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Introduction

This book is simultanecusly an account of some of the main cohomolog-
ical and representation-theoretic ideas, techniques, and results which can
fruitfully be brought to bear upon the study of general exponential sums
over finite fields, and an account of their concrete application to particular
questions concerning the equidistribution properties of Kloosterman sums
and Gauss sums. The idea of combining, in a single book, both general
theory and conecrete application, neither of which could stand alone except
in the utmost aridity, is certainly not a new one, Ideally, the two parts
reinforce each other, the applications both illustrating and motivating the
general techniques, and bring the reader to a deeper understanding of the
subject: this is, in any case, the author’s intention.

Let us now turn to a more technical discussion of the ideas, techniques,
and results to be applied.

That there is an intimate connection between exponential sums on va-
rietles over finite fields and the theory of zeta and L-functions of such
varieties was first realized by Hasse [Ha] and Hasse-Davenport [H-D] some
half-century ago. This connection was exploited by Weil, who gave [We] as
application of his proof of the “Riemann Hypothesis” for curves over finite
fields the best possible estimates for one-variable sums.

The 1973 proof of the Weil Conjectures for projective smooth varieties of
arbitrary dimension over finite fields by De}igne in [De-6] had proportionally
less impact on the theory of exponential sums in several variables, for some
seemingly technical reasons. An exponential sum naturally occurs on an
affine variety 1/, and it is cohomologically accounted for by a suitable direct
factor of the compact cohomology of a suitable Artin-Schreier covering W
of V. The variety W will be smooth if V is, but it is affine. If one knew.
explicitly how to compactify W to a projective smooth variety W, one
could apply the Weil Conjectures directly to W, The problem is that one
does not know in general how to construct explicitly a projective smooth
compactification of W, (nor even if one exists!). Of course if V, and hence
W, is a smooth curve, then W has a canonical smooth compactification,
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~ and so this problem does not arise in studying exponential sums in one
variable.

The real advance came with Deligne’s second proof, Weil I, [De-5], which
gives estimates for the weights of the compact cohomology groups of an ar-
bitrary variety with coefficients in an arbitrary sheaf whose weights are
already known. (From this point of view, Weil I treats the case of a projec-
tive smooth variety and the constant sheaf.) The full power of this result,
especially when it is combined with various cohomology techniques {e.g.,
fibering by curves, fibering over cruves, Leray spectral sequence, analysis
of vanishing cycles), is far from having been fully exploited.

In many case, problems concerning exponential sums are completely
transformed by this sheaf-theoretic perspective: rather than struggling with
a single exponential sum, one is led naturally to construct an entire family
of sums which includes the original sum, and then to construct a complex
of sheaves on the parameter variety whose local traces are the sums in ques-
tion. In faverable cases, a cohomelogical analysis will allow cne to prove
that the complex of sheaves is but a single sheaf, and that this single sheaf
is both lisse and pure.

When the parameter variety is itself a group, one can perform upon its
sheaves an l-adic analogue of convolution, and this operation, applied to
sheaves whose local traces are exponential sums, will yield new sheaves
whose local traces are again expenential sums. This idea is already implicit
in Deligne’s 1974 discussion [De-3] of Kloosterman sums. Another idea of
the same sort, alsc due originally to Deligne, was developed and exploited by
Brylinski and Laumon, is that of the l-adic Fourier transform of sheaves on
the additive group A', or more generally on A™. This is another important
tool in the construction and analysis of sheaves of exponential sums.

The overall moral is that difficulties about compactifying Artin-Schreier

coverings often become irrelevant if one systematically studies sheaves of

exponential sums on parameter varieties, rather than individual sums one
at a time.

Another advantage of the sheaf-theoretic approach to exponential surns
is the incredible simplification it leads to in the analysis of equidistribution
questions. The traditional approach to equidistribution involves computing
all the moments. Even if one starts with a one-parameter family of one-
variable sums, the n-th moment will be an n + 1-variable sum, which often
becomes intractable as n grows, due to the above-mentioned difficuities in
compactifying Artin-Schreier varieties of higher and higher dimension.
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However, if one is given any lisse pure /-adic sheaf on a curve over a fi-
nite field, it results from Weil II that the equidistribution theory of its local
traces is governed in a very simple way by a certain semi-simple algebraic
group over (3;, namely the Zariski closure Ggeom of the image of the geo-
metric fundamental group of the curve in the l-adic representation which
“is” the sheaf. Under a mild hypothesis, one shows that after embedding
@, into C and picking a maximal compact subgroup X of the complex Lie
group Ggeom(C), the “angles of Frobenius” of the local traces make sense as
points in the space K" of conjugacy classes of K, and that they are equidis-
tributed in K with Tespect to the measure pu? which is the direct image of
normalized Haar measure on K. This is discussed in detail in Chapter HL

From this point of view, then, there is always an equidistribution theorem
for nice equicharacteristic families of pure exponential sums; the “only”
problem is to decipher it in whatever particular case interests us by actually
computing Ggeom- (The relation to the method of moments is that the n-
th moment tells us the multiplicity of the trivial representation in the n-th
tensor power of the standard representation of Ggeom resulting from its
definition as a Zariski closure.)

However, in practice it is not always so easy to compute Ggeom, even
when the parameter space is a curve. We often have only meager global
information about the sheaf in question, and so we try first to extract and
then to exploit information about its local monodromy around each of the
points at infinity of the parameter curve. One striking way in which pure
lisse sheaves arising from exponential sutus differ from the more traditional
pure lisse sheaves arising as “cohomology along the fibres, with constant
coefficients, of a proper smooth morphism” is that the local monodromy of
the former can be quite wildly ramified, and can be so in quite interesting
ways. This possibility can often be exploited to impose some very severe
restrictions on Ggeom. The underlying mechanisms of wild ramification and
the restrictions it can impose are discussed in Chapter L.

One way in which the invariants and covariants of local menodromy can
be detected and analyzed is through their interpretation as the difference
between the compactly supported and the ordinary cohomology groups of
the parameter curve with coefficients in the sheaf under discussion. This
relation, together with a thorough discussion of the basic general facts about
curves and their cohomology, s given in Chapter II, and systematically
exploited in Chapter VIL

Once we have marshalled together as much local and global information
as we can about our sheaf, we can often reduce the problem of determining
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Ggeom to that of determining its Lie algebra. This is a problem in the
classification theory of pairs (G, p) where G is a semi-simple Lie algebra
and where p is a faithful representation of G about which we have limited
information. For example, in the case of Kloosterman. sheaves, the basic
information is that G contains a nilpotent element n such that p{n) has
a one-dimensional kernel. The classification of these (&, p) is presented in
Chapter X1, in a manner intended to be accessible to the non-specialist in
Lie theory.

Another question which naturally arises from the sheaf-theoretic point of
view is whether the actual image of #§*™ in the l-adic representation is as
big as possible, given that its Zariski closure is Ggeom. That it is so for all
{ > 0 satisfying a suitable congruence condition can sometimes be proven
by an ingenioys argument of Ofer Gabber (cf. Chapter XII} which reduces
the question to a quite general result of his concerning subgroups of simply-
connected groups which are generated by enough unipotent elements. (A
variant of this last result is due independently to M. Nori [No].)

One of the main themes of this book 1s the study of the convolution of
suitable lisse sheaves on the multiplicative group G, = Pt — {0, 00} over
a finite, or algebraically closed, field of characteristic p > 0 (¢f. Chapters 5,
6, 7, 8). It may seem strange at first sight to devote so much attention to
lisse sheaves on so particular a curve as G,y; it would certainly be so if we
were in characteristic zero.

However, if X is any smooth geometrically curve over a perfect field k
of characteristic p > 0, then there exists a non-empty Zariski open set U
in X and a finite étale k-morphism U — G,,. This analogue of Belyi’s
striking theorem [Be] about open sets of curves over Q@ being finite étale
over P1 — {0,1,00} is easily proven (take a general function f : X — P!
to reduce to the case when X is open in P!; shrinking X, we may assume
X = A'—T, where I' is fintle étale additive subgroup of Al-~this is where
we use characteristic p—the quotient group Al/r‘ is again Al via the
explicit projection 7 : ¢ — II,(¢ — %), and this same = is the required finite
étale map of A' —T to G,,). Its moral is that in characteristic p, whatever
can happen for lisse sheaves on general curves already happens for lisse
sheaves on G,

In the same chain of ideas, it is natural to try to classify all lisse sheaves
on Gy, with specified local monodromy at both zero and infinity. It turns
out (cf. 8.7) that the Kloosterman sheaves can be specified among all lisse
sheaves on G, exactly by specifying their local monodromy at both zero
and infinity. This infrinsic characterization suggests that Kloosterman
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sheaves are more intrinsic than their construction in terms of exponen-
tial sums might suggest. The proof of this characterization relies heavily
upon the l-adic Fourier transform on A' as developed by Brylinski and
Laumon, which we discuss at some length (cf. 8.2-8.5).

After this brief survey of the ideas, technigues, and results to be applied,
we now turn to the actual concrete problems to which they will be applied.

We will begin by explaining the original motivating problem. Given a
prime number p and an integer a which is prime to p, the Kloosterman sum
is defined as the complex number

Ki(p,a)= Y exp<27”(w+y)).

ry=a mod p
©,yEZ/pZ

This sum is real (replace (z,y) by (—z,—y)), and its absolute value is at
most 2\/;7, this last estimate due to Weil as a consequence of the “Riemgnn
Hypothesis” for curves over finite fields. Therefore, there exists a unique
angle #(p, a) € [0, 7| for which

~Kl(p, a) = 2,/p cosb(p, a).

The problem is to understand how the angles #(p, a) are distributed in
[0, 7] for a fixed non-zero integer a, as p varies over all the primes not di-
viding a. Although there is no compelling conceptual justification, and not
a great deal of “computer evidence,” it is nonetheless tempting to believe
that for fixed @ # 0 in Z, the angles {6{p, a}}, are equidistributed in [0, 7]
with respect to the “Sato-Tate measure” (2/7)sin® 8 df. Unfortunately, we
have absclutely no contribution to make to this question.

Our results ate concerned rather with the distribution of the angles 8(p, a)
for fized p as a varies over FX. 'We prove (cf. Chapter 13) that as p T oo,
the p — 1 angles {0(p, a)}aeF,’,‘ “become” equidistributed in [0, 7] for the
Sato-Tate measure, and we give bounds for the error term. In a given
characteristic p > 0, once we pick a prime number { # p and an l-adic
place A of the field Q((,) = E, there is a natural lisse, rank two 'y -sheaf,.
“K14(2)”, on the multiplicative group G, ® Fp in characteristic p, whose
local “traces of Frobenius” are {minus} the Kloosterman sums in question.
The equidistribution property of the angles {8{p, “)}aeF;‘ then results (via
Weil II) from the fact the geometric monodromy group of the rank-two
sheaf K1y (2) is a Zariski-dense subgroup of SI(2), cf. Chapter 11.
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For any integer n > 2, one may consider the more general Kloosterman

sums _
Kl{p,n,a) = Z

Ty..fn=c mod p
Ty,...,Tn mod p

27t
exp (—-5-(:1:1 R :z:n))

and their analogues over finite extension fields F; of F;; one again con-
structs a natural lisse rank n £y -sheaf “Kly(n)” on G, & F, whose “local
traces of Frobenius” are {(—1)"~! times) the Kloosterman sums in question.
The angle 8(p, a) € [0, x] which we encountered for n = 2 is now interpreted
as a conjugacy class 8(p, n,a) in a compact form K of the Zariski closure
Ggeom of the geometric monodromy group of the sheaf Kly(n) on G, @F,
(for n = 2 this is the parametrization

if 0
¢ ¢ .
(5 )

of conjugacy classes in K = SU(2) by [0, #]). It follows from Weil I that the
conjugacy classes {6(p,n, a)}aeF,’,‘ have an approximate equidistribution,
with explicit error estimate, for the measure on K = {conjugacy classes in

K} which is the direct image of Haar measure on K (for K = SU(2), this

measure on K a2 [0, 7] is Sato-Tate measure (2/m) sin® # df). The problem

is to compute the Zariski closure G geom Of the geometric monodromy group
of the lisse E)-sheaf Kl () on G, @ F,.

A priori, the group Ggeom “depends” on three parameters (p,n,A). In
fact, it is independent of A, and very nearly independent of p as well.

For n > 2 even, the sheaf Kly(n) carries an alternating autoduality
respected by 7™, and we prove that, in fact

Ggeom = Sp(n) for n even, p arbitrary.
Forn > 3 odd, and p odd, we prove that
Ggeom = SL(n) if pn is odd.

Forn > 3 odd, and p = 2, the sheaf KI,,(n) carries a symmetric auto-
duality respected by ##°°™, and we prove that

Ggeom =80(n) ifp=2,n>30dd, n#7.

Forn = 7 and p = 2, a general argument based on classification shows

that either Ggeom = SO(T), or Ggeom = the subgronp Gy of SO(7), where

Gz — SO(7) is the seven-dimensional irreducible representation of Gy.
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We initially expected to find SO(7) as the answer. To our surprise, we
found instead that

Ggeom =Gy forp=2,n=".

Perhaps exceptional Lie groups aren’t so exceptional after all.

All of these results on Ggeom are proven in Chapter 11, as consequences of
some general classification theorems (11.6, 11.7) which are of independent
interest. '

In Chapter 12, we show that for given p and n, the actual A-adic image of

8™ (i.e., rather than the Zariski closure} is “as big as possible,” ¢f. 12.1,

\'“12.2, 12.5.2, and 12.6.2. The ideas and arguments of this chapter are due

entirely to Ofer Gabber.

In Chapter 13, we apply the results of Chapter 11 to the equidistribution
of Kloosterman angles. The results of this chapter make it reasonable to
ask whether for n > 2 a fixed integet; and @ # 0 a fixed non-zero integer,
the conjugacy classes {8#(p,n,a)},, as p runs over odd primes which are
prime to a, are equidistributed for Haar measure in K!, for K a compact
form of Ggeom ( = Sp(n) if n is even, SL(n) if odd}. For n = 2, this is the
motivating problem with which we began.

A second problem (cf. Chapter 9) which we consider is the following. Let
F, be a finite field, ¥ a non-trivial C-valued additive character of Fy, and
x a generator of the group of all C-valued multiplicative characters of K.
For each integer 1 < a < ¢ — 2, the gauss sum

X =Y ()X

zEF;

has absolute value /7. Let us temporarily denote by f#(a)

6(a) %t 9. x%) o
Vi
the corresponding angle, viewed as a point on the unit circle. It is well
known (cf. [Ka-1]) that as ¢ | oo, the ¢ — 2 points 8{a) € S* “become”
equidistributed in S! with respect to usual Haar measure; this equidis-
tribution results from the fact that the Kloosterman sheaves Kly(n) on
G, @ F, are lisse sheaves of rank n which are pure of weight n — 1. Moti-
vated by an early paper of Davenport [Dav], we ask about the distribution,
for a given integer r > 1, of the r-tuples of “successive” angles

(0(a+1),8(a+2),...,8(a+r) € (s"),
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-as a runs over the interval 0 <a < g¢g—2—r.

We prove that as ¢ T co, these g~ 1—r points in (S?)" “become” equidis-
tributed with respect to Haar measure. The proof is based on the fact
that monomials in gauss sums {which arise in applying the classical Weyl
criterion) are the multiplicative Fourier transform of certain “Kloosterman
sums with multiplicative characters” of the form

Z Yz + -+ za)xi(z:) .. xnlza),

T1.T,=a

z,EFX
where x1,..., Xn are multiplicative characters of F¥.
For fixed v and xy,...,xn, there is a natural lisse, rank n Fy-sheaf

KI(¥; x1,- -1 Xn) 00 Gy ®F, (here E = Q({p,{4—1), A isa finite place of E
of residue characteristic [ # p = char(F;)) whose local traces are (—1)"~!
times the above Kloosterman sums with multiplicative characters. The
equidistribution result on tuples of gauss sum angles results (by Weil II,
the Lefschetz trace formula, and Parseval’s identity) from the fact that
H Kl eh x1, . -0, Xn) is geometrically isomorphic to Ki(¥; x4, ..., x5,), then,
after renumbering the y!, we have y, = x; fori=1,...,n.

In fact, we prove that given the sheaf KI(¥); x1,...,xn), We may recover
(X1,-+.,xn) entirely in terms of its local monodromy at zero. In trying to
prove this result, it became natural to view the sheaf Kl(¢; x1,..., Xn} as
the n-fold “convolution” of the simpler rank one sheaves K1(9; x;).

The formalism of convolution of G, took on a interest in its own right
with our realization that over a finite fleld, the category of lisse A-adic
sheaves of G, @ F; which are pure, tame at zero, and completely wild
at infinity, is stable under convolution. Moreover, given two such sheaves,
the weight, rank, local monodromy at zero and swan conductor at infinity
of their convolution is easily expressed in terms of the same data for the
convolvees. Ofer Gabber showed us how to drop the hypotheses “over a
finite field, and pure” from our original weight-theoretic arguments con-
cerning local monodromy at zero. His method is explained in the appendix
to Chapter 7, and the “weight-free” proof we give of 5.2.1(3) is due to him
as well: our original proof of 5.2.1(3) was based on the dimension count
given in 7.1.8, “read backwards.”

By combining Gabber’s “topological” approach to local monodromy with
the theory of Lawmon et al. of Fourter transform on the additive group, we
- are able to give a complete description of all lisse A-adic sheaves on G,,@F,
which are tame at zerc and totally wild at infinity with swan conductor one.
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We prove that any such sheaf is, up to a twist, a sheaf of Kloosterman type.
In pafticular, up to a twist, any such A-adic sheaf is pure of some weight,
and part of a “compatible system.” It would be interesting to compare
this result with the conjectural description of such sheaves, provided by the
Langlands philosophy, in terms of automorphic forms.

We now turn to a discussion of some open problems related to the above
resulis,

The first is the most vague, but also the most interesting. Is there a
reasonable theory “over Z” of exponential sums? For example, we found
that for p > 2, the group Ggeom attached to n-variable Kloosterman SIS
was a function of n alone (i.e., independent of p # 2 and of A}. This
phenomenon is presumably typical of quite general families of exponential
sums. Can one prove it?7 Can one “explain” it, even conjecturally?

There are quite a few general problems concerning convolution. What
operation on automorphic representations shonld correspond it? Given two
lisse sheaves in our convolution category C {tame at zero, totally wild at
infinity) what information about them does one need in order to compute
Ggeom for their convolution? to insure the irreducibility of their convolu-
tion? to compute the breaks at infinity of their convolution (cf. 7.6)7

Another question which bears looking into is the following. Are there
Kloosterman sheaves whose geometric monodromy group is an “interesting”
finite group, i.d., are there finite monodromy “surprises”analogous to the
p= 2, n = T surprise of finding G5 instead of SO(7)? It might be interesting
to examine Kloosterman sheaves K1(1; x1, ..., Xn) with “given” x1,..., X»
which only have finite geometric monodromy in exceptional characteristics.

There exists a close analogy between the Kloosterman sheaves
KI(¥; %1, ., Xn) on Gm @ F,; and the differential equations on G, ® C
given by

(%) (E‘E (:r:(;i[lc - a,-) — wm) =0,

where the «; are rational numbers with denominator dividing ¢ — 1, and «
is an arbitrary non-zero constant. In this analogy, the differential equation
corresponding to Kly)n) (ie., all x; = 1) is the one with all a; = 0:

- (E T

The argumenis developed here to compute Ggeom for Kly(n) can also be
used to show that for n > 2, the differential galois group of the above
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differential equation {*#) is Sp(n) for n even, and SL(r) for n odd (cf. [Ka-
. |

The p-adic analytic version of the abave analogy, begun by Dwork [Dw],
has been developed extensively by Sperber [Sp-1], [Sp-2]. One of Sperber’s
most striking resuits (cf. [Sp-1]) is the determination of the p-adic Newton
polygon of the local characteristic polynomial at each closed point = of
Frobenius F; on the sheaf Kly(n) on G, ® ¥,. He shows that the suitably
normalized p-adic valuations of the n eigenvalues a;(z) of each Frobenius
Fpare0,1,2,...,n—-1,;

ai() = ¢ ¥y (z),

ui(z) € (Zp[G]),
for ¢ = 0,...,n — 1. From the theory of the Newton-Hodge filtration

[Ka-3] of Sperber’s F-crystal analogue of Kly(n), it follows that for each
0 <7< n—1,there 1s a continuous character x;

Xi i T1(Gm @ Fy, 1) — (Zp[(p])*

such that for every closed point = of G, ® F; we have
X,'(Fm) = u,'(a:).

Nearly nothing is known about these p-adic characters y; and their inter-
relations, except for the “obvious” relation vex1...Xn—1 = 1, and, for n
even, the relations x;xn-1-¢ = 1. What is the image of x;7 What is the
image of (xo,..., Xn-1) 1 71 — {(Zp{(]*)")7 What is the Zariski closure
in (G )" of the image of (xo,..., Xn-1)7 :
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presented in a course at Orsay in the fall of 1983, and parts were presented
earlier in 19683 in lectures at the Universities of Minnesota and Tokyo, and
at Princeton. My thanks to all of these institutions for their hospitality, and
to the IHES where this manuscript was written. As will be obvious to the
reader, | benefitted greatly from discussions with T. Ekedahl, O. Gabber,
and G. Laumon, whose cormunents, suggestions and questions considerably
clarified a number of the topics treated here. I would also like to thank
J.-P. Serre for his helpful comments concerning G5, and Benji Fisher for
his help in proofreading.
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Chapters 9-13: Analysis of Monodromy, and Applications
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CHAPTER 1

Breaks and Swan Conductors

1.0. The Basic Setting (cf. [Se-1], pp. 80-82). Let K be the fraction
field of a henselian discrete valuation ring R whose residue field k is perfect
of characteristic p > 0, K*°P a separable closure of K, D = Gal(K*P/K)
the galols group (D for “decomposition group,” which is how this group
oceurs in the global theery), I € D the inertia subgroup, and P ¢ I the
p-sylow subgroup of I. The groups P and I are both normal in D, and
they sit in standard short exact sequences x

1— 1 - D — Gal(k**F/k) — 1
1= P—=I—[]Z@) -1
I#p
The quotient I/ P is sometimes also denoted I'»™e
The “upper numbering filtration” on I is a decreasing filtration of I by

closed subgroups (") indexed by real numbers r > 0. Each ") is normal in
D, I is T itself, and I D P D It o I{r2) for 0 <'ry < 1y Furthermore,

P = the closure of U 1",

r>»0
{1} = m I(")
r>0
1) = ﬂ 1@ forr> 0.
0<edr

1.1. Proposition. Let M be a Z[1/p] module on which P operates through

a finile discrete quotient, say by p: P — Autg(M). Then:

(1) M has a unigue direct-sum decomposition M = @ M(z) into P-
stable submodules M(z), indexed by real numbers z > 0, such that
M) = M¥ and

(M(m))f(z) =0 forz >0,
(M(:'J))I(y) =M(z) foradly>z.
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(2) If z > 0, then M(z) =0 for all but the finitely many values of ¢ for

which
o1 2 | o109,
y>z
(3) For variable M but fived x, the construction M — M(x) is an ezact
functor,

(4) For M, N as above, we have Homp_moa{M{x), N(y)) =0 if 2 # y.
Proof. If P —- (G is any finite discrete quotient of P through which p
factors, define subgroups G(z) C G for z > 0 by

G{z) = image( 1))
and subgroups G(z+) C G for ¢ >0 by
Glz+) = U image(1(¥)).

y>u

For each z, define the corresponding “projection onto the invariants,”

m(z) = #()Zg

7T($+) = ﬁ“‘g Z g.

geG(z+)

Because the groups G(z) and G(z+) are normal in G, these operators are
all central idempotents in the Z[1/p]-group-ring of G.
For 0 < z < y we have G D G(o+) D G{y) D G(y+)

G(y) = G{y ~ ) for all sufficiently small ¢ > 0,
Glz+) = Gz +¢) for all sufficiently small € > 0
and
G(z)= {1} for = sufficiently large.
One verifies easily that the central idempotents x(0-) and
m(z+){1— n(z)), for eachz >0,

are orthogonal, that all but finitely many vanish, that they sum to 1, and
that the corresponding decomposition of M is the unique one satisfying con-
dition (1) of the lemma. Taking G = p(P) shows that (2) holds. Assertions
(3) and (4) are clear from the construction by idempotents. B
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1.2. Definition. The decomposition M = @ M (z) of the lemma is called
the break-decomposition of M. The values of > 0 for which M{(z) # 0
are called the breaks of Af.

1.3. Lemma. For M and N two Z[1/p] modules on which P acts through
a finile discrete quotient, M @ N and Homgz (M, N) are again such modules
(with action g ® g on M ® N, ¥ — gyg~! on Homz(M,N))}, and their
break~decompositions are related by

M(z) @ N(y) C (M ® N){sup(z,y)) ifz#uy,
M(z)®N(z) C Y (M & N)y),

Homyz (M (z), N(y)) C Homz{M, N)(sup(z,y)) ifz #y,

Homgz(M(z), N(z)) C ZHomz(M, Ni(y).
y<e S
Proof. Let G be a finite p-group quotient of P through which the action of
P on both M and N factors. Then the action of P on both M ® N and
Homgz (M, N} also factors through G.

If z < y, then G(y) acts trivially on M(z), but (N{(y))?(¥) = 0. By the
exactness of the functor “G(y)-invariants” on Z{1/p|[G{y)]-modules, we see
that

(M(z) ® N9 = M(z) ® (N(y)?) = 0.
The group G{y+) operates trivially on both M(z) and on N(y), so
(M(z) ® N())9H = M(2) @ (y),

whence the unique break of M(z) ® N(y) is sup(z,y) for = # ¥.

If z < y, then G{y+) acts trivially on Homz (M (), N(y)), whereas G(y)
acts trivially on M(z) but with no non-zero invariants on N(y). We must
show G(y) has no non-zero invariant in Homgz (M (z), N(y)). But an invari-
ant 18 a G(y)-equivariant map ¥ : M(z) — N{y); so it maps any element
of M{z) = (M{z))%% to (N(y))®®) = 0. Therefore y is the unique break
of Homz (M (z), N(y)) when & < y.

If z >y, then G(z+4) acts trivially on Homg (M (2}, N(y)), whereas G(z)
acts trivially on N(y), so a G(z)-invariant in Hom is a G(z)-equivariant
map ¥ : M(z} — N(y), which necessarily factors through the covariants

{(M(z))c(z). But for any Z{1/p][G(y})] module, the natural map from in-
variant to covariants

(M () e M(z) — (M(2))s(z)
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is an isomorphism, the inverse being the averaging operator m(z). As
(M{2))¥®) = 0, we have' (Mz))g(y = 0, so 3 = 0. Therefore « is the
unique break of Homz (M (z), N(y)) when z > v.

In the = = y case, G(z+) acts trivially on both N(z) and M(x), so on
both M(x) ® N(z) and on Homz(M{z), N{z)). Therefore both of these
have all breaks < z. B

1.4. Lemma. If A is a Z[1/p]-algebra, and M a left A-module on which
P acts A-linearly through a finite discrete quotieni, then in the break-
decomposilion
M =P M),
z >0
each M(z) is an A-submodule of M. For any A-algebra B, the break-
decomposition of B @4 M is given by

B M= B4 M)

Proof. Applying 1.1(4) to left multiplication by an element a € A, we see
that each M (z) is an A-module. The second assertion is clear from the
construction of the break—decomposition by means of idempotents. g

1.5, Lemma. Let A be noetherian local ring of residue characteristic +# p,
and M a free A-module of finite rank on which P acts A-linearly through
@ finite discrete quotient. Then each M(z) 45 a free A-module of finile
rank, whose rank is called the multiplicity of the break w. (Thus the total
number of breaks of M, counled with multiplicity, is rank{M).} If MV
denotes the A-linear duel of M (coniragredient representation of F), then
(MY (z) = (M(2))¥; in particular M and MY have the same breaks and
multiplicities. If A — B is a not-necessariy-local homomorphism to a
second noetherian local ring (necessarily of residug charactlerisiic # p) then
M and M @4 B have the same breaks with the same multiplicities.

Proof. For each z > 0, M(x) is an A-module direct factor of A by the
preceding corollary. For 4 noetherian local and M free of {inite rank, we
find that M (z) is projective of finite type, so free of finite type. Because
MY is a submodule of Homg{ M, A), the second assertion follows from (1.3).
The last assertion is obvious from the change of rings formula (1.4)

(M @4 B)(z)=M(@)®4 5. B
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1.8. Definition. For M as in 1.5 above, we define its Swan conductor to
be the non-negative real number (it is in fact a rational number, cf. [Ka-5])

Swan(M) = Z rrka(M(z)).
x>0

1.7. Remarks. Clearly we have Swan(M} = 0 if and only if M = M(0) =
M7T is trivial as a representation of P. For any ring homomorphism 4 — B
with B noetherian local, we have

Swan(M) = Swan(M ®4 B).

The most useful cases of this are B = residue field of A, and, if A is a do-

main, B = fraction field of A. Notice also that M and MY = Homa (M, 4)
have the same Swan conductor.

We now consider the situation where the given action of F extends to an
action of I, or of D, '

1.8. Lemma. If M is a Z[1/p]-module on which I (resp. D) acts, such that
the action of P factors through a finile discrete quotient of P, then in the
break-decomposition M = &M (z), each M(x) is I-stable (resp. D-stable).

