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CHAPTER 18

LARSEN’S ALTERNATIVE, MOMENTS, AND THE MONODROMY
OF LEFSCHETZ PENCILS

By Nicholas M. Katz

To Joe Shalika on his 60th birthday

Introduction. We work over an algebraically closed field “C” of character-
istic zero. Let V be aC-vector space of dimension N ≥ 2. We fix a (not necessarily
connected) Zariski closed subgroup G ⊂ GL(V ) which is reductive (i.e., every
finite-dimensional representation of G is completely reducible). We are interested
in criteria which guarantee that G is one of the standard classical groups, i.e., that
either G is caught between SL(V ) and GL(V ), or that G is one of SO(V ), O(V ), or
(if dim (V ) is even) Sp(V ).

Larsen’s Alternative (cf. [Lar-Char] and [Lar-Normal]) is a marvelous criterion,
in terms of having a sufficiently small “fourth moment,” which guarantees that G
is either a standard classical group or is a finite group. We have already made use
of this criterion in [Ka-LFM, page 113]. In that application, we were content with
either alternative.

However, in many applications, especially to the determination of (Zariski
closures of) geometric monodromy groups in explicitly given families, we want to
be able to rule out the possibility that G be finite. Failing this, we would at least
like to have a better understanding of the cases in which G can in fact be finite.

Part I of this paper represents very modest progress toward these two goals.
Toward the first goal, we give criteria for ruling out the possibility that G be finite.
These criteria rely on the observation that if G is finite and has a sufficiently small
fourth moment, it must be primitive. This observation in turn allows us to bring to
bear the classical results of Blichfeld and of Mitchell, and the more recent results
of Wales and Zalesskii. Toward the second goal, we give examples of finite G with
a very low fourth moment.

In Part II, we apply the results proven in Part I to the monodromy of Lefschetz
pencils. Start with a projective smooth variety X of dimension n + 1 ≥ 1, and
take the universal family of (or a sufficiently general Lefschetz pencil of) smooth
hypersurface sections of degree d. By its monodromy group Gd , we mean the Zariski
closure of the monodromy of the local systemFd on the space of all smooth, degree
d, hypersurface sections, given by

H �→ H n (X ∩ H )/H n (X ).

Let us denote by Nd the rank of this local system.
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For n odd, the monodromy group Gd is the full symplectic group Sp(Nd), cf.
[De-Weil II, 4.4.1 and 4.4.2a].

For n = 0, X is a curve, X ∩ H is finite, Nd + 1 = Card ((X ∩ H )(k)) =
d × deg (X ), and the monodromy group Gd is well known to be the full symmetric
group SNd+1 := Aut ((X ∩ H )(k)), cf. 2.4.4.

For n ≥ 2 and even, the situation is more involved. Deligne proved [De-Weil II,
4.4.1, 4.4.2s , and 4.4.9] that the monodromy group Gd is either the full orthogonal
group O(Nd) or a finite reflection group, and that the only finite reflection groups
that arise are the Weyl groups of root systems of type A, D, or E in their standard
representations. Deligne needed this more precise information for his pgcd theorem
[De-Weil II, 4.5.1], where the O(Nd) case was easy, but the finite case required
case by case argument. Using the criteria developed in Part I, we show that the
monodromy group Gd is in fact the full orthogonal group O(Nd) for all sufficiently
large d (more precisely, for all d with d ≥ 3 and Nd > 8, and also for all d with
d ≥ 7 and Nd > 2, cf. 2.2.4, 2.2.15, and 2.3.6).

Acknowledgments. I would like to thank CheeWhye Chin for his assistance in
using the computer program GAP [GAP] to compute moments of exceptional Weyl
groups. I would also like to thank the referee, for suggesting Theorem 2.3.6.

Part I: Group Theory

1.1. Review of Larsen’s Alternative

1.1.1. Recall thatC is an algebraically closed field of characteristic zero, V is
aC-vector space of dimension N ≥ 2, and G is a Zariski closed, reductive subgroup
of GL(V ).

1.1.2. For each pair (a, b) of non-negative integers, we denote by Ma,b(G, V )
the dimension of the space of G-invariant vectors in V ⊗a ⊗ (V ∨)⊗b:

Ma,b(G, V ) := dimC (V ⊗a ⊗ (V ∨)⊗b)G .(1.1.2.1)

We call Ma,b(G, V ) the (a, b)’th moment of (G, V ). For each even integer 2n ≥ 2,
we denote by M2n(G, V ) the 2n’th absolute moment, defined by

M2n(G, V ) := Mn,n(G, V ).(1.1.2.2)

If H is any subgroup of G, we have the a priori inequalities

Ma,b(G, V ) ≤ Ma,b(H, V )(1.1.2.3)

for every (a, b).

1.1.3. The reason for the terminology “moments” is this. If C is the field of
complex numbers, and if K ⊂ G(C) is a maximal compact subgroup of G(C)an,
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then K is Zariski dense in G (Weyl’s unitarian trick). If we denote by dk the Haar
measure on K of total mass one, and by

χ : G(C) → C

χ (g) := Trace (g|V ),

the character of V as G-module, then we have the formulas

Ma,b(G, V ) =
∫

K
χ (k)aχ (k)bdk,(1.1.3.1)

M2n(G, V ) =
∫

K
|χ (k)|2ndk.(1.1.3.2)

Thus the terminology “moments” and “absolute moments”.

1.1.4. The most computationally straightforward interpretation of the 2n’th
absolute moment M2n(G, V ) is this. Decompose the G-module V ⊗n as a sum of
irreducibles with multiplicities:

V ⊗n ∼= ⊕i mi Wi .(1.1.4.1)

Then by Schur’s Lemma we have

M2n(G, V ) = �i (mi )
2.(1.1.4.2)

More precisely, given any decomposition of V ⊗n as a sum of (not necessarily
irreducible) G-modules Vi with (strictly positive integer) multiplicities mi ,

V ⊗n ∼= ⊕i mi Vi ,(1.1.4.3)

we have the inequality

M2n (G, V ) ≥ �i (mi )
2,(1.1.4.4)

with equality if and only if the Vi are distinct irreducibles.

1.1.5. If n is itself even, say n = 2m, there is another interpretation of
M4m(G, V ). Decompose the G-module V ⊗m ⊗ (V ∨)⊗m = End (V ⊗m) as a sum
of irreducibles with multiplicities:

End (V ⊗m) ∼= ⊕i ni Wi .(1.1.5.1)

Then we have, again by Schur’s Lemma,

M4m(G, V ) = �i (ni )
2.(1.1.5.2)

More precisely, given any decomposition of End (V ⊗m) as a sum of (not necessarily
irreducible) G-modules Vi with (strictly positive integer) multiplicities ni ,

End (V ⊗m) ∼= ⊕i ni Vi ,(1.1.5.3)
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we have the inequality

M2n (G, V ) ≥ �i (ni )
2,(1.1.5.4)

with equality if and only if the Vi are distinct irreducibles.

Theorem 1.1.6. (Larsen’s Alternative, cf. [Lar-Char], [Lar-Normal], [Ka-
LFM, page 113]) Let V be a C-vector space of dimension N ≥ 2, G ⊂ GL(V )
a (not necessarily connected) Zariski closed reductive subgroup of GL(V).

(1) If M4(G, V ) ≤ 5, then V is G-irreducible.
(2) If M4(G, V ) = 2, then either G ⊃ SL(V ), or G/(G ∩ scalars) is finite. If

in addition G ∩ scalars is finite (e.g., if G is semisimple), then either G0 = SL(V ),
or G is finite.

(3) Suppose <,> is a nondegenerate symmetric bilinear form on V, and suppose
G lies in the orthogonal group O(V ) := Aut (V, <, >). If M4(G, V ) = 3, then
either G = O(V ), or G = SO(V ), or G is finite. If dim (V) is 2 or 4, then G is not
contained in SO(V).

(4) Suppose <,> is a nondegenerate alternating bilinear form on V (such a
form exists only if dim (V) is even), suppose G lies in the symplectic group Sp(V ) :=
Aut (V, <, >), and suppose dim (V) > 2. If M4(G, V ) = 3, then either G = Sp(V ),
or G is finite.

Proof. To prove 1), suppose that V = V1 ⊕ V2 is the direct sum of two non-zero
G-modules. Then we have a G-isomorphism

V ⊗2 ∼= (V1)⊗2 ⊕ (V2)⊗2 ⊕ 2(V1 ⊗ V2),

and this in turn forces M4 (G, V ) ≥ 1 + 1 + 22 = 6.
To prove 2), we use the second interpretation (1.1.5) of M4 (G, V ). If

M4 (G, V ) = 2, then End (V ) is the sum of two distinct irreducible representations
of G. But under the bigger group GL(V ), End (V ) is the sum of two representations
of GL(V ), namely

End (V ) = End0 (V ) ⊕ 1 = Lie (SL(V )) ⊕ 1.

(The two summands are inequivalent irreducible representations of GL(V ), but we
will not use this fact.) Because M4 (G, V ) = 2, this must be the decomposition of
End (V ) as the sum of two distinct irreducible representations of G. In particular,
Lie (SL(V )) is G-irreducible.

The derived group Gder lies in SL(V ), so Lie (Gder) lies in Lie (SL(V )). As Gder

is a normal subgroup of G, Lie (Gder) is a G-stable submodule of Lie (SL(V )).
So by the G-irreducibility of Lie (SL(V )), either Lie (Gder) = Lie (SL(V )), or
Lie (Gder) = 0. In the first case, (Gder)0 = SL(V ), and so G ⊃ SL(V ). Thus if in
addition G ∩ scalars is finite, G0 is SL(V ).

In the second case, Gder is finite. For any fixed element γ in G(C), the morphism
from G0 to Gder defined by g �→ gγ g−1γ −1 is therefore the constant map g �→ e.
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Therefore G0 lies in Z (G). As G acts irreducibly on V , its center Z (G) lies in
the Gm of scalars. But G0 ⊂ Z (G), so G0 lies in the Gm of scalars. Therefore
G0 ⊂ G ∩ scalars, whence G/(G ∩ scalars) is finite. So if in addition G ∩ scalars
is finite, then G is finite.

To prove 3), use the first interpretation (1.1.4) of M4 (G, V ). If M4 (G, V ) = 3,

then V ⊗2 is the sum of three distinct irreducible representations of G. Under GL(V ),
we first decompose

V ⊗2 = Sym2 (V ) ⊕ 
2 (V ).

As O(V )-modules, we have an isomorphism


2 (V ) ∼= Lie (SO(V ))

and the further decompostion

Sym2 (V ) = SphHarm2 (V ) ⊕ 1.

Thus as O(V )-module, we have the three term decomposition

V ⊗2 = SphHarm2 (V ) ⊕ 1 ⊕ Lie (SO(V )).

(For dim (V ) ≥ 2, the three summands are distinct irreducible representations of
O(V ). If dim (V ) is neither 2 nor 4, they are distinct irreducible representations of
SO(V ). For n = 2 (resp. n = 4), SphHarm2 (V ) (resp. Lie (SO(V ))) is a reducible
representation of SO(V ). We will not use these facts.)

If M4 (G, V ) = 3, then

V ⊗2 = SphHarm2 (V ) ⊕ 1 ⊕ Lie (SO(V ))

must be the decomposition of of V ⊗2 as the sum of three distinct irreducible rep-
resentations of G.

We now exploit the fact that Lie (SO(V )) is G-irreducible. Since G ⊂ O(V ),
G0 ⊂ SO(V ), so Lie (G0) is a G-stable submodule of Lie (SO(V )). By G-
irreducibility, Lie (G0) is either Lie (SO(V )) or is zero. If Lie (G0) = Lie (SO(V )),
then G0 is SO(V ) and G, being caught between SO(V ) and O(V ), is either SO(V )
or O(V ). If Lie (G0) is zero, then G is finite.

