8/8Z acts on
E. as translation by the point (1, 1 + e, 0).

In the supersingular case, the curve Y2Z - X3 + XZ2 = 0 over 1F3, we take
as origin the point (0, 1, 0), and call this elliptic curve E. We have an action of
a3 := Spec (F3[A)/A3), with usual addition as the group law, on P2, A in a3(A)
acting as

(X, Y, Z) -, (X + AY + (A2/2) Z, Y + AZ, Z).

This action fixes Y2Z - X3 + XZ2. We also have a subgroup scheme a3 in E,
namely the points (A, 1, 0) with A in a3. Just as in the ordinary case, we see that
the above action of a3 on IP2 induces the translation action of a3 on E. Taking A
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to be k[F]/a2, and a = E, we see that the vector field Ya/aX + Z8/aY acts on E
as translation by the point (e, 1, 0).

There is a unified way of presenting these two cases a la Mumford [Mum-AV,
§13], which Ofer Gabber pointed out to us. Over any field k, start with an elliptic
curve E/k, and a line bundle G on E which has some strictly positive degree d > 3.
Global sections of such an G embed E in Proj(H°(E, G)) = P. On the other
hand, for any line bundle G we have the homomorphism cpc from E to PicE/k
defined on S-valued points, S any k-scheme, by

P H the class of G-1 0 (trans. by P)*G in Pic°(E Xk S)/ Pic(S).

For L = 1(0), the ideal sheaf of the origin, this map is the usual identification of
E with PicE/k. For G of degree 0, cPc is zero. Since l.p 1®c2 = cpc1 + cpr2, we see
that for G of any nonzero degree d, cpc is the endomorphism [-d] of E. So for G
of degree d > 3 on E, any k-scheme S, and any P in E(S)[d], we have WC(P) = 0,
i.e., translation by P on E x k S preserves the class of G in Pic(E x k S)/ Pic(S).
Take S = Spec(A) affine, with Pic(A) trivial to fix ideas. Once we choose an
isomorphism ipp from (trans. by P)*C to G, we get an A-linear automorphism
cop o (trans. by P)* of H°(E (9k A,G Ok A) Ll H°(E,G) Ok A. Since the choice
of cop is indeterminate up to an A'-factor, when we vary P in E(A)[d], we get
a projective representation of the group E(A)[d] on H°(E, L) Ok A. The induced
action of E(A)[d] on ProjA(H°(E,G) Ok A = Pd-1 over A then maps E to itself
(and induces on E the action of E(A)[d] by translation).

When we take d divisible by a prime p, and take our field to be of characteristic
p, then Ker(F) C E[p] C E[d], so we get a nontrivial action of Ker(F) on lPd-1

which maps E to itself. But Lie(Ker(F)) - Lie(E), so every global vector field on
E is induced by the tangent action of Ker(F) on Pd-'. The case we encountered
above, namely smooth plane cubics in characteristic 3, is precisely the case d = 3
of this general discussion.

After this long digression, we return to the last remaining case, namely n = 0,
d = 3, char(k) = 3, of the lemma we are in the course of proving. We may pass to k.
There our cubic has three distinct zeroes in P1, which we may assume by a projective
transformation to be 0, 1, oo, i.e., F is projectively equivalent to XY(X - Y). So
F1 = 2XY-Y2 = -Y(X+Y), and F2 = X2-2XY = X(X+Y), and any relation
Lint F1 + Line F2 = 0 gives Lin, (-Y) + Lin2 X = 0, so (Lin,, Lin2) is proportional
to (X, Y), as required.

This concludes the proof of Lemma 11.7.6, and with it the second proof of
Theorem 11,5.2. QED

11.8. A properness result

11.8.1. The following result is proven in [Mum-GIT, Ch. 0, §4, Prop. 0.8
and Ch. 4, §2, Prop. 4.2], as a consequence of the general theory. We thank Ofer
Gabber for explaining to us what the general theory comes down to in this concrete
case.

Proposition 11.8.2 ([Mum-GIT]). Suppose that n > 0 and d > 3. Then
the action of PGL(n + 2) on N,1,d is proper in the sense of [Mum-GIT], i.e., the
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morphism

PGL(n + 2) XZ xn,d ',,,d XZ xn,d,

(9,h)'-` (h,g(h)),

is a proper morphism.

PROOF. We use the valuative criterion. Thus R is a discrete valuation ring,
with residue field k and fraction field K, and it is a uniformizing parameter for R.
We must show that if F and G are equations of smooth hypersurfaces over R, of
degree d and dimension n, and if an element g in PGL (n + 2, K) transforms F into
a K'-multiple of G, then g lies in PGL(n+ 2, R). Equivalently, we must show that
any lift gin GL(n + 2, K) of g lies in K" GL(n + 2, R).

By the theory of elementary divisors, every g in GL(n + 2, K) can be written
as a product at3, with a and 3 in GL(n + 2, R), and with t a diagonal matrix
diag(ire(1), ,,ir(n+2)). Such an element lies in K"GL(n + 2,R) if and only if
e(1) = e(2) _ ... = e(n + 2).

Since g = at,Q carries F to a Kx multiple of G, t carries /3(F) to a Kx multiple
of a-1(G). Both /i(F) and a-1(G) are smooth over R, so, renaming them F and
G, we are reduced to showing that if t := diag(ire(1),,7re(n+2)) carries F to a
K'-multiple of G, then all e(i)'s are equal. For this, we may pass from R to any
larger discrete valuation ring R[7r1/N], any integer N > 1. Taking N to be n + 2,
and scaling t by ir- e(i) /N, we may further assume that E e(i) = 0, i.e., that
t := diag(7re(1), , 7re(n+2)) lies in SL(n + 2, K). We must then prove that all e(i)
vanish.

We first show that t transforms F into an R'-multiple of G. The key point for
doing this is that the discriminant A is invariant under SL(n + 2). [Proof: Over C,
A is an irreducible equation for the SL(n+2, C)-stable set of singular hypersurfaces,
sod must transform under SL(n + 2, C) by a character. But SL(n + 2, C) is its
own commutator subgroup (in fact, for any connected semisimple G, every element
in G(C) is a commutator, cf. [Shoda] for G = SL(n), and [P-W] and [Ree] for
the general case), so A is invariant under SL(n + 2, C). Therefore 0 is invariant
under SL(n + 2, A) for any subring A of C, e.g., for any integral domain A of
generic characteristic zero which is finitely generated as a Z-algebra, and so for A
the coordinate ring of SL(n + 2) over Z.]

Let us write t(F) = AG, with A in Kx. To show that A lies in Rx, we note
that A is homogeneous of some strictly positive degree M, so we have

0(t(F)) = 0(AG) = AMA(G),

but we also have A(t(F)) = A(F) because t lies in SL. Since 0(F) and Q(G) lie
in Rx, AM = A(F)/A(G) lies in Rx. As M 0, taking ord's shows that A is in
Rx

So replacing G by AG, we may further assume that t(F) = G. Now pick any
monomial X' which occurs in F with unit coefficient A,u, in R'. Then A,'irE e(i)w(i)
is the coefficient of X"' in t(F) = G. Since G has coefficients in R, we infer that
E e(i)w(i) > 0 for every monomial X' which occurs in F with unit coefficient.
Now consider the reduction mod it of F, call it F. This is the equation of a smooth
hypersurface over the field k, and we have shown that for it, we have E e(i)w(i) > 0
for every monomial which occurs in it. Now introduce an indeterminate z and pass
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to the Laurent polynomial ring k[z, l/z]. Consider the action of the element

T := diag(ze(1), ze(n+2))

on F. It transforms F into

T(F) _

which has coefficients in k[z] precisely because E e(i)w(i) > 0 for every monomial
X"' in F. But T lies in SL(n+2, k[z,so A(T(F)) = 0(F) lies in k" C k[z]" X.
Therefore if we consider T(F) mod z, we get a smooth hypersurface over k, whose
equation, call it H, involves only those monomials X1 with E e(i)w(i) = 0. Thus
we have a smooth hypersurface equation H over k which is fixed by the action of
Gm,k = Spec(k]z, l/z]) on the ambient 1Pn+1 defined by z in Gm mapping Xi to
ze(i)Xi. We wish to infer that all the e(i) = 0. A direct and elementary proof
that all the e(i) are equal, and hence zero, is in [Mat-Mon, page 350]. For the
convenience of the reader, we give below a (variant) proof.

We consider the tangent action. Thus we pass to the ring of dual numbers
k[e]/e2, and consider the action of 1 + e in Gm(k[E]/e2). It maps Xi to

(1 + E)e(t)Xi = Xi + ce(i)Xi,

and fixes H:

H((Xi)i) = H((Xi + Ee(i)Xi)i).

Expanding and equating coefficients of E, and putting Hi := 8H/8Xi, we get

E e(i)XiHi = 0.

If k has characteristic zero, the nonsingularity of H together with the Euler
relation shows that the Hi have no common zero, so by Macaulay Ei Lini Hi = 0
has no nontrivial solutions for H of degree d > 3, and hence all e(i) = 0 in k, and
hence in Z, as required.

If k has characteristic p > 0, lift H to an equation H over the Witt vectors
W := W(kPer') by lifting each coefficient in H arbitrarily, subject only to the rule
that if a coefficient is zero in k, we lift it to zero in W. Then H is smooth over W
(since A(H) lies in W, and reduces mod p to 0(H), which lies in V), and so H is
smooth over the fraction field K of W, which is a field of characteristic zero. As H
contains exactly the same monomials X' that H did, the above discussion shows
that >2 e(i)XiHi = 0, and thus all e(i) = 0. QED

Corollary 11.8.3. Suppose n > 0 and d > 3. Then the "proper action mor-
phism" of the previous proposition

PGL(n + 2) XZ xn,d xn,d XZ Hn,d,
(9, h) i--> (h, 9(h)),

is a finite morphism.

PROOF. The scheme ?{n,d over Z is affine, being the open set, in the projective
space of coefficients, where the discriminant A is invertible. So both source and
target are affine, so the map itself is affine. As the map is also proper, it is finite.
QED
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Corollary 11.8.4. Suppose n > 0 and d > 3. Then the group scheme

Proj AutX"

is finite over 7ln,d. If (n, d) # (1, 3), this group scheme is unramified over 7ln,d. If
n = 1 and d = 3, it is unramified over the open set ?-11,3[1/3], and it is ramified at
every point in characteristic 3.

PROOF. The group scheme Proj AutxR d/tend is tautologically the pullback to
the diagonal of the "proper action map"

PGL(n + 2) XZ Un,d -} Rn,d Xz 7ln,d, (g, h) - (h, g(h)),

which we have just seen is finite. Therefore Proj Autxtt d/xR,d is finite. Its unrami-
fiedness over a field valued point of 717z,d which "is" a smooth degree d hypersurface
X/k in Pn+l, say of equation F = 0, is the statement that any automorphism of
Pn+1 over k[e]/e2 which is the identity mods and which maps F = 0 to itself
must be the identity, or equivalently that no nonzero global vector field D on Pn+1
maps F to a multiple of itself. We have seen above in 11.7.6 that this holds if
(n, d) 54 (1, 3). For n = 1, and d = 3, we have seen that it holds outside char-
acteristic 3, but that it becomes false at every elliptic curve in characteristic 3.
QED

Exactly as in 10.6.13, we have

Lemma 11.8.5. Fix n > 2 and d > 3, or n = 1 and d > 4. Let S be a
noetherian scheme, and X/S in Pn+1/S a smooth hypersurface of degree d. For
every integer i > 1, there is an open set U<i of S which is characterized by the
following property: a point s in S lies in U<i if and only if the finite etale rc(s)-
group scheme Proj Aut,,(9)(X$/rc(s)) has rank < i.

Theorem 11.8.6. [Mat-Mon, Thm. 5, page 355] Fix n > 2 and d > 3, or
n = 1 and d > 4. The open set U<1 of 7ln,d meets every geometric fibre of Rn,d/Z.

PROOF. If n = 1 and d > 4, this has already been noted in 10.6.17. If n > 2
and d > 3, Matsumura-Monsky proved that for every prime p, the geometric generic
point of 7ln,d ® Fp lies in U<1. Since U<1 is smooth, and hence flat, over Spec(Z),
its image in Spec(Z) is open, and contains all primes, so U<1 maps onto Spec(Z),
as required. QED

Corollary 11.8.7. Given n > 2 and d > 3, or n = 1 and d > 4, the open
set U<1 of Hn,d is smooth over Z with geometrically connected fibres of dimension
Binom(n + 1 + d, d) - 1. There exists a constant G(n, d) such that for every finite
field k with Card(k) > G(n, d), the set U<1(k) is nonempty.

PROOF. The first statement is obvious from the previous theorem and the
corresponding fact about 7ln,d/Z. The second then follows from Lang-Weil in its
uniform form (9.0.15.1 and 9.3.3), applied to U<1/Z. QED

Remark 11.8.8. By the above corollary, U<1(IFp) is nonempty for all primes
p >> 0. Poonen [Poon-Hy] has recently shown that U<1(Fp) is nonempty for all
primes p.
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11.9. Naive and intrinsic measures on USp(prim(n, d))# (if n is odd)
or on O(prim(n, d))# (if n is even)

attached to universal families of smooth hypersurfaces
of degree d in 1Pn+1

11.9.1. We fix n > 2 and d > 3, or n = I and d > 4. For a finitefieldk,
denote by ak a choice of Sgrt(Card(k)n) in R. Given X/k a smooth hypersurface of
degree d in P"+1, we have defined in 11.4.1 its unitarized Frobenius conjugacy class
$(k, ak, X/k) in USp(prim(n, d))# for n odd, and in O(prim(n, d))# for n even.

11.9.2. We denote by Iso xn,d the functor

S i (PGL(n + 2)(S)-orbits in 7-l,,,d(S)}

of projective isomorphism classes of smooth hypersurfaces of dimension n and de-
gree d. This functor is not representable, because it tries to classify objects with
automorphisms. Nonetheless, for k a finite field, the set Isofn,,d(k) is finite, and
we have the following mass formula, entirely analogous to that of 10.6.9:

#N.,d(k)/#PGL(n + 2)(k) = 1/# Proj Aut(X/k).
X/k in Iso71,,,d(k)

11.9.3. Exactly as we did in the case of curves, we define the "naive" prob-
ability measure

p.(naive, n, d, k, ak)

on USp(prim(n, d))# for n odd, and on O(prim(n, d))# for n even, by averaging
over the unitarized Frobenius conjugacy classes of all the k-isomorphism classes
X/k in Iso?ln,d:

u(naive, n, d, k, ak) := (1/#(Iso?-ln,d(k))) E 6V(k,Qk,X1k)'

X/k in Iso7{,,,d(k)

11.9.4. We define the "intrinsic" probability measure p(intrin, n, d, k, ad on
USp(prim(n, d))# for n odd, and on O(prim(n, d))# for n even, by averaging over
the unitarized Frobenius conjugacy classes, but now counting X/k with multiplicity
1/# Proj Aut(X/k):

p(intrin,n,d,k,ak) (1/IntrinCard (ISO 1-(nd(k)))

x E (1/# Proj Aut(X/k)) 5 (k,ak.X/k),
X/k in Iso'Hn,d(k)

where we have put

Intrin Card(Iso 7-Ln,d(k)) := - E 1/# Proj Aut(X/k)
X/k in ISON,,,d(k)

#xn,d(k)/#PGL(n + 2)(k).
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11.9.5. Exactly as in the cases of curves and of abelian varieties, we have the
following two lemmas.

Lemma 11.9.6. (1) The rational number Intrin Card(Isoln,d(k)) is an inte-
ger, namely

IntrinCard (ISO ?{7z,d(k)) = Card (Image (ISO 7-ln,d(k) - Iso7-ln,d(k))).

(2) More precisely, for each point in this image, we have the identity

1 = E 1/ Card(Proj Aut(X/k)).
X/k in Iso ]Ln,d(k) in IS07{,,,d(k)

(3) The image of Isoln,d(k) in IsoWn,d(k) consists precisely of the points in
Isofn,d(k) fixed by Gal(k/k).

Lemma 11.9.7. The measure p(intrin, n, d, k, ak) is given by the formula

p(intrin, n, d, k, ak) = (1/ Card(7-Ln,d(k))) E 6,9(k,ak,X1k)

X/k in 7{n,d(k)

11.9.8. Exactly as in the cases of curves and of abelian varieties, for each
n > 1 and d > 3, except for the two cases (n, d) = (1, 3) or (2, 3), there exist
constants A(n, d) and C(n, d) so that we have the following theorem.

Theorem 11.9.9. Fix n > 1 and d > 3. If d = 3, assume n > 3. Denote by
K the compact group

K := USp(prim(n, d)), if n is odd,

K := O(prim(n, d)), if n is even.

Suppose that n is odd (resp. even). For each finite field k, and each choice ak of
Sgrt(Card(k)") in IR, consider the measures on K# given by p(intrin, n, d, k, ak)
and /.(naive, n, d, k, ak). In any sequence of data (ki, ak;) with Card(ki) increasing
to infinity, the sequence of measures p(intrin, n, d, ki, aki) and the sequence of mea-
sures /.(naive, n, d, ki, ak.) both converge weak * to the measure p.# on K# which
is the direct image from K of normalized Haar measure, i.e., for any continuous
C-valued central function f on K, we have

f d/(intrin, n, d, ki, 00J f dHaar = Jim JK*
K i- O°

= lim f f dp(naive, n, d, ki, ak. ).
K#

More precisely, if A is any irreducible nontrivial representation of K, and (k, ak)
is as above with Card(k) > 4A(n, d)2, we have the estimates

JK#
Trace(A) d/(intrin, n, d, k, ak) < 2C(n, d) dim(A)/ Card(k)1/2,

and

fTrace(A) dp.(naive, n, d, k, ak) I < 2C(n, d) dim(A)/ Card(k)1/2.

K#

11.10. Monodromy of families of Kloosterman sums

11.10.1. In this section, we summarize the results of [Ka-GKM, 13.5] con-
cerning the monodromy groups attached to Kloosterman sums in several variables.
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11.10.2. Fix an integer n > 2, a finite field k, a nontrivial C-valued addi-
tive character ' : (k,+) -+ C', and an element a in k'. The Kloosterman sum
Kl (k,1O, a) is the complex number defined by

Kl(k, qP, a) E * (xi).
all x; in k i

For each integer d > 1, denote by kd the unique extension of degree d of k (inside
some chosen k). Then 1/) o Tracekd/k is a nontrivial additive character of kd, and
we may speak of the Kloosterman sum Kln(kd,1J) o Tracekd/k, a). Varying d, we put
all these sums together in a single Kloosterman L-function, defined as the formal
series in C[[T]] given by

Ln,k,v,a(T) := exp (-1)n E Kln(kd,?P o Tkacekd/k, a)Td/d
d>1

11.10.3. This L-function is a polynomial in T, of degree n. To say more
about it, we denote by K the compact group

USp(n) if n is even,
K := SU(n) if n is odd and char(k) is odd,

SO (n) if n is odd and char(k) = 2.

[Notice that in all cases, conjugacy classes in K are determined by their charac-
teristic polynomials.] Denote by ak a choice in C of Sgrt(Card(k)n-1), with the
proviso that if n is odd, then we take ak = Card(k)(n-1)/2. There exists a unique
conjugacy class

t9(n,k,1¢,a,ak) in K#

with the property that

Ln k ,y a(T) = det(1 - akT1)(n, k,-O, a, ak)).

We call 19(n, k, 1p, a, ak) the unitarized ftobenius conjugacy attached to the L-
function in question.

11.10.4. Using the unitarized Frobenius conjugacy classes, we define a prob-
ability measure p.(n, k, -0, ak) on K# by averaging over a in k':

ti(n, k, V), ak) :_ (1/ Card(kx )) E 6i9(n,k,i/i,a,0k)
a in k"

Because we average over all a in k', the measure p(n, k,1P, ak) is independent of
the particular choice of nontrivial 1/), so we write

1L(n, k, ak) := p(n, k, ?P, ak)-

If n is odd, then ak = Card(k)(n-1)/2 is already determined by the finite field k, so
we may denote p.(n, k, ak) simply as p,(n, k) for n odd.

Theorem 11.10.5. [Ka-GKM, 11.1, 11.4, 13.5.3] Fix an integer n > 2. Fix
any sequence of data (ki, ak;) in which the cardinalities of the finite fields ki tend
to infinity, and in which for n odd all the ki are of odd fresp. even) characteristic.
If n = 7, suppose in addition that all the ki are of odd characteristic. Consider the
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sequence of measures µ(n, ki, ak;) [or simply µ(n, k1) if n is odd] on K# for K the
compact group

USp(n) if n is even,

SU(n) if n is odd and char(ki) is odd,

SO(n) if n is odd and char(ki) = 2.

This sequence of measures converges weak * to the measure ju# on K# which is the
direct image from K of normalized Haar measure, i.e., for any continuous C-valued
central function f on K, we have

JK
f d Haar = turn J Trace(A) dp (intrin, n, d, kb, ak,)

J
K*

= lm f dG(n, k,
*

More precisely, if A is any irreducible nontrivial representation of K, and (k, ak)
is as above, we have the estimate

ce(A)dy(n,k,ak) (dim(A)/n)(Card(k)r12/Card(k")).fK# Tra
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CHAPTER 12 % Q
GUE Discrepancies in Various Families

12.0. A basic consequence of equidistribution: axiomatics

12.0.1. In this section, we consider the following axiomatic situation. We are
given a compact group K, its normalized (total mass one) Haar measure p, and the
direct image ti* of jL on the space K# of conjugacy classes in K. For each integer
n > 1, we are given a finite nonvoid set Xn, a probability measure a,, on Xn, and
a mapping

19,, : Xn --+ K*.

