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Abstract. The Lang–Trotter Conjecture(s) concern elliptic curves over the
field Q of rational numbers. We first explain the broader number-theoretic
context into which they fit. Then we turn to formulating their “function field”
analogues. We explain how these analogues can be proven in some very special
cases, and we speculate about what might be true in the general function field
case.
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0. Preface

The Lang–Trotter Conjecture(s), first published in 1976 [L-T] but formulated
a few years earlier, specifically concern elliptic curves over the field Q of rational
numbers. These conjectures are best understood in a much broader context of what
“should” be true, and of what might be true. We discuss this context at length in
the Introduction to this paper; indeed, we don’t state any versions of the conjectures
themselves until we are two-thirds of the way through the Introduction. After this
leisurely Introduction, we turn in Section 2 to the consideration of versions of these
same Lang–Trotter Conjectures, but now reformulated so that they make sense
when the field Q is replaced by a function field over a finite field,1 e.g. by Fp(t),
the field of rational functions in one variable over the finite field Fp := Z/pZ. Even
in that setting there is little we can say in general.

Received by the editors December 21, 2008, and, in revised form, February 23, 2009.
2000 Mathematics Subject Classification. Primary 11F80, 11G05, 14G35.
1We do this fully mindful of the witticism that “the function field case is the last refuge of a

scoundrel”.

c©2009 American Mathematical Society
Reverts to public domain 28 years from publication

413



414 NICHOLAS M. KATZ

However, there are certain beautiful and long-studied elliptic curves over function
fields, namely the universal elliptic curves over modular curves,2 where it turns out
that we can settle affirmatively all these function field conjectures.3 We do this
in Sections 3–6. In Section 7, we make a transition back to considering quite
general elliptic curves over function fields, and their “Galois images”. In Section
8 we discuss the possibility of having “exact” point count formulas in the general
case, which depend only on the Galois image. This hope is inspired by Gekeler’s
beautiful product formula, valid for certain universal elliptic curves over modular
curves (and possibly for all; this remains an open question). It turns out, thanks to
an argument of Deligne, that this hope is overly optimistic in general; we end the
section by asking if some asymptotic consequence of it is correct. Much remains to
be done.

This paper is partly an exposition of open problems, some of which have entirely
elementary statements, partly an exposition of known results, and partly an exposi-
tion of new results. We have tried to make the exposition accessible to people with
a wide range of backgrounds; the reader will judge how well we have succeeded.

1. Introduction

Given a polynomial f(X1, ..., Xn) ∈ Z[X1, ..., Xn], the question of describing the
set

{x = (x1, ..., xn) ∈ Zn | f(x) = 0}
of all4 integer solutions of the equation f = 0 goes back at least to Diophantus,
some 1750 years ago. Here one wants to prove either that a) there are no solutions,
or b) there are only finitely many solutions (and ideally specify both how many and
how large) or c) there are infinitely many solutions (and ideally give an asymptotic
formula for how many there are of “size” at most h, as h → ∞). Thus, for example,
Fermat’s Last Theorem was a problem of type a), the Mordell Conjecture of type
b), and Pell’s equation of type c).

Sometimes one can prove the nonexistence of solutions by finding either an
Archimedean obstruction or a congruence obstruction. For example, the equation

x2 + y2 + 691 = 0

has no integer solutions because it has no R solutions; the equation

x2 + y2 = 691,

and more generally any equation of the form

x2 + y2 = 4n + 3,

has no integer solutions because it has no solutions mod 4; and the equation

y2 + x4 + 2 = 0

has no integer solutions both because it has no R solutions and because it has no
mod 5 solutions.

2Perhaps the simplest example is this: the ground field is Fp(t), any odd prime p, and the
elliptic curve has the equation y2 = (x + t)(x2 + x + t). This is the universal curve with a point
of order 4, namely the point (0, t).

3Unfortunately, these universal elliptic curves over modular curves seem to have no analogue
in the world of elliptic curves over number fields.

4If the polynomial f is homogeneous of some degree d ≥ 1, we allow only integer solutions
(x1, ..., xn) ∈ Zn with gcd(x1, ..., xn) = 1.
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Even in the possible presence of an Archimedean obstruction, it can still be
interesting to ask, given f , modulo which primes p the equation f = 0 has an Fp

solution. For example, the study of the equation in one variable,

x2 + 1 = 0,

mod odd primes p, amounts to the determination of the “quadratic character of −1
mod p”, and led Euler to the theorem, already stated a century earlier by Fermat,
that all primes of the form 4n + 1, but none of the form 4n − 1, are sums of two
squares. In this example, the number Np of mod p solutions is either 0 or 2; if we
write

Np = 1 + ap,

then ap = ±1, and the result is that ap = 1 if p is of the form 4n + 1, and ap = −1
if p is of the form 4n − 1.

Still with this x2 +1 = 0 example, we might ask whether ap = 1 (resp. ap = −1)
holds for infinitely many primes. That it does, for both choices of sign, amounts
to the special case of Dirichlet’s theorem that there are infinitely many primes in
each of the two arithmetic progressions 4n ± 1.

Now let us consider an equation in two variables. For simplicity, we take it to
be of the form

y2 = h(x)

with h(x) ∈ Z[x] monic of some odd degree 2g + 1, such that h has 2g + 1 distinct
zeroes in C. The C solutions, together with a single “point at ∞”, form a compact
Riemann surface of genus g. The discriminant ∆ ∈ Z of the polynomial h(x) is
nonzero. For any “good” prime, i.e., any odd prime p which does not divide ∆,
the Fp-solutions of this equation, together with a single “point at ∞”, form the
Fp points C(Fp) of a (projective, smooth, geometrically connected) curve C/Fp of
genus g over Fp. In this case, for each good prime p we have

#C(Fp) = 1 + #{Fp solutions of y2 = h(x)},

and we define the integers ap by

#C(Fp) = p + 1 − ap.

In the x2 + 1 example with its ap, we knew a priori that ap was either ±1, and
the two questions were a) how ap depended on p and b) were there infinitely many
p with a given choice of ap.

In the curve case, we almost never know a “simple” rule for how ap depends on
p (short of literally computing it for each given p, more or less cleverly). We do
have an Archimedean bound, the celebrated Weil bound

|ap| ≤ 2g
√

p,

and since a curve cannot have a negative number of points, we have the Archimedean
inequality

ap ≤ p + 1,

which for large genus g and small prime p, say 2g >
√

p, does not follow from the
Weil bound.

What else do we know about the numbers ap for a given curve? Remarkably little
(outside the trivial case of genus g = 0, where all ap vanish), but we have a plethora
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of open problems and conjectures about them, some of which have strikingly el-
ementary formulations, or at least consequences which have strikingly elementary
formulations.

Here is one example of an easy-to-state open problem. Suppose we are given the
numbers ap/p1/2 for all good p, but are not told what curve they came from, or
even its genus. By the Weil bound, we have

ap/p1/2 ∈ [−2g, 2g].

Is it true that we can recover 2g as the lim sup of the numbers |ap|/p1/2? Or weaker,
is it true that the inequality

|ap|/p1/2 > 2g − 2

holds for infinitely many p? Weaker yet, does it hold for at least one good p? If this
were the case, then 2g would be the smallest even integer such that |ap|/p1/2 ≤ 2g
for all good p.

The truth of the strong form, that 2g is the lim sup of the numbers |ap|/p1/2, is
implied by a general Sato–Tate conjecture about the real numbers ap/p1/2 attached
to a curve C of genus g ≥ 1. To formulate it, denote by USp(2g) ⊂ Sp(2g, C) a
maximal compact subgroup of the complex symplectic group. [So USp(2) is just
SU(2).] The conjecture5 is that for a given curve C there is a compact subgroup
K ⊂ USp(2g) with the property that, roughly speaking, the numbers ap/p1/2 are
distributed like the traces of random elements of K. More precisely, denote by dk
the Haar measure on K of total mass one, and denote by

Trace : K → [−2g, 2g]

the trace map, for the tautological 2g-dimensional representation of K. Any con-
tinuous function

F : [−2g, 2g] → C

gives rise to a continuous function on K by k �→ F (Trace(k)), so we can form the
integral ∫

K

F (Trace(k))dk.

The conjecture is that for any such F , we can compute this integral by averaging
F over more and more of the ap/p1/2; i.e., we have the limit formula

lim
T→∞

∑
good p≤T F (ap/p1/2)
#{ good p ≤ T} =

∫
K

F (Trace(k))dk.

If Sato–Tate holds for C, then we will recover 2g as the lim sup of the numbers
|ap|/p1/2. Given a real ε > 0, take for F a continuous R-valued function on [−2g, 2g]
which is nonnegative, supported in [2g − ε, 2g] and identically 1 on [2g − ε/2, 2g].
[For instance, take F piecewise linear.] Because the set

Uε/2 := {k ∈ K | Trace(k) > 2g − ε/2}

5Strictly speaking, what we are formulating is “merely” the consequence for traces of the actual
Sato–Tate conjecture, which asserts the equidistribution of unitarized Frobenius conjugacy classes
in the space K# of conjugacy classes of K, with respect to Haar measure; cf. [Se-Mot, 13.5]. Only
in genus 1 are they equivalent.
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is an open neighborhood of the identity element, it has strictly positive Haar mea-
sure, and therefore the integral∫

K

F (Trace(k))dk ≥
∫

Uε/2

F (Trace(k))dk =
∫

Uε/2

dk > 0.

So if Sato–Tate holds, there must be infinitely many p for which |ap|/p1/2 ≥ 2g− ε.
The Sato–Tate conjecture is now known for all elliptic curves over Q whose j-

invariant is not an integer, where the group K is SU(2) itself [H-SB-T, Thm. A],
and is expected to hold, still with K = SU(2), so long as the curve does not have
complex multiplication. It has been known for elliptic curves over Q with complex
multiplication for over fifty years, thanks to work of Deuring [Deu-CM] and Hecke
[He]. In the CM case, the K is the normalizer in SU(2) of its maximal torus.

In higher genus, Sato–Tate is hardly ever known.6 For certain hyperelliptic
curves y2 = h(x) as above, we can be more precise in its formulation. Denote by G
the Galois group of (the splitting field L/Q of) the polynomial h(x). If g ≥ 2 and
if G is either the full symmetric group S2g+1 or the alternating group A2g+1, then
Sato–Tate should7 hold, with K = USp(2g).

Now let us turn to considering, for a given curve C, the integers ap themselves.
Here we ask two questions. First, for which integers A will we have A = ap for
infinitely many p? Second, for an A which does occur as ap for infinitely many p,
give an asymptotic formula for the number of p up to X for which A = ap.

Of course these same questions make sense for other naturally occurring se-
quences of integers ap. For example, if we take, instead of a curve, a projective
smooth hypersurface H ⊂ Pn+1 of degree d, then for good primes p we define
integers ap by

#H(Fp) =
n∑

i=0

pi + ap.

Here the Weil bound is replaced by Deligne’s bound

|ap| ≤ prim(n, d)pn/2,

with prim(n, d) the constant ((d − 1)/d)((d − 1)n+1 − (−1)n+1).
Or we might wish to consider the sequence ap = τ (p), where Ramanujan’s τ (n)

are the coefficients in
q

∏
n≥1

(1 − qn)24 =
∑
n≥1

τ (n)qn.

Here we have Deligne’s bound

|ap| ≤ 2p11/2.

6However, it is (trivially) known for a genus 2 curve whose Jacobian is isogenous to E ×E, for
an elliptic curve E for which Sato–Tate is known. For example, take h(x) = x3 + λ(x2 + x) + 1
to be a palindromic cubic with all distinct roots, i.e., λ �= −1, 3. Then C := (the complete
nonsingular model of) y2 = h(x2) has its Jacobian isogenous to E × E for E the elliptic curve of

equation y2 = h(x), by the two maps C → E given by (x, y) �→ (x2, y) and (x, y) �→ (1/x2, y/x3).
In particular, for each good p, the ap’s of these curves are related by ap,C = 2ap,E . This last

identity has an elementary proof.
7There is a conjectural description of K in terms of the �-adic representations attached to C,

and having K = USp(2g) is conjecturally equivalent to the property that for every �, the �-adic
representation has a Zariski-dense image in GSp(2g, Q�). That this property holds for the curves
y2 = h(x) whose G is either S2g+1 or A2g+1 is a striking result of Zarhin [Z].
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The Lang–Trotter approach to these questions is based in part on a simple
probabilistic model. For each (good) prime p, we have an integer ap in a finite set

Xp ⊂ Z.

In the curve case, Xp = Z ∩ [−2g
√

p, 2g
√

p]. In the hypersurface case, Xp =
Z ∩ [− prim(n, d)pn/2, prim(n, d)pn/2]. In the Ramanujan τ case, Xp = Z ∩
[−2p11/2, 2p11/2].

The sets Xp are increasing, in the sense that Xp1 ⊂ Xp2 ⊂ Z if p1 ≤ p2, and
their union, in this simple model, is all of Z. Our collection of ap is an element in
the product space

X :=
∏

good p

Xp.

We endow each Xp with counting measure, normalized to have total mass one; i.e.,
each point xp in Xp has mass 1/#Xp.

We then endow X with the product measure. The basic idea is that, in the
absence of any special information, the particular element (ap)p of X should behave
like a “random” element of X, in the sense that any “reasonable” property of
elements of X which holds on a set of measure one should hold for the particular
element (ap)p. For example, fix an integer A, and consider the set of points x =
(xp)p ∈ X that have the property that A = xp for infinitely many p. If this set
has measure one, then we will “expect” that A = ap for infinitely many p, and if
for some explicit function g : R>0 → R>0, the set of x = (xp)p ∈ X for which the
asymptotic formula

#{p ≤ T |A = xp} ∼ g(T ) as T → ∞
holds is a set of measure one, then we “expect” that we have the asymptotic formula

#{p ≤ T |A = ap} ∼ g(T ) as T → ∞.

Let us recall the basic results which address these questions.

Lemma 1.1. Fix A ∈ Z. The following properties are equivalent.
(1) The set of points x = (xp)p ∈ X which have the property that A = xp for

infinitely many p has measure one.
(2) The series

∑
p 1/#Xp diverges.

Proof. Given A, consider the set ZA ⊂ X of those x = (xp)p ∈ X for which A = xp

holds for only finitely many p. So (1) for A is the statement that this set ZA has
measure zero. This set ZA is the increasing union of the sets

Zn,A := {x ∈ X | xp �= A ∀p ≥ pn}.
So ZA has measure zero if and only if each Zn,A has measure zero. But the measure
of Zn,A is the product

∏
p≥pn

(1− 1/#Xp), which is zero if and only (2) holds. �
As a special case of the strong law of large numbers, we get a quantitative version

of the previous result.

Lemma 1.2. Suppose the series
∑

p 1/#Xp diverges. Fix an integer A, and an
increasing sequence bp of positive real numbers with bp → ∞ such that the series∑

p 1/#Xp(bp)2 converges. Then for x ∈ X in a set of measure one, we have

#{p ≤ pn | xp = A} =
∑

p≤pn

1/#Xp + o(bpn
).
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Proof. This is the strong law of large numbers [Ito, Thm. 4.5.1], applied to the inde-
pendent sequence of L2 functions {fp}p on X given by fp(x) := δxp,A.
The mean E(fp) of fp is 1/#Xp, and its variance V (fp) is bounded above by
1/#Xp +1/(#Xp)2 ≤ 2/#Xp. So by hypothesis the series

∑
p V (fp)/b2

p converges.
Then the strong law of large numbers tells us that on a set of measure one, we have

lim
n→∞

(1/bpn
)

∑
p≤pn

(fp − E(fp)) = 0.