If dim (V ) is 2 or 4, we claim G cannot lie in SO(V ). Indeed, for dim (V ) =
2, SO(V ) is Gm , Lie (SO(V )) is 1 as SO(V )-module, and SphHarm2 (V ) is SO(V )-
reducible, so if G ⊂ SO(V ) then M4 (G, V ) ≥ 6. If dim (V ) = 4, then SO(4) is
(SL(2) × SL(2)) / ± (1,1), hence Lie (SO(4)) is SO(4)-reducible: so if G ⊂ SO(V )
then M4 (G, V ) ≥ 4.

To prove 4), we begin with the GL(V )-decomposition

V ⊗2 = Sym2 (V ) ⊕ 
2 (V ).

As Sp (V )-modules, we have an isomorphism

Lie (Sp(V )) ∼= Sym2 (V ),
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and the further (because dim (V ) > 2) decomposition


2(V ) = (
2(V )/1) ⊕ 1.

Thus as Sp(V )-module we have a three term deomposition

V ⊗2 = Lie (Sp(V )) ⊕ (
2(V )/1) ⊕ 1.

(The three summands are distinct irreducible representations of Sp (V ), but we
will not use this fact.) Exactly as in the SO case above, we infer that Lie (Sp (V )) is
G-irreducible. But G ⊂ Sp (V ), so Lie (G0) is a G-stable submodule of Lie (Sp (V )),
and so either Lie (G0) = Lie (Sp (V )), or Lie (G0) is zero. In the first case, G is
Sp (V ), and in the second case G is finite. �

1.2. Remarks

1.2.1. We should call attention to a striking result of Beukers, Brownawell,
and Heckmann, [BBH, Theorems A5 and A7 together], which is similar in spirit
to 1.1, though more difficult: if G is a Zariski closed subgroup of GL(V ) which
acts irreducibly on Sym2 (V ), then either G/(G ∩ scalars) is finite, or G contains
SL(V ), or dim (V ) is even and Sp (V ) ⊂ G ⊂ GSp (V ).

1.2.2. There are connected semisimple subgroups G ⊂ GL(V ) with
M4 (G, V ) = 3 other than SO(V ) (for dim (V ) ≥ 3, but �= 4) and Sp (V ) (for dim (V )
≥ 4). The simplest examples are these. Take aC-vector space W of dimension � + 1.
Then for V either Sym2 (W ), if � ≥ 2, or 
2 (W ), if � ≥ 4, the image G of SL(W )
in GL(V ) has M4 (G, V ) = 3, but V is not self-dual as a representation of G (not
self-dual because we excluded the case � = 3, V = 
2 (W )). Here is a bad proof.
In the Bourbaki notation [Bour-L8, page 188], Sym2 (W ) is the highest weight
module E (2ω1), and 
2 (W ) is the highest weight module E(ω2). We use the first
interpretation (1.1.4) of the fourth absolute moment. We have

End (E(2ω1)) = E(2ω1) ⊗ E(2ω1)∨ = E(2ω1) ⊗ E(2ω�)(1.2.2.1)

and

End (E(ω2)) = E(ω2) ⊗ E(ω2)∨ = E(ω2) ⊗ E(ω�−1).(1.2.2.2)

Now End (any nontrivial representation of SL(W )) contain both the trivial repre-
sentation 1 of SL(W ) and its adjoint representation E(ω1 + ω�).

From looking at highest weights, we see that End (E(2ω1)) contains
E(2ω1 + 2ω�), and we see that End (E(ω2)) contains E (ω2 + ω�−1).

Thus we have a priori decompositions

End (E(2ω1)) = 1 ⊕ E(ω1 + ω�) ⊕ E(2ω1 + 2ω�) ⊕ (?),(1.2.2.3)

End (E(ω2)) = 1 ⊕ E(ω1 + ω�) ⊕ E(ω2 + ω�−1) ⊕ (?).(1.2.2.4)
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To see that in both cases there is no (?) term, it suffices to check that the dimensions
add up, an exercise in the Weyl dimension formula we leave to the reader.

1.2.3. Other examples are (the image of) E6 in either of its 27-dimensional
irreducible representations, or Spin(10) in either of its 16-dimensional spin repre-
sentations: according to simpLie [MPR], these all have fourth absolute moment 3.

1.3. The case of G finite: the primitivity theorem

1.3.1. What about finite groups G ⊂ GL(V ) with M4 (G, V ) = 2, or finite
groups G in O(V ) or Sp (V ) with M4 (G, V ) = 3?

Primitivity Theorem 1.3.2. Let V be a C-vector space of dimension
N ≥ 2, G ⊂ GL(V ) a finite subgroup of GL(V ). With the notations of the previous
theorem, suppose that one of the following conditions 1), 2), or 3) holds.

(1) M4 (G, V ) = 2
(2) G lies in O(V ), dim (V ) ≥ 3, and M4 (G, V ) = 3.
(3) G lies in Sp (V ), dim (V ) ≥ 4, and M4 (G, V ) = 3.
Then G is an (irreducible) primitive subgroup of GL(V ), i.e., there exists no

proper subgroup H of G such that V is induced from a representation of H.

1.3.3. Before giving the proof, we recall the following well-known lemma.

Lemma 1.3.4. Let G be a group, H a subgroup of G of finite index, and A and
B two finite-dimensional C-representations of H.

1. Denoting by ∨ the dual (contragredient) representation, we have a canonical
G-isomorphism (

IndH
G (A)

)∨ ∼= IndH
G (A∨).

2. There is a canonical surjective G-morphism (“cup product”)(
IndH

G (A)
) ⊗C

(
IndH

G (B)
) → IndH

G (A ⊗C B).

Proof of Lemma 1.3.4. Assertion 1) is proven in [Ka-TLFM, 3.1.3]. For asser-
tion 2), we view induction as Mackey induction, cf. [Ka-TLFM, 3.0.1.2]. Thus
IndH

G(A) is Homleft H−sets(G, A), with left G-action defined by (Lgϕ)(x) :=
ϕ(xg). We define a C-bilinear map(

IndH
G(A)

) ⊗C

(
IndH

G(B)
) → IndH

G(A ⊗C B)

as follows. Given maps ϕ : G → A and ψ : G → B of left H -sets, we define their
cup product ϕ ⊗ ψ : G → A ⊗C B by

(ϕ ⊗ ψ)(x) := ϕ(x) ⊗ ψ(x).
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It is immediate that ϕ ⊗ ψ is a map of left H -sets, and so the cup product construc-
tion (ϕ, ψ) �→ ϕ ⊗ ψ is a C-linear map(

IndH
G(A)

) ⊗C

(
IndH

G(B)
) → IndH

G(A ⊗C B).

This map is easily checked to be G-equivariant and surjective. �

Proof of Theorem 1.3.2. Let H be a subgroup of a finite group G, of finite index
d ≥ 2, and A be a finite-dimensional C-representation of H , of dimension a ≥ 1.
We wish to compute a lower bound for M4 (G, IndH

G(A)). To do this we attempt
to decompose IndH

G(A) ⊗ (IndH
G(A))∨ as a sum of G-modules. By the previous

lemma, we have a g-isomorphism(
IndH

G(A)
)∨ ∼= IndH

G(A∨),

and a surjective G-map

IndH
G(A) ⊗ IndH

G(A∨) → IndH
G(A ⊗ A∨).

Its source has dimension d2a2, while its target has lower dimension da2, so this
map has a nonzero kernel “Ker,” which is a G-module of dimension (d2 − d)a2.
So we have a G-isomorphism

IndH
G(A) ⊗ (

IndH
G(A)

)∨ ∼= Ker ⊕ IndH
G(A ⊗ A∨).

Now the H -module A ⊗ A∨ = End (A) itself has an H -decomposition

End (A) ∼= End0 (A) ⊕ 1H ,

as the sum of the endomorphisms of trace zero with the scalars. [Of course, if A is
one-dimensional, then End0 (A) vanishes.] Thus we have a G-decomposition

IndH
G(A ⊗ A∨) ∼= IndH

G(End0 (A)) ⊕ IndH
G(1H ),

Now the trivial representation 1G occurs once in IndH
G(1H ), so we have a further

decomposition

IndH
G(1H ) ∼= IndH

G(1H )/1G ⊕ 1G .

So all in all we have a four term G-decomposition

IndH
G(A) ⊗ (

IndH
G(A)

)∨ ∼= Ker ⊕ IndH
G(End0 (A)) ⊕ IndH

G(1H )/1G ⊕ 1G,

in which the dimensions of the terms are respectively (d2 − d)a2, d(a2 − 1), d − 1,
and 1. So we obtain the a priori estimate

M4
(
G, IndH

G(A)
) ≥ 4 if dim (A) ≥ 2,

M4
(
G, IndH

G(A)
) ≥ 3 if dim (A) = 1.

Thus if M4 (G, V ) = 2, then G is a primitive subgroup of GL(V ).
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Suppose now that M4(G, V ) = 3, and that V is induced from a subgroup
H of G of finite index d ≥ 2, from an H -module A. Then dim (A) = 1, and
dim (V ) = d. Moreover, IndH

G(A) ⊗ (IndH
G(A))∨ is the sum of three distinct

irreducibles, of dimensions d2 − d, d − 1, and 1.
If we further suppose that G lies in either O(V ) or Sp (V ), then V ∼= IndH

G(A)
is self-dual, so we have a G-isomorphism

IndH
G(A) ⊗ (

IndH
G(A)

)∨ ∼= IndH
G(A) ⊗ IndH

G(A) ∼= V ⊗ V .

If G lies in O(V ), and dim (V ) ≥ 3, then we have the G-decomposition

V ⊗ V ∼= SphHarm2(V ) ⊕ 
2(V ) ⊕ 1G .

In this decomposition, the dimensions of the terms are respectively
d(d + 1)/2 − 1, d(d − 1)/2, and 1. Since M4(G, V ) = 3, these three terms must
be distinct irreducibles. Thus V ⊗ V ∼= V ⊗ V ∨ is simultaneously presented as the
sum of three distinct irreducibles of dimensions d2 − d, d − 1, and 1, and the sum
of three distinct irreducibles of dimensions d(d + 1)/2 − 1, d(d − 1)/2, and 1. As
d ≥ 2, we have d(d + 1)/2 − 1 ≥ d(d − 1)/2. Comparing the dimensions of the
largest irreducible constituent in the two presentations, we find

d2 − d = d(d + 1)/2 − 1,

which forces d = 1 or 2, contradiction.
If G lies in Sp (V ), and dim (V ) ≥ 4, the argument is similar. We have the

G-decomposition

V ⊗ V ∼= Sym2 (V ) ⊕ 
2(V )/1G ⊕ 1G .

into what must be three distinct irreducibles, of dimensions d(d + 1)/2,

d(d − 1)/2 − 1, and 1. Exactly as above, we compare dimensions of the largest
irreducible constituent in the two presentations. We find

d2 − d = d(d + 1)/2,

which forces d = 3, contradiction. �

Remark 1.3.5. In the primitivity theorem, when V is either symplectic or or-
thogonal, we required dim (V ) > 2. This restriction is necessary, because there
exist imprimitive finite groups G in both O(2) and in Sp (2) = SL(2) whose fourth
moment is 3 in their given representations. Indeed, fix an integer n ≥ 1 which is
not a divisor of 4, and denote by ζ a primitive n’th root of unity. The dihedral group
D2n ⊂ O(2) of order 2n (denoted Dn in [C-R-MRT, page 22]), the group generated
by Diag(ζ, ζ−1) and Antidiag (1, 1), is easily checked to have fourth moment 3 in its
given representation. If we further require n to be even, the generalized quaternion
group Q2n ⊂ SL(2) of order 2n (denoted Qn/2 in [C-R-MRT, page 23]), the group
generated by Diag(ζ, ζ−1) and Antidiag (1,−1), is easily checked to have fourth
moment 3 in its given representation.