For each x in Xn, we denote by p, (x) the measure of the set {x}: thus

xin X,.

We assume that the sequence of measures

(fin)*lln :_ (x)
xinX,,

on K# converges weak * to p#, i.e., for every continuous C-valued central function
f on K, we have

fj f dtt# = lim ji"#
h-# n-oo

I f dtc = linE tcn xf(9n x)
71 00 xinX

Lemma 12.0.2. In the axiomatic situation 12.0.1 above, suppose that
f : K R>o is a continuous R-valued central function on K which is nonneg-
ative. Let E > 0 be real, and suppose fK f dtc < E. Then there exists an integer
M = M(K, IX,,, te.n, t9n.}n, f, E) such that for all n > M, we have the inequality

Mn1: (x) f ('!9n (x)) < 2E.
x in X.

PROOF. For n >> 0, we have I fK# f dµ# - fK# f d(i9n).AnI < e. QED

Corollary 12.0.3. Hypotheses and notations as in 12.0.2 above, for any
n > M and for any two positive real constants A and B with AB = E, we have the
inequality

tin({x in Xn such that f (t9n(x)) > A)) < 2B.

351
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PROOF. Fix A and B, fix an n > M, and denote temporarily by Zn the set of
x in X.,, such that f (t9n(x)) > A. Because f is nonnegative, we have

2AB = 2e > E pn(X)f('dn(x)) E A.t.(x)f(Vn(x))
xinX, xinZ,

A E pn(x) = Apn(Zn). QED
xinZ,.

12.1. Application to GUE discrepancies

12.1.1. Recall that we have proven

Theorem 1.7.6. Let r > 1 be an integer, b in Z' a step vector with corre-
sponding separation vector a and offset vector c. Denote

A:= p(univ, offsets c).

Suppose given an integer k with 1 < k < r, and a surjective linear map

it : R' - Rk

1) The measure 7r.p on Rk is absolutely continuous with respect to Lebesgue
measure, and (consequently) has a continuous CDF.

2) Given any real e > 0, there exists an explicit constant N(e, r, c, ir) with the
following property: For G(N) any of the compact classical groups in their standard
representations,

U(N), SU(N), SO(2N + 1), 0(2N + 1), USp(2N), SO(2N), 0(2N),

and for

µ(A, N) := p(A, G(N), offsets c), for each A in G(N),

we have the inequality

discrep(ir. p(A, N), Tr. p)dA < NE-I/(2r+4)

provided that N > N(e, r, c, 7r) .

In slightly greater generality, we had

Theorem 1.7.7. Let G(N) C H(N) be compact groups in one of the following
four cases:

a) G(N) = SU(N) C H(N) C normalizer of G(N) in U(N),
b) G(N) = SO(2N + 1) C H(N) C normalizer of G(N) in U(2N + 1),
c) G(N) = USp(2N) C H(N) C normalizer of G(N) in U(2N),
d) G(N) = SO(2N) C H(N) C normalizer of G(N) in U(2N).

For e, r, c, it as in Theorem 3, with explicit constant N(e, r, c, 7r), we have the in-
equality

I discrep(ir.p(A, H(N), offsets c), 7r.p(univ, offsets c)) dA < NE-1/(2r+4)
H(N)

provided that N > N(e, r, c, n).



'
.
s

(c
66

.-
r

E
-3

::,

...

12.2. UNIVERSAL FAMILIES OF CURVES 353

12.1.2. We now take the K of the axiomatic situation of the previous section
12.0.1 to be H(N), and we take f to be the continuous central function on H(N)
given by

A i-r discrep(ir.p.(A, H(N), offsets c), 7r.p(univ, offsets c)).

This f has values in the closed interval [0,1], and according to Theorem 1.7.7 we
have fH(N) f dHaar < NE-1/(21+4), provided that N > N(e, r,c,Tr). So we get

Corollary 12.1.3. Hypotheses and notations as in Theorems 1.7.6 and 1.7.7,
let e > 0, and suppose that N > N(e, r, c, ir). Fix any of the groups H(N), and
denote by p is normalized Haar measure. Suppose that for each integer n > 1, we
are given a finite nonvoid set Xn,N, a probability measure An,N on Xn,N, and a
mapping

19n,N : Xn,N H(N)#,

such that the sequence of measures

(9n,N).pn,N :_ E pwi,N(x)55l,N(x)
x in Xn,N

on H(N)# converges weak * to p* := the direct image of normalized Haar measure
from H(N).

(1) There exists an integer MN = M(H(N), {Xn,N, µn,N, t9n,N)n, e, r, c, ir)
such that for all n > MN, we have

discrep(7r.p('dn,N(x), H(N), offsets c), 7r.p(univ, offsets c)) dAn,,V

271 tE-1/(2r+4)

(2) For any real numbers a and /3 with

a +,3 = 1/(2r +4) - e,
and for any n > MN, the subset of Xn,N where

discrep(7r.p(19n,N(x), H(N), offsets c), 7r.p(univ, offsets c)) > N-°

has An,N-measure < 2N-0.

12.2. GUE discrepancies in universal families of curves

12.2.1. For each prime power q, fix a choice q1/2 of Sqrt(q) in R. As explained
in 10.7.2, for each curve C/Fq of genus g > 1, there is a unique conjugacy class
t9(C/Fq) in USp(2g)# such that the zeta function of C/Fq is given by

Zeta(C/Fq, T) = det(1 - g1/2Tt9(C/Fq))/((1 - T)(1 - qT)).

We have the finite nonvoid set Mg(Fq) of isomorphism classes of genus g curves
C/Fq, the map t9g,q : Mg(Fq) - USp(2g)# defined by

t9g,q(C/Fq) = t9(C/Fq),

and the choice of two probability measures Ag,q, naive or PCg,q, intrin on Mg(Fq),
defined by

pg,q, naive(C/Fq) := 1/ Card(M9 (Fq))
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and by

{Lg,q, intrin (C/Fq) := 1/Card(Aut(C/Fq))IntrinCard(M9(Fq,)),

where

Intrin Card(M9(Fq)) :_ E 1/ Card(Aut(C/Fq)).
C/Fq in M9(FQ)

12.2.2. We know from 10.7.12 that for fixed g > 3, both of the sequences of
measures on USp(2g)# given by (z9g q).ug q intrin and by (t9g,q)*iig,q, naive, indexed
by prime powers q, converge weak * to the measure µ# on USp(2g)#. So applying
the above corollary, with N := g, H(N) := USp(2g), and Xn,N the set MN(Fq)
with q the n'th prime power, we find

Theorem 12.2.3. Let r >_ 1 be an integer, b in Zr a step vector with corre-
sponding separation vector a and offset vector c. Denote

p.:= u(univ, offsets c).

Suppose given an integer k with 1 < k < r, and a surjective linear map
7r:Rr__+ Rk

Given any real e > 0, there exists an explicit constant N(e, r, c, 7r) with the following
properties:

(1) For each g > N(s, r, c, 7r), there exists a constant M(g, e) r, c, 70 such that
for q > M(g, e, r, c, 7r), putting

p(A, g) := µ(A, USp(2g), offsets c), for each A in USp(2g),

we have the inequalities

f discrep(7r.,u(79(C/Fq), g), 7r.p) dtig,q, naive <_ 2gE-1/(2T+4),
M9(FQ)

discrep(7r.p(,0(C/Fq), g), 7r»p) dp9,q, intrin <_ 2gE-1/(2r+4).

(2) For any real numbers a and,3 with

a +13=1/(2r+4)-e,
for any g > N(e, r, c, 7r), and for any q > M(g, c, r, c, 7r), the subset of M.(Fq)
where -

discrep(7r.µ(t9(C/Fq), USp(2g), offsets c), 7r.p(univ, offsets c)) > g-a

has pq,q, naive-Measure < 2g-p and i g,q,intrin-measure < 2g-13.

Remark 12.2.4. This theorem should be thought of as a slightly effective
version of the following statement: if we pick a real number 8 > 0 and ask what is
the probability (in either the µg,q, naive or (l.g:q, intrin senses) that a curve of genus g
over Fq has the property that the CDF of the discrete measure formed out of any
prechosen spacing statistic of the unitarized zeroes of its zeta function is uniformly
within 8 of the CDF for the corresponding limit measure, that probability will be
> 1 - b provided both that g >> 0 (with the notion of >> depending both on 8
and on which spacing statistic) and that q >> 0, but here the notion of >> depends
not only on 8 and on which statistic but also on g. More seriously, although the
constant N(c, r, c, 7r) is effective, the constant M (g, c, r, c, 7r) is not, at present,
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effective. This same problem will recur in the other instances (abelian varieties,
hypersurfaces, Kloosterman sums) of this same theorem that we make explicit in
the following pages.

12.3. GUE discrepancies in universal families of abelian varieties

12.3.1. For each prime power q, fix a choice q1/2 of Sqrt(q) in R. As explained
in 11,3.1-2, for each abelian variety A/Fq of dimension g > 1, the Z-valued function
on Z defined by

m i--* deg(1 - mFA/rq)

is a polynomial function PA/F9(m) of m, and there is a unique conjugacy class
19(A/Fq) in USp(2g)# such that

PA/3,q(T) = det(1- g1"2Ti9(A/F9))

The zeta function of A/IFQ is given by the exterior powers of 19(A/FQ):
2g

Zeta(A/IFq, T) = [J det(1 - qi/2TAit9(A/Fq))(-1)i}1.
i=O

12.3.2. We have the finite nonvoid set Abg,prin(Fq) of isomorphism classes
of principally polarized g-dimensional abelian varieties (A/Fq, cp) over Fq, the map
799,q : Abg,prin(Fq) - USp(2g)# defined by

t9g,q(A/Fq, W) = t9(A/Fq),

and the choice of two probability measures µg,q, naive or µg,q, intrin on Abg,prin(IFq),
defined by

I4g,q, naive(A/Fq, W) := 1/ Card(Abg,prin(F9))

and by

Ag,q, 1/Card (Aut(A/Fq,cp))IntrinCard (Abg,prin(Fq)),

where

Intrin Card (Ab9,prin (Fq)) 1/ Card(Aut(A/IFq, (p)).
(A/F9,<G) in A6y,v,dn(1Fq)

12.3.3. We know from 11.3.10 that for fixed g > 1, both of the sequences of
measures on USp(2g)# given by intrin and by naive, indexed
by prime powers q, converge weak * to the measure p,# on USp(2g)#. We apply

the above Corollary 12.1.3, with N := g, H(N) := USp(2g), and Xm,N the set
AbN,prin(Fq) with q the n'th prime power.

Theorem 12.3.4. Let r > 1 be an integer, b in Z' a step vector with corre-
sponding separation vector a and offset vector c. Denote

it := p.(univ, offsets c).

Suppose given an integer k with 1 < k < r, and a surjective linear map
ir:RT :

Given any real E > 0, there exists an explicit constant N(t:, r, c, 7r) with the following
properties:
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(1) For each g > N(e, r, c, 7r), there exists a constant M(g, E, r, c, 7r) such that
for q > M(g, e, r, c, 7r), putting

µ(A, g) := FL(A, USp(2g), offsets c), for each A in USp(2g),

we have the inequalities

discrep(7r.,u(,d(A/Fq), 9), 7r.p) dµ9,q, naive <_ 2ge-1/(2r+4)'

f b
discrep(7r.kt(t9(A/Fq), g), it t) dp9,q, intrin <- 2ge-1/(2r+4)

e,ari, (Fq )

(2) For any real numbers a and j3 with

a + Q = 1/(2r + 4) -

for any g > N(E, r, c, 7r), and for any q > M(g) E, r, c, 7r), the subset of Abg prin (Fq)
where

discrep(7r.p.(i9(A/Fg), USp(2g), offsets c),7r.tr,(univ, offsets c)) > g_Q

has JLg,q, naive-measure < 2g-9 and tl9,q, intrin-measure < 2g-p.

12.4. GUE discrepancies in universal families of hypersurfaces

12.4.1. Fix a pair of integers (n, d) with n > 1, d > 3, but not (1, 3) or (2, 3).
For each prime power q, fix a choice qn/2 of 9grt(gn). Recall (11.4.1) that, given
X/Fq a smooth hypersurface of degree d in P+', its zeta function Zeta(X/Fq, T)
has the form

n

if n is odd: P(T)/ [1(1 - qiT),
i=o

if n is even: 1/P(T) 11(1 - qiT),
i=a

where P(T) is a Z-polynomial with constant term one, of degree

prim(n, d) := (d - 1) ((d - 1)n+1 _ (_1)n+1 )/d.

For n odd (resp. even), there is a unique conjugacy class

'9(X/Fq) in USp(prim(n,d))# (resp. in O(prim(n,d))#)

such that

P(T) = det(l - qn/2Tt9(X/1Fq))

12.4.2. Let us denote

K, ,d :=
r USp(prim(n, d)) if n is odd,
1 0(prim (n, d)) if n is even.

We have the finite nonvoid set Iso7in,d(Fq) of projective isomorphism classes of all
such hypersurfaces over Fq, the map

Vn,d,q : ISOfn,d(lFq) (Kn d)#

defined by

t9n,d,q(X/Fq) := 19(X/F,1),
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and the choice of two probability measures

pn,d,q, naive or Pn,d,q, iritrin

on ISOfln,d(1Fq), defined by

pn,d,q, naive(X/IFq) := 1/Card(Iso7{n,d(]Fq))

and by

pg,q, intrin (X/IFq) := 1/ Card(Proj Aut(X/Fq)) Intrin Card(Iso 7ln.,d(]Fq)),

where

IntrinCard (ISO 7{n,d(Fq)) 1/Card(ProjAut(X/1Fq)).
X/Fq in Iso ?Ln,d(Fg)

12.4.3. We know from 11.9.9 that for fixed (n, d) as above, both of the se-
quences of measures on (Kn,d)# given by

(0n,d,q)*pn,d,q, intrin

and by

('L9n,d,q)*Jin,d,q, naive,

indexed by prime powers q, converge weak * to the measure p# on (Kn,d)#.
Just as in the cases of curves and of abelian varieties, we find

Theorem 12.4.4. Let r > 1 be an integer, b in zr a step vector with corre-
sponding separation vector a and offset vector c. Denote

p := p(univ, offsets c).

Suppose given an integer k with 1 < k < r, and a surjective linear map
:Rr _+Rk

Given any real e > 0, there exists an explicit constant N(E, r, c, 7r) with the following
properties:

(1) For each (n, d) with n > 1, d > 3 other than (1, 3) or (2, 3) and with
prim(n, d) > N(e, r, c, 7r), there exists a constant

M(n, d, E, r, c, ir)

such that for q > M(n, d, E, r, c, 7r), putting

K_ :_
USp(prim(n, d)) if n is odd,
O(prim(n, d)) if n is even

and putting

p(A, n, d) := p(A, Kn,d, offsets c), for each A in Kn,d,

we have the inequalities

iso?tn d(F1)
discrep(7r*/. (I9(X/Fq), n, d), 7r,Et) dpn,d,q, naive

2[prim(n, d)/2]E-1/(2r { 4),

discrep(7r*.p(z9(X/Fq), n, d), dp,,,d,q, intrin
Iso 7l , d (F,, )

1/(2[prim(n, d)/2]e-2r+4)
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(2) For any real numbers a and 0 with

a+0=1/(2r+4) - e,
for any (n, d) as above with

prim(n, d) > N(e, r, c, ir),

and for any q > M(n, d, r, c, ir), the subset of Iso f n,d(Fq) where

discrep(7r«µ(19(X/Fq),Kn.d, offsets offsets c)) > [prim(n,d)/2]-°

has

and

µg,q, naive-measure

µy,q, intin-measure

< 2[prim(n, d)/2]-"

< 2[prim(n,d)/2]-0.

12.5. GUE discrepancies in families of Kloosterman sums

-12.5.1. Fix an integer n > 2. For each prime power q, pick a nontrivial C-
valued additive character 1p of Fq. If n is even, then for each prime power q, make
a choice q(n-1)/2 in R of Sgrt(gii-1). For each a in IFQ , we have defined (11.10.3)
the Kloosterrnan sum, the Kloosterman L-function, and the unitarized Frobenius
conjugacy class

19(n, Fq, iP, a) in K#q,

for Kn,q the compact group

USp(n) if n is even,

Kn,q SU(n) if n is odd and q is odd,
SO(n) if n is add and q is even.

Denote by µ.-I the normalized Haar measure on IF' which gives each point mass
1/(q - 1), and denote by

19n,q Fe -' K#q
the map a H z9 (n, Fq,1b, a). We know (11.10.5) that

(1) if n is even, the sequence of measures (19n q} µq_I on USp(n)# indexed by
prime powers q converges weak * to the measure µ#,

(2) if n is odd, the sequence of measures {z9,, q),pq_1 on SU(n)# indexed by
odd prime powers q converges weak * to the measure µ# on SU(n)#,

(3) if n is odd, the sequence of measures (19n q)«µq_I on SO(N)# indexed by
even prime powers q converges weak * to the measure µ# on SO(n)#.

12.5.2. So just as in the cases of curves, abelian varieties, and hypersurfaces
already discussed, we have

Theorem 12.5.3. Let r > 1 be an integer, b in z' a step vector with corre-
sponding separation vector a and offset vector c. Denote

p:= A(univ, offsets c).

Suppose given an integer k with 1 < k < r, and a surjective linear map

7r:R'--..Rk
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Given any real e > 0, there exists an explicit constant N(E, r, c, 7r), with the following
properties:

(1) For each n > 2 with n > N(E, r, c, 7r), there exists a constant M(n, E, r, c, 7r)
such that for q > M(n, E, r, c, 7r), putting

USp(n) if n is even,
Kn,q SU(n) if n is odd and q is odd,

SO (n) if n is odd and q is even,

and putting

p(A, n, q) := p(A, Kn,q, offsets c), for each A in K,, ,q,

we have the inequality

discrep(7r,p(z9n,q(a), n, q), 7rp) dpq-1 < 2[n/2]e-1/(2r+4)

fFa)X

(2) For any real numbers a and with

a+13=1/(2r+4)-
for any n > 2 with n > N(E, r, c, 7r), and for any q > M(n, d, E, r, c, 7r), the subset
of Fq where

Kn.q, offsets offsets c)) > [n/2]

has ILq-l-measure < 2[n/2]-fl.
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CHAPTER 13

Distribution of Low-lying Frobenius
Eigenvalues in Various Families

13.0. An elementary consequence of equidistribution

13.0.1. In this section, we consider the following axiomatic situation, which
is a slight generalization of that considered in 12.0.1. The extra generality is needed
(only) to take care of orthogonal groups. We are given a compact group K, a finite
abelian group F, and a continuous, surjective homomorphism p : K -} r. [The
situation we have in mind is K = 0(N),r = {±1}, and p is the determinant. If we
take r to be the trivial group, we recover the situation 12.0.1.] For each element y
in r, we denote by K.1 C K the open and closed set p-'(-y). Because IF is abelian
and p is a group homomorphism, the sets Ky are each stable by K-conjugation,
and p induces a map p# : K# . F. We denote by K# C K# the open and closed
set (p#)-1(y) in K#: concretely, K# is the image of K7 in K#. We denote by it
the normalized (total mass one) Haar measure p. on K, and by p# its direct image
on K#. For each element 'Y in F, we denote by p'# the probability measure on K#
defined as

py# := Card(r) x (the restriction of p# to K#).

We suppose that for each integer n > 1, we are given a finite nonvoid set X,,, a
probability measure p, on Xn, and a mapping

z9n,:X,, -,K#.

For each x in Xn, we denote by it,, (x) the measure of the set {x}: thus

E µn(x)=1.
xinX

We assume that the sequence of measures

(t9 )«fln 1Ln(x)sen(x)
xinX,

on K# converges weak * to p#, i.e., for every continuous C-valued central function
f on K, we have

f f dp.# = lim f
K* n-oo #

fK
f dp = lim

n-oo E kn(x)f(9n(x))-
x in X

361



c
+
.

4.1

362 13. DISTRIBUTION OF LOW-LYING FROBENIUS EIGENVALUES

For each [ellement -y in I', we denote by Xn,y C Xn the subset (I9n)-1(K#

u'

). If
n(Xn,y) := Ls In Xn, lun(x) is nonzero (which implies in particular that Xn,y is

nonempty), we denote by Fc,, ry the probability measure on Xn,.y defined as

fLn y :_ (1/,.n(Xn,y)) x (the restriction of itn to X,,..,)

(1//'-(X-")) x \
7 un(x)6Ix.

x in X,,,7

We denote by

19"-1 : X,,,,y - K#
the restriction of t9n to X,,,-y.

Lemma 13.0.2. In the axiomatic situation 13.0.1 above, we have:
1) For n sufficiently large, un(Xn y) is nonzero for every element -y in F.
2) For each element y in r, the sequence of probability measures on K#, indexed

by sufficiently large n,

(6n,y)*Jzn,y _ (1/!zn(Xn:'Y)) X E A'n(x)6,9n(x),
x in X,,-f

converges weak * to the measure u# on K.