Making explicit the fp, we recover the assertion of the lemma. �

Let us see what this gives in the cases we have looked at above.
In the case of a curve C, we have #Xp ∼ 4g

√
p. The series

∑
p 1/

√
p diverges,

and one knows that ∑
p≤T

1/
√

p ∼
√

T/ log T.

Here we can take bp = p(1+ε)/4 for any fixed real ε > 0. So we get

#{p ≤ T | xp = A} =
∑
p≤T

1/#Xp + o(T (1+ε)/4) ∼
√

T/4g log T

on a set of measure one.
In the case of a smooth hypersurface of dimension n, we have #Xp ∼

2 prim(n, d)pn/2. So for n ≥ 3, the series
∑

p 1/#Xp converges. Similarly for the
Ramanujan τ , we have #Xp ∼ 2p11/2, and again the series

∑
p 1/#Xp converges.

So in both of these cases we don’t expect any A to occur as ap infinitely often.
The remaining example case is that of a smooth surface in P3. Here #Xp ∼

2 prim(2, d)p, so the series
∑

p 1/#Xp diverges, but very slowly: one knows that
∑
p≤T

1/p ∼ log log T .

So while the probabilistic heuristic suggests that a given A might occur infinitely
often as an ap, it also suggests that no computer experiment could ever convince
us of this.

Let us now return to the case of a (projective, smooth, geometrically connected)
curve C/Q, and introduce the second heuristic on which the Lang–Trotter approach
is based. This is the notion of a congruence obstruction. If a given integer A occurs
as ap for infinitely many p, then whatever the modulus N ≥ 2, the congruence
A ≡ ap mod N will hold for infinitely many p.

Here is the simplest example of a congruence obstruction. Take a hyperelliptic
curve C of the equation y2 = h(x) with h(x) ∈ Z[x] monic of degree 2g + 1 ≥ 3,
with 2g + 1 distinct roots in C. Suppose in addition that all these 2g + 1 roots
lie in Z. Then for any good (so necessarily odd) p, ap will be even. [Here is the
elementary proof, based on the character sum formula for ap. Denote by χquad,p

the quadratic character χquad,p : F×
p → ±1 (so χquad,p takes the value 1 precisely

on squares) and extend it to all of Fp by setting χquad,p(0) := 0. Then for any
b ∈ Fp, 1 + χquad,p(b) is the number of square roots of b in Fp. So the number of
Fp points on C is

1(the point at ∞) +
∑
x∈Fp

(1 + χquad,p(h(x))) = p + 1 +
∑
x∈Fp

χquad,p(h(x)).
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So we have the formula
ap = −

∑
x∈Fp

χquad,p(h(x)).

In this formula, the reductions mod p of the 2g +1 roots of h are the 2g +1 distinct
(because p is a good prime) elements of Fp at which h mod p vanishes; at all other
points of Fp, h is nonzero. So ap is the sum of an even number p − (2g + 1) of
nonzero terms, each ±1, so is even.] So in this example, no odd integer A can ever
be an ap for a good prime p.

In the special case of an elliptic curve E/Q, say with good reduction outside of
some ∆, there is another visible source of congruence obstructions, namely torsion
points, based on the fact that the set E(Q) has the structure of an abelian group.
Suppose that the group E(Q) contains a point P of finite order N ≥ 2. For every
odd prime p not dividing ∆, it makes sense to reduce this point mod p, and we
obtain a point of the same order N in E(Fp). Therefore N divides #E(Fp), so we
have the congruence

ap ≡ p + 1 mod N.

From this congruence, we see that among odd primes p not dividing ∆, A = 1 can
never occur as ap unless N |p, i.e., unless N is itself an odd prime, in which case we
might have ap = 1 for p = N , but for no other; cf. [Maz, pp. 186–188].

Let us explain briefly the general mechanism by which congruence obstructions
arise. Taking for ∆ the product of the primes which are bad for our curve C, we
get a proper smooth curve C/Z[1/∆]. For each integer N ≥ 2, we have the “mod N
representation” attached to C/Q, or more precisely to its Jacobian Jac(C)/Q. This
is the action of Gal(Q/Q) on the group Jac(C)(Q)[N ] of points of order dividing N .
This group is noncanonically (Z/NZ)2g, and it is endowed with a Galois-equivariant
alternating autoduality toward the group µN (Q) of Nth roots of unity. Because C
is a proper smooth curve C/Z[1/∆], the mod N representation is unramified outside
of N∆, so we may view it as a homomorphism

ρN : π1(Spec(Z[1/N∆])) → GSp(2g, Z/NZ)

toward the group GSp(2g, Z/NZ) of mod N symplectic similitudes. The key com-
patibility is that for any prime p not dividing N∆, the arithmetic Frobenius con-
jugacy class

Frobp ∈ π1(Spec(Z[1/N∆]))
has

Trace(ρN (Frobp)) ≡ ap mod N, det(ρN (Frobp)) ≡ p mod N.

Now consider the image group Im(ρN ) ⊂ GSp(2g, Z/NZ). If this group contains at
least one element whose trace is A mod N , then by Chebotarev the set of primes p
not dividing N∆ for which ap ≡ A mod N has a strictly positive Dirichlet density,
so in particular is infinite. On the other hand, if the image group Im(ρN ) ⊂
GSp(2g, Z/NZ) contains no element whose trace is A mod N , then ap ≡ A mod N
can hold at most for one of the finitely many primes p dividing N . It is precisely
in this second case that A has a congruence obstruction at N (to having ap = A
for infinitely many primes p).

Lang and Trotter conjecture8 that, for curves, it is only congruence obstructions
which prevent an A from being ap infinitely often:

8Lang and Trotter make this conjecture explicitly only for elliptic curves.
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Conjecture 1.3 (Weak Lang–Trotter). Let C/Q be a projective, smooth, geomet-
rically connected curve, with good reduction outside of ∆. Given an integer A,
suppose that for every modulus N ≥ 2, A has no congruence obstruction at N ; i.e.,
the congruence A ≡ ap mod N holds for infinitely many p. Then we have A = ap

for infinitely many p.

In the case of a non-CM elliptic curve E, Lang and Trotter also formulate, for
any A which has no congruence obstructions, a precise conjectural asymptotic for
how often A is an ap. Given such an A, they define a nonzero real constant cA,E

and make the following precise conjecture.

Conjecture 1.4 (Strong Lang–Trotter for elliptic curves). Let E/Q be a non-CM
elliptic curve. Then as T → ∞,

#{p ≤ T | ap = A} ∼ cA,E(2/π)
√

T/ log T.

Here is their recipe for the constant cA,E . For each integer N ≥ 2, consider the
finite group

GN := Im(ρN ) ⊂ GL(2, Z/NZ).

For each a ∈ Z/NZ, we have the subset GN,a ⊂ GN defined as

GN,a := {elements γ ∈ GN with Trace(γ) = a},
whose cardinality we denote by

gN,a := #GN,a.

We define
gN,avg := (1/N)

∑
a mod N

gN,a = (1/N)#GN

to be the average, over a, of gN,a. For an A with no congruence obstruction, Lang
and Trotter show that as N grows multiplicatively, the ratio

gN,A/gN,avg

(which Lang and Trotter write as NgN,A/#GN ) tends to a nonzero (Archimedean)
limit, which they define to be cA,E . [If we apply this recipe to an A which has a
congruence obstruction, then for all sufficiently divisible N , we have gN,A = 0, so
the limit exists, but it is 0.]

In this vein, we have the following “intermediate” conjecture, for any9 curve C
of any genus g ≥ 1 which is “strongly non-CM” in the sense that for every �, the
�-adic representation has Zariski dense image in GSp(2g, Q�).

Conjecture 1.5 (Intermediate Lang–Trotter). Let C/Q be a projective, smooth,
geometrically connected curve, with good reduction outside of ∆, such that for every
�, the �-representation has Zariski dense image in GSp(2g, Q�). Suppose the integer
A has no congruence obstruction mod any N . Then for every real ε > 0, there exists
a constant c(C, A, ε) such that for T ≥ c(C, A, ε), we have

√
T

1−ε
≤ #{p ≤ T | ap = A} ≤

√
T

1+ε
.

9Without some sort of “non-CM” hypothesis, we can have ap = 0 for a set of primes p of
positive Dirichlet density; cf. the example following Conjecture 1.7. Perhaps for nonzero A the
conjecture remains reasonable for any C/Q.
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There are no cases whatever of a pair (C, A) for which this conjecture is known.
In the case of elliptic curves, there are some results on upper bounds with ε = 1/2,
some under GRH [Se-Cheb, 8.2, Thm. 20], and some on average; cf. [Da-Pa], [Ba],
[Co-Shp].

Are there other situations where one should expect congruence obstructions to
be the only thing preventing a given integer A from occurring as ap infinitely
often? A natural context for this question is that of a compatible system of �-adic
representations of some π1(Spec(Z[1/∆])). Let us recall one version of this notion.
We are given an integer n ≥ 1 and, for each prime �, a homomorphism

ρ�∞ : π1(Spec(Z[1/�∆])) → GL(n, Z�).

The compatibility condition is that for every prime p not dividing ∆, there is an
integer polynomial Pp(T ) ∈ Z[T ] such that for every prime � �= p, the reversed
characteristic polynomial

det(1 − Tρ�∞(Frobp)) ∈ Z�[T ]

lies in Z[T ] and is equal to Pp(T ). We are then interested in the ap := Trace(Frobp)
(trace in any �-adic representation with � �= p) for good (i.e., prime to ∆) primes
p. Reducing mod powers �ν of �, we get the representations

ρ�ν : π1(Spec(Z[1/�∆])) → GL(n, Z/�νZ).

Putting these together, we get for each integer N ≥ 2 a mod N representation

ρN : π1(Spec(Z[1/N�∆])) → GL(n, Z/NZ).

Exactly as in the case of curves, A has no congruence obstruction at N , i.e., A ≡ ap

mod N holds for infinitely many p, if and only if there is an element in the image
group Im(ρN ) ⊂ GL(n, Z/NZ) whose trace is A mod N . In this case the set of p
for which A ≡ ap mod N has positive Dirichlet density.

In the case of curves, these representations are “pure of weight-1” in the sense
that for each good p, when we factor Pp(T ) =

∏
i(1 − αiT ) over C, each αi has

|αi| = p1/2. This in turn implies the estimate

|ap| ≤ np1/2.

The Lang–Trotter idea is that for any compatible system which is pure of weight-
1, it is only congruence obstructions which prevent an integer A from being ap for
infinitely many primes p. As Serre has remarked [Se-Cheb, 8.2, Remarques (3)],
all of the image groups Im(ρN ) ⊂ GL(n, Z/NZ) contain the identity, and hence
its trace, the integer n, has no congruence obstruction. Specializing to the case of
curves, we get the following conjecture, which in genus g ≥ 1 seems to be entirely
open. [It is of course trivially correct in genus zero, where every ap vanishes.]

Conjecture 1.6. Let C/Q be a projective smooth geometrically connected curve of
genus g. Then there are infinitely many good primes p with ap = 2g.

Already very special cases of this conjecture are extremely interesting. Consider
the special g = 1 case when E/Q is the lemniscate curve y2 = x3 − x, which has
good reduction outside of 2. Here we know the explicit “formula” for ap; cf. [Ir-Ros,
Chpt.18, §4, Thm. 5]. If p ≡ 3 mod 4, then ap = 0. If p ≡ 1 mod 4, then we can
write p = α2 + β2 with integers α, β, α odd, β even, and α ≡ 1 + β mod 4. This
specifies α uniquely, and it specifies ±β. [More conceptually, the two Gaussian
integers α ± βi are the unique Gaussian primes in Z[i] which are 1 mod 2 + 2i and
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which lie over p.] Then ap = 2α. So we have ap = 2 precisely when there is a
Gaussian prime of the form 1+βi with 1 ≡ 1+β mod 4, i.e. with β = 4n for some
integer n. Thus ap = 2 precisely when there exists an integer n with

p = 1 + 16n2.

So the conjecture for this particular curve is the statement that there are infinitely
many primes of the form 1 + 16n2.

There is another element common to all the mod N image groups. Embeddings
of Q into C determine “complex conjugation” elements in Gal(Q/Q), all in the same
conjugacy class, denoted FrobR. In the curve case, FrobR has g eigenvalues 1 and
g eigenvalues −1 in every �-adic representation. Therefore FrobR has trace zero in
every �-adic representation, and consequently in every mod N representation. So
we are led to the following conjecture, which in genus g = 1 is a celebrated result
of Elkies; cf. [Elkies-Real] and [Elkies-SS].

Conjecture 1.7. Let C/Q be a projective smooth geometrically connected curve of
genus g. Then there are infinitely many good primes p with ap = 0.

This conjecture is trivially true in some cases. For example, take an odd Q-
polynomial h(x) = −h(−x) with all distinct roots, and the curve y2 = h(x). Then
the character sum formula for ap shows that ap = 0 for all good p ≡ 3 mod 4. But
for an irreducible h of degree d ≥ 5 whose Galois group is either Sd or Ad, and the
curve y2 = h(x), this conjecture seems to be entirely open.

What should we expect for compatible systems which are pure of weight-2, i.e.,
each |αi| = p? In this weight-2 case, the probabilistic model has sets Xp = Z ∩
[−np, np] of size 2np + 1. So the series

∑
p 1/#Xp ∼ (1/(2n))

∑
p 1/p diverges

slowly, and the model allows A = ap to hold about (1/(2n)) log log T times for
primes up to T . But in weight-2 there may be more than congruence obstructions
to having a given A being ap infinitely often. Here is the simplest example. Start
with an elliptic curve E/Q, say with good reduction at primes p not dividing some
integer ∆, and its compatible system of weight-1 representations

ρ�∞ : π1(Spec(Z[1/�∆])) → GL(2, Z�).

In each of these, FrobR has eigenvalues 1 and −1. Now consider the compatible
system

Sym2(ρ�∞) : π1(Spec(Z[1/�∆])) → GL(3, Z�).
In each of these, FrobR has two eigenvalues 1 and one eigenvalue −1, so has trace
1, and hence has trace 1 in every mod N representation Sym2(ρN ). Thus A = 1
has no congruence obstruction for the compatible system of Sym2(ρ�∞)’s. Denote
by Ap the trace of Frobp in this Sym2 system. Then Ap is related to the original
ap by the formula

Ap = (ap)2 − p.

So Ap = 1 is equivalent to (ap)2 − p = 1, i.e. to

p = (ap + 1)(ap − 1),

which is trivially impossible for p ≥ 5.
It would be interesting to understand, even conjecturally, what “should” be true

about compatible weight-2 systems, for instance for the ap of a weight-3 newform10

10The weight in the sense of modular forms is one more than the weight in the sense of
compatible systems.
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with integer coefficients on some congruence subgroup Γ1(N). Here we are dealing
with a compatible system of 2-dimensional representations, so in particular A = 2
has no congruence obstruction. It may well be that no fixed nonzero integer A
is ap for infinitely many p; no computer experiment can convince us either way.
Nonetheless, we report on some computer experiments below. Caveat emptor.

