Exponential Sums and Finite Groups

Nicholas M. Katz

Princeton University

Princeton, June 8, 2021

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ●

It is a great pleasure to be here, albeit virtually, to honor Luc Illusie, whom I have known and admired for the past half century.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

This is a a report on joint work with Pham Huu Tiep and Antonio Rojas Léon.

Abhyankar's insight

For C/\mathbb{C} a compact Riemann surface of genus g and $S \subset C$ a finite set of points, we have known for at least 90 years that its fundamental group $\pi_1(C \setminus S)$ is a free group on 2g + #S - 1 generators. Hence the finite quotient groups G of $\pi_1(C \setminus S)$ are those finite groups generatable by 2g + #S - 1 elements.

Now consider the same situation with \mathbb{C} replaced by an algebraically closed field of characteristic p > 0.

For a finite group *G*, denote by $G_p \lhd G$ the normal subgroup generated by its *p*-Sylow subgroups.

Abhyankar had the insight that the finite groups *G* which were quotients of $\pi_1(C \setminus S)$ should be precisely those such that G/G_p was generatable by 2g + #S - 1 elements.

In particular, for \mathbb{A}^1 , precisely those *G*'s with $G = G_p$, and for \mathbb{G}_m those *G* with G/G_p cyclic.

This was proven by Raynaud for \mathbb{A}^1 and extended to the general case by Harbater and also by Pop.

Suppose we are given a finite group *G* which can occur in characteristic *p* on $C \setminus S$, together with a faithful (complex) representation ρ of *G*.

Because *G* is finite, there is always some number field *K* such that the image of ρ lands in $\operatorname{GL}_n(K)$. If we now choose a prime number ℓ and an embedding of *K* into $\overline{\mathbb{Q}_\ell}$, we can view ρ as a representation $\rho : G \to \operatorname{GL}_n(\overline{\mathbb{Q}_\ell})$.

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ●

Since *G* is a quotient of $C \setminus S$, we can compose

$$\pi_1(\mathcal{C} \setminus \mathcal{S}) \twoheadrightarrow \mathcal{G} \to \mathrm{GL}_n(\overline{\mathbb{Q}_\ell}),$$

to get a continuous ℓ -adic representation of $\pi_1(C \setminus S)$, i.e., an ℓ -adic *local system* of rank *n* on $C \setminus S$, whose image is the finite group *G*.

In the paragraph above, ℓ could have been any prime. But in order to apply the rich theory of ℓ -adic cohomology, we will always choose $\ell \neq p$, and our local systems will be ℓ -adic ones.

Working backwards, in three steps, from local systems to groups

In practice, our $C \setminus S$ comes from a $C_0 \setminus S_0$ over a finite extension field \mathbb{F}_q of \mathbb{F}_p , and we look at a geometrically irreducible local system \mathcal{H}_0 on $C_0 \setminus S_0$ which is pure of some weight $w \ge 0$. We will know (in the sense of "have a formula for") the trace function of \mathcal{H}_0 : for each finite extension E/k, and each point $x \in (C_0 \setminus S_0)(E)$, we will know Trace($Frob_{x,E}|\mathcal{H}_0$). In all cases we consider below, this trace will lie in the cyclotomic integer ring $\mathbb{Z}[\zeta_p, \zeta_{q-1}]$.

Then det(\mathcal{H}_0) is geometrically of finite order, so by an α^{-deg} twist we may reduce to the case when det($\mathcal{H}_0 \otimes \alpha^{-deg}$) is arithmetically of finite order. In favorable cases, we can take $\alpha = \sqrt{q}^w$; then the Tate-twisted $\mathcal{H}_0(w/2)$ is both pure of weight zero and has determinant of arithmetically finite order.

Suppose we are in this favorable case where we can take $\alpha = \sqrt{q}^{w}$.

We have both G_{geom} , the Zariski closure in the ambient GL_n of the image of (the geometric monodromy of) $\mathcal{H}_0(w/2)$, and the larger group G_{arith} , the Zariski closure for the arithmetic monodromy of $\mathcal{H}_0(w/2)$.

By Grothendieck's global version of his local monodromy theorem, G_{geom} is a semisimple algebraic group over $\overline{\mathbb{Q}_{\ell}}$. In general we have $G_{\text{geom}} \lhd G_{\text{arith}}$. It is easy to see that G_{geom} is finite if and only if G_{arith} is finite.