PROOF. For each element -y in r, denote by Xy the characteristic function of
the set K. Then x., is a continuous central function on K. If we apply to f := Xy
the limit formula

fK
f dµ = 1i~. E 1`z'(x)f (19'(x))

xinX
we find

(13.0.2.1) 1/ Card(F) = nlim (x),
X in X,,,.,

which proves 1). To prove 2), we argue as follows. A continuous C-valued function
g on K# may be thought of as a continuous function g on K# which is supported
in K#. For this g, the limit formula

g dµ# = lim fK0
K#

n >> 0 we have

(1/ Card(F)) x J # gdp.# = lim An(Xn,y) gd(t9n.,y)«µn,y-
K.,

Crossmultiply by Card(P) and use (13.0.2.1) to turn this into

J 9 d4 _ Boo J # gd(?9n,-r).pn.7,
K, K

which proves 2). QED

Lemma 13.0.3. In the axiomatic situation 13.0.1, suppose we are given an el-
ement y in r, a locally compact topological space S, and a continuous map
F : K# - S. Denote by v := F4µ# the probability measure on S obtained by
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taking the direct image via F of the (total mass one) Haar measure 4 on K#.
Consider the sequence of probability measures on S, indexed by n >> 0, given by

F+(t9n,Y)*un,7 :_ (1/un(Xn,- ))
a in X ..,

Then this sequence of measures on S converges weak * to v, i.e., for every contin-
uous C-valued function f on S, we have

L f dv = nl m (1/An(X.,'Y))
x in X,,,Y

I.cn(x)f

PROOF, Since the map F : K# - S is continuous, the function g := f o F on
K# is continuous. By the previous lemma, for any continuous central function g
on K#, we have the limit formula

f gdp 1 fK# gd(t9n,7)*An"Y

For g := f o F, this says precisely that

jfdz/ = lim(1/1(X))n-o 1: A.(x)f(F(19n(x))). QED
x in X,,,.,

13.1. Review of the measures v(c, G(N))

13.1.1. Recall from 8.4 that for G(N) any of U(N), SO(2N + 1), USp(2N),
SO (2N), O_ (2N + 2), O_ (2N + 1), and A in G(N), we have its sequence of angles

p < cp(1) < cp(2) < ... < cp{N) < 2tr if G(N) = U(N),
0 < (p (1) < (p (2) < < v(N) < 7r for the other G(N),

and its sequence of normalized angles

defined by

,d(n) := (N + A)cp(n)l vtr.

Concretely,

t9(n) := Ncp(n)/2tr for U(N),
,d(n) (N + 1/2)cp(n)/7r = (2N + 1)w(n)/27r for SO(2N + 1) or O_(2N + 1),

t9(n) := NV(n)/7r = 2Ncp(n)/2zr for USp(2N) or SO(2N),
t9(n) := (N + 1)cp(n)/ir = (2N + 2)V(n)/27r for 0- (2N + 2).

13.1.2. As already remarked in 6.9, for G(N) any of SO(2N + 1), USp(2N),
SO(2N), O_ (2N+ 2), O_ (2N + 1) [but not for U(N)], formation of each normalized
angle t9(n) is a continuous function A --> z9(n)(A) on G(N), which is central when
G(N) is a group, and which in the O_ cases is invariant by conjugation by elements
of the ambient 0 group.
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13.1.3. Given an integer r > 1, an offset vector c in Zr,

0<c(1) <c(2) < <c(r),
and an integer N > c(r), recall that we denote by v(c, G(N)) the probability
measure on Rr which is the direct image of total mass one Haar measure on G(N)
by the map F, : G(N) -+ R' defined by the normalized angles

A > FA(A) (t9(c(1))(A), ... , t9(c(r))(A)).

Thus

.), Haarc(N) := (t9(c(1)), ... , t9(c(r))), HaarG(N)v(c, G(N)) := (Fc

13.1.4. For G(N) any of SO(2N + 1), USp(2N), SO(2N), O_(2N + 2),
0_(2N + 1) [but not for U(N)], the map FF : G(N) -+ Rr is continuous. So
for these G(N), the measures v(c, G(N)) are precisely measures v of the type dis-
cussed in 13.0.3.

13.2. Equidistribution of low-lying eigenvalues in families of curves
according to the measure v(c, USp(2g))

13.2.1. Fix a genus g > 3. Recall that by looking at "all" genus g curves we
defined, for each finite field k and each choice ak of a square root of Card(k), two
probability measures on USp(2g)#, by looking at the normalized (by ak) Frobenius
conjugacy classes of all curves over the given field k:

A(naive, g, k, ak) :_ (1/ Card(M9(k))) S,g(k,ak,C/k),
C/k in M9(k)

and

p(intrin, g, k, ak)

(1/ 1ntrin Card(Mg(k))) (1/ Card (Aut(C/k)))6,y(k,ak,c/k),
C/k in M9(k)

cf. 10.7.3 and 10.7.4.

13.2.2. Now fix an integer r > 1, and an offset vector c in Z' with c(r) < g.
We have the continuous map FF : USp(2g)# -} W of 13.1.3. Given a genus g curve
over a finite field, say C/k, we denote by

ak, C/k)) := 79(k, ak, C/k)(c(1),... , c(r))

the r-tuple of its normalized angles named by the offset vector c. When we combine
the deep results 10.7.12 and 10.7.15 with the trivial result 13.0.3, we find

Theorem 13.2.3. Fix a genus g > 3, an integer r > 1, and an offset vector c
in zr with c(r) < g. In any sequence of data (ki, Oki) with Card(ki) increasing to
infinity, the two sequences of measures

(FF),µ(naive, g, ki, ak; )

(1/Card(M9(ki)))
C/k in A49(k;)
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and

(FF), z(intrin, g, ki, ak)

(I/ Intrin Card (.M, (ki)) )

x E (1/ Card(Aut(C/ki)))6,9(k,ak,,C/k.)(c(1):...,c(r)),
C/k; in M9(k;)

both converge weak * to the measure v(c, USp(2g)) on R'.

13.2.4. We now turn to universal families of hyperelliptic curves. For each
integer d > 3, we have the space 7-id of monic, degree d polynomials f with invertible
discriminant, and, over 71d[1/21, the family of hyperelliptic, genus g:= [(d - 1)/2],
curves y2 = f (X ), cf. 10.1.18. In 10.8.1 we defined, for every finite field k of odd
characteristic, and every choice of a square root of Card(k), a probability measure
p(hyp, d, g, k, ak) on USp(29)#, defined as

u(hyp, d, 9, k, ak) :_ (1/ Card(fd(k))) 6,4(k,ak,Cl/k).
C/k in Rd(k)

Theorem 13.2.5. Fix a degree d > 3, and define g := [(d - 1)/2]. Fix an
integer r > 1, and an offset vector c in Z' with c(r) _< g. In any sequence of data
(ki, ak.) with. Card(ki) odd and increasing to infinity, the sequence of measures

(F'c)«u(hyp, d, 9, ki, aki )

(1/Card(fd(kti))) b,9(k;,ak,,C1/kj)(c(1),...,c(r))
f in 7id(k)

converges weak * to the measure v(c, USp(2g)) on Rr.

13.3. Equidistribution of low-lying eigenvalues
in families of abelian varieties

according to the measure v(c, USp(2g))

13.3.1. Fix an integer g > 1. Recall from 11.3.4 and 11.3.5 that by looking at
"all" principally polarized g-dimensional abelian varieties we defined, for each finite
field k and each choice ak of a square root of Card(k), two probability measures on
USp(2g)#, by looking at the normalized (by ak) Frobenius conjugacy classes of all
principally polarized abelian varieties over the given field k:

p.(naive, g, prin, k, ak) :_ (1/#(Abg,prin(k))) 6,4(k,ak,A/k)
(Alk,cp) in Abp.prin(k)

and

p.(intrin, g, prin, k, ak)

(1/IntrinCard(Abg,prin(k))) (1/#Aut(A/k,cp))6V(k,ak,A/k)-
in Aby,prin(k)

Exactly as in the case above of curves, we combine 11.3.10 with 13.0.3 to obtain

Theorem 13.3.2. Fix an integer g > 3, an integer r > 1, and an offset vector
c in Z with c(r) S g. In any sequence of data (ki, ak,) with Card(ki) increasing to
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infinity, the two sequences of measures

(F,,).µ (naive, g, prin, ki, Oki )

:= (l/#(Abg,prin(ki)))

and

bt9(ki,aki,A/ki)(c(1),...,c(r))
(A/ki,w) in Abg,prin(ki)

g, prin, ki, Oki )

(1/ Intrin Card(Abg,prin(ki)))

X E (1/#Aut(A/ki, ))b,9(k4,«ki,A/k;)cc(1),...,c(r))

(A/ki,,p) in Abg,,,in(ki)

both converge weak * to the measure v(c, USp(2g)) on Pr.

13.4. Equidistribution of low-lying eigenvalues
in families of odd-dimensional hypersurfaces
according to the measure v(c, USp(prim(n, d)))

13.4.1. Fix an odd integer n, and a degree d > 3. If n = 1, suppose that
d > 4. Recall from 11.9.3 and 11.9.4 that by looking at "all" projective smooth
hypersurfaces in lPn+1 of degree d, we defined, for each finite field k and each choice
ak of a square root of Card(k), two probability measures on USp(prin(n,d))#, by
looking at the normalized (by ak) Frobenius conjugacy classes of all such hyper-
surfaces over the given field k:

.(naive, n, d, k, ak) := (1/#(Iso fn,d(k)))
X/k in ISO?1,,,d(k)

and

E.t(intrin, n, d, k, ak)

:_ (1/ Intrin Card(Iso fn,d(k))) F, (1/#ProjAut(X/k))6,9(k,ak,X/k).
X/k in IsoN,,,d(k)

Exactly as in the cases above of curves and abelian varieties, we combine 11.9.9
with 13.0.3 to obtain

Theorem 13.4.2. Fix an odd integer n, and a degree d > 3. If n = 1,
suppose that d > 4. Fix an integer r > 1, and an offset vector c in Z' with
c(r) G prim(n, d)/2. In any sequence of data (ki, Oki) With Card(ki) increasing to
infinity, the two sequences of measures

(Fc)«µ(naive, n, d, ki, ak.)

(1/#(lso7n,d(ki))) bt9(ki,aki,X/k.)(c(1):.... c(r))
X/k4 in Iso1l d(ki)

and

(Fc), p(intrin, n, d, ki, aki )

(1/ Intrin Card(Iso ft,,,d(k)))

x E (1/# Proj Aut(X/ki))6v(k.,aki:X/k4)(c(1):....c(r))
X/k in Iso7-(n,d(ki)

both converge weak * to the measure v(c, USp(prim(n, d))) on IR".
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13.5. Equidistribution of low-lying eigenvalues
of Kloosterman sums in evenly many variables

according to the measure v(c, USp(2n))

13.5.1. Fix an even integer 2n. Recall from 11.10.4 that by looking at all the
Kloosterman sums in 2n variables, we defined, for each finite field k and each choice
ak of a square root of Card(k), a probability measure on USp(2n)#, by looking at
the normalized (by ak) Frobenius conjugacy classes of all such Kloosterman sums
over the given field k:

µ(2n, k, ak) := µ(2n, k, 0. ak) := (1/ Card(k" )) E 6i9(2n,k,{G,a,«,k)
a in kX

Exactly as in the above cases of curves, abelian varieties, and odd-dimensional
hypersurfaces, we combine 11.10.5 with 13.0.3 to obtain

Theorem 13.5.2. Fix an even integer 2n, an integer r > 1, and an offset
vector c in Zr with c(r) < n. In any sequence of data (ki, ak;) with Card(ki)
increasing to infinity, the sequence of measures

(Fc)«µ(2n, ki, ak:) := (1/ Card(ki )) E bs(2n,kj,+0,a,ak;)(C(1)---- :c(*))
a in k,

converges weak * to the measure v(c, USp(2n)) on Rr.

13.6. Equidistribution of low-lying eigenvalues
of characteristic two Kloosterman sums

in oddly many variables
according to the measure v(c, SO(2n + 1))

13.6.1. Fix an odd integer 2n + 1 > 3,2n + 1 54 7. Recall from 11.10.4
that by looking at all the characteristic two Kloosterman sums in 2n + 1 variables,
we defined, for each finite field k of characteristic two and each choice ak of a
square root of Card(k), a probability measure on SO(2n + 1)#, by looking at
the normalized (by ak := Card(k) (n-1)/2) Frobenius conjugacy classes of all such
Kloosterman sums over the given field k:

µ(2n + 1, k, ak) := µ(2n + 1, k, i/i, ak)

_ (1/ Card(ki ))
a in k;

Exactly as in the above cases of curves, abelian varieties, and odd-dimensional
hypersurfaces, we combine 11.10.5 with 13.0.3 to obtain

Theorem 13.6.2. Fix an odd integer 2n+ 1 > 3, 2n+ 1 7, an integer r > 1,
and an offset vector c in Z' with c(r) < n. In any sequence of finite fields ki with
ki of characteristic two and with Card(ki) increasing to infinity, the sequence of
measures

(FF)*µ(2n + 1, k, ak) :_ (1/ Card(k" ))
a in kX

converges weak * to the measure v(c, SO(2n + 1)) on 118''.
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13.7. Equidistribution of low-lying eigenvalues in families of
even-dimensional hypersurfaces according to the measures

v(c, SO(prim(n, d))) and v(c, O_(prim(n, d)))

13.7.1. Fix an even integer n > 2, and a degree d > 3. If n = 2, assume
d > 4. Recall from 11.9.3 and 11.9.4 that by looking at "all" projective smooth
hypersurfaces in 1P"+1 of degree d, we defined, for each finite field k and the choice
ak = Card(k)n/2, two probability measures on O(prim(n, d))#, by looking at the
normalized (by ak = Card(k)"/2) Frobenius conjugacy classes of all such hypersur-
faces over the given field k:

tz(naive, n, d, k, ak) := (1/#(Iso N ,d(k)))
X/k in IsoN,,,d(k)

and

p(intrin, n, d, k, ak)

:= (1/Intrin Card (Isof,,,d(k))) (1/# Proj Aut(X/k))6,1(k,a,,,X/k).
X/k in Iso'H,,,d(k)

We now combine 11.9.9 with 13.0.2, applied to K = O(prim (n, d)), to r = {f1},
and to the determinant homomorphism. For each finite field k, we denote by
Iso1-l,,,d,+(k) and Isofn,d,_(k) respectively the two subsets of Isofn,d(k) where
the determinant of the normalized Frobenius takes the values +1 and -1 respec-
tively. [These are the subsets X",ry in this instance of 13.0.2.] For all k of suffi-
ciently large cardinality, 13.0.2 tells us that both of these subsets Iso d (k) are
nonempty. Denote by O+(prim(n, d))# the two subsets of O(prim(n, d))# where
the determinant takes the values f1. For k sufficiently large we may form on each
of them the two probability measures

lz(±, naive, n, d, k, ak) :_ (1/#(Isofn,d,f(k))}
X/k in Iso(k)

and

p(±, intrin, n, d, k, ak) :_ (1/ IntrinCard(Iso?ln,d,+(k)))

x (1/# Proj Aut(X/k))6,9(k,a,,,X/k),
X/k in Isofl,,,d,±(k)

where we define

Intrin Card(Iso fn,d,+(k)) := E (1/# Proj Aut(X/k)).
X/k in Iso'}{,,,d,+(k)

According to 13.0.2, for any sequence of finite fields ki whose cardinalities increase
to infinity, the corresponding sequences of measures {µ(f, naive, n, d, ki, ak, )} and
{µ(±, intrin, n, d, ki, ak, )} both converge weak * to the normalized Haar measure
on O+(prim(n, d))#. If we now further apply 13.0.3, we obtain

Theorem 13.7.2. Hypotheses and notations as in 13.7.1 above, fix an integer
r > 1, and an offset vector c in Z' with c(r) < prim(n, d)/2. Fix a choice of sign
:L. In any sequence of finite fields ki with Card(ki) increasing to infinity, the two
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sequences of measures

naive, n, d, k, ak)

:= (1/#(Iso7{n,d,f(k))) E 610(k,ak,X/k)(c(1),._c(r))
X/k in Iso7-i,,,d,f(k)

and

(F, ) a(±, intrin, n, d, k, ak)

(1 / Intrin Card (Iso H., d,+ (k)) )

x (1/# Proj Aut(X/k))6,9(k,«k,C/k)(c(1),...,c(r))
X/k in Isof,,,d,t(k)

both converge weak * to the measure

v(c, SO(prim(n, d))) on R', if the chosen sign is +,
v(c, O_ (prim(n, d))) on Rr, if the chosen sign is - .

13.8. Passage to the large N limit
13.8.1. We now combine the results of the last sections 13.2-7 with 8.4.17.

In applying 8.4.17 with the orthogonal group SO(N) and with O_(N), the parity
of N is of vital importance. In the monodromy of even-dimensional hypersurfaces
of dimension n and degree d, it is the orthogonal group O(prim(n, d)) which occurs.
Thus it will be important to know the parity of prim(n, d).

Lemma 13.8.2. Given integers n > 1 and d > 1, the parity of

prim(n, d) := (d - 1) ((d - 1)n+1 - (-1)n+1)/d

is

even, if n is odd or if d is odd
odd, if both n and d are even.

PROOF. First observe that

pn(X) := ((X - 1)n+1 - (-1)n+l)/X
lies in Z[X], and that its constant term is (-1)"(n+ 1). Now prim(n, d) is the value
at X = d of (X - 1)pn(X). Thus prim(n, d) is divisible by d - 1, hence is even if d
is odd. Suppose now that d is even. Then prim(n, d) has the same parity as p" (d),
and pn (d) mod d is equal to (- 1)' (n + 1). Thus for d even, prim(n, d) has the same
parity as n + I. QED

13.8.3. It is now a simple matter to combine 13.2-7, which told us how to
compute the measures v(c,G(N)) as limits over larger and larger finite fields, with
8.4.17, which tells us how to recover the measures v(±, c) as limits of the measures
v(c, G(N)) in suitable sequences of G(N)'s. Using 13.8.2 to keep track of parities
among the orthogonal groups, we find the following Theorems 13.8.4 and 13.8.5.

Theorem 13.8.4. Fix an integer r > 1, an offset vector c in Zr, and a
bounded, continuous C-valued function f on llgr. Then fir f dv(-, c) can be com-
puted by means of each of the following double limits:

1) (via curves) Pick any sequence of genera gi, all > c(r)/2 and increasing to
infinity, and for each gi choose a sequence kti,j of finite fields whose cardinalities
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increase to infinity. For each ki,j, choose ak; j a square root of Card(ki,j). Then
we have the double limit formulas

p
f f dv(-, c) = lim lim J f gi, kij, ak;,j )rf a=

lm lm f d(F)4p,(intrin, gi, a,. ).
r

2) (via hyperelliptic curves) Pick any sequence of degrees di, all > c(r) + 2 and
increasing to infinity, put gi :_ [(di - 1)/2], and for each di choose a sequence ki,j
of finite fields whose odd cardinalities increase to infinity. For each ki,j, choose
ak; j a square root of Card(ki,j). Then we have the double limit formula

fdv(-,c) = lmlimfd(Fc)(hyp,
3 r

3) (via abelian varieties) Pick any sequence of dimensions gi, all > c(r)/2
and increasing to infinity, and for each gi choose a sequence ki,j of finite fields
whose cardinalities increase to infinity. For each ki,j, choose ak;,, a square root of
Card(ki,j)./Then we have the double limit formulas

J f dv(-, c) = limlim f fd(F,:)*p.(naive,gi,prin,kij ,ak; j)

= lim HT f f d(FF)*p.(intrin, gi, prin, kij , ak; j ).
r

4) (via odd-dimensional hypersurfaces) Pick a sequence of pairs (ni, di) with ni
an odd integer > 3, di an integer > 3, such that each prim(ni, di) > c(r) /2 and
such that the prim(ni, di) increase to infinity. For each (ni, di) choose a sequence
ki,j of finite fields whose cardinalities increase to infinity. For each ki,j, choose
ak;.j a square root of Card(kij )"'. TThen we have the double limit formulas

f dv (-, c) = lim lim f
alr ij al

= lim lim f f d(FF)«p(intrin, ni, di, ki,j) ak; j )
i 3 r

5) (via Kloosterman sums in evenly many variables) Pick a sequence of even
integers ni, each > c(r)/2 and increasing to infinity. For each ni choose a sequence
ki, j of finite fields whose cardinalities increase to infinity. For each ki, j, choose
ak;,j a square root of Card(kj j)nj-1. Then we have the double limit formula

f fdv(-, c) = lim lim) fd(Fe)«p(ni, kij, ak;,,).

j r
6) (via characteristic two Kloosterman sums in an odd number of variables)

Pick a sequence of odd integers ni, each > 7 + c(r)/2 and increasing to infinity.
For each ni choose a sequence ki,3 of finite fields of even characteristic whose car-
dinalities increase to infinity. For each ki,j, choose akij to be Card(k;,j)(n,-1)/2

Then we have the double limit formula
rf dv(-, c) =limlim) fd(Fc).{1(ni,ki3, akt.i)

r e2

7) (via certain even-dimensional hypersurfaces) Pick a sequence of pairs (ni, di)
with ni an even integer > 4, di an even integer > 4. [These parity choices mean
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precisely that prim(ni, di) is odd.] Suppose that each prim(ni, di) > c(r)/2 and that
the prim(ni, di) increase to infinity. For each (ni, di) choose a sequence ki,j of finite
fields whose cardinalities increase to infinity. For each ki,j, choose ak,,, a square
root of Carf d(ki,j)"". Then we have the double limit formulas

f dv(-,c) = limJim J fd(FF)*p(+, naive,ni,di,kij,ak;,j)
r j Rr

= Jim lim fd(FF).A(+, intrin, nj, di, kiJ, akj j .
a J fr

8) (via certain other even-dimensional hypersurfaces) Pick a sequence of pairs
(ni, di) with ni an even integer > 4, di an odd integer > 3. [This choice of parities
insures that prim(ni, di) is even.] Suppose that each prim(ni, di) > c(r)/2 and that
the prim(ni, di) increase to infinity. For each (ni, di) choose a sequence ki,j of finite
fields whose cardinalities increase to infinity. For each ki,j, choose ak,,j a square
root of Carf d(ki,j)"i. Then we have the double limit formulas

f dv(-,c) = JimlimJ naive, ni, di, kij, ak;,j)
r Rr

= lim lim f f d(Fc), p(-, intrin, nj, di, kij, ak;,j ).
r

Theorem 13.8.5. Fix an integer r > 1, an offset vector c in Zr, and a
bounded, continuous C-valued function f on Rr. Then fRr f dv(+, c) can be com-
puted by means of each of the following double limits:

1) (via certain even-dimensional hypersurfaces) Pick a sequence of pairs (ni, di)
with ni an even integer > 4, di an even integer > 4. [These parity choices mean
precisely that prim(ni, di) is odd.] Suppose that each prim(ni, di) > c(r)/2 and that
the prim(ni, di) increase to infinity. For each (ni, di) choose a sequence ki,j of finite
fields whose cardinalities increase to infinity. For each k.i,j, choose akc j a square
root of Card(ki,j)"i. Then we have the double limit formulas

f naive, ni, di, kij, ak;,j )J f dv(+, c) = limlim JR,
J

= Jim lim j f d(Fc)., (-, intrin, ni, di, ki,j, ak; )
J r

2) (via certain other even-dimensional hypersurfaces) Pick a sequence of pairs
(ni, di) with ni an even integer > 4, di an odd integer > 3. [These parity choices
insure that prim(ni, di) is even.] Suppose that each prim(ni, di) > c(r)/2 and that
the prim(ni, di) increase to infinity. For each (ni, di) choose a sequence ki,j of finite
fields whose cardinalities increase to infinity. For each ki,j, choose ak,,j a square
root of Card(ki,j)"i. Then we have the double limit formulas

f f dv(+, c) = Jim Jim j f d (FF). p(+, naive, ni, di, kij, ak,, j )rr
= limJim

J fd(FF)*fl(+, intrin,ni,di,kij,aks,j).
3 Rr
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Appendix: Densities

AD.O. Overview

AD.0.1. In this appendix, we define. for each integer n > 1, the n-level seal-
ing density of eigenvalues near one for G(N) any of U(N), SO(2N + 1), USp(2N),
SO(2N), O_ (2N+ 2), O_ (2N + 1), and we determine their large N limits. We then
give the relation of the eigenvalue location measures v(c, G(N)), c any offset vector,
to the scaling densities for G(N), and use this relation to give a second proof of the
existence of the large N limits of the eigenvalue location measures for these G(N).