The simplest examples of weight-3 newforms with integer coefficients are ob-
tained by taking a (K-valued, type (1, 0)) weight-1 grossencharacter ρ of a qua-
dratic imaginary field K of class number one and inducing its square down to Q.
The common feature they exhibit is that for a certain integer D ≥ 1, we have ap = 2
if and only if the pair of simultaneous equations

x2 + Dy2 = p, x2 − Dy2 = 1

has an integer solution. Here are some examples.
(D = 1) Here K = Q(i), and ρ attaches to an odd prime ideal P of Z[i] the

unique generator π = α + βi ≡ 1 mod (2 + 2i). This ρ is the grossenchar-
acter attached to the elliptic curve y2 = x3 − x; cf. [Ir-Ros, Chpt. 18,
Thm. 5]. Inducing ρ2 gives a weight-3 newform on Γ1(16) whose neben-
typus character is the mod 4 character of order 2. [This is 16k3A[1,0]1 in
Stein’s tables [St].] See [Ka-TLFM, 8.8.10-11] for another occurrence, in
the cohomology of a certain elliptic surface.] For this form, we have ap = 0
unless p ≡ 1 mod 4. When p ≡ 1 mod 4, choose a P lying over p, and write
ρ(P) = π = α + βi. Then

ap = TraceQ(i)/Q((π)2) = 2(α2 − β2) = 2(α − β)(α + β).

So no odd A is ever ap. For a fixed nonzero even A, the pair of integers
(α− β, α + β) is on the finite list of factorizations in Z of A/2. Solving for
(α, β), we see that (α, β) is itself on a finite list. So p = α2+β2 is on a finite
list, and hence ap = A holds for at most finitely many primes p. In this
particular example, A = 2 is never an ap, since the only integer solutions
of α2 − β2 = 1 are (±1, 0). This D = 1 case is the only case where we can
prove that for any fixed nonzero A, ap = A holds for at most finitely many
primes p.

(D = 2) Here K = Q(
√
−2), and ρ attaches to an odd prime ideal P of Z[

√
−2]

the unique generator π = α + β
√
−2 with α ≡ 1 mod 4. Inducing ρ2 gives

a weight-3 newform on Γ1(8) whose nebentypus character is the mod 8
character of order 2 whose kernel is {1, 3}. [This is 8k3A[1,1]1 in Stein’s
tables [St].] For odd p, ap vanishes unless p ≡ 1 or 3 mod 8. When p ≡ 1
or 3 mod 8, choose either P lying over p, and write ρ(P) = π = α +β

√
−2.

Then p = NormQ(
√
−2)/Q(π) = α2 + 2β2, and

ap = TraceQ(
√
−2)/Q((π)2) = 2(α2 − 2β2).

(D = 3) Here K = Q(ζ3), and ρ attaches to a prime-to-6 prime ideal P of Z[ζ3]
the unique generator π = α + β

√
−3 which lies in the order Z[

√
−3] and

which has α ≡ 1 mod 3. Inducing ρ2 gives a weight-3 newform on Γ1(12)
whose nebentypus character is the mod 3 character of order 2. [This is
12k3A[0,1]1 in Stein’s tables [St].] For p prime to 6, ap vanishes unless
p ≡ 1 mod 3. If p ≡ 1 mod 3, choose a P lying over p, and write ρ(P) =
π = α + β

√
−3. Then p = NormQ(ζ3)/Q(π) = α2 + 3β2, and

ap = TraceQ(ζ3)/Q((π)2) = 2(α2 − 3β2).
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(D = 27) Here K = Q(ζ3), and ρ attaches to a prime-to-3 prime ideal P of Z[ζ3]
the unique generator π = α + β(3ζ3) which lies in the order Z[3ζ3] and has
α ≡ 1 mod 3. This ρ is the grossencharacter attached to the elliptic curve
y2 = x3 + 16; cf. [Ir-Ros, Chpt. 18, Thm. 4]. Inducing ρ2 gives a weight-3
newform on Γ1(27) whose nebentypus character is the mod 3 character of
order 2. [This is 27k3A[9]1 in Stein’s tables [St].] For p prime to 3, ap

vanishes unless p ≡ 1 mod 3. If p ≡ 1 mod 3, choose a P lying over p, and
write ρ(P) = π = α + 3βζ3. Then p = NormQ(ζ3)/Q(π) = α2 − 3αβ + 9β2

and
ap = TraceQ(ζ3)/Q((π)2) = 2α2 − 6αβ − 9β2.

So if ap is even, then β must be even, say β = 2B, and our equations
become

p = (α − 3B)2 + 27B2, ap = 2((α − 3B)2 − 27B2).
(D = 7, 11, 19, 43, 67, 163) Here K = Q(

√
−D), and ρ attaches to a prime-

to-D prime ideal P of Z[(1 +
√
−D)/2] the unique generator π = α0 +

β0(1 +
√
−D)/2 which mod

√
−D is a square mod D. Inducing ρ2 gives

a weight-3 newform on Γ1(D) whose nebentypus character is the mod D
character of order 2. [This is Dk3A[(D-1)/2]1 in Stein’s tables [St].] For
p �= D, ap vanishes unless p is a square mod D. If p is a square mod D,
choose either P lying over p, and write ρ(P) = π = α0 + β0(1 +

√
−D)/2.

Then p = NormQ(
√
−D)/Q(π) = α2

0 + α0β0 + ((D + 1)/4)β2
0 and ap =

TraceQ(
√
−D)/Q(π2) = 2α2

0 + 2α0β0 − ((D − 1)/2)β2
0 . Here (D − 1)/2 is

odd, so if ap is even, then β0 must be even: π lies in the order Z[
√
−D].

Rewrite this π as α+β
√
−D with α a square mod D. So if ap is even, then

p = α2 + Dβ2 and ap = 2(α2 − Dβ2).
We have already noted that in the D = 1 example, we never have ap = 2. In

the other examples, it is a simple matter to do a computer search for primes p with
ap = 2. We run through the solutions (±xn,±yn) of Pell’s equation x2 − Dy2 = 1
by computing the powers of the smallest real quadratic unit uD = x1 + y1

√
D of

norm 1 with x1, y2 strictly positive integers. Then un
D = xn + yn

√
D and we test

the primality of x2
n + Dy2

n. But a simple algebra lemma11 shows that if x2
n + Dy2

n

is prime, then n is itself a power 2a of 2. Indeed, if n has an odd divisor d ≥ 3, say
n = dm, the lemma applied to um

D shows that x2
n + Dy2

n is divisible by x2
m + Dy2

m,
so is certainly not prime. In a naive probabilistic model, the probability that
x2

2a + Dy2
2a is prime is

1/ log(x2
2a + Dy2

2a) ∼ 1/ log(u2a+1

D ) = 1/(2a+1 log(uD)).

The series
∑

a≥0 1/(2a+1 log(uD)) converges. So we “expect” that x2
2a + Dy2

2a is
prime for at most finitely many values of a. In other words, for any squarefree
integer D > 0, we expect that there are only finitely many primes p such that the
simultaneous equations

x2 + Dy2 = p, x2 − Dy2 = 1

11The lemma is this. In the polynomial ring Z[X, Y,
√

D] in 3 variables X, Y,
√

D, write

(X + Y
√

D)n = Xn+Yn

√
D with Xn, Yn in the subring Z[X, Y, D]. If n is odd, then X2

n+DY 2
n

is divisible by X2 + Dy2 in Z[X, Y, D]. To prove it, notice that X2 + Dy2 is X2 and (hence) that

X2
n + DY 2

n is X2n, so we reduce to the (easy) statement, applied to (X + Y
√

D)2, that X divides
Xn in Z[X, Y, D] if n is odd.
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have an integer solution. In particular, for each of our example newforms, we should
have ap = 2 for at most finitely many primes p.

Here is a table of search results. The column headed “T” specifies the search
range: all n = 2a ≤ T, a ≥ 0. In this search range, we will find all primes p ≤ 10X ,
i.e., all primes with at most X decimal digits, for which ap = 2. This is the meaning
of the “X ” column. The next to last column, #, tells how many primes p in the
search range had ap = 2, and the last column tells which powers of uD gave those
p.

D uD T X # for n =
2 3 + 2

√
D 32768 50170 3 1, 2, 4

3 2 +
√

D 32768 37482 3 1, 2, 8
27 26 + 5

√
D ∞ ∞ 0 none

7 8 + 3
√

D 32768 78801 3 1, 2, 16
11 10 + 3

√
D 16384 42596 2 1, 2

19 170 + 39
√

D 8192 41475 0 none
43 3482 + 531

√
D 8192 62961 0 none

67 48842 + 5967
√

D 8192 81753 2 4, 32
163 64080026 + 5019135

√
D 8192 132837 0 none

That there are provably none for D = 27 results from the fact that u27 is the
cube of u3. For the amusement of the reader, we give below, for D = 2, 3, 7, 11, the
two or three primes p with ap = 2 in our search range.

D p1 p2 p3

2 17 577 665857
3 7 19 708158977
7 127 32257 150038171394905030432003281854339710977
11 199 79201 no third one

[For D = 67, the first of the two primes found in our search range with ap = 2 was

p = 4145314481238973783106627512888262311297.

The second prime found with ap = 2 had 320 digits; it was too big for Mathematica
to certify its primality.]

2. Lang–Trotter in the function field case:

generalities and what we might hope for

We now turn to a discussion of the Lang–Trotter conjecture for elliptic curves
in the function field case; cf. [Pa] for an earlier discussion (but note that his
Proposition 4.4 is incorrect). Thus we let k be a finite field Fq of some characteristic
p > 0, X/k a projective, smooth, geometrically connected curve, K the function
field of X, and E/K an elliptic curve over K. Then E has good reduction at all but
finitely many closed points P ∈ X; more precisely, its Neron model E/X is, over
some dense open set U ⊂ X, a one-dimensional abelian scheme. For each closed
point P ∈ U , with residue field FP of cardinality N(P), we have the elliptic curve
EP/FP := E ⊗U FP/FP , and the integer AP , defined by

#EP(FP) = N(P) + 1 − AP .

Exactly as in the number field case, the idea is to try to guess for which integers
A there should exist infinitely many closed points P ∈ U with AP = A, and if
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possible to be more precise about how many such closed points there are of any
given degree. We will try to do this when both of the following two hypotheses
hold.
(NCj ) The j-invariant j(E/K) ∈ K is nonconstant, i.e., does not lie in k.
(Ord) For each P ∈ U , the elliptic curve E ⊗U FP/FP is ordinary; i.e., the integer

AP is prime to p := char(K).

Remark 2.1. The reason we assume (NCj ) is this. If (NCj ) does not hold, i.e., if our
family has constant j, then for any nonzero integer A, the equality AP = A holds
for at most finitely many P. Why is this so? If this constant j is supersingular (:=
not ordinary), then for each P, the elliptic curve E ⊗U FP/FP is supersingular. So
the integer AP is divisible, as an algebraic integer, by N(P)1/2, and hence either
AP = 0 or we have the inequality |AP | ≥ N(P)1/2. As there are only finitely many
P of any given norm, the result follows. If, on the other hand, the constant j is
ordinary, then AP is never zero (because it is prime to p), and one knows [B-K,
2.10] that |AP | → ∞ as deg(P) → ∞. So in this ordinary case as well, for any
given integer A, the equality AP = A holds for at most finitely many P.

Remark 2.2. When (NCj ) holds, any U of good reduction contains at most finitely
many closed points P which are supersingular (:= not ordinary) [simply because the
values at all supersingular points of the nonconstant function j lie in the finite set
Fp2 ]. Removing the supersingular points gives us a smaller dense open U ⊂ X over
which (Ord) holds and does not affect which integers A occur as AP for infinitely
many P.

So we now let k be a finite field Fq of some characteristic p > 0, U/k a smooth,
geometrically connected curve with function field K, and E/U an elliptic curve over
U whose j-invariant is nonconstant and which is fibre-by-fibre ordinary. There are
slight differences from the number field case which we must take into account.

The first is that inside the fundamental group π1(U) we have the normal sub-
group πgeom

1 (U) := π1(U ⊗k k), which sits in a short exact sequence

{1} → πgeom
1 (U) → π1(U)

deg−→ Gal(k/k) ∼= Ẑ → {1}.

For each finite extension field FQ/k, and each FQ-valued point u ∈ U(FQ), we
have its arithmetic Frobenius conjugacy class Frobu,FQ

∈ π1(U), whose image in
Gal(k/k) is the Qth power automorphism of k. For a closed point P of U of some
degree d ≥ 1, viewed as a Gal(k/k)-orbit of length d in U(k), we have the arithmetic
Frobenius conjugacy class FrobP ∈ π1(U), equal to the class of Frobu,FQ

, for FQ

the residue field Fqd of P and for u ∈ U(FQ) any point in the orbit which “is” P.
For any element F ∈ π1(U) of degree one, e.g., Frobu,k, if there exists a k-rational
point of U , we have a semidirect product description

πgeom
1 (U) � 〈F 〉 ∼−→ π1(U),

where 〈F 〉 ∼−→ Ẑ is the pro-cyclic group generated by F .
The second difference from the number field case is that only for integers N0 ≥ 2

which are prime to p is the group scheme E [N0] a finite étale form of Z/N0Z×Z/N0Z.
So it is only for integers N0 ≥ 2 which are prime to p that we get a mod N0

representation
ρN0 : π1(U) → (GL(2, Z/N0Z).



428 NICHOLAS M. KATZ

For a finite extension field FQ/k, and an FQ-valued point u ∈ U(FQ), we have
an elliptic curve Eu,FQ

/FQ, the number of whose FQ-rational points we write

Eu,FQ
(FQ) = Q + 1 − Au,FQ

.

The fundamental compatibility is that for each N0 ≥ 2 that is prime to p, we
have

Trace(ρN0(Frobu,FQ
)) ≡ Au,FQ

mod N0, det(ρN0(Frobu,FQ
)) ≡ Q mod N0.

In particular, for a closed point P of U , we have

Trace(ρN0(FrobP)) ≡ AP mod N0, det(ρN0(FrobP)) ≡ N(P) mod N0.

The third difference from the number field case is that, because E/U is fibre-by-
fibre ordinary, the p-divisible group E [p∞] sits in a short exact sequence

0 → E [p∞]0 → E [p∞] → E [p∞]et → 0,

in which the quotient E [p∞]et is a form of Qp/Zp, and the kernel E [p∞]0 is the dual
form of µp∞ . So the quotient E [p∞]et gives us a homomorphism

ρp∞ : π1(U) → Autgp(Qp/Zp) ∼= GL(1, Zp) ∼= Z×
p .

On Frobenius elements, this p-adic character ρp∞ of π1(U) gives the p-adic unit
eigenvalue of Frobenius: the fact that the integer Au,FQ

, resp. AP , is prime to p
implies that the integer polynomial

X2 − Au,FQ
X + Q, resp. X2 − APX + N(P),

has a unique root in Z×
p , namely ρp∞(Frobu,FQ

), resp. ρp∞(FrobP). More con-
cretely, we have identities in Zp,

Au,FQ
= ρp∞(Frobu,FQ

) + Q/ρp∞(Frobu,FQ
),

AP = ρp∞(FrobP) + N(P)/ρp∞(FrobP).

Given a prime-to-p integer A, and a power Q of p, we denote by unitQ(A) ∈ Z×
p

the unique root in Z×
p of the polynomial X2 − AX + Q. We have

X2 − AX + Q = (X − unitQ(A))(X − Q/ unitQ(A)).

Thus

ρp∞(Frobu,FQ
) = unitQ(Au,FQ

),

ρp∞(FrobP) = unitN(P)(AP).

If Q ≥ pν , resp. if N(P) ≥ pν , then we have the congruences

unitQ(Au,FQ
) ≡ Au,FQ

mod pν ,

unitN(P)(AP) ≡ AP mod pν .