P1: IOI

PB440-18 HIDA-0662G PB440-Hida-v4.cls December 6, 2003 17:36

nicholas m. katz530

Tensor Indecomposability Lemma 1.3.6. Let V be a C-vector space
of dimension N ≥ 2, G ⊂ GL(V ) a finite subgroup of GL(V ). Suppose that
M4 (G, V ) ≤ 3. Then V is tensor-indecomposable in the following (strong) sense.
There exists no expression of the C-vector space V as a tensor product

V = V1 ⊗ V2

of C-vector spaces V1 and Y in such a way that all three of the following conditions
are satisfied:

dim (V1) ≥ 2,
dim (V2) ≥ 2,
every element g in G, viewed as lying in GL(V ) = GL(V1 ⊗ V2), can be written

in the form A ⊗ B with A in GL(V1) and with B in GL(V2).

Proof. If not, G lies in the image “GL(V1) ⊗ GL(V2)” of the product group
GL(V1) × GL(V2) in GL(V1 ⊗ V2). So we have the trivial inequality

M4(G, V ) = M4(G, V1 ⊗ V2) ≥ M4 (GL(V1) ⊗ GL(V2), V1 ⊗ V2).

But by definition

M4(GL(V1) ⊗ GL(V2), V1 ⊗ V2)

= dim (((V1 ⊗ V2)⊗2 ⊗ ((V1 ⊗ V2)∨)⊗2)GL(V1)×GL(V2))

= dim (((V1
⊗2 ⊗ (V1

∨)⊗2) ⊗ (V2
⊗2 ⊗ (V2

∨)⊗2))GL(V1)×GL(V2))

≥ dim (((V ⊗2
1 ⊗ (V ∨

1 )⊗2)GL(V1)) ⊗ ((V ⊗2
2 ⊗ (V ∨

2 )⊗2)GL(V2)))

= M4(GL(V1), V1) × M4(GL(V2), V2)

≥ 2 × 2 = 4. �

Normal Subgroup Corollary 1.3.7 [Larsen-Char, 1.6]. Let V be a
C-vector space of dimension N ≥ 2, G ⊂ GL(V ) a finite subgroup of GL(V ). Let
H be a proper normal subgroup of G. Suppose that one of the following conditions
1), 2), or 3) holds.

(1) M4(G, V ) = 2.
(2) G lies in O(V ), dim(V ) ≥ 3, and M4(G, V ) = 3.
(3) G lies in Sp(V ), dim(V ) ≥ 4, and M4(G, V ) = 3.
Then either H acts on V as scalars and lies in the center Z (G), or V is

H-irreducible.

Proof. By the Primitivity Theorem 1.3.2, G is primitive. So the restriction of
V to H must be H -isotypical, as otherwise V is induced. Say V |H ∼= nV1, for
some irreducible representation V1 of H . If dim (V1) = 1, then H acts on V as
scalars. But H ⊂ G ⊂ GL(V ), so H certainly lies in Z (G). If n = 1, then V = V1

is H -irreducible. It remains to show that the case where dim(V1) ≥ 2 and n ≥ 2
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cannot arise. To see this, write the vector space V as X ⊗ Y with X := V1 and
Y := HomH (V1, V ). Then dim(X ) and dim(Y ) are both at least 2, and, by [C-R-
MRT, 51.7], every element of g is of the form A ⊗ B with A in GL(X ) and B in
GL(Y ). But this contradicts the Tensor Indecomposability Lemma 1.3.5. �

1.4. Criteria for G to be big

1.4.1. We next combine these results with some classical results of Blichfeld
and of Mitchell, and with recent results of Wales and Zalesskii, to give criteria which
force G to be big. Recall that an element A in GL(V ) is called a pseudoreflection
if Ker(A − 1) has codimension 1 in V . A pseudoreflection of order 2 is called a
reflection. Given an integer r with 1 ≤ r < dim(V ), an element A of GL(V ) is
called quadratic of drop r if its minimal polynomial is (T − 1)(T − λ) for some
nonzero λ, if V /Ker(A − 1) has dimension r , and if A acts on this space as the
scalar λ. Thus a quadratic element of drop 1 is precisely a pseudoreflection.

Theorem 1.4.2. Let V be a C-vector space of dimension N ≥ 2, G in GL(V )
a (not necessarily connected) Zariski closed reductive subgroup of GL(V ) with
M4(G, V ) = 2. Fix an integer r with 1 ≤ r < dim (V ). If any of the following
conditions is satisfied, then G ⊃ SL(V ).

(1) G contains a unipotent element A �= 1.
(2) G contains a quadratic element A of drop r which has finite order n ≥ 6.
(3) G contains a quadratic element A of drop r which has finite order 4 or 5,

and dim (V ) > 2r .
(4) G contains a quadratic element A of drop r which has finite order 3, and

dim (V ) > 4r .
(5) G contains a reflection A, and dim (V ) > 8.

Proof. Suppose we have already proven the theorem in the case when
G ∩ scalars is finite. To treat the remaining case, when G contains the scalars,
we make use of the following elementary lemma. �

Lemma 1.4.3. Let V be a C-vector space of dimension N ≥ 2, G ⊂ GL(V )
a (not necessarily connected) Zariski closed reductive subgroup of GL(V ) which
contains the scalars C×. For each integer d ≥ 1, denote by Gd ⊂ G the closed
subgroup

Gd := {g in G| det(g)d = 1}.

Then Gd is reductive, and for every integer n ≥ 1, we have

M2n(Gd, V ) = M2n(G, V ).



P1: IOI

PB440-18 HIDA-0662G PB440-Hida-v4.cls December 6, 2003 17:36

nicholas m. katz532

Proof of Lemma 1.4.3. Since G contains the scalars, every element of G can be
written as λg1 with λ any chosen n’th root of det(g), and g1 := λ−1g an element of
G1. So we have G = GmGd for every d ≥ 1. So for every n ≥ 1, G and Gd acting
on V ⊗n(V ∨)⊗n have the same image in GL(V ⊗n(V ∨)⊗n) (simply because the scalars
in GL(V ) act trivially on V ⊗n(V ∨)⊗n). Therefore we have the asserted equality of
moments. Moreover, G being reductive, each V ⊗n(V ∨)⊗n is a completely reducible
representation of Gd . Each has a finite kernel (because its kernel in GL(V ) is the
scalars), so Gd is reductive. �

Proof of Theorem 1.4.2, suite. Thus if G contains the scalars, each Gd is re-
ductive, Gd ∩ scalars is finite, and Gd has fourth moment 2. So we already know
the theorem for Gd . In all of the cases 1) through 5), the given element A in G lies
in some Gd . So Gd ⊃ SL(V ), and we are done.

It remains to treat the case in which G ∩ scalars is finite. By Larsen’s theorem
together with the primitivity theorem, either G0 = SL(V ), or G is a finite irreducible
primitive subgroup of GL(V ). Suppose that G is a finite irreducible primitive sub-
group of GL(V ). We will show that each of the conditions 1) through 5) leads to a
contradiction

For assertion 1), the contradiction is obvious: a nontrivial unipotent element is
of infinite order.

Assertion 2) contradicts Blichfeld’s “60◦ theorem” [Blich-FCG, paragraph 70,
Theorem 8, page 96], applied to that power of A whose only eigenvalues are 1
and exp(2π i/n): in a finite irreducible primitive subgroup G of GL(N ,C), if an
element g in G has an eigenvalue α such that every other eigenvalue of g is within
60◦ of α (on either side, including the endpoints), then g is a scalar.

Assertion 3) in the case n = 5 (resp. n = 4) contradicts a result of Zalesskii [Zal,
11.2] (resp. Wales [Wales, Thm. 1],) applied to A: if a finite irreducible primitive
subgroup G of GL(N ,C) contains a quadratic element of drop r and order 5 (resp.
order 4), then dim(V ) = 2r .

Assertion 4) contradicts a result of Wales [Wales, section 5], applied to A: if a
finite irreducible primitive subgroup G of GL(N ,C) contains a quadratic element
of drop r and order 3, then dim(V ) ≤ 4r .

Assertion 5) contradicts the following theorem, the first (and essential) part of
which was proved by Mitchell nearly a century ago. �

Theorem 1.4.4 (Mitchell). Let V be a C-vector space of dimension N > 8,
G ⊂ GL(V ) a finite irreducible primitive subgroup of GL(V ) ∼= GL(N ,C) which
contains a reflection A. Let � ⊂ G denote the normal subgroup of G generated by
all the reflections in G. Then we have:

(1) � is (conjugate in GL(V ) to) the group SN+1, viewed as a subgroup of
GL(N ,C) by its “permutation of coordinates” action on the hyperplane AugN in
CN+1 consisting of those vectors whose coordinates sum to zero.

(2) G is the product of � with the group G ∩ (scalars).
(3) M4(G, V ) > 3.
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Proof. By a theorem of Mitchell [Mi], if N > 8, and if G is a finite irreducible
primitive subgroup of GL(V ) ∼= GL(AugN ) which contains a reflection, then the
image of G in the projective group PGL(AugN ) = GL(AugN )/C× is the image in
that group of the symmetric group SN+1.

We first exhibit an SN+1 inside G. For this, we argue as follows. We have
our reflection A in G. Its image in SN+1, and indeed the image in SN+1 of any
reflection in G, is a transposition. Renumbering, we may suppose A �→ (1, 2). As
all transpositions in SN+1 are SN+1-conjugate, for each i with 1 ≤ i ≤ N , there is
a G-conjugate Ai of A which maps to the transposition σi := (i, i + 1). Now Ai is
itself a reflection, being a conjugate of the reflection A. We claim it is the unique
reflection in G which maps to σi . Indeed, any element in G which maps to σi is
of the form λAi for some invertible scalar λ; but λAi has λ as eigenvalue with
multiplicity N − 1 > 1, so λAi can be a reflection only if λ = 1. We next claim
that the subgroup H of G generated by the Ai maps isomorphically to SN+1. We
know H maps onto SN+1 (because SN+1 is generated by the σi ), so it suffices to
show that the order of H divides (N + 1)! For this, it suffices to show that H is a
quotient of SN+1. We know [Bour-L4, pages 12 and 27] that SN+1 is generated by
elements si , 1 ≤ i ≤ N , subject to the Coxeter relations

(si s j )
m(i, j) = 1,

where

m(i, i) = 1,
m(i, j) = 2 if |i − j | ≥ 2,
m(i, j) = 3 if |i − j | = 1.

(If we map si to σi , we get the required isomorphism with SN+1.) So it suffices to
show that the Ai satisfy these relations. Each Ai is a reflection, so of order 2. For
any i and j , the subspace

Ker (Ai − 1) ∩ Ker (A j − 1)

of V has codimension at most 2, and the product Ai A j fixes each element of this
subspace. Therefore its power (Ai A j )m(i, j) also fixes each element of this subspace.
But (Ai A j )m(i, j) maps to (σiσ j )m(i, j) = 1 in SN+1, and hence (Ai A j )m(i, j) is a scalar
λ. As this scalar λ fixes every vector in a subspace of codimension at most 2, we
must have λ = 1.

We next observe that H = �, i.e., that H contains every reflection A in G. For
the image of A in the projective group is a transposition, so A = λh for some scalar
λ and some transposition h in H . But such an h is a reflection in GL(AugN ). Thus
both h and λh are reflections, which forces λ = 1. This proves 1).

Since H = � maps isomorphically to the image SN+1
∼= G/G ∩ (scalars) of

G in PGL(AugN ), G is generated by � and by the central subgroup G ∩ (scalars),
and � ∩ (scalars) = {1}. This proves 2).

To prove 3), notice that the scalars in GL(V ) act trivially on the tensor
spaces V ⊗n ⊗ (V ∨)⊗n for every n, in particular for n = 2. So the action of



P1: IOI

PB440-18 HIDA-0662G PB440-Hida-v4.cls December 6, 2003 17:36

nicholas m. katz534

G = � × G ∩ (scalars) on V n ⊗ (V ∨)⊗n factors through the action of �. Thus
we have

M2n(G, V ) = M2n(�, V ) = M2n(SN+1, AugN ).

So it remains only to prove the following lemma. �

Lemma 1.4.5. For any N ≥ 4, we have M4(SN+1, AugN ) > 3.

Remark 1.4.5.1. We will see later (2.4.3) that, in fact, we have
M4(SN+1, AugN ) = 4 for N ≥ 3, but we do not need this finer result here.