We then consider the scaling densities for SU(N), and more generally for any
of the groups

Uk(N) := {A in U(N) with det(A)k = 1} = ItNkSU(N),

which for variable integers k > 1 are all the proper closed subgroups of U(N) which
contain SU(N). Harold Widom has shown that for these groups, the large N limits
of the scaling densities exist and are equal to the large N limits in the U(N) case.
We thank him for allowing us to present his result. The relation of the eigenvalue
location measures to the scaling densities allows us to prove that for any offset
vector c, and any sequence of integers kN > 1, the large N limit of the eigenvalue
location measures v(c,Uk,N(N)) exists and is equal to the measure v(c) obtained
in 7.11.13 and 8.4.17 as the large N limit of the measures v(c, U(N)). Using this
result in the special case "all kN = 1" of SU(N), we then explain how to compute
v(c) via low-lying eigenvalues of Kloosterman sums in oddly many variables in odd
characteristic.

In a final section, we define a variant of the I-level scaling density for G(N)
which is defined in a more symmetric way and which is more amenable to analysis
in certain problems, cf. [Ka-Sar].

AD.1. Basic definitions: W,,(f, A, G(N)) and W,,(f, G(N))

AD.1.1. Exactly as in 8.4.1, for G(N) any of U(N),Uk(N) := the kernel of
detk in U(N), SO(2N + 1), USp(2N), SO(2N), O_(2N + 2), O_ (2N+ 1), and A in
G(N), we have its sequences of angles

0 < <o(1) <,p(2) < ... < p(N) < 27r if G(N) = U(N) or Uk(N),
0 < w(l) < <p(2) < < cp(N) < 7r for the other G(N),

and its sequence of normalized angles

0<
defined by

t9(n) :_ (N +

373
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Concretely,

t9(n) NW(n)/27r

19(n) (N + 1/2)W(n)/7r = (2N + 1)W(n)/27r

t9(n) NW(n)/7r = 2Ncp(n)/27r

t9(n) (N + 1)cp(n)/7r = (2N + 2),p(n)/27r

for U(N) or Uk-(N),

for SO(2N + 1) or O_(2N + 1),
for USp(2N) or SO(2N),
for O_ (2N + 2).

AD.1.2. Fix an integer r > 1, an integer N > r, and one of the G(N)
above. Given a C-valued, bounded, Borel measurable function f on W, we define
a C-valued function on G(N), A,--r W,, (f, A, G(N)) as follows. Denote by

0 < p(1)(A) < W(2)(A) C ... G p(N)(A) < o,7r

the sequence of angles of A in G(N), and define

WW(f, A, G(N))

f ((N + .)w(i(1)) (A)/o7r, ... , (N + )i)cp(i(r))(A)/o ir).
1

Since formation of each angle W(i) is a bounded, Borel measurable function on
G(N), the function A ,--> Wr(f, A, G(N)) is a bounded, Borel measurable function
on G(N). We may then define

Wr(f, G(N)) :=
fG(N)

WD(f, A, G(N)) dA,

where dA denotes the normalized (total mass one) Haar measure on G(N).
For r > N, we define Wr(f, A,G(N)) = 0 and WW(f, G(N)) = 0.

AD.2. Large N limits: the easy case

AD.2.1. Recall the three kernels

K(x, y) := sin(ir(x - y))/7r(x - y)

and

K+(x, y) K(x, y) ± K(-x, y)
= sin(7r(x - y))/ir(x - y) ± sin(7r(x + y))/7r(x + y).

For each integer r > 1, we define functions Wr and Wr,± on Rr by

Wr(x(1),... , x(r)) := detrxr(K(x(i), x(?))),
Wr.+(x(1), ... , x(r)) := detrxr(K+(x(i), x(9))).

Theorem AD.2.2. For any integer r >_ 1, denote by dx usual Lebesgue mea-
sure on Rr. Let f be a C-valued, bounded, Borel measurable function f on lltr which
is symmetric and whose restriction to (R>o)r is of compact support. For G(N) any
of U(N), SO(2N + 1), USp(2N), SO(2N), O_(2N + 2), O_(2N + 1), we have the
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large N limit formulas

IVlim Wr(f, G(N))

(1/r!) J((R>0)

f (x)W1(x) dx, if G(N) is U(N),

_ (1/r!) f f (x)Wr.+(x) dx, if G(N) is SO(2N) or O_ (2N +1),
R >u

= (1/r!) f (x)W*.- (x) dx, if G(N) is USp(2N), O- (2N + 2)
4. R>0)t

or SO(2N + 1).

PROOF. Recall (8.3.1) the LN kernels attached to the various G(N), expressed
in terms of the function SN(x) := sin(Nx/2)/sin(x/2):

G(N)

U(N)

L, (x, y)

n
o

eiTi(x 1) = SN(X - y)ei(N-1)(x-v)l2

other G(N), (012)[SpN+r(x - y) + ESpN+r(x + y)], i.e.,

SO(2N + 1) (1/2)(S2N(x - y) - S2N(x+y))

USp(2N) or O_ (2N + 2) (1/2)(S2N+1(x - y) - S2N+1(x + y))

SO(2N) (1/2) ('S2N-1(x - y) + S2N-1 (x + y))

O_(2N+1) (1/2)(S2N(x - y) + S2N(x + y)).

Fix an integer r > 1, a function f on YI;' as in the statement of the theorem,
an integer N > r, and a choice of G(N). Denote by fG(N) the function on [0, Q7r]r
defined by

fG(N) (W(1), ... f ((N + A),p(1)/a7r,... , (N + A)Ip(r)/a7r).

In the notation of 5.1.3, part 5), the function fG(N) [r, NJ on [0, o-7r] ' is the function

(W(1), ... , W(N))

E f ((N + (N + A)co(i(r))/Q7r).
1<i(I)<i(2)<...<i(r)<N

Because f is symmetric in its n variables, the function fG(N) [r, N] on 10, vir]N is
symmetric, so can be thought of as a central function on G(N). Given an element
A in G(N), denote by W(A) :_ (cp(1)(A),...,(p(N)(A)) in [0,o r]r' its vector of
angles. Then we have the tautologous identity

fG(N)[r,N](co(A)) = WW(f,A,G(N))
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Thus we have

Wr(f, G(N)) fG(IV) W,(f, A, G(N)) dA = f
(N)

fG(N) (r, N](cp(A)) dA,

which in the notations of 5.0 we may rewrite as

f [r, N] dp,(G(N)).fo(N)
O Q,,] N

From 5.1.3, part 5) and the LN form (5.2 and 6.4) of the Weyl integration formula,
we have the identity

(AD.2.2.1)

fG(N) [r, NJ die (G(N))

= (1/r!) J fG(N) (x) detrxr (LN (x(i), x(7))) ll(dx(i)/a7r).00 lr i=1

If we now make the change of variable x(i) I--p Qrrx(i)/(N + A), this last integral
becomes (1/r!) times

f (x) detrxr(LN(ff7rx(i)/(N + A), vrrx(j)/(N + A))) fl(dx(i)/(N + A)).f0,N+a]'' i

Because f I(]R>o)r is of compact support, for N large the support of f I (R>o)r
is contained in the region where all x(i) < N, so for large N the integral (AD.2.2.1)
is equal to (1/r!) times

f (x) detrxr(LN(o,7rx(i)/(N + A), o-7x(j)/(N + A))) H(dx(i)/(N + A)),Jn>o)T' i

i.e., (AD.2.2.1) is equal to

(1/r!) f f (x) detrxr((1/(N + A))LN(o-7rx(i)/(N + A), o-rrx(j)/(N + A))) dx.
(1R>o)r

Thus for N large, the above integral is Wr(f, G(N)). To see that the large N limit
of Wr(f, G(N)) is as asserted, we exploit the fact that f I(R>o)r is bounded and of
compact support: it suffices to show that the continuous function

detrxr((1/(N + A))LN(o-7rx(i)/(N + A), arrx(j)/(N + A)))

converges pointwise,as N --> oo, to Wr(x) in the U(N) case, and to the asserted
choice of W,.,±(x) in the remaining cases. This convergence results immediately
from the explicit SN formulas, recalled above, for the LN kernel, together with the
fact that for fixed x, sin(x)/N sin(x/N) converges to sin(x)/x as N --; +oo. QED

AD.2.3. Here is a minor variant, where we drop the requirement that the
function f be symmetric, but change the domain of integration from (][8>0)r to
(1R o)''(order), the closed set defined by the inequalities

0<x(1) <x(2) <... <x(r).

Theorem AD.2.4 (variant of AD.2.2). For any integer r > 1, denote by dx
the usual Lebesgue measure on 1Rr, For any C-valued, bounded, Borel measurable
function f on R' whose restriction to (l[8>o)r(order) is of compact support, and for
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G(N) any of U(N), SO(2N + 1), USp(2N), SO(2N), O_ (2N + 2), O_ (2N + 1), we
have the large N limit formulas

rlymo Wr(f, G(N))

f (x)Wr(x) dx, if G(N) is U(N),JR>0 )' (order)

f (x)Wr,+(x) dx, if G(N) is SO(2N) or O_(2N + 1),
- (R>0)'(order)

f (x)W ,_(x) dx, if G(N) is USp(2N), O_ (2N + 2)
- J(R>0)r(order)

or SO(2N+ 1).

PROOF. Suppose first that f is symmetric. Because any r x r determinant of
the shape detrxr(F(x(i), x(j))) is a symmetric function, each of Wr(x) and W,.-+ (x)
is symmetric, so in AD.2.2 we may rewrite the limits as

f (x)Wr(x) dx, if G(N) is U(N),JR>0 )' (order)

f (x)Wr,+(x) dx, if G(N) is SO(2N) or O_ (2N + 1),JR>0)'(order)

f (x)Wr,_ (x) dx, if G(N) is USp(2N), O_ (2N + 2)JR>o )' (order)

or SO(2N + 1).

Given any function f on R', denote by f the unique symmetric function on Iltr
which agrees with f on the set R (order). Because WW(f, G(N)) depends only on
the restriction of f to (]R>o)r(order), we have Wr(f,G(N)) = Wr(f,G(N)). Now
apply to f the above rewriting of AD.2.2, and remember that f agrees with f on
(lR>o)r(order). QED

We also record, for later use, the following lemma.

Lemma AD.2.5. For any integer r > 1, denote by dx usual Lebesgue measure
on R. For any C-valued, bounded, Borel measurable function f on ]Rr, and for
G(N) any of U(N), SO(2N + 1), USp(2N), SO(2N), O_ (2N + 2), O_ (2N + 1), we
have the formula

WW(f,G(N)) = Jf(x)Wr,G(N)(x)dx,
[0,N+a]'(order)

where Wr,G(N) (x) denotes the r x r determinant

WW,G(N) (x) := detrxr((1/(N + A))LN(o-7rx(i)/(N + A), o-7rx(j)/(N + A)))

made from the LN kernel for G(N).

PROOF. In the proof of AD.2.2, we saw that for f as above and symmetric, we
have

Wr(f, G(N)) = (1/r!) f
O,N+a]f

(x)Wr,G(N) (x) dx.
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By the symmetry of both f and Wr,G(N)(x), we thus have

Wr(f,G(N)) = f f(x)WT,G(N)(x)dx.
O,N+ ]' (order)

Given any function f on R, denote by f the unique symmetric function on W'
which agrees with f on the set R- (order). Because Wr(f, G(N)) depends only on
the restriction of f to (]R>o)r(order), we have Wr(f,G(N)) = Wr(f,G(N)). Now
apply to f the above, and remember that f agrees with f on (II8>o)r(order). QED

AD.3. Relations between eigenvalue location measures and densities:
generalities

AD.3.1. Fix an integer r > 1. Fix an offset vector c in Z',

c = (c(1),...,c(r)), 1 < c(1) < c(2) < < c(r),

and denote by a in zr the corresponding separation vector, cf. 1.0.5. Thus if we
denote by Il in 7Zr the vector (1, 1, ... ,1), we have

c=Off (ll+a).

AD.3.1.1. For each N > c(r), and G(N) any of U(N), Uk(N), SO(2N + 1),
USp(2N), SO(2N), O_ (2N + 2), O_ (2N + 1), we have a map

Fc : G(N) ]R,

A'-' (T9(c(1))(A), ... , 29(c(r))(A))

defined by attaching to A in G(N) the vector of those of its normalized angles
named by the offset vector c. Just as in 8.4.1, we define the multi-eigenvalue location
measure v(c, G(N)) on Illr to be the direct image by the map FF of normalized Haar
measure on G(N).

AD.3.2. Given an offset vector c in Z', we denote by

[offset c] : R'(') --+ R'

the projection onto the coordinates named by c: thus for x in R`(r),

[offset c](x) := (x (c(1)), . . . , x(c(r))).

Given a function f on R, we denote by f o [offset c] the composite function on
]Rc(r), defined by

f o [offset c] (x) := f ([offset c](x)).

[Notice that if the restriction off to (]R>o)r(order) is of compact support, supported
in x(r) < a, then the restriction of f o [offset c] to (R>o)c(r)(order) is of compact
support, supported in x(c(r)) < a.]
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AD.3.2.1. In terms of the corresponding separation vector a in Z', we have
c(r) = r + E(a), and we also write the map [offset c] as

[sep a] : l[gr+E(a) Rr.

Thus for f a function on Wr, we have

f o [Sepa](x) := f([sepa)(x)) f([offset Off (11 + a)] (x)).

For any integer N > c(r), any choice of G(N) as in AD.3.1.1 above, and any element
A in G(N), we define

W(sepa, f, A, G(N)) := Wr+E(a)(f o [sep a], A, G(N)).

If f is C-valued, bounded, and Borel measurable, we define

W(sepa, f,G(N)) := f W(sepa, f, A, G(N)) dA.
(N)

Lemma AD.3.3. Fix an integer r > 1 and an offset vector c in Z with cor-
responding separation vector a. Let f be a C-valued function on Rr, For any
N > r + E(a), any G(N) as in AD.3.1.1 above, and any A in G(N), we have

W (sep a, f, A, G(N)) = Binom(b, a) f (t9(Off(I + b))(A))
b>o in Zr with r+E(b)<N

E Binom(b, a) f (i9(Off (ll + b)) (A)).
b>a in Zr with r+E(b)<N

PROOF. The quantity W(sepa, f, A, G(N)) is a sum of values off at certain
ordered r-tuples of normalized angles of A. A given offset vector y := Off (ll + b) of
locations occurs as many times as there is a sequence of c(r) indices

1 < i(1) < i(2) < ... < i(c(r)) < N

for which the subsequence of r indices

i(c(1)) < i(c(2)) < ... < i(c(r))

is the sequence

y(l) < y(2) < ... < y(r).

We claim this number is Binom(b,a). To see this, notice that in the sought for
sequence of length c(r), the indices named by y are given: It is in choosing the
indices which go in between that we have some choice. We must pick a(1) indices
out of the b(l) possible indices less than y(1), we must pick a(2) indices out of
the b(2) possible indices strictly between y(l) and y(2), ... , we must pick a(r)
indices out of the b(r) possible indices strictly between y(r - 1) and y(r). There
are Binom(b, a) such choices. Since Binom(b, a) vanishes unless b > a, we may sum
only over b > a. QED

Corollary AD.3.3.1. Fix an integer r > 1 and an offset vector c in Zr with
corresponding separation vector a. Let f be a bounded, Borel measurable C-valued
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function on W. For any N > r + E(a), and any G(N) as in AD.3.1.1 above, we
have

p

W(sepa, f,G(N)) _ Binom(b,a) If du(Off (Il +b),G(N))
b>0 m Z' with r+E(b)GN

r
Binom(b,a)J If dv(Off (Il +b),G(N)).

b>a in Z' with r+E(b)<N

PROOF. Integrate the previous result over G(N). QED

AD.3.3.2. If we adopt the convention that both W(sepa, f,G(N)) and
v(c, G(N)) = 0 whenever c(r) > N, we may rewrite the above corollary as

Corollary AD.3.3.3. Fix an integer r > 1 and an offset vector c in Zr with
corresponding separation vector a. Let f be a bounded, Borel measurable C-valued
function on R. For any G(N) as in AD.3.1.1 above, we have

W(sep a, f, G(N)) = Binom(b, a) J f dv(Off(1 + b), G(N)).
b>O in Zr

Corollary AD.3.3.4. Fix an integer r > 1. Let f be a bounded, Bored mea-
surable C-valued function on R. For any G(N) as above, the r-variable generating
series (which are in fact polynomials)

W(sepa, f,G(N))Ta
a>0 in Zr

and

E Jfdii(Off(ll + b),G(N))Tb
b>0 in Zr

are related by

fiW(sepa, f,G(N))Ta = (1+T)bdv(Off(Il +b),G(N)),
a>0 in Zr b>0 in Zr

and

TbJ fdv(Off(ll+b),G(N))= > W(sepa,f,G(N))(T-1)a.
b>0 in Zr a>0 in Zr

Equating coefficients of Ta in the second identity, we get

Corollary AD.3.3.5. Fix an integer r >_ 1. Let f be a bounded, Borel mea-
surable C-valued function on R'. For any G(N) as in AD.3.1.1 above, we have

r f dv(Off(Il +a),0(N)) = (-1)b-aBinom(b,a)W(sepb, f,G(N)).
b>a in Zr

Remark AD.3.4. The reader will no doubt have noticed that the relation
between the W(sepa, f, 0(N)) and the f f dv(Off(1 + b),G(N)) is precisely that
between the Clump(a) and the Sep(b) of 2.3.8 and 2.4.9. Proceeding exactly as in
2.3.11 and 2.4.12, whose proofs depend only on these relations and on the fact that
for real f > 0 both W(sepa, f,G(N)) and f f dv(Off(1 + b),G(N)) are real and
>0,wefind
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Proposition AD.3.5. Let f be a nonnegative, R-valued, bounded Borel mea-
surable function on R'. For each a _> 0 in zT, and each integer m >_ E(a), and
each G(N) as in AD.3.1.1 above, we have the following inequalities:

If m - E(a) is odd,

E (-1)6-a Binom(b, a)W(sep b, f, G(N))
b>a in Z'',E(b)<m

< f f dv(Off(Il + a),G(N)).