For a fixed power pν of p, ν ≥ 0, we denote by

ρpν : π1(U) → (Zp/pνZp)×

the reduction mod pν of ρp∞ , with the convention that for ν = 0, ρp0 is the trivial
representation toward the trivial group. Thus if Q ≥ pν , resp. if N(P) ≥ pν , then
we have the congruences

ρpν (Frobu,FQ
) ≡ Au,FQ

mod pν ,

ρpν (FrobP) ≡ AP mod pν .
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Given an integer A, we can of course ask if A = AP for infinitely many closed
points P. But in the function field case there are two additional questions we can
ask.

(1) For a given finite extension FQ/k is there a closed point P with residue
field FQ, i.e. with N(P) = Q, and with A = AP? If so, how many such
closed points are there?

(2) For a given finite extension FQ/k is there an FQ-valued point u ∈ U(FQ)
with A = Au,FQ

? If so, how many such FQ-valued points are there?
To describe conjectural answers to these questions, we need some notation. Given

an integer N ≥ 2, factor it as
N = N0p

ν

with N0 prime to p and ν ≥ 0. Then form the product representation

ρN := ρN0 × ρpν : π1(U) → GL(2, Z/N0Z) × (Z/pνZ)×.

We will write an element of the product group as

(gN0 , γpν ) ∈ GL(2, Z/N0Z) × (Z/pνZ)×.

We define its determinant in (Z/N0Z)× by

det(gN0 , γpν ) := det(gN0) ∈ Z/N0Z,

and its trace in Z/NZ by

Trace(gN0 , γpν ) := (Trace(gN0), γpν ) ∈ Z/N0Z × Z/pνZ ∼← Z/NZ,

the last arrow being “simultaneous reduction” mod N0 and pν .
In analogy to the number field case, we denote by GN the image group

GN := ρN (π1(U)) ⊂ GL(2, Z/N0Z) × (Z/pνZ)×.

But in the function field case, we must consider also the normal subgroup Ggeom
N �

GN defined as
Ggeom

N := ρN (πgeom
1 (U)).

For each strictly positive power Q = (#k)d of #k, we define GN,det=Q ⊂ GN to be
the coset of Ggeom

N defined by

GN,det=Q := ρN (π1(U)deg=d) = ρN (F dπgeom
1 (U)) = ρN (F )dGgeom

N ,

for any element F ∈ π1(U) of degree one.
For each integer A mod N , we define GN (A, Q) ⊂ GN,det=Q as follows. If N is

prime to p, i.e., if N = N0, then GN (A, Q) is the subset of GN0,det=Q consisting
of those elements whose trace is A mod N0. If p|N , then GN (A, Q) is empty if
p|A. If p|N and A is prime to p, it is the subset of GN,det=Q consisting of those
elements whose trace is (A modN0, unitQ(A) mod pν) in Z/N0Z × Z/pνZ. [This
makes sense, because, for any fixed Q as above, if an integer A is invertible mod p,
then unitQ(A) mod pν depends only on A mod pν . But only for Q ≥ pν will we
have unitQ(A) ≡ A mod pν .]

For later use, we define

gN,det=Q := #GN,det=Q,

gN (A, Q) := #GN (A, Q),

gN (avg, Q) := (1/N)
∑

A mod N

gN (A, Q) = (1/N)gN,det=Q.
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The relevance of the subsets GN (A, Q) ⊂ GN,det=Q ⊂ GN is this. Suppose we
are given an integer A prime to p, and a power Q of #k. If there is an FQ-valued
point u ∈ U(FQ) with Au,FQ

= A, resp. a closed point P with norm Q and AP = A,
then for every N ≥ 2, ρN (Frobu,FQ

), resp. ρN (FrobP), lies in GN (A, Q).
We say that the data (A, Q), A an integer prime to p and Q a (strictly positive)

power of #k, has a congruence obstruction at N if the set GN (A, Q) is empty, and
we say that (A, Q) has an Archimedean obstruction if A2 > 4Q.

The most optimistic hope is that if (A, Q) has neither Archimedean nor con-
gruence obstruction (i.e., A is prime to p, |A| < 2

√
Q, and for all N ≥ 2 the set

GN (A, Q) is nonempty), then there should be a closed point P with norm Q and
AP = A. [We might even speculate about how many, at least if Q is suitably
large.] Unfortunately, this hope is false for trivial reasons; we can remove from
U all its closed points of any given degree and obtain now a new situation where
the groups GN , being birational invariants, are unchanged, but where there are no
closed points whatever of the given degree. What is to be done? One possibility
is to make this sort of counterexample illegal: go back to the projective smooth
geometrically connected curve X/k with function field K in which U sits as a dense
open set, and replace U by the possibly larger open set Umax ⊂ X that we ob-
tain by removing from X only those points at which the Neron model of EK/K
has either bad reduction or supersingular reduction. But even this alleged remedy
is insufficient, as we will see below. It is still conceivable that if (A, Q) has nei-
ther Archimedean nor congruence obstruction there is an FQ-point u ∈ Umax such
that Frobu,FQ

gives rise to (A, Q); the counterexample below does not rule out this
possibility.

Here is the simplest counterexample. Take any prime power q = pν ≥ 4, take for
U = Umax the (ordinary part of the) Igusa curve Ig(q)ord/Fq, and take for E/U the
corresponding universal elliptic curve. For a finite field (or indeed for any perfect
field) L/k, an L-valued point u ∈ Ig(q)ord(L) is an L-isomorphism class of pairs
(E/L, P ∈ E[q](L)) consisting of an elliptic curve E/L together with an L-rational
point of order q. Now consider the data (A = 1− 2q, Q = q2). The key fact is that
any E2/Fq2 with trace A2 = 1 − 2q is isomorphic to the extension of scalars of a
unique E1/Fq with trace A1 = 1, as will be shown in Lemma 4.1. But any such
E1/Fq has q rational points, so the group E1(Fq) is cyclic of order q, and hence
every point of order q in E1(Fq), and a fortiori every point of order q in E1(Fq2),
is already Fq-rational. So although the data (A = 1 − 2q, Q = q2) occurs from an
Fq2 -point, and hence has no congruence obstruction, it does not occur from a closed
point of degree 2.

There are three plausible hopes one might entertain in the function field case.
Let E/U be as above (fibrewise ordinary, nonconstant j-invariant). Here are the
first two.

Hope (1) Given a prime-to-p integer A, there exists a real constant C(A, E/U)
with the following property. If Q is a power of #k with Q ≥ C(A, E/U),
and if (A, Q) has neither Archimedean nor congruence obstruction, then
there exists a closed point P with norm Q and AP = A.

Hope (2) Given a prime-to-p integer A, and a real number ε > 0, there exists a
real constant C(A, ε, E/U) with the following property. If Q is a power
of #k with Q ≥ C(A, ε, E/U), and if (A, Q) has neither Archimedean
nor congruence obstruction, then for the number πA,Q of closed points
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with norm Q and AP = A and for the number nA,Q of FQ-valued points
u ∈ U(FQ) with Au,FQ

= A we have the inequalities

Q
1
2−ε < πA,Q ≤ nA,Q < Q

1
2+ε.

To describe the final hope, we must discuss another, weaker, notion of congruence
obstruction. Given a prime-to-p integer A, suppose there are infinitely many closed
points P with AP = A. Then as there are only finitely many closed points of
each degree, it follows that there are infinitely many powers Qi of #k for which
(A, Qi) has no congruence obstruction (and of course no Archimedean obstruction
either). For a fixed N = N0p

ν , if Qi is sufficiently large (Qi ≥ pν being the precise
condition), then GN contains an element whose trace is A mod N .

So we are led to a weaker notion of congruence obstruction, which is the literal
analogue of the number field condition: we say that the prime-to-p integer A has
a congruence obstruction at N if GN contains no element whose trace is A mod
N , and we say that A has a congruence obstruction if it has one at N for some N .
This brings us to the third hope.

Hope (3) Suppose the prime-to-p integer A has no congruence obstruction.
Then there exist infinitely many closed points P with AP =A.

Notice, however, that the assumption that A has no congruence obstruction is,
at least on its face, much weaker than the assumption that there are infinitely many
powers Qi of #k for which (A, Qi) has no congruence obstruction.

3. Lang–Trotter in the function field case:

the case of modular curves

In the number field case, there is no elliptic curve where we know Lang–Trotter
for even a single nonzero integer A. But over any finite field k, we will show that
there are infinitely many examples of situations E/U/k, nonconstant j-invariant
and fibrewise ordinary, where all three of our hopes are provably correct. These
examples are provided by modular curves over finite fields, and the universal families
of elliptic curves they carry.

Let us first describe the sorts of level structures we propose to deal with in a
given characteristic p > 0. We specify three prime-to-p positive integers (L, M, N0)
and a power pν ≥ 1 of p. We assume that (L, M, N0) are pairwise relatively prime.

Given this data, we work over a finite extension k/Fp given with a primitive
N0th root of unity ζN0 ∈ k, and consider the moduli problem, on k-schemes S/k,
of S-isomorphism classes of fibrewise ordinary elliptic curves E/S endowed with all
of the following data, which for brevity we will call an M-structure on E/S:

(1) a cyclic subgroup of order L, i.e., a Γ0(L)-structure on E/S,
(2) a point PM of order M , i.e., a Γ1(M)-structure on E/S,
(3) a basis (Q, R) of E[N0] with eN0(Q, R) = ζN0 , i.e., an oriented Γ(N0)-

structure on E/S,
(4) a generator T of Ker(V ν : E(pν/S) → E), i.e., an Ig(pν)-structure on E/S.

Having specified a finite extension k/Fp given with a primitive N0th root of unity
ζN0 ∈ k and the data (L, M, N0, p

ν) above, we make the further assumption that
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at least one of the following three conditions holds:
(1) M ≥ 4,
(2) N0 ≥ 3,
(3) pν ≥ 4.

This assumption guarantees that the associated moduli problem is representable
by a smooth, geometrically connected k-curve Mord over which we have the corre-
sponding universal family Euniv/Mord. For this situation, points of Mord have a
completely explicit description.

For any k-scheme S/k, the S-valued points of Mord are precisely the S-iso-
morphism classes of fibrewise ordinary elliptic curves E/S endowed with an
M-structure. In particular, for FQ/k a finite overfield, an FQ-valued point of Mord

is an FQ-isomorphism class of pairs

(an ordinary elliptic curve E/FQ, an M-structure on it).

What about closed points P of Mord with norm N(P) = Q? These are precisely
the orbits of Gal(FQ/k) on the set Mord(FQ) which contain deg(FQ/k) distinct
FQ-valued points. In more down-to-earth terms, an FQ-valued point lies in the
orbit of a closed point of norm N(P) = Q if and only it is not (the extension of
scalars of) a point with values in a proper subfield k ⊂ FQ1 � FQ. Let us denote
by

Mord(FQ)prim ⊂ Mord(FQ)
those FQ-valued points which lie in no proper subfield. So we have the tautological
formula

#{closed points with norm Q} =
#Mord(FQ)prim

deg(FQ/k)
.

4. Counting ordinary points on modular curves

by class number formulas

In this section, we recall the use of class number formulas in counting ordinary
points. In a later section, we will invoke the Brauer–Siegel theorem (but only for
quadratic imaginary fields, so really Siegel’s theorem [Sie]) and its extension to
quadratic imaginary orders to convert these class number formulas into the explicit
upper and lower bounds asserted in Hope (2). These class number formulas go
back to Deuring [Deu]; cf. also Waterhouse [Wat]. As Howe points out [Howe], the
story is considerably simplified if we make use of Deligne’s description [De-VA] of
ordinary elliptic curves over a given finite field. Let Fq be a finite field and E/Fq

an ordinary elliptic curve. We have

#E(Fq) = q + 1 − A,

for some prime-to-p integer A satisfying

A2 < 4q.

Conversely, given any prime-to-p integer A satisfying

A2 < 4q,

one knows by Honda–Tate, cf. [Honda] and [Tate], that there is at least one ordinary
elliptic curve E/Fq with

#E(Fq) = q + 1 − A.
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The first question, then, is to describe, for fixed (A, q) as above (i.e., A prime-to-p
with A2 < 4q) the category of all ordinary elliptic curves E/Fq with

#E(Fq) = q + 1 − A,

the morphisms being Fq-homomorphisms. We denote by Z[F ] the ring
Z[X]/(X2 − AX + q). Since A2 < 4q, this ring Z[F ] is an order in a quadratic
imaginary field, whose ring of integers we will denote O. [In the general Deligne
story we would need to work with the ring Z[F, q/F ], but here q/F is already
present, namely q/F = A − F .] Deligne provides an explicit equivalence of cate-
gories (by picking (!) an embedding of the ring of Witt vectors W (Fq) into C and
then taking the first integer homology group of the Serre–Tate canonical lifting;
cf. [Mes, V 2.3, V 3.3, and Appendix]) of this category with the category of Z[F ]-
modules H which as Z-modules are free of rank 2 and such that the characteristic
polynomial of F acting on H is

X2 − AX + q.

In this equivalence of categories, suppose an ordinary E/Fq gives rise to the Z[F ]-
module H. For any prime-to-p integer N , the group E[N ](Fq) as Z[F ]-module, F

acting as the arithmetic Frobenius Frobq in Gal(Fq/Fq), is just the Z[F ]-module
H/NH. For a power pν of p, the group E[pν ](Fq) as Z[F ]-module is obtained from
H as follows. We first write the Zp[F ]-decomposition

H ⊗Z Zp = Het ⊕ Hconn,

Het := Ker(F − unitq(A)), Hconn := Ker(F − q/ unitq(A)),

of H ⊗Z Zp as the direct sum of two free Zp-modules of rank one, of which the first
is called the “unit root subspace”. Then for each power pν of p, we have

E[pν ](Fq) ∼= Het/pνHet.

An equivalent, but less illuminating, description of Het/pνHet is as the image of
F ν in H/pνH (because H/pνH is the direct sum Het/pνHet⊕Hconn/pνHconn, and
F ν is an isomorphism on the first factor but kills the second factor).

Here is an application of Deligne’s description.

Lemma 4.1. Suppose E2/Fq2 is an elliptic curve with trace A2 = 1 − 2q. Then
there exists a unique elliptic curve E1/Fq with trace A1 = 1 which gives rise to
E2/Fq2 by extension of scalars.

Proof. Denote by F2 the Frobenius for E2/Fq2 . Then F2 satisfies

F 2
2 − (1 − 2q)F2 + q2 = 0, i.e. F2 = (F2 + q)2.

Thus F1 := F2 + q is a square root of F2, and it satisfies the equation

F 2
1 − F1 + q = 0, i.e. F2 = F1 − q.

This last equation shows that Z[F2] = Z[F1]. In terms of the Z[F2]-module H2

attached to E2/Fq2 , E1/Fq is the unique curve over Fq corresponding to the same
H2, now viewed as a Z[F1]-module. �

Class number formulas are based on the following “miracle” of complex multi-
plication of elliptic curves. [We say “miracle” because the analogous statements
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can be false for higher-dimensional abelian varieties.] Given a Z[F ]-module H as
above, we can form a possibly larger order R,

Z[F ] ⊂ R ⊂ O,

defined as
R := EndZ[F ](H).

Of course this R is just the Fq-endomorphism ring of the corresponding E/Fq,
thanks to the equivalence. So tautologically H is an R-module. The miracle is
that H is an invertible R-module; cf. [Sh, 4.11, 5.4.2]. Of course any order
Z[F ] ⊂ R ⊂ O can occur as H varies, since one could take R itself as an H.
So if we separate the ordinary elliptic curves E/Fq with given data (A, q) by the
orders which are their Fq-endomorphism rings, then for a given order R the Fq-
isomorphism classes with that particular R are the isomorphism classes of invertible
R-modules, i.e., the elements of the Picard group Pic(R), whose order is called the
class number h(R) of the order R.