Proof of Lemma 1.4.5. Aug := AugN is an orthogonal representation of SN+1,
so we have an SN+1-decomposition

(Aug)⊗2 ∼= 1 ⊕ 
2(Aug) ⊕ SphHarm2(Aug),

and thus an a priori inequality M4(SN+1, AugN ) ≥ 3, with equality if and only if
the following condition (1.4.5.2) holds:

(1.4.5.2) 1, 
2(Aug), and SphHarm2(Aug) are three inequivalent irreducible
representations of SN+1. �

The dimensions of these three representations are 1, N (N − 1)/2, and
N (N + 1)/2 − 1 respectively. Because N ≥ 4, none of these dimensions is N . So if
(1.4.5.2) holds, then the irreducible representation Aug does not occur in (Aug)⊗2,
or equivalently (Aug being self-dual), 1 does not occur in (Aug)⊗3, or equivalently∫

SN+1

Trace (g| Aug)3 = 0.

But in fact we have ∫
SN+1

Trace (g| Aug)3 > 0,

as the following argument shows. The representation Aug being irreducible and
nontrivial, we have ∫

SN+1

Trace (g| Aug) = 0.

For g in SN+1, let us denote by Fix(g) the number of fixed points of g, viewed as
a perrmutation of {1, . . . , N + 1}. Then

Trace (g| Aug) = Fix (g) − 1.

So we get ∫
SN+1

(Fix (g) − 1) = 0.

Now break up SN+1 as the disjoint union Fix≥2 � Fix=1 � Fix=0, according to the
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number of fixed points. Then we may rewrite the above vanishing as∫
Fix≥2

(Fix (g) − 1) −
∫

Fix=0

(1) = 0.

At the same time, we have∫
SN+1

Trace (g | Aug)3 =
∫

Fix≥2

(Fix (g) − 1)3 −
∫

Fix=0

(1).

At every point of Fix≥2 , we have

(Fix (g) − 1)3 ≥ Fix (g) − 1,

with strict inequality on the nonempty set Fix≥3. Thus we have∫
SN+1

Trace (g | Aug)3 >

∫
SN+1

Trace (g | Aug) = 0.

Therefore (1.4.5.2) does not hold, i.e., we have M4(SN+1, AugN ) > 3. This proves
both Lemma 1.4.5 and Theorem 1.4.4.

Using Theorem 1.4.4, we also get a result in the orthogonal case.

Theorem 1.4.6. Let V be aC -vector space of dimension N > 8 equipped with
a nondegenerate quadratic form. Let G ⊂ O(V ) be a (not necessarily connected)
Zariski closed reductive subgroup of O(V ) with M4(G, V ) = 3. If G contains a
reflection, then G = O(V ).

Proof. Theorem 1.4.4 rules out the possibility that G is a finite irreducible
primitive subgroup of GL(V ). So G is either SO(V ) or O(V ). But SO(V ) does not
contain a reflection. �

For the sake of completeness, let us also record the immediate consequence of
Larsen’s theorem (1.1.6) in the symplectic case.

Theorem 1.4.7. Let V be aC -vector space of dimension N ≥ 4 equipped with
a nondegenerate alternating form. Suppose that G ⊂ Sp(V ) is a (not necessarily
connected) Zariski closed reductive subgroup of Sp(V ) with M4(G, V ) = 3. If G
contains a unipotent element A �= 1, then G = Sp(V ).

Proof. By Theorem 1.1.6, G is either Sp(V ) or it is finite. Since A has infinite
order, G is not finite. �

1.5. Examples of finite G: the Weil–Shale case

1.5.1. We begin with some examples of finite groups G ⊂ GL(V ) with
M4(G, V ) = 2, pointed out to me by Deligne. Let q be a power of an odd prime
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p, i.e., q is the cardinality of a finite field Fq of odd characteristic p. Fix an integer
n ≥ 1, and a 2n-dimensional Fq-vector space F , endowed with a nondegenerate
symplectic form < , >. The Heisenberg group Heis2n(Fq) is the central extension
of F by Fq defined as the set of pairs (λ in Fq , f in F), with group operation

(λ, f )(µ, g) := (λ+µ + < f, g>, f + g).

The symplectic group Sp(F) acts on Heis2n(Fq), γ in Sp(F) acting by

γ (λ, f ) := (λ, γ ( f )).

The irreducible C-representations of the group Heis2n(Fq) are well-known. There
are q2n one-dimensional representations, those trivial on the center. For each of
the q − 1 nontrivial C×-valued characters ψ of the center, there is precisely one
irreducible representation with central character ψ , say Vψ , which has dimension
qn . Because the action of Sp(F) on Heis2n(Fq) is trivial on the center, the action of
Heis2n(Fq) on Vψ extends to a projective representation of the semidirect product
group Heis2n(Fq)×Sp(F) on Vψ . Because we are over a finite field, this projective
representation in turn extends to a linear representation of Heis2n(Fq)×Sp(F) on
Vψ , the Weil-Shale representation.

1.5.2. We claim that for any nontrivial character ψ of the center, we have

M4(Heis2n(Fq)×Sp (F), Vψ ) = 2.(1.5.2.1)

To see this, it suffices to work over the complex numbers. We fix a choice of the
nontrivial character ψ , and denote by

χ : Heis2n(Fq)×Sp (F) → C

the character of Vψ :

χ ((λ, f, γ )) := Trace ((λ, f, γ ) | Vψ ).

According to Howe [Howe, Prop. 2, (i), page 290], χ is supported on those con-
jugacy classes which meet (the center Z of Heis2n(Fq))×Sp(F), where it is given
by

|χ ((λ, 0, γ ))|2 = qdim (Ker (γ−1) in F).(1.5.2.2)

Moreover, an element (λ, f, γ ) in Heis2n(Fq)×Sp(F) is conjugate to an element
of Z ×Sp(F) if and only if it is conjugate to (λ, 0, γ ), and this happens if and only
if f lies in Image (γ − 1), cf. [Howe, page 294, first paragraph]. Thus we have

|χ ((λ, f, γ ))|2 = qdim (Ker (γ−1)), if f ε Image (γ − 1),(1.5.2.3)

|χ ((λ, f, γ ))|2 = 0, if not.
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1.5.3. Using this explicit formula, we find a striking relation between the
absolute moments of Heis2n(Fq)×Sp(F) on Vψ and the absolute moments of its
subgroup Sp(F) on Vψ . For any integer k ≥ 1, we have

M2k+2(Heis2n(Fq)×Sp(F), Vψ ) = M2k(Sp(F), Vψ ).(1.5.3.1)

To see this, we use the fact that dim(Ker (γ − 1)) + dim (Im (γ − 1)) = dim (F),
and simply compute:

#(Heis2n(Fq)×Sp (F)) × M2k+2(Heis2n(Fq)×Sp(F), Vψ )

:= �(λ, f,γ )|χ ((λ, f, γ ))|2k+2

= �(λ,0,γ )� f in Im (γ−1) |χ ((λ, f, γ ))|2k+2

= �(λ,0,γ ) qdim (Im (γ−1)) × |qdim (Ker (γ−1))|k+1

= �γ in Sp(F) q1+dim (F) × |qdim (Ker (γ−1)|k
= �γ in Sp(F) q1+dim (F) × |χ ((0, 0, γ ))|2k

= q1+dim (F) × #(Sp(F)) × M2k(Sp(F), Vψ )

= #(Heis2n(Fq)×Sp(F)) × M2k(Sp(F), Vψ ).

So in particular we have

M4(Heis2n(Fq)×Sp(F), Vψ ) = M2(Sp(F), Vψ ).(1.5.3.2)

1.5.4. The formula (1.5.2.2) |χ ((0, 0, γ )) |2= qdim (Ker (γ−1)) = # (fixed points
of γ on F) means precisely that End (Vψ ) as Sp(F)-module is isomorphic to the
natural permutation representation of Sp(F) on the space of C-valued functions on
F . So

M2(Sp(F), Vψ ) = M1,0(Sp(F), Fct (F,C))(1.5.4.1)

is the dimension of the space of Sp(F)-invariant functions on F , which is in turn
equal to the number of Sp(F)-orbits in F , cf. [Ger, proof of Cor. 4.4, first paragraph,
page 85]. But Sp(F) acts transitively on F − {0}, so there are just two orbits. Thus

M4(Heis2n(Fq)×Sp(F), Vψ ) = M2(Sp(F), Vψ )(1.5.4.2)

= M1,0(Sp(F), Fct (F,C)) = 2,

as asserted.

1.6. Examples of finite G from the Atlas

1.6.1. A perusal of the Atlas [CCNPW-Atlas] gives some finite simple
groups G with a low dimensional irreducible representation V for which we have
M4(G, V ) = 2. Here are some of them. In the table below, we give (in Atlas no-
tation) the simple group G, the character χ of the lowest dimensional such V , the
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dimension of V , and the expression of |χ |2 as the sum of two distinct irreducible
characters.

G character χ of V dim (V ) |χ |2
L3(2) = L2(7) χ2, χ3 3 1 + χ6

U4(2) = S4(3) χ2, χ3 5 1 + χ10

U5(2) χ3, χ4 11 1 + χ16

2F4(2)′ χ2, χ3 26 1 + χ15

M23 χ3, χ4 45 1 + χ17

M24 χ3, χ4 45 1 + χ19

J4 χ2, χ3 1333 1 + χ11

1.6.2. What about finite subgroups of O(V ) with M4(G, V ) = 3? Again the
Atlas gives some examples of finite simple groups G with a low dimensional
irreducible orthogonal representation V for which we have M4(G, V ) = 3. Here
are some of them:

G character χ of V dim (V ) χ2

U4(2) χ4 6 1 + χ7 + χ9

S6(2) χ2 7 1 + χ4 + χ6

S4(5) χ2 13 1 + χ7 + χ9

χ3 13 1 + χ8 + χ9

G2(3) χ2 14 1 + χ6 + χ7

McL χ2 22 1 + χ3 + χ4

U6(2) χ2 22 1 + χ3 + χ4

CO2 χ2 23 1 + χ3 + χ4

Fi22 χ2 78 1 + χ6 + χ7

HN = F5+ χ2 133 1 + χ6 + χ8

χ3 133 1 + χ7 + χ8

Th χ2 248 1 + χ6 + χ7

1.6.3. What about finite subgroups of Sp(V ) with M4(G, V ) = 3?
The Atlas gives a few cases of finite simple groups G with a low dimen-

sional irreducible symplectic representation V for which we have M4(G, V ) = 3.
[As Deligne and Ramakrishnan explained to me, “most” simple groups have no
symplectic representations, cf. the article [Pra] of Prasad.] Here are two lonely
examples:

G character of V dim (V ) χ2

U3(2) χ2 6 1 + χ6 + χ7

U5(2) χ2 10 1 + χ5 + χ6

1.7. Questions

1.7.1. Given a connected algebraic group G overCwith Lie (G) simple, what
if any are the finite subgroups of G which act irreducibly on Lie (G)?
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1.7.2. Given a finite set of irreducible representations {Vi }i of such a G, what
if any are the finite subgroups � of G which act irreducibly on every Vi ? From the
data (G, {Vi }i ), how can one tell if any such � will exist? For example, if G is simple
and simply connected, can we find such a � if we take for {Vi }i all the fundamental
representations of G. [For SL(N ), pick any even m ≥ 4: then the subgroup �m ⊂
SL(N ) consisting of all permutation-shaped matrices of determinant one with entries
in µm is such a subgroup.] If we take for {Vi }i all the irreducible representations
whose highest weight is the sum of at most two fundamental weights? [For SL(N ),
the groups �m above fail here, already for Sym2(stdN ) = E(2ω1). Indeed, the C-
span of the squares (e1)2 of the standard basis elements ei of CN is a �m-stable
subspace of Sym2(stdN ).]

1.7.3. Given a reductive, Zariski closed subgroup G of GL(V ), can one classify
the finite subgroups � ⊂ G for which M4(�, V ) = M4(G, V )?