If m - E(a) is even,

f f dv(Off (Il + a), G(N))

E (-1)b-, Binom(b, a)W(sep b, f, G(N)).
b>a in Z',E(b)<m

AD.4. Second construction of the large N limits of the eigenvalue
location measures v(c,G(N)) for G(N) one of U(N),
SO(2N + 1), USp(2N), SO(2N), O_ (2N + 2), O_ (2N + 1)

AD.4.1. In the previous section AD.3, the results took place at finite level
N, and were valid for Uk (N) as well. But in this section, we must exclude the
Uk(N) case. We will return to the Uk(N) case in the next section AD.5.

Lemma AD.4.2. Let f be a C-valued, bounded Borel measurable function on
RT. Suppose that the restriction of f to (R>o)T(order) is of compact support,
supported in the region x(r) _< a. For any a > 0 in Zr, and for G(N) any of
U(N), SO(2N + 1), USp(2N), SO(2N), 0-(2N + 2),O-(2N + 1), we have the es-
timate

IW(Sepa,f,G(N))I <- NfIIsup(2a)T+E(a)/(r+E(a))!.

PROOF. Since W (sep a, f, G(N)) is determined by the restriction of f to
(R>o)T(order), we may first replace f by the unique function f which vanishes
outside (R>o)', agrees with f on (R>o)T(order), and is symmetric.

Thus we suppose that f is symmetric, supported in (ll8>>o)' with support con-
tained in the region Supi x(i) < a. Let us denote

R:=r+E(a),
F:.- fo[sepa].

We then have

W(sep a, f, G(N)) := WR(F, G(N))

The restriction to (llt>o)R(order) of F has compact support contained in the domain
x(R) < a. Since the value of WR(FG(N)) depends only on the restriction of F
to (R>o )R (order), we may replace F by the unique symmetric function F which is
supported in (R>o)R and which agrees with F on (lR>o)R(order). Notice that F is
supported in the region Supi x(i) < a, i.e. in the region [0, a] R. Thus we have

W(sepa, f,G(N)) := WR(F, G(N)) = WR(F, G(N)).
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As explained in the proof of AD.2.2, WR(F,G(N)) is equal to (1/R!) times

F(x) detRx R(LN (o7rx(i)/(N +A), airx(?)/(N +A))) [J(dx(i)/(N +A)).f6, N+a] R i

According to 5.3.3, we have the estimate

IdetRXR(Lrr(x(i),x(?)))I < (2N)R.

[This estimate holds also for the LN kernel for O_(2N + 1) because that kernel is
the LN kernel for SO(2N+ 1) evaluated at (7r - x, it - y), cf. 6.4.8]. Thus we obtain

IWR(F, G(N))I II!II6Up(1/R!)(2N/(N + A))R(measure of [0, a]R)

IlfIIsup(2a/R!),

which, tracing back, is precisely the required estimate

IW(sepa,f,G(N))I < I1fIlsup(2a)r+E(a)/(r+E(a))!. QED

Corollary AD.4.2.1. Let f be a C-valued, bounded Borel measurable func-
tion on Rr. Suppose that the restriction of f to (R>o)T(order) is of compact sup-
port, supported in the region x(r) < a. For G(N) any of U(N), SO(2N + 1),
USp(2N), SO(2N), O_(2N -1- 2),0- (2N + 1), the generating series polynomial

W(sepa,f,G(N))T'
a>O in Zr

is dominated, coefficient by coefficient, by the entire function

IIfIIsupexp
i-1

PROOF. Immediate from the previous estimate. QED

Taking the large N limit via AD-2.4, we get

Corollary AD.4.2.2. Let f be a C-valued, bounded Borel measurable func-
tion on R'. Suppose that the restriction off to (118>o)T(order) is of compact sup-
port, supported in the region x(r) < a. For G(N) any of U(N), SO(2N + 1),
USp(2N), SO(2N), O_(2N + 2), O_ (22N + 1), the generating series

WG(f,T) (tim W(sep a, f,G(N)))T°'

is entire, and is dominated,

a Ln

coefficient by coefficient, by the entire function
r

IIfIIsupexp (2aTi).
i=1

Theorem AD.4.3. Let f be a C-valued, bounded Borel measurable function on
R'. Suppose that the restriction off to (R>o)r(order) is of compact support. Denote
by G(N) any of U(N), SO(2N + 1), USp(2N), SO(2N), O_(2N + 2), O_(2N + 1).

1) For any a > 0 in Z', the large N limit

limes f dv(Off(I + a), G(N))
r
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exists and is equal to the sum of the convergentrgent series

(-1)b-aBinom(b,a)iW(sepb,f,G(N))).
b>a in Zr

-00

383

2) For any offset vector c in Z1, consider the large N limit measures v(c) and
v(±, c) of 8.4.17. We have

iim J f dv(c, G(N))
N-oo ,.

f dv(c), if G(N) = U(N),r
= J f dv(+, c), if G(N) = SO(2N) or O_ (2N + 1),

= J r f dv(-, c), if G(N) = USp(2N), SO(2N + 1), O_ (2N + 2).
>R

3) The generating series

vG(f,T) := (iimffdv(off(fl + a),G(N))) Ta
///

a>O in Zr

is entire, and it is related to the entire

(urn

function

WG(f,T) W(sep a, f,G(N)))T-
oe

a>O in Z r

by the inversion formulas

WG(f,T) = vc(f,1 +T), vc(f,T) = WG(f,T- 1).
PROOF. The proof of 1) is similar to that of 2.9.1. We reduce immediately to

the case when f is real valued and everywhere > 0. For fixed N and each integer
m > E(a) with m - E(a) odd, we have the inequalities

(-1)b-aBinom(b,a)W(sepb, f, G(N))
b>a in Z'',E(b)<m

< f f dv(Off(I + a), G(N))

E (-1)b'' Binom(b, a) W(sep b, f, G(N)).
b>a in Zr,E(b)<m+1

Taking the lim sup and lim inf over N, and using AD. 2.4. we find

(-1)b-UBinom(b,a)( lim W(sepb, f,G(N)))
b>a in Z ,E(b)<m

r
< lim inf f f dv(Off(I + a), G(N))

N-oo

< 1imsupJ f dv(Off(1l+a),G(N))
N-oo

(urn(-1)b-a Binom(b, a) W (sep b, f, G(N))) .

b>a in Zr,E(b)<m+1
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Taking the limit over m such that m - E(a) is odd, and using the fact that the
series

E (-I)'_a Binom(b, a) (urn W (sep b, f, G(N)))
b>a In Z' /

is absolutely convergent, we get

(urn(-1)b-a Binom(b, a) W (sep b, f, G(N)))
b>ainZ"

r
< lim inf f dv(Off (ll +a), G(N))

N-oo I
< Jim sup J f dv(Off (1l + a), G(N) )

N-.oo

b>a in Z'

and this proves 1).

(-1)b-'Binom(b,a)(N1 W(sepb, f,G(N))) ,
-oo

To prove 2), we argue as follows. By 1), there is a Borel measure

lim v(c, G(N))"
N-.oo

on R' of total mass < 1 with the property that for all bounded, Borel measurable
C-valued functions f of compact support on R'', we have

l m. f f dv(c, G(N)) - f d" limo v(c, G(N))".
r '

Taking for f the characteristic functions of finite rectangles, we see from 8.4.17 that
"limN-,, v(c, G(N))" has the same CDF as

v(c), if G(N) = U(N),
v(+, c), if G(N) = SO(2N) or O_(2N + 1),

v(-, c), if G(N) = USp(2N), SO(2N + 1), O_(2N + 2).

Since measures are determined by their CDF's, we find that

1, (c),
94

N v(c, G(N))" = v(+, c),
v(-) c),

if G(N) = U(N),
if G(N) = SO(2N) or O_ (2N + 1),
if G(N) = USp(2N), SO(2N + 1), O_ (2N + 2).

This proves 2).
To prove 3), we use the fact that WG(f,T) is entire, and consider the entire

function VG(f,T) := WG(f,T - 1). According to 1), the formal series vG(f,T)
agrees term by term with VG (f , T). Therefore vG (f, T) is itself entire, and we have
the asserted relations. QED

AD.4.4. We can use this last result AD.4.3 to settle a question which we
mentioned in 8.4.18, at which point we had only treated the U(N) case. The
method is similar to that used in 7.0.3.

Corollary AD.4.4.1. Denote by G(N) any of U(N), SO(2N + 1), USp(2N),
SO(2N), O_ (2N + 2), 0_ (2N + 1). Fix an integer r > 1. For any offset vector c
in Zr, each of the measures v(c, G(N)) and the limit measure limN.oo v(c, G(N))
on R'' is absolutely continuous with respect to Lebesgue measure.
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PROOF. These measures are supported in (R>o)r(order), so we must show
that any set E in (lR>o)'(order) of Lebesgue measure zero lies in a Borel set which
has measure zero both for v(c, G(N)) and for limN., v(c, G(N)). For this, it
suffices to treat the case when E is bounded (write E as the increasing union of its
intersections with the sets x(r) < M as M grows). Once E lies in x(r) < M, use
the fact that for every E > 0, E is contained in a Borel set E. inside x(r) < M of
Lebesgue measure < e. So E is contained in the bounded Borel set nn E11,,, which
has Lebesgue measure zero. Thus it suffices to show that bounded Borel sets E
in (lR>o)r(order) of Lebesgue measure zero have measure zero both for v(c,G(N))
and for v(c, G(N)). Let f on Rr be the characteristic function of such a
set E.

It suffices to show now that f f dv(c,G(N)) = 0 for every offset vector c and
every finite N: the limit case follows because we have

fdl Elimv(c,G(N)) ] = N oo / f dv(c,G(N)).

In view of the expression of f f dv(c, G(//(N)) as a finite sum of terms

W(sepa, f,G(N)),

it suffices to show that W(sepa, f,G(N)) = 0 for each a > 0 in Z'.
For each a > 0 in Zr, the function f o [sep a] on R'+E(a) is the characteristic

function of [sep a]-1(E). Because [sep a] is a projection onto an R' inside Rr+E(a),
after a permutation of coordinates the set [sepal -I (E) is the product E x R", (a)
inside W x RE(a), and hence is a set of Lebesgue measure zero in R''+E(a). According
to AD.2.5, we have

W(sep a, f,G(N)) := Wr+E(a)(f o [Sepa],G(N))

(by AD.2.5) = f f ([sep a](x))Wr+E a) c(N) (x} dx.
0 N+a]1+E(°) (order)

(
(order)

This integral vanishes because its integrand vanishes outside the set [sep a]-1(E),
which has Lebesgue measure zero. QED

AD.5. Large N limits for the groups Uk(N): Widom's result

Theorem AD.5.1 (Widom). Fix an integer r > 1, and denote by dx usual
Lebesgue measure on Rr. For any C-valued, bounded Bored measurable function
f on Rr which is of compact support, and for any sequence {kN}N>r of strictly
positive integers, we have the large N limit formulas

!imoWr(f, UkN (N)) = 1!im Wr(f, U(N)) = f .f(x)W7(x) dx.
(Rt o)r(order)

More precisely, we have

Theorem AD.5.2. For any integer r > 1, for any integer k > 1, for any
integer N > r, and for f any bounded, Borel measurable C-valued function on Rr
with 11 f IIsuP < 1 and with support contained in the set Supt Ix(i)I < a, we have the
equality

Wr(f, Uk(N)) = Wr(f, U(N)) if k > r,
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and, more generally the estimate

IWW(f, Uk(N)) - wr(f, U(N))1 < 2[r/k](ar/r!)rrer+r2/2N-k/2,

where [r/k] denotes the largest integer < r/k.

PROOF. Fix r, k, and N.

AD.5.2.1. Because both Wr(f, Uk(N)) and Wr(f, U(N)) depend only on the
restriction off to the set [0, N)' (order), we may replace f by (the extension by zero
to all of Rr of) its restriction to [0, N)r(order), say fl. We may then replace fl by
the unique symmetric function fl on Rr which agrees with fl on Rr(order). Thus
it suffices to treat the case where the function f on W is symmetric and supported
in [0, N)r.

AD.5.2.2. Because f is supported in [0, N)', the function

fN(x) := f(Nx/27r)

is supported in [0, 27r)r, and may be seen as a function on the r-torus (Sl)r. More
intrinsically, the series

(AD.5.2.3) fN,per(x) fN(x + 27rn)
n in Z'

has, for each x in R', precisely one possibly nonzero term, so converges pointwise
to a 27rZr-periodic function and thus is a function on R'/27rZr --- (SI)r. For x in
[0, 27r)r, we have the relation

(AD.5.2.4) fN,per(x) = fN(x)

The function fN,per on (Sl)r is thus bounded, Borel measurable, and symmetric.
We now interrupt the proof of AD.5.2 for two "interludes", AD.6 and AD.7.

The proof will be concluded in AD.8-9.

AD.6. Interlude: The quantities Vr(cp, Uk(N)) and Vr(tp, U(N))

AD.6.1. Fix integers r > 1 and N > r. Given a bounded, Borel measurable
function F on (Sl)r, viewed as a 27r7Gr-periodic function on Rr, and an element A
in U(N) with angles coj and eigenvalues aj := exp(iWj), j = 1, ... , N, we define

(AD.6.1.1) V, (F, A, U(N)) :_ (1/r[) F(wi,, , Vi,).
i,,i2..... ir all distinct in [1,N)

Given k > 1 and A in Uk(N), we define

(AD.6.1.2) V, (F, A, Uk(N)) := VP(F, A, U(N)).

We then define

f(AD.6.1.3) V (F, Uk(N)) := Vr(F, A, Uk(N)) dA,

J
k(N)

(AD.6.1.4) Vr(F, U(N)) Vr(F, A, U(N)) dA,
(N)

in both integrals using the total mass one Haar measure.
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AD.6.2. Before going on, let us point out the relation of these quantities to
the Wr quantities defined previously, for functions f on K'. If we begin with a
function f on W which is symmetric and supported in [0, N)r, and take for F
the function fN per, we have the tautological relations

(AD.6.2.1) WW(f, A, U(N)) = Vr(fN,per, A, U(N)),

(AD.6.2.2) Wr(f, U(N)) = Vr(fN,per, U(N)),

and
(AD.6.2.3) Wr(f, A, Uk(N)) = Vr(fN,per, A, Uk(N)),
(AD.6.2.4) WT(f, Uk(N)) = Vr(fN,per, Uk(N))-

The advantage of the Vr is that they are intrinsic to (S1)r, whereas the Wr depend
on the particular choice of [0, 27r) as fundamental domain in which to order the N
angles ipj of an element A in U(N).

AD.6.3. Our next task is to develop integral formulas for Vr(F, Uk(N)) and
for Vr(F, U(N)). To clarify what is involved here, we first give another interpreta-
tion of V, (F, U(N)) and V, (F, Uk(N)).

AD.6.3.1. An element A in U(N) with angles cps, j = 1,.. . , N, and eigen-
values aj := exp(icpJ), gives rise to the Borel measure VV(A, U(N)) on (Sly of
total mass Binom(N, r) defined as

6(cpil ... cpir).(AD.6.3.2) Vr(A, U(N)) := (1/r!)
il,i2,...,ir all distinct in [1,N]

In terms of this measure on (Sly, we have, for any bounded, Borel measurable
function F on (S1)r,

(AD.6.3.3) V, (F, A, U(N)) = f F dVV(A, U(N)).
(S')r

If A lies in Uk(N), we define the Borel measure V, (A, Uk(N)) on (S1)T to be

(AD.6.3.4) VT(A, Uk(N)) := Vr(A, U(N)).

We then define Borel measures Vr(Uk(N)) and VV(U(N)) on (S1)r of total mass
Binom(N, r) as the expected values of these measures:

(AD.6.3.5) VV(Uk(N)) == f V, (A, Uk(N)) dA,
k (N)

(AD.6.3.6) VV(U(N)) f (N)
V, (A, U(N)) dA,

in both integrals using the total mass one Haar measure. Exactly as in 1.1, we have,
for any bounded, Borel measurable function F on (S1)r, the integration formulas

(AD.6.3.7) V, (F, Uk(N)) _ f
S')r

FdV, ( Uk(N)),

(AD.6.3.8) Vr(F, U = J F dVr(U(N)).
(S,)'' '

AD.6.4. Thus we see that giving integral formulas for VV(F, Uk(N)) and for
VT(F, U(N)) amounts to giving formulas for the Borel measures V, (Uk (N)) and
VV(U(N)) on (S1)r_
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AD.6.4.1. We first explain the idea which underlies these formulas. Let us
begin with an element A in U(N), whose angles are Wj, j = 1, ... , N, and whose
eigenvalues are oij := exp(iVj). For any Borel measurable F on (S1)r, viewed as a
2irZr-periodic function on W, we have

(AD.6.4.1.1) Vr(F, A, U(N)) := (1/r!) F(vi...... cpi,,).
ii,i2.....j,- all distinct in [1,N]

AD.6.4.2. Choose an "approximate identity" on S1, i.e., a sequence of non-
negative C°° functions 4(i9) on S', each of total integral one over S1 against
normalized Haar measure 0, with the property that for any open neighborhood
U of 0 in S1 and for any real E > 0, we have fu 41)n(t9) 0 > 1 - e for n >> 0. One
knows that for any continuous function H on S1, viewed as a periodic continuous
function on R, and any point x in ]l8, we have

(AD.6.4.2.1) H(x) = li H(19)$n(x - t9) dt9,
l

and the convergence is uniform, i.e., the convolutions H * 'n converge uniformly
to H.

AD.6.4.2.2. For example, we may take for (Pn the Fejer kernel (Sn(i9))2,
with Sn(t9) := sin(nt9/2)/sin(t9/2). Or we may take for 4)n the Poisson kernel

in z(1 - 1/n)ImIeimt9 with parameter 1 - 1/n.
AD.6.4.3. Once we pick an approximate identity 4)n on S', the product func-

tions 4n r(t9) :_ 4bn(t91)4'n(t92) $n{t9r) on (SI)T- form an approximate identity
on (S1)r: for any continuous F on (S1)r, and any point V = (cp,, ... , gyp,) in (Sly,
we have

f(AD.6.4.3.1) F(W) = hm F ( ! 9 ) 4 ) , ,, ,,r(cp - t9) dt9,
n-X' "S 1),

where we write 0 for the normalized Haar measure rji(dt9i/2tr). Again the con-
vergence is uniform as cp varies in (S1)r.

AD.6.4.4. Given A in U(N) with angles (pj, j = 1,. .. , N, the coefficient of
T1 T2 .. T, in

F(t9)11 1 + Y:F'J-n((Pi - t9j) 0
J(S,)r i=1 j=1

is

r

E f -(,Pij -?9j).
il,i2,...,i,. all distinct in [1,N] j=1

Thus for F a continuous function on (Sly, we have the identity

(AD.6.4.5)

V,(F, A, U(N)) = lim the coefficient of T1T2 ... Tr in

r N r
(1/r!)

F(V)

1 t9j) dt9

and the convergence is uniform as A varies in U(N).
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AD.6.5. Recall from 6.3.2 that for f any bounded, Borel measurable function
on S1, and A in U(N), we may form the operator f (A) in My (C). Applying
this construction to the function x '-4 19j ), we may speak of the operator
Pn(A - t9j). Because 4)n is C°°, it has a rapidly convergent Fourier series, say

4),,(x) = (bn(m)eimx
mint

and 19) is the operator

t9) 1n(m)Ame-im'

mint

AD.6.6. In terms of these operators P,,(A -193), we have the identity

N

(AD.66.1) (i+E Tj$n(wi-t9j) =det
i=1 j=1 j=1

Thus for F continuous on (S1)r, we have the identity

(AD.6.6.2)

V,.(F,A, U(N)) = lim the coefficient of T1T2 Tr in
n--co

(1/r!)J F(19)det 1+ET3-Pn(A-19j) dt9 ,
(SF)r j=1

and convergence is uniform as A varies in U(N). Because the function
A H Vr(F,A,U(N)) is bounded (by Binom(N,r)jjFjj,,np) as A varies in U(N),
and the convergence is uniform in A, the n'th approximant will be bounded by

2 Binom(N, r) II F

for n >> 0. So we may apply dominated convergence to integrate over U(N) or over
Uk(N). For F continuous on (S1)', we find the formulas

(AD.6.6.3)

Vr(F, U(N)) = lim the coefficient of T1T2 Tr in
n-.oo

,,(1/r!) I IJ F(19) det (1+ ETj4,n(A -19j)) dt9 dA
(N) (S') j=1

and, for each k > 1,

(AD.6.6.4)

Vr(F,Uk(N)) = lira (thecoefficientofTiT2.Trin

jF(19)det(1/r!} fuh(M dA
S')' j=1
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Using Fubini to interchange the order of integration, we get

(AD.6.6.5)

VT(F, U(N)) = lim the coefficient of T1T2 TT in
n-.oo

(1/r!) J F(t9) J det (1+fl(A_)) dA dt9
(S'), U(N) j=1

and
(AD.6.6.6)

V,. (F, Uk (N)) = lim the coefficient of T1T2 T,- in

(1/r!)J F(i)
Ju"

dA dt9(S(N) j=1

AD.6.7. We now study the coefficient of T1T2 . T. in the integrals

(AD.6.7.1)

and

(AD.6.72)

If,k,N,n(t9,T) := det (1 + TJ-bn(A - t9j) 1 dA
lu" (N) J=1 1

ITN,n('d,T) := det 1+ETj-Dn(A-t9j) dA.
f(N) j=1

For each fixed (z9, T) in (S1)T x CT, the integrand

r
det 1 + >Tj-Pn(A -19j)

j=1

is a C°° central function on U(N).