Proof. The groups P and I*) for z > 0 are all normal in 7 (resp. D), so
the elements of I (resp. D) commute with all of the idempotents 7(z) and
m(z-) used to define the break-decomposition. B

Now let 4 be a complete noetherian local ring with finite residue field ¥y
of characteristic [ # p, and let M be a free A-module of finite rank on which
D (resp. I) acts continuously. Because an open subgroup of finite index in
Aut4(M) is pro-l (e.g., the subgroup of elements which induce the identity
on M @4 F,), while P is pro-p, the action of P on M automatically factors
through a finite discrete quotient of P. Thus we may speak of the break-
decomposition of M it provides a canonical direct sum decomposition as
A[D)] (resp. A[I])-module

M =P M(z)

in which each M{z) is a free A-module of finite rank, whose formation
commutes with arbitrary extension of scalars A -+ B,

1.9. Proposition. Let A be a complete noctherian local ring with finte
restdue field By of characteristic I # p, and M a free A-module of finite
rank on which I acts continuously. Then for every z > 0, the product
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ek a(M(z)) is an integer > 0. In particular, the Swan conductor Swan(M)
is an integer > 0, and Swan(M) = 0 if end only if M is tame in the sense
that M = MF,

Proof. In view of the break-decomposition M = @ M(z), it suffices
to prove universally that Swan(M) is an integer. Because Swan(#) =
Swan(M & F,), we are reduced to the case when A is a finite field ) of
characteristic ! # p. In this case, M is itself finite, so the representation
of I factors through a finite quotient &G of I. In this case, the compati-
bility ([Se-1], pp. 80-82) between upper and lower numbering shows that
Swan(M) coincides with the integer “b(M)” of ([Se-2], 19.3). B

1.10. Remark. Suppose now that F is a finite extension of Q, | # p,

with integer ring O, and residue field F,. Let M be a finite-dimensional

E)-vector space on which D (resp. I) operates continuously and E)-linearly.

By compactness, there exists an Oy-lattice M in M, (i.e., a free Oy-module

M of finite rank with M 5@) Ey = M) which is D-stable (resp. I-stable).
A

Therefore P acts on M, and hence on M, through a finite quotient. The
break-decomposition of M is obtained from that of M by the extension of
scalars Oy =~ Ey. Therefore the E) resp. @y, resp. Fa-representations

MCI)SJE,\:M, M, MeF,
A

all have the same breaks with the same multiplicities. In particular,
Swan(M) = Swan{M) = Swan(M @ F,)

for any Oy-form M of M.

1.11. Lemma. Let [ be a prime number [ # p, E) a fintle exlension of
Qu, Oy ils integer ring, F s residue field. Let M be a non-zero finite di-
mensional Ey (resp. Fy }-vector space which is a continuous representalion
of I. Suppose that MY =0 and Swan(M) = 1. Then

(1) The unique break of M is z = 1/dim(M), and its mulliplicily is
dim(AM).

(2) As representation of I, M is absolutely trreducible.

(3) If M is a guasi-unipotent representetion of I (e.g., if M 1is the re-
striction to I of a continuocus representation of D, and if no finile
ertension of the residue fleld of K contains all [-power roots of unily)
then the image of I in Aut(M) is finite. '
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(4) If M as in (3) above is the resiriction to I of a continuous rep-
resentation of D, then an open subgroup of D acts by scalars. In
perticular, the image of D in Aut{M) is finile if and only if det(M)
ts a character of finite order of D.

Proof. We have Swan(M) = 5" 2 dim M (z) = 1 and M(0) = 0. Since each

term z dim M (z) with z > 0 is a non-negative integer, there is exactly one -

such term which is non-zero, say wodimM(zo) = 1. Because M(0) = 0
by hypothesis, the decomposition of M as P M(z) shows M = M{zg),
whence dim M (zg) = dimM, zy = 1/dimM. If M’ C M is a non-zero
I-sub-representation, then M'(z) C M(z) for every z > 0, so the only
possible break of M’ is 1/dim M, whence Swan(M’) = dim M’/ dim M;
as Swan{M') is an integer, we must have M = M’. As this argument is
equally valid after extending scalars to any finite extension of E,, (resp. F)),
we get the absolute irreducibility. For (3) and (4), only the E) case is not
obvious. For (3), the condition on the residue field guarantees that the local
menodromy theorem applies: there exists an open subgroup of I on which

the representation is unipotent. The associated nilpotent endomorphism

N is I-equivariant (¢f. 7.0.5), hence a nilpotent scalar (I acts absolutely
irreducibly), hence zero, whence the representation is trivial on an open
subgroup of I. For (4), every element of D normalizes the finite (by (3))
image of I in Aut(Af). Therefore an open subgroup of I commutes with
the image of I. By the absolute irreducibility of I, this open subgroup of
D acts by scalars in Aut(M). § '

1.12. Lemma. Let Ey be a finite extension of Q, [ £ p, with residue field
Fi. Let M be a non-zero fintle dimensional E, (resp. By )-vector space on
which I acts continwously and irreducibly. Then the unique break of M is
2 = Swan(M)/ dim(M), and its multiplicity is dim(M).

Proof. This is obvious from the fact that in the break-decomposition M =
6 M(z), each M(z) is an I-submodule; by irreducibility Af must be a
single M (x). B

1.13. Before continuing, we must recall that for every integer N > 1 prime

to p, the inertia group I has a unigque open subgroup I(N) of index N. In
terms of the short exact sequence

1P —I=][Z@)—1,
I#p
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I(N) is the kernel of the projection of I onto the gy quotient of [, Zi(1).
If we think of I as being the absolute galois group of the maximal unramified
extension K™ of K inside K P then I{ V) corresponds to the ggx-extension
of X" obtained by adjoining the N-th root of any uniformizing parameter
m of K77,

The wild inertia subgroup P of I is also the p-Sylow subgroup of I{N),
but the upper numbering filtration on it changes; if we think of I(N) as
the absolute galois group of K77 (x1/N}, its upper numbering filtration is
related 1o that of T by the simple change of scale

I(N)(x) = 1@/ for all 2 > 0.

From this it follows that if X, is a finite extension of Q, [ # p, with
residue field F'y, then we have the following behavior of breaks and multi-
plicities under the operations of restriction and induction of Ey (resp. Fy)-
representations.

1.13.1. If M is a finite-dimensional continuous E) (resp. F»)-representa-
tion of I with breaks z; of multiplicity n;, then its restriction to I{N),
which we denote by [N]*(M), has breaks Nx; with the same multiplicity
ni; more precisely, we have ((N]*(M)}(z) = M(«/N) for each z > 0, and
consequently

Swan({N]*(M)) = N Swan{M),

1.13.2, If M is induced from a finite dimensional Ey (resp. F'y )-representa-
tion V of I(N), written M = [N].(V), we have

N (M) = DV

(for v running over a set of coset representatives of I/I(N)), whence

M(z/N) = (IN]'(M)(z) = D1V (2) = POV )(z).

Thus if V has breaks z; of multiplicity n;, its induction [N}.(V') has breaks
z;/N of multiplicity Nn;, and consequently

Swan{[N].{V)) = Swan(V). -
1.14. Proposition. Let £ be a fintte extension of Q;, 1 # p, with residue

field B5. Let M be a non-zero finite dimensional Ey (resp. F'y )-veclor space
on which I acts continuously. Suppose thai

Swan(M) =a, dim(M)=n, (a,n)=1,
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and that the unigue break of M 1s a/n with multiplicity n. Then:

(1) M is absolutely irreducible.

(2) Write n = ngp® with ng prime to p. Then over a finite extension of
Ey (resp. Fa), M is induced from a p”-dimensionel representation
V' of I(ng), and the restriction of V 1o P is absolutely irreducible.
As I{ng)-representation, all breaks of V are a/p*.

(3) Cwer a finite extension of E5 (resp. Fy), the restriction of M to
P is the direct sum of ng pairwise-inequivalent absoluiely irreducible
pY-dimensional representations of P, whose tsomorphism classes are

fized by I(ng) and cyclically permuted by I/I(ng).

Proof. If M’ is a non-zero sub-representation of A, then its unique break
is a/n. Therefore Swan(M’) = dim(M’)(a/n). Because Swan{M') is an
integer, but {a,n) = 1, we find that n divides dim(M"). Asn = dim({M), we
infer that dim(M’) = dim(M), whence M’ = M. Repeating the argument,
over a finite extension field, we see that M is absolutely irreducible.

To prove (2) and (3), we argue as follows. Because P acts on M through
a finite p-group quotient &, M is P-sermisimple. Extending scalars, we may
and will assume that every irreducible representation of P which factors
through & is absolutely irreducible. Let M = @, M, be the P-isotypical
decomposition of M. Because P is normal in I, I permutes the non-zero
Ma; because [ operates irreducibly it permutes them transitively. The
stabilizer .of one of these blocks is open in I, and it contains P. Therefore
it has some index N prime to p, so is equal to I(N) by unicity, By unicity
I(N} is normal in I, so I(IV) is the stabilizer of each non-zero P-isotypical
block M. If we pick one of them, say My,, we have an I(N)-direct sum
decomposition

M =D YMuq

over a set of representatives v of I/I{N). This means that M is induced
from the representation M., of I(N). Because M as I-representation has
unique break a/n, it follows that M,, as I{N)-representation has unique
break Na/n = a(N/n), with multiplicity n/N, and it has Swan = a. In
particular, n/N is an integer, and it is prime to a {because (a;n) =1 by
hypothesis). Thus we may replace I by I(N) and M by M,,, and begin all
over again with the additional hypothesis

M is isotypical as a representation of P,

Let V be a non-zero P-irreducible subspace of M. By our preliminary
extension of scalars, we have insured that V¥ is absolutely irreducible as a
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P-representation. Therefore its dimension is a power of p: dimV = p* for
some v >> 0. Thus it suffers to show that in fact V = M.

For this we argue as follows. Because M is P-isolypical, every transform
¥V of ¥V by an element « € I is isomorphic to V as a P-representation. If
we denote by

p: P — Aut(V)
the action of P on V), this means that for any v € I, the representation
g7 P — Aut(V) defined by '

P 3gw plygr™h),

is equivalent to p. We will show that p may be extended to a continuous
representation of I on V', from which it follows that Swan(V) is an integer.
Granting this for a moment, we notice that as V is a P.submodule of M,
its unique break is a/n, with multiplicity dim(V}. Therefore Swan(V) is
given by
Swan(V) = dim(V)(a/n).

As Swan(V) is an integer, but (a,n) = 1, we havedimV = 0 mod n, whence
n = dimV, whence V = M, as required.

It remains to show that g extends to I. For this, we choose an element
v € I which maps ontc a topological generator of [];.,, Zi(1) in the short
exact sequence

1= P—1—=]]z:(1)—1
I#p

Taking a cluster point in I of the sequence of {4*" tnzo, we may further
suppose v has its pro-finite order prime to p. Then ¥ defines an isomorphism

Pb(inotpf»].

Let V be an Ox-form of the P-module V {in the case of E)). Recall that
because P acts irreducibly on V' through a finite p-group, the Fj[P]-module
V ® F) is irreducible.

Now consider the representations g and p of P on 'V (resp. on V). They
are isomorphic over E (resp. ¥, )}, so we can certainly write down an £
{resp. Fa)-equivalence A between them, which by suitable scaling may be
assumed in the Ej-case to map V to V and to induce a non-zero map of
V ® F) to itself. Because V@, (resp. V) is P-irreducible, the non-zero
map A ® Fa (resp. A) must be an isomorphism. Therefore we may choose
an isomorphism A between p and p¥ on 'V (resp. on V):

plvgy™t) = Ap(g) A~ forall g ¢ P,
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with 4 € Aute, (V) (resp. Autp,(V)). Replacing A by a p"-th power of
A, and ¥ by the same p"-th power of v, we may further assume that A has
pro-finite order prime to p, and that v still defines an isomorphism

szhotp:*I-

Now we can write down an explicit continuous extension 5 of p on all of 1,

by defining, for g € P and n € Z,, P!

Agr™) = p(g)A™. B

1.14.1. Remark. In 1.14, the hypothesis on the breaks serves only to guar-
antee that M is absolutely irreducible:

1.14.2, Variant. Let B be a finite extension of Q;, | # p, with residue field
Fis. Let M be a non-zero finite dimensional Ey (resp. Fj )-vector space
on which I acts continuously and absolutely irreducibly. Write dim(M) =
nop”, with ng prime to p. Then over a finite exiension of K (resp. Fy),
M is induced from a p¥-dimensional representation V of I(ng), and the
restriction of V 1o P is absolutely irreducible.

Furthermore, the resiriction of M {o P is ihe direct sum of ng pair-
wise inequivalent absolutely irreducible p*-dimensional represeniations of
P, whose isomorphism classes are fived by I(ny) and cyclically permuted by

Proof. Exactly as in the proof of 1.14, we reduce easily to the case when
M is isotypical as a P-representation. If V is ar absolutely irreducible
P-submodule of M, the argument of 1.14 shows that V' eztends to a repre-
sentation Vy of I. If M|P =~ nV, then Homp(Vi, M) is an n-dimensional
representation of I/P. Extending scalars if necessary, this representation of
I/ P contains a one-dimensional character, say x~!, of I/P, simply because
I/P is abelian. Therefore we have

Hom;(Vi, M ®@ x) # 0.

Because both Vi and M ® x are I-irreducible, this non-zero I-morphism

must be an isomorphism of Vi with M ® x. Restricting to P, we obtain
V ~ M|P, as required. B

1.15. Corollary. Hypotheses as in 1.1/ above, if dim(M) is a power of p,
then M is absolutely irreducible as a P-representation.

Proof. Wehaveng = 1, whence over an extension field M = V is absolutely
irreducible as P-representation. B
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1.16. Corollary. Hypotheses and notations being as in Proposition 1.14,
let x: I — EX (resp. FY ) be a continuous character of order dividing ng
(recall ng = the “prime-to-p part” of dim(M)). Then M is isomorphic 1o
M @ x as Ea{I] (resp, Fi[l])-module.

Proof. Both M and M & x are Ey[I] (resp. Fx[I})-modules, so it suffices
to show they become isomorphic after a finite field extension ([C-R], 29.7).
But after such an extension of fields, A is induced from the subgroup
I{ng) C Ker(x), so the result follows from the “projection formula”

[10]«(V) © x = [nelu(V @ [n0]"(x)). B

1.17. Corollary. Hypotheses and nolations as in 1.14 above, suppose fur-
ther that the given representation M of I is the resiriction to I of ¢ con-
tinuous action of [ on M, and that the residue field k of K coniains all
the ng-th roots of unity. Let D(ng) C D be the normal open subgroup
of index ng corresponding lo the cyclic (u, ) extension of K oblained by
adjoining the ng-th root of any uniformizing parameter of K. Then over
a finite extension of Ey (resp. Fy), M as representation of D is induced
from a pY-dimensional representation V' of D(ng), whose restriction to P
15 absolutely irreducible.

Proof. We have already seen that over a finite extension of Ej (resp. F)),
the P-isotypical decornposition of M is M = @72, Vi, where V,..., Vo,
are pairwise inequivalent absolutely irreducible p¥-dimensional representa-
tions of P. The action of D on M permutes the V, transitively (I already
did so), .so the stabilizer in D of any given V, is an open subgroup D, of
D of index ng. We must show that D, = D(ng).

We have already seen that the stabilizer of V,, in I is the subgroup I(ng),
whence we have Do NI = I{ng). This means that if we denote by K,
the fixed field of D, inside K®P  then K, is linearly disjoint from K™,
the maximal unramified extension of K in K***. This means that K, is a
fully ramified extension of K of degree ng. Because the residue field k& of K
contains ng distinet ng-th roots of unity, the unique such extension of K is
K(WU”O) for 7 any uniformizing parameter of K. Therefore Dy = D(ng).
As D(ng) 18 normal in D, each V,, is D{ng)-stable and M is induced from
any V. B

1.18. Detailed Analysis when Swan =1
Throughout this section, we fix a prime number [ # p, and a finite
extension 5 of Q; with residue field Fy.
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We suppose given a finite-dimensional Ey (resp. F))-vector space M,
together with a continuous linear representation p: I — Autg, (M) (resp.
p I — Autp, (M)). Weassume that dimM > 2, MP = 0 and Swan(M) =
1, and we write dim(M) = n = ngp® with nq prime to .

We denote by & the Zariski closure of the subgroup p(I) in Aut(M),
which we view as a linear algebraic group over ) (resp. F'»), given with
a faithful representation on M. {Recall (1.11} that if p is quasi-unipotent,
then p(1) is finite, so in this case G is just the finite group p(I), viewed as
an algebraic group. For example, this is antomatic over F.)

1.19. Lemmma. Hypotheses and notations as in 1.18 ebove, we have

(1) The given representation of G on M is absolutely irreducible; in
particular, as dimM > 2, G is not abelian.

(2) Over an finite extension of E, (resp. of Fy ), any linear representa-
tion of G of dimension < n = dm M is abelian." In particular, G has
no faithful representations of dimension < n, and every absolutely
irreducible representation of G of dimension < n is of dimension
one.

(3) Any linear representation of G of dimension < n is trivial on the
finite subgroup p{ P).

(4) If p(I) is finite, then the index of p(P) in p(I) is prime to p and
2 n, and the quotient p(I)/p(PY is cyclic.

Proof. Assertion (1) holds becanse the subgroup p(I) of the rational points
of & already acts absolutely irreducibly on M (ef 1.11.(2)). For (2), let

¥ G — GL(V) be a linear representation of & of dimension < n, and
consider the composite

1L cotianwy

- Because p has all breaks 1/n, i.e. is trivial on I® for > 1/n, we see that
this composite is also trivial on I{® for z > 1/n, so all the breaks of 1o p are
< 1/n. But dim(V'} < n, so Swan(V) < 1, whence Swan(V) = 0. Therefore
Yo pis trivial on P, thus proving assertion (3); I acts on V' through its
abelian quotient I**™e. So for any @, B € I, we have [¢{p(a)), Y(p(M)] =0
in End(V). Fixing 8, we see by Zariski density that [v(g), v{p(8))] = 0 for
all g € G. Now fixing ¢ € G, we see by Zariski density that [4(g), ¥(g")] = 0
for all g, g’ € G, whence 4 is abelian,

For (4), the quotient p(7)/p(P) is a finite quotient of I*3M¢ g5 must be
eyelic of some order N > 1 prime to p. Consider the restriction of g to
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I(N). All of its breaks are N/n, and by construction p(I(N}) = p(P) 1s a
finite p-group. We must show that N > n, i.e,, that the unique break of
p restricted to I{N) is > 1. This is a special case of the following lemma,
applied to I = I{N) and to V = M viewed as I{N)-representation. B

1.20, Lemma. Lel V be a finite-dimensional vector space over ¢ field of
characteristic # p, on which I acts linearly, and such that the action of I
factors through a finite discrete p-group quotient of I. Then every non-zero
break of V s > 1.

Proof. By the break-decomposition V. = ) V{z), we may reduce to the
case when V has a single break, say #yg, We may suppose 2y > 0, otherwise
there is nothing to prove. Let G be a finite p-group quotient of I through
which the action factors, and let

G=Gp2G1 DGy -

be the lower-numbering filtration. In terms of lower numbering the Swan
conductor is given by

Swan(V) = igu Hm{V/ VG,

i>1

In our situation, G is a p-group, so Gy = Gy, but all breaks of V are > 0,
s0 V%1 = 0, whence the term { = 1 of the formula gives the inequality
Swan(V) > dimV. Because v has a single break, o, we have Swan(V) =
oo dim(V'), whence zy > 1, as asserted. §
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Curves and Their Cohomology

2.0, Generalities. Let k be a perfect field, C/k a proper smooth geomet-
rically connected curve over k, K = £(C) the function field of C. For each
closed point x of €', denote by Ky the fraction field of the henselization of
the discrete valuation ring in X which “is” z. Choose a separable closure
stj of K{z), and a K-linear field embedding K®P < KE?};. The local
galols group
Dy = Gal(K K (x))

is naturally identified to the decomposition subgroup of Gal(K%P/K) at
the place T of K*P defined by the chosen embedding of K5°P into K{B‘;];.
Similarly, the inertia subgroup I, ¢ D, is itself the inertia subgroup of
Gal{ %P /K k®P), k%P the separable closure of k& in A®**P, for the same
place T of K5eP,

Let U ¢ C be a non-empty open set, If we view the chosen K% as a
geometric generic point §j of U, we have a natural identification

2.0.1 7 (U,7) = the quotient of Gal(K*P/K) by the smallest closed
normal subgroup containing I, for all v € U.

Fix a prime number [ 3 char(k), and denote by 4 an “l-adic coefficient
ring,” i.e., A is either a finite extension £ of @, or a complete noetherian
iocal ring with finite residue field F of characteristic {. For F a lisse sheaf
of finitely generated A-modules on U, its fibre #; is a continucus repre-
sentation of 71(Uy) on a finitely generated A-module, and the construction
F +— Fy defines an exact A-linear equivalence of abelian categories

lisse sheaves of

2.0.2 finitely N
generated
A-modules on IJ

finitely generated
A-modules given with a
continuous 4-linear action
of m (U, #)

For a closed point z € €, the decomposition group D, C Gal(K#*P/K)

maps to 71 (U, 7), so acts on F7. In particular, the inertia groups I at all .

points of C—U act on Fy (the I; for z € U operate trivially by hypothesis).
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2.0.3. Forz € C — U, we may speak of the break-decomposition of Fj as
P,-representation. The breaks which occur in it are called “the brez‘Lks (?f
F at z.” We say that F is tame at = if P acts trivially on Fg, ie.,if 0 is
the only break of F at z. We say that F is totally wiid at z if (Fg}= =0,
ie., if 0 is not a break of F at .

2.0.4. In view of the exactmess properties of the break-decomposition
{cf. 1.1), each of the conditions “tame at z,” “totally wild at 'x” defines
a full sub-category, stable by sub-object, quotient, and extension, of the
abelian category of all lisse sheaves of finitely generated A-modules on U.
For F; and F, tame at ¢, and G totally wild at x, the tensor product
FL ®4 F2 is tame at z, while 71 @4 G is totally wild at x.

For A an l-adic coefficient ring, and F a lisse sheaf of finitely generated
A-modules on U, the compact and ordinary cohomology groups

HYU @ kP, F) and H(U @ kP, F)

are finitely generated A-modules on which Gal(k*P/k)} acts continuously,

M SOl
and both vanish for i # 0,1,2. In terms of the action of s =
(U @ k5¢®, ) on Fy, we have, for F lisse on U:

geom

B ek, F) = ()

2.0.5 HO U@ kP, F)y=0 ifU Cc
and

HZ(U@kJCPJf):O lfU;C;:C
2.0.6

HE(U ® kP, F) = (fﬁ)vt'f”’“("l)'

(Of course if U = C then H} = Hi) For U § C, ther?, is'a natural
transformation #} —» H*, which sits in a Gal(k®eP /k)-equivariant exact
sequence {the long cohomology sequence on C @ kP attached to the cone,
for j : U = C the inclusion, of jiF — RjF)

0-HUeke P B D F) -
reC-U =zgaz(kser)
closed point

2.0.7 *Hg(U@kseP’f)_}Hl(U®ksep,}~)_»

- @ (B Eouen)-mwerTR -0

zeC-U T€(ke=P)
closed point
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2.1. Cohomology of Wild Sheaves

2.1.1. Lemma. For A as above, and x a chosen closed point of C—U, denote
by A the abelian category of lsse sheaves of finitely generated A-modules
on U which are {otally wild af . '
(1) HYU @ ksep, F)=0=HXU® kP, F) for any F e A
{2) The functors F — HIU ® k*P F) and F s HYU @ k**P, F) qre
exect functors from A fo the category of finitely genereted A-modules
on which Gal(k**P/k) acts continuously.
(3) Both of the functors in {2) above carry A-flat F’s in A 1o free A-
modules of finite rank. Their formation is compatible with eziensions
of scalars A ~+ A" of l.adic cocfficient rings.

Proof. (1) We have H® = 0 because Fi has no non-zero P,-invariants, so
even fewer 71(U @ k%P, 7j)-invariants. Because F5 is semisimple as a P,-
module, it has ne non-zero Py-coinvariants either, so even fewer (this time a
quotient) coinvariants under ) (I @ k5P, 7). Therefore H2 = 0. (2) By (1),
the ! and H? are the only non-vanishing cohomology groups for A, so
each is exact. (3) If N is any finitely generated A-module, take a resolution
K. — N by free finitely generated A-modules. For F € A, F Q4 K. is a
cornplex in A, and by exactness either of our functors-generically denoted

“H1”-carries its homology objects to those of the complex H1{F @, K.) =
HYF)®4 K.; concretely, we have

HY(Torf(F, N)) = Torf (HY(F), N).

Therefore if F is A-flat, then so is HY(F). Taking i = 0, we see that for
any 7 € A, and any finitely generated A-module N, we have

HY F)®4 N S HY(F @4 N).
Given an extension of scalars 4 — A’, the desired formula
HYF) @4 A" S HY(F o4 A
results from the above by writing A" as the A-module direct limjt of its
finitely generated A-submodules. B
2.2. Canonical Calculation of Cohomology

2.2.1. Lemma. Suppose that (C—Uyed = p, LI Dz is a decomposition of
C = U into two disjoint non-empty finite etale k-schemes (such decomposi-
tions exist precisely when C — U contains > 2 closed points of C'}. Denote
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by j1 : U = C — Dg and j3 : U «s C — Dy the corresponding partial c!c.rm—
pactifications of U = C' — Dy — Dy, Then for A os above, and F any lisse
sheaf of finitely generated A-modules on U, we have
: - P (11 F) =0 fori# L. '
8 I;hi(%i ii)zjn@eiact Sfjuin)cto)r lo finitely generated A-modules with a
continuous aclion of Gal(k®P/k). '
(3) This functor carries A-flat F's to free A-mod.ules ofﬁmte typcfz. Its
formation commutes with extension of coefficient rings A — A’

Proof. (1) We have H? = 0 because F is lisse on .U and then extendeQd
by 0, and we have H? = 0 because (C — D) @ kP is an afﬁne- c.urve.fl( )
By exactness of (ji)1 and the cohomology sequence, the remaining J? is
exact for variable 77 it is a finitely generated A-module be‘cause (711 F is
a constructible sheaf of A-modules. Just as in the preceding lemma, (3)
results formally from (1) and (2). §

2.2.2. Remark. If F is totally wild at every point of Di, then (j; hF is
isomorphic to R(j1)«(F), and so

Hl((C — D)@ k5P, (A1 hF) 5 HYU ® kP, F).
So taking “Dl = z”, we recover 2.1.1 as a special case of 2.2.1.

2.2.3. Remark. Consider the diagram of inclusio.ns

C—Dy
J1 \kz\
U C.
C— Dy
For F on U, we have

(Rh2)u (G )(F) = (ki) (Riz ) (F),

simply becauge the closed subschemes I}y and D2 are digjoint. Thus we
may also write describe our exotic cohomclogy as

HY (G — D3) @ k%P, (j1)1 F) = Hi((C — Dy) @ kP, (Rj2)F).

2.2.4, Now let us consider the following situation: U ;Ct C,Dc U 1sha
closed non-empty subscheme, finite etale over k, and 7 : U — D — U is the
inclusion. For F lisse on U/, we have a tautological exact sequence

0— j(j*F)— F = FiD -0,
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whence a long exact cohomology sequence
0~ H(U @ k*?, ) - H°(D @ k*», 7| D)

§
N HI(U®sep,j!j*}') — HYU @ ke, F)— 0.

This means that we may calculate the cohomology groups H {U @ kep, F)
as the cohomology of the two-term complex ,

5
+F): HY(D ® kP, FID) = H\(U @ k*P, jj* 7).
2.2,5. Key Lemma.
(1) For A as above, the construction F +(F) is an exact funcior from

the calegory of lisse sheaves of finitely generated A-modules on U/ to

th'e category of two-term complezes of finitely generated A-modules
with a continvous action of Gal{k®eP /k).

(2) If 7 is A-flai, then *(F} is a two-term comples of free finitely gen-
eraied A-modules.

(3) The formation of *(F) commules with extension coefficient rings
A— A

Proof. Because D @ kseP ig Jjust a finite set of Spec(k®P)’s, the term

H(D @ k*=®, | D)

certainli/ has the asserted exactness properties for variable . That the
term HYU @ ksep, J(7*F)) does also is the special case (U, Dy, Dy) = (U —
D, D,C —U) of the previous lemma. B

2.2.6. We now consider how to “calculate” cohomology with compact sup-

ports. For A as above, and F a lisse sheaf of finitely generated A-modules
o U, the complex Rj, (7*F) has

R F)y~F
le*(j*f) = F(-1|D
Ri(*Fy=0 fors > 2,
i0 we have a short exact gequence on [/
0—F = Rjj*F = (F(-1}{D)[~1] = 0.
The long exact cochomology sequence with compact supports reads
0— Hi(U®Kk*®, F) = H (U @ kP, Rj (5% F)) —
— HY(D @ k5P FID)~1) — HYU @ kP, F)—=0,
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because H2(U @ k%P, Rj.(7*F)) = 0 by 2.2.1 (1) and 2.2.3. Indeed in terms

of the diagram of inclusions
U
N
v—-D C
c-D .