1.7.4. Given G as in 3) above, and an integer k ≥ 1, let us say that a finite
subgroup � ⊂ G “spoofs” G to order k if we have

M2�(�, V ) = M2�(G, V ) for all 1 ≤ � ≤ k?(1.7.4.1)

For a given G, what can we say about the set Spoof(G) of integers k ≥ 1 for which
there exists a finite subgroup � ⊂ G which spoofs G to order k? This set may
consist of all k ≥ 1. Take for G the diagonal subgroup of GL(N ), and, for each
integer m ≥ 2, take �m the finite subgroup of G consisting of diagonal matrices
with entries in µm . Then �m spoofs G to order m − 1. Or take G itself to be finite,
then � = G spoofs G to any order. Is it true that if G0 is semisimple and nontrivial,
then the set Spoof(G) is finite.?

Part II: Applications to the Monodromy of Lefschetz Pencils

2.1. Diophantine preliminaries

2.1.1. Let k be a finite field of cardinality q and characteristic p, � a prime
number other than p, w a real number, ι an embedding ofQ� intoC, S/k a smooth,
geometrically connected k-scheme of dimension D ≥ 1, andF a lisseQ�-sheaf on
S of rank r ≥ 1 which is ι-pure of integer weight w . Pick a geometric point s in S,
and define V := Fs . Denote by

ρF : π1(S, s) → GL(V ) = GL(Fs) ∼= GL(r, Q̄�),(2.1.1.1)

the �-adic representation that F “is.” Denote by G ⊂ GL(V ) the Zariski closure
of the image of π1

geom (S, s) := π1(S ⊗k k̄, s) under ρF . Because F is ι-pure of
some weight, we know [De-Weil II, 1.3.8 and 3.4.3 (iii)] that G is a (not necessarily
connected) semisimple subgroup of GL(V ).
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2.1.2. Denote byF∨ the linear dual (contragredient representation) ofF , and
by F := F∨(−w) the “complex conjugate” of F ; the sheaves F and F have, via ι,
complex conjugate local trace functions.

2.1.3. Our first task is to give a diophantine calculation of the absolute mo-
ments M2n(G, V ), n ≥ 1, in terms of moments S2n of the local trace function of F .
For each finite extension field E/k, define the real number S2n(E,F) by

S2n(E,F) :=(2.1.3.1)

(#E)−dim(S)−nw�x in S(E) |ι (Trace (FrobE,x |F))|2n.

Lemma 2.1.4. Hypotheses and notations as in 2.1.1–3 above, for each n ≥ 1
we have the limit formula

M2n(G, V ) = limsupE/k finite S2n(E,F).

Proof. The moment M2n(G, V ) is the dimension of the space of G-invariants,
or equivalently of π1

geom(S, s)-invariants, in (V ⊗ V ∨)⊗n , i.e., it is the dimension
of H 0(S ⊗k k̄, (F ⊗ F)⊗n). So, by Poincare duality, we have

M2n(G, V ) = dim H 2dim (S)
c

(
S ⊗k k̄, (F ⊗ F)⊗n

)
.

Because F is pure of weight w, (F ⊗ F)⊗n is ι-pure of weight 2nw , so this last
cohomology group is ι-pure of weight 2nw + 2dim (S). So the endomorphism
A := Frobk/qwn+dim (S) acting on it has, via ι, all its eigenvalues on the unit circle. By
a standard compactness argument (cf. [Ka-SE, 2.2.2.1]), we recover the dimension
of the cohomology group by the limsup formula

dim H 2dim (S)
c (S ⊗k k̄, (F ⊗ F)⊗n

= limsupm |ι (
Trace

(
Am

∣∣H 2dim (S)
c

(
S ⊗k k̄, (F ⊗ F)⊗n

)))∣∣
= limsupE/k finite

(#E)−dim (S)−nw |ι (
Trace

(
FrobE

∣∣H 2dim(S)
c

(
S ⊗k k̄, (F ⊗ F)⊗n

)))∣∣ .
By [De-Weil II, 3.3.4], the lower cohomology groups H j

c , j < 2 dim (S), are
ι-mixed of strictly lower weight, so we get M2n(G, V ) as the limsup, over E/k
finite, of the quantities

(#E)−dim(S)−nw� j

∣∣ι (� j (−1) j Trace
(
FrobE |H j

c

(
S ⊗k k̄, (F ⊗ F)⊗n

)))∣∣ .
By the Lefschetz Trace Formula, this last quantity is precisely S2n(E,F). �

First Variant Lemma 2.1.5. Hypotheses and notations as in Lemma 2.1.4,
suppose we are given in addition a Q�-valued function ϕ(E, x) on the set of pairs

(a finite extension field E/k, a point x in S(E))
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such that there exists a positive real constant C for which we have the estimate

|ι(ϕ(E, x))| ≤ C(#E)w−1/2.

For each finite extension E/k, define the approximate moment S̃2n(E,F) by

S̃2n(E,F) := (#E)−dim(S)−nw�x in S(E)|ι(Trace (FrobE,x | F) + ϕ(E, x))|2n.

Then we have the limit formula

M2n(G, V ) = limsupE/k finite S̃2n(E,F).

Proof. One checks easily that S̃2n(E,F) − S2n(E,F) → 0 as #E grows. �

Second Variant Lemma 2.1.6. Hypotheses and notations as in Lemma 2.1.5,
suppose that S is an open subscheme of a smooth, geometrically connected k-scheme
T/k (necessarily of the same dimension D). Suppose that we are given aQ�-valued
function τ (E, x) on the set of pairs

(a finite extension field E/k, a point x in T (E)),

such that whenever x lies in S(E), we have

τ (E, x) = Trace (FrobE,x | F) + ϕ(E, x).

For each finite extension E/k, define the mock moment T2n(E,F) by

T2n(E,F) := (#E)−dim (S)−nw�x in T (E)|ι(τ (E, x))|2n.

Then we have the inequality

M2n(G, V ) ≤ lim supE/k finite T2n(E,F).

Proof. Obvious from the previous result and the observation that for each E/k
we have

S̃2n(E,F) ≤ T2n(E,F )

simply because we obtain T2n(E,F) by adding positive quantities to S̃2n(E,F). �

2.2. Universal families of hypersurface sections

2.2.1. Recall that k is a finite field, and X /k is a projective, smooth, geometrical
variety of dimension n + 1 ≥ 1, given with a projective embedding X ⊂ P. We
denote by PHypd /k the projective space of degree d hypersurfaces in P, and by

GoodX PHypd ⊂ PHypd(2.2.1.1)

the dense open set consisting of those degree d hypersurfaces H which are trans-
verse to X , i.e., such that the scheme-theoretic intersection X ∩ H is smooth and
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of codimension one in X . Over GoodX PHypd we have the universal family of all
smooth, degree d hypersurface sections of X , say

π : Univd → GoodX PHypd,(2.2.1.2)

whose fibre over a degree d hypersurface H in P is X ∩ H .

2.2.2. For any finite extension E /k, and any point H in GoodX PHypd(E), the
weak Lefschetz theorem tells us that the restriction map

Hi (X ⊗ k k,Q�) → Hi ((X ⊗ k k) ∩ H,Q�)

is an isomorphism for i < n, and injective for i = n. By Poincare duality, the Gysin
map

Hi ((X ⊗ k k) ∩ H,Q�) → Hi+2(X ⊗ k k,Q�)(1)

is an isomorphism for i > n, and surjective for i = n. Thanks to the hard Lefschetz
theorem, we know that, for i = n, the kernel of the Gysin map is a subspace

Evn((X ⊗ k k) ∩ H,Q�) ⊂ H n((X ⊗ k k) ∩ H,Q�)

on which the cup-product remains nondegenerate, and which maps isomorphically
to the quotient H n((X ⊗ k k) ∩ H,Q�)/H n(X ⊗ k k,Q�).

2.2.3. Over the space GoodX PHypd , there is a lisseQ�-sheafFd , such that for
any finite extension E/k, and any E-valued point H of GoodX PHypd , the stalk of
Fd at H is Evn((X ⊗ k k) ∩ H,Q�). The sheaf Fd is pure of weight n, and carries a
cup-product autoduality toward Q�(−n). The autoduality is symplectic if n is odd,
and orthogonal if n is even. For fixed X but variable d, the rank Nd of Fd is a
polynomial in d of degree n + 1, of the form deg (X )dn+1 + lower terms.

Theorem 2.2.4. Suppose that n ≥ 2 is even, that d ≥ 3, and that Nd > 8. Then
the geometric monodromy group Gd of the lisse sheafFd is the full orthogonal group
O(Nd).

Proof. The group Gd is a priori a Zariski closed subgroup of O(Nd). We first
recall that Gd , indeed its subgroup ρFd (π1

geom (GoodX PHypd)), contains a reflec-
tion.

Take a sufficiently general line L in PHypd . Over its intersection L − � with
GoodX PHypd , we get a Lefschetz pencil of smooth hypersurface sections of degree
d of X . Denote by

i : L − � → GoodX PHypd

the inclusion. We have the inequality

#�(k) ≥ 1 if Nd �= 0,
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because Evn((X ⊗ k k) ∩ H,Q�) is spanned by the images, using all possible
“chemins,” of the vanishing cycles, one at each point of �(k), cf. [De-Weil II,
4.2.4 and 4.3.9]. (So long as char (k) is not 2, we can choose a single chemin for
each vanishing cycle, and we have the inequality #�(k) ≥ Nd , cf. [SGA 7, Expose
XVIII, 6.6 and 6.6.1]).

By the Picard-Lefschetz formula [SGA 7, Exposé XV, 3.4], each of the #�(k) lo-
cal monodromies in a Lefschetz pencil is a reflection. Thus π1

geom(L − �) contains
elements which act on i∗Fd as reflections, and their images inπ1

geom (GoodX PHypd)
act as reflections on Fd .

In view of Theorem 1.4.6, it suffices to show that, denoting by Vd the represen-
tation of Gd given by Fd , we have M4(Gd, Vd) = 3. Since Gd lies in O(Nd) and
Nd > 1, we have the a priori inequality

M4(Gd, Vd) ≥ M4(O(Nd), std) = 3.

So the desired conclusion results from the following theorem. �

Theorem 2.2.5. Suppose that n ≥ 1 and d ≥ 3. Then M4(Gd, Vd) ≤ 3. If n =
0 and d ≥ 3, we have M4(Gd, Vd) ≤ 4.

Proof. Denote by Hypd/k the affine space over k which is the affine cone of
the projective space PHypd/k. For any k-algebra A, the A-valued points of Hypd

are the elements of H 0(P,O(d)) ⊗ k A. The natural projection map

π : Hypd − {0} → PHypd

is a (Zariski locally trivial) Gm-bundle. We denote by

GoodX Hypd ⊂ Hypd − {0}
the dense open set which is the inverse image of GoodX PHypd , and by

π : GoodX Hypd → GoodX PHypd

its projection. Thus we have a cartesian diagram

GoodX Hypd ⊂ Hypd − {0}
π ↓ π ↓

GoodX PHypd ⊂ PHypd

We form the lisse sheaf π∗Fd on GoodX Hypd . By [Ka-La-FGCFT, Lemma 2,
part (2)], for any geometric point ξ of GoodX Hypd , the map

π∗ : π1
geom(GoodX Hypd, ξ ) → π1

geom(GoodX PHypd, π (ξ ))

is surjective. So we recover Gd as the Zariski closure of the image of π1
geom

(GoodX Hypd) acting on π∗Fd .
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The advantage is that the base space is now a dense open set of an affine space,
namely Hypd . We will now apply the diophantine method explained above, to the
sheaf π∗Fd on the dense open set GoodX Hypd of Hypd .

Let E/k be a finite extension field, and H an E-valued point of GoodX Hypd .
Then the stalk of π∗Fd at H is Evn((X ⊗ k k) ∩ (H = 0),Q�). �

Key Lemma 2.2.6. Given X/k as above, denote by �(X ⊗ k k,Q�) the sum of
theQ�-Betti numbers. Then for any finite extension field E/k, and for any E-valued
point H of GoodX Hypd , putting Y := X ∩ (H = 0), we have the estimate

|Trace (FrobE,H | π∗Fd) − (−1)n(#Y (E) − #X (E)/#E)|
≤ �(X ⊗ k k,Q�)(#E)(n−1)/2.