◆□ > ◆□ > ◆三 > ◆三 > ・三 ・ のへで

By purity, one further knows that G_{arith} is finite if and only if for every finite extension E/\mathbb{F}_q , and every point $x \in (C_0 \setminus S_0)(E)$, the Frobenius trace $\text{Trace}(Frob_{x,E}|\mathcal{H}_0(w/2))$ is an algebraic integer.

This trace is, by definition of the Tate-twist,

$$(1/\sqrt{\#E}^{w})$$
Trace(*Frob*_{x,E}| \mathcal{H}_0).

Its only possible nonintegrality comes from the division of a cyclotomic integer by a power of \sqrt{q} . Concretely, then, the criterion for finitenes of G_{arith} is that for each *p*-adic ord_{*p*} on the field $\mathbb{Q}(\zeta_p, \zeta_{q-1})$, each finite extension E/\mathbb{F}_q , and every point $x \in (C_0 \setminus S_0)(E)$, we have

$$\operatorname{ord}_{\rho}(\operatorname{Trace}(\operatorname{Frob}_{x,E}|\mathcal{H}_0)) \geq \operatorname{ord}_{\rho}(\sqrt{\#E}^w).$$

Step 1: find "interesting" local systems \mathcal{H}_0 as inputs.

Step 2: for each, either prove G_{arith} is finite, or prove that it is not finite.

Step 3: if G_{arith} is finite, determine G_{geom} and G_{arith} . If G_{arith} is not finite, determine G_{geom} and G_{arith} .

Three examples of interesting irreducible local systems on open curves over \mathbb{F}_q

```
Ambient setting: \psi and \chi:
```

 ψ is a nontrivial additive character of \mathbb{F}_p (viewed as having values in $\overline{\mathbb{Q}_{\ell}}$); leads to Artin-Schreier sheaf \mathcal{L}_{ψ} on $\mathbb{A}^1/\mathbb{F}_p$. Trace at points of k/\mathbb{F}_p by composition with $\operatorname{Trace}_{k/\mathbb{F}_p}$.

 χ is a (possibly trivial) character of \mathbb{F}_q^{\times} (viewed as having values in $\overline{\mathbb{Q}_\ell}$); leads to Kummer sheaf \mathcal{L}_{χ} on $\mathbb{G}_m/\mathbb{F}_q$. Trace at points of k^{\times} for k/\mathbb{F}_q by composition with $\operatorname{Norm}_{k/\mathbb{F}_q}$.

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Example 1. On $\mathbb{G}_m/\mathbb{F}_q$, we have the hypergeometric sheaves

$$\mathcal{H}(\chi_1,...,\chi_n;\rho_1,...,\rho_m)$$

with $n > m \ge 0$, each χ_i and each ρ_j is a (possibly trivial) character of \mathbb{F}_q^{\times} , and no χ_i is any ρ_j . We know that **if** G_{gcom} is finite, then we can take $\alpha = \sqrt{q}^w$. [But this need not be true for a hypergeometric whose G_{gcom} is infinite.]

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ●

Example 2. On $\mathbb{A}^1/\mathbb{F}_q$, we have the local systems whose trace functions are

$$t\mapsto -\sum_{\mathbf{x}}\psi(f(\mathbf{x})+t\mathbf{x})\chi(\mathbf{x}),$$

with $f(x) \in \mathbb{F}[x]$ a polynomial of prime to *p* degree $n \ge 2$ and χ either the trivial or, if *p* is odd, the quadratic character of \mathbb{F}_q^{\times} . We can take $\alpha = \sqrt{q}$. [This can be false for other χ , already in the "baby case" when $f(x) = x^2$.]

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ●

Example 3. On a hyperelliptic curve $U := C \setminus \{\infty\}$ with equation $y^2 = f_{2g+1}(x)$, in odd characteristic p, we have the local systems whose trace functions are

$$t\mapsto -\sum_{(x,y)\in U}\psi(yg(x)+tx)\chi(x),$$

with both f_{2g+1} and g in $\mathbb{F}_q[x]$ of degree $\leq n$ and χ either the trivial or the quadratic character of \mathbb{F}_q^{\times} , and with the proviso that $2g + 1 + 2 \deg(g)$, the order of pole at ∞ of yg(x), is prime to p. We can take $\alpha = \sqrt{q}$. [This can be false for other χ , already in the "baby case" when g(x) = 1 and f(x) = x.]