HYU @ k™, Rj. (" 7)) @ HI(C ® kP, (ka):Rj. (3* F))
= HY(C ® k%P, (Rk1)«(j2): (* F))
= HY(C — D, (72):(7* F)).
Therefore the two-term complex, placed in degrees 1 and 2,
*(F) HHU @ k%P, Rj. (7 F)) — HY(D @ k*°P, F|D)(—1),

calculates the HH{U ® ksep,}'): The Key Lemma 2.2.5 is valid for the
construction F — *.(F), with the same proof. :

we have

2.2.7. Lemma. Hypotheses as above, suppose that F is A-flal, and thai
H2(U @ k*P, F) = 0. Then HX(U @ k%P, F) is a free A-module of finite
rank, and for any exlension of scalars A — A’ of l-adic coefficient rings,
H{U@ kP, Fi@4 A' 5 H(U@*P, F@4 A').

Proof. Because H? = 0, ,(F) is a two-term complex of free finitely
generated A-modules of the form N~ M, so splits. §

2.3. The Euler-Poincaré and Lefschetz Trace Formulas. For A as
above, we now consider a lisse sheaf F on U g C of free finitely generated
A-modules. As explained in the previous section, the choice of a non-empty
finite subscheme DD C U allows us to construct functorial, exact-in-F two
term complexes
“(F), *(F)
of free fipitely generated A-modules given with a continuous action of
Gal{k*eP/k), whose cohomology groups are the H' and H! of U ® k%P
with coefficients in F. Those complexes allow us to define
(1) the euler characteristics x(U @ k%P, F} and x.(U @ kP, F), as the
alternating sum of the A-ranks of the components of *(F) and of
*(F) respectively.
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(2) for any element o € Gal(k*P /k), the “alternating sum of the traces
of o on the H (U ® k%P, F),” or on the HiU @ kP, F), as equal to
the alternating sum of its traces on the components of «(F) and of
#.(F) respectively.

Of,:coprse if each of the cokomology groups Hi(U @ k%P F), { =01
(resp. H (U ® k5P, F), 4 = 1,2} is itself a free A-module of finite ran:k
then the alternating sums defined in 1) and 2) above by means of th(;
resolutions *(F) (resp., #.(F)) are equal to the literal alternating sums on
the cohomology groups themselves.

Becanse F is itself a sheaf of free finitely generated A-modules, for each
z &€ ¢'— U, we may speak not only of the break-decomposition of P, acting

on Fy, but also of the multipiicities of the breaks and of the Swan conductor
which we denote Swan,(F). ’

2.3.1. Euler-Poincaré Formula

X(U @ kP, F) = x.(U & k5P, F)
=rk(Fix . (UR*P) — Z deg, (=) Swan,(F)
zeC-U
where the‘ sum is over the closed points x of ¢ — U/, each weighted by the
degree of its residue field over k, and in which Xe(U ®@k*°P) is the topological
gl)iler characteristic (= 2 — 2¢ — 2sec—v degy(x), where g is the genus of

2.3.2. Lefschetz Trace Formula. When & is a finite field F, and F is the

inverse of the standard generator o — @? of Gal{k®P /k)
equality (in A) ’

“Z(——l)itrace(FEHi(U @ k5P F)) = 2 trace( Fi| 7)
. TEU(k)

we have the

where I denotes the image in 71(U, 7) of F under the map

Gal(k*?/k) & Do/l — m(U, )
W W W
Fo—— F — .
2.3.3. Explicitation, Notations and h
H2(U ® k%P, F) = 0. Then

(1) Hi(U @ k*P, F) is a free A-module of rank

ypotheses being as above, suppose that

Z degy (z) Swan, (F) — tk(F)x.(U @ ksery,
TEC-T
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(2) if k is a finite feld,

— trace(FiHi(U [124) k’SEp, T)) = E tr&Ce(F!ﬂlAfﬁ)'
zeli(k)

If we assume further that F is totally wild at some point of C'— U then we
also have . .
(VY HYU @ k*%P, F) is a free A-module, and it has the same rank as
HYU @ k3P, F). ) '

We recall Grothendieck’s proofs of these basic results (cf. Raynaud [Ray]
and Deligne [De-2] for more details). By hypothesis, 4 is either E) or a
complete noetherian local ring with finite residue field F) of residue char-
acteristic { # p. In the Ex-case, we may replace F by an Oy-form to reduce
to the case when A is complete noetherian local. Because the resclution
functor F r+ %.(F} commutes with change of coefficient ring, it suffices
to prove the formulas for F/ max(A)*F over A/ max({A)" for all n > 1.
Thus we are reduced to the case when A is a finite local ring of residue
characteristic [, Any given F then becomes constant on some connected
finite etale galois covering E = U, say with galois group G. Fix such a cov-
ering. The construction F + HY(E,7*F) is an exact A-linear equivalence
of categories

o~

A-modules on U which become =

lisse sheaves of finitely generated (
constant on the covering £

finitely generated
left A[Gl-maodules /

By means of this equivalence, we may view each of the two terms of the
resolution functor F — *.(F) as an exact A-linear functor, say T

finitely generated T (ﬁnitely generated )
left A[G]-modules A-modules '

Because A[G] is a finite ring, “finitely generated” is the same as “finitely
presented.” Therefore our functor is necessarily of the form

M — T(AIG]) Q) M
A[G]
where T(A[G]) is viewed as a right A{Gl-module through the right action
of A[G] on itself (one checks this formula by writing M as the cokernel
of a map (A[G))™ — (A[G])™ of free left A[G]-modules, and applying the
exact functor 7). Because the functor T is exact, it follows that T{A[G]) is
flat as a right A[G]-module. Because T( A[G]) is finite, this flatness implies
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that T{A[G]) is right A[G]-projective, i.e., a direct factor of a free right
AlG]-module of finite rank.

‘ The particular functor T" at hand commutes with extension of coefficient
rings. As 4 is a Z/1"Z-algebra for n > 0, we see that

T(AIG) = T(ZIG) R4, .
Z;

th:at. T{Z;[G]) is a projective right Z;[G]-module of finite type, and that our
original functor T' on finitely generated left A/G]-modules is

M T(2AG) @) M.
Z[G]

The endomorphisms of the functor T' given by ¢ = identity and, in the
Lefschetz case, by ¢ = Frobenius, are A-linear, and their formation is com-
patible with extension of coefficient rings. Any such ¢ is uniquely of the
.forrn $o © id where ¢q is the right Z,[G]-linear endomorphism of T(Z;[G])
induced by ¢ (one checks this by calculating T(M) by means of a free
presentation of M),

_ Because T(Z;[G]) is right Z;[G]-projective of finite type, there exists a
right Z;[G]-module @ such that T(Z,[G]) & Q is a free right Z;[G]-module
of finite rank. Write the matrix of ¢y @ 0 in terms of a basis ey, . ., er of
this free Z;{G)-module, say : T

(6o 0)(es) = 3 _ frie;, fij € ZulG].
J

Then
T(M)) @ (Q () M)~ M,
zZ:[G]
¢ @0 operates on M” by
mi my
(¢20)| : |= (fz’j)
me ) my

Suppose that M is A-flat. Then T(#) is a free A-module of finite rank,
so we may speak of the trace trace {¢|T(M)} € A. Calewlaiing this trace
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as the trace of ¢ @ 0 on M7, we see that
trace4(¢|T(M)) = traceA((f,:j)lM") = Etrace,;(fﬁ;lM)

= fraceg4 (Z fulM)
i
The important thing is that there exists a single element (ie., 3; fii)

(¢o) € Zi[G]

such that for any finite local Zi-algebra A, and any finitely generated left
AlG)-module M which is A-flat, we have

traceq(¢|T(M)) = trace((do) |AM).

Because (G is a finite group and Z; is flat over Z, this property of (¢o)
determines the image {¢o} of {¢o) under the map

7,[G] — Zi-valued functions on the set of conjugacy classes in G

a,[g] — the function on conjugacy classes ' — a,.
g B g
gec

Turthermore, given that {$o)? exists, it is already uniquely determined by
knowingits trace on M’s which are O, -forms of the finitely many absolutely
irreducible 3;-representations of G, all realizable over some finite extension
E, of Q;. Reinterpreting M as a sheaf, we are thus reduced to proving that
+he Euler-Poincaré and Lefschetz formulas hold for F alisse E)-sheafon U/
which becornes constant on a finite etale connected galois covering £ — U,
with galois group G. In this case, the formulas to be proven amount to
Waeil’s “classical” Lefschetz trace formula with constant coefficients £y on
the complete non-singular model C” of the open curve E, for the following
endomorphisms of C:
(2) (for the Euler-Poincaré formula) the elements ¢ # id in G
(b) (for the Lefschetz trace formula) the endomorphisms F o g~ for all
g € G, where F' denotes the relative-to-k Frobenius endomorphism
of . B



CHAPTER 3

Equidistribution in Equal Characteristic

3.0. For any “abstract” group I'; we denote by T = the set of conjugac
classes in T, =

3.1, Let ug fix
® a prime number p,
e 3 finite fleld F, of characteristic P,

2 a s‘mooth, geometrically connected curve U/F,, the complement of a
finite set of closed points in a proper smooth geometrically connected
curve C/F,,

e a geometric poiut Z : Spec(Q) — U,

@ a prime number [ # p,

a lisse Q;-sheaf F on U7 of rank n > 1 (ie., Fis a lisse Iy -sheaf for

£y an unspecified finite extension of Q;), and

an embedding ; — C.

&

Set
arith 4fn = df; —
T = my (U, §), oo & (U @ Fy, 2),
¥
q

let

arith

gyt Autal(}'f) o~ GL(ﬁ,G,)
be the monodromy representation of F, and let G denote the Zariski closure

geomy - ey
o.f p(rF™) in GL(n) @ Q. ‘Moreover, suppose that, with respect to the
given complex embedding of Qy, F is pure of weight zero.

3.2.. By @ fundamental result of Deligne [De-5], the purity of F implies that
the 1den;1tg component GG° of the Q;-algebraic group G is semi-simple. By
means of the complex embedding Q; — ¢ i Q,-alg
I we may view C -

and so speak of the groups ’ ! 8 Quelaebre

GYC) ¢ @ (€)

U J
GUQ) c G@).
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In the classical topology G(C) is a complex semisimple Lie group, G®(C) its
identity component. Let us denote by X € G{C) a maximal compact sub-
group of the complex Lie group G{C). (Construction: take K% a compact
form of GO(CY & la Weyl, then take for K the normalizer of K° in G(C).}
One knows that every compact subgroup of G{C) is G(C)-conjugate to a
gubgroup of K, and that the functors

(ﬁnite-dimensional Q-representations of G' as Q;-algebraic group )
[ : slextensién of scalars Q| —C
finite-dimensional C-representations of G ® C as C-algebraic
group Q,

g‘l’evaluation on C-valued joints

finite-dimensional holomorphic representations of G(C) as )
complex Lie group

Elrestriction te K

(ﬁnitevdimensional continuous representations of K as compact )

group

are all equivalences of categories.

3.3. We now make the further hypothesis that p(n37") C G(Q,) (inside
GL(n,Q;)). For every closed point u € U, the Frobenius conjugacy class
Fy € (737 then defines a conjugacy class

p(Fu) € G C GO,

whose semi-simple part, in the sense of Jordan decomposition, lies in a
compact subgroup of G(C) (because all its eigenvalues have absolute value
one).

Therefore p(F,)® is G(C)-conjugate to an element of K. Because the
traces of the finite dimensional continuous representations of K separate
K-conjugacy classes, and all such representations are the restrictions to K
of representations of G(C), the element of K to which p(F,)}* is G(C)-
conjugate is well defined up to K-conjugacy. Thus we obtain a well-defined
element of K1Y,

6(u) T p(F.)™ € K",
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whic-h we think of as the generalized “angle of Frobenius” at u. (For exam-
ple, if G = SL(2), then in a suitable basis

o ei&'(u) 0
p(Fu) *( 0 e_ie(u)>’

for the unique choice of real 8(u) i L
_ € [0, n] which satisfies trace(p(Fy.)) =
2 cos{{u)); with K = SU(2), this identifies K" with the interval [0, wlj)))

3.4. Vlexfdng KU as a quotient space of K, it acquires a quotient topolo
for V\.r'hlch it is compact, and for which the continuous functions on Kt “ari?’r
Premsely the continuous centralfunctions on K. We denote by ut the direct
image on K% of normalized (total mass 1) Haar measure on K.
Concrt?tely, if f is any continuous C-valued function on X!, and if f
denotes its associated (inverse image) continuous central flinction oc;n??]

then
df
/fd,u“ :n/fcentraldﬂHaar-
K

Fidl

(For example, with G = SL(2), we have K
, J = SU(2), K" = [0 by
the “Sato-Tate measure” (2) sin? 6d4.) @ et

3.5. By evaluating at the “generalized angles” 8{u) € K", one constructs
three more or less natural sequences of positive measures of mass one on

I{ ea.Ch lndexed by '] te . n ( ’le l ¥ 8ige ‘l a4 i.‘ ’ a8 a Close( aOln
) i g IS Suffi Il 1 1 [?
Of degree n: .

— 1
= 1

" (W) de%m‘sw(””
= 1

Zn = (W) dey%;( &(6(u)).

In the above formulas, & i
N ulas, 6(z) denotes the Dirac delta measure supported at

3.6d. Theoremh (Deeligne [De-5}). The sequences of measures {X,}, {¥,}
and {Z,} on K% all tend weak-+ to ph; for any continuous C-valued function
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f on Kb, we have

/ fdd = lim ] fdXa
Kt Kt

r.iim/den :llmffdzn
n n
Kt Kt

Proof. Because the C-span of the characters of continuous finite-
dimensional representations of kis uniformly dense in the space of all
continuous functions on K % while all measures involved are positive and of
total mass one, an obvious limiting argument reduces us to the case where
f is the character of a finite-dimensional irreducible representation of K.

Because all measures involved have total mass one, the constant function
f = 1 “works” even without passing to a limit over n, s0 we mMay assume
the representation is non-trivial. Thus f is the trace of the restriction of v
to K C G(C), where

PG — (;L(ﬂd) ® Q;

is an irreducible and non-trivial representation of G.

For such a representation, we have

0= j[trace(@b)dﬂﬂaara

K
so what must be proven is that for such ¢ the integrals f trace(y)dX,,
K}
[ trace(y)d¥n and [ trace(y))dZn tend to 0 as n tends to oo (Le., the
Kt Kt
Weyl Criterion for equidistribution).

In fact, we will establish a much more precise estimate, for 1h irreducible

and non-trivial, as follows:
] trace(¥)dXn| < o(d_”TESf—U
q

cofet)

qn/Z

g O(nz dim(t) )

qn/E

K
\ / trace(y)dY,
Kb

1 ] trace(1)dZn
K

where the constants in the big O are easily made explicit.
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Let us denote by F(%) the lisse Q;-sheaf of rank M on U whose mon-
odromy representation is the composite
. P — '/ —
Ppop:wdrth G(Q;) — GL(M, Q).

Then F(1) is again pure of weight zero (for example, because it is a sub-
quotient of some F8™ @ (FY)®™), and for every closed point u

(¥ 0 p)(Fu))™ = $(p(Fu)™) = (8(u)).

Because ¥ 1s irreducible non-trivial, it has no non-zero invariants or coin-

variants. Because p{w¥°°™) is Zariski dense in G((Q;), we have

HZ(U ® Fo, F(¢)) = 0= H"(U @ Fy, F(4)).
The Lefschetz trace formula gives
(HU(F,n)) j trace($)dX, = - trace( P HL(U ® Ty, (1))
K1 !

Because F(¢) 1 lisse and pure of weight zero on U ® F,, its H? is mixed
of weight < 1, so we get

3.6.1 / trace(w)dx,| < Xl @ ¥ FUONIVT
#U(Fyn)
Kt
The analogous consideration of H. with constant coefficients gives
3.6.2 #UF ) 2 " = b (U © Fe, Qi) V7"

The Euler characteristic with coefficients in (1) can be easily estimated
by the Euler-Poincaré formula if we notice that at every “missing” point
¥ € (C—U)(TF,), we have

(biggest break of < biggest break of
F(¢) at y — \Faty

(simply because I, acts on F through p, but on F(1) through % o p).
Therefore we have, by the Euler-Poincaré formula,

XU F,, F(9)) = x(V © F,, Q) dim(y) ~ Y

yE(C_U)(FH)

Swany(F (1))

with
0 < Swany (F ()} < dim(v)(biggest break of F(v) at y)
< dim()(biggest break of F at y).
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So in terms of
g = genus of C
N =#(C - U)(Fq) .
P, ..., N = the biggest breaks of F at the N points of C = U,

we have

N
ps21) e Fw)< (2e-2eN Y e ) dim(s),
whence

dim dim@)
g\(2g—2+N+Zri)—##é)"_“¥a;”So( pyp )

3.68.3 1 trace(P)dXn
/

We now explain briefly how to deduce from this estimate for Yo, Zn- Letb

us write s #U(Fqn) _ O(q”)
B, = #{u of deg=n}
Cy = ##{u of deg < n}.
Then
Ap = E rB,,
rin
and n/ deg{u)
AnXp —nBYn= . deg(u)5(8(u) )
deg(u)ln
deg{u)<n

is the sum of

E r B, é
Tin T""S[‘nlfz1
r<.n

Am =0 (%qn/z)

§ measures supported at points of K &, By compactness of K, forany k € K
the matrix ¥{k} has all eigenvalues of absolute value one, s0

| trace(¢(k))| < dim for all k£ € K. -
Therefore
An/trace(¢)an~an]trace(wﬁ)dYn

K Kt

= O(n dim()g"™?).
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Now both A4, and »
v nd B, are equal to g% + O(ng™/?), so dividing by nB, we

[ wecetpay,
o ) (858

qn/2
From this estimate for Y.’s we get an estimate for 2
n

, for we have
n

Zn = Z(Bk /Cn)n
k=1

=~ kB dim(y
50@7:&#)

k=1

J/trace(@b)dzn
‘ K
Now nC‘n 2 an — qn +O(ﬂq

for all n > 0, while for suitabl
Thus for n 0, we find

u trace(y)dZ,,) < o(i M) < O(fﬁ@m@)

™/2), s0 for some @ > 0 we have Cn > ag®
e B> 0 we trivially get By < pgk formall k.

k=1 aqnqk’lg aqn/2

< O(ﬁfl}_%_ HW)) B
qn/Z )
3.7. Remark. Let f be a continuous cen

. tral ; -
. Tepresentation-theoretic >l function on K, whose

“Fourier series”

f= Z a(y) trace(y)

¥ irred
has
df
F=" 37 Ja()i dim($) < oo.
W irred
Then our estimates show that, say for the Xn, we have
/fdm—/ffdxn <0 14
PA - qn/‘z '
K

For this reason, we will discuss LI in some detail.
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We will suppose that G = G® and that G° is non-trivial. Because G = G°
is connected, K is connected. Once we pick a maximal torus T' C K, we
may view f as a continuous function on 7' which is invariant under the
Weylgroup W = N(T)/T. One knows that “restriction to T is a bijection

(continuous central ) o~ (continuous W-inva.ria.nt)
function on X functions on T
Viewing f as a continuous function on T which happens to be W-invariant,
we may also write its “usual” Fourier series on 7'
= 0
réHom(T,5%)

Now given any continuous f on T, with Fourier series as above, let us define

dfn
£l =S s
r#£0

if T~ ($1), this is easily seen to be a Sobolev semi-norm of class CU/2)0+e,

We will express ||f||* as the ||g]; for a function g which is obtained from
f by applying to f a (rather fundamental) differential operator. To do this,
we wili apply the Weyl character and dimension formulas. Let us pick an
ordering in Hom(7T, 51) @ R, so that we can speak of the positive roois I,

4
At the possible expense of passing to a cennected double covering of K, we
may and will assume that p = %EaER+ o lies in Hom(T, $?). Let us also
pick a positive definite W-invariant scalar product {,) on Hom{7, ") @ R..
Then we have
{pay >0 foree Ry,

For each & € K, we denote by [}, the invariant derivation of T' character-

ized by
D, (t#) = (i—ﬁ%))tﬁ

for all # € Hom(T, S'). These D, mutually commute, and we define

DWey]: H Da,
oefty

an invariant differential operator on T of order #(R;). As customary, we
define
J{p){t) = E sgn{w)t? o,
weW
where sgn is the determinant of the homomorphism W — GL(I,Z) given
by the action of W on Hom(T, S') = Z'; this is the “denominator” of the
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Weyl character formula, that says that if ¢ is an irreducible representation
of K with highest weight X, then

T(p)(2). trace($)(t) = 37 san(uw)tlr+ew.
weWw
One verifies easily that for any g € Hbm(T, 51, and any w € W,

Dweyi (170} _ Diwey (1)
—per " = (sgn(w))—n-?r—.
This being the case, the Weyl dimension formula,
: pt A o)
dim(%} = =
wr= 11 =55

OIER+
may be rewritten
Dvieni(T(p) trace()) = dim(y) 3 tlp+dow,
T weEW
Therefore, if f = 3 a(y) trace(v), we have
Dwen(T (o)) = 3 _a(y)dim(y) 57 tle+iew,
¥ weW
where in the inner sum the ) is the highest weight of 1. Thus we find

[1Dwen(T(2) Al = #(W) 3~ la(w)] dim(w) = F(W)i| At
¢

In particular, we see that f - I71|" is given by a Sobolev seminorm on T
of class C*, with

k=1/2+¢e+#(Ry) < dimaG.
For example, if G = G® = SL(2), then K = SU(2) and T = 51 via

e 0
& :

The action of W = {41} on T'is § — + 8. The irreducible representations
of k are Symm™(std) for n = 0,1,2,..., and we have

dim{Symm™(std)) = n + 1
sinf(n + 1)6)
t Symm”(std))(§) = 2T 27
race(Symm™(std))(6) e
Thus the representation-theoretic Fourier series of f on Kt ig

o Z a(n)sin((n + 1)8)

sin 8
n>0

1

Equidistribution in Equal Characteristic

. . "
ile 1 ] i s even function on T', 1
while its “nalve” Fourier serles, a [

FroSbnyem (b(n) = b(—n))
= b(0) + 2 Z b(n) cos(nd).

nxl
The function J(p) is just 27sin(f), the differential operator Dwey 18
i . d
DWeyl = —'t'd_e‘;
and the previous discussion boils down to the identity

_ng_(m' sin(0)£(6)) = 2 Y _(n+ L)a(n} cos((n + 1)f).

n>0

45



CHAPTER 4

Gauss Sums and Kloosterman Sums:
Kloosterman Sheaves

4.0. Let p be a prime number, F, a finite field of characteristic p, o
(Fy,+) — Q{p)* a non-trivial additive character of ¥, and y : Fy —
Q{¢g-1)* a (possibly trivial) multiplicative character of FX. The gauss
sum g(v, x) € Q((p, Gg—1) is defined by

g{x) = Y (a)i(a).
aEFé‘
For X trivial, g(¥,1) = —1, while for non-trivial x we have |g(y, x)| = Nz
for any embedding Q(¢p, Cq—1) — C.

For a fixed choice of non-trivial 3, it is sometimes convenient to view the
gauss sum g(¥, x) as a function of x. This amounts to viewing x — g(4, x)
as the multiplicative Fourier transform of the function on F¥ defined by
@+ t¥{a). For any function fonF¥, say with values in an overfield F of

Q{{;—1), we define its multiplicative Fourier transform ftobe the E-valued
function on characters given by

FO= 3" Fa)x(a).
aCF ¥

The Fourier inversion formula,
1 s
fla) = Py > x(@)f(x),
X

allows us to recover f from i

Given two functions f,g on FX, their convolution J * ¢ is the function
on F¥ defined by

(Fxg)(a) = 3" F(2)a(y).
ri=a
The Fourter transform of the convolution 1s given by the product of the
transforms: (f x g)(x) = f(x)_c}(x). Summing this relation over v and
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dividing by ¢ — 1, we obtain
1 TR
(Frp)= — ; FO)a(0),

that is, . o
> H@ala™) = = 3 F0a00,

13 X .
If e — & is any automorphism of F which induces -complex conjugatl?n
on Q(¢s—1), then by applying the above equality with g replaced by its

“conjugate” function ¢*(a) = g(a—!), and noting that
7o) =Yg (@x(a) =Y glaxa) = _ gla)x(a) = (x),
a a a
we obtain the Parseval identity .
% q FENTToY

> fla)g(a) = ﬁzf(x)g(x)-

aEF.;‘ X
From this point of view, Kloosterman sums occur nafurally as the in-

verse Fourier transforms of monomials in gauss sums. More pre?issély, we
have the following table of functions f on F;‘ and of their multiplicative
Fourier transforms f, in which n is an integer > 1, x1,...,Xn are fixed

multiplicative characters of ¥, and by, ..., b, are strictly positive integers:

o), f0
1. (@) g{th, x)
2. z ’!,[)($1 ++33n,) g("p:)\f)n
all R
3. P(a)xi(a) i (¥, xx1)
ey, o Xn(Zy g(v, xx3)
4. xl.;=a¢($l + -t zn)xa(®) . xa(zs) 11
all x,—EF;‘
5. > p(@)xale) g(¥, X" x1)
.aﬁb;E:E?;

L)

1T otw, xbxa).

i=1

6. 3 et 4zl ()

by bn
#,t. . Et=a

all o;cF}
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(The odd-numbered lines are checked by applying the definition of f, the
even-numbered lines by observing that the function [ in question is an
n-fold convolution of the sort of function in the odd-numbered preceding

line.)

leenlb, n21; Xis---yXn, bl)"
we denote by

K% x1, -0y s By, 5 00)(Fy, a)
the sum

Z PO e)x1(z1) .. xnlwn).

by bn__
Tt a’

all oy EF"
Given a finite extension k of F,, and an element a € kX, we denote by
trace = traceyp, : k — F,
N = Normy /F, : k* — Fx

the trace and norm maps, and we denote by

KK X1,y xni b1yo o, Ba) (R, a)

the sum

2 (Trace(3 m ) (N(@1)) - xn(N(z)),

by bn .
Tzt =a

all w5 X
viewed as lying in the subring Z{values of ¢, xi’s} of Q({p, (y—1).

4.0.1. Scholium. For any finite extension & of FX, the multiplicative Fourier
transform of the function on k% defined by

a—= Kl x, .0, xa; by, )k, a)
i the function on the character group of k* defined by

n
X B H g1 o trace, Xb"(XiVO Ny).
i=1

4.1. The Existence Theorem for Kloosterman sheaves. Let phea
prime number, F, a finite field of characteristic p, E a finite extension of:
Q, ¥ (Fq,+) — E* a non-trivial additive character, n > 1 an intege
X1, Xn multiplicative characters Xi ¥} — E* and b1,..., by strictl
positive integers. Write each b; in the form by = bip"™i, with b prime to p

-, by as above, and an element a € F,
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-Let I be a prime number { # p, A an l-adic place of F, E, the A-adic
ompletion of F, O, the ring of integers in £, and F), the residue field of -

4.1.1. Theorem (cf. Deligne [De-3], Thm. 7.8). There exists o lisse sheaf of
free Ox-modules of finite rank on Gp, ® F,, denoted

K1(¢; X1y X bl: . "Jbﬂ)a
or stimply K1, with the following properties:
(1) K1 is lisse of rank 5" b}, and pure of weight n — 1.
(2) For any finite extension k of Fy, and any element a € k> = Gk},
' denoting by @ o geometric point lying over a and by Fy o the inverse
of the standard generator  — X#() of Gal(k/k) ~ m1(Spec(k), &),
we have the identity in Oy

trace(Fy ¢ | Kla) = (=" T KW X1, -, Xni bty -, B ) (K, a).

(3) Al oo, Kl is totally wild, and Swane (K1) = 1.
{4) 410, Kl is tame.

. Before discussing the proof of this theorem, let us deduce from it some

(1) The sheaves KI@F, and K'I?S)EA are absolutely irreducible as rep-
resentations of I,
representations of the larger groups »¥°™
T = Wl(Gm & Fq,ﬁ).

(2) Let F be a lisse sheaf of free Ox-modules of finite rank on G, @ Fy
whose local traces are given by (2). Then :

(o} There exists an isomorphism o : F = Kl as lisse Oy sheaves
on G @ By ie., as Ox[11{Gp, @ Fy), if]-modules.
(b) If G is any of the three groups

Wl(Gm ®F)ﬁ):

A fortiori, they are absolutely irreducible as

= TTl(Gm &® -F'g, 77) and

’ﬂ'j_(G'm ®FQ1ﬁ)r IOO
and B is any of the three rings
Ox, Ex, Fa,

Hompe(F @ R, KI®R) is o free R-module of rank 1 with basis o,
and Isompe)(F ® R, KI®R) consists precisely of the Rx—multzpfes
of .
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(3) Let F be a lisse sheaf of Fy-modules of rank <143 8, on G @ F,

whose local traces are given by (2)QF,. Then F is isomorphic {o

KI®F, as lisse Fy-sheafon G @ F,.