Proof. Use the Lefschetz Trace Formula on Y to write #Y (E) as a sum of three
terms:

#Y (E) = �i≤n−1 (−1)i Trace (FrobE |Hi (Y ⊗ E k,Q�))

+ (−1)nTrace (FrobE |H n(Y ⊗ E k,Q�))

+ �i≥n+1 (−1)i Trace (FrobE |Hi (Y ⊗ E k,Q�)).

Use the same formula to write #X (E)/#E as the sum of three terms:

#X (E)/#E = �i≤n+1 (−1)i Trace (FrobE |Hi (X ⊗ k k,Q�)(1))

+ (−1)n+2Trace (FrobE |H n+2(X ⊗ k k,Q�)(1))

+ + �i≥n+3 (−1)i Trace (FrobE |Hi (X ⊗ k k,Q�)(1)).

By the Poincare dual of the weak Lefschetz theorem, the third terms in the two
expressions are equal. The difference of the second terms is precisely

(−1)nTrace (FrobE | Evn((X ⊗ k k) ∩ (H = 0),Q�)),

i.e., it is (−1)nTrace (FrobE,H | π∗Fd). The difference of the first terms is

�i≤n−1 (−1)i Trace (FrobE |Hi (Y ⊗ E k,Q�))

− �i≤n+1 (−1)i Trace (FrobE |Hi (X ⊗ k k,Q�)(1)).

By Deligne’s Weil I, each cohomology group occurring here is pure of some weight
≤ n − 1, so we get the asserted estimate with the constant

�i≤n−1 hi (Y ⊗ E k,Q�) + �i≤n+1 hi (X ⊗ k k,Q�).

Using weak Lefschetz, this is equal to

= �i≤n−1 hi (X ⊗ k k,Q�) + �i≤n+1 hi (X ⊗ k k,Q�).
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Using Poincare duality on X , this in turn is equal to

= �i≥n+3 hi (X ⊗ k k,Q�) + �i≤n+1 hi (X ⊗ k k,Q�)

≤ �i h
i (X ⊗ k k,Q�) := �(X ⊗ k k,Q�). �

For any finite extension field E/k, and for any E-valued point H of Hypd , we
define

τ (E, H ) := (−1)n((−1)n(#(X ∩ (H = 0))(E) − #X (E)/#E).

Notice that τ takes values in Q.
We then define the mock moment T4(E, π∗Fd) by

T4(E, π∗Fd) := (#E)− dim(Hypd )−2n �H in Hypd (E) | τ (E, H )|4
= (#E)− dim(Hypd )−2n �H in Hypd (E) (#(X ∩ (H = 0))(E) − #X (E)/#E)4.

(Because τ takes values inQ, there is no need for the ι which figured in the general
definition, where τ was allowed to be Q�-valued.)

In view of the Second Variant Lemma 2.1.6, Theorem 2.2.5 now results from
the following theorem:

Theorem 2.2.7. Let X/k be as above, of dimension n + 1 ≥ 1. If n ≥ 1, then
for any d ≥ 3, we have the estimate

|T4(E, π∗Fd) − 3| = O((#E)−1/2).

If n = 0, then for any d ≥ 3, we have the estimate

|T4(E, π∗Fd) − 4| = O((#E)−1/2).

Proof. Fix a finite field extension E/k with #E ≥ 6. We will use an exponential
sum method to calculate T4(E, π∗Fd) in closed form. Fix a nontrivial C×-valued
additive character ψ of E . View the ambient P = P m as the space of lines inAm+1.
For each point x in P m(E), choose a point x̃ in Am+1(E) − {0} which lifts it. For
any fixed H in Hypd(E), the value H (x̃) depends upon the choice of x̃ lifting x ,
but only up to an E×-multiple. So the sum

�λ in E× ψ(λH (x̃))

depends only on the original point x in P(E). By the orthogonality relations for
characters, we have

�λ in E× ψ(λH (x̃)) = −1 + �λ in E ψ(λH (x̃))

= #E − 1, if H (x) = 0,

= −1, if not.
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So we get the identity

�x in X (E) �λ in E× ψ(λH (x̃)) = (#E)(#(X ∩ (H = 0))(E)) − #X (E)

= (−1)n(#E)τ (E, H ).

This in turn gives the identity

(#E)dim(Hypd )+2n+4 T4(E, π∗Fd)

= �H in Hypd (E) (�x in X (E) �λ in E× ψ(λH (x̃)))4.

We next open the inner sum and interchange orders of summation, to get

= �(xi ) in X (E)4 �(λi ) in (E×)4 �H in Hypd (E) ψ(�i=1 to 4 λi H (x̃i )).

The key observation is given by the following lemma. �

Singleton Lemma 2.2.8. Suppose #E ≥ 4. Given four (not necessarily dis-
tinct) points x1, x2, x3, x4 in P(E), suppose among them there is a singleton, i.e., a
point which is not equal to any of the others. Then for any (λi ) in (E×)4, we have
the vanishing

�H in Hypd (E) ψ(�i=1 to 4 λi H (x̃i )) = 0.

Before proving this lemma, it will be convenient to give two other lemmas.

Lemma 2.2.9. If #E ≥ 4, then given four (not necessarily distinct) points
x1, x2, x3, x4 in P(E), there exists an E-rational hyperplane L in P, i.e., a point L
in PHyp1(E), such that all four points xi lie in the affine open set P m[1/L].

Proof. Say P is P m . In the dual projective space, the set of hyperplanes through
a given point xi in P m(E) form a P m−1, so there are precisely

((#E)m − 1)/(#E − 1)

E-rational hyperplanes through xi . So there are at least

((#E)m+1 − 1)/(#E − 1) − 4((#E)m − 1)/(#E − 1)

E-rational hyperplanes which pass through none of the xi . As #E is at least 4, this
difference is strictly positive. �

Evaluation Lemma 2.2.10. Let E be a field, m ≥ 1 and d ≥ 1 integers. De-
note by Poly≤ d(E) the E-vector space of E-rational polynomial functions on Am.
For any integer r ≤ d + 1, and for any r distinct points xi , i = 1 to r , in Am(E),
the E-linear multi-evaluation map

Poly≤ d(E) → Er

f �→ ( f (x1), . . . , f (xr ))

is surjective.
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Proof. The map being E-linear, its surjectivity map be checked over any exten-
sion field. Passing to a large enough such extension, we may add additional distinct
points, so that our xi are the first r of d + 1 distinct points. It suffices to prove
the lemma in the hardest case r = d + 1 (then project onto the first r coordinates
in the target). To do this hardest case, we first treat the case m = 1. In this case,
source and target have the same dimension, d + 1, so it suffices that the map be
injective. But its kernel consists of those polynomials in one variable of degree
at most d, which have d + 1 distinct zeroes. To do the general case, it suffices to
find a linear form T from Am to A1 under which the d + 1 points xi have d + 1
distinct images. For then already polynomials of degree at most d in T will be a
subspace of the source Poly≤ d(E) which will map onto Er . We can do this as soon
as #E ≥ Binom (d + 1, 2). Indeed, we are looking for a linear form T with the
property that for each of the Binom (d + 1, 2) pairs (xi , x j ) with i < j , we have
T (xi ) − T (x j ) �= 0. For each such pair, the set of T for which T (xi ) − T (x j ) = 0
is a hyperplane in the dual space. So we need T to not lie in the union of
Binom (d + 1, 2) linear subspaces of codimension one. Since they all intersect
in zero, their union has cardinality strictly less than Binom (d + 1, 2)(#E)m−1. So
as soon as #E ≥ Binom (d + 1, 2), the desired T exists. �

With these preliminaries out of the way, we can prove the Singleton Lemma
2.2.8. Because #E ≥ 4, we can find a non-zero linear form L in Hyp1(E) such that
our four points xi all lie in P[1/L] ∼= Am . By means of the map H �→ H/Ld , we
get an E-linear isomorphism

Hypd(E) ∼= Poly≤ d(E)

of Hypd(E) with the E-rational polynomial functions on P[1/L] ∼= Am of degree
at most d.

Moreover, for any x in P[1/L](E), and any lifting x̃ in Am+1(E), the two
E-linear forms on Hypd(E),

H �→ H (x̃)

and

H → (H/Ld)(x),

are proportional. So whatever the four points (xi ) in P[1/L](E) ∼= Am(E), we can
rewite the sum

�H in Hypd (E) ψ(�i=1 to 4 λi H (x̃i ))

= �h in Poly≤ d (E) ψ(�i=1 to 4 λi h(xi )).

Renumbering, we may suppose that x1 is a singleton. We consider separately
various cases (which, up to renumbering, cover all the cases when x1 is a singleton).
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If the four points are all distinct, then as h runs over Poly≤ d(E), the vector
(h(xi )) runs over E4, and our sum becomes #(Ker of eval at (xi )) times

�(ti ) in E4 ψ(�i=1 to 4 λi ti ).

Since the vector (λi ) is nonzero, (ti ) �→ ψ(�i=1 to 4 λi ti ) is a nontrivial additive
character of E4, so the inner sum vanishes.

If the three remaining points are all equal, then as h runs over Poly≤ d(E), the
vector (h(x1), h(x2)) runs over E2, and our sum becomes #(Ker of eval at (x1, x2))
times

�(t1,t2) in E2 ψ(λ1t1 + (λ2 + λ3 + λ4)t2).

Since the vector (λ1, λ2 + λ3 + λ4) is nonzero, the sum again vanishes.
If the first three points are distinct, but x4 = x3, then our sum becomes #(Ker

of eval at (x1, x2, x3)) times

�(t1,t2,t3) in E3 ψ(λ1t1 + λ2t2 + (λ3 + λ4)t3).

Since the vector (λ1, λ2, λ3 + λ4) is nonzero, the sum again vanishes.
In exactly the same way, we prove the following two elementary lemmas.

Twinning Lemma 2.2.11. Suppose #E ≥ 2. Given two distinct points x1, x2

in P(E), put x3 = x1, and put x4 = x2. Then for (λi ) in (E×)4, we have

�H in Hypd (E) ψ(�i=1 to 4 λi H (x̃i ))

= #Hypd(E), if λ1 + λ2 = λ3 + λ4 = 0,

= 0, otherwise.

Quadruples Lemma 2.2.12. Given a point x in P(E), put xi = x for i = 1 to
4. Then for (λi ) in (E×)4, we have

�H in Hypd (E)ψ (�i=1 to 4 λi H (x̃i ))

= #Hypd(E), if λ1 + λ2 + λ3 + λ4 = 0,

= 0, otherwise.

Proof of Theorem 2.2.7: suite. Recall that we have the identity

(#E)dim(Hypd )+2n+4 T4(E, π∗Fd)

= �(xi ) in X (E)4 �(λi ) in (E×)4 �H in Hypd (E) ψ(�i=1 to 4 λi H (x̃i )).

We now break up this sum by the coincidence pattern of the four-tuple (x1, x2,
x3, x4).

If there is any singleton, the entire inner sum vanishes.
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If all the xi coincide, the inner sum is

#Hypd(E) × #{(λi ) in (E×)4 with λ1 + λ2 + λ3 + λ4 = 0}.
This case occurs #X (E) times, one for each of the possible common values of the xi .

If there are no singletons and exactly two among the xi are distinct, put x := x1,
and take for y the other. Then the pattern is either (x , x , y, y) or (x , y, x , y) or
(x , y, y, x). In each case, the inner sum is

#Hypd(E) × #{(λi ) in (E×)4 with λ1 + λ2 = λ3 + λ4 = 0}
= #Hypd(E) × (#E − 1)2.

This case occurs 3(#X (E))(#X (E) − 1) times, 3 for the possible repeat pattern,
#X (E) for the choice of x1, #X (E) − 1 for the choice of y �= x1.