AD.7. Interlude: Integration formulas on U(N) and on Uk(N)

Lemma AD.7.1. Let N > 1, f a C°° C-valued central function on U(N). For
any integer k > 1, the integral of f over the subgroup Uk(N) of U(N) is given by
the absolutely convergent series

p

f f (A) dA = J f (A) det(A)Ik dA.
k(N) I in Z U(N)

PROOF. Let K be a compact Lie group, and f a C°° C-valued central function
on K. In terms of the irreducible unitary representations p of K, compute the
representation-theoretic Fourier coefficients of f,

a(p) := L f (A)'IYace(F(A)) dA-
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It is well known, cf. [Sug, Chapter II, Theorem 8.1], that the series

E a(p) Trace(p(A))
irred. p

converges absolutely and uniformly to f (A). In particular, taking A to be the
identity element, the series

Ia(p)I dim(e)
irred. p

converges, and hence so does the series Eirred p ja(p)1.
If we take now K to be U(N), then

JU(N)

and so the series

f (A) det(A)ik dA = a(det-'k),

f (A) det(A)lk dA = a(detvik)
in Z f (N) 1 in Z

is absolutely convergent. To show that its sum is fUk (N) f (A) dA, we argue as
follows. Because Iirred p

a(p) Trace(p(A)) converges absolutely and uniformly to
f on U(N), it does so a fortiori on Uk(N), so we

f
maintegrate term by term:

f (A) dA = a(p) Trace(p(A)) dA.
f Uk(N) irred. p of U(N) k(N)

For p any finite-dimensional representation of U(N), we have

fUk(N)
TI ace(p(A)) dA = dim(space of Uk(N)-invariants in p).

Because Uk(N) is a normal subgroup of U(N), the space of Uk(N)-invariants in p
is a U(N)-subrepresentation of p. So for p irreducible, either the space of Uk(N)-
invariants in p is reduced to zero, or it is all of p, in which case p is trivial on Uk (N).
Thus we find

f (A) dA = a(p).f k(N) irred. p of U(N) trivia] on Uk(N)

Because the quotient U(N)/Uk(N) is abelian, isomorphic to S1 by the map
A F-+ det(A)k, the irreducible representations p of U(N) which are trivial on Uk(N)
are precisely the powers detjk of detk. QED

Lemma AD.7.2 ("Heine's formula" [Szego, pages 23 and 26]). Let f be a
bounded, Borel measurable C-valued function on Sl, with Fourier series

a(n)ein,7

n

Then we have the integration formula

U(N)
det(f (A)) dA = detN1N(a(i - j)).
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PROOF. Recall from 6.3.5 that

U(N)
det(1 + Tf (A)) dA = det(1 + TKN(X, y) f (y)IL2(S1, p)),

where µ is normalized Haar measure on S1, KN(x, y) is the kernel n o ein(x-b),
and KN(x, y) f (y) is the integral operator on L2(SI, p) given by

g'-> the function x'---, f KN(x, y) f (y)g(y) dti (y).
sl

Let us denote by P(N) C L2(SI, i) the span of the functions einx for
n = 0, ... , N - 1, and by .7r (N) the orthogonal projection of L2 (SI, 1c) onto P(N).
The integral operator KN(x, y) is precisely 7r(N), so the integral operator
KN (x, y) f (y) is the composite operator

g- 7r(N)(f9).

Since this composite operator has image contained in P(N), we have (cf. 6.0.4)

det(1 + TKN (x, y) f (y)IL2(SI, µ)) = det(1 + TKN (x, y) f (y)1P(N))

= det(1 +T(g'--* 7r(N)(fg))I P(N)).

In the obvious basis ej := e43x of P(N), j = 0, ... , N - 1, we have
N-1

ir(N)(fej) = ir(N) E a(n - j)en = a(k - j)ek,
n k=0

and so the matrix of g '--. ir(N)(fg) on P(N) is the N x N matrix whose (j, k)
entry is a(j - k), for j, k running from 0 to N - 1, or, what is the same, for j, k
running from 1 to N.

Thus we find

fU(N)
det(1 + Tf (A)) dA = detNXN(1 + T(a(i - j))).

Introduce a second indeterminate X, and multiply both sides by X': we find

JU(N)
det(X + XT f (A)) dA = detNXN(X + XT(a(i - j))),

an identity in C[X,T], hence in C[X, X-I,T]. Replacing T by T/X, we find an
identity

JU(N)
det(X + Tf (A)) dA = detNXN(X + T(a(i - j)))

in C[X,X- 1, TI, where both sides lie in C[X,T]. So this identity holds in C[X,T],
and putting X = 0, T = 1, we find the asserted identity. QED

AD.8. Return to the proof of Widorn's theorem

AD.8.1. We now return to the integrals of AD.6.7,

1,.,k.N,n(z9,T):= det 1+ETjtn(A-T9j) dA
JU)k(N j=1
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and

IrNn(t9,T}:= det 1+1: Tj-Dn(A't9j) dA.
fu (N) j=1

Because 4)n is C°° on S1, the integrand det(1 + Tj4)n(A - 49j)) is, for fixed
(0, T), a C°' central function on U(N). So by Lemma AD.7.1, we have

det (1+ETT$n(A-192)] dA
fu" (N) j=1 J

(AD.8.1.1)

_ f det (1 + t9j) 1 det(A)1k dA
linZ"U(N) ` j_1 JJ

r
det eilkx 1 297)

I in Z J (N) jj=11

_ det (Alk 1+ dA
i in Z U(N) j=1

If we now apply Lemma AD.7.2, we find

det eilkx
1+

ETj-P7z(x - 29j)
JU(N) ` l j=1 x=A

(AD.8.1.2) = detNXN I (a, b) the a - b Fourier coef. of

the function eilkx + ,9j)eilkx 1

j=1 J

Lemma AD.8.2. Suppose N > T. View the integral

J U N( ) j=1

det eilkxf (N)

r

1+ETjb,(x-t9j)
j=1 x=A

dA.

as a polynomial in the variables T7, with coefficient functions on (Sly. Every
nonzero monomial in the Tj's has total degree > Min(IlkI,N). In particular, if
Ilk[ > r, then the coefficient of T1T2 . . T,. vanishes.

PROOF. This integral is, as noted above, the determinant of the N x N matrix
whose (a, b) entry is the a - b Fourier coefficient of the function

r
det 1 + TjDn(A - t9j) det(A)1k dA

eilkx + 1:Tj$n,(x - t9j)eilkx
j_1
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Thus the (a, b) entry is

6a-b,lk + Tlbn(a - b - lk)e-i(a b-1k)19;

j=1
If the term ba-b,ak were absent, we would be looking at an N x N matrix of linear
forms in the T3's, and the determinant would be homogeneous of total degree N in
the Ti's. The idea is that for most (a, b), the term 6a-b,ik vanishes. Since a and b
run from 1 to N, their difference a - b cannot exceed N -1 in absolute value. Thus
if Ilk > N, the determinant is in fact homogeneous of total degree N. Suppose
now that llkI < N - 1. Then there are precisely N - IlkI pairs (a, b) in [1, N]2 with
a - b = 1k: if 1k > 0, these are the pairs (lk + j, j) for j = 1 to N - lk, and if lk < 0
they are the pairs (j, j -1k) with j = 1 + 1k to N. Thus there are at most N - jlkj
entries which are not linear forms in the Tj's. So in expanding out the determinant
as the alternating sum of N! products of N distinct entries, each of the N! terms is
divisible by a product of at least Ilk linear forms, and hence each of the N! terms
contains only monomials of degree > Ilki. QED

Corollary AD.8.3. Suppose N > r. For any k > 1, we have a congruence
modulo the ideal (T1,.., ,T,)r+l in C[Ti, .. ,Tr] generated by all monomials of
degree > r,

fU'(1V) det

1 + Tjtn(A - -9j) det(A)lk dA.
1 in Z,IIkl<r f (N) j=1

In particular, both sides have the same coefficient of TjT2 T,.

AD.8.4. For each integer 1, let us denote consider the integral

Jr,l,N,n (9, T )

(AD.8.4.1)
f det (1 + 1: Tj'Pn(A - 79j) det(A)1 dA

the determinant of the N x N matrix whose (a, b) entry is
r

6a-b,l + >Tjdn(a - b -
j=1

Define

(AD.8.4.2) Jr,1,N,n(9) := the coefficient of T1T2 .. T,. in Jr,1,N,n('d,T).

We will also have occasion to look at the integral

r
(AD.8.4.3) Jr,I,N(t9,T) := detNXN ((ab) H 6a-b,l + ETje-i(a-b-1),v;

j=1

and at the function

(AD.8.4.4) Jr,1,N(19) := the coefficient of T1T2 Tr in Jr,1,N(14,T).
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Lemma AD.8.5. Fix r, 1, N > r, and an approximate identity {'Fn} on S1.
The integrals Jr,t,N,n(19,T) and JT,t,N('+9,T) are polynomials in the Tj whose coeffi-
cients are trigonometric polynomials in the t9j 's. For (19,T) in (Sl)r x (a compact
set in Cr), we have uniform convergence of Jr,t,N,n(t9,T) to JT,I,N(t9,T) as n ---+ oo.
In particular, we have uniform convergence of Jr,I,N,,i(t9) to Jr,t,N(19) as n -4 oo.

PROOF. Indeed, already the individual (a, b) entries in the N x N matrices
whose determinants we are taking have this uniform convergence, since they involve
only finitely many Fourier coefficients of the P, and any given Fourier coefficient of
4D,, tends to 1 as n - oo. This gives the asserted convergence of the determinants.
To infer the uniform convergence of the coefficient of T1T2 - . T,., use the Cauchy
formulas

Jr,t.N,n(t9) = (1/27ri)r(Jr,1,N,.(L9,T)/T1T2...Tr) f (dj/TTJS)1=1

and

J,,t,N(t9) = (1/27ri)r (Jr,I,09,T)/T1T2...Tr) fl(dTj/Tj). QED

jS)r j=1

AD.8.6. Let us now recapitulate what we have so far. For N > r, and
for F(t9) a continuous C-valued function on (S')r, we have, from AD-6.6.3 and
AD.6.6.4, the formulas

(AD.8.6.1)

V, (F, U(N)) = lim the coefficient of T1T2 TT in

j4in (A - t9j) dA da9(1/r!) J(Sl)r F(V) U(N) det 1 + FT
=1

and

(AD.8.6.2)

,.,F, Uk(N)) = lim the coefficient of T1T2 . . . T, in
n-.ao

(1/r!)
J F(i9)

fu
det 1 + ETjPn(A - dA dt9

(S')r k(N) ,j-1

The first formula we rewrite, using the above results, as

(AD.8.6.3) V,-(F, U(N)) = lim (1/r!) f F(t9)Jr,o,N,n(t9) dt9,n-co S 1),.

the second as

I(sl)r
(AD.8.6.4) Vr(F, Uk(N)) = nimo (1/r!) F(19)Jr,tk,N,n(t9) &9.

t in Z,Itkl<r
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Using the uniform convergence of J,.,1k,N,n(t9) to Jr,1k,N(l9), we may apply domi-
nated convergence to again rewrite these as

(AD.8.6.5)

and

V, (F, U(N)) = (1/r!) F(t9)Jr,o,N 0) dt9
fSly

(AD.8.6.6) Vr(F, Uk(N)) (1/r!) f F(19)Jr,1k,N(19) dig.

I in Z,Itkl<r
(S')r

Proposition AD.8.7. For any integers r > 1, k > 1, and N > r, and for any
bounded, Borel measurable C-valued function F on (S1)', we have the integration
formulas

Vr(F, U(N)) = (1/r!) f F(19)Jr,o,N (19) dt9
(S')r

and

Vr(F, Uk(N)) = E (1/r!) f F(79)Jr,lk,N(79) 0.
i in Z,Ilkl<r (Si)r

PROOF. We have defined, in AD.6.3, Borel measures V, (U (N)) and V, (Uk (N))
on (Sly of total mass Binom(N,r) such that for any bounded, Borel measurable
C-valued function F on (S')r, we have the integration formulas

V, (F, U(N)) = f F dVr(U(N)),
(S')r

Vr(F,Uk(N)) = J Fdr(Uk(N))
(SF)r

We have shown that for F continuous, we have

di)Vr(F, U(N)) _ (1/r!) I
SS),(SS),

and

Vr(F, Uk(N)) = E (1/r!) J F(19)Jr,lk,N(t9) dt9.
I in Z,Ilkl<r (S1)r

So the general situation is this. We have a (positive) Borel measure v of finite total
mass on (S')r. We have a continuous C-valued function J(19) on (S1)r, and we
know that

f F dv = f d19

(S'1)r (S')r
for every continuous F. This uniquely determines the continuous function J: if K
were another, then f(s')r F(t9)(J(t9) - K(19)) dt9 = 0 for every continuous F, and
taking F to be J - K we see that J = K. Because v is a positive measure, the
function J is real and nonnegative, and so J(19) d19 is itself a positive Borel measure
of finite mass on (Sl)r which agrees with v on all continuous functions. But (Sl)r
is a compact Hausdorff space in which every open set is Q-compact. So by [Rudin,
2.14 and 2.18], v = J(t9) dt9 as a Borel measure. Hence we have

I F dv = f F(19) J(19) d19
S' )' (S' )''
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for every bounded, Borel measurable C-valued function F on (Sly. QED

For ease of later reference, we here make explicit what the previous result gives
in the case r = 1.

Corollary AD.8.7.1. For any integers k > 1 and N > 1, and for any bounded,
Bored measurable C-valued function F on Sl, denoting by d19 the normalized Haar
measure on S1, we have the integration formulas

V1(F, U(N)) = N f F(t9) d19 = (N/2-7r) f F(x) dx,
s1 ,1 [o,21r]

Vi (F, Uk(N)) = V1(F, U(N)) fork > 2,

and

V1(F, SU(N)) = V1(F, U(N)) + (-1)N-12 J F(i9) d19

sl

_ (N/21r) f F(x)(1 - (-1)N (2/N) cos(Nx)) dx.
0 , 2ir]

PROOF. The r = 1 case of AD.8.7 gives us the formulas

V1(F, U(N)) = f F('9)J1,o,N(t9) d19,
l

V, (F, Uk(N)) = V1(F, U(N)) fork > 2,

and

V1(F, SU(N)) = V, (F, U(N)) + f
l

F(19)(JI,1,N('d) + Jl,-1,N(19)) d19.
s

By definition, J1,t,N(t9) is the coefficient of T in

detNxN((a,b) 1-' 8a-b,t +Te-i(a-b-t)ty),

and we readily calculate

J1,0, N (t9) = N,

J1,±1,N(19) _ (-1)N-letiNB. QED

We now return to our main task.

Proposition AD.8.8. For any integers r > 1, 1 arbitrary, and N > r, we
have the following estimate for the sup norm of the function N-''Jr,t,N(6):

IIN-rJr,t,N(tq)IIsuP = 0 if III > r,
IIN-rJr,t,N(t9)IISup (rt/N"2) exp(r + r2/2) if III < r.

PROOF. According to Lemma AD.8.2, if I I I > r the function Jr,I,N(0) vanishes
identically.

If I I I < r, we argue as follows. The function Jr,t,N (19) is the coefficient of
T1T2 .. Tr in Jr,t,N (19, T). Therefore N-r Jr,t,N (19) is the coefficient of T,T2 ... Tr
in Jr,1,N(t9,T/N). Since we can recover N-1Jr,t,N(19) from Jr,t,N(19,T/N) by the
Cauchy formula as the integral against Haar measure over the (S1)r of T's of the
function Jr,t,N(i9,T/N)/(T1T2 ...T'), it suffices to prove the estimate

IJr.l,N(t9, T/N) I _<
(rt/Nt"2) exp(r + r2/2)

if1<I1I<randITjI=1forj=1,...,r.
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To see this, we make use of the interpretation of Jr,I,N(19,TIN) as a determi-
nant, and apply to it the Hadamard estimate. QED

Lemma AD.8.9 (Hadamard). Let n > 1 be an integer. In an n-dimensional
complex Hilbert space, suppose we are given two sets of n > 1 vectors, say

{vl, ... , vn} and {w1,... , wn}.

Then we have the estimate

/ (HuIii) (HiIwi).Idetnxn((vi,Wj))I ll

OOF. Pick an orthonormal basis {e1i... , en}. ThenPR

(vi,wi) = 1: (vi,ej)(ej,w!),
j

and so we have an identity of n x n matrices

((vi,wi)) = ((vi,ej))((ej,'+vI))
Thus

Idetnxn((vi,wj))I = Idetnxn((vi,ej))I x Idetnxn((ei,wj))I
If we take {w1, ... , w, } to coincide with {v1,. .. , vn}, this gives

I detnxn((vi,vj))I = I detnxn((vi, ej))I x I detnxn((ei, vj))I

= Idetnxn((vi,ej))I2.

The Hadamard inequality 5.3.4,

I detnxn((vi,vj))I s [I Ilvill2,

now gives

I detnxn((vi, ej)) I < II IlvjII.

Similarly, we infer that

I detnxn((ei,wj))I detnxn((wi,ej))I [I Ilwill.

Combining these last two inequalities with the matrix factorization

((vi, wt)) = ((vi, ej)) ((ej, wa))

noted above gives the asserted estimate. QED

Corollary AD.8.9.1 (Hadamard). Let n > 1 be an integer, (a(i, j)) an n x n
matrix over C. Then we have the estimate

1/2

I detnxn(a(i,j))I f
n

(Eai,j )I2
i=1 j=1

PROOF. This is the previous inequality in the Hilbert space Cn with the stan-
dard inner produce xiyj, with {vj, ... , vn} taken to be the columns of the matrix
(a(i, j)) and {w1.... , w, } taken to be the standard basis. QED
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AD.8.10. We now conclude the proof of Proposition AD.8.8. We must show

I JT.t,N (t9, TIN)] < (r t/Nc/2) exp(r. + r2/2)

ifIII<randiT3l=l forj=1,...,r.
To prove this, we notice that the N x N matrix, say A, of which Jr,I,N (t9, T/N)

is the determinant has its entries given by
r

A(a, b) := ba_b,i + (Tj /N)e-i
?=1

If IT3 I = 1 for 1, ... , r, we have the estimate

IA(a, b) 1:5 ba-b,i + r/N.

There are exactly N - III pairs (a, b) in [1, N12 with a - b = III, and these pairs
have N - III distinct values of a. Thus the matrix A has III columns in which
every entry is bounded in absolute value by r/N, and has N - III columns in
which one entry is bounded in absolute value by 1 + r/N and the other N - I
entries are each bounded in absolute value by r/N. Each of the Ill columns has
length at most r/Sqrt(N), and each of the N - Ill columns has length at most
Sgrt((I + r/N)2 + (N - 1) x (r/N)2) = Sgrt(1 + 2r/N + r2/N). So by the previous
Corollary AD.8.9.1, we have

I Jr,1,N(t9,TIN) I

< (rl/Nt/2) (1 + (2r + r2)/N)(N-I il)/2

< (ri/Ni/2)(1 + (2r + r2)/N)N/2
< (ri/Nt/2) exp(r + r2/2). QED for Proposition AD.8.8.

AD.9. End of the proof of Theorem AD.5.2

Let us recall its statement.

Theorem AD.5.2. For any integer r > 1, for any integer k > 1, for any
integer N > r, and for f any bounded, Borel measurable C-valued function on R"
with ]If lls,,p < 1 and with support contained in the set Supt I x(i)I < a, we have the
equality

Wr(f, Uk(N)) = W, (f, U(N)) if k > r,

and, more generally the estimate

I Wr(f, Uk(N)) - Wr(f, U(N))1 < 2[r/k](ar/r!)rrer+r'l2N-k/2,

where [r/k] denotes the largest integer < r/k.

PROOF. Fix r, k, and N. We have already seen that it suffices to treat the case
where the function f on lll;r is symmetric and supported in [0, N)T. Recall that we
defined the periodic function

fN,per(X) fN(x + 27rn),
ninZ'

in terms of which we have

Wr(f, U(N)) = Vr(fN,per, U(N)),
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and

Wr(f, Uk(N)) = Vr(fN,per, Uk(N)).

Thus we have

W,- (f, Uk(N)) - Wr(f, U(N)) = Vr(fN,per, Uk(N)) - Vr(fN,per, U(N)).

According to AD.8.7, we have, for any bounded, Borel measurable function F on
(S1)r,

F(19)Jr,O,N(t9) dt9Vr(F, U(N)) = (1/r!) kl)r

and

Vr(F, Uk(N)) = E (1/r!) j F(t9)Jr,tk,N(t9) dt9.
I in Z,Ilkl<r

S i)r

Thus we have

Wr(f, Uk(N)) - Wr(f, U(N))
= Vr(fN,per, Uk(N)) -Vr(fN,per, U(N))

(1/r!) fN,per(t9)Jr,tk,N(l) h9
I in Z,1<Ilkl<r JfS')r

E (1/r!) fN,per(x)Jr,tk,N(X) fl(dxi/27r).
i in Z,1<Ilkl<r 0,2a}r

Because f is supported in [0, N)r, for x in [0, 27r)r, we have the relation AD.5.2.4

fN,per(x) - fN(x) f(Nx/21r).