Proof. Assertion (1) results from the fact that Ki is totally wild at oo
with Swang, (K1) = 1, ¢f. 1.11. For (2), Cebataroff shows that F ® E’s
semisimplification as Ex[m1{Gnm @ Fy, 7)]-module is isomorphic to that of
KIQE,. As KI®QE), is absolutely irreducible, we may infer F @ E, 1is
itself absolutely irrecducible and isomorphic to KI1RE)y as lisse Ey-sheaf on
G, ® Fy. Therefore 7 @ E, is totally wild at co, and has Swan,, = 1.
By 1.10, 1t follows that first F and then F ® F, have the same behavior
at oo, In particular, F @ I, is absolutely irreducible as I, -representation.
To get an isomorphism o : F —+ Kl over @y, begin with one over F;
and multiply by a constant in E until it maps # to Kl and is non-zero
®@F; by the absolute irreducibility of F ® ¥y and KI®F,, it must be an

- Isomorphism ®F, because 1t 1s non-zero, whence an isomorphism over 0.

That (b) holds once we have o follows from all the absolute irreducibilities
in a straightforward way.

Assertion (3) is slightly more delicate, but similar. It suffices to show
that F® Fa and K1®F, are isomorphic (cf. [C-R], 29.7). Let us write the
F,[71]-semisimplification of F @ F)

(Fol)* =3 v

with integers n; > 1, and ¥} pairwise inequivalent finite-dimensional Fj-
representations of ;. Taking trace functions, we have (again by Cebataroff)

tracem@%‘"a = E n; tracey,;,

an identity of Fy-valued functions on m;. By the linear independence of
traces of irreducible representations over F, (cf. [C-R]) and the fact that
KI®F, has been proven irreducible, we infer that all but one of the n; is
divisible by {, that the remaining one, say n, satisfies n; = 1 mod I, and
that V3 has the same trace functions as KIQF ,, hence is isomorphic to it.

“Thus we find

. — some other representation
f 88 — .
(FOF) KIgky @ (repeated ! times )

From the hypothesis tk(F) < rk(Kl} + {, we infer that (F @ F»)* is
isormnorphic to KI®@F,; as the latter is irreducible, we find that F @ F, is
irreducible, and is isomorphic to it.
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41.3. Corollary (Duality). For given ¢, Xxi, bi, and Kl = Kl(%, xi, bi), et
us denote by Kl the “compler conjugate” Kloosterman sheaf

Kl=KI(¢, %5, .- X3 b1y o« oy )
Then there ezists an isomorphism of lisse Oy-sheaves on G @ Fy
Kl % Homg, (KL, 0x(1 —n)) = KI'(1 —n).
Proof. Because Kl is pure of weight n— 1, K1Y (1 — n) has the same local
traces as Kl. B

4.1.4. Corollary. Suppose that the pairs (b;,%;), i =1,...,n, are Just o per-
mutation of the pairs (bi, xi), 1 =1,...,m, and suppose that the character
TI7 xi of ¥5 satisfies (TTx:){(=1) = 1 (this last condition always holds if
we replace Fy by its quadratic extension). Then
(1) If (—l)zb‘ = 1 in By, there czisls an isomorphism of lisse Oi-
sheaves on G, @ Fy
KIS Kl
(2) If (——l)zb" = —1 and —1 # 1 in ¥, then there ezists an tsomor-
phism of lisse Ox-sheaves on G @ F,

[t — —1]*(K1) = KL

Proof. In both cases one verifies easily that both sides have the same local
traces. §

We will now examine the consequences of the last two corollaries on the
possible autoduality of Kloosterman sheaves.

4.1.5. Proposition For any Kloosterman sheaf Ki, and any { € FF with
¢ # 1, the sheaves Kl and

Transh (K1) 2 [t = (1*(K1)

are not isamorphic. More precisely, for B any of the_rings Oy, ExFa, and
for G any of the groips m{Gm @ Fy, M), m(Gm @ Fq,7), Joo, we have

Hompey(Trans}(K1®R), KI®R) = 0.

Proof, Clearly it suffices to prove this with the smallest G, namely I,
and with R = Ej or Fi. This is a special case of part (3} of the following
applied to the completion at co of the function field of Gy ® T,, and tc
F=KI&R B
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4.1.6, Propasition. Let k be an algebraically closed field of characteristic
p >0, K the field k((z)) of Laurent series in one varighle over k, I =
Gall(KSEP/K). Let 1 be a prime | # p, Ey a finite extension of Qu, ih its
residue field. For R =T or Ey, let F be q lisse R-sheaf of finite rank on
Spec{K), viewed as finite-dimensional R-representation of I. For o € kX
denote by Trans, Spec{K) — Spec(K) the spec of the continuous k—linca?’"
automorphism of K = k((z)) given by z — . Then |
(1) If there exists an isomorphism of R[I}-modules Trans}(F) ~ F with
o not a root of unity, then F is tame.
(2) If F is absolutely irreducible ds R-linear representation of I, and if
C € kX is a root of unity for which there exists an isomorphism of
R[I]-modules Transp(F) — F, then denoting by N > 1 the ezact

order of the root of unity ¢, we have the congruence Swan(F) = 0
mod N.

(3) In particular, if F is totally wild and Swan(F) = 1, then
| Hompr)(Trans},(F), 7) = 0
forany o £ 1 in k%,

Proof. Assertion (1) is an extremely useful result of Verdier ([Ver], Prop
11}, Assertion (3) is a special case of {2). To prove assertion (’2) Wé
ob‘serve that because F is absolutely irreducible, the “theta group” ,G of
pairs (¢, A¢) with ¢ € pp{k) and A¢ € Isompn(Transt(F), F) sits in a
central extension ‘ e

1o B s G — gy (k) — 1.

At the expense of extending the field R by adjcining the N'th root of gV

for‘ some g € G whose image in py(k) is a generator, we may split this
extension. But such a splitting is just a descent of F through the finite
ctale gep (k)-covering

Spec(k((z)))

[N]l)l‘w(k)
Spec(k((z™))).
Writing 7 ~ [N]*G for some lisse G on Spec{k((z¥
_ pec{k({(z , we have § =
N Swan(F) (cf 1.13 (1)). g ) o)
4.1.7. Corollary, Suppose that the pairs (by, %), i=1,...,n, are a permu-

tation of the pairs (b, x;), 1= 1,.. n, end that (—1)2""' #lin P,
s
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Then for R any of the rings Oy, Fa, Fa, any R-bilinear [ -equivariant pair-
ing (,) 1 KI®R x KI@R — R(1 —n), with I, acting trivielly on R{1 —n),
vanishes.

Proof. Such a pairing is just an element of

Homp(K1@R, K1Y (1 — n) ® R) ~ Homgn{KI®R, KI® R)
~ Homp(Trans® ; (KI® R),KI® R)
=0. B

4.1.8. Remark. Here is an elementary argument to prove that for any

Kloosterman sheaf KI, any ¢ # 1 in F¥, and R any of the rings O», £, F3,

the sheaves KI@ R and Transi{K1®@R) are not isomorphic: they don’t even

have the same local traces at all rational points ¢ € F¥ = Gu(F)t To
prove this it suffices to treat the case F {because the traces in question”
begin life in ©,). We may extend scalars to assume that Fj contains all
the g 1’st roots of unity. Let us denote by f : F;' — Fy the trace function
oA KI@F: ,

f(a) = trace(F,| Klz) mod A.

Then the trace function g of Transt(K1®F,} is related to f by

g(a) = f(Ca).
Passing to multiplicative Fourier transforms, we find that for every charac-
ter x : F¥ — FY, we have

ixy = x(aygla) = > x(a)f(¢a) = T(OFO0.

But f(x) 18 a unit in F), because it is the reduction mod A of a product
of gauss sums for F,, each of which is an algebraic integer which divides g.
Therefore, if f = g, we find f(x) = ‘;E(C)f(x), whence ¥({) = 1 for every
characrter v, whence ¢ = 1.

4.1.9. Lemma. Let K1(¥; x1,. ..
on Gr@F,;. Forf € FY, denote by ¢ the additive character x v o(€z) of
F,, and let r denote the cxact order of the (g —1)-st root of unily ([] x:)(£).
Then the Ox-sheaves Kl(vpg; X1, ..oy Xnj b1, ..., bn) and .

(Transess, )" (KI5 X1, .oy Xny b1, -0+ ba))
on Gm @ Fy become Ox-isomeorphic when pulled back to G @ Fyr.
Proof. Both have the same Jocal traces when pulled back to G, @ Fyr. B

X By o0 b)) bean O, -Kloosterman sheaff§
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4.1.10. Corollary. Notations as in the above lemma, suppose that (;”Zb‘ # 1.
Then for B any of the rings B, Oy, Fy, and & any of the groups 71 (G ®
Fom, m(Gn® Fq,ﬁ), L, we hove

Hompey(Kl(ve; x's,b's) @ R, KL(1; x's, b's) © R) = 0.

Proof. For fixed R, it suffices to prove this in the hardest case G = I,
which we obtain by combining the above lemma with Proposition 4.1.5. g

We now turn to_the autodual Kloosterman sheaves.

4.1.11. Corollary. Suppose that the pairs (bi,X;), i = 1,...,n, are a per-
mutation of the pairs (b;, Xi), i=1,...,n, that (ITx:}(—1) =1, and that

(-1)2-%=1 @ F,

Then there exists a perfect autoduality pairing of lisse sheaves of free O~
modules of finite rank on G, ® F,,

() KIx Kl — O5(1— n).
For K any of the rings Oy, E,, Fy, and G any of the groups

Wl(Gm@’Fq;ﬁ): Wl(Gm®FQaﬁ): IOO:

any G-equivariant R-bilinear pairing
() (KI®R) x (KI®R — R(1—n)
is an R-multiple of {YoR

Proof. We have KIY(1 — n) ~ KI = K, whence such a pairing is just an

element of Hompe(KI®R, KI®R), and we apply part (2) of the rigidity
Corollary 4.1.2. g

4.2. Signs. By the uniqueness up to a scalar of the above autoduality pa,ir-
ing on Kl, it is either symmetric or it is anti-symmetric {for if we denocte
the pairing {z,y), then (y, z) is another one, so an O -multiple of it, say
{(v,z) = e(z,v), whence ¢ = 1 in Ox, le. ¢ = £1). Although our ulti-
mate consiruction of the Kloosterman sheaves by cohomological methods
will make transparent in principle what the sign is, we will give here an
arithmetic determination of the sign, due to Ekedahl, which works in fair
generality. (We do not know how to treat the most general case by this
method.) We first, explain the idea behind the method (compare [Ka-6]).
Suppose we are given a lisse £y -sheal F on a smooth geometrically con-
nected curve ¢ over F,, which is pure of some weight  — 1, and which is
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absolutely irreducible as a representation of 7§°™ = = (C ® Fy, 7). Sup-
pose further that we are given a perfect pairing of lisse Ey-sheaves on C,

L.e. equivariant for m (C, 7),
LY: FxF— Exl—n).

As above, it is either symmetric or anti-symmetric, and it is the unique (up
to an Ey-factor} m(C' & f‘_q, fij)-invariant morphism
(F@F)n—-1)— Lk,

or, equivalently, it is the unique (up to an Ej-factor) ciinvam'am of 7;§;m
on (F®F)(n—1). In view of the description of HZ(C®F,, G) as the r§*"-
coinvariants of G(—1), for any lisse G on €, we see that HI(CoF,, FRF)(n)
is a one-dimensional E-space with basis our pairing {,}, and that F €
Gal(F,/F ) operator trivially on this space. By means of the decomposition

F@ F = AYF) @ Symm?(F),
we see that if the pairing is symmetric, then H2(C ® F},A%J—"))(-n).: 0,
HXC®F,,Symm*(F))(n) is one-dimensional, and F acts as 1, while if the
pairing is alternating, the situation is reversed. '

We now use the fact that F is pure of weight n — 1. Then _Az(.?:) and
Symm?(F) are pure of weight 2n — 2, and it follows frgm Deligne [De-5]
that, for ¢ < 1, the two cohomology groups Hi(C @ Fy, A*(F))(n) and
Hi(C @ Fy, Symm®(F))(n) are mixed of weight < —1.

Therefore, for a suitable constant, we have for every integer r > 1:

S (~1) trace(FT|HI(C © Fy, Symm*(F))(n))
% = 3 (=D trace(FT|HHC @ Fy, A2(F))(n))

1+ O(1//¢7)  if the pairing is symmetric
- { -1+ O(1/./q") if the pairing is alternating.
Now using the Lefschetz trace formula, and simplifying each local term
by the linear algebra identity
trace( A*) = trace(Symm?®(A)) — trace(AZ(A)),
we find that for r > 1, we have

1 Z trace(FﬂFg) =+ O{1//q7),

4 a€C{Fgr)

where ¢ = £1 is the sign of the pairing.
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4.2.1. Proposition (Ekedahl). Suppose that we have xXi=1fori=1,.. n
that ([T x:)(=1) = 1, and that ’
(-DZ¥ =1 T,

Then the sign of the pairing

{,): KIx Kl — O, (1 - n).
18 given by
€ = (%l)ﬂ—l-}'ﬁ
where § is the number of indices Jor which x? =1 but v; # 1.
Proof. We will apply the method explained above. Fora € FX, we have
(42.1.1)  trace(F2| Kly) = (=1 K5 X1, .., Xn be, -0 b ) (Fga,a)

by property (2) of the Kloosterman sheaves. Fxpll(:ltly, this is

(4.2.1.2) trace(F2|Klg) = (—1)7~1 > w(trace(d_ 2:)) [] x:(N(z))
Hm?‘:a

Ti€F 3

where trace and norm are relative to the quadratic extension F . /F,. Sum-
ming over all ¢ € FX, we obtain e
(4.2.1.3)

(07t 0 w(FKE) = 3
aEF;‘ zl,...,a:,.Esz
g
with [T ebier X

= Z (trace(z Q?1))HX1I(N(-'U:')):

y,.. ,anF
H:L.b:(q 1) =1

which is itself a Kloosterman sum over Fyz, namely

ditrace(S" 22)) [T x(N(zo)

(4.2.1.4) Xl o trace, xq oN,...,xnoN'bl(le),... bu(g — 1))(F ‘1)
» ¥ q": -

By inverse multiplicative Fourier transform on FX 42> this is equal to the sum

1 L)
(4.2.1.5) P > H

a(% o trace, (X: o N)pbila- 1))
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We next turn to the individual gauss sums. It is in analyzing these that
the hypothesis x7 = 1 will enter. For fixed ¢ and fixed p, we have

(4.2.1.6)  g(t o trace, (xi o N)phile=1)
7 Z pitrace(e))xi(z) e (277)
:J:EF;’(2
If we take y € X, then y*~! = 1 and y?*1 = y?, sa that if we replace »
by zy (y fixed in F¥) in the summation, this same sum is equal to (using
b -
(4.2.1.7) S 4l trace(x))xs(et)pi(217h).
zGFqg
Averaging over y € FX, and f-glsi-ng the orthogonality relation for ¢ in the
form

1 if trace(x) =0

(4.2.1.8) T—1 E Py trace(x)) = q;—I_l if trace(z) # 0,

yeFx

our sum becomes
o 1 g
(4219) 3 x@ETMET) - g T e
.'r:e}?;‘,2 xEF:E
trace(z)=0 i trace{x)#0
which we reassemble as-

(4.2.1.10) L > ”**“‘2

g E trace=0 all w

The elements ¢ € F;‘n of trace zero are the non-zero solutions of 29 +z =
0, i.e., they are the solutions of ¢! = —1. If we fix one solution z¢ € F;‘, of
trace(zg) = 0, any other solution is an FY-multiple, so again using x2=1
we find
(1211) Lo 3T et = an(efte (1),

1 a:EFX2
q
trace{s}=0
Now the second term is given explicitly by

(4.2.1.12)
if (x; 0 N)phile=1) £ 1

-1 . 0
- . wQ‘l‘l pbl it 1 = { . .
q—l = X‘b( ) ( ) —(q—i—l) 1f{Xi O‘N)pbs(?—l):l,
z€F 7
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whence we find
(4.2.1.13)

g+1y b, : ilg—
g(thotrace, (yioN)ph(i=1)) = { gxi(2§" )PP (=1) if (xi o N)ghila-1) £
-1 if (xs o N)pbile=1) = 1,
For fixed 7 and yx;, the number of characters ¢ for which pbele—1) —

(xite IN) is certainly bounded by b; i{g — 1}, so the number of p for wh1ch

this happens for at least one ¢ = 1,2,...,n is bounded by (¢ —1)5 b
Thus we find that

1
{4.2.1.14) qz_—f Z [Hg(u} o trace, (x; o N)pbi(q—l))

charsp i
X
of Fq2

- T oxsta8y 1)

Las absolute value bounded by

1
For fixed p, the second product is equal to

n

1:[1( xi(@f e (=1)) = (] xad@d e ((~ 12*’)
.%q HX: q+l’

independent of p, whence we find, substituting via 4.2.1.5,

(=11 Z tr(F2 Kla) — ¢* ([T x:) (28] < (3o ba)g"

aEF; h g + 1

(4.2.1.15)

We next claim that (J] x; O(eft) = (- 1)%, where 6 is the number of ¢
for which y;, assumed to be of order 1 or 2, has exact order 2. If § is even,
then ] x; is the trivial character, so there is nothing to prove. If § is odd,
then the characteristic p must be odd, and I x: is the quadratic character
of . The hypothesis (][] Xi)(—1) = 1 means that —1 is a square in FX,

The va.lue of (I xi)(=} I) is the umque choice of +1 in Z whose image in

F¥ is equal to (:cg“) = (2§~ ) = (— 1) 7. Because —1 is a square

in Py, we have (~1)"7 = 1, whence (-1)** = _1 = (=1)%, as required.
We thus find, upon d1v1dmg the above inequality by ¢", an estimate

- 5 w(F2KL) - (—1)r-1+8] < 2200

« GEGm(Fy) g+1

Gauss Sums and Kloosterman Sums:Kloosterman Sheaves 59

Replacing ¥, by ¥, where r { oo, we find that e = (—1)"" 11, g

4.3. The Existence Theorem for n = 1, via the sheaves £, and
L. Let Fy be a finite field, and G a smooth commutative group-scheme
over F, with geometrically connected fibzes. Denoting by F' : G — G the
Frobenius endomorphism of G relative to F, (for any Fg-algebra 2, I is
the group endomorphism of G{ R} “raise all coordinates to the g-th power”).
The Lang isogeny 1 — F : ¢ — G is an F;-endomorphism of group-schemes,
which sits in a short exact sequence (as abelian etale sheaves on (Sch/F,))

. 0 — G(F,)) — G =5 G — 0.
For any ring A4, and any homomorphism of abstract groups
p:G(F,) — A%,
we obtain by “push out” a short exact sequence
0 A* = E, = G — 0,

whose middie term E, is thus an etale A*-torsor over G. The associated
locally constant sheaf of free A-modules of rank one on G is denoted £,.

-{Note for the specialist: because we have taken 1 — F rather than F — 1 as

the Lang isogeny, the usual need to replace p by its inverse in the pushout
defining £, is avoided.) The basic properties of £, are the following (cf. [De-
3). o
(1) For k any finite extension of ¥y, a € G(k) any k-valued point of
G, and a any geometric point of & lying over a, the inverse F, ;. of
‘the standard generator z - £#(¥) of Gal(k/k) = m1(Spec(k), a) acts
A-linearly on the free rank one A-module (£,)z with

tTace( a kl( P)ﬁ) = p(tra’cek/Fq(a))’

where the inner “trace” is in the sense of the group G.
(2) For k any finite extension of Fy, denote by « : G ® k — G the

canonical projection, and by p o trace the homomorphism

(G @ B)(k) = G(k) —T (B,
\Ax.

We have a canonical isomorphism of sheaves of A-modules on G @ k%

K2 (L ) potrace
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3) Under the “sum” map GxG — GJ we have a cancnical isomorphism
P
of sheaves of A-modules on G x &

sum™ (L, ) = pri(L,) % pra{L,).

We will make particular use of this theory in the twocases G = G, = Al
and G = Gy,. To distinguish them we will always use the notation £y in
the G, case, and L, in the G, case,

Let A be complete noetherian local ring with finite residue field Fj of
characteristic I # p, or a finite extension E; of Q1 with I # p. One sees
easily that

(1) If ¢ : (Fy,4) — AX is a non-trivial additive character, then Ly

is a lisse sheaf of free rank-one A-modules on Al @ F,, satisfying
Swaleo(Ly) = 1. (Reduce to A = F,, and calculate using lower
numbering.)

(2) H x:FX — A* is any multiplicative character, then £, is a lisse

sheaf of free rank-one A-modules on Gm@F,, which is tame at both
0 and oo. (Indeed for G, 1 — F: G,, — G, is an FX-torsor, and
FY has order prime to p.)

With these preliminaries out of the way, the construction of Kloosterman
sheaves with n = 1 is absolutely trivial. We have

K}(’d), X b) it [b]*(£¢ ® Lx):

where [b] denotes the endomorphism z — #° of G,,, and where Ly ® L,
means the lisse sheaf on G, obtained by tensoring L, with the restriction
to Gm of £¢.

Let us check that this construction has all the required properties. First,

Ly ® Ly is lisse of rank one and pure of weight zero on G, tame at 0 and
with break one at oo. Writing b = bp" with b’ prime to p, we have

B = B[ = [
Because (£}, is an equivalence with quasi-inverse (F")*, we have
(F™ )Ly @ Ly) = Lys @ Ly

where ¢ and x’ are the unique additive and multiplicative characters of
F, salisfying

¥ (aP"} = ¢(a) fora€F,
¥ (@) = x(a) forae Fx.
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Thus we have

B1.(Ly © £,) = [ Ly @ L),
Becauge b 1s prime to p, the map [b7] is finite etale of degree b, tame and
fully ramified at both 0 and co. Therefore [b'],(Lyr ® L) is lisse of rank
b, pure of weight zero, tame at zero, and with all its breaks at oo equal to
1/¥. That it has the correct local traces is obvious.

The trace functions on G{F,) = FX of n-variable Kloosterman sheaves
are simply n-fold convelutionsof the trace functions of Kloosterman sheaves
for n = 1. In the next chapter, we will show that the natural notion of
convolution of sheaves on G @F, permits us to construct the Kloosterman
sheaves for general n by successively convolving those constructed above for
n=1.
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Convolution of Sheaves on Gy,

5.0. Let k be a perfect field of characteristic p > 0, [ a prime number ! # p,
and A an “l-adic coefficient ring,” i.e., a complete noetherian local ring
with finite residue field F;, of residue characteristic [, or a finite extension
E, of Q;. Dencte by 7 : (G ® k) >k< (G @ k) = Gm @ k the group
operation 7(z,y) = zy. For F,g lisse sheaves of finitely generated A-
modules on G, @k, denote by F B G the lisse sheaf pri(F) ®4 pri(G) on
(G ®k) X (G @ k). Finally, denote by C = C4 ; the category of all lisse

sheaves of free A-modules of finite rank on G, ® k which are both tame at
zero and totally wild at infinity.

5.0.1. Lemma.

(1) For F in C, dits A-linear dual F¥ = Hom{F, A} lies in C, and
Swanee (F) = Swane {FY) (in fact, F and TV kave the same breaks
with the same mulliplicitics).

(2) For F in C, and £ a lisse sheaf of free A-modules of finile rank on
G @ k which is tame at both 0 and oo, F ®4 L Hes in C, and
Swang (F ® L} = Swane (F) rank(L).

(3) For F € C, the cohomology groups Hi(Gp @ k, F) and H (G ®
k,F) vanish for i # 1. Fori =1, cach is a free A-module of rank
Swane, (F), whose formation, for variable F in C, is ezact.

(4) For A — A’ a homomorphism of rings of the type considered (i.e.,

either £y or complete noetherian local with finite residue field Fy of
characteristic | # p), the extension of scalars functor F— F @, A’

is an ezact functor Cqp — Carp, and we have cenonicel isomor-
phisms '

H (Gn®k, F) §A’ 5 HN G ® E,}”%A’),

TG &k, F) 3 A S HHG, @k Fo A",
A
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(5) For any integer N > 1, denote by [N]: Gm — G the N-th power
map ¢+ o™, The constructions F = [N](F) and F INT*(F)
are exact functors carrying C to C.

(6) Fora € k* = G(k), denote by Transs : Gm®k - G, ®k
the “translation by a” map z — az. Then the constructions F =
{(Transs )« (F) and F > (Transq)* (F) are quasi-inverse equivalences
of categories C — C.

Proof. This is just “mise pour memoire,” cf. 1.5, 1.3, 2.1.1,23.3, 113. §

5.1. Convolution Theorem. For F,G objects in C, we have
(1) RPm(FHEG) =0 fori# 1, and R'm(F B G) lies in C; we den.ote
it F+G. Formation of F + G is bi-ezact. For any homomorphism
A — A’ ofl-adic coefficient rings, we have o canonicel isomorphism

(T@AA')*(Q®AA’):a-(f*g)@AA'.

(2) The formation of Rr (FRG) commutes wilth passage fo fibres, and
the natural “forget supports” map Rm(FR G) — Rr (FRG) is an
isomorphism, - o

(3) The A-linear duals 7Y = Hom,(F, A) and G¥ = Hom, (G, 4) lic in
C, and the pairing

(FxG) x (FY+G¥) — A(~1)
defined by cup product
Rim(FRG) x R'm(FYRGY)
lcup
Rom(FEG)® (7Y BEY))
lcontraction
RZ’JU(A)
lltmce
A(-1)
is a perfect duality of lisse sheaves of free A-modules of finite rank

on G ® k.
(4) The rank of F + G is given by

rank(F * G) = rank(F) Swane(9) + rank(G) Swanq, (F).
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(3)

(6)

(M)

(8)
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The Swane, of F* G is given by
Swane (F * §) = Swane (F) Swane, (G).

The Hé and H' on G, ®%k of F, G, and F* G sit in a commutaiive
diagram
Hé(’f* G);:’Hg(f) ®4 H(G)

lforget supports
HYF 4 §) "L HYF) @4 H'(G).
(Remember that by 5.0.1(3) we have Hi = H* =0 fori# 1.}

Ifk is a finite field By, if A= E) or Oy, and if F and G ore pure,
of weights w(F) and w(G) respectively, then F % G is pure, of weight

w(F*G) =1+ wF)+wG).
Ifk is a finste field F,, denote by tracer : Fy-—A the function

forget supports 1

traceria) = trace(F,|Fz).
Then the trace functions of F,G and F %= G are related by

tracez.g = —{tracer) * (traceg).

CAfx EY — AX s any multiplicative character, then the multiplica-

(10)

(11)

tive Fourier transform of tracer at x 15 given by
traces(x) = — trace(F|HN G @ F,, 7oLy

If k contains the finite field ¥y, and if x : F¥ — AX is a multiplica-
tive character, then denoting by L, the inverse image on G, @k of
the sheaf Ly on G @F, (cf 4.8) we have a canonical isomorphism

(FRL)*(G® Ly) = (FxG)® Ly,
For any integer N > 1, denoting by (N} . Go ® k — G ®@ k the
N-th power map X v~ XN we have a canonical isomorphism

(INJ((F)) + ([V1.(9)) = [NI(F * G).
For any element a € k* = Gun(k), denote by Trans, : G, @ %k —
G @k the “iranslation by a” map = ax. Then we have canonical
isemorphisms, for a, b € kX,
([Transg]s(F}) = ({Trans; |« (G)) — [Transg]«(F * G),
([Trans,]*(F}) = ([Trans,]*(G)) = [Transa ) (F * §).
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(12) For any integer N < 1, there is ¢ canonical injection
INTHF * §) — [N]'(F) « [N]*(9),

with A-flat cokernel.

5.2, Proof of the convolution theorem and variations. For technical
convenience, we introduce three auxiliary categories of sheaves on G, @ k:

_ lisse sheaves of free A-modules of finite type on G, ® &k which are

T= tame at zero

T — lisse sheaves of (not-necessarily free) A-modules of finite type on
T G ® k which are tame at zero

¢ = lisse sheaves of (not necessarily free} A-modules of finite type on

T Gy, ® k which are tame at zero and totally wild at infinity.

5.2.1. Proposition. For F € T and G € Ty, we have

(1) Rim(FRG)=0 fori#1,2.

(2) the sheaves Rim{F & G) are lisse on G, @ k, and their formation
commutes with passage fo fibres.

(3) the sheaves Rim{F R G) le in 71, i.e., they are tame at 0.

(4) Rin(FRG) =0 fori#0,1.

(5) the sheaves Rim(F ® G) are lisse on G @ k, and their formalion
commutes with passage to fibres.

(6) the sheaves Rim(F R G) lie in Ty, i.e., they are tame at zero.

Proof. The case A = E results from the case A = O, {every lisse £5-sheaf
has an @-form). The case of noetherian local 4 with finite residue field F,
results from the case A = finite local with residue field ¥5 by a standard
passage to the limit argument.

For fixed F in 7, the functor ¢ +— F & G is exact, so the long exact
cohomology sequences for the Rim and the Rim,, before and after base

" change, allow us to reduce to the case when § is an ¥ y-sheaf. For such

G’s, F acts through F @ 4 Fj, so we are reduced to the case A = F,.
Thus let F,G be two lisse Fy-sheaves on G, ® k, both tame at zero.