So all in all, we get a closed formula

(#E)dim(Hypd )+2n+4 T4(E, π∗Fd)

= 3(#X (E))(#X (E) − 1)(#Hypd(E))(#E − 1)2

+ (#X (E))(#Hypd(E))(#{(λi ) in (E×)4 with λ1 + λ2 + λ3 + λ4 = 0}).
Dividing through by #Hypd(E) = (#E)dim(Hypd ), we get

(#E)2n+4 T 4(E, π∗Fd)

= 3(#X (E))(#X (E) − 1)(#E − 1)2

+ (#X (E))(#{(λi ) in (E×)4 with λ1 + λ2 = λ3 + λ4 = 0}).

Lemma 2.2.13. We have the identity

#{(λi ) in (E×)4 with λ1 + λ2 + λ3 + λ4 = 0}
= (#E − 1)3 − ((#E − 1)2 − (#E − 1)).

Proof of Lemma 2.2.13. View the set in question as the subset of (E×)3 where
λ1 + λ2 + λ3 �= 0 (solve for λ4). Its complement in (E×)3 is the subset of (E×)2

where λ1 + λ2 �= 0 (solve for λ3). The complement in (E×)2 of this last set is the
set of pairs (λ, −λ). �

So now we have the identity

(#E)2n+4 T |
4(E, π∗Fd)

= 3(#X (E))(#X (E) − 1)(#E − 1)2

+ (#X (E))((#E − 1)3 − ((#E − 1)2 − (#E − 1))).
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Dividing through, we get

T4(E, π∗Fd)

= 3(#X (E)/(#E)n+1)(#X (E)/(#E)n+1 − 1/(#E)n+1)(1 − 1/#E)2

+ (#X (E)/(#E)n+1)((#E − 1)3 − ((#E − 1)2 − (#E − 1)))/(#E)n+3.

By Lang-Weil, we have

|(#X (E)/(#E)n+1 − 1| = O((#E)−1/2).

So the first term is 3 + O((#E)−1/2). If n = 0, the second term is 1 + O((#E)−1/2),
while if n ≥ 1 the second term is O((#E)−1). This concludes the proof of Theorem
2.2.7, and, with it, the proofs of Theorems 2.2.5 and 2.2.4.

2.2.14. We now give a supplement to Theorem 2.2.4, by combining our results
with those of Deligne [De-Weil II, 4.4.1, 4.4.2s, and 4.4.9]. This supplement will
itself be supplemented in 2.3.6.

Theorem 2.2.15 (Supplement to Theorem 2.2.4). Suppose that n ≥ 2 is
even, and that d ≥ 3.

(1) If Nd is 1, 3, 4, or 5, or if Nd ≥ 9, then the geometric monodromy group
Gd of the lisse sheaf Fd is the full orthogonal group O(Nd).

(2) If Nd is 6, 7, or 8, then Gd is either the full orthogonal group O(Nd), or Gd

is the Weyl group of the root system Eα, α := Nd, in its standard Nd-dimensional
representation as a Weyl group.

(3) If Nd = 2, then Gd is the symmetric group S3 in the representation
Aug2.

Proof. According to [De-Weil II, 4.4.1, 4.4.2s, and 4.4.9], if Nd ≥ 1, Gd is
either the full orthogonal group O(Nd), or it is a finite reflection group. Moreover,
the only finite reflection groups that arise are the Weyl groups of root systems
of type Aα for α ≥ 1, Dα for α ≥ 4, or Eα for α = 6, 7, or 8, in their standard
α-dimensional representations.

We have shown (Theorem 2.2.5) that for any d ≥ 3, we have M4(Gd, Vd) ≤ 3.
Suppose first that Gd is finite, and that Nd ≥ 3.

We cannot have the Weyl group of Aα for any α ≥ 3, in its standard represen-
tation, i.e., we cannnot have he group Sα+1 in the representation Augα, because
M4(Sα+1, Augα) > 3 for α ≥ 3. Indeed, for α ≥ 4 this is proven in Lemma 1.4.5,
and for α = 3 it is an elementary calculation we leave to the reader (or the reader
can observe that A3 = D3, and see the discussion of Dα just below).

We can rule out having the Weyl group of Dα for any α ≥ 3, in its standard
representation, as follows. By Theorem 1.3.2, Gd is primitive. But the standard
representation of the Weyl group of Dα is induced (in the Bourbaki notations
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[Bour-L6, Planche IV, page 257], the lines spanned by the ε j are permuted among
themselves).

So the only surviving finite group cases with Nd ≥ 3 are the Weyl groups of
E6, E7, and E8 in their standard representations.

If Nd = 2, then Gd must be finite, because it is a semisimple subgroup of
O(2). The only possibility is the Weyl group of A2, i.e., S3 in the representation
Aug2.

If Nd = 1, then O(1) = {±1} = S2 in Aug1, so there is only one possibility. �

Remark 2.2.16. The Weyl groups of type E in their standard Weyl group rep-
resentations all have fourth moment 3. The Weyl group of E6 occurs as the mon-
odromy group attached to the universal family of smooth cubic surfaces in P3.
(Since a smooth cubic surface has middle Betti number 7, and all its cohomology
is algebraic, we have a case with d = 3, Nd = 6, and Gd finite, so necessarily the
Weyl group of E6, cf. also [Beau].) We do not know if the Weyl groups of E7 or
of E8 can occur as the monodromy group of the universal family of smooth hy-
persurface sections of degree d ≥ 3 of some projective smooth X . (These groups
certainly occur as the monodromy of suitable families of del Pezzo surfaces, but
those families are not of the required form.)

Remark 2.2.17. In Theorems 2.2.4 and 2.2.15, the hypothesis that d be at least
3 is absolutely essential. Indeed, fix an even integer n ≥ 0, take for X a smooth
quadric hypersurface in Pn+2, and consider the universal family of smooth, degree
d = 2 hypersurface sections of X . Each member of this family is a smooth complete
intersection of multi-degree (2, 2) in Pn+2, so has middle betti number n + 4, and
all cohomology algebraic. This family has Nd = n + 3, and its finite Gd is the Weyl
group of Dn+3. (Indeed, if n = 0 the two possibilities coincide. If n ≥ 2, the only
other possibility is Sn+4 in Augn+3, or, if n = 4, the Weyl group of E7 in its standard
Weyl group representation, both of which are primitive. But by [Reid], cf. [Beau,
page 16], the monodromy for the universal family of smooth complete intersections
of multi-degree (2, 2) in Pn+2 is the Weyl group of Dn+3. So our Gd is a subgroup
of the Weyl group of Dn+3. In particular, our Gd is imprimitive.)

2.3. Higher moments

2.3.1. The same ideas used in proving Theorem 2.2.5 allow one to prove the
following estimate for higher moments.

Theorem 2.3.2. Suppose that n ≥ 1 and d ≥ 3. For any integer b ≥ 1 with
2b ≤ d + 1, we have the estimate

M2b(Gd, Vd) ≤ (2b)!! := � j=1 to b(2 j − 1).
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Proof. We proceed as in the proof of Theorem 2.2.7. We define the mock
moment T2b(E, π∗Fd) by

T2b(E, π∗Fd) := (#E)−dim(Hypd )−bn �H in Hypd (E)|τ (E, H )|2b

= (#E)−dim(Hypd )−bn �H in Hypd (E)(#(X ∩ (H = 0))(E) − #X (E)/#E)2b.

It suffices to show that

|T2b(E, π∗Fd) − (2b)!!| = O((#E)−1/2).

Exactly as in the discussion of T4, we find for T2b the identity

(#E)dim(Hypd )+bn+2b T2b(E, π∗Fd)

= �H in Hypd (E) (�x in X (E) �λ in E× ψ(λH (x̃)))2b.

We next open the inner sum and interchange orders of summation, to get

= �(xi ) in X (E)2b �(λi ) in (E×)2b �H in Hypd (E) ψ(�i=1 to 2b λi H (x̃i )).

We next break up this sum according to the coincidence pattern of the 2b not
necessarily distinct points x1, . . . , x2b in X (E).

The coincidence pattern among the xi gives a partition P of the set {1, 2, . . . ,
2b} into #P disjoint nonempty subsets Sα : xi = x j if and only if i and j lie in the
same Sα.

Fix a point (xi ) in X (E)2b with partition P . Exactly as in the proof of Theorem
2.2.7, the innermost sum vanishes unless, for each Sα in P , we have �i in Sα

λi = 0,
in which case the innermost sum is equal to (#E)dim (Hypd ). So the inner double sum
is equal to

(#E)dim (Hypd )�α inP#{(λi )i inSα
with λi in E×and �i in Sα

λi = 0}.
This visibly vanishes if some Sα is a singleton. More generally, consider the se-
quence of integer polynomials Pr (X ), r ≥ 1, defined inductively by

P1(X ) = 0,

Pr (X ) = Xr−1 − Pr−1(X ),

i.e.,

Pr (X ) = Xr−1 − Xr−2 + Xr−3 . . . + (−1)r−2 X.

We have the elementary identity

#{(λi )i in Sα
with λi in E× and �i,in Sα

λi = 0} = P#Sα
(#E).

So the innermost double sum is

(#E)dim (Hypd )�α inP P#Sα
(#E).
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This vanishes if any Sα is a singleton, otherwise it is given by a polynomial in #E
of the form

(#E)dim (Hypd )�α inP (#E)#Sα−1 + lower terms

= (#E)dim (Hypd )+2b−#P + lower terms.

The number of points (xi ) in X (E)2b with given partition P is

� j=0 to #P−1(# X (E) − j) = # X (E)#P + lower terms

= (# E)(n+1)#P + O((# E)(n+1)#P−1/2).

As we have seen above, partitions with a singleton do not contribute.
For each partitionP without singletons, the total contribution of all points with

that coincidence pattern is thus the product

((#E)dim (Hypd )+2b−#P + lower terms) × ((#E)(n+1)#P + O((#E)(n+1)#P−1/2))

= (#E)dim (Hypd )+2b+n#P (1 + +O(#E)−1/2).

So the terms of biggest size (#E)dim (Hypd )+2b+nb come from those P without sin-
gletons having exact b members, and there are exactly (2b)!! such partitions. �

2.3.3. The relevance of Theorem 2.3.2 is this. Recall (cf. [Weyl, Theorem
(2.9.A), page 53 and Theorem (6.1.A), page 167], [ABP, Appendix I, pages 322–
326]) that for O(V ) or Sp(V ), the invariants in the dual of any even tensor power
V ⊗2b, b ≥ 1, are the C -span of the “complete contractions,” i.e., the linear forms
on V ⊗2b obtained by choosing a partition P of the index set {1, 2, . . . , 2b} into b
disjoint sets Sα of pairs, say Sα = {iα, jα} with iα < jα, and mapping

v1 ⊗ v2 ⊗ . . . ⊗ v2b → �α inP < viα , v jα >.

There are (2b)!! such complete contractions. If dim (V ) ≥ 2b, they are linearly
independent (cf. [Weyl, section 5 of Chapter V , pages 147–149]). So for any
N ≥ 2b, we have

M2b(O(N ), std) = (2b)!!,

and for any even N ≥ 2b, we have

M2b(Sp(N ), std) = (2b)!!,

(cf. [Larsen-Normal], [Dia-Sha]).

Corollary 2.3.4. Suppose n ≥ 1, and d ≥ 3. For each b ≥ 1 with

2b ≤ Max (Nd, d + 1),
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we have the equality

M2b(Gd, Vd) = (2b)!!.

Proof. Suppose n is odd. Since Gd is a subgroup of Sp(Nd) = Sp(Vd), we have
the a priori inequality

M2b(Gd, Vd) ≥ M2b(Sp(Nd), std).

If 2b ≤ Nd , we have

M2b(Sp(N ), std) = (2b)!!,

as explained in (2.3.3) above. So we find

M2b(Gd, Vd) ≥ (2b)!!.