Thus we have

W,- (f, Uk(N)) - Wr(f, U(N))

fN(x)Jr,Ik,N(x) H(dxi/27r)E
(1/r!) 110,21r),

l in Z,1<4tkI<r

_ L (1/r!) 4,27r)r f (Nx/27r)Jr,Ik,N(x) fl(dxi/21r)
t in Z,1<Itkl<r

flo,N)'
F, (1/r!) f(

t in Z,1<I1kl<r

E (1/r!) f (x)(N-TJr,tk,N(27rx/N)) dx,
i in Z,1<Iikl<r ItOIN)-

where we write dx for standard Lebesgue measure on W.
Recall that by AD.8.8 we have

I[N-TJr,t,N(t9)I1sup < (rt/N1/2) exp(r + r2/2) if Ill
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Therefore for each l in Z with 1 < Ilkl < r, we have

(1/r!) J f(x)(N-TJr.lk,N(2?Tx/N))dx
(O,N)r

< (1/r!)(rlk/Nlk/2) exp(r + r2/2) f I f (x)I dx.
o,NY

For f satisfying IIf II9,,p <_ 1 and with support contained in the set Supt I x(i)I < a,
we have the trivial estimate

If (x)I dx < ar.I[0, N)r

So we find

I Wr(f, Uk(N)) - Wr(f, U(N))I

< E I (1/r!) f f (x)(N-rJr,1k,N(21rx/N)) dxI
1 in Z,1<jikI<r !O,N)r

< E (ar/r!) (rik/Nik/2) exp(r + r2/2)
1 in Z,1<jlkI<r

< 2[r/k] (ar/r!)(rr/Nk/2) exp(r + r2/2),

as required. QED

AD.10. Large N limits of the eigenvalue location measures
on the Uk(N)

AD.10.1. Fix an integer r > 1. Fix an offset vector c in Zr,

c = (c(1),...,c(r)), 1 < c(1) < c(2) < ... < c(r),

and denote by a in Zr the corresponding separation vector, cf. 1.0.5. Thus if we
denote by U in U the vector (1,1,...,1), we have

c=Off(l1+a).

For N > c(r), and G(N) either U(N) or Uk(N) for some k > 1, we have defined in
AD.3.1.1 the multi-eigenvalue location measure v(c, G(N)) on W. We have already
constructed the large N limit v(c) of the measures v(c, U(N)), first in 7.11.13 and
then again in AD.4.3.

Theorem AD.10.2. Notations as in AD.10.1 above, let f be a C-valued,
bounded Borel measurable function on R-. Suppose that the restriction of f to
(R>o)r(order) is of compact support. For each integer N > 1, pick an integer
kn, > 1. For any a > 0 in Zr, we have the large N limit formula

lim L f dv(Off (Il + a), UkN (N)) = f f dv(Off (A + a)).
N-oo r

PROOF. We reduce immediately to the case when f is real valued and every-
where > 0. For fixed N and each integer m > E(a) with m - E(a) odd, we have,
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by AD.3.5, the inequalities

(-1)b-aBinom(b,a)W(sepb, f, UkN(N))
b>a in Z'',E(b)<m

< fdv(Off(I+a),UkN(N))

E (_1)6-aBinom(b, a)W(sepb, f, UkN(N))
b>a in Z*,E(b)<m+1

Taking the lim sup and liminf over N, and using Widom's result AD.5.1, we find

(-1)b-a Binom(b, a) (urn W(sep b, f, U(N)))
N- oo

b>a in Z'',E(b)<m

f< liminf f dv(Off(1 + a), UkN(N))
N-.oo

r
< lim sup J f dv(Off (1 + a), UkN (N) )

N-oo

< E (.-1) b-a Binom(b, a) `Nlira W(sepb, f, U(N)) I.
b>a in Z'',E(b)<m+1

Now take the limit over integers m > E(a) with rn - E(a) odd. Using the fact
[AD.4.3 parts 1) and 2), or 7.11.13] that the series

l W (sep b, f, U(N))(-1) b-a Binom(b, a) (N-oc
b>a in Z' /

is absolutely

ffdv(Off(ll

convergent, with sum f dv(Off(I + a)), we get

+ a))
r

lim W(sep b, f, U(N)))E (-1)b-a Binom(b, a) (N-oc\
b>a in Z'r

< liminf J f dv(Off(1 +a), G(N))
N-.oo

< lim sup f f dv(Off (11 + a), G(N))
N-+oo f

b>a in Z'
(-1)b-a Binom(b, a) ` limo W(sep b, f, U(N)) ]

fdv(Off(1+a)). QED

Remark AD.10.3. Fix an integer r > 1 and an offset vector c in Z'. We
have shown above Cheat for any sequence of integers kN, the sequence of measures
v(c, UkN (N)), N > c(r), has as large N limit the measure v(c). According to
AD.4.4.1, the limit measure v(c), as well as its approximants v(c, U(N)), are abso-
lutely continuous on R' with respect to Lebesgue measure. However, it is not the
case that all of the measures v(c, Uk(N)) are absolutely continuous with respect to
Lebesgue measure. Indeed, if we take N = r and c the offset vector (1, 2, 3, ... , N)
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in ZN, then v(c, Uk(N)) is not absolutely continuous with respect to Lebesgue mea-
sure. To see this, recall that v(c,Uk(N)) is the direct image of Haar measure on
Uk(N) by the map

Uk(N) - [0, N) N(order) c R`N

which sends an element A to its N normalized angles, taken in increasing order.
This map induces a bijection from the space of conjugacy classes in Uk (N) to the
subset of [0, N)N(order) which is the disjoint union of its intersections with the Nk
hyperplanes of equation E xi = Nb/k f o r b = 0, 1, ... , Nk - 1. This image set has
Lebesgue measure zero in R', and yet its characteristic function has integral one
against v(c, Uk(N)).

It seems plausible that this example is the only one. If N > r, then for any
offset vector c in Z' with c(r) < N, the measure v(c, Uk(N)) should be absolutely
continuous with respect to Lebesgue measure. The intuition is this. If N > r,
then v(c, Uk(N)) depends only on the first r normalized angles. Because r < N,
these first r normalized angles do not yet "know" that all the normalized angles
are constrained to sum to (N/k) x (an integer), and so these angles "think" they
came from an element of U(N), and behave accordingly. Caveat emptor.

AD.11. Computation of the measures v(c)
via low-lying eigenvalues of Kloosterman sums
in oddly many variables in odd characteristic

AD.11.1. Recall from 11.10.4 that for each odd integer n > 3, and for each
finite field k of odd characteristic, we defined a probability measure U(n, k) on
SU(n)# by averaging over the unitarized Frobenius conjugacy classes attached to
all then variable Kloosterman sums over the field k. According to 11.1.0.5, for fixed
odd n > 3, in any sequence of finite fields ki of odd characteristic whose cardinalities
tend to infinity, the sequence of measures tc(n, ki) on SU(n)# converges weak * to
the measure p# on SU(n)# which is the direct image from SU(n) of normalized
Haar measure.

AD.11.2. Just as in 13.1.3, given an integer r > 1 and an offset vector c in
Z' with c(r) _< n, we have the map FF : SU(n)# . 1R defined by the normalized
angles named by c. The map is not continuous, but it is continuous on the open
set U of SU(n)# consisting of those elements A with det(A - 1) 0, cf. 1.8.5.
Thus we cannot a priori conclude that the sequence of measures (F,,)U(n,ki) on
R' tends weak * to (F,). p# := v(c, SU(N)). The problem is that if we start with a
continuous function f on R', the function f oFF on SU(n) # need not be continuous:
all we can say is that it is bounded (because f is bounded in [0, N}r, where FF takes
values), Borel measurable, and continuous on U. We also know that the closed
complement

Z:= {A in SU(n)# with det(A - 1) = 0}

of U has measure zero for k#.

Proposition AD.11.3. Let n > 3 be an odd integer, ki a sequence of finite
fields of odd characteristic whose cardinalities tend to infinity. Let r > 1, c an
offset vector in R' with c(r) < n. The sequence of measures (Fr) p(n, ki) on 1R'
tends weak * to v(c, SU(N)).
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PROOF. Let f be a continuous function on R. We must show that the function
f o F. on SU(n)# has f (f o FF) du* = limi f (f o F,,) du(n, ki). This results from
the following standard lemma, which we include for ease of reference, applied to
the space X = SU(n)# (see it as a metric space by the "characteristic polynomial"
embedding into the space of monic polynomials of degree n), the measure a#, the
sequence of measures {u(n, ki)}, the closed set

Z:= {A in SU(n)# with det(A - 1) = 0}

and the function f o F.

Lemma AD.11.4. Let X be a compact Hausdorff metric space, p a Borel
probability measure on X, and {pi}i a sequence of Bored probability measures on X
which tend weak * to u in the sense that for any continuous C-valued function f
on X, f f du = limi f f dpi. Suppose that Z C X is a closed set with u(Z) = 0.
For any bounded, Borel measurable C-valued function f on X which is continuous
at every point of X - Z, we have f f du = limi f f dE.I.i.

PROOF. We reduce first to the case when f has real values, then to the case
when f is nonnegative, then, remembering that f is bounded, to the case when f
has values in the closed interval [0, 1]. For every real e > 0, let us denote by

Z(< c) := {x in XI dist(x, Z) <

the closed e-neighborhood of Z, and by

Z(< 2e) :_ {x in X1 dist(x, Z) < 2E}

the open e-neighborhood of Z in X. By Urysohn, there exists a continuous function
0, on X with values in [0, 11 which is 1 on Z(<_ e) and which vanishes outside
Z(< 2E). The function f (1 - 0£) is continuous on all of X and has values in [0, 1].
The function fo, has values in [0, 11 and is supported in Z(< 2F). Thus

f = f(1 - 0E) + f Y'E.

We have f > f (1 -0.) pointwise, so

lim inf fi dpi > lim inf J
f (1 - V)E) dui = lim

J
f (1 - i&-) duz

= f f(1-',e)du= f fdu- f foEdu

f fdu- f i du,

I f du - k(Z(< 2e)).
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Meanwhile, f = f (1 - 0,) + f ii< f (1 - VE) + V)E pointwise, so

lim supIf dui < limisup J(f (1 - i£) + Ve) dµa

=lim J (f(1-0,7)+'Ye7)dAi

= f (f(1- E) +'GE) dt,

= J f dµ + j(1 - f)*E dp

< f f du. +f VYe dt,

f dp + IL (Z(< 2e)).

Thus we obtain

f f dp - Fi(Z(< e)) < liminf f f dlLi < lim sup f f d1L < f f dA+ µ(Z(< 2E)).
t i

Take now a sequence et of e's decreasing to zero. The sets Z(< 2Ei) have shrinking
intersection Z, with µ(Z) = 0, sou(Z(< 2E,)) --+ 0. QED

This concludes the proof of Proposition AD.11.3. By using it, together with
Theorem AD. 10.2, we get the following theorem, which does for v(c) what Theorems
13.8.4 and 13.8.5 did for v(-, c) and for v(+,c) respectively.

Theorem AD.11.5. Let r > 1 be an integer, c in 7G' an offset vector, and
f a continuous function on R' of compact support. We may compute the integral
fR, f dv(c) as follows. Pick a sequence of odd integers ni > 3, each > c(r) and
increasing to infinity. For each ni choose a sequence ki,j of finite fields whose
cardinalities are odd and increase to infinity. Then we have the double limit formula

f f dv(c) = lim lim f f d(Fc). y(nj, ki j).
r i j Rr

AD.12. A variant of the one-level scaling density

AD.12.1. Fix an integer N > 1. Given an element A in U(N), with angles

0 < <'(1)(A) < cp(2)(A) < ... < tp(N)(A) < 27r,

we define a real number W(n)(A) for all n in Z by writing n as j + IN with j in
[1, N] and setting

(AD.12.1.1) tp(j + IN)(A) := cp(j)(A) + 2irl.

We refer to the W(n) (A), n in Z, as being "all" the real angles of A.

AD.12.2. Given a bounded, Borel measurable C-valued function f (x) of com-
pact support on IR, we define

(AD.12.2.1) D(f, A, U(N)) f (Ncp(n)(A)/27r).
ninZ
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AD.12.3. Given a closed subgroup K of U(N), endowed with its normalized
Haar measure, and an element A in K, we define

(AD.12.3.1) D(f, A, K) := D(f, A, U(N)),

(AD.12.3.2) D(f, K) := L D(f, A, K) dA.

We will apply these definitions to the situations

Uk(N) C U(N),

USp(2N) C U(2N),

SO(2N + 1) C U(2N + 1),
SO(2N + 2) C U(2N + 2).

AD.12.4. More generally, given a left translate yK of such a K by an element
y in U(N) and an element A in yK, we endow yK with the left translate of Haar
measure on K, and define

(AD.12.4.1) D(f, A, yK) Dr(f, A, U(N)),

(f, yA; yK) dA.(AD.12.4.2) D(f, yK) :=
J

D(f, A, -yK) dA := L DrWe
will apply these definitions to the situations

0-(2N + 1) C U(2N + 1),
O_(2N+2) C U(2N+2).

AD.12.4.3. Our first task is to relate these quantities (AD.12.4.1,2) to the
quantities W1(f, A, G(N)) and W1(f, G(N)).

Lemma AD.12.5. Let N > 1 be an integer, f (x) a IC-valued, bounded, Borel
measurable function on R with support in (-N, N). Denote by f+ (x) and f_ (x)
the functions on ]R defined by

f (x) if x > 0,

10 if x < 0,

and

I
f (-x) if x > 0,

f- (x)
St 0 ifx<0.

1) For any A in U(N), denote by mult(1, A) the multiplicity of 1 as eigenvalue
of A. We have

D(f, A, U(N)) = Wl (f+, A, U(N)) + Wl (f _, A, U(N)) - mult(1, A) f (0).

la) If, for some integer k > 1, A lies in Uk(N), we have

D(f, A, Uk(N)) = Wl (f+, A, Uk (N)) + Wi (f _, A, Uk(N)) - mult(1, A) f (0).

2) For any A in USp(2N), we have

D(f, A, USp(2N)) = Wi(f+, A, USp(2N)) + Wi(f-, A, Uk(N)).

3) For any A in SO(2N), we have

D(f, A, SO(2N)) = Wl (f+., A, SO(2N)) + Wl (f_, A, SO(2N)).
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4) For any A in O_ (2N + 1), we have

D(f,A,O_(2N+1)) = Wl(f+, A,O_(2N+ 1))+Wl(f_,A,O_(2N+)).
5) For any A in SO(2N + 1), we have

D(f, A, SO(2N + 1)) = W1(f+, A, SO(2N + 1)) +W1(f_,A, SO(2N + 1)) + f (0).

6) For any A in O_ (2N + 2), we have

D(f, A, O_(2N + 2)) = W, (f+, A, 0- (2N + 2)) + W, (f-, A, O_(2N + 2)) + f (0).

PROOF. In the U(N) case, the fact that f is supported in the open interval
(-N, N) means that in D(f, A, U(N)) only the angles Ip(n) (A) which lie in the
open interval (-27r, 27r) occur in the sum. These are the angles p(j)(A) with
j = 1, ... , N, together with the angles - o(j)(A) with j = 1, ... , N, except that we
have counted doubly all instances of the angle 0. Similarly for the Uk(N) case.

If G(N) is USp(2N) or SO(2N), the fact that f is supported in the open
interval (-N, N) means that in D(f, A, G(N)) only the angles cp(n) (A) which lie
in (-ir, 7r) can contribute. These angles are among the 2N angles fcp(j)(A) for

In the SO(2N + 1) case, every element A has an eigenvalue 1. The fact
that f is supported in the open interval (-N, N), and hence in the open interval
(-N - 1/2, N + 1/2) means that in D(f, A, SO(2N + 1)) only the angles cp(n)(A)
which lie in the open interval (-7r, 7r) can contribute. These are among the 2N
angles ±Ip(j)(A) for j = 1, ... , N, together with the angle 0.

In the O_(2N + 1) case, every element A has eigenvalue -1. The fact that f
is supported in the open interval (-N, N), hence in (-N - 1/2, N + 1/2), means
that in D(f, A, O_ (2N + 1)) only the angles p(n)(A) which lie in the open interval
(-7r, 7r) can contribute. These are among the 2N angles ±p(j)(A) for j = 1, ... , N:
the eigenvalue -1 of A cannot contribute.

In the O_(2N + 2) case, every element has eigenvalue f1. The fact that f is
supported in the open interval (-N, N), hence in the open interval (-N-1, N+1),
means that in D(f, A, O_ (2N + 2)) only the angles W(n) (A) which lie in the open
interval (-7r, 7r) can contribute. These are among the 2N angles ±p(j)(A) for
j = 1, ... , N together with the angle 0: the eigenvalue -1 of A cannot contribute.
QED

Integrating the previous result over G(N), and remembering that in the case of
U(N) and Uk(N) the set of elements A which admit 1 as an eigenvalue has measure
zero, we find

Corollary AD.12.5.1. Let N > 1 be an integer, f (x) a C-valued, bounded,
Borel measurable function on III with support in the open interval (-N, N). Denote
by f+ (x) and f_ (x) the functions on III defined by

f+(x) := f (X) if x > 0,

to if x < 0,

and

J f (-x) if x > 0,
f-(x) :_

0 ifx<0.
1) D(f, U(N)) = W1(f+, U(N)) + Wl(f-, U(N))
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la) D(f, Uk(N)) = W, (f+, Uk(N)) + W, (f-, Uk(N)).
2) D(f, USp(2N)) = W1(f+, USp(2N)) + W, (f-, Uk.(N))
3) D(f, SO(2N)) = W1(f+, SO(2N)) + W1(f_, SO(2N)).
4) D(f,0_(2N+1)) =W1(f+,0_(2N+1))+ui(f_,O_(2N+1)).
5) D (f, SO (2N + 1)) =W1(f+,SO(2N+1))+W1(f_,SO(2N+1))+f(0).
6) D(f. O_ (2N + 2)) = W, (f+, O_ (2N + 2)) + W, (f-, O_ (2N + 2)) + f (0).

Corollary AD.12.5.2. Let N > 1 be an integer, f (x) a C-valued bounded,
Borel measurable function on ]R with support in the open interval (-N, N). In
terms of SN(x) := sin(Nx/2)/ sin(x/2) we have the following explicit formulas:

1) D(f, U(N)) = f f (x) dx.
1a) D(f, Uk(N)) = ff f (x) dx if k > 2.

lb) D(f, SU(N)) = ff f (x)(1 + (2/N) cos(x/27r)) dx.
2) D(f, USp(2N)) = fR f (x)(1 + 1/2N - S2N+1(47rx/2N)/2N)) dx.
3) D(f, SO(2N)) = ff f (x)(1 - 1/2N + S2N-1(4-7rx/2N)/2N) dx.
4) D(f, 0- (2N + 1))

= ff f (x)(1 - 1/(2N + 1) + S2N(47rx/(2N + 1))/(2N + 1)) dx.
5) D(f, SO(2N + 1))

= f(0)+ f(x)(1-1/(2N+1)-S2N(47rx/(2N+1))/(2N+1))dx.
6) D(f, O_(2N + 2))

= f(0)+fRf(x)(1-1/(2N+2)-S2N+l(47rx/(2N+2))/(2N+2))dx,
7) D(f, O(2N + 2)) (1/2) f (0) + fR f (x)(1 - 1/(2N + 2)) dx.

8) D(f, O(2N + 1)) _ (112)f (0) + fR f (x)(1 - 1/(2N + 1)) dx.

PROOF. For the U(N) case, apply AD.5.2.4 and AD.6.2.2 to f f, both of which
are supported in [0, N), and then apply AD.8,7.1 to get

D(f, U(N)) = W1 (f+, U(N)) + W, (f-, U(N))
= Vl((f+)N,,per, U(N)) + Vl((f-)N,Per, U(N))

= (N/27r) r f+(Nx/27r) dx + (N/27r) J f- (Nx/27r) dx
[0,2r] [0:2r]]

= i f +(x)dx+ f f_(x)dx=J f(x)dxf f(x)dx.
o,,v] ]0,N] [-N,N] 1@

The Uk(N) case with k > 2 results from la) of the previous result AD.12.5.1. The
U1(N) = SU(N) case results from AD.5.2.4 and AD.6.2.4 applied to ft, together
with AD.8.7,1.

For the cases 2) through 6), we use AD.12.5.1 together with AD.2.5 in the case
r = 1, applied to both of f±, according to which

W1(f, G(N)) = f f (x)W1,G(N) (x) dx,
[0, N+a]

where

W1;G(N) (x) := (1/(N + A))LN(alrx/(N + A), a7rx/(N + A)),

LN(X, y) denoting the LN kernel for G(N). The calculations, entirely routine, are
left to the reader. Case 7) results from averaging the results of cases 3) and 6), and
case 8) results from averaging the results of cases 4) and 5). QED
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Taking the large N limit in the previous result, we find the following theorem.

Theorem AD.12.6. Let f (x) be a C-valued, bounded, Borel measurable func-
tion on R with compact support. We have the following large N limit formulas:

1) limN.oo D(f, U(N)) = fa f (x) dx.
la) limN.. D(f, Uk(N)) = f f (x) dx for all k > 1.
2) lim,v. D(f, USp(2N)) = fR f (x)(1 - sin(27rx) /27rx) dx.
3) limN. D(f, SO(2N)) = ff f (x)(1 + sin(27rx)/27rx) dx.
4) lim,v. D(f, D_ (2N + 1)) = fR f (x)(1 + sin(21rx)/27rx) dx.
5) limN_,,, D(f, SO (2N + 1)) = f (0) + fp, f (x)(1 - sin(27rx)/27rx) dx.
6) limN.. D(f, D_ (2N + 2)) = f (0) + fR f (x)(1 - sin(27rx)/27rx) dx.
7) 1imND(f, 0(2N)) = (1/2) f (0) + ff f (x) dx.
8) limND(f, 0(2N + 1)) = (1/2) f (0) + ff f (x) dx.