The morphism 7 : Gy X Gy — G, 7(2,y) = 2y, may be viewed in

new coordinates (x,t = zy) as the projection onto the second factor of
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Gm X Gm)

FBG: G X G G X G : 75 © Gy
{2y (z,zy)

"(‘ny)-_-h )/prs(:ﬂ,t):t
Gm

Viewed in this way, it is natural to compactify pr, by embedding the G,,
of z’s into the P! of z’s:

fx@gf/r ‘G XGm LL}PI x Gm:j!(:pw@gt/a:)

Gm

The sheaf ji(Fp @ Gijz) on P! x G, is lisse outside the two sections
0 x gm and oo x G, of PTs, and along these it vanishes, By Deligne’s semi-
continuity theorem (cf. [Lau-1]), the necessary and sufficient condition that
all the sheaves Ra(FRG) o R(p%, )4 (4 (Fe ® Gt/e)) be lisse on G, @ k

is that the function on variable i i
geometric points #5 : Spec( G
defined by 1Sl ~ Gk

to = Swang(F, ® Giofe) + Swalle {Fp @ Ciofs)

be constant. In our situation, the sheaves # and G are both tame at 0, so
?

by m.version (both F,/; and) Uiojw are tame at oo, so we find that this
function is equal to

rank(F) Swano(gtofm) + Swang, (F) rank{g).

But as  ++ ty/2 is an automorphism of G,, ® Q which j_nterchangés 0 and
0o, we have

Swang(Gi,/,) = Swane, (2),

whence we see that we have the required constancy. Therefore the
R'r(F ®G) are all lisse sheaves on Gm @ k. By proper base-change
formation of the R? m{F B G) commutes with passage to fibres. Lo :
fibres, we see Rin(FR G)=0fori#1,2,

By F-Poincars duality applied to the smooth morphism 7 and the lisse
sheal 7RG, of. ([De-4], 2.1), the lissité of all the Rim(F R G) guarantees
that after any base change the sheaves Rir ({FV & QV’

oking at

) are also lisse, and
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that the cup-product pairings

R'm(FRIG) x R (FYRGY) — R*m(Fx) = Fa(-1)

" are perfect pairings of lisse ¥'x-sheaves. Inverting the roles of F and ¥, §

and GY, we see that the Riz. (F ® &) are lisse on G, ® k, of formation
compatible with passage to fibres, and that Riz.(F ® G) vanishes for i #

0,1

It remains to show that the Rim({F ® Gy and the Rim.(F K G) are tame
at zero. By Fy-Poincaré duality, it suffices to treat the Ris. We first
reduce to the case when both F and G are lisse at zero. By hypothesis
there exists an integer N > 1 prime to p such that under the N’th power
map (N1 : Gmn ®k — G, @ k, both [N]*(F) and [N]*(G) extend to lisse

. Fy-sheaves on Al, Extending the field k£, we may assume that k contains

N distinct N'th roots of unity. To show that the R"W!(TE G) are tame at

" gero, it is sufficient to show that the [N]*(Rim(F B G)) are tame at zero,
_ for some N > 1. But these are related to the R'm([N]*(F) W [NP(G)) by

the foliowing lemma.

5.2.1.1. Lemma. Let N > 1 be an integer prime {o p, and suppose that k
contains N distinct N-1h roots of unity. Then for F € T and G € Ti, we |
; : j

have a spectral sequence of lisse sheaves on G, @ k [
: |

E3" = Ho(uy(k), R'm(IN]*(F) B [N](9))
= B = [N](R* P (FRG)), |
whick yields a canonical isomorphism .
[N](R'm(F R G)) = Byt = (R'm(INT'(F) R [NTH(9))™
and o four-lerm ezact sequence

0— B} — [N'(R2r(FRQ)) - E3* 4 2 0.

Proof Because [N]is a group-endomorphism, the diagram

- [NIxIN]
G X Gy ——— G, x G

]
m A E— Gm
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"i;-._eiy analogous to 5.2.1.1, the vanishing of Kim, for 1 # 0,1
=0forb#£0,1,and EX* =0fora+b#0,1. B

jbectral sequence of 5.2.1.1, we verify that if all the sheaves
F) R [N1*(G)) are tame at zero, the same is true of all the
r (), whence of all the Rim(f K &)). So to complete the
proposition, we need only treat the case when F and § are

1s commutative, so we can factor its upper right corner through the
product: [N] x [N]

8
Xy =+——G X G

Gm x G,

T cartesian TN d
heaves on all of AL

roposition. Suppose that F and G extend o lisse ) (resp. Iy )-
Al @ k. Then the action of Iy on Rim(F R G) is al most
nipotent for i =1, and it is trivial fori = 2.

(V]
Gm+—rou" G,

Becaus.,e the morphism {N]: G,, ® k — G @k is a finite etale Ay
torseur, it follows that o and 2 are each finite etale gy (k)-torseurs,

etale base change, we have sider the coordinates (1/2,1 = zy) on Gm % Gp. In terms of

[N]*(Ri (FRG) = RiﬂN(a*(f % g)). ave a commutative diagram

Temporarily writing K = o* (FRG) on Xu, we have :
FE) = o (FRG) = (IN]x IN)(FRG) ~ [N]*(F) R [N]'(6)

Because 3 is a finite etale pn{k)-torseur, we have, for any sheaf K o ..
a spectral sequence of sheaves on G @k, .‘

—_———

(=)~ (1fz,zy)

EFEG:Gm'x Gm Gm X Gt Fije ® G

ro{z, )=t

‘by F and G now the unique lisse sheaves on Al which extend
Gy, we can embed the right half of this diagram in a cartesian

By® = Iy (k), Rom(8* K)) = R¥M(rx)(K).

For K = o*(F & G), this spectral sequence reads (@01

G X Gy ——— G X AL F )y X Gig

przl Lprz

HE (o (), Bom([NT(F) RINT(#)) = V] (P m(F B g
By the vanishing of the Rir for i # 1,2, we see that E$ =0 for b4

-
and ES® = 0 for a + b # 1,2, whence the asserted isomorphism and
terim exact sequence, § .

E*

2

5.2.1.2. Variant Lemma. Hypotheses and notations being as in the prece
lemmae, we have a spectral sequence of lisse sheaves on G, @ k :

By = Ho(p, (k), Ron, ([N]*(F) R [N] + (9)) t | .
| nf_‘.a:’s A

= B = [N](R*+r, (F R Q) ‘ - i
o0 .7:1/1;®®m~ on GmXAl,

extended by zerc across

which yields o canonical isomorphism

INF(r (FRG) = (. (IN]"(7) & [N]())) "~ )

{00} x Al and across

{0} x AL,

and a four-term ezact sequence

t=10 Al ol t’s

0— By — (NI (R'm(FRG)) — B 8 g20 g

]
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The sheaf Gip is lisse on all of A x A'; in particular it is lisse in
a neighborhood of {0} x A, Therefore the Swan; of Fije ® Gig for
any geometric point t of Al is constant, equal to rank(G) Swang(Fy;,) =
rank(G) Swang, (F), and the morphism pT, : P1 x A? — Al is consequently
universally locally acyclic for the sheaf “F,;; ® Gy, extended by 0,” except
possibly along the section {oc} x Al. But Fiy, is lisse in a neighborhood
of {oo} x A%, so the Swang, of Fi;; @ G, for { a geometric point of Al
is equal to rank(F) Swane, (Gir). This Swane, is therefore constant for
t # 0 (because z — tz is an attomorphism of G, fixing 0 and oo, whence
Swane,(G:z) = Swang, (G)). Therefore the morphism 57, : P1x Al — Alis
universally locally acyclic for the sheaf “F) /. ® Gir extended by 0,” except
possibly at the single point {2 = co,t = 0). As explained in ([K-M]}, XIV),
the only possibly non-vanishing group of vanishing cycles is the R1¢(m,0),
and it sits in a five term Dy-equivariant exact sequence comparing the stalk
of R§f; at 0 to its geometric generic stalk at

0BG ® F, Fiyo ®Ga) — H(Gon & h(1), Fi 1o ® Grs) —
- Rl‘;b(oo,(})(}—l/z ® Gio extended by G, pr,) —
—+H5(Gm®fz‘,}~1/a;®ga) —+H2(Gm®k(ﬁ))}‘1/m®gnx)_,gl

In this exact sequence, Iy acts trivially on the first and fourth terms (the '

cohomology of the special fibre). Thus it suffices to show that Iy also acts
at worst two-step unipotently on the third term R'¢. Because of the fact
that 7/, is lisse near ¢ = oo, we have an isomorphism

R (00,0)(Fiss ® Gro, PTa) & Fo © B (c0,0)(Gte: PTy).

Now it remainus to analyze the action of Iy on R'¢e, 0)(Gia, PFy). This
group sits the same vanishing cycle exact sequence as above, but now with
F replaced by the constant sheaf:

0 — Hé(Gm o} E‘, go) — H(}(Gm & k(ﬁ), gUx) —_* Rlé(oﬁ,o}(gt!ﬂ: pTZ) -
— HH(Gm ®k,Go) — HA(Gp @ k(7), Fyz) — 0.

In view of this Dg-equivariant exact sequence, in which 7y acts trivially
on: the first and fourth terms, 1t suffices to show that Iy acts trivially on
HYGm ® k(7),Gh5). In fact, the entire m3(G,, ® k,7) acts trivially, as
follows from the following standard lemma, applied to S = Spec(k), X =
G = G, ® k, ¢ acting itself by translations.

5.2.1.4. Lemma. Let S be a scheme, [+ X — 5 an S-scheme, G a con-
structible torsion etale sheaf on X, ¢ : G — 5 a group-scheme over S,
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and action : G x X — X an S-action of G on X. Consider the situation
s

action*(G) on G x X
e
G.
Then

(1) For every i we have a canonical isomorphism of sheaves on G
$* (R fiG) — R (pry)i(action™{(F)).

(2) If¢:G—Sisa smooth group-scheme, then for every © we have @
canonical isomorphism of sheaves on G

F (R f.G) — R"(prl)*(action“‘(g)).
In particular, if S = Spec(k) with k o separably closed field, then the

Ri(pr; )i(action®(G)) are constani sheaves on G, and the same is true of
the Ri(pry ). (action®(G)) if G is smooth over k.

Proof. We have a commutative diagram of S-schemes

Pra

G >§ X X
C(\Oﬂ/\'

G,

S

& e
LA g
S

X Gx X ¥

5

/

“ #

in which the outer square is cartesian. The left-hand triangle gives canon-

Pr

3,

ical isormorphisms

Ri(pry ):(action*(¢)) = R (pr (pr3(9));
Ri(pry ) (action” (§)) = R'(pry)«(pr3(9))-
The assertions now result from the proper and smooth base-change theo-

rems respectively. 8§
This concludes(!) the proof of Proposition 5.2.1. B
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5.2.2. Proposition. Let F € €. For variable G i Ty, we have
(1) Rm(FRG) =0 for i # 1, #ts formation commautes with passa
to fikres, and G — R'm(FR G) is an ezacl functor 7} — T;.

- denote it i+ G. By exactness, it carries T — T.

(2) Riru(FRG) =0 fori # 1, its formation commutes with passd
to fibres, and G —» Rl (F & G) is an ezact funcior T, — T;.
denote it Fu % G, By exactness, il carries T - T,

(3) For any homomorphism of l-adic coefficient rings A — A’, we ha
canonicel isomorphisms ‘ :

P~ i !
(E*G)QEA _+(I§A)!*(<3§A),

1. Corollary. For F € C and G € Ty, we have canonical isomorphisms
ery i <0

H{Gmn®kF*xG) S HH{Gh®E,F) ® H{GnL®k G)

H (Gn®k Fx ) S H (Gn® k,?‘)% H (G ©@k,G)

ﬁsii in a commulative diagram, whose horizontal arrows are all “oubli
.ﬁ.parf.”: ' :
HU{G, 0k FixG) HY{(Gn®F, F) @ H{(Gn ® k,0)

(F+G)@ A D (Fo A + (G0 A).
4 A 4 . H{GL,®k, F, +0)
(4) For G € T, the cup-product pairing (Fi+ G) x (FY, + GY) — A(- 58

15 a perfect duality of objects of T. ) _ _ . _
(8) For G € (4, the natural map Fr+ G — F, %G is an isomorphism. ; (G @k, Fu % G) - HY{(Gn® k, F) § H{(Gn 2k G).
Proof. In view of Proposition 4.2.1 and the exact ‘cohomology sequenc
for the /', and the Rix,, assertions (1) and (2) result from the vanishin

REm(FRG) =0= R'm(FBG),

articular, if F £ 0 and if Fi= G ('re;p. F. *79) lies in Cy, then for
‘we have Hi (G @ k,G) = 0 (resp. H{Gm @k, G) =0}

f. We know that R/m(FBG) = 0 for j # 1, so for every i < 0 we have
Hi{Gn @k R'm(FREG)) = HI((Gm x Gn) @k, FRG)..

for 7 € C and ¢ € 77. Because both are lisse sheaves on G, ® & who
formation commutes with Passage to fibres, it suffices to verify that the
fibres at a single geometric point, say at { = 1, vanish. These fibres are th
H} and the H® of G,, ® k with coefficients in F @ {t = 1/1)*(G). Becau
Fe€Cand G €7T;, Fis totally wild at o0, while (2 — 1/4)*(G) is tame
0. Therefore F @ (t — 1/£)*(G) is totally wild at 0o, whence H2 = HY =
(cf, 2.1.1),

To prove (3), i.e., that the natural change-of-coefficient morphisms ar
isomorphisms, it once again suflices to check on a single geometric fibr
and there the assertion has already been proven {cf. 2.1.1),

"To prove (4), we may by (3) reduce to the case A = F, (either by passin
directly from A to its residue field, or by passing first from Ey to Oy an
then to F,); in this case, the assertion is the form of F»-Poincaré dualit
already used in proving Proposition 5.2.1.

To prove (5), it again suffices to check at the fibre over, say, t = 1. Thu
we must show that H] = H' on G, ® k with coefficients in the shea
F@&(t— 1/t)*(G). Because F € Cand G e C1, this sheaf is totally wild a
both 0 and oo, and the assertion follows from 2.0.7, B

use F € C, we know that Hi{G,, ® k, F) is zero for ¢ # 1 and a free
module of rank Swang,(F) for ¢ = 1. Therefore the Kunneth formula

,for all i > O
HAY G x Gp) @k, FRQG) & HH{Gn @k, F) 9 H{(Gn.®k, ),

ence the asserted isomorphism for H ,f(Gm_@) k, Fy G). The second
orphism is obtained similarly, replacing H: by H* a:nd R:J'l’r_ by Em.

I F # 0 lies in C, then Swany(F) # 0, so HY(Gm ® k, .7").15 a faithfully
A-module, being A-free of rank = Swan{F). If Fi » G Hes in C;, then
G @k, FxG) = 0 for ¢ # 1, so the first of the above ise_morphlsins forces
(G, ®k,G) =0 for i # 1. Similarly for F, * G and H{(Gn @ k,G). |

. Proposition. For F € C and § € C1, Fr+ G Hes in Cy.

bof. We must show that 7+ G is totally wild at co. We may reduce first
the case when A is finite, then, by filtering &, to the case when A = F,.
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For any finite-dimensional continuous Fy-representation M of I liagram

have a canonical direct sum decomposition "..Gm < G X Al x AL (HF) R (50)

M=MFP-aq ( @ M($)> = Mme g Arvild) W?”‘j_ cartesian iﬁ:w
breaks =0 3 1 PL.
—_—
where M ™€ i5 a representation of - G & !
(cf Deligne [De-3)). For F € C and G € Cy, the natura
rEme = [T Zi(1) = lim gy (B) = fim G(Fym), DRI @k, A)

#p ptN Norm B ((F (g(mg)} — Rk*R’}?*((j!f) Bd (Jw}-))
and where (M™4)P= = 0. Therefore over a finite extension of Fy, A L
is a successive extension, as representation of I, of finitely manry (ir ohism,

images on G, @ k of) £,’s, for x’s characters of (F,n:}*, n » 0; dm@)k this reduces to Rm(FREG) = Rr (FRG). Therefore
values in a finite extension of F). Therefore, we may conclude that : ylinder has cohomology sheaves with punctual fuPPDrt at 0
d these are detected by taking cohomology on Pl @k Sowe

(5:2:3.0) if M7 3 0 there exists Ly such that (M @ £z)'= #0. ‘checking that for every 1, the induced map of cohomology

5.2.3.1. Lemma. For any finite subfield Fy of k, any multiplicative charg,
X Ff = A%, and any F € T, § € 71, we have canonical isomorp
for all 4,

(Rr{FRG) @ Ly S Bm((F® L) (G Ly))
(R (FRG)) ® Ly S B ((F x £,) B (G x £y)). o F, RA((F) B (:0) = H(A o k, Br((:F) B (),
Proof. For any situation f : X — 5, H ashedf on X of A-modules, £ ofi '
lisse sheaf of free A-modules of finite rank we have canonical isomorphi

‘?
{“projection formula”) \

(A2 @ F, () B (9) = FHAT @ k. (iF) R (50).
(RAM)) @ LS RIA(H % (L)
(RE(H) ® L= RF(HS f*(L)).

In our situation, f = v, W = FHG, £ = L, and by (4.3) we
canonically 7*(£,) ~ L, KW L,. B

Yeck that this map is an isomorphism, we wish to invoke the
Cinula for both HE and for H* (cf. [De-4], 1.11). For .’F'lhsse on
fanctors F — Hi(A'®F, jiF) vanish for i # 1, and the H is thus
ansforms sheaves of flat A-modules into flat A-modules. For F
_ J at 0o, we have
In vi'eW of this lernma, an<_i the above cri.terion (5.2.3.0) for total wild o HI(A @ F, 3 F) = H(A @k, 3 F).
at 0o, it suffices to show universally that if F,G are Fy-sheaves in C,
for all y : I2m° — FY, we have (F® L) * (6 ® £g)) ™ = 0. But F
and G ® Ly are again in C, so we are reduced to showing that for T, g
O sheaves in €, we have (}". *xG)lee =0,
We do this by a irick of Deligne’s (cf. [De-3], 7.10.4). Consider
inclusion j : G @k — A' @k, and the inclusion k: A1 ®@k —Pl@k

ng aﬂ this, we see that for 7 € C and ¢ € Cy, we have
free A-module for i =1

Dfori#1
Yok 0 S Hi(A®k g =0forif L

1ok iF) S H (AR M) = {
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Trans, X Trans,
Gpn x Gy —— G, x G

| I

Gm e G-

5.2.4. We can now complete the proof of the Convolution Theorem
Indeed the assertions {1}, (2), (3) of the theorem are Jjust the concates
of Propositions 5.2.2 and 5.2 3. To prove assertion (4), we may chee
single geometric fibre, say over { = 1, where we are calculating the

H G,k F& (t—1/t)"g).

Because F,G & C, the sheaf in question is totally wild at both 0
so there is no H? or B2, whence the rank of H} is —y,, itself given b
Euler-Poincaré formula

~Xe = Swano(F @ (¢t — 1/1)*G) + Swale (F @ (t - 1/1)*G)
rank(F) Swany, (§) + rank(G) Swan,, (F),

the last equalities because F and G are both ‘A-free and tame at 0.
F* G lies in C, we have, again by the Euler—Poincaréd formula,

Swane, (F # G) = rank HY(G, ® F, F G)=rank HY (G, ok F

and H{ = H' = 0 for i # 1. In particular (5) follows from (6) and.
already been established (cf 5.2.2.1). :
Assertion (7) follows from Deligne’s main result ([De-5]), which
that if # and G are pure of weights w(F) and w(G) respectivel
Rm(F R G) is mixed of weight <1+ w(F) + w{g). Applying this
and G, we obtain that Rm(FYRGY) is mixed of weight < 1—w(F
By (3), we know that Rlm(FRG) and R m{FYRGY) are lisse and du
values in /) (~1), which is pure of weight two, whence F * G is nece
pure of weight 1 + w(F) + w(@).
Assertion (8) is the Lefschetz trace formula, because the Rlm(
and the H{(G,, @ k, F @ L) are the only noti-vanishing cohomolog
Assertion (9) has already been verified (cf. 5.2.3.1).
Assertion (10) results from the commutative diagram

(NIx ] '
G x G, e——_ G, x G,

i E
(v
G, —_— Gm,
the fact that {{N] x INDLW(FRG) ~ (IN.7F) B ([N].G), and the f
and [N}y maps € to C for any N > 1.

: 5N

:GmXGm Xn ¢ Gm x Gm
ﬂ‘{ cartesi-an l”

il

(V]

G, o Gy

ural morphism [N]*(F % G) — [N]*(F) = [N]*(g). Fa(lztor N
{ p and an integer prime to p. For & = Y, au the .honzont}ftl
e'diagram are finite subjective and radical, so in this case the
, sm is an isomorphism, For N prime to p, Lemma‘L 5.2.1.1
his morphism is injective. If A is not a field, then passing from
d ¢ field Ty and reapplying the same lemma, we see that the
on remains injective @F,, whence its cokernel is A-flat, B

"ti.xlm and Duality: Signs, Let F be a lisse shezle of free "
ffinite rank on G, @k, and (g, €,n) a triple consistm.g of an
(), an element € € p,(A) and an integer n. A “semiduality
1" on F is a perfect autoduality of lisse sheaves of free A-

nite rank on G, @ k

| {,) + F x Trans(F) — A(—n)

afly algebraically closed overfield Q of &k, any ¢t € Q", and
UETF, vE Fau= (Trans}(F)):, the values of the pairings of
“points t and at

. (Ye: Fa X Fop— A(—n)y = A

(,)at P Fat X Faap — A(“‘_n)at =A

}’ (U, U)M o= e(y;, v)t in A.

A . Suppose that F1 and Fay are lisse sheaves of free A-modules
l, given with semi-dualities of type (a;, e;,n;) for i = 1,2, If
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’Gi'.ua.n objects F and G in C with semi-dualities of type
(F)) and (a(§), e(G), n(g)) respectively, the convolution
semi-duality of type

L aFxG)=a(Fal9),

E(F* g) = —G(]:)E(g),

n(F+g)=1+ n(F) + n(G) -

a3 = ag = a, then 7, ® Fo carries a semi-duality of type (e, €163,
defined by the pairing '

(F1 ® Fp) xTrans, (7 @ 7))

1

Fy ® Fo x (Transg ) (Fi) @ (Trans,)*

lproduct

Fi ® Fo @ (Transg *{F1) ® (Trans,)* (F2)

Sl switchg,a .

Fi @ (Transg)*(F1) ® F2 @ (Trans,(F>)

=

(F*G)x (Transa(;r)a(g))*(f*g)

[

(F ) x ((Transy(m)" (F)) # ((Transygy)*(9))

l|

Rl‘rr!(_/ﬂ: [ g) X le(TranSZ(j_-)(f) | ’IT&HS);KQ)(Q))

lcontraction@ contraction

A(-n1) @ A(—n2)

]

Al—-ni —ng).

‘l'cup product
Rim((F B G) ® (Transir)(F) B Transg)(9)))

Proof. Obvious. § icontractign, .

R2my(A(—n{F)) B A(~n(F)))
Sltrace
A(~1 = n(F) = n(G))-
.His pairing is a perfect duality is part (3) of the Convolution

5.3.2. Lemma. Given F as above with a semi-duality of type (a,¢€
an integer N > 1, the direct image [N, F carries a semi-duality g
(a®™,€,n) which is given on stalks as follows: for Q@ an algebraically
overfield of k, and any t € 2%, we have canonical decompositions

(INLFe= D For sayu= 3 u,

ig;i e That its “sign” is e(F * G) = —e(F)e(G) results from the
: 1
try of cup-product on an H' B
v = D Faer sayv= 3
i ==t bjects of C, we
e iple Convolution. Forn > 3 and Fq,...,Fn objects )

and the pairing is given by * F. to be

LU, U >y [N F= Z < Uy, Vag o, ¥ - Fy# (Fox(-r# (Fra * Fp)) ..o )

i etrically, let us introduce the n-fold multipiication map w(n) :
Proof. Factor N into a power of p and an integer prime to p. For : . @n) to z1...T,. Factoring it as successive
there is nothing %o prove ([V] being finite radicial and subjective), an
N prime to p this is just an explicit spelling out of duality for a finit

morphism. §

m taking (z1,..
plications

zi(za(. - Azn-125)) - J,
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the number of ¢ for which y; =1, and 2s =n —§ —r the
gate pairs (b, x) and (b, %) with x # ¥. Renumbering, we
oo

i) = (b, ) with xF £1 for 1<i<s,

for 26 +1<i< 25+ 7,
and x; #1 - for2s4+r+1<iSn.

and using the smooth base change theorem to control the “not:
plied” variables, one shows that for Fi,-. ., Fnin C, we have

. 0 foris#n=
R‘w(n);(]’l...ﬁfn):{ #n-
FresFogn- - wF, fori=n

and the “forget supports” map is an isomorphism

f a Kloosterman sheaf as a multiple convolution gives
' = & KI(¢;xi3bs
Xn;bl»'--xbn) 3;1K(¢ X )
(K10 X ba) # KU 3, 00)) |k KU xas bi)-

=254

Rﬁ'(’l‘l)g(fl K. .. fn) 5 R?r(n)*(fl K... & fn)

whose formation commutes with passage to fibres.

An advantage of this second description is that, as multiplica
sociative and commutative, the multiple convolution Frxo-x F,
tcally associative and commutative. Another advantage is that |
the stalks of 7} %--.% F, as the compact cohomology groups of the
r1...2p =1t with coefficients in 7 ... & Fa, and shows that

1

behavior of semi-dualities under convolution {¢f. 5.3) reduces

the thecrem in the three cases

Kl x; b= KU %5b), x# X

KU x; ), x=1

KU x: ), X! =loand x £1

on of KI(4; ;) as (8}, (KL(9; x; 1), the formula [bl.(F * §) =
([6].(G))), and the known behavior of semi-dualities under
urther reduces us to the cases

C(KiTLL, X#X

Kl(#;1;1)

Kl(#; x; 1) x*=1and x #1.

bei proven is that each of these sheaves carries a semi-duality,
19 given by the following table:

H(w..2a =) © 0,7 R.. . ®F,) = Hi(=,-),
k

with both sides vanishing for i £ n — 1.

—

5.5. First Applications to Kloosterman Sheaves, It is now
mather to construct the Kloosterman sheaves KU x1, .05 xa0 b1
as the multiple convolutions

._*"51 KI(3; xi; b).

That so defined they in fact satisfy all the asserted properties of th
tence theorem is clear from the case n = 1, and the Convolution .
5.1. We can also determine the sign of the autoduality in general (e éaf F { a(F) \ (%) 1 n(f)‘
as well as analyze the semi-duality which we had already discovered '

e ¥ 1 -1 1
metically. (%L1, x#X

- (¥;1,1) -1 +1 0
5.5.1. Proposition. Suppose that the pairs (b, %), i=1,....n, a (’l/"-X' D, ¥*=1x#1 | -t -1 0

permutation of the pairs (by, x:), i=1,... 1, and that each of the
ters xi of BX satisfies X:(—=1) = 1 (this last condition is always salis
we replace ¥y by its quadratic extension ). Then K1(v; xq,. . o Xn; by,
is semi-dual of type

e to the limit, it will be enough to give canonical constructions
. ﬁahties over finite coeflicient rings.

ith the case K{v;1;1) = L4|Gm. On Gq, we h'th.a a canon-
sm sum* (Ly) = L4 B Ly on G, x Ga. - Res‘?rlctntxg to the
{(Ml)gbi’ (=m0 1), y =0 of G, x G, we find a symmetric identification

— ) L tant sheaf (Ly)g =2 A,
where & is the number of i for which X =1 but y; #1. @ (:c ~ —2)" Ly = the constant sheal (Ly)o
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and this, restricted to G,,, is a semi-duality of type (=1, 1,0}, as required.
The next case, which can only occur for p odd, is

Kl(;x1) = (LolGm) ® Ly, X =1, x#1

In view of the tensor product behavior of semi-dualities, it suffices to exhibit
on Ly & semi-duality of type (~1,—1,0). The push-out construction of £,
shows that if we denote by £ the complement of the zero-section in Ly,
then £¥ as scheme is the quotient

A% x G,/ the subgroup generated by (=1, 1),
with AX-forseur structure over G, given by the morphism to G,
) (a,z) w22
Over t € G, the fibre of £ is (the sheafication of)
{(a € A%,z € Gy with 2% =t} /(a, 2) ~ (—a, —2);
Sirmlarly, the fibre over —1 is
{{a' € A%, 2" € G, with () = —t}/(a', 2') ~ (a, 2).

The ratio 2/2' is a square root of —1. By hypothesis, x(~1) = I, i.e.,, —1
is a square in F¥. If we fix a choice of V=1 € F¥, then for z,z/ both in a
connected Fg-algebra, there exists a unique cholce of %1 in this algebra for
which z/2' = +4/—1. Let us denote by

()

the same +1, viewed in 4*. Then we define a pairing

x X
LY x (t+— ~1)*(L}) — the constant sheaf A

by the explicit formula

(0,) x (&' #) = a! < f/_f_l>

This pairing is visibly skew-symmetric, ie., it is a semi-duality of type

(—1,-1,0).