If in addition d ≥ 3 and d + 1 ≥ 2b, we have the reverse inequality from Theorem
2.3.2. For the proof in the case of even n, simply replace Sp(Nd) by O(Nd) in the
above argument. �

2.3.5. We now use these estimates for higher moments to eliminate more
possibilities of finite monodromy in our universal families.

Theorem 2.3.6 (Supplement to Theorem 2.2.15). Suppose that n ≥ 2 is
even, that d ≥ 5, and that Nd ≥ 3. If Nd �= 8, or if d ≥ 7, then the geometric
monodromy group Gd of the lisse sheaf Fd is the full orthogonal group O(Nd).

Proof. Unless Nd is 6, 7, or 8, the desired conclusion is given by 2.2.15.
If Nd is 6, then Gd is either O(6) or it is W (E6), the Weyl group of E6, in

its standard reflection representation std6. According to the the computer program
GAP [GAP], the sixth moment of W (E6) in std6 is given by

M6(W (E6), std6) = 16.

But if d ≥ 5, then by 2.3.2, we have M6(Gd, Vd) ≤ 6!! = 15. So we cannot have
W (E6) if d ≥ 5.

If Nd is 7, then Gd is either O(7) or it is W (E7), the Weyl group of E7, in its
standard reflection representation std7. According to GAP [GAP], the sixth moment
of W (E7) in std7 is given by

M6(W (E7), std7) = 16.

But if d ≥ 5, then by 2.3.2, we have M6(Gd, Vd) ≤ 6!! = 15. So we cannot have
W (E7) if d ≥ 5.

If Nd = 8, then Gd is either O(8) or it is W (E8), the Weyl group of E8, in
its standard reflection representation std8. According to GAP [GAP], the eighth



P1: IOI

PB440-18 HIDA-0662G PB440-Hida-v4.cls December 6, 2003 17:36

larsen’s alternative, moments, monodromy 555

moment of W (E8) in std8 is given by

M8(W (E8), std8) = 106.

But if d ≥ 7, then by 2.3.2 we have M8(Gd, Vd) ≤ 8!! = 105. So we cannot have
W (E8) if d ≥ 7. �

2.4. Remarks on Theorem 2.2.4

2.4.1. We have stated Theorem 2.2.4 in terms of the universal family of smooth
hypersurface sections of degree d. It results from Bertini’s theorem [Ka-ACT,
3.11.1] that we also get the same Gd for any sufficiently general Lefschetz pencil
of hypersurface sections of degree d.

2.4.2. We have given a diophantine proof of Theorem 2.2.4, based on having
a finite ground field. It follows, by standard spreading out techniques, that the same
theorem is valid, for either the universal family of smooth hypersurface sections of
degree d, or for a sufficiently general Lefschetz pencil thereof, over any field k in
which � is invertible. When k is C , we have integral cohomology theory

X �→ H∗(X (C)an,Z),

so Fd has a natural Z-form, and we can speak of the integral monodromy group.
In some cases, this finer invariant is known, cf. [Beau].

2.4.3. In the case n = 0, if we take X to be P1, then Gd is a subgroup of the
symmetric group Sd , and Vd is just the representation Augd−1. (Of course, Gd is
equal to Sd , thanks to Abel, but we will not use this fact here, cf. 2.4.4 just below.)
Since we have proven that

M4(Gd, Vd = Augd−1) ≤ 4,

it follows that for the larger group Sd we have

M4(Sd, Augd−1) ≤ 4.

On the other hand, we have already proven (1.4.5) that

M4(Sd, Augd−1) > 3 for d ≥ 5.

Since in any case the moments are integers, we have

M4(Sd, Augd−1) = 4 for d ≥ 5.

(One can check by hand that M4(S4, Aug3) = 4, but that M4(S3, Aug2) = 3.)

2.4.4. In the case n = 0, X ⊂ P any smooth, geometrically connected, pro-
jective curve, we can see that Gd , the geometric monodromy group of Fd , is the
full symmetric group SNd+1 as follows. Since Gd is a priori a subgroup of SNd+1, it
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suffices to exhibit a pullback of Fd whose geometric monodromy group is SNd+1.
Any Lefschetz pencil of degree d hypersurface sections on X will do this. Indeed,
such a pencil gives a finite flat map f : X → P1 which is finite etale of degree

deg ( f ) = deg (OX (d)) = d × deg (X ) = 1 + Nd

over a dense open set P1 − S, inclusion denoted

j : P1 − S → P1,

such that for each geometric point s in S, the geometric fibre f −1(s) consists of
deg ( f ) −1 distinct points. The pullback to P1 − S of the sheafFd is j∗( f∗Q�/Q�).
We must show that j∗( f∗Q�) has geometric monodromy group Sdeg( f ). From the
commutative diagram

k
X − f −1(S) ⊂ X

f̃ ↓ ↓ f

P1 − S ⊂ P1

j

we see that f∗Q� = f∗k∗Q� = j∗ f̃ ∗Q� = j∗ j∗ f∗Q�. From the equality f∗Q� =
j∗ j∗ f∗Q�, we see that the local monodromy of j∗( f∗Q�) at each point of S has
a fixed space of codimension one, so is a reflection. The monodromy group of
j∗( f∗Q�) is a subgroup of Sdeg ( f ) which is transitive (the total space X − f −1(S)
is geometrically connected) and generated by reflections (all the conjugates of the
local monodromies at all the points of S), hence is the whole group Sdeg ( f ).

2.5. A p-adic approach to ruling out finite monodromy for universal
families of hypersurface sections

2.5.1. In the case of odd fibre dimension n, we know [De-Weil II, 4.4.1]
that any Lefschetz pencil has monodromy group which is Zariski dense in the
full symplectic group. The moment technique gives a variant proof, valid for the
universal family (and then by Bertini for any sufficiently general Lefschtz pencil)
of hypersurface sections of degree d ≥ 3 such that Nd ≥ 4. Indeed, the fourth
moment is 3, so Gd is either Sp(Nd) or it is finite. But Gd cannot be finite, because
in odd fibre dimension the local monodromies in a Lefschetz pencil are unipotent
pseudoreflections (and so of infinite order).

2.5.2. In our discussion so far, we have made essential use of the Picard-
Lefschetz formula [SGA 7, Exposé XV, 3.4], to know that Gd contains a reflection
in the case of even fibre dimension n, and, a unipotent pseudoreflection in the case
of odd fibre dimension.
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2.5.3. Suppose we did not know the Picard-Lefschetz formula, but did know
all the results of [De-Weil II], an admittedly unlikely but nonetheless logically
possible situation. In that case, a result of Koblitz [Kob, Lemma 4, page 132, and
Theorem 1, page 139] leads to a p-adic proof that, given X/k as above of dimension
n + 1 ≥ 2, then for all d sufficiently large, the group Gd is not finite. Once Gd is
not finite for a given d ≥ 3 with Nd ≥ 3, we know from Larsen’s Alternative that
Gd is Sp(Nd) if n is odd, and that Gd is either SO(Nd) or O(Nd) if n is even. We
do not know how to prove, in the case of even fibre dimension, that the SO case
cannot occur, without appealing to the Picard-Lefschetz formula!

2.5.4. We now explain the p-adic proof that if X/k as above has dimension
n + 1 ≥ 2, then for d sufficiently large, the group Gd is not finite.

2.5.4.1. We know that Gd is an irreducible subgroup of GL(Vd). If Gd is
finite, then any element A of the ambient GL(Vd) which normalizes Gd has some
power a scalar. For the group Aut (Gd) is itself finite, so a power of A, acting by
conjugation on Gd , will act trivially, i.e., a power of A will commute with Gd ,
which, Gd being irreducible, makes that power a scalar. This applies to the image
in GL(Vd) of any Frobenius element in π1 (GoodX PHypd). So if Gd is finite, then for
any finite extension field E/k, and any H in GoodX PHypd(E), we find that a power
of FrobE acting on Evn((X ⊗k k̄) ∩ H,Q�) is a scalar. Moreover, we know that
FrobE/(#E)n/2 lies in either Sp or O , so has determinant ±1. Since FrobE/(#E)n/2

has a power which is a scalar, that scalar must be a root of unity. Thus every
eigenvalue of FrobE acting on Evn((X ⊗k k̄) ∩ H,Q�) is of the form (a root of
unity) × (#E)n/2, so in particular of the form p × (an algebraic integer).

2.5.4.2. On the other hand, we know that the characteristic polynomial of
FrobE on Hi ((X ⊗k k̄) ∩ H,Q�) or on Hi (X ⊗k k̄,Q�) has Z-coefficients. By the
hard Lefschetz theorem on X , for i > n, all eigenvalues of FrobE on Hi (X ⊗k k̄)
∩ H,Q�) are also of the form p × (an algebraic integer). So we get a congruence
mod p for the zeta function of X ∩ H/E , viewed as an element of 1 + TZ[[T ]]:

Zeta (X ∩ H/E, T )

≡ �i=0 to n det (1 − T FrobE |Hi ((X ⊗k k̄) ∩ H,Q�)(−1)i+1
.

Using the weak Lefschetz theorem, this last product is equal to the product

(�i=0 to n det (1 − T FrobE |Hi (X ⊗k k̄,Q�)(−1)i+1
)

× det (1 − T FrobE |Evn(X ⊗k k̄) ∩ H,Q�)(−1)n+1
.

If Gd is finite, then the second term is 1 mod p. So we get a congruence formula
for Zeta (X ∩ H/E, T ) which shows that its reduction mod p is a rational function
whose degree as a rational function depends only on X . Indeed, if we denote by σi
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the degree of the reduction mod p of the integer polynomial

det (1 − T Frobk |Hi (X ⊗k k̄,Q�),

then Zeta (X ∩ H/E, T ) mod p has degree σ (X ) := �i=0 to n(−1)i+1σi , for every
finite extension E/k, and every point H in GoodX PHypd(E).

2.5.4.3. We now explain how this last conclusion leads to a contradiction for
large d. By the congruence formula [SGA 7, Part II, Exposé XXII, 3.1] for the zeta
function, we have the mod p congruence

Zeta (X ∩ H/E, T )

≡ �i=0 to n det (1 − T FrobE |Hi (X ∩ H,OX∩H ))(−1)i+1
.

For d sufficiently large, the restriction map

Hi ((X,OX ) → Hi (X ∩ H,OX∩H ))

is an isomorphism for i < n, and is injective for i = n (i.e., for large d we have
vanishing of Hi (X,OX (−d)) for i ≤ n). So we can factor this mod p product as

(�i=0 to n det (1 − T FrobE |Hi (X,OX ))
(−1)i+1

)

× det (1 − T FrobE |H n(X ∩ H,OX∩H )/H n(X,OX ))(−1)n+1
.

The degree of the first factor depends only on X . Indeed, if we denote by τi the
degree of the mod p polynomial

det (1 − T Frobk |Hi (X,OX )),

this degree is τ (X ) := �i=0 to n(−1)i+1τi . So if Gd is finite, then we conclude that

the mod p polynomial

det (1 − T FrobE |H n(X ∩ H,OX∩H )/H n(X,OX ))

has degree (−1)n(σ (X ) − τ (X )), for every finite extension E /k, and every point H
in GoodX PHypd(E).

2.5.4.4. Thanks to Koblitz [Kob, Lemma 4, page 132, and Theorem 1, page
139], for d sufficiently large, there is a dense open set of GoodX PHypd on which
the degree of the mod p polynomial

det (1 − T FrobE |H n(X ∩ H,OX∩H )/H n(X,OX ))

is constant, say F(d), and F(d) goes to infinity with d. More precisely, Koblitz
shows that there is a Q-polynomial PX (T ) of degree n + 1, of the form



P1: IOI

PB440-18 HIDA-0662G PB440-Hida-v4.cls December 6, 2003 17:36

larsen’s alternative, moments, monodromy 559

deg(X )T n+1/(n + 1)! + lower terms, such that F(d) ≥ PX (d). So for d large
enough that the following three conditions hold:

d ≥ 3,

Hi (X,OX (−d)) = 0 for i ≤ n,

F(d) > (−1)n(σ (X ) − τ (X )),

Gd is not finite.
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