Suppose that we now fix not only (A, q) but also the endomorphism ring R.
Then for any ordinary elliptic curve E/Fq with this data, the question of exactly
how many M-structures E/Fq admits is determined entirely by the data consisting
of (A, q) and R. Indeed, if E/Fq gives rise to H, then H is an invertible R-module.
Now for any invertible R-module H1, and for any integer N1 ≥ 1, the invert-
ible R/N1R-module H1/N1H1 is R-isomorphic to R/N1R (simply because R/N1R,
being finite, is semi-local, so has trivial Picard group), and hence a fortiori is Z[F ]-
isomorphic to R/N1R. Taking H1 to be H and N1 to be LMN0p

ν , we conclude that
H/(LMN0p

ν)H is Z[F ]-isomorphic to R/(LMN0p
ν)R. Translating back through

Deligne’s equivalence, we see that E[LMN0p
ν ]((Fq) is Z[F ]-isomorphic to

R/LMN0R × F ν(R/pνR).

Thus we have the following dictionary:

(1) Γ0(L)-structure: a cyclic subgroup of R/LR of order L which is Z[F ]-stable.
(2) Γ1(M)-structure: a point P ∈ R/MR which has additive order M and

which is fixed by F .
(3) unoriented Γ(N0)-structure: a Z/N0Z-basis of R/N0R consisting of points

fixed by F . An unoriented Γ(N0)-structure exists if and only if F acts as
the identity on R/N0R. If an unoriented Γ(N0)-structure exists, there are
precisely #GL(2, Z/N0Z) of them. Of these, precisely #SL(2, Z/N0Z) are
oriented (for a chosen ζN0).

(4) Ig(pν)-structure: a Z/pνZ-basis of F ν(R/pνR) (∼= Het/pνHet) which is
fixed by F , or equivalently, an F -fixed point in R/pνR which has additive
order pν .

Thus we see explicitly that how many M-structures E/Fq admits is determined
entirely by the data consisting of (A, q) and R. Let us denote this number by

#M(A, q, R).

Notice also that for such an E/Fq giving rise to (A, q) and R, the automorphism
group of E/Fq is the group R× of units in the endomorphism ring R. Recall
that Fq points on the modular curve Mord are Fq-isomorphism classes of pairs
(ordinary E/Fq,M-structure on E/Fq). So the number of Fq points on Mord whose
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underlying ordinary elliptic curve gives rise to the data (A, q, R) is the product

#M(A, q, R)h(R)/#R×.

For given (ordinary) data (A, q), with Z[F ] := Z[X]/(X2 −AX + q) and ring of
integers O ⊂ Q[F ], let us denote by

Mord(Fq, A) ⊂ Mord(Fq)

the set of Fq points on Mord whose underlying ordinary elliptic curve gives rise to
the data (A, q). Then #Mord(Fq, A) is a sum, over all orders R between Z[F ] and
O:

#Mord(Fq, A) =
∑

orders Z[F ]⊂R⊂O
#M(A, q, R)h(R)/#R×.

Before we try to count M-structures, let us record the congruences and inequal-
ities which necessarily hold when such structures exist.

Lemma 4.2. Let k/Fp be a finite extension, given with a primitive N0th root of
unity ζN0 ∈ k, Fq/k a finite extension, and E/Fq an ordinary elliptic curve which
gives rise to the data (A, q, R). Suppose that E/Fq admits an M-structure. Then
q ≡ 1 mod N0, and we have the following additional congruences.

(1) There exists a ∈ (Z/LZ)× satisfying a2 − Aa + q ≡ 0 mod L; i.e., the
polynomial X2 − AX + q factors completely mod L. Equivalently, there
exists a ∈ (Z/LZ)× such that A ≡ a + q/a mod L.

(2) q + 1 ≡ A mod MN2
0 pν .

Moreover, we have q ≥ pν if p is odd. When p = 2, we also have q ≥ pν except in
the two exceptional cases (q, pν) = (2, 4) and (q, pν) = (4, 8); in those two cases we
have A = −1 and A = −3, respectively.

Proof. That q ≡ 1 mod N0 results from the fact that Fq contains a primitive
N0th root of unity. To prove (1), suppose we have an F -stable Z/LZ subgroup
Γ0 ⊂ R/LR. Then F , being an automorphism of R/LR, acts on this subgroup by
multiplication by some unit a ∈ (Z/LZ)×. But F 2 − AF + q annihilates R, so it
annihilates R/LR. As Γ0 ⊂ R/LR is F -stable, and F acts on Γ0 by a, we get that
a2 − Aa + q ∈ Z/LZ annihilates this cyclic group of order L, so a2 − Aa + q = 0
in Z/LZ. The existence of such an a is equivalent to the polynomial X2 −AX + q
factoring mod L, and to the congruence A ≡ a+ q/a mod L (then the factorization
is (X −a)(X − q/a) mod L). The congruence (2) is just the point-count divisibility
that follows from having an M-structure. To prove the “moreover” statement, we
exploit the fact that, by (2), pν divides q + 1 − A. We argue by contradiction. If
pν > q, then pν ≥ pq (since q is itself a power of p). So pν is divisible by pq, and
hence pq divides q + 1−A. By the Weil bound and ordinarity, q + 1−A is nonzero
(indeed q + 1 − A > (

√
q − 1)2 > 0), so from the divisibility we get the inequality

q + 1 − A ≥ pq.

Again by the Weil bound, we have (
√

q + 1)2 > q + 1 − A, so we get

q + 1 + 2
√

q = (
√

q + 1)2 > pq = (p − 2)q + q + q.

Adding 1 − 2
√

q − q to both sides, we get

2 > (p − 2)q + (
√

q − 1)2.

This is nonsense if p ≥ 3. If p = 2, this can hold, precisely in the indicated cases. �
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To say more about how this works explicitly, we need to keep track, for given
ordinary data (A, q), of the orders between Z[F ] and the full ring of integers O.
The orders R ⊂ O are the subrings of the form Z+fO, with f ≥ 1 an integer. The
integer f ≥ 1 is called the conductor of the order; it is the order of the additive
group O/R. Because (A, q) is given, the particular order Z[F ] ⊂ O is given, and
we will denote by fA,q its conductor:

fA,q := conductor of Z[F ].

An order R ⊂ O contains Z[F ] if and only if its conductor fR divides fA,q. For
an intermediate order Z[F ] ⊂ R ⊂ O, we define its co-conductor fc

R to be the
quotient:

fc
R := fA,q/fR = #(R/Z[F ]).

Of course this notion of co-conductor only makes sense because we have specified
the particular order Z[F ]. Just as the conductor measures how far “down” an
intermediate order is from O, so its co-conductor measures how far “up” it is from
Z[F ].

Lemma 4.3. Let k/Fp be a finite extension, given with a primitive N0th root of
unity ζN0 ∈ k, Fq/k a finite extension, and E/Fq an ordinary elliptic curve which
gives rise to the data (A, q, R). Suppose that the following congruences hold.

(1) There exists a ∈ (Z/LZ)× satisfying a2 − Aa + q ≡ 0 mod L.
(2) q + 1 ≡ A mod MN0p

ν .

Then we have the following conclusions.
(1) Whatever the order R, E/Fq admits precisely φ(pν) Ig(pν)-structures.
(2) If R has co-conductor prime to L, then E/Fq admits at least one Γ0(L)-

structure.
(3) If R has co-conductor prime to M , then E/Fq admits precisely φ(M)

Γ1(M)-structures.
(4) If R has co-conductor divisible by N0, then E/Fq admits precisely

#SL(2, Z/N0Z) oriented Γ(N0)-structures. Otherwise, E/Fq admits none.

Proof. (1) Since E/Fq is ordinary, the group E(Fq)[p∞] is noncanonically Qp/Zp.
So the p-power torsion subgroup of E(Fq) is cyclic, and its order is the highest
power of p which divides #E(Fq) = q + 1−A. Because this cardinality is divisible
by pν , E(Fq)[pν ] is cyclic of order pν , and its φ(pν) generators are precisely the
Ig(pν)-structures on E/Fq.

(2) and (3) The existence of a Γ0(L) (resp. Γ1(M)) structure depends only upon
R/LR (resp. R/MR) as a Z[F ]-module. If R has co-conductor prime to L (resp.
M), then the inclusion Z[F ] ⊂ R induces a Z[F ]-isomorphism Z[F ]/LZ[F ] ∼= R/LR
(resp. Z[F ]/MZ[F ] ∼= R/MR). So it suffices to treat the single case when R = Z[F ].
We will now show in Z[F ]/LZ[F ] (resp. Z[F ]/MZ[F ]) that the kernel of F − a
(resp. F − 1) is a cyclic subgroup of order L (resp. M). Once we show this, then
the kernel of F − a in Z[F ]/LZ[F ] is the asserted Γ0(L)-structure, and the φ(M)
generators of the kernel of F − 1 in Z[F ]/MZ[F ] are all the Γ1(M)-structures. The
assertion about the kernels results from the fact (elementary divisors) that for an
endomorphism Λ of a finite free Z/LZ-module (resp. of a finite free Z/MZ-module),
Ker(Λ) and Coker(Λ) are isomorphic abelian groups. [In fact, as Bill Messing
explained to me, the kernel and cokernel of an endomorphism of any finite abelian
group are isomorphic abelian groups, but we will not need that finer statement
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here.] Applying this to the endomorphisms F − a of Z[F ]/LZ[F ] and F − 1 of
Z[F ]/MZ[F ], we find that the relevant kernels are the cyclic groups underlying the
quotient rings

Z[F ]/(L, F − a) := Z[X]/(L, X2 − aX + q, X − a)
∼= Z/(L, a2 − aA + q) ∼= Z/LZ

and

Z[F ]/(M, F − 1) := Z[X]/(M, X2 − aX + q, X − 1)
∼= Z/(M, 1 − A + q) ∼= Z/MZ.

(4) We have q ≡ 1 mod N0 because Fq contains a primitive N0th root of unity;
by assumption N2

0 divides q + 1 − A. We must show that all the points of order
dividing N0 are Fq-rational if and only if R has co-conductor divisible by N0. All
the points of order dividing N0 are Fq-rational if and only if F −1 kills R/NR, i.e.,
if and only if (F −1)/N , which a priori lies in the fraction field of O, lies in R. [Let
us remark in passing that in order for (F − 1)/N to lie in O, it is necessary and
sufficient that its norm and trace down to Q lie in Z. But its norm down to Q is
(q+1−A)/N2

0 and its trace down to Q is (A−2)/N0 = (q−1)/N0+(A−q−1)/N0.]
Thus there exist Γ(N0)-structures if and only if R contains the order Z[(F −1)/N0].
This last order visibly has co-conductor N0, so the orders containing it are precisely
those whose co-conductor is divisible by N0. Once any (possibly unoriented) Γ(N0)
structure exists, there are precisely #SL(2, Z/N0Z) oriented Γ(N0)-structures. �

Remark 4.4. In the above lemma, we don’t specify how many Γ0(L)-structures
there are,“even” when R has co-conductor prime to L, and we don’t say when any
exist for other R. We also don’t say how many Γ1(M)-structures there are for other
R. For these R, we will be able to make do with the trivial inequalities, valid for
any R,

0 ≤ #{Γ0(L)-structures on R/LR} ≤ #P1(Z/LZ),

0 ≤ #{Γ1(M)-structures on R/MR} ≤ φ(M)#P1(Z/MZ).

5. Interlude: Brauer–Siegel for quadratic imaginary orders

The following minor variant of Siegel’s theorem for quadratic imaginary fields is
certainly well known to the specialists. We give a proof here for lack of a suitable
reference. For a quadratic imaginary order, i.e., an order R in a quadratic imaginary
field, we denote by dR its discriminant, by h(R) := # Pic(R) its class number, and
by

h�(R) := h(R)/#R×

its “normalized” class number. [We should warn the reader that in Gekeler [Ge,
2.13, 2.14] his h� and his H� are twice ours.]

Theorem 5.1. Given a real ε > 0, there exists a real constant Cε > 0 such that
for any quadratic imaginary order R with |dR| ≥ Cε, we have the inequalities

|dR|
1
2−ε ≤ h�(R) ≤ |dR|

1
2+ε.
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Proof. Given a quadratic imaginary order R, denote by fR its conductor, K its
fraction field, and OK the ring of integers of K. Then the discriminant dR of
R = Z + fROK is related to the discriminant dOK

by the simple formula

dR = f2
RdOK

.

Their normalized class numbers are related as follows (cf. [Cox, 7.2.6 and exc.
7.30(a)] or [Sh, p. 105, exc. 4.12]):

h�(R)
h�(OK)

=
#(OK/fROK)×

#(Z/fRZ)×
.

We rewrite this as follows. Given the quadratic imaginary field K, denote by
χK the associated Dirichlet character: for a prime number p, χK(p) := 1 if p splits
in K, χK(p) := 0 if p ramifies in K, and χK(p) := −1 if p is inert in K. We then
define the multiplicative function φK on strictly positive integers by

φK(1) = 1, φK(nm) = φK(n)φK(m) if gcd(n, m) = 1,

φK(pν) = pν−1(p − χK(p)) if ν ≥ 1.

In terms of this function, we can rewrite the relation of normalized class numbers
as

h�(R) = φK(fR)h�(OK).

By Siegel’s theorem, applied with ε/2, there exist real constants Aε > 0 and Bε > 0
such that for all quadratic imaginary fields K we have

(∗∗ε/2) : Aε|dOK
| 12−ε/2 ≤ h�(OK) ≤ Bε|dOK

| 12+ε/2.

[This is true without A and B for |d| large; A and B take care of the small |d|.
Conversely, if we know (∗∗ε/2) for all |d|, we get (∗∗ε) for large |d| with A = B = 1.]

In view of the formulas

h�(R) = φK(fR)h�(OK)

and
dR = f2

RdOK
,

it suffices to show that there exist real constants A′
ε > 0 and B′

ε > 0 such that for
every quadratic imaginary field K and every integer f ≥ 1, we have

A′
εf

1−ε ≤ φ(f) ≤ B′
εf

1+ε.

In view of the definition of φK , this is immediate from the following two observa-
tions. First, for large (how large depending on ε) primes p, we have

p1−ε ≤ p − 1 ≤ φK(p) ≤ p + 1 ≤ p1+ε.

Second, for the finitely many, say N , small primes p where this fails, we can find
real constants A′′

ε > 0 and B′′
ε > 0 such that

A′′
ε p1−ε ≤ p − 1 ≤ φK(p) ≤ p + 1 ≤ B′′

ε p1+ε

holds for these N primes. We define

A′
ε := (A′′

ε )N , B′
ε := (B′′

ε )N .

Then we have the desired inequality

A′
εf

1−ε ≤ φK(f) ≤ B′
εf

1+ε.
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Once we have this, we combine it with Siegel’s theorem for quadratic imaginary
fields to conclude that for every quadratic imaginary order R we have

AεA
′
ε|dR|

1
2−ε/2 ≤ h�(R) ≤ BεB

′
ε|dR|

1
2+ε/2.