It remains to treat the sheaf KI(v; x;%; 1, 1), with x¥ # ¥. We must show
that it i1s autodual by a skew-symmetric pairing with values in O,{(—1),
i.e., semi-dual of type (+1,—1,41). We have already seen {cf. 4.1.11)
arithmetically that this sheaf is autodual towards @, (—1), and that any
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I,-equivariant pairing toward Ex(—1), is a multiple of this one. So it suf-
fices to construct an alternating autoduality over Fge towards Ey(—1). At
a geometric point t € Gn(Q), 1 an algebraically closed overfield of Fy, the
stalk of KI(v : x,%;1,1) is

H ((wy = 1) ® 0, Ly(zry) ® Lxo) @ Lxin))-

To make this more explicit, let us introduce the (Fq,+) x (Fy) x (FX)-
torseur Z over zy = t with equation

z-zl =z 4y,
=1z
D ==y

In Es-cohomology, we have.
H((zy = 1) @ 9, Ly(ory) @ Lxte) @ Lxiyy) = HE(Z @ 0, )XY,

The choice of a {g — 1)-st root { of —1, possible always in Fga, allows us to
define an involution A € Aut(Z) by the explicit formula

(m,j 2,0, v) = (-, —x, —2, 0V, ¢l
which maps
HYZ®Q, EA)(tﬂ.x;%) ZH(ZeQ, EA)(EJY,X).
The cup-product pairing
() HYZ @0, B x HI(Z @ Q, Ex) — Ex(-1)

establishes, for 9 non-trivial and x1 and x2 arbitrary, a perfect pairing of
isotypical components

(HLY(Exx) (EHEXT) — By(-1).
Therefore the pairing

(J) ' (Hi}(ﬂb.)év_) % (Hg)('pa?bg) — E/\(_l)
defined by o

(o, B) = (e, A"(F))

is an autoduality. It remains only to verify that it is alternating. We readily
compute

(8,0) = {8, A" (a)) = (A™(f), A"A%(a))
= (A*(8), 0} = — (o, A* () = (o, 0)- B



Convolution of Sheaves on Gm 85

84 Chapter 5

la.t.é.” this identity into a statement about direct images of
she.aves To formulate the result, it 1s convenient to adopt the
- ) . i 4 .

tion: for any unit ¢ in O%, we denote by [e] g the hsse-geo-
stant 0, -sheaf of tank one on G.®F, which has Frobeniuses
(in([e]deg)@) — ¢deg(®) for every closed point 2.

5.5.2. Remark, Here as an alternate proof of 5.5.1 for Ki{(¢; x, X;
cause this sheaf is of rank two, 5.5.1 is the assertion that its deter

isomorphic to Ey(—1). We see later (but without any circularity)
is in fact the case (cf. 7.2, 7.4.1).

5.6. Direct images of Kloosterman Sheaves, via Hasse-Dave
In this section, we will give two different computations of the direct
of a Kloosterman sheaf under the N-th power map

on If N divides g — 1, we have, for any iﬂteger.n >1 It'md
sheative characters X1,---; Xn of F;‘, an isomorphism of lisse

Gm® F,

N deg
T 1) o [H(—g(w,ps))“]

i=1

[N]:G'm@Fq—ﬁ;Gm@Fq
| s oy

KI(e all xipg fori= 1, m i =1 Nl

pN cfenoie the N characters of BY of order dividing N.

reduce to the case n = 1

for integers N > 1. The first is entirely elementary.

5.6.1. Proposition. For any integer N > 1, we have a canonical;
phism of lisse Oy -sheaves on G, @ F,

[N]*(KI(¢;X1’"')Xﬂ;bl'“n) 2K1(¢§X1:--o:Xn§N51,..-,Nb..

Proof. By construction, we have

I X1, -y xns b1y bn) = ¥ KI5, b0) = % (Bl (Lo ® £

sing both sides as convolutions, we

' N deg )
L) @ [H(—g(%,m))] o KI(h; xp1, - - > XA L0 1)-
: i=1 .

th sides by Ly and applying the projection formula, this re-

special case x = 1:

- N deg

on) @ {H(wgw, Ps)] ~ KI(W; 1,y 85 Lo B

i=1

view of 4.1.2, to show that both sides have the same local
wltiplicative Fourier transform, it suffices to show that over
erfield k of Fy, for any multiplicative character X of k* ) both
ensored with £, on G, @ k have equal traces of Frobenius on
p ). Replacing ¢ by potraceyp,, and the p; by pi;ng‘q;
od to universally treating the case k = F,. We must show tha

By property (10) of the convelution theorem (5.1), we have
[(NIF * ) = ([N ] (F)) + ([V](G)).

Applyirg this to the multiple convolution P;xpressi{m above, we fin

[NT(KI; X, X By Ba)) = 3 [NB (L © Ly,)

~ KI{(¢; xn, ..., xi; b1, ... N

The second computation we shall give is based on one of the H

Davenport identities. Let T, be a finite field, N a divisor of ¢ - 1
non-trivial additive character of ¥y, and v the additive character -

Vn{z) = P(Naz).

Let us denote by p1,..., N8 : FY — py the N characters of FY of
dividing ~. Then for any multiplicative character x of Fy, the H
Davenport identity ([H-D], 0.9;) asserts that

N
HY(Gr ® Fy, [NL Ly @ L)) [[(=90 )
i=1

= trace{F|Hcl(Gm @ Fy, KI(¢; xp1y - - 1 XN .., 10
précisely the Hasse-Davenport identity. B :

“also possible to give a “dir
f of this last proposition, and so a “new” proof of the Hasse—

ect,” albeit somewhat convoluted,
N

(=g(n, X" D T (o0 p)) = T~ x0:)).

i=1

enport identity.
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(2) The fact that K1(y; py, . . 1Pn;1,..., 1) as representation of
1{Gm ® Fy, 1) is induced from a character of finite order,
Ly, . of a normal subgroup of finite index (N), show that 4
Ki(¢;o1,..., 0831, ... 1) has finite geometric monodrom

see in Chapters 11 and 12 that the situation is quite differ
Ki(s;1,...,1; 1., 1.

CHAPTER 6

Local Convolution

the category of totally wild representations

of I on finite free A-modules,

Cloc X Cio(: — CIOC
MY Ne— Ma#ige N

C— Cloc
Fr— Foe

restriction to fo”, we have a commutative diagram

Cx ¢ —s ¢

*¥loc
Cioc % Clag I Cloc

in-C we have a canonical isomorphism in (o

(f * g)loc = (floc) ¥loc (gloc)-

k. According to [Ka-2], the functor “restriction to Io.”
€ — Cree

surjective. Therefore if a “local convelution” is to exist as a bi-
ctor sitfing in a commutative diagram as above, our knowledge
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of global convolution forces the following numerical formulas: for M, N €
Croc, we have

Swaneo (M *15c N} = Swane (M) Swang (V)

rank(M #10c N) = rank{M) Swane, (V) + rank (N) Swane (M}

6.2. Tor convenience, we will perform a multiplicative inversion (f — 1/t)
in order to center cur calculations at zero rather than at co. Because
inversion is a group homomorphism, we have a commutative diagram

inv x inv
Gm X Gm — Gm X Gm

er:Iy j"rr:a:y

inv

Gm — G,

Therelore, for any two sheaves F,G on Gy, @ k, we have
v (R (F EG)) = Rmy(inv, F B inv, F)
inv, (B (F RGY) = Rr(inv, F & v, G).

Because inv ig an wvolution, we have inv, = inv*; because it 1s proper we

have Inv, = {nu..

In particular, we have, for F,G in C,

inu(F * §) =inv (R'm(FRG))
= le;(inw FMinv, G).

Let us therefore denote temporarily MC (M for “mirror”} the category
of lisse sheaves of free finitely generated A-modules on Gy, & k which are
tame at co and totally wild at zero, and by MO, the category of totally
wild repregentations of Ij on free finitely generated A-modules.

6.3. For F,G in MC, we denote by 7, G in MC their convolution, defined
by

FxG = le(Fﬁlg);

it is simply the mirror image of usual convolution by the equivalence of
categories

(e SN ¥ T0)

iny;=inv, =inv*
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6.4. In order to study the multiplication morphism

Gm x Gm (xiy)
G t=zy

near ¢ = 0, we will employ the method of vanishing cycles. The method s
similar to that used in 5.2.1.3 to prove tameness at zero, but here we use a
more symmetrical compactification.

Clonsider the subvariety V of P2 x Al defined in the (projective) coordi-
nates (X,Y, %) of P2 and the coordinate ¢ of A by the single equation

XY =t7%
By the second projection, we have a proper map “t”
vV
[
Al
Over the open set V[1/Z] of ¥V where Z is invertible, we have

(X/2,Y/Z)
V[l/Z] T s Al Al

| |
Al — A}
The fibre over t = 0 of ¥V — A' is the subvariety Vg of V defined by
Vo: XY =0in P2

Thus Vy is the union of two lines in P? which cross at the pomt (0,0,1).
On Vj, there are three points which will require our special attention:
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The “picture” of V — Alia

The sheaf on V with which we are dealing is the extension by zero of the
lisse sheaf on the open region '

(X/2,Y[Z)
VI[1/Z] N (¢ invertible) ——=

G X Gy
given by 7 X G, where F,§G both lie in MC.

6.5. Theorem. In the asbove siluation, the vanishing cycle sheaves on Vp

for V L AL overt =0 and the sheaf “F W G extended by zero” are given
as follows, for F,G in MC:

Rig=0 fori#l

Rl = a punctual sheaf on Vi, supported ot {0,0,1),
" which as Ip-representation is totally wild.

Moreover, we have an isomorphism of lg-representations
F*G S (R )0,
We will prove this by a series of lemmas.

6.5.1. Lemma. For F,G lisse on G, and totally wild at zero, the Ri¢ all
vanish on Vy — {{0,9,1),(1,0,0),(0, 1,0)}.

Proof. At a point of V5 outside the three named exceptions, Z is invertible
and one of X or Y is invertible. By the symmetry in X, Y of the situation,
we may suppose that ZX is inveriible. In the coordinates z = X/Z, y =
Y/Z on V[1/Z], a Zariski open neighborhood of V5 N {ZX invertible) in
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V is given by V[1/ZX] = the open set Gm X Al of A' x Al where z is
invertible, On this open set, cur map is

(=) 1z (2, 29)

V/EX] = Gy & Gm X Al G X Al; coordinates (z,1)
(z,¥)
| *
(LU
t=0 < Al Al
and the sheaf on G, x Al with coordinates (@,t) is Fz @Gz on Gm X G,
extended by zero. Because F is lisse on Gm, We have
R(FRG) | Vol1/ZX] = Ro(Fu ® Guye) | G of 2’5
=F ® (Ré(Giyz) | Wwl1/2)).

Thus to prove Lemma 6.5.1 we are reduced to showing

6.5.2. Lemma. For G € MC, the morphism

G, X Al (z,t)
! i
Al i

has no vanishing cycles over t = 0 for Gyyp on G X G, ertended by zero.
Proof. To prove 6.5.2, we first need

6.5.3. Lemma. For any lisse G on Gy, the vanishing cycles for

G, x Al {z,t)
| 1
Al t

and the sheaf Gryz on Gy X G, extended by zero satisfy:
each Ri¢ is lisse on G, and Ig acts tamely on i

Proof of 6.5.3. For any a € B = Gp(k), we have a commutative diagram
{(z,t) — (az, at)
G X Al T L G X Al

; !

1= at

Therefore each Ri¢ is endowed with an action of Gy, (k) covering the trans-
lation action of G(k) on G ® k. Therefore It'¢) being in any case a
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We have
have, by punctuality of the R¢,

Ri¢ =0 for i #£ 1.
ess of R'¢ at (1,0,0) and (0,1,0), we conclude that

‘R'¢ is punctual, supported at {0,0,1),
and as Jp-representation is totally wild,

* * Cz = |
T (G2 ext. by 0} = @ (ﬁx(Z) ®@ Gi.ext, by M.

xN=1
By general broperties of van

ishin
any sheaf “UpSta,irs,” & cycles, we have for any ﬁm__

FA(RO(H, 1o 1)) = RY(f,2,1).
Applying this with 4 — F*(Gizext. by G)

'a_.ve an isomorphism of I-representations:
FxG 5 (R)w,0,)-
des the proof of the theorem as stated. §

y We get

F(R(FGuesto £)) = O B(Ly) ® Gy )

xN=1

truction of Local Convolution. Concretely, for F,Gin MC,
{y-1somorphism

G i <(Ai)_}?§9g (A Spec((Kyoy)™); 7 & g) ;
. zy (6,0)

So it suffices to show that

Rqs(f*th) to f) = Rﬁ‘é(gtz“’)t)
18 tame- as Io-representation.

For this, we consider the i \
¢ diagr d .
gram, for each a € kX ting the fraction field of the strict henselization of A'®k at

{2 (az,t/a™) 18 135t expression visibly depends only on F and & themselves as

Tx Al T Alx al
L’E l‘

A 1":\ ! w

Nl Al,

A

a.ny object N in MTy¢, let us denote by N the constructible sheaf
“which is “V on Spec(Kjoy), extended by zero.” Then for M, N
we define their local convolution to be

8 Presen atIO o) la(ﬁ g 1 18 1I80mo IH
W U.Ch llOWS th.a[: the repr t 241 Of I on o]
g ( taN 0
G 18 p uil-pac Y = o] or an Y a E - ecause 18 1n

1t follows from Verdier (4.1.6(1)) once again that

dfn 2.1 2 h.s. SEPN. A4 N
Hloc N H ((A*—%%{}E_)) (Aé?ﬁ")- Spec((K{o}) ), MK N) ,
a_.s-fo-representation. Because MO — M. 1s essentially surjec-
[Ka-2], we see that M #,c N as defined above is in fact an object of
‘that all the other H* vanish (this gives the bi-exactress), and that,

ed, we have canonical isomorphisms

(j: * g)lOC = (:Floc) *loc (-;Cloc)

this representatio

Combining Lemmag 6.5.1°and 6.5.4, we see ¢

' :
:ﬁ;?ve: t(il Ilfg,tsupported at the three points (0,6,1), (1,0 0), (0,1,0,;

at the Jast two of these points, ] cly. Bocause th ar.
question on V vanishes on Vy, the anishing g Ecose e chen

‘ vanishing cycle o i
. ' : : Xact seque
omorphism of Ip-representations e ghe

Ri W(F ~ d .
m(FRG) =~ (R $)0,0,1) @(RE¢5)(1,0,0) @(Riﬁﬁ)(o 1,09,
for F,G in M. :

But we know that for F.,G in MC, we have

Rim(flzfgj _ { O forii
totally wild as 7, — rep. fori=1,

hat the R¢ are pune

F,G in MC,
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Local Monodromy at Zero of a Convolution:
Detailed Study

7.0. General Review

7.0.1. Let & be a smooth geometrically connected curve over Fy, z €
C(F,) a rational point, £ a finite extension of Q;, [ £ p = char(F,), and
F a lisse Iry-sheal on C — {z}. In this section we will recall the known
structure of 7 as a representation of the groups

D, 21,0 P

7.0.2. Shrinking C If necessary, we may assume that & is affine and that
there exists a function ¢t : ¢ — A on ¢ which is invertible on (' — {z} and
which has a simple zero at 2. For y : Py — EY a multiplicative character,
we have the lisse rank-one Ej-sheaf £, on G, over F,. Its inverse image
t*(Ly) on C — {z} will be denoted simply £, when no confusion is pos-
sible (e.g. in an expression like F ® £,). These £,’s, when restricted (as
representations) to I, are precisely the Fy-valued characters of I, of order
dividing ¢ — 1. In particular, every tame character of I, of finite order with
values in any extension of £y is given by an £, if we allow ourselves to
replace both Fy and &) by arbitrary finite extensions of themselves in the
preceding constructions.

7.0.3. Tor F a lisse Ej-sheaf on C — {&}, F ag P,-representation has a
breal-decomposition,

F=F" & B F( break y),
y>0

each summand of which is D,-stable (cf. 1.8). We define

Frame TPI

FOW = @ F( break y),

u»0
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whence we cbtain a decomposition
F = ptame @fWi}d, as Dy-module.

For any Ly (indeed for any lisse Ey-sheaf on C — {z} which is tame at z},
we have

(f@ [,X)tame — j;'ta.me ®'CX

(}j@) JSx)wi].d — jjwild ® 'Cx'

7.0.4. The tame part F*™¢ of F may be further decomposed according to
the Jordan decomposition of the action of a topological generator v%#™¢ of
Itame acting on From™e

Frame @ JFXx-unipotent - an I.-decomposition

chars y of I
of finite order
prime to p

| after extending scalars from Ej to a finite extension containing all the

eigenvalues of ~'¥%¢|Fme  Intrinsically, FXURIPOtent 5o the largest -
subrepresentation of F of the form

Ja-unipotent (a unipotent representation of I;) @ L.

~Thus we may rewrite the above decomposition as

Freme = @(T @ Lg)= 7P @ Ly, an I,-decomposition
X

where (F @ Lx)7=7"™P is the largest unipotent I-subrepresentation of
F @ Lz. In general the y occurring above will not all have order divid-
ing ¢ — 1, so the ahove decomposition is net in general Dy-stable; D, /1, .-
may permute the x’s which occur. Over a finite extension Fya of Fy (d cho-
sen so that all x occurring have order dividing ¢¢ — 1}, this decomposition
becomes D -stable.

By the local monodromy theorem, F is quasi-unipotent as a representa-
tion of I;. Denoting by p the corresponding representation, we have

7.0.5. Lemuma. The subset of I, defined by
Iv & I such {hat p(%) is unipolent}

iz an epen subgroup of Iy, normal in Dy, and if vi and 42 are any {wo ele-
inents of this subgroup, then log(p(v1)} and log(p(ye)) are Q-proporiional
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Proof. Let us denote by

1y I — 118 HZ;(I) — Z(1)
i#p

the canonical projection of I, = I onto Z;(1). By the local monodromy
theorem, there exists a nilpotent endomerphism

N € End(F) R Zi(-1)

and an cpen subgroup I’ C I such that

plv) =exp(tily) - N) forycl'
But if v1 € I has p(yy) unipotent, then for any integer n > 1, p((y)?) =
p(1)” is unipotent, and

1
p(n) = exp (; 103(;7((71)”)))-
But for suitable n > 1, ()" lies in I’, whence

og(p((v1)™)) = t((m)") - N =n-ti(n)¥N,
so that
p(71) = exp(ti{y1) - N)

for all 4, € T for which p{vy) is unipotent. Thus for v € 7,

p(7) is unipotent <= p(vy) = exp{ti(y) - N).

The set of ¥ € I where p(7) is unipotent is clearly stable by D,-conjugation,
-while the above equivalence shows that the subset of such + is a subgroup
of I (open because it contains the open subgroup I’ of 1) and that the
logarithms of all such + are Q;-proportional. B

7.0.6. The monodromy filtration of F as D,-representation is an increasing
filbration

Wi C Wi
which is characterized by the following properties (cf. [De-5], 1.7.2.2):
(1) If p{¥) = 1 on an open subgroup of I,, then

W_1 :Oand Wg::p‘
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2) I p i3 non-trivial on arbitrarily small open subgroups of I, then for
P
any v € T with p(vy) unipotent-but p{y) # 1, we have

log (v} maps W; to W;_a
(2)y

Vi > 0, (log(p(y))) maps grl" = gr¥.

In case {2), one sees easily that the moenodzomy filtration is already uniguely
characterized by condition (2)., for any single v € I with p(v) unipotent and
nen-trivial. By 7.0.5, we see that the monodromy filtration is Dg-stable,
and that it respects the decompositions

T = _?:ta‘me @fwild

J:tame — @(}- ® [:Y)Ir“unip @ 'C’X‘
X

{Indeed the monodromy filtration respects any decomposition which is p(y)-
stable for any single v with g(v) unipotent and non-trivial.)
According to cne of the basic results of Deligne in Weil IT, we have

7.0.7. Theorem. Supposec F is pure of some weght w. Then
(1) grl (F) is pure of weight w+ 1.
(2) If x has order dividing q — 1, and if (F ® Lx)!* is of dimension
k> 1, with Fy-cigenvalues ooy, ..., op of weights w — 1y, ..., w— iy,

ihen the weight drops i1,...,1p are non-negative inlegers, we have

I.—unip _ a Jordan block
(F® JCY) - @ ( of dimengion 1414, }°

v=1,...,k
as Ip-module,

and the eigenvalues of any element F, € Da, of degree I on
(F ® Lxg)T="""P are

i i
al:qalu“'!glall IR aquak!"’aqkak

-
144, 144

Proof. This is just ([De-5], 1.8.4 and 1.67.14.2-3) spelled out. @

For applications, we will use these results in the following form.
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7.0.8, Corollary. Suppose that F is pure of weight w, and Hsse, on C—{'@ such an F, if we denote by
Fiz o mulliplicative character x : By — E¥, with (F ® L= # 0. K

each eigenvalue o of Fy on (F @ Lx)%=, denote by w(a) its weight. The
(4

j':G'rmL~+1:’1

clusion, we have a short exact sequence of sheaves on PleT,
dim(F © Lx)=7P = 3 (14 w - w(a)),

the sum over the eigenvalues o of Fy on (F @ Lx)=, and the in
vidual ferms 14 w - w(a)} are the sirictly positive dimensions of:
Jordan blocks of (F @ Lx)!=~""P as I,-representation.

(2) For any finile set S of characiers x as above, we have an mequ

rank(F) > Z dim(F @ Ly )I =—unip
XES .

0— 4 F = §uF = Flo =0

710 15 viewed as a punctual sheafl at zero, extended by zero to P {the
wildness of F guarantees Flo = (). In the long exact cohomology
ence on P* ®HZE—‘;,, we have H(P? ®§q,j*}") = 0 by the total wildness
; whence a short exact sequence

0 Flo g P @ Ty, 4 F) = BY(PT@ T, juF) - 0
with equality if and only if both of the followmg condilions are §
isfied:

(2a) F is tame al z, i.e., F is lame as represeniation of I;.

(2b) All ihe characiers of IE*™% occurring in ™M = F qre
of order dividing q — 1, E)-valued, and le in S.

HGn ®Fy, F).

.eligne once again, we know that for F pure of welght w and lisse on
@ F,, we have

. FTois mixed of weight < w

HYG,, @ F,, F) is mixed of weight < 14w

HY(P' ©T,,j.F) is pure of weight 1+ w.

(3) Fory as above, (F®Lx) = U"P as representation of Dy is unipot
on I, so its deferminani is an unramified representiation of Dy}
gtven on Iy, by the formula

d Y= e w(n) 1+w w(u) Wis we obtain the following
et(Fo|(F ® Lx) 2) H(q 3 o

9. Proposition. For F a lisse Ey-sheaf on G, ® Fy which 18 pure

eight w and totally wild at co, we have a camonical isomorphism of

Ip ~ gal (F,/F,)-modules

the product over the eigenvalues o ome on (}'® Lz)i=
(4) If the conditions (2a) and (Bb) of (2) above are both fulfilled, th

as characters of Dy, we have

det(}')/ H(CX)(@(rank af C}'@,C.i’.)r,z;—unip)

xeS

Fle 2 the part of HCI(G','ﬂ @ F,, F) of weight < w.
_;3.! For F as in the above proposition, we define an associated polyno-

= ] det((7 © £g)T=1nip).

XES

f(F,T) € 20T]

FFETy =S T,

sum over the eigenvalues of Flon Hl(G @F,;, F).

termns of the Jordan blocks of Flo=unip the number of which is the
imension of F1°, we are attributing hl(}') dim(Fi°) “extra” Jordan
ks, each of size zero, to arrive at a “total” number h c(F) of Jordan

c_ks.

7.1. Application to a “Product Formula” for a Convolution of
Pure Sheaves

7.1.1. We now return to G, over Fy, and consider a lisse Iy-sheaf F or
Gy @ Fy, which is both

{ pure of weight w on G, @ F,
totally wild at oo,
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In terms of “all” the ~L(F) Jordan blocks of Fle=39P we have

f(j:, T) = Z T(size of Jordan block)l

“all” the h1{F)
Jordan blocks of
J—._-ID—-ump

Thus we have, for # as above (lisse and pure on Gy, totally wild at o),

F(F, 1) = dim(Fle-unipy,
7.1.4. Theorem (Product Formula). Suppose thai F and G are lisse E)-
sheaves on Gy, @ ¥y, pure of weights w(F) and w(G) respectively, and that
both F and G lie in C, i.e., they are each fame at zero and totally wild at
oo. Then we have

FF«GT) = (7,107 (G, T).

Proof. By the conveolution thecrem, F * § is lisse, lies in C, and is pure of
welght 1+ w(F) +w(G). Therefore f{F =G, T) may be defined in terms of
the absolute values of the cigenvalues of F on HY G, ® ﬁq, F#G). The
formula to be proven,

HF=G,T) = f(F,T)f(G,T),
results immediately from the canonical isomorphism (ef. 5.1 (6))

H(Gr®&Fy F 4 0) = HGm @ Fy, ) © Hl (G @ Ty, G). B

7.1.5. Corollary. For F,G as in the theorem above, suppose that all the Ly
occurring w both F and § as Iy-representations lie in ¢ given set S of
Ey-valued charactlers of FX. Then the same is true of F* G, and for each
¥ €5 we have

F(F*+G)@ Ly, T) = f(FR Ly, TG ® £5,T).

Proof. Replacing both ¥y and Ej by finite extensions of themselves, we
may suppose that all the £, occurring in F, G, or F*G as Iy-representations
have y an E)-valued character of F;‘. For any y, the cancnical isomorphism

(cf. 5.1 (9))
(FrG)® Ly~ (F& Ly)+ (& Ly),

together with the theorem, shows that

F(FrG)e Ly, T)= AFQ Ly, T) (G @ Lz, T).
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Now £, actually occurs in F as Iy-representation if and only if (?‘*EX:.}ID
is non-zero, i.e., if and enly if f(F ® Ly, T) is a non-constant polynomial.
Applying this to F,§ and to F = G, we see by the above product formula
that £, occurs in F +§ if and only if it occurs in at least one of F or G. B

7.1.6. Numerical Check. We have
rank(F) = Zrank((?@ ﬁy)f"_””ip)

X

= Zf’(}" ® Ly, 1)
X

Swane (F) = Swane (F @ L) = hy(F & Lx)
= f(F @ Ly, 1),

and similarly for G, and for 7 =G,
Let us check that these formulas and the product formula

[(F+G) oz T) = f(F® Ly, TG © Ly, T)
imply the earlier-established formulas (cf. 5.1, (4) and (5))
Swane (F + §) = Swan (F) Swane (§)
{ rank(F # G) = rank(F) Swang (G) + rank{G) Swang, (F).

For the first, we simj)ly evaluale the product formula at T = 1. For the
second, we write

rank(F *G) = Zf’((f *G) ® Ly, 1).
X

Applying the product rule of differentiation to
F(F+G)e Ly, T) = {F@ Ly TV(G@ Ly, T)

ind
we fin FUFsGely D= f(FoLly NG Ly, 1)

+FFe Lo DG ® Ly 1)
= f{F® Ly, 1) Swane, (G)
(G ® Lx) 1) Swanao (F).
Summing over x now yields

rank{F = G) = rank(F) Swane (G) + rank(G) Swan,(F),

as required.
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7.2. Application to Sheaves with Swang, =1

7.2.1. Let us now consider a lisse &y-sheal F on G, ® F; which satisfles
F is pure of weight w(F).
F is tame at 0 and totally wild at oo.
Swane {F) = 1.
Then for every x, we have
dim B} (Gm @ Fy, F@ L) = 1

Passing to a larger finite field if necessary, we may speak of the weight
w(HNF @ Ly)) of the action of Frobenius on this cne-dimensional space.
Applying the previous theory, we find that as Ig-representation, we have a
canonical decomposition

a single unipotent
T~ @ £, ® Jordan block of

dimension
x such that

w{H (FRLz)sw 1+w~w(H§(’f®[’Y))

Furthermore, if all the y which occur above have order dividing ¢ — 1, then
the above decomposition is Dg-stable, and if for each such y we denote hy

a(x) = FH(Gn8F, FeLly)

drop(y) = 1 +w — w(a(x))
then the eigenvalues of Fy on (F ® Lg)fo~MP are the d.rop(x)—quantities
{o0da alx), -, g P ax)),

7.2.2. Covollavy. Suppose that F as above lisse and purc on G,, @ Fy, tame
at §, totally wild at 0o, Swane(F) = 1 has all characlers y cccurring in
is local monodromy at zero of order dividing q — 1. Then if tk(F) > 2, the
lisse rank-one sheaf on G, @ F,
det(F)
HE@drop

is geometrically constant. For any closed point X of G @F,, the Frobenius
F, operates by the scalar AYEE) with

droplxi=1 drop{x)
A= H( ; a(x)) |

=
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Proof. TFor rank(F) > 2, the fact that F is totally wild at oo with
Swane{F) = 1 implies that all the breaks of F at co are equal to
1/rank{F), so < 1/2. Therefore det(F) has its break at co also < 1/2,
so by the Hasse-Arf theorem det(F) is tame at oo, Thus det(F) is tame at
hoth zero and oo. In view of the structure of the local monodromy at zero
of F (cf 7.0.8 (4)), we see that the ratio
det(F)

H E%drop(x)

X
is a ligse rank-one sheaf on G, ® Fg, which is both tame at co and un-
ramified at zerc. It is therefore geometrically constant {P* — {oo} = A’
has no non-trivial tame at oo finite etale co.verings over a separably closed
field), so it extends to a lisse rank-one sheaf on P! ® F, on which Fp, =
any closed point of P!, operates by Ades(®) for some scalar A. Taking for
z the origin, we may compute A as the action of any element Fy € Dy of

degree one on
det(F)

TPt
But as Dg-representation, this is the character

T et ((F @ L)),

on which Fy does indeed act as the asserted scalar A,

7.3. Application to Kloosterman Sheaves. Let us now consider in
detail the case of a Kloosterman sheaf

1{1(¢§X1:-'-:Xnibl) .- ':bn,)
on G, ® Fy, where the x; are all multiplicative characters of .