An open problem in Step 2

In each of the three examples, the local system is pure of weight one; this is Weil's theorem for curves, and after replacing \mathcal{H}_0 by $\mathcal{H}_0(1/2)$ we have finite G_{geom} if and only if $\mathcal{H}_0(1/2)$ has all its Frobenius traces algebraic integers (which we have seen is equivalent to all these traces being *p* integral for all *p*-adic places). The question is how long we have to wait, i.e., how many traces we need to compute, to decide if in fact all Frobenius traces are *p*-integral.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ つへぐ

Consider any of the three example collections of local systems, over a fixed \mathbb{F}_q and with a fixed auxiliary integer *n*. Here is a mock theorem:

mock Theorem, correct but useless per se

There exists a constant N = N(q, n) such that in each of these collections of local systems, if all Frobenius traces on a given $\mathcal{H}_0(1/2)$ are algebraic integers at all points in all extensions of degree $\leq N$, then this $\mathcal{H}_0(1/2)$ has all traces algebraic integers.

proof There are only finitely many local systems in question. For each of the finitely many with infinite G_{geom} , record the degree of an extension field over which some Frobenius has a non-integer trace. The the sup of these extension degrees works as the required N = N(q, n).

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ の�?

The question is the extent to which N(q, n) can be explicitly bounded as a function of the input data (q, n). With a triply exponential bound? With a bound which is polynomial in $n\log(q)$, the number of bits in the input data?

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ● ● ●

What we know and don't know in Step 3

the hypereometric case In joint work with Pham Huu Tiep and Antonio Rojas Léon, we have determined which of the 26 sporadic groups can possibly occur as G_{geom} for a hypergeometric sheaf, and exhibited for each of these groups a hypergeometric that realizes it.

With Pham Huu Tiep, we have done the same thing for finite groups of Lie type: analyzed which can possibly be realized by hypergeometric sheaves, and realized each.

the \mathbb{A}^1 **case** The general situation on \mathbb{A}^1 is less clear. When the polynomial f(x) in $\psi(f(x) + tx)\chi(x)$ is the single monomial x^A with A > 1 and prime to p, with Pham Huu Tiep we have complete understanding.[But as soon as we allow more general f(x), we know almost nothing.] For the local systems

$$t\mapsto -\sum_{\mathbf{x}}\psi(\mathbf{x}^{\mathbf{A}}+t\mathbf{x})\chi(\mathbf{x}),$$

here is the complete story.

Although the statements won't mention hypergeometric sheaves, their proofs depend completely on that theory.

(ロ) (同) (E) (E) (E) (O)(C)

If G_{geom} is finite, there are two sporadic cases:

 $p = 5, A = 7, \chi = 1$, and G_{geom} is 2.J₂.

 $p = 3, A = 23, \chi = \chi_2$, and G_{geom} is the Conway group Co₃.

In addition, there are four infinite families, in which q denotes a power of p and we are in characteristic p.

p odd, A = (q + 1)/2, $\chi = 1$ or χ_2 : G_{geom} is the image of $SL_2(q)$ in a Weil representation.

p odd, A = 2q - 1, $\chi = \chi_2$: $G_{geom} = A_{2q}$ in its deleted permutation representation.

 $A = (q^n + 1)/(q + 1)$ with $n \ge 3$ odd and $\chi^{q+1} = \mathbb{1}$: G_{geom} is the image of $SU_n(q)$ in a Weil representation (except for the special case (n = 3, q = 2) of $SU_3(2)$).

 $A = q + 1 = p^{f} + 1$, and $\chi = 1$. If p > 2, G_{geom} is the Heisenberg group p_{+}^{1+2f} of order pq^{2} and exponent p. If p = 2, G_{geom} is the extraspecial 2-group 2_{-}^{1+2f} . We also have the degenerate case $A = 2 = 1 + p^{0}$ with p odd, whose G_{geom} is the cyclic group of order p. If G_{geom} is infinite then G_{geom} is

 Sp_{A-1} if A is odd, and $\chi = 1$.

SO_A if $A \neq 7$ is odd, p is odd, and $\chi = \chi_2$.

 G_2 if A = 7, p is odd, and $\chi = \chi_2$.

SL_A if A is odd and $\chi^2 \neq 1$.

 SL_{A-1} if $A \ge 4$ is even and $\chi = 1$.(The $A = 2, \chi = 1$) case is on the finite list.)

 SL_A if $A \ge 4$ is even and $\chi \ne 1$.

 $\{g \in \operatorname{GL2} | det(g)^{p} = 1\}$ if A = 2 and $\chi \neq 1$.

the hyperelliptic case

Here we can be very brief: we know nothing. Does/should the answer depend on which hyperelliptic curve we work on?

MUCH REMAINS TO BE DONE.