Then as soon as |dR| is large enough that

1 ≤ AεA
′
ε|dR|ε/2

and
BεB

′
ε|dR|−ε/2 ≤ 1,

we get the assertion of the theorem. �

It is also convenient to introduce the (normalized) Kronecker class number of a
quadratic imaginary order R, H�(R), defined as the sum of the normalized class
numbers of all orders between R and the ring of integers O in its fraction field:

H�(R) :=
∑

orders R⊂R′⊂O
h�(R′).

Corollary 5.2. Given a real ε > 0, there exists a real constant Cε > 0 such that
for any quadratic imaginary order R with |dR| ≥ Cε, we have the inequalities

|dR|
1
2−ε ≤ H�(R) ≤ |dR|

1
2+ε.

Proof. We trivially have H�(R) ≥ h�(R), so we get the asserted lower bound for
H�(R). To get the lower bound, recall from the proof of the previous theorem that
for any quadratic imaginary order R′, we have

h�(R′) ≤ BεB
′
ε|dR′ | 12+ε/2.

So we get

H�(R) ≤
∑

orders R⊂R′⊂O
BεB

′
ε|dR′ | 12+ε/2.

The co-conductors fc
R′ := fR/fR′ of these intermediate orders with respect to R

are precisely the divisors of fR, and we have

dR′ = dR/(fc
R′)2.

Thus we have
H�(R) ≤

∑
n|fR

BεB
′
ε|dR/n2| 12+ε/2.

But the sum ∑
n≥1

1/n1+ε

converges, to ζ(1 + ε), so we get the inequality

H�(R) ≤ BεB
′
εζ(1 + ε)|dR|

1
2+ε/2

for all quadratic imaginaries R, and we need only take |dR| large enough that

BεB
′
εζ(1 + ε)|dR|−ε/2 ≤ 1

to insure the asserted upper bound. �
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6. Point-count estimates

We now return to the modular curve Mord/k. Recall that we fix a characteristic
p > 0, three prime-to-p positive integers (L, M, N0) and a power pν ≥ 1 of p. We
assume that (L, M, N0) are pairwise relatively prime. We assume that either M ≥ 4
or N0 ≥ 3 or pν ≥ 4. We work over a finite extension k/Fp given with a primitive
N0th root of unity ζN0 ∈ k. We have the smooth, geometrically connected mod-
ular curve Mord/k, which parameterizes isomorphism classes of fibrewise ordinary
elliptic curves over k-schemes endowed with a Γ0(L)-structure, a Γ1(M)-structure,
a Γ(N0)-structure, and an Ig(pν)-structure.

For a finite extension Fq/k, and a prime-to-p integer A with |A| < 2
√

q, we
denote by Z[F ] := Z[X]/(X2 − AX + q) and by Mord(Fq, A) the set of Fq-points
on Mord whose underlying ordinary elliptic curve gives rise to the data (A, q). We
have already noted, in Lemma 4.2, that q ≡ 1 mod N0, and that Mord(Fq, A) is
empty unless (A, q) satisfies both of the following conditions:

(1) X2 − AX + q factors completely mod L,
(2) A ≡ q + 1 mod MN2

0 pν .

Lemma 6.1. Denote by D0 = D0(L, M, N0, p
ν) and D1 = D1(L, M, N0, p

ν) the
nonzero constants

D0 := φ(M)#SL(2, Z/N0Z)φ(pν),

D1 := #P1(Z/LZ)#P1(Z/MZ)D0,

with the convention that when any of L, M, N0, p
ν is 1, the corresponding factor is

1. For (A, q) with A prime to p, |A| < 2
√

q, and q ≡ 1 mod N0 satisfying the two
conditions

(1) X2 − AX + q factors completely mod L,
(2) A ≡ q + 1 mod MN2

0 pν ,

we have the inequalities

D0h
�(Z[(F − 1)/N0]) ≤ #Mord(Fq, A) ≤ D1H

�(Z[(F − 1)/N0]).

Proof. This is immediate from Lemma 4.3 and the identity

#Mord(Fq, A) =
∑

orders Z[F ]⊂R⊂O
#M(A, q, R)h�(R).

�

Lemma 6.2. Given a prime-to-p integer A, suppose there exists an Fq/k with
q > A2/4 such that (A, q) satisfies the conditions of the previous lemma. If p = 2,
suppose further that q ≥ 8. Then there exist infinitely many powers Q of q such
that (A, Q) satisfies these same conditions.

Proof. We first observe that the “moreover” part of Lemma 4.2, and the assumption
that q ≥ 8 if p = 2, insures that q ≥ pν . So the p-part of the second condition is
simply that A ≡ 1 mod pν , and this will hold whatever power Q we take. The other
conditions depend only on q mod LMN2

0 . As q is invertible mod LMN2
0 , we have

qe ≡ 1 mod LMN2
0 for some divisor e of φ(LMN2

0 ). Then every power Q := q1+ne,
n ≥ 1 has Q ≡ q mod LMN2

0 . �
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Theorem 6.3. Given a prime-to-p integer A, suppose there exists an Fq/k with
q > A2/4 such that (A, q) satisfies the conditions of Lemma 6.1. If p = 2, sup-
pose further that q ≥ 8. Given a real number ε > 0, there exists a real con-
stant C(A, ε,Mord/k) such that whenever FQ/k is a finite extension with Q ≥
C(A, ε,Mord/k) such that (A, Q) satisfies the conditions of Lemma 6.1, then we
have the inequalities

Q
1
2−ε ≤ #Mord(A, Q) < Q

1
2+ε.

Proof. This is immediate from Lemma 6.1 and the Brauer–Siegel inequalities: the
discriminant of Z[(F − 1)/N0], for F relative to FQ, is (A2 − 4Q)/N2

0 , and A and
N0 are fixed while Q grows. �

We now explain how to pass from estimates for FQ-points to estimates for closed
points of norm Q, with given A. Denote by Mord

closed(A, Q) the set of closed points
of norm Q giving rise to (A, Q), and by

Mord(A, Q)prim ⊂ Mord(A, Q)

the subset of those FQ-points which, viewed simply as points in Mord(FQ), come
from no proper subfield k ⊂ FQ1 � FQ. As noted at the end of Section 3, we have

#Mord
closed(A, Q) = #Mord(A, Q)prim/ log#k(Q).

So our basic task is to estimate #Mord(A, Q)prim.

Lemma 6.4. Let A be a prime-to-p integer, Q a prime power, and Fq ⊂ FQ a
subfield. There exists a list, depending on (A, Q, q), of at most six integers a such
that if E0/Fq is an elliptic curve with #E0(FQ) = Q+1−A, then #E0(Fq) = q+1−a
for some a on the list.

Proof. Since A is prime to p, any such E0/Fq becomes ordinary over FQ, so is
already ordinary. Denote by n := deg(FQ/Fq), by F the Frobenius of E0 ⊗Fq

FQ//FQ, and by F0 the Frobenius of E0/Fq. We have an inclusion of orders

Z[F ] ⊂ Z[F0].

These orders have the same fraction field K, and in K we have (F0)n = F . But K
is quadratic imaginary, so it contains at most 6 roots of unity. So if F , a root of
X2 −AX + q in K, has any nth roots in K, it has at most 6, since the ratio of any
two is a root of unity in K. The list is then the list of traces, down to Q, of all the
nth roots of F . �

In fact, we will need only the following standard fact, whose proof we leave to
the reader.

Lemma 6.5. Let A be an integer, q a prime power, and Q = q2. If E0/Fq is an
elliptic curve with #E0(Fq2) = q2 + 1−A, then #E0(Fq) = q + 1− a with a one of
the two roots of X2 − 2q = A.

Theorem 6.6. Given a prime-to-p integer A, suppose there exists an Fq/k with
q > A2/4 such that (A, q) satisfies the conditions of Lemma 6.1. If p = 2, sup-
pose further that q ≥ 8. Given a real number ε > 0, there exists a real con-
stant C ′(A, ε,Mord/k) such that whenever FQ/k is a finite extension with Q ≥
C ′(A, ε,Mord/k) such that (A, Q) satisfies the conditions of Lemma 6.1, then we
have the inequalities

Q
1
2−ε ≤ #Mord(A, Q)prim < Q

1
2+ε.
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Proof. The statement only gets harder as ε shrinks, so it suffices to treat the case
when 0 < ε < 1/10. If the degree of FQ over k is odd, we will use only the trivial
inequality

#Mord(A, Q) − #Mord(A, Q)prim ≤
∑

k⊂Fq�FQ

#Mord(Fq).

Whatever the value of q, we have a uniform upper bound of the form

#Mord(Fq) ≤ σq,

for σ the sum of the Betti numbers of Mord ⊗k k. But if deg(FQ/k) is odd, each of
the at most log#k(Q) terms is at most σQ

1
3 , so this error is, for large Q, negligible

with respect to Q
1
2−ε.

If the degree of FQ over k is even, we can still use the above crude argument
to take care of imprimitive points which come from a subfield k ⊂ Fq � FQ with
deg(FQ/Fq) ≥ 3.

But we must be more careful about imprimitive points in #Mord(A, Q) which
come from the subfield Fq ⊂ FQ over which FQ is quadratic. If X2 − 2q = A
has no integer solutions, then there are no such imprimitive points. If X2 − 2q =
A has integer solutions, say ±a, then the number of such imprimitive points in
#Mord(A, Q) is

#Mord(a, q) + #Mord(−a, q).
If we take Q so large that

√
Q is large enough for Theorem 6.3 to apply to the sets

Mord(±a, q), then these sets have size at most Q
1
4+ ε

2 , again negligible with respect
to Q

1
2−ε. �

Combining this with the identity

#Mord
closed(A, Q) = #Mord(A, Q)prim/ log#k(Q),

and noting that log#k(Q) is negligible with respect to Qε, we get the following
corollary.

Corollary 6.7. Given a prime-to-p integer A, suppose there exists an Fq/k with
q > A2/4 such that (A, q) satisfies the conditions of Lemma 6.1. If p = 2, sup-
pose further that q ≥ 8. Given a real number ε > 0, there exists a real con-
stant C ′′(A, ε,Mord/k) such that whenever FQ/k is a finite extension with Q ≥
C ′′(A, ε,Mord/k) such that (A, Q) satisfies the conditions of Lemma 6.1, then we
have the inequalities

Q
1
2−ε ≤ #Mord

closed(A, Q) < #Mord(A, Q) < Q
1
2+ε.

To end this section, we interpret its results in terms of the mod N Galois images
GN := ρN (π1(Mord)) and their subsets GN (A, Q) ⊂ GN introduced in Section 2.

Theorem 6.8. Given a prime-to-p integer A, suppose that for the single value
N := LMN2

0 pν , A mod N is the trace of some element of GN . Then there exist
infinitely many closed points P of Mord with AP = A.

Proof. By Chebotarev, every conjugacy class in GN is the image of FrobP for
infinitely many closed points P. In particular, every conjugacy class in GN is the
image of some FrobP with N(P) := Q ≥ Max(A2/4, 8). By Lemma 4.2, we have
Q ≥ pν , and (AP , Q) satisfies the two conditions of that lemma, namely
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(1) X2 − APX + Q factors completely mod L,
(2) AP ≡ Q + 1 mod MN2

0 pν .

But A ≡ AP mod N , and hence (A, Q) satisfies these same two conditions. The
result now follows from Lemma 6.2 and Corollary 6.7, applied to (A, Q). �

Similarly, we have the following result.

Theorem 6.9. Given a prime-to-p integer A and a power q of #k with q ≥
Max(A2/4, 8), suppose that for the single value N := LMN2

0 pν , the subset GN (A, q)
⊂ GN is nonempty. Then there exist infinitely many closed points P of Mord with
AP = A and with N(P) ≡ q mod LMN2

0 .

Proof. Pick an element γ in GN (A, q); its conjugacy class in GN is the image of
FrobP for infinitely many closed points P, so is the image of some FrobP with
N(P) := Q ≥ Max(A2/4, 8). Exactly as in the proof of the theorem above, Q ≥ pν

and (AP , Q) satisfies the two conditions of Lemma 4.2. We write these now as three
conditions, breaking the second one into a prime-to-p part and a p-part:

(1) X2 − APX + Q factors completely mod L,
(2a) AP ≡ Q + 1 mod MN2

0 ,
(2b) AP ≡ Q + 1 mod pν .

As FrobP lands in GN (A, Q), we have the congruences A ≡ AP mod N and Q ≡ q
mod LMN2

0 . Both Q and q are 0 mod pν . Hence (A, Q) satisfies these same
conditions, and we conclude as above. �

7. Exact and approximate determination of Galois images

If we take the inverse limit of the mod N representations as N grows multiplica-
tively, we get a representation

ρ = ρnot p × ρp∞ : π1(Mord) → GL(2, Ẑnot p)det in (#k)Ẑ × Z×
p .

Here Ẑnot p :=
∏

� 	=p Z�, and (#k)Ẑ is the closed subgroup of (Ẑnot p)× profinitely
generated by #k. Under this representation, the geometric fundamental group
lands in SL(2, Ẑnot p) × Z×

p .
The following theorem is certainly well known to the specialists. We give a proof

for lack of a suitable reference.

Theorem 7.1. In suitable bases, the image group

ρ(π1(Mord)) ⊂ GL(2, Ẑnot p)det in (#k)Ẑ × Z×
p

consists of those elements which mod L have the shape (�, 0, �, �), mod M have
the shape (1, 0, �, �), mod N0 have the shape (1, 0, 0, 1), mod pν have the shape
(1) (i.e., the p-component is 1 mod pν). The image of the geometric fundamental
group,

ρ(πgeom
1 (Mord)) ⊂ SL(2, Ẑnot p) × Z×

p ,

is just the intersection of ρ(π1(Mord)) with SL(2, Ẑnot p) × Z×
p ; i.e., it consists of

those elements of SL(2, Ẑnot p) × Z×
p with the imposed shapes.

Proof. In a basis adapted to the imposed level structures, every element of the
image ρ(π1(Mord)) has the asserted shapes. To see this, denote by K the function
field of Mord, and by K an algebraic closure of K. Viewing η := Spec(K) as a
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geometric generic point of Mord, π1(Mord) viewed as π1(Mord, η) is a quotient of
Aut(K/K), and ρ on Aut(K/K) is the action of this group on the profinite group∏

all primes �

T�(Euniv(K)) = Tnot p(Euniv(K)) × Tp(Euniv(K)).

Here Tnot p(Euniv(K)) is a free Ẑnot p-module of rank 2, and Tp(Euniv(K)) is a free
Zp-module of rank one. Then take any Zp-basis of Tp, and any Ẑnot p-basis of Tnot p

adapted to the imposed Γ0(L), Γ1(M), and Γ(N0)-structures. Then Aut(K/K) acts
through elements of the asserted shape.

We next explain that it suffices to show that the image

ρ(πgeom
1 (Mord)) ⊂ SL(2, Ẑnot p) × Z×

p

is as asserted. For if F ∈ π1(Mord)) is any element of determinant #k, then
ρ(π1(Mord)) is the semidirect product of ρ(πgeom

1 (Mord)) with the Ẑ generated by
F . [Such elements F exist: if Mord has a k-point, take its Frobenius, otherwise
take the ratio of the Frobenii at two closed points whose large degrees differ by
one.] The key point is that ρ(F ) is an element of GL(2, Ẑnot p)det in (#k)Ẑ × Z×

p of
the asserted shape. By the explicit description of ρ(πgeom

1 (Mord)), this semidirect
product itself has the asserted description.