7.3.1. Lenmma. For any multiplicative character x of F, the aclion of F
on the one-dimensional space

Hcl(Gm ®§QJI{1(’¢);X1}‘ e ;Xn;bl: v ;bn) ® ch)
is by the scalar

_H g, xe /%))

and the drop of weight drop(y) 1s given by

drop(x) = the number of indices ¢ for which vY = xi
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Proof. Because Kl is totally wild at oo, the HZ(K1®£ 7) vanishes, so the
Lefschetz trace formula gives

a(x) = trace(FIH(KI®Lg)) = — Y Fla) trace( F, j(Kl)s)
aEF;

== > X(@ DRI X X by b ) (B 6)

= (=" x [ o, 07,

i1

the last equality being the expression of monomials in gauss sums as mul-
tiphicative Fourier transforms of I{lcosterman sims (cf. 4.0).

The Kloosterman sheaf in question being pure of weight n — 1, we see
that

drop(x) = n —wla(yx))

= (1= wlg(, i/ xM)).
i:l
As the weight of g(s), %) for 4 non-trivial is one unless x is trivial, which

case the weight is zero, we obtain the assorted formula for the drop. B

Applying the general results of the previous section, we find

7.3.2. Theorem. Suppose that for each i, the prime-to-p part b of b; divides
¢ —1, and that x; has order dividing (g~ 1)/b,. Then

(1) the characters x occurring in the local monodromy at zero of
Kiwixa, o Xnibry oy ba)

are precisely those characters x of FX such that for some value of
t=1,...,n, we have

by _
X=X

(2) Each character x that occurs in (1) above occurs with a single Jordan
block, of dimension equal to

drop(x) = the number of indices i for which X =
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(3) As Dg-representation, we have o decomposilion

Kl= Ly Klalyl P,
x such that
xbl‘zx,‘ for at
least one {
where I{I®Ey)‘r“_““ip is a Do-represenialion of dimension equal 1o
drop{x), which under Iy is unipetent and has e single Jordan block,
and on which any element Fy € Dy of degree one acis with eigenval-

ues
a(30)a - o(x), - g (),
with B
= T (=alv, xi/x™))-
i=1
(4) If in eddition th{K1) = b s > 2, then the ratio
det(IK1)

[ co7*G0
X

is a lisse rank-one sheaf on G @F, which is geometrically constant,
on which Fy, for z a closed point of G @ Fy, acts by A=) for

4 H drop(x)—1 ( = X))drop(x)l

Proof. 'The hypothesis concerning the x; and the b, guarantees that any
character x of any finite extension of F, such that x™ = x; o Norm is
already (the composition with the norm of) a character of FrX B

7.4, Some Special Cases

7.4.1. Let us consider the case when all the §; = 1, i.e., we consider

df
KI5 X1, oo xn) = KM¥5xa, o yxns 1,00, 1)
For this Kloosterman sheaf, the x occurring in the local monodromy at zero
are exactly the y; themselves, and so we have

a single unipotent Jordan block
Kl xr, oo hxm) = @ L, @ | of size =(the number of ¢ for

X ameng which x = x;) = drop{y)
{x1,Xn)
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as Ip-representation. If n = rank(K1) is > 2, then, by 7.3.2 (4),

det (KK x1,. -, Xn))
Ml .

is geometrically constant on G, ® Fy, with F, acting by A48(=) and

dro —14 drop(x)
A= H (q"L;C)"iH(“Q(?P,Xi/X))

X Bmong

=1
{XI:W)Xn}

(7.4.1.1)

3~ 4drop(x)(drop(y)—1)

=(g) x (—g( xs/x3))-

1<4,7<n

7.4.1.2. Lemma. Hypotheses and notations as in 7.4.1 above, if n > 2 we
have the formula

A= @™ T (al-D/xs(=1).

1<i<i<n

Proof. That this formula is correct up to a multiplicative factor which is
an integral power of ¢ is clear from rewriting the product

I —a(.xi/x)
1<i3<n
in the last line of 7.4.1.1 as

I [=a(bxi/xi)) (=g, x5 /x:)]

1€i<i<n

(this is legitimate because —g(1,1) = —1) and remembering that for any
x (x = xi/x; in our case), we have
1 fy=1
a(¥,x) - g(¥. %) = ‘
x(=1}-q ifx#L
To see that we have the correct power of ¢, it suffices to remark that A4

is pure of weight equal to the weight of det(KI(v; x1, ..., xa ), e,

A= @™ W
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7.4.1.3. Corollary. Hypotheses and notalions as in 7.4.1 above, if n > 2
then for any closed point v of Gy @ By, we have the formule

det(F-"A K1(¢: X1y--- !Xﬂ)f) = Adeg(m)(nx'i> (NFq(xijq(m)):

7=1
where

A= (@™ [T a(-Dix (-0
1<igjsn

7.4.14. Remark. The formulas 7.4.1.2 and 7.4.1.3 are beth simplified by
the identity

I Gt/ = ((Hx)(—n)

1<i<j<n
whose elementary verification is left to the reader.
For example, if []x; =1, or if n is odd, ther we find
A= (g5
7.4.2. Now consider the case when all & = 1 and when all x; = 1. We
denote this sheaf simply

dfn
Kl (#) = Ki{o;4,...,5 1,..., 1)
() (o )

n times  n times
Applying the results of the previous paragraph, we find a result originally
proven by Deligne(cf. [De-3}], 7.8 and 7.15.2).

7.4.3. Theorem. The local monodromy atf zere of Kl,(9) is unipoient, with
a single Jordan block of size n, and Fy acts on (K1, (4))° as the identity.
Ifn > 2, then det(Kl, () is geometrically constant on G,, @ Fy, and for
any closed point z of Gy @ Fy we have

I deg(z}
det(Fp| Kl (¢)z) = (q 2 ) .

Proof. All the y; are trivial, so drop{l) = n, drop{x} = 0for x #1, so the
first assertion is just 7.3.2, (1) and {2). If n > 2, the second assertion is the
special case y1 = ... xn =1 0f 74.1.3. ¥

7.5. Appendix: The product formula in the general case (d’apres
Q. Gabber)

7.5.1. Let k be an algebraically clesed field of characteristic p > 0, { a
prime number ! £ p, Ex a finite extension of Qi, O, its ring of integers
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and F, its residue field. Let F be a lisse ) -sheaf (resp. Fj-sheaf) on
G @k which is tame at zero and totally wild at co. Let g be a topological
generator of If™¢. The Jordan decomposition of vy acting on F gives a
canonical decomposition of 7 as If*™°-representation

ynon-triv.contin.
=X
char. of I*™ to B,

(resp. to ?;f )

in which yy — 1 operates nilpotently on the first factor and invertibly on
the second. The cohomology sequence of 7.1.1 gives a short exact sequence

(7.5.1.2) 00— Flo - NG, @k F)— H (P @k, j,F) — 0,
so 1n particular
(7.5.1.3) dim({770) < hl(F) = Swane, (F).

Now dim{F70) is precisely the number of Jordan blocks in FTo—uniP There-
fore if we decree that Fo—U0P has Swang, (7) Jordan blocks in total, of
which Swangg (F) —— dim(F°} are of size zero, we may define the polyno-
oial _

F(F. T e Z[T]

by the recipe

f(f, T) = Z q(dini of Jordan l.:.lock).
“all” the Swan..(F)

Jordan blocks of
}- g—unip

7.5.2, Theorem. {O. Gabber). For F,G as above, we have the product
formula
FF=G.T) = f(F,T)f(G,T).
7.5.3. The proof is based upon studying the “forget supports” map
HGm @k, F) — H (G @k, F)
for F and for all its twists by tame characters, especially by the gencric
such character. We must first make precise what this means.

The tame (at both zero and oo) fundamental group of Gy, ® k is canoni-
cally 1somorphic to [ [, Z:(1) = Eﬂ tr (k), via the coverings [N] of G @k

P/}/N

by itself. Because these coverings induce precisely all the tame extensions
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of k{({}), namely the fields obtained by extracting N’th roots of ¢ for N
prime to p, we see that we have canonically

I(t]ame it Wl(Gm ® k tame ™ Hzi(l)
1#p
For any complete noetherian local ring A with finite residue field of
residue characteristic { # p, and any continuous character
X Igame e Ax)

we denote by £, the lisse sheaf of free A-modules of rank-one on G, @ &
which is tame at zerc and oo and which induces y on Ip. Altermnately, If A
is finite as well, then y is necessarily of finite order prime to p, (because
A% i), 80 of order dividing ¢ — 1 for some power ¢ of p. Via the canonical
identification Ifeme lim i (E), we may interpret x as a character of

pf N

Hy-1(k) = FY, and ther{ the £, in question is obtained from the earlier
defined £, on G, ®F, (obtained from pushing out the Lang torsor, cf. 4.3)
by pulling back to G,, ® k. Viewing A as the inverse limit of the finite rings
{A/m™},>1 allows us to define £, in the general case by passing tc the
limit.

7.5.4. Let us now fix a topological generator 7o of [5*™¢ and a prime
number [ # p. We denote by

XET IR (T [[XT])X
the unique continuous tame character satisfying
X5 o) = (1+ X)71
In terms of the homomorphism

tameNHZf ‘—~>—>Z1 )

I£p
we have the formula

XET(y) = (1 + X))/ (o),
For any complete noetherian local ring A with finite residue field of residue
characteristic [, we also denote by
X5 I s (ALK
X () = 1+ X))

the character obtained by extension of scalars.
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For such an A, suppose we are given a lisse sheal 7 on G, ® b of free
A-modules of finite rank which is tame at zero and totally wild at oo, The
long exact cohomology sequence on P! @ k for 7 : G,, — P! and

0 - H#F — RjeF - coker — 0
gives a canonical four-term exact sequence of A-modules
0= Flo 5 HA{G, @k F) = H(Gm @k, F) — Fr,{(~1) — 0

in which the middle two terms are free A-modules of rank = Swan, (F)
(cf. 2.0.7, 2.1.1).

Now extend scalars from 4 to A[[X]], so that it makes sense to form
.?-“% Lysen. The above four-term sequence gives an exact sequence of A[[X])-

modules

(T5A41) 0= (F@ Lysen)® = BHGr @ b, F & Lygen) —
— HYGp @k, F @ Lygsen) = (F @ Lygsen ), (—1) =0,

in which the two middle terms are free A[[X]]-modules of rank Swan, (F).

As Iy-representation, F @ £yen may be viewed explicitly as follows, De-
noting by F the free A-module of finite rank on which I§*™¢ acts, say by
5, we have

{ F @ Lysen = F[[X] as free A[[X]]-module of finite rank,
152me acts by o — elyo)(L+ X)L
Thus we have a two-term complex

Fiay) LI e

whose kernel and cokernel are (F @ Lyeen)'® and (F® Lysen )1, Tespectively.
7.5.5, Lemma. We have
{ (F@ Lyen) =10
(F & Lo ), = FILXN/X — (plyo) - 1)),
FProof, The complex

plro)(tHX) T -1

FIX)) ————— FIX]]

13 1somorphic to the complex

; #Mro)—-1-X
FIXY ——— FIX,
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by the isomorphism (1,14 X). This second complex is obtained {rom the

complex
—-1-X

Fix) 2 iy
of A[X}-modules by the flat (A is noetherian) extension of scalars A[X] —
A[[X]]. This last complex clearly has its differential p{yo) — 1 —X injective,

‘ plye)—1-X '

FIX) ——— FX},
as Is obvious by looking at the coefficient of the highest power of X in
an element of F[X] suspected of lying in the kernel. By flatness, the map
remains injective after extending scalars from A[X] to 4[[X]]. The assertion
concerning its cokernel is obvious.

7.5.6. Let us now insert this daba into our earlier four-term exact sequence
7.5.4.1, and remember that the choice of a topological generator vq of I§2m®
also provides a generator #;(7yg) of Z;(1), which we use to identify Z,{1) to
Z;. We find a short exact sequence of A{[X]]-modules

(758.1) 0 HH{Gpn ®kF@Lyten) ~ H(Gpro @k, F @ Lygen) —
— FIRX (X - (o) — 1)) 0,
the first two of which are free A[[X]]-modules of rank = Swan,, (F).

7.5.7. Before proceeding, it is convenient to axiomatize the sort of structure
at which we have arrived. The appropriate notion is a variant of Mazur’s
“spans,” which he introduced in [Maz] in studying Hodge and Newton poly-
gons.

7.5.8. Definition, Let A be an arbitrary ring, and X an indeterminate. An

“A-span” S° is a two-term complex S® 1 M 4 N, of free A{[X]]-modules of
the same finite rank, whose differential ¢ is A[[X]]-linear and injective. The
common rank of M and N is called the rank of the span, denoted rk(S®).

If B is a flat A-algebra such that B[[X7]] is flat over A[LX]] (e.g., this is
automatic if 4 and B are noetherian, by ([A-K], Chapter V. 3.2 (i) «——
(iv), applied to A[[X]], 7 = (X), M = B[[X]])) then an A-span S° gives ’
rise to a B-span, namely

5 B PN M &) B — By BUXT

(the map ¢ ® id remains injeclive by the supposed flatness).
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Given two A-spans 5§ and 53,

P
S8 M; — N; fori=1,2,
their tensor produet 5§ @ 55 is defined to be
21D b2

ST® S M My —— N N,
1 @0y ML By Ma Uafrp

( To check that this map between free A[[X]}-modules of rank rk(S}) tk(5%)

is in fact injective, observe that it factors into two injective maps

¢1®idMQ ile ®¢2
My @My 5 Ny My —5 Ny @ Ny )

If A is a field, then given an A-span
s M LN,

the theory of elementary divisors shows that, if tk(S) = r > 0 then A/
and N admit A[[X]]-bases in terms of which the matrix of ¢ is a diagonal

matrix o . O
O

with integral non-negative powers of X as diagonal entries. Intrinsically

71, ..., ", Mmay be recovered as the unique set of » non-negative integers for
which there exists an A[[X]-isomorphism

Nj$M = P A[IX])/(X™).
i=1
The asscciated polynomial to such a span, denoted
f(5%,T) € 2T

1s defined to be

rh(5*)
f(88,T)= > T
=1
For the zero-span, we define
F(0°,T) = 0.

7.5.9. Lemma. If A is a field, then for any two A-spans S§ and 5% we have
the formula for associated polynomaals

f(ST® 55, T) = f(57,T)f(55,T).

|
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Proof. If either S or S3 are zero, then S5 ® 53 is zero and the assertion is
“0=0in Z[T]” If both S§ and S% are non-zero, then in suitable bases we
have matrices for ¢y and ¢z of the form

an XM1
X0y KMy

whence ¢1 ® ¢2 has matrix

DT I |

7.5.10. Now let us return to the geometric situation at hand. Suppose that

A 1s a complete noetherian Iocal ring with finite residue field F'y of residue
characteristic [ # p, and that F is a lisse sheaf of {ree finitely generated
A-madules on G,, @k, k algebraically closed of characteristic p > 0, which
is tame at zero and completely wild at co. We define the monodromy span
of 7, Span(F), to be the A-span of rank = Swang, (F) defined by

Span(F): Hiﬂ(Gm @k F® ﬁxsen) —

forget supports

HY{(G @ k, F ® Lysen).

7.5.11. Lemma. For F,G sheaves of the above type (T.e. in L4 i), the mon-
odromy spans of F,G and F %G are related by o canonical isomorphism

Span(F * G) = Span(F) @ Span(G).

Proof. This results immediately from parts (6) and (9) of the Convolution
Theorem 5.1, applied to F ® Lysex and § ® Lyeen over A[[X]]. B

7.5.12. We may now conclude the proof of the product formmula 7.5.2.
Suppose first that A = F3, a finite extension of ¥;. Then for F € C4x, the
cokernel of Span{;F) is the F,[[X]]-module

FUXD/(X = (o) — 1))
Write F as Ip-module as the direct sum

= j:In—un'lp ® }“('Tn"l invertible)

Clearly we have

(}r.(_m_l invertible)) [{X]}/(X —_ (p(’)’o) — 1)) 3 0,
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{by Nakayama’s Lemma), so that the cokernel of Span(F) is isomorphic to

FRTRIXN/ (X = (p(v0) ~ 1)),

In terms of the Jordan decomposition of the nilpotent operator p{yo) — 1
on Fle—¥niP a5 a sum of Jordan blocks of sizes ny, ..., nk, we have, tautol
ogously,

Flo=mm2 X /(X = (p(y0) ~ 1)) = @Fa[[XW(X”‘)-

Adding on “extra” Jordan blocks of size zero to get a total of Swan,, (F)
blocks in “total,” we see that

F(F,T) = f(Span{F), 1.
Trom this identity, the product formula
FF*G.T) = f(F,T)f(G,T)

follows immediately from the two properties of Fa-spans

Span(F * §) = Span{F) @ Span(G)

F(St @83, T) = f(S1,1)F(85,T)
which we have already established. Th].S concludes the proof of the product
formula in the case of I'y-sheaves.

In the case of Ej-sheaves, we must argue slightly differently, Given a
lisse Fy-sheaf F on Gy, ® & which is tame at zero and totally wild at oo,
pick a lisse Ox-sheal F of free Oy-modules of finite rank which gives rise to
it. We may consider the Oy-span

Span(F),

whose cokernel is isomorphic to the ¢ [[X}]-module

FIXH/ X — (plye) = 1)).

By the flatness of E3[[X]] over (,[[X]], it makes sense to form the Ej-
span

Span(F) , @ FA[IX]),

whose cokernel is isomorphic to the E,[[X]}-moedule

FIXN X = (p(r0) = 1)),
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and just as above this cokernel is itself isomorphic to .

Flo- umpr[ ]]/(X (P('TO) - 1)):

so we see as above that
F\I)y= S F) 1,7
f( ) pan( % .

In fact, one can easily check that the Ey-span

Span(F ﬁJ -

depends only on f' Iy = F, and not on the auxiliaty choice of F; we

denote it simply as Span(f—) The formula for Oy-gspans
Span(F + &) = Span(F) @ Span(§)

vields by extension of scalars O3[[X]] — Ex[[X]] an isomorphism of Ej-
spans

Span{F « G) = Span(F) @ Span(G),

and the proof of the product formula concludes exactly as in the Fy-case.

7.6. Appendix: an open problem concerning breaks of a convolu-
tion. One problem concerning convolution which we are unable to solve i
the following. Given a lisse XA-adic sheal F on Gy, @ k in our convolution
category C (tame at zero, totally wild at infinity), let us define its Swan
polygon to be the polygon whose slopes are the breaks (of F as represen-
tation of I, the inertia group at oco), with muliiplicily the multiplicity of
that break. (If the distinct breaks are

0< A < Ag < - < Ap; ny = multiplicity of A;

then rank(F) = 3 n;, Swano{F) = >_n;A;, and the Swan polygon is (for
r=3).
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{rank(F), Swane,(F))

In view of 1.9 (essentially the Hasse-Arf Theorem) the problem is to com-

pute the Swan polygon of a convolution in terms of the Swan polygons of
the convolvees. The natural guess is that if
{ F has breaks A; with multiplicities n;
G has breaks p; with multiplicities m;
then their convolution F % G has :
1
breaks ——————— with multiplicities n;m; (A; -+ 1:).
) + (/) ()
Let us say that F is “unibrealk” if, as I.,-representation. F has a single
break (with multiplicity equal to rank(F)).. If the above guess is correct,
then we find that for F, ¢ in C, we have

F,G both unibreak = F % § unibreak.

Conversely, the universal truth of this last implication would imply the
universal truth of the hoped-for Swan polygen formula in the general case,
thanks to the existence of “local convolution,” established in Chapter 6
following suggestions of Gabher and Laumon.

Here are two reformulations of the Swan polygon formula. Given any
“polygon” in the sense of [Ka-4] with slopes Ay > 0 and multiplicities n;,
define the “inverse polygon” to be the one with slopes 1/;, and multiplic-
ities n;\;. Pictorially, the operation of “inversion” of polygons is

(‘r y Zn'l i Y Zni_‘m);
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if we horizontally translate all such polygons so that they “exactly” lie in
the second quadrant, then inversion is reflection in the line e +y = 0. In
this language, the hope is that the inverse Swan polygon of a convolution
F x G is the tensor product, in the sense of [Ka-4], of the inverse Swan
polygons of F and G,

A second reformulation is this. M F has breaks A; with multiplicities
n;, define its inverse Swan polynomial to be the Z-polynomial in fractional
powers of an indeterminate T

inv. Swan(F, T) = > nd 1™,
Then the Swan polygon formula to be proven is the product formula
inv.Swan(F G, T) = (inv.Swan(F,T))(inv . Swan(G, 1)),
for F,G in C. -
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Complements on Convolution

8.0. A Cancellation Theorem for Convolution

Let k be an algebraically closed field of characteristic p > 0, [ a prime
number [ # p, and 4 an l-adic coefficient ring as in 5.0. We have seen
(6.2.1, 5.2.3) that for F € C and G e@the two convolutions JF % G and
F.# G both lie in 77, and that, if G lies in C;, then these two convolutions
cotnctde, and they lie in ;.

8.0.1. Cancellation Theorem. Let F be a non-zero object of C, and G an
object of Ty, If Fy % G lies in Cy, then G dtself lies in Cy.

Proof. If A = E), then by picking @ -forms of F and G, we may reduce
to the case A = Oy. If A is complete noetherian local with finite residue
fleld F'x, we may reduce to the case 4 = F), (formation of F; *G and of the
break-decompositions of F, + G and of G as Py.-tepresentations comrmtes
with the extension of scalars of coefficients A — Fi; therefore if 71 % G
is completely wild at oo so is (.77(}213 Ty * (G l‘% F3); by the theorem over
Fy, ¢ <§> F, is totally wild at co; by Nakayama’s Lemma applied to the

Foo-invariants of G, we see that G is itself totally wild at o0).

8.0.2. Lemma. For A=F,, F inC and G in T, we have

(1) The sheaves F\ %G and F, +G are lisse Fy-sheaves on G, @k of the
same rank, namely rank(F) Swane, (G) + rank{G) Swang, (F).

(2} The kernel “Ker(F,G)” of the canonical map FixG — F, %G 1is lisse
on G, @k, and tame at both zero and oo.

(3) If Fi# G lies in C, then Fi+G 5 F, +G.

- Proof. Tor (1), we already know both convolutions are lizse, tame at 0,

and that their formation commutes with passage to fibres. The rank is
computed by the Buler-Poincaré formula, applied to any fibre (¢f. the proof
of the same formula for F, G both in ).

For (2), the fact that Ker is lisse on G, ® k and tame at zero is obvious,
because it is the kernel of a map of sheaves each of which is lisse, and tarme
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at zero. Granting for a moment that Ker is also tame at co, we may easily
deduce (3), for if F = G is totally wild at co, then its tame-at-co subsheaf
Ker must vanish. As 7+ G and F, * G are lisse of the same rank over the .
field ¥, the injective map hetween them must be an isomorphism.

It remains to prove that Ker is tame at oo, for F € C and G € 7. We first
reduce to the case when F and G are lisse at zero. Because F is tame at
zero, and we work with finite coeflicients Fy, there exists an integer NV > 1
prime to p for which [N]*F and [N]*(G) are lisse at zero, (N.B.: [N]*F 1s
still totally wild at o0). So the spectral sequence (5.2.1.1) and its variant
(5.2.1.2) yield isomorphisms

[NT*(F % @) S (INT*(F)n * {N]"‘(g))l‘.n(k‘)

(N (Fu % G) 5 (INT"(F)o » INT (@) 8,
whence an 1somorphism :
[N* (Ker(F,G)) = (Kex([N]"F, [N]"G))"~.

Therefore it suffices to prove that Ker{[N]*F,[N]*G) is itself tame at oo,
1.e., to prove that Ker(F,G) is tame at oo under the additional hypothesis
that F,G are both lisse at zero,

Yor any F,G lisse on G, the standard compactification of the multipli-
cation map 7 : Gy X G — G a8

GmemC—i—+ Pl x G,

(z,y) ———(z,zy)

gives

Rr(FBG) = Rpro)((F B G))
Rr.(F8G) = R(pra). (Rl F R G)).
Because the natural map in D4(Gm ®k, Fa)
#(FRBG) — Rj(FRG)

is an isomorphism on G, X Gp,, the cohomology of its mapping cylin-
der is concentrated on the iwo sections {0} x Gy, and {oco} x G, of

~
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prs : PP x Gy, — Gp. For any sheat H on P! x G,, which is concen-
trated on these two sections, we have

From the commutative diagram

{eo}xid

£

. 0 ifi1#£0 Gy X Gy © P!~ {0} x G, ———= G,
Ri(ors)a(0) = { 7 " ey (X G ==
(H i {O} X Gm) EB('H l {oo} X Gm) if =0, g (ll’lY)erSlO?/de)
. z,y) — (1/z,
where in the last formula hoth {0} x G, and {co} X Gm are viewed 2s switch factors - Y
“G” Therefore the long exact cohomology sequence (for R(pra)«, and S (E:I’y) Al X G, {o}xid, G,
the above j. — RJ*) is {v,2) § Shearing
o ROm(FIRG) — ROm(FRG) — ] (r@) = (T2, 2)
— (u(FRG) [ {0} % Gp) P (FBG) | {00} X Gim) — RIm(FRG) = G X G d DAL X Gy e 5

("‘"’)1’)'_’(“";‘!179')
we see that Re
PW(FEG) | {0} x G = L(FRG) | {o0} x G,

E(GRF) | {0} x G,

nd this last 1s, as we have seen just above, isomorphic to

G(0) @ (k(F, B F) | {0) x G,n).

s R (FRG) — (R.(FRG) | {0} x Gm)@ﬁ
— (R (FRG) | {o0} x Gim) —
- R FRG) — RPm(FRG)— ...

Now suppose that F and G are each lisse at zero, and denote by ?, G the

unique lisse F-sheaves cn .j‘fl ® k extending F and ¢ respectively (Le., 11
terms of jo : Gm — A, F = (jo).F, and G = (jo)«G). Then we claim

that we have canonical isomorphisms of sheaves

{ J(FRG) | {0} X Gon = F(0) @ (7. (F2 BG) | {0} X Gi)

G {FRG) | {oo} % Gm = G(0) 1‘@; (i (FBE,) | {oo} x Gm). Reading backwards with G replaced by F, we may rewrite this as

Indeed, to caleulate j,(F B G) restricted to {0} x Gy, it suffices to G % (o (FRES) l {co} X Gm)),

caleulate in the Zariski neighborhood Al X Gy of {0} X G, Le. to calcuiate
k (FRG){0) x Gy, where

kE:Gm xGm — A x G,
(@,y) — (z,21).
In terms of this calculation, we have

FRG=k(FRF,) @ (F,8G),

as asserted. This concludes the proof of the elaim,
Thus we are reduced to showing that if 7 and ¢ are lisse sheaves on
G, @ & which are }isse at zero, then the sheaves

(j*(F)\ X g) l {D} x Gm):
(G (FREFS) | {oa} x G,
ém_e tame at oo, But each of these sheaves is a direct factor in a sheaf which,
by the above long exact sequence formed with F) and § (resp.,with F and
F.}, is caught between R°m,(Fy K G) and R'm(Fy W G) (resp. between

R'r,(FRF)) and R'm(FX®F,)). By Lemma 5.2.1.4, we see that all these
1_ast sheaves are constant sheaveson G, @ k. B :

so the projection formula gives an isomorphism on Al x G,
Bk (FRG) =~ (FRF,) @ RE{FAHG).

Taking i = 0 and restricting to {0} x Gon in A? x Gy gives the assertion
for 3,(FBG){0} X Gun.

To calculate j,((FRG){oo} X Gy, we may calculate in the Zariski open
neighborhood {P! — {0}) x G, of {oc} X G In Pl x G,,. '

‘We now return to the proof of the theorem with 4 = F,, F non-zero in
C,and G in 7T such that (thanks to the lemima,)

Fi+xG S F, G liesin C.
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We wish tc prove that G lies in €, i.e., is totally wild at co,

8.0.3. To prove this, we will use Gabber’s method of spans (cf. 7.5) to
analyze the local monodromy at both zero and oo of G. For any finite local
Fy-algebra A, and any continuous character

X mi(Gr @ b = T[2:(1)
1#p

we have
(f!*g)gﬁx = ((f!*g)gD;A)%ﬁx
= (7 ®A)+(G®A4) ® Ly
=~ ({(F® A) §:£X)_| * ((G®A)§£X)
= (F @ L6 8 L),
and similarly
(Fox0) @ Ly =(F @ Ly)a %G B Ly):
Applying 5.2.2.1, we see that for 1 # 1,
Hi{Gm®kG L) =0=H(Gr kG ® Ly);
F:\ F)\
and for ¢ = 1 we have isomorphisms

Hi (= (Fix0) @ L) = HI(— F @ L) § HA(—,6 @ L)

¥, A
H(— (F*9 p L) S H(—F 8 L)@ H (—,G @ Ly).