Equivalently, we have

nl im D(f, G(N)) = f f (x)Dc(x) dx,-oc
where

Du (x) = DU,. (x) --- 1,

Dus (x) = 1 - sin(27rx)/27rx

DSO(even) (x) = Do_ (odd) (x) = 1 + sin(27rx)/27rx

Dso(odd)(x) = Do_(everz)(x) = So(x) + 1 - sin(27rx)/27rx,

Do(x) = (1/2)60(x) + 1.
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Appendix: Graphs

AG.O. How the graphs were drawn, and what they show

AG.0.1. The CDF's of the one-variable measures v(b) and v(±, b), b > 1,
on I[8>o can (by 7.5.5) all be computed from the Fredholm determinants E(T, s)
and E+(T, s), and hence (by 7.9.4) from the eigenvalues .1i (s) and the parities
of the eigenfunctions V7,5(x), j = 0, 1, 2, ... of the integral operator K3. The
eigenfunctions are known to be prolate spheroidal functions, cf. [Slep-Pol] and
[Fuchs], a fact already exploited by Gaudin [Gaudin]. It is a remarkable fact, due
to Slepian and Pollak (Slep-Pol], that the eigenvalues of K3 are all distinct, and
that when they are arranged in decreasing order

1 > )'o(s) > .\1(s) > A2(S) > \3(s) > .4(s) > ... > 0

it is the eigenvalues of even index A2? (s) which have an even eigenfunction, and
those of odd index .2j+1(s) which have an odd eigenfunction.

AG.O.2. The eigenvalues )3 (s) for 0 < j < 20 and 0 < s < 4 were computed
numerically by Steve Miller and Peter Doyle independently, both using the com-
puter program of Van Buren [VB] as modified by Lloyd and Odlyzko. Using their
data, Michael Rubinstein computed numerically the CDF's. He then computed, by
numerical differentiation (cf. [Fuchs, Lemma 1, page 321] for another approach)
the densities of v(1), v(-, 1) and v(+, 1), which are displayed in Figures 2 to 4. The
density of go := p,(univ, sep. 0) is (by 7.6.4) minus the derivative of the density
of v(1), but the graph of the density of loo shown in Figure 1 was not calculated
this way, but rather plotted from data kindly provided by Odlyzko (cf. [Odl-Distr,
Section 6]), who used [Mehta-Des Cloiz, 2.34].

AG.O.3. The power series of these densities at s = 0 can be computed from
the power series of Eo(s) and of E+,o(s) at s = 0. Thanks to 7.2.2 and 7.3.5.2, these
in turn can be computed to any desired order, say mod sl+l, by computing E(T, s)
and E± (T, s) mod (T1+1, s1+1), which amounts to computing the multiple integrals
e, (s) and e+,,, (s) mod s1+1 for 1 < n < 1. Mehta [Mehta-PS) uses a more efficient
method and gives many more terms. [Our Eo(s) is his E(0, s), but our E±,o(s) is
his E+(0, 2s).] We have

Eo(s) = 1 - s + (7r2/36)s4 - (ir4/675)s6 + 0(s8),

E+,o(s) = 1 - 2s + (27r2/9)s3 - (27r4/75)s5 + (64ir4/8100)S6 + O(s7),

E_,o(s) = 1 - (27r2/9)s3 + (27r4 /75),s" +0(87).

AG.O.4. The density of go is (d/ds)2Eo(s) = (7r2/3)s2 - (2ir4/45)s4 + ,

and is displayed in Figure 1. The second order vanishing at s = 0 is often referred to
as the "quadratic repulsion" between eigenvalues in GUE. The tail of go as s -} oo

411
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is O(e-s2/8), as was shown in 6.13.4. The "unitary Wigner surmise" is the unique
probability measure on R>o of mean 1 (recall from 7.5.15 that p,o has mean 1) of the
form As2e-$52 ds. This forces A to be 32/7x2 and B to be 4/7r. Its density is also
displayed in Figure 1. The third density displayed in Figure 1 is that of the resealing
v(-,1) of v(-,1) which has mean 1, i.e., if we denote a f s dv(-,1) - 0.782,
then v(-. 1) is the measure on III>o defined by

J
f (s) dU(-, 1) := ff(s/a)dv(_,i).

That these three densities are so near each other is a remarkable coincidence, and
a source of possible confusion in interpreting numerical data. [They are in fact all
distinct, as one sees from comparing their power series at s = 0.]

AG.0.5. The density of v(-, 1), the large N limit of the measures

v(1, USp(2N)),

is shown in Figure 2. Its series expansion at s = 0 is

(-d/ds)E-,o(s) = (27r2/3)s2 - (27r4/15)s4 +

The second order zero at s = 0 shows that the eigenvalues of elements in USp(2N)
for large N tend to repel (quadratically) the point 1. There is no such repulsion
for v(1, SO(2N)) or for v(1, U(N)), whose large N limits, v(+, 1) and v(1)., have
densities 2 + O(s2) and 1+0(33 ) respectively.

AG.O.6. The densities of v(+, 1) and v(1) are displayed in Figures 3 and 4.
The mean of v(+, 1) is 0.321..., while that of v(1) is 0.590... .
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FIGURE 1. Densities of uo, i (-, 1), and the unitary Wigner surmise
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FIGURE 2. Density of v(-, 1)
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FIGURE 3. Density of v(+,1)
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FIGURE 4. Density of v(1)
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ade, 269
ak, 328, 330, 346, 348

/3, 78, 84

7E,j, 13
ryK,j, 13, 14
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52, 101

e, 121, 160

6(C/Fq), 4, 5
?9 (k, ak, Xk), 331
i9(n), 163-164, 176, 195, 257, 373
99(z), 319
t9y,q, 353
t9n, 351

A, 121, 160
A, 275

A, 31, 74, 75, 78, 82, 89, 113, 115
p(A, K), 2
p(A, K, p, offsets c), 23
p(A, N), 75, 82, 89
p(A, U(N)), 2
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p(A, U(N), steps b), 19
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p(intrin, g, prin, k, ak), 330
p(K), 3
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p(k, s), 289
p(k, s, a, ), 286
p(N), 82
p(n, k), 348, 403
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1L(n, N), 110, 113-116, 121, 144
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p(naive, A, O(N), steps b), 37
p(naive, g, k, ak), 364
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p(naive, G(N), offsetsc), 37
p(naive, univ, offsets c), 37-38
p(O_ (2N + 2)), 108
p(P), 20
p(Poisson), 9
p(SO(2N)), 108
p(SO(2N + 1)), 108
p(U(N)), 107, 113
p(univ), 2, 3
p(univ, offsets c), 24
p(univ,sep.'sa), 197
p(USp(2N)), 107
0, 351
p#, 361
p_ (n, N), 122
pa, 411
AHaar, 5
p;,,y, 74, 75, 78
pg,q,lntrln(A/IFq,O), 355
pg,q,intrin(C/Fz), 354
pg,q,naive(C/Fq), 353

361
y, 362

v(+, j), 10
L,(-,j), 10
v(c, G(N)), 176, 195, 257, 364, 380
v(j), 10

v(n, G(N)), 10, 164
LG(.f,7'), 383

177, 181

trl(X,C), 267
7rgeom (X ,f)) 2681

naff, 293

p, 23, 121, 160

a, 121, 160; 311

T, 121, 161

cp,p(A),v(j), 10, 17, 35-37, 54-57, 74, 78,
175,195,373-375,405
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cc(j+IN)(A), 405 E(T, s, 0(N)), 260
o -discrep(vl, v2), 75, 79 E(T, s, t, G(N)), 252
cOn, 109, 113-115 E_ (n, F, N, G(N)), 130
cbn, 388 E_ (Z [n, F, G(N)]), 127, 130

388 E (N, T, s), 158, 159
E± (T, s), 211

X 3627, E±,,, (3), 212
282Xl , (N, a), 159

WC/S, PC/Sl 307
f2S (log D) 0S (1og D) 335

E±,w(s), 261
E±,w(s,t), 256

Ik , ,/ En, 14

3K structure 308
E, (N, s), 159

, En(s), 212

a, a(i), 18, 46, 50 En(s,G(N)), 260
A, 2 6.,+, 14

A(a, b), 399 Esign(e),n(s), 215
[a, b] N (ordered), 32 Ew(s), 260
[-a, b+ 1], 177 Ew(s,G(N)), 260
Abg,prin(F'q), 355 Ew(s,1), 256
Abg print, 329 Ew(s,t,G(N)), 256

3Le 323prlncAbg eigen(n,Z,G(N)), 147-148, 160, 249
,,

Aut^IS, 307 Eigen(n, T, G(N)), 147-148,160,248
eigen(n, s, G(N)), 160, 258

b, b(i), 18 Eigen(n, s, G(N)), 160, 258
Bn, 271

t, G(N)), 252 f±(x), 406
F(-n), 269

c, c(j), 18, 46, 50, 192, 378, 401 Fin, N], 53, 103, 110, 122, 153
C/Fq, 1 F(T, a), 225
Caff, 293 F(x), 178
Cuff, 293 F ade8 269
Card(y), 288 Ff (T, s), 225
CDF,, 2, 20, 189 Fc(19(k, ak, C/k)), 364
Clump(a)(E), 50 fG(N)[r,NJ, 375
Clump(a, f), 50 Fj, 245
Clump(a, f, N, X), 50, 51 Fk, 267
Clump(a)(s), 43, 46 Fk,, 268
Cor(a, f, G(N), A), 54-57 Fn, 169,176
COR(a, f, G(N)), 57 Fq, 1

IIFIIeup, 101
dA, 2, 38, 147
D(f,A,K), 406

Fermat(q + 1)/Fq, 8

D(f, A, yK), 406 g, 1
D(f,K), 406 G1(T,s), 208
D(f,yK), 406 G;", 78
D(f, A, U(N)), 405 Ggeo,n, 269, 275
D(n, N), 110, 144 n, 283
deg(x), 271 GN(x,y), 152, 154
DerD(S/k), 335 Gq (0, x2), 7
det(1 + TK), Fredholm determinant, 141,

142, 234, 245 H,'(X ®k k,(01), 271
Diff(y)(i), 185
discrep(L, µ), 3, 20
Domain(c, s), 199

E(f), 104
E(n, F, univ), 127
E(N, T, a), 156, 159
E(T, s), 210

H' (X ®k 01)(i/2), 271
?id, 300
7{d, 300
'1d(k), 300
HaarK, 23, 25
Hs.ar0_(2N+2), 36

I(a), 101
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T(a, t), 248
1(t), 297
Ir,k,N,n (19, T), 390
Ir,N,n(19,T), 390
Int(a, f, G(N). A), 54-57, 82
INT(a, f,G(N)), 57, 82
INT(a, f, univ) 82
Intrin Card(Abg,pr;n(Fq)), 355
Intrin Card (Mg,prin (k)), 330
Intrin Card(Iso 7{n,d(k)), 347
Intrin Card(Mg (Fq), 354
Intrin Card(Mg(k)),316
Iso 7{,,d, 346
Iso 7-(n,d,±(k), 368

J/S, 305
Jr,I,N(i9), 394
Jr,I,N('i9,T), 394
Jr,I,N,n(t9), 394
Jr,l,N,n(t9,T), 394

K, 2. 23
K(x, y), 210, 374
K#, 5, 329, 351
K±(x,y), 211, 374
K±,N e, 156, 213
(Karith,y)#, 288
Kc, 312
KN(x,y), 110, 113-115, 142, 144, 149
KN,,, 157

Kiv,a,a, 156, 213
KIn(i,,aEFQ),6
Kln(k, 348

L, 178
L2(J,dfa), 248
LN(x,y), 116-121, 160
LN,±(2,V), 121

M9(Fq), 3, 353
M9(S), 304
Mg,3K, 13, 308
Mg,3K,aut«, 313
M9, p, 305

80, 87
multipa, 284

Nn, 271
Nr (X/k), 271

O±(prim(n,d))#, 368
Off, 185
Off µ, 185
Off g(U(N), offsets c), 186
[offset c], 378
order(X), 51

P(T), 1, 9
PN,c, 32
PN,Z, 32

NOTATION INDEX

pr, 293
Prim", 333
Proj Aut(X/S), 335
Proj Autxn aIN .,a, 335

Epi(-i/2), 273
269

R(s), 189
R(x, cp), 78
kt (ordered), 51, 376

Rmax, 79, 84
rev, 39
rev v, 39

s'(R'7r1Q!), 273
S, Si, 78
S±,N(x,y), 156, 212
si, 9, 17, 30, 179, 183
s= (naive, offsets c), 35-37
s;(offsetsc), 18
si (separations b), 19
si(stepsb), 19
Si, 179
SN (x), 118, 153
SN(x,y), 156, 212
atrunc, 260
(sepa], 379
Sep(a)(E), 50
Sep(a, f), 50
Sep(a, f, N. X), 50, 51
Sep(a)(s), 43, 46
[sep a], 379
SuccMax(s), 259
SuccMln(a), 259
SuccSub, 177
Sum[b], 65
SU(n)#, 403

T(n), 101
Tu(n), 101
T, 53
T(s), 189
Tail,(s), 164, 190
TClump(k, a, f, N, X), 54
TCor(k, a, f, G(N), A), 54-57
TCOR(k, a, f, G(N)), 57
TCOR(k, a, f, univ), 73
Teich(x)(x), 285

Uk(N), 373
USp(2g)#, 5, 329

V K , 288
Vr(A, U(N)), 387
Vr(A,Uk(N)), 387
Vr(F, A, U(N)), 386, 388
Vr(F, A. Uk(N)), 386
Vr(F, UN), 386
Vr(F, Uk(N)), 386
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Vr(U(N)), 387
Vr(Uk(N)), 387
Vandermonde(f (1), ... , f (N)), 109
Var, 104, 133

W (n, N), 126
W(n)(x(1),... ,x(n)), 124
W (sepa, f, A, G(N)), 379-380
W(sepa,G(N)), 379
WG(f,T), 382-383
Wr(f,A,G(N)), 373, 374
Wr(f,G(N)), 373, 374
WW(x(l),... 374
Wr,t(x(1),... ,x(r)), 374
Wr,G(N)(x), 377

a, 267
X, 42, 45, 49, 50
X (A), 54-57, 107-108
Xo(!), 8
X, , 283
X,,,..1, 362

Z[a, b], 32
Z(C/Fq,T), 1
Z[n, F, G(N)J, 103, 122
Zeta(X/k, T), 271
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Subject Index

3K structure, 307, 308

abelian varieties,
principally polarized, 324-328

angles, 17, 35-37, 55-57, 163, 175, 195, 373-
374, 405

normalized, 163, 176, 195, 257, 364, 373
approximate identity, 388
Artin-Schreier curves, 301

bi-bounded, see also bounded distortion
Cl-diffeomorphism, 30
homeomorphism, 74, 75, 78, 98

Birch & Swinnerton-Dyer Conjecture, 15
bounded distortion, see bi-bounded

C1-diffeomorphism of, 30
C1 partial coordinate system of, 30

characteristic polynomial (reversed), 141
Chebyshev's lemma, 59
compact support modulo the diagonal, 101
"correlation" (Cor), 54
cumulative distribution function,

of a Borel measure, 20
of µ(univ, sep.'s n), 204

curves
Artin-Schreier, see Artin-Schreier curves
elliptic, see elliptic curve
hyperelliptic, see hyperelliptic curve

"cutoff", 77

degree,
of a closed point, 271

Deligne's equidistribution theorem, 275, 276,
287

Density Lemma, 264
determinant,

Fredholm, 142, 211, 235
spectral, 142, 211, 234
Vandermonde, 109

determinant-trace inequality, 156
direct image properties (of spacing measures),

65-71
Dirichlet L-function, see L-function, Dirich-

let
discrepancy, -discrepancy (of two measures),

see measure, discrepancy

distribution function, see cumulative distri-
bution function

eigenvalue, Frobenius, see Frobenius eigen-
value

eigenvalue location measure, see measure,

eigenvalue location
elliptic curve, 14, 280, 326, 341
embedding, Segre, see Segre embedding
equidistribution theorem, see

Deligne's equidistribution theorem
Euler-Poincare formula, 296
everywhere tame, 296
expected value (of a measure), see measure,

expected value

Fermat curve, 8
finite rank, operator, see operator of finite

rank
Fredholm determinant, see determinant, Fred-

holm
Ftobenius

conjugacy class, 5, 268
unitarized, 5

eigenvalue distribution in families
of abelian varieties, 365-366
of curves, 364-365
of hypersurfaces, 366, 368-369
of Kloosterman sums, 367

geometric, see geometric Frobenius
fundamental group (geometric), 268

Gauss' integral formula, 99
Gauss sum, 7
genus, 304
geometric

Frobenius, 267
fundamental group, see fundamental group

(geometric)
generic fibre, 283
monodromy group, see monodromy group
point, 267

grid diameter, 78, 85
grid discrepancy, M-cp-, 80
grid points, 78

finite, 78
"grid size", 77
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"group size", 77
GUE measure, see measure, GUE
GUE discrepancy in families, 352

of abelian varieties, 355
of curves, 353
of hypersurfaces, 356
of Kloosterman sums, 358

SUBJECT INDEX

Hadamard's lemma, 398
Heine's formula, 391
hyperelliptic curve, 7, 13, 293, 300, 302, 311,

320, 365
hyperelliptic probability measure, see mea-

sure, hyperelliptic probability

inertia group, 297
"integral" (Int), 54
intersection multiplicity, 305

Kloosterman sum, 6, 348
Kolmogoroff-Smirnov discrepancy, see mean

sure, discrepancy

L-function,
Dirichlet, 13

Lebesgue-Stieltjes positivity condition, 191
Lefschetz pencils, 312
level n structure, 305
limit lemma, 191
lisse sheaf, see sheaf, lisse
literal spacings, see vector, of spacings, lit-

eral
low lying zeros, see zeros, low lying

mass formula, 309, 314, 329, 346
measure,

calculate strongly, 12
calculate weakly, 12
classical spacing, 208
discrepancy, 3, 20

o-discrepancy, 75, 79
eigemalue location, 378-381
expected value of, 37, 57
exponential decay, 221
CUE, 1, 2
hyperelliptic probability, 321
intrinsic probability,

on USp(2g)#, 316, 330
multi-eigenvalue location, 176
naive probability, 329
Poisson, 9
spacing, 23

moments of offset, 194-195
offset, 185-189

static spacing, 177, 181
tail of, 189-192
universal probability, 24
Wigner, 2

modular curve, 8
rnoduli problem, 324-327

Moebius inversion relation, 192
monodromy group, 283
monodromy of families, 293

of curves of genus g > 2, 304-307
of hyperelliptic curves, 320-321
of hypersurfaces, 331-334
of Kloosterman sums, 347-349
of principally polarized abelian varieties,

323-324
Montgomery-Odlyzko law, 1, 3
Mordell-Weii group, 15
multi-eigenvalue location measure, see mean

sure, multi-eigenvalue location

naive probability measure, see measure, naive
probability

naive spacings, see vector, of spacings, naive
normalized

normalized spacings, see vector, of spacings,
normalized

offsets, see vector, of offset
operators,

of finite rank, 141
integral, 141-143

"order" map, 51

Poisson distribution, 9
Poisson measure, see measure, Poisson
polynomial, characteristic, see characteristic

polynomial
positive trace class, 234
principal polarization

of A/S, 323
isomorphism classes, 355

principally polarized abelian varities, see abelian
varieties, principally polarized

projective automorphism, 335
pure (lisse sheaf), 268

rectangle, W-,
marked, 78
semi-finite, 74, 78
semi-infinite, 74, 78

"reversing" map, 39
Riemann hypothesis

for abelian varieties, 329
for C/k, 315
for curves over finite fields, 1, 295,
for L(s, XK), 13
for Yz = f(X), 299

Sato-Tate conjecture, 7
for X0(t), 8, 9

scaling limits, 212-215, 251-263, 385
Segre embedding, 332
Serre's lemma, 325
sheaf, 268

lisse, 268
sine ratios, 118-120
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spacing measure, see measure, spacing
spacing vector see vector, of spacings
spacings,

literal, 17
normalized, 2, 17, 30, 183

Tail estimate, 174, 175
Tail integration lemma, 170
tame, see everywhere tame
Teichmuller decomposition, 285
"total correlation" (TCor), 54

universal probability measure, see measure,
universal probability

Vandermonde determinant, see determinant,
Vandermonde

varieties, see abelian varieties
vector,

of offsets, 18, 46, 50, 186, 192, 195, 378,
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of separations, 18, 46, 50, 186
of spacings,

literal, 18
naive normalized, 35-37
normalized, 18

of steps, 18, 186
Witt, 344

Weyl integration formulas, 107-109
explicit, via Sly, 120-121
KN (x, y) versions, 109-116

Widom's theorem, 385
Wigner measure, see measure, Wigner
Wigner surmise (unitary), 412

zeros,
low lying, 9

of elliptic curves, 14
of Dirichlet L-series, 13

zeta function,
of A/k, 329, 355
of C/FQ, 1, 4, 306, 331, 353
of C/k, 315
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