That the image

ρ(πgeom
1 (Mord)) ⊂ SL(2, Ẑnot p) × Z×

p

is as asserted is a geometric statement, so we may extend scalars from k to k.
Suppose first that either M ≥ 4 or that N0 ≥ 3. In that case we can consider
the moduli problem M0/k, where we require Γ0(L), Γ1(M), and (oriented) Γ(N0)-
structures, but no longer impose either ordinarity or any further condition on p-
power torsion. Suppose we know that for Mord

0 , the image

ρ(πgeom
1 (Mord

0 )) ⊂ SL(2, Ẑnot p) × Z×
p

is as asserted. Then we argue as follows. By a fundamental theorem of Igusa, cf.
[Ig] and [K-M, 12.6.2], at any supersingular point s ∈ M0(k), the p-adic character
ρp∞ restricted to the inertia group Is at s has largest possible image:

ρp∞(Is) = Z×
p .

Therefore the covering Mord → Mord
0 is finite étale Galois, with group (Z/pνZ)×.

So ρ(πgeom
1 (Mord)) ⊂ ρ(πgeom

1 (Mord
0 )) is an open subgroup of index φ(pν). But

ρ(πgeom
1 (Mord)) lies in the group it is asserted to be, and that group has the same

index φ(pν) in the known ρ(πgeom
1 (Mord

0 )). So we get the asserted description of
ρ(πgeom

1 (Mord)).
We now show that for Mord

0 , the image

ρ(πgeom
1 (Mord

0 )) ⊂ SL(2, Ẑnot p) × Z×
p

is as asserted. By Igusa’s theorem, at any supersingular point of M0, ρp∞(Is) = Z×
p .

But the representation ρnot p is everywhere unramified on M0, so ρ(Is) = {1}×Z×
p

in the product SL(2, Ẑnot p) × Z×
p . So we are reduced to showing that the image

ρnot p(π
geom
1 (Mord

0 )) ⊂ SL(2, Ẑnot p)
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is as asserted. This follows from the tame specialization theorem [Ka-ESDE,
8.17.14] and the corresponding result over C. The moduli scheme M0 is one geo-
metric fibre of the corresponding moduli scheme M0 over Z[ζN0 ][1/LMN0], which
one knows has a proper smooth compactification M0 over Z[ζN0 ][1/LMN0] with
“infinity” a divisor which is finite étale over Z[ζN0 ][1/LMN0]. Extend scalars from
Z[ζN0 ][1/LMN0] to the Witt vectors W (k). On this scheme M0/W (k), the lisse
Ẑnot p-sheaf which “is” ρnot p is (automatically) tamely ramified along “infinity”,
so by the tame specialization theorem its geometric monodromy is the same on
the special fibre as on the geometric generic fibre obtained by choosing (!) an
embedding of W (k) ⊂ C.

It remains to show that the image

ρ(πgeom
1 (Mord)) ⊂ SL(2, Ẑnot p) × Z×

p

is as asserted in the general case, i.e., without the assumption that either M ≥ 4
or N0 ≥ 3. To treat this case, pick two distinct primes �1 and �2, both of which are
odd and prime to LMN0p. Consider the moduli problems Mord

1 , respectively Mord
2 ,

over k, where in addition to imposing an M-structure we impose also an oriented
Γ(�1)-structure, resp. an oriented Γ(�2)-structure. The two groups ρ(πgeom

1 (Mord
i )),

i = 1, 2, are then known. Both are subgroups of ρ(πgeom
1 (Mord

i )), and together they
visibly generate the asserted candidate forρ(πgeom

1 (Mord
i )). �

Using this result, one can say something, again well known to the specialists, in
the case of general families.

Theorem 7.2. Let E/U/k be a family of fibrewise ordinary elliptic curves with
nonconstant j-invariant over a base curve U/k, k a finite field, which is smooth
and geometrically connected.

(1) The image ρ(πgeom
1 (U)) is open in SL(2, Ẑnot p)×Z×

p ; there exists an integer
D = D0p

ν , D0 prime to p and ν ≥ 0, such that ρ(πgeom
1 (U)) contains the

subgroup

Ker(SL(2, Ẑnot p) × Z×
p → SL(2, Z/D0Z) × (Z/pνZ)×),

which is the kernel of reduction mod (D0, p
ν).

(2) Denote by Ggeom
D ⊂ SL(2, Z/D0Z) × (Z/pνZ)× the mod D image

ρD(πgeom
1 (U)), and denote by GD ⊂ GL(2, Z/D0Z)×(Z/pνZ)× the mod D

image ρD(π1(U)). Then Ggeom
D is a normal subgroup of GD, and the quo-

tient is cyclic, generated by the image ρD(F ) of any element F ∈ π1(U))
such that ρnot p(F ) has determinant #k.

(3) An element γ0 ∈ SL(2, Ẑnot p) × Z×
p lies in ρ(πgeom

1 (U)) if and only if
mod D it lies in Ggeom

D .
(4) Suppose given an element γ ∈ GL(2, Ẑnot p)det in (#k)Ẑ × Z×

p , with

det(γnot p) = (#k)n, n ∈ Ẑ. This element lies in ρ(π1(U)) if and only
if γ mod D lies in the coset ρD(Fn)Ggeom

D of GD.

Proof. It suffices to prove (1). For (2) is universally true, and (1) and (2) together
imply (3). For (4), the condition given is obviously necessary; applying (3) to F−nγ
we see that it is sufficient.

To prove (1) we argue as follows. The assertion is geometric, so we may extend
scalars from k to k. It suffices to prove it for some finite étale cover U1 of U , since
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π1(U1) is a subgroup of π1(U). So we may choose an odd prime � �= p and reduce
to the case when E/U has an oriented Γ(�)-structure. Then we have a classifying
map U → Mord(�), for M(�) the Γ(�) modular curve. This map is nonconstant,
because our family has nonconstant j-invariant. Therefore the image of π1(U) in
π1(Mord(�)) is a closed subgroup of finite index, hence an open subgroup of finite
index, in π1(Mord(�)), to which we apply the theorem. �

Given E/U/k as in the above theorem, fibrewise ordinary with nonconstant j-
invariant, we say that any integer D for which part (1) of the corollary holds is a
modulus for E/U/k. Of course if D is a modulus, so is any multiple of D.

8. Gekeler’s product formula

To motivate this section, we first explain the heuristic which underlies it. Given a
family E/U/Fq with nonconstant j-invariant, we know the Sato–Tate conjecture for
this family; cf. Deligne [De-WeilII, 3.5.7]. Given a finite extension FQ/Fq, attached
to each point u ∈ U(FQ) is an elliptic curve Eu,FQ

/FQ, which gives rise to data
(Au,FQ

, Q), which in turn gives rise to the real number tu,FQ
:= Au,FQ

/(2
√

Q) ∈
[−1, 1]. The Sato–Tate theorem says that as Q grows, these #U(FQ) real numbers
tu,FQ

∈ [−1, 1] become equidistributed for the measure 2
π (

√
1 − t2)dt on [−1, 1].

This means that for any continuous C-valued function f on [−1, 1], we can compute
2
π

∫ 1

−1
f(t)(

√
1 − t2)dt as the large Q limit of (1/#U(FQ))

∑
u∈U(Fq) f(tu,FQ

). For a
fixed Q, we make the change of variable t = A/(2

√
Q), so the integral becomes

2
π

∫ 2
√

Q

−2
√

Q

f(A/(2
√

Q))(
√

1 − A2/4Q)dA/(2
√

Q)

=
2
π

1
4Q

∫ 2
√

Q

−2
√

Q

f(A/(2
√

Q))(
√

4Q − A2)dA,

and the approximating sum is

(1/#U(FQ))
∑

u∈U(Fq)

f(Au,FQ
/(2

√
Q)).

Since there are “about” Q points in U(FQ), it is “as though” a given integer A ∈
[−2

√
Q, 2

√
Q] occurs as an Au,FQ

for “about”
1
2π

√
4Q − A2

of the u ∈ U(Fq); this is the Sato–Tate heuristic.
We have already discussed how congruence obstructions can prevent some par-

ticular (A, Q) from occurring at all in a given family. The Gekeler product formula
says that, at least in certain modular families, whenever (A, Q) is ordinary and has
no Archimedean or congruence obstruction, we can use congruence considerations
to compute the ratio

#{u ∈ U(FQ) | Au,FQ
= A}

1
2π

√
4Q − A2

.

The prototypical example of computing such a ratio by “congruence considerations”
is Dirichlet’s class number formula for a quadatic imaginary field K:

L(1, χ) =
2πhK

wK

√
|dK |

.
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Here hK = h(OK) is the class number, wK = #O×
K is the order of the group of roots

of unity in K, and dK is the discriminant of OK . So in terms of the normalized
class number

h�
K := hK/wK ,

the formula reads

L(1, χ) =
h�

K
1
2π

√
|dK |

.

In this example, the ratio is the value L(1, χ), and “congruence considerations” give
the Euler factors, whose conditionally convergent product is L(1, χ). Indeed, it is
precisely this class number formula which underlies Gekeler’s, as we will see.

We return now to a family E/U/Fq with nonconstant j-invariant. Fix data (A, Q)
with A prime to p, |A| < 2

√
Q, and no congruence obstruction. We introduced, for

every integer N ≥ 2, the finite groups GN , their normal subgroups Ggeom
N � GN ,

the cosets
GN,det=Q ⊂ GN ,

and their subsets
GN (A, Q) ⊂ GN,det=Q,

whose cardinalities were denoted gN (A, Q) and gN,det=Q. We also introduced the
rational number

gN (avg, Q) = (1/N)gN,det=Q = (1/N)
∑

A mod N

gN (A, Q).

Gekeler’s idea is to consider the ratios

gN (A, Q)/gN (avg, Q) = NgN (A, Q)/gN,det=Q,

to show they have a “large N limit”, and then to show that this limit is the ratio
#{u ∈ U(FQ) | Au,FQ

= A}
1
2π

√
4Q − A2

.

Let us be more precise. We have the following elementary lemma.

Lemma 8.1. Let D be a modulus for E/U/Fq. Suppose we are given (A, Q) with
Q a power of #k and A an integer prime to p with A2 < 4Q. Suppose that (A, Q)
has no congruence obstruction. Suppose N ≥ 2 and M ≥ 2 are relatively prime.
Suppose further that N is relatively prime to D.

(1) Under the “reduction mod NM” map we have an isomorphism of groups

Ggeom
NM

∼−→ Ggeom
N × Ggeom

M .

(2) We have a bijection of cosets

GNM,det=Q
∼−→ GN,det=Q × GM,det=Q.

(3) We have a bijection of sets

GNM (A, Q) ∼−→ GN (A, Q) × GM (A, Q).

(4) For a prime number � prime to D and an integer n ≥ 1, we have

Ggeom
�n = SL(2, Z/�nZ),

G�n,det=Q = {γ ∈ GL(2, Z/�nZ) | det(γ) = Q},
G�n(A, Q) = {γ ∈ GL(2, Z/�nZ) | det(γ) = Q, Trace(γ) = A}.
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(5) If the characteristic p is prime to D, then for any n ≥ 1, we have

Ggeom
pn = (Z/pnZ)×,

Gpn,det=Q = (Z/pnZ)×,

Gpn(A, Q) = {α ∈ (Z/pnZ)×| α ≡ unitQ(A) mod pn}.

Proof. Assertions (1), (4) and (5) result from Theorem 7.2. Assertion (1) implies
(2) by the definition of GN,det=Q as a coset, and (2) implies (3) trivially. �
Remark 8.2. In the case of any of the moduli problems we have considered, Theorem
7.1 shows that the image group

ρ(πgeom
1 (Mord)) ⊂ SL(2, Ẑnot p) × Z×

p =
∏
� 	=p

SL(2, Z�) × Z×
p

is the product over all primes �, including � = p, of the images of the separate
�-adic representations. So for (the universal families over) these modular curves,
assertions (1), (2) and (3) of Lemma 8.1 hold for every pair (N, M) of relatively
prime integers.

Gekeler proves that for a prime number � prime to pD, the sequence of ratios

�ng�n(A, Q)/g�n,det=Q, n ≥ 1,

i.e., the sequence of ratios
�n#{γ ∈ GL(2, Z/�nZ) | Trace(γ) = A, det(γ) = Q}

#SL(2, Z/�nZ)
,

becomes constant for large n, and he computes this constant explicitly [Ge, Thm.
4.4], calling it ν�(A, Q). He also shows that so long as � is, in addition, either prime
to A2 − 4Q or split in K := Q(

√
A2 − 4Q), then

ν�(A, Q) = 1/(1 − χ(�)
�

)

is the Euler factor at � in L(1, χ) for χ the quadratic character attached to the field
K. If the characteristic p does not divide D, it is immediate from the definitions
that the sequence

pngpn(A, Q)/gpn,det=Q, n ≥ 1,

is constant, with value

(pn × 1)/φ(pn) = 1/(1 − 1
p
),

the Euler factor at p of the same L(1, χ).
To go further, we must define a reasonable factor “at D”. It should be true that

for any sequence of positive integers Mn such that Mn|Mn+1 and such that Dn|Mn

for all n ≥ 1, the sequence of ratios

MngMn
(A, Q)/gMn,det=Q, n ≥ 1,

becomes constant for large n, and that this constant is independent of the particular
choice of the sequence of Mn as above. If this is true, we would call this constant
νD(A, Q). [For the moduli problems we have been considering, the problem of
defining the factor “at D” is reduced to the problem of defining the factor separately
at each prime dividing D; cf. Remark 8.2.] The most optimistic conjecture would
then be the following.
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Conjecture 8.3. Let E/U/Fq be fibrewise ordinary with nonconstant j-invariant,
D a modulus. Suppose that U = Umax. If (A, Q) has neither Archimedean nor
congruence obstruction, then

#{u ∈ U(FQ) | Au,FQ
= A}

1
2π

√
4Q − A2

= νD(A, Q)
∏
��D

ν�(A, Q),

where the conditionally convergent product is defined by∏
��D

ν�(A, Q) := lim
X→∞

∏
�<X,��D

ν�(A, Q).

However, this conjecture is false in general, for reasons that emerged in a dis-
cussion with Deligne. The problem is that for given (A, Q), it asserts a formula for
the number #{u ∈ U(FQ) | Au,FQ

= A} which depends only on the image

ρ(πgeom
1 (U)) ⊂ SL(2, Ẑnot p) × Z×

p =
∏
� 	=p

SL(2, Z�) × Z×
p

and on the coset

ρ(FQπgeom
1 (U)) ⊂ ρ(π1(U)) ⊂

∏
� 	=p

GL(2, Z�) × Z×
p ,

FQ ∈ π1(U) being any element of degree d := log Q/ log q. Consider a situa-
tion E/U/Fq, U = Umax, for which the conjecture holds, and for which we have
potentially multiplicative reduction at all places of bad reduction. Suppose we
have another smooth, geometrically connected curve V/Fq and a finite flat Fq-map,
f : V → U , such that the induced maps of fundamental groups

f� : πgeom
1 (V ) → πgeom

1 (U), f� : π1(V ) → π1(U)

are both surjective. Now consider the pullback EV /V/Fq of E/U/Fq by the map
f . This pullback family also has V = Vmax (because supersingular points, resp.
points of potentially multiplicative reduction, downstairs have their inverse images
upstairs supersingular, resp. points of potentially multiplicative reduction). Since
the pullback family has the same Galois image data, the notion of congruence
obstruction is the same for the original family and for its pullback. So the conjecture
predicts that for each (A, Q) with no congruence obstruction, we have

#{u ∈ U(FQ) | Au,FQ
= A} = #{v ∈ V (FQ) | Av,FQ

= A}.
Fixing Q and summing over the allowed A, which are the same upstairs and down,
we get the equality

#U(FQ) = #V (FQ).
As we will recall below, one condition that forces f� to be surjective on funda-

mental groups is that it be fully ramified over some F̄q-point, say over u0 ∈ U(F̄q),
with unique point v0 ∈ V (F̄q) lying over u0. Given such an f , we are to have

#U(FQ) = #V (FQ).

But of course this is nonsense in general. Here is the simplest example. Work
over a prime field Fp with p ≡ 1 mod 3, pick a cube root of unity, and take for
E/U/Fp the universal family for the moduli problem of oriented Γ(3)-structures.
Here the modular curve MΓ(3) is P1 \ {µ3,∞}, with parameter µ and universal
family

X3 + Y 3 + Z3 = 3µXY Z.



450 NICHOLAS M. KATZ

In this family, we have multiplicative reduction at each missing point, and while
there are p − 1 supersingular points over F̄p, no supersingular point is Fp-rational
(simply because over Fp with p ≥ 5, supersingular points have A = 0, whereas our
A’s satisfy A ≡ p + 1 mod 9, so are certainly nonzero). Thus

Mord
Γ(3)(Fp) = Fp \ {µ3}

has p− 3 points. Now consider the pullback family by the double covering “square
root of µ” of U := P1 \ {µ3,∞} by V := P1 \ {µ6,∞}. Explicitly, this is the family

X3 + Y 3 + Z3 = 3µ2XY Z.

Here
V (Fp) = Fp \ {µ6}

has p − 6 points.
Here is the precise surjectivity statement used above, whose proof we owe to

Deligne. It is not as well known as it should be.

Lemma 8.4. Let X and Y be connected, locally Noetherian schemes, and let
f : X → Y be a morphism which is proper and flat. Suppose that for some geo-
metric point y of Y , say with values in the algebraically closed field K, the fibre
Xy(K) := f−1(y)(K) consists of a single K-valued point x ∈ X(K). Then the map
of fundamental groups

f� : π1(X, x) → π1(Y, y)

is surjective.

Proof. For any X-scheme h : Z → X, we can also view Z as a Y -scheme, by f ◦ h.
So we have the fibres Zx(K) := h−1(x)(K) and Zy(K) := (f ◦ h)−1(y)(K). The
hypothesis that f−1(y)(K) = x insures that Zx(K) = Zy(K).

Let g : E → Y be finite étale of some degree d ≥ 1, with E connected, and
denote by gX : EX → X its pullback to a finite étale cover of X, of the same degree
d. We must show that EX remains connected. Let j : Z ⊂ EX be the inclusion
of a connected component Z of EX , and let W := fE(Z) ⊂ E be its image in E.
As f is proper and flat, so is fE . As Z is both open and closed in EX , its image
W := fE(Z) ⊂ E is both closed and open in E, and hence W = E.

Z
fE |Z−−−−→ W

j

⏐⏐	
⏐⏐	=

EX
fE−−−−→ E⏐⏐	gX

⏐⏐	g

X
f−−−−→ Y

So the fibre Wy(K) of W over y consists of d points. But Z maps onto W ; hence,
viewing Z as a Y -scheme (by f ◦ gX ◦ j) and fE |Z : Z → W as a Y -morphism,
Zy(K) maps onto Wy(K). Therefore Zy(K) consists of at least d points. But
Zx(K) = Zy(K), as noted above; hence Zx(K) has at least d points. But the entire
fibre (EX)x(K) has d points. Therefore Z and EX have the same fibre over x; as
both are finite étale over X and Z ⊂ EX , we conclude that Z = EX . Thus EX is
connected, as required. �
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Despite the failure of the conjecture above in general, there are certain modular
families of elliptic curves for which the conjecture holds.

Theorem 8.5 (Gekeler). The conjecture is true for (the universal fibrewise ordi-
nary families over) the Igusa curves Ig(pν)/k/Fp, any pν ≥ 4.

Proof. For this family, Theorem 7.1 tells us that

ρ(πgeom
1 (Ig(pν))) = SL(2, Ẑnot p) × (1 + pνZp)

and
ρ(π1(Ig(pν)) = GL(2, Ẑnot p)det in (#k)Ẑ × (1 + pνZp).

So here we can take D = pν . Take an (A, Q) with neither congruence nor
Archimedean obstruction. Then A is prime to p, unitQ(A) ≡ 1 mod pν , and
A2 < 4Q. For � �= p, the local factor is Gekeler’s ν�(A, Q).

What about the factor νpν (A, Q) at D = pν? For any integer n ≥ ν, gpn(A, Q)
is the ratio

pn#{γ ∈ ((1 + pνZp)/(1 + pnZp)) | γ ≡ unitQ(A) mod pn}
#((1 + pνZp)/(1 + pnZp))

,

which is just = pn × 1/pn−ν = pν , which in turn is

φ(pν) × (1 − 1/p)−1,

and hence
νpν (A, Q) = φ(pν) × (1 − 1/p)−1.

Gekeler proves [Ge, Cor. 5.4] (remember that his H� is twice ours and he writes
H�(A2 − 4Q) for H�(Z[F ])) that

(1 − 1/p)−1
∏
� 	=p

ν�(A, Q) =
2πH�(Z[F ])√

4Q − A2
.

Hence we have

νpν (A, Q)
∏
� 	=p

ν�(A, Q) =
φ(pν)H�(Z[F ])

1
2π

√
4Q − A2

.

But the numerator φ(pν)H�(Z[F ]) is precisely

#{u ∈ Ig(pv)(FQ) | Au,FQ
= A};

cf. Lemma 4.3, (1). �

Here is a slight generalization of Gekeler’s result.

Theorem 8.6. Let N = N0p
ν with N0 prime to p. Supppose that either N0 ≥ 3 or

that pν ≥ 4. Let k/Fp be a finite field containing a chosen primitive N0th root of
unity. Let Euniv/Mord/k be the universal family of ordinary elliptic curves endowed
with both an oriented Γ(N0)-structure and an Ig(pν)-structure. The conjecture is
true for this family.

Proof. Suppose (A, Q) has neither Archimedean nor congruence obstruction. Our
first task is to compute, for this family, the local factors ν�(A, Q,Mord) at the
primes � dividing pN0.
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Suppose we have done this. Then we proceed as follows. We have seen in Lemma
4.3, (1) and (4), that

#{u ∈ Mord(FQ) | Au,FQ
= A}

= φ(pν)#SL(2, Z/N0Z)H�(Z[(F − 1)/N0]).

So what we must show is that
φ(pν)#SL(2, Z/N0Z)H�(Z[(F − 1)/N0])

1
2π

√
4Q − A2

= (
∏

�|pN0

ν�(A, Q,Mord))(
∏
��N0

ν�(A, Q)).

The factor νpν (A, Q,Mord) at p is

νpν (A, Q,Mord) = φ(pν) × (1 − 1/p)−1,

exactly as in the proof of the previous theorem. According to that theorem, we
have

(1 − 1/p)−1
∏
� 	=p

ν�(A, Q) =
H�(Z[F ])

1
2π

√
4Q − A2

.

Comparing these two formulas, what we must show is that
∏
�|N0

ν�(A, Q,Mord)
ν�(A, Q)

= #SL(2, Z/N0Z)
H�(Z[(F − 1)/N0])

H�(Z[F ])
.

We next express the right-hand side as a product over the primes dividing N0.
Factoring N0 =

∏
�ni
i , we have

#SL(2, Z/N0Z) =
∏

�i|N0

#SL(2, Z/�ni
i Z).

We can factor the ratio
H�(Z[(F − 1)/N0])

H�(Z[F ])
as follows. Denote by K the fraction field of Z[F ], OK its ring of integers, χK the
quadratic character corresponding to K/Q, φK the multiplicative function intro-
duced in the proof of Theorem 5.1, and

f := the conductor of the order Z[(F − 1)/N0].

We have the formulas

H�(Z[(F − 1)/N0]) =
∑
d|f

φK(d)h�(OK),

H�(Z[F ]) =
∑

d|fN0

φK(d)h�(OK).

Because φK is multiplicative, we have the formulas∑
d|f

φK(d) =
∏
�|f

∑
a≥0, �a|f

φK(�a),

∑
d|fN0

φK(d) =
∏

�|fNo

∑
a≥0, �a|fN0

φK(�a).
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In these two products, the primes � not dividing N0 give rise to the same factor in
each. So we get

H�(Z[(F − 1)/N0])
H�(Z[F ])

=
∏
�|N0

∑
a≥0, �a|f φK(�a)∑

a≥0, �a|fN0
φK(�a)

.

So we are reduced to showing that for each prime �i dividing N0 =
∏

�ni
i we have

ν�i
(A, Q,Mord)
ν�i

(A, Q)
= #SL(2, Z/�ni

i Z)

∑
a≥0, �a

i |f
φK(�a

i )∑
a≥0, �a

i |fN0
φK(�a

i )
.

Fix one such �i := �, and put n := ord�(N0), δ := ord�(f). Thus n + δ =
ord�(fN0). We now compute explicitly everything in sight, using the results [Ge,
Thm.4.4] of Gekeler. To state them, we first establish a bit of notation. Given
an arbitrary pair (A1, Q1) of integers with A2

1 − 4Q1 < 0, we wish to count the
number α�k(A1, Q1) of 2 × 2 matrices X ∈ M2(Z/�kZ) with Trace(X) = A1 and
det(X) = Q1, at least for k large. Attached to (A1, Q1) we have the quadratic
imaginary order

Z[F1] := Z[T ]/(T 2 − A1T + Q1),

its fraction field K1, ring of integers OK1 , and Dirichlet character χK1 . We denote
by fA1,Q1 the conductor of the order Z[F1], and we define

δ1 := ord�(fA1,Q1).

Gekeler shows that for k ≥ 2δ1 + 2, α�k(A1, Q1) is equal to

�2k + �2k−1 if χK1(�) = 1,

�2k + �2k−1 − (� + 1)�2k−δ1−2 if χK1(�) = 0,

�2k + �2k−1 − 2�2k−δ1−1 if χK1(�) = −1.

We apply this first to (A, Q). Then K1 is just K, fA,Q = N0f , and δ1 = δ + n.
So for large k, the factor

ν�k(A, Q) := �kα�k(A, Q)/#SL(2, Z/�kZ) = α�k(A, Q)/�2k−2(�2 − 1)

is easily calculated, as α�k(A, Q) is equal to

�2k + �2k−1 if χK(�) = 1,

�2k + �2k−1 − (� + 1)�2k−δ−n−2 if χK(�) = 0,

�2k + �2k−1 − 2�2k−δ−n−1 if χK(�) = −1.

We next calculate the factor ν�k+2n(A, Q,Mord). Here the group G�k+2n is the
group of matrices of the shape 1 + �nX, X ∈ M2(Z/�n+kZ), and G�k+2n,det=Q,
being a coset of Ggeom

�k+2n = {1 + �nX} ∩ SL(2, Z/�2n+kZ), has

#G�k+2n,det=Q = �3(k+n).

How do we compute the number of X ∈ M2(Z/�n+kZ) such that 1+ �nX has trace
A and determinant Q mod �k+2n? These conditions are

2 + �n Trace(X) ≡ A mod �k+2n,

1 + �n Trace(X) + �2n det(X) ≡ Q mod �k+2n.



454 NICHOLAS M. KATZ

Because (A, Q) has no congruence obstruction, we know that

A ≡ Q + 1 mod �2n,

Q ≡ 1 mod �n.

Thus the conditions on X are

Trace(X) ≡ (A − 2)/�n mod �k+n,

det(X) ≡ (Q + 1 − A)/�2n mod �k.

To count these, we first consider Xk mod �k, satisfying the above two conditions
mod �k. The number of such Xk mod �k is

α�k(A1, Q1),

with
A1 := (A − 2)/�n, Q1 := (Q + 1 − A)/�2n.

Once we have such an Xk mod �k, we lift it arbitrarily to some Xk+n mod �k+n;
then we can correct this lift by adding to it anything of the form �kY , Y mod �n,
so long as Y has the required trace mod �n, namely

Trace(Y ) ≡ (A1 − Trace(Xk+n))/�k mod �n.

So there are �3n possible Y , and hence the number of elements in G�k+2n,det=Q with
trace A and determinant Q is

�3nα�k(A1, Q1).

Thus we get

ν�k+2n(A, Q,Mord) = �k+2n�3nα�k(A1, Q1)/�3(k+n).

For this (A1, Q1), Z[T ]/(T 2 − AT + Q1) is just Z[(F − 1)/�n], and so its δ1 is
just δ, the ord� of the conductor of Z[(F − 1)/N0]. Also its K1 is just K. So for
k ≥ 2δ + 2, α�k(A1, Q1) is given by Gekeler’s formulas

�2k + �2k−1 if χK(�) = 1,

�2k + �2k−1 − (� + 1)�2k−δ−2 if χK(�) = 0,

�2k + �2k−1 − 2�2k−δ−1 if χK(�) = −1.

With this data at hand, it is straightforward but unenlightening to verify, case
by case depending on the value of χK(�), the required identity

ν�(A, Q,Mord)
ν�(A, Q)

= #SL(2, Z/�nZ)
∑δ

a=0 φK(�a)∑δ+n
a=0 φK(�a)

.

�

Remark 8.7. Perhaps with a more conceptual approach, one could also verify the
conjecture for the more general moduli problems we considered, where we allow also
a Γ0(L)-structure and a Γ1(M)-structure. What is the relation of the conjectured
formula to the formula, in terms of orbital integrals, given by Kottwitz in [Ko1,
§16, pp. 432-433] and [Ko2, p. 205], when that general formula is specialized to
the case of elliptic curves; cf. also [Cl, §3,§4]?
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Question 8.8. As explained above, the conjecture is false in general, because of its
incompatibility with pullback by a map which is surjective on fundamental groups.
Nonetheless, one could ask if the following consequence of it is asymptotically cor-
rect. Take one of the moduli problems Mord/k we have discussed above, and take
a finite flat f : V → Mord, with V/k smooth and geometrically connected, such
that f� is surjective on fundamental groups (e.g., an f which is fully ramified over
some point). Fix a prime-to-p integer A, and an extension Fq/k with q ≥ 8 and
A2 < 4q. We know precisely what the congruence obstructions for (A, q) are, and
that, if there are none, then there are Fq-valued points of Mord whose Frobenii have
trace A; cf. Lemmas 4.2, 4.3. We further know that if (A, q) has no congruence
obstruction, then there are infinitely many extensions FQ/k for which (A, Q) has no
congruence obstruction, and for each of these there are FQ-valued points of Mord

whose Frobenii have trace A; cf. Lemma 6.2. For each such Q, consider the ratio
#{v ∈ V (FQ) | Av,FQ

= A}
#{u ∈ Mord(FQ) | Au,FQ

= A} .

Is it true that this ratio tends to 1 as Q tends archimedeanly to infinity over the
Q’s for which the denominator is nonzero?

About the author

Nicholas M. Katz is a professor at Princeton University. He is the author or
co-author of several books about arithmetic algebraic geometry, monodromy, dio-
phantine questions over finite fields, and their interactions.

References

[Ba] Baier, Stephan, The Lang–Trotter conjecture on average. J. Ramanujan Math. Soc.
22 (2007), no. 4, 299-314. MR2376806 (2008j:11065)

[B-K] Bombieri, E. and Katz, N., A Note on Lower bounds for Frobenius traces, 2008
preprint available at www.math.princeton.edu/˜nmk.

[Cl] Clozel, Laurent, Nombre de points des variétés de Shimura sur un corps fini (d’après
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