Because both H} and H! of F ® L are free A-modules of non-zero rank
= Swan, (F), while the H} and H1 of (1 *G) ® Ly and of (F, % G) ® Ly

respectively are themselves free A-modules, (bec:mse the sheaves in questxon
lie in C), it follows that

HHGL.®kG © Ly) and HY G, @k 2 Ly)
A A
are each free A-modules of rank Swan.,(G).

The long exact sequence for the mapping cylinder of

(G £ = Ri(0 @ £0),
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for j : Gy <+ P! the inclusion, thus reduces to a four term exact sequence
(in view of the vanishing of H* and H for ¢ # 1)

0— (G ® L) PO ® L) = H(Gm ©k,G ® L) —
— HYG ® k68 L) = (G © L)1 (1) DG ® Ly)r,. (-1) = 0.
Applying this with
A = a finite over-field of Fy, say F,
¥ = xo T (G @ k)™ — A* a fixed character,
we see in parficular that
dim(G ® Ly,)"* + dm(G & Ly,)'= < Swane (G);

1.e.

# of Jordan blocks .\’ # of Jordan blocks
(in (6 ® Ly) o= ) T \in (G @ Lypytmmvnip J S SWano(9).

We define
f(g @ 'CXDJT) € Z[T]
by the recipe
FG® Ly, T) = E 7(dim of Jordan block)

the sum extended to “all” the Swanoo(g) Jordan blocks of (G @ £y )Irump
at zero ‘and of (§ ® £,,) = """P at co, with the convention that of these,
Swane, (G) ~ dim(G ® )CXG)I“ — dim(G ® L, )= are of size zero.

Pass now to

A= F[[X]]

x = Xoxuniv, where Xuniv . Wl(Gm ® k,)tame — A%
maps a chosen generator vg of I{*™ to (1 + X)~1,
and also maps a generator ye of 122M¢ to (14 X)~1

(Because the inclusions of both Iy and [ in ?Fl(Gm ® k) induce isomor-

phisms _
I(t’iame T, Wl(Gm ® k)ta.me

p

Itame



128 Chapter 8

the chosen generator ¢ of Iteme defines a unique generator 7y, of 7iame

which has the same image as 7o in 7;(Gm ® k)=me} Just as in 7.5.6, we
obtain a three-term exact sequence

1
0= H (G ®k, (8L, )@ Lypuntr) — H Gk, (G® Ly )® Lyaiv) —
(68 Ly @ Lyuat )1y (=1 DG © Ly ® Loeere Y (1) — 0.
Exactly as in 7.5.6, we see that

1 forget supports
Ho (G ®F, g®£?€0 ®£X““i") e Hl(Gm Rk, g®ﬁxn-®£xuniv)

is an F/-span, denoted Span(G ® Ly, ), whose associated polynomial is just

f(g ® EXOJT):
F(Span(G @ Ly,), T) = f(G ® Ly,, T).

From the isomorphisms 5.2.2.1, we see that the already-defined mon-
odromy spans of the objects of C which are F ® Ly, and (A% G)@ L, ~
(Fi % G) ® Ly, are zelated to Span(G @ £L,,) by

Span((F « G) ® £L,,) =~ Span(F ® Lyo) ® Span(G ® £

XoJ'
Passing to associated polynomials, we find a product formula
f((}-‘ *g) ®£’XnJT) = f(f®‘CXuﬁT)f(g ®'CX0!T)'

Differentiating and evaluating at 7" = 1, we find

rank(((Fr# G) @ Lyo)°™5P) = fUF ® L, DG ® Loy, 1)
+IF O Ly, DG ® Ly, 1)
= (dim(F ® Ly,)°~"""") Swan,, (G)
+ Swaneo (F) [dim((G @ Ly,)"* ™" P) + dim((¢ @ Ly Yl=mumipy]
Summing over all xq, this yields
rank(F: + G) = rank(F) Swane,(G) + Swang, (F)rank(G)
+ Swano (F) dim((§) =),

But we know that rank(# * G) is equal fo the sum of the first fwo terms

alone, whence, as Swane{F) # 0, we conclude that dim{G)~ =G, ie., G
is totally wild at oo. B ' J
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8.1. Two Variants of the Cancellation Theorem

8.1.1. First Variant. Let k be algebraically closed of characteristic p > 0, 1
a prime number | # p, F a finite extension of ¥;, A the coefficient ring
F,. Suppose we are given F €C, G € T such that
(1) Fis G S Fux G .
(2) for all finile extension fields ¥\ of Fx, and all continuous characters
x :m{(Gm ® Eytame  (FL)X, we have HY{Gn @ kG L) =0 =
HY (G ®k,G ®Ly).

Then we have the formule
dim((F % §)7=) = Swang, (F) dim((§)F=).

Proof. The isomorphisms 5.2.2.1 show that the sheaf Fi + ¢ ~ F, % § also
satisfies the vanishing properties of (2) above:

HY( G @k, (F % 0) ® L) = 0= H2 (G @k, (Fi < G) @ Ly),

for all x as above. Because F lies in C, it too satisfies these vanishings.
We wish to pass to the apans attached to these sheaves, Far this, we need

. the following standard lemma, the second part of which was already proven

(cf. 2.2.7). B

§.1.2. Lemma. Let A be a complele noethertan local ring with finite residue

field By of characteristic [ # p, H a lisse sheaf of free A-modules of finite

rank on @ smooth open connected curve U over k, still suppoesed algebraically
closed of characteristic 1. .

(1) IfHO(U,H(§FA) =0, then HY(U,H) = 0 and HY{U, M) is a free
A-module whose formation commutes with arbitrary ertensions of
coefficient rings A — A'.

(2) If HY(U,H F) =0, then HXU HY =19, and HX{U,H) is a free
A-module whose formalion commules with arbitrary extensions of .
coefficient rings A — A’

Proof. In both cases, the cohomology groups in question are those of a two-
term complex of free A-modules of finite rank, say M — N, (cf. 2.2) which
after any extension of coefficient rings A -+ A" computes the cohomology
groups 0f’H§JA". In case (1), we are told that M @F, — N @F},; therefore

rank(M) < rank(X), and in A-bases of M and N respectively, the matrix
of M — N has a wminor of size rank(M) which is invertible over Fy, so
mvertible, Therefore M is a direct factor of N, say M = N & M’', and
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the assertion is obvious. In the second case, we are told that M — N is
surjective after @F), so surjective. As N is free, there exisis a splitting
M~Ker(M - N)®N.§

Fix a finite over-field ¥ of ¥'5, and a character
Xo i TG @ k)™ s (F)X,

We will apply the lemma to U = G,, ® k, A = F{[[X]], K the sheafl

K @ Lyuwiv where K is any of the lisse F)-sheaves F @ Ly,, G ® Ly,
F, -

(F:*G)® Ly,. This allows us to form the spans of each, and their as-

sociated polynomials f(K,T), given by '

f(K T) = Z p{dim . of Jordan blocks)

where the sum is extended to “all” the Swan(K) Jordan blocks of hoth
(K)fo—umiP a5 Iy-representation and of (K)fee—unip ug I -representation,
with the usual convention that Swang. (K} — dim(}CI“) — dim(}CI“’) of these
biocks have dimension zero. Just as in 8.0.3 above, we have the tensor
product formula

Span((Fi +§) ® Ly,) = Span(F @ Ly,) ® Span(G @ Ly,)

with its resulting product formula
FF*G) @ Loy, T) = F(F @ Ly TG ® Ly, T).

Differentiating and evaluating at 1, and summing over all o, gives the
assertion. § :

8.1.3. Second Variant. Let k be a finile field of characieristic p, 1 a prime
number ! % p, Ey a finite extension of Q, A the coefficient ring .
"Suppose we are given F € C, G € 7 such that
(1) F,G and Fr G are all pure sheaves on G, ® k. _
(2) For any finite extension field B of Ex, and any conlinuous char-
ecter of finile order x : w (G @ k*P)™ — (EY* we have
HY Ghn@kP QL) =0=H(Gnh@ kP ¢® L33

Then we have the formula
dim((F, * §)F=) = Swan, (F) dim((G)=).

Proof. By the isomorphisms 5.2.2.1, (resp., the fact that F € C), we see
that 7y + G (resp. F) also satisfies the vanishing properties (2) above. For
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K any of the sheaves F® Ly, G @ L, (FI*G)® Ly, we have, denoting by
j 1 G, — P? the inclusion, a three-term exact sequence
0 — K:IU @]CIOO — Hé(Gm ® ksép)}c) — HI(PI ® ksep,j*)t) —+ 0.
.We may apply the welght analysis of 7.1.1, to find that f(K,T") as defined
in the first variant is equal to
Z T(1+weight(x.‘)—weight(u)) )

o eigenvalue
s of F' on
HYG, @k X)

From this, and the isomorphism
HHG, @k, FQL,)® H{Gr 9k G L,)
> Hy(Gm @ P, (Fi+ GY ® Ly),
it follows {cf. 7.1.4) that we have the product formula
<2
FUFRG) Ly, T) = f(F@ Ly, T)- (G® Ly, T).

Differentiating, evaluating at 7' = 1, and surnming over all x of finite order
gives the assértion. §

8.1.4. Remark. Yor F and G as in the first variant, if we do nof use the fact
that Fi + G 1s tame at zero, the caleulation ending the proof wiil give, for
each xo,

dim((F) * G) @ Ly, )7 P + dim{(F # G) @ Ly, )Toe 0P
= Swane (F) [dim(G ® £,,) 7P + dim(§ ® £, )To7="P]
+ Swane, (§) [dim(}" @ £x°)1°_““ip] )
Summing over all o, we find
dim((F, * G37) + dim{((F, * §)F)
= Swang, (F)[rank{G) + dim(GF=)] 4 Swan.. (§) rank(F).
But the Fuler-Poincaré formula gives
rank(F) * G) = Swane (F)rank(G) + Swan., (G) rahk(.’F),
so we have
' dim((F, * §)™14 2 0) | Qim((F, + G)tome 2t o)
= Swane, (F) dim(gt"me at ooy,
In particular, if F and G both lie in C, we have
Gin(Fi + G)¥IL 8 0 L dipn(F & G)Pame 0 — g
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This gives another proof, independent of 5.2.1(3) and 5.2.3, of the fact that
' F,G both in ¢ = F G liesin C.

8.2. Interlude: Naive Fourier Transform (cf. {Lau-2])

8.2.1. Let k be an algebraically closed field of characteristic p > 0, [ a
prime number I # p, E) a finite extension of Q, O its ring of integers,
F, its residue field. Fix a finite subfield Fy C k, and a non-iriviel additive
character '
P (Fy,+) — OF.

(Such a ¢ exists if and only if the residue field F5 contains a non-trivial
p'th Toot of unity, i.e., if and only if #(F,) =1 med p.)

We have already defined Ly as a lisse, rank one (y-sheaf on Al F,,
obtained by suitably pushing out the Lang torsor. By inverse.image, we
obtain £y on A'®k. For any a € k = A'(k), we denote by

Lyary T (2 = az)*(Ly),

another lisse rank one y-sheafl on A'®@k. For a = 0, Ly(ax) 18 the
constant sheaf @y; for a # 0, Ly(az) has Swane = 1.

8.2.1.1. Definition. For A either of the coefficient fields Fy, E,, a con-
structible A-sheaf F on Al®@k is called “elementary” if it satisfies the
two following conditions:

Elem (1) F has no non-zero punctual sections, ie, if J: Ues Al@k

is the inclusion of any non-empty ouvert de lissité of F, the canonical

map F — j.j°F is injective.

Elem (2) For all a € k, HZ(A*@k, F & Ly(az)) = 0.

Because each Ly(qz) is lisse of rank one on A'®k, condition (1) is equiv-
alent to

Elem(1)bis : for all a € k, HY(A*®k, F ® Ly(ar)) = 0.

8.2.1.2. Definition. A constructible A-sheaf F on A'®k is called a Fourier
sheaf if it is elementary and it satisfies the following two additional condi-
tions:

Fourier (1) For §: U < A'®k the inclusion of any non-empty ouvert

de lissité of F, we have F = j j*F

Fourier (2) For any a € £,

HYA ®k, F @ Ly(ary) = 0.
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Notice that the notion of being an “elementary” or a “Fourier”sheaf is
independent of the auxiliary choice of (Fy, 1), appearing in its definition.
Indeed for any other choice (Fg,, 1), pick a common finite over-field F,,
of both ¥, and F,,, and denote by ¥ and 1, the non-trivial characters of
F,, obtaned from ¢ and ; respectively by composing with the trace from
Fy, to ¥, and to F, respectively. Then there is a unique b € (F,}* such

that t; (z) = $(bz) for all & € Fy,, and for this b we have an isomorphism
of sheaves on Al®k

Loy = Lyade)-

8.2.1.3. Lemma, Lel F be a constructible A-sheaf on A'®k, .U «— A'Qk
the inclusion of a non-emply “ouvert de lssité” of . Denote by (j*F)¥

the A-linear dudal of 7*F (contragradient representation of m(U,7)). Then
we have the following tmplications:

(1) If F is Fourier, then F is elementory.

(2) If F S 4.*F, and if (* F)5 is a completely reducible representation .
of ©1(U, ), then F 'is elementary if and only if F is Fourter, indeed
Elem(2) <= Fourier(2) for such an F.

(3} If F = ju3* F, then F is Fourier if and only if both F and j. (57 F)¥)
are elementary.

(4) If F is Fourier, then j.((j*F)Y) is Fourier.

Proof. (1) is obvious. (2) holds because Elem(2) is equivalent to re-
quiring that j*F as m,(U,#) representation have no quetient isomorphic
to any of the one-dimensional representations j*Ly(az), for any a € k,
while Fourier(2) requires in addition that j*F as m(U,7) have no sub-
representation isomorphic to any of the j* Ly(az), @ € k. (3) is obvious from
the fact that HO(U,(j*F)Y © CLy(as)) 15 the A(—1)-dual of
HXU,7*F @ Ly(as)), and similarly with F replaced by FV. (4) is obvi-
ous from (3). B

8.2.1.4. Lemma. Let K be an algebraically closed over-field of k, F a con-

structible A-sheaf on A*Qk, Fyg ils inverse image on A' @ K. Then F is
elementary (resp. Fourier) if and only if Fx is elementary (resp. Fourier).

Proof. Consider the diagram

pry = X
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Proof. Assertion (1) is the involutivity of the “correct” Fourier transform.
Assertion (2) is geometric, so we may assume k algebraically closed. For
an elementary F, and j: U «— Al®k the inclusion of a non-empty ouvert
de lissité of F, we have a short exact sequence

0= F = juf"F = P (F/Fa) — 0.

ack

Then F on A'®k is elementary if and only if
Ri(pra)i(pri{F) @ p*(Ly)) =0 for i#1,

so the asserted invariance of the property of being elementary results from
the smooth base change theorem (SGA IV, Exp XVI, 1.1 and 1.5). By part
(3) of the previous lemma, the invariance of “Fourierness” follows from that

of elementaryness.
Y . Passing to the long cohomology sequence of the functors

Ri(pra)(pri(—) @ p* (Ly))
'V_v_e get a short exact sequence of sheaves on A*®k

0 — ER(F /Fa) ® Lygar) — NETy(F) —
ack

8.2.2. Definition. For A = F) or Ey as above, and k any field of charac-
teristic p, a constructible A-sheaf F on Al®k is said to be elementary, re-:
spectively Fourier, if for some (or equivalently, for any) algebraically cIosed:
over-field K of k, the inverse image of F on A' @ K is elementary (resp.
Fourier}.

8.2.3. Definition. Let F be a constructible A-sheaf on A'®k, &k any over-
field of F,. Its naive Fourler transform, denote NFTy(F), is the con-
structible A-sheaf on A'®@k defined by

NFT4(F) = R (pra)(pri (F) @ p*(Ly)),

where pry, pry, i are the three maps A% — Al in 8.2.1.4 above.

s NFTy{juj*F) = 0.

Tensoring this with Ly(-as) and passing to cohomology on A'®k, we get,
r.every a € k,

0 (Fl*/F.) = HY(A' @k, NFTy(F) ® Ly(-as)-

hus we see that, for F elementary, we have

8.2.4. Warning. This definition is reasonable only for elementary F’s, as the:_
“correct” Fourier transform of F is the object R{pra2):(pri(F) & p* (L)1)
in DY(Al®k, A). The elementary sheaves are precisely those for which thig
object has only its zeroeth cohomology sheaf non-zero, and our “naiv
Fourier transform is precisely this cohemology sheaf.

(8.2.5.4) NFTy(F) satisfies Fourier(2) == F satisfies Fourier(1).

Now consider all the Ly(as)-subsheaves of a given elementary 7. Because
H;(Al®k,£¢(a5)) = 0 for i # 2 and for all « € k, we see that if F is
: ementary, and if we are given an injective map Ly(az) — F, then the

) . kernel is again elementary, for if
8.2.5. Mair Theorem on Fourier Transform (Laumon, Deligne).

(1) If F is elementary, then NFTy(F) is elementary, and if we de:
nole by y the inverse (complez conjugate) characier to v, we have
a canonieal isomorphism, funclorial in F,

0— Lytazy = F =G —0,
jth.en after twisting by any Ly(sr) we have

HiA'Qk, F ® Lygs)) ~r H(A'®k, G ® Ly(sa))
NFT=(NFTy(F)) = F(-1).
oA v(F) (=D for i # L.

Because the Ly(ar) for variable a are pairwise non-isomorphic, we have,
r any clernentary F, a short exact sequence

0— D HAA Ok, F ® Lyar)) ® Ly(caz) = F =G — 0
cEk

{2) If F is Fourier, then NFT(F) is Fourier. More precisely, for F.
elementary, and { # j in {1,2}, then F satisfies Fourier(i) <
NFTy (FY satisfies Fourier(j).

{(3) Ifk is o finite field, A = E), and F is a Fourier sheaf which 15 pure
of some weight w (meaning thatl J*F is puncivally pure of weight w
on any non-void ouver! de lissité), then NFT () is a Fourier sheef
which is pure of weight w+ 1. :

in which F is again elementary, and in which

HD(A1®k‘,Q’ @ E!p(m)) =0 forallack.
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(One sees this last vanishing by tensoring the above exact sequence wi
Ly(az); and passing to the long exact cohomology sequernce.)
Now consider the long exact cohomology sequence of the functors

Ri(pra)((pr)" (—=) @ #"(Ly)) -

HYA'®k, F @ Ly(as))

0 — NET,(F) — NI'T [ F®Luen) | L,
- «(F) = d}(g)_)i.i cone, at a

But both F and G being elementary, their NFTy s have no punctual se
tions. Because NFTy(F) is, by the above sequence, a subsheaf of NFT(
with punctual quotient, we see that, denoting by j : I/ « A'®k the incl
sion of a non-empty ouvert de lissité of both F and G, we have

NFTy(F) C NFT(G) C j.5*NFTy(F) = 1, ;*NFT,(6),

whence an injective map

1
EBk LH;((;A&???@EMM)) ] =T NPT, (G)/NFTy(F)
ag - ’

~

~
™ G NFTy(F)/NFTy(F).
Therefore we have, for F elementary,
NFT,(F) satisfies Fourier(1) = F satisfies Fourier(2).

Combining this with (8.2.5.4), we thus obtain, for 7 elementary, and i #]
in {1?2}1 ’ :

NF'Ty(F) satisfies Fourier(i) => F satisfies Fourier(j)

as required. By the involutivity (1) of NFT, these implications are in fact
equivalences: for F elementary and ¢ # j in {1,2},

NFTy(F) satisfies Fourier(i) <= F satisfies Fourier(j).
Assertion (3) is a special case of {[K-L], 2.2.1). §

B.3. Basic examples of Fourier sheaves

8.3.1. Lemma. Let k& be an algebraically closed field of characteristic
p, §:U «+ Al@k be the tnclusion of a non-empty open set, F a lz‘_sse
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-sheaf on U, for A= Ex or Fy. Then 7, F is a Fourier sheaf on A'®k

any of the following conditions hold:

(1) F is totally wild at oo but has no break equal to I (ie., as Po-

representation, all break of F are > 0 but #£1).

(2) At some point a € A'®k —~ U, Fle =0 (i.e., iuF on A'®k has

stalk zero at some point).

(3} As representation of w1 (U, ), F is irreducible of rank > 2.

(4) As representation of (U, ), every irreducible constitutent salisfies
one of (1}, (2) or (3) above.

roof. What must be shown is that j7,F contains no subsheaf and no

otient sheaf of the form Ly(qy) for any a € k, and this obviously holds
all three cases. B

4. Irreducible Fourier Sheaves

Let % be an algebraically closed field of characteristic
>0, 1#£ p, A=F,orE,, FaFourier {A-)sheaf on Al®k We
y that F is an irreducible Fourier sheaf if for some (equivalently: for any)

on-empty ouvert de lissité § : U — A'®k, 7*F is irreducible as an A-linear

presentation of w1 (U, 7). If K/k is an algebraically closed over-field, then
Fourier sheaf 7 on A'®k is irreducible if and only if its inverse image on

'@ K is irreducible, simply because 71 (U % K) = n(U).

4.1. Theorem (Brylinski). If F is an irreducible Fourier sheaf, then

FTy(F) is an irreducible Fourier sheaf.

roof. By Fourier inversion, it is equivalent to show that if a Fourier sheaf

is mot irreducible, then neither is its NFT. So let F be a Fourier sheaf,
;U= A'®k a non-empty ouvert de lissité, and F; C 7*F a lisse sub-

heaf corresponding to a non-zero irreducible representation of =1 (U, 7). We

sume that Fy # 7°F. Then we have a short exact sequence of lisse

on-zero sheaves on U7

00— Fl =" F=F,—0.

“Apply ., we get an exact sequence

. . punctual sheaf sup-
0~ juFy — '7:\_} L (ported in Algk—U] 0.

Let us define a sheaf Fa on A'®k by
Fa = image of F in j.Fy.
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We first claim that F3 is elementary. The exact sequence If j - U — A'®k is the inclusion of a noh-empty ouvert de lissité of JF,

then drop(F,a) = 0 for a € U. If F satisfies Elem(1), i.e., if F — j,5°F,

punctual, supported in ) .
then the largest ouvert de lissité of F is precisely the set

Alek—-U
shows, applying first j* and then j,, that

0—»’}“3**]'*72*4(

{a€ A'(k) suchthat drop(F,a)=0}.
.* .*}- :; . T , : ) N
T Fs — w2 8.5.2. The Euler-Poincaré formula for a constructible F on Alek gives

X(A'®k, F) = rank(F7) — Y drop(F,a)— Y Swan,(F).

a€k ackloo

so that Fz e j, 1" Fa satisfies Elem{1). That Fa satisfies Elem(2) results
from the fact that Fa is a quotient of F, which itselfl satisfies Flem{2),
and the fact that any quotient of a sheaf satisfying Elem{2) again satisfies
Elem{2).

We next claim that j./F; 1s Fourier. It obviously satisfies Fourier(1), and,
being a subsheaf of F, it satisfies Fourier(2) (because F does, and Fourier(2)
passes to sub-sheaves). Because i*(juF1) = F1 1s irreducible, and hence
semi-simple, it also satisfies Elem(2), because Elem(2) <= Fourier(2) for
a completely reducible F3.

Now apply NFTy to the exact sequence

.. 8.5.3. If F is an elementary sheaf on Al®k, then NFT,(F) is elementary,
and so the largest ouvert de lissité of NFT(F) is the set

{y € A'(¥) such that drop(NFTy(F),y) =0}
ecause .7-‘ is elementary, for zihy v € Al(k) we have
rank((NFTy(F))y) = by (A'®k, F @ Lyyr))

= ~Xo(A1 Ok, F @ Ly(ys)) = ~ rank(Fy)

+ E(drop(.’F ® Ly(yn),a) + Swana(F @ Ly(ye)))
ack

+ Swane (F @ Ly(yz)).

In this last sum, the terms

0._:,_7'*}'1—-;_75'%}}"'3—»0.

Because Fa satisfies Elem(1)bis and j, F; satisfies Elem(2), (both belng;
elementary), we have a short exact sequence ' :

) (@) ®)
0 — NFTy(JuFe) — NFTy(F) — NFTy (Fa) — 0. drop(F ® Lyysy,a),  Swan,(F @ Lygyr))

Because j, Fi and F are Fourier, so are NFTy(juFi) and NFTy(F). There:
fore for any k : V < A'®k a non-empty ouvert de lissité of botl
NFTy(jeF1) and of NFTy(F}, the given map (a) is equal to k. k" ((a)). '

We claim that k*NFTy(F) is not irreducible. For if it were, then eith
k*((a)) = 0 or k*((a)) = isom; because () = k.k*{(a)), this implies either
(a) =0 or (a) = isom, ie., either (a) = 0 or (b) = 0. By Fourier invers
either j,Fy = 0 or F3 = 0. By construction, j.Fy is # 0, so we must h
F4 =0, in which case J, F1 = F is irreducible, contradiction. B

¢, for each fixed a € &, constant functions of y (simply because Lyya)

@__.’l_isse of rank one on A'®#k for every fixed y). Therefore we find, for F
slementary, the formula

nk(NF Ty, (F),) — rank(NFTy (F)o) = Swane, (F ® Ly(ys)) — Swane (F).

particular, the largest ouvert de lissité of NFTy(F) is the set of y €
(k) at which the function -

Al (k) ——— Z

8.5. Numerology of Fourier Transform W

8.5.1. Let k be an algebraically closed field of characteristic p, 4 = F
or By, ¢ (Fy,+) — A* afixed non-trivial additive character of a finite
subfield. For F a constructible A-sheaf on A*®@k, and a € k = Alk),w
define an integer drop(F,a) by the formula "

Y b————5wane (F ® Ly(yr))

umes its mazimum value,

.'.'_4. Lemma. Let & be an algebraically closed field of characterisiic
A=Fyor Ey, ¢ (Fy,+) — A% a fired non-trivial additive char

drop(F, a) = rank(Fg) ~ rank(Fy). er of a finite subfield. Let M be 2 non-zero finife-dimensional A-veclor
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space on which Py, operates irreducibly, and let t be the break of M, i.e
M = M(t) in the notation of 1.1. Then
(1} Ift <1, then for alla € ¥*, M @ Ly(az) hos all its Poo-breaks = 1.
- (Fora =0, M ® Lyar) =M has all breaks t.)
{(2) Ift > 1, then for alla €k, M @ Ly(ag) has all ils P, -breaks equal

tot.
(3) Ift = 1, then for all but at most one value of a € k, M @ Ly(ar)
hos all ils Py -breaks equal to 1.

Proof. Assertions (1) and (2) follow immediately from (1.3), and the fact
that Ly(ag) has Pe-break 1 for a # 0, and P-break zero f(-)r a¢ = 0. For
(3), if @ € k then M ® Ly(ar) Is still Po-irreducible, and all its breaks are
< 1, so either all are 1 or all are some # < 1. If M ® Ly(ar) has all breaks
t < 1, then for b # a we have
M & Lygay = (M & Ly(az)) & Ly(-ae),
all break§t<1 break1

s0, by case (1), M @ Ly@e) has all breaks I for b # a. B
8.5.5. Corollary. For k, A,Fg,9 as in the previous lemma, let M be a non-
zero finite-dimensional A-vector space on which Py acts continuously, wilh
breaks Ay, ..., A, n=dim(M). Then

(1) For all but at most W = dim(M) values of a € k, the breaks of

M @ Lyfas) are

max(1, x1),... ,max(i,An),

and ‘ N
Swane (M @ Lyar)) = }:max(l,)\;).
i1 .

(2) Foralla € k, we have 7
Swane (M ® Ly(az)) < Zmax(l, Xi).

8.5.6. Corollary. Let F be a non-zero elementary sheaf on A' @k, whose
Poo-breaks are Ay, ..., A, where n > 1 is the generic rank of F. The largest

ouvert de lissité of NF'Ty(F) is the set .
{a € k such thet Swan,o(F @ Ly(ar)) = Zmax(l,}\,-)}.

8.5.7. Break-Depression Lemma. Lel k be en algebraically closed ﬁe?r?f 'lof
characteristic p, A = Fa or B, 9 : (Fg,4+) — AX a fized non-irivial
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additive character of a finite subfield. Let M # 0 be a finite-dimensional
A-veclor space on which I (the inertia group af oo € P}) operates con-
tinwously, A-linearly, and irreducibly. Suppose that all the breaks of M are
equal to 1. Then there exists a unique a € b such that M ® Lyias) has all
is breaks < 1, this a is # 0, and for any b € k with b #a, M@ Lygsy has
all its break equal 10 1.

Proof. The uniqueness is casy. Any M @ Ly(az) is still T -irreducible, so

- has all its breaks equal. So either all its breaks are 1, or all are < 1. If

M & Ly(as) has all breaks < 1, then for any b # a we have

M@ Lytioy = (M ® Ly(ar)) ® Ly((h-a)e),

all breaks <1 break =1

" which shows that M @ Lyipzy has all breaks 1 for b # a.

To show the ezistence of such a “break-depressing” a € k, we resort to
& global argument. According to [Ka-2], there exists a lisse A-sheaf F on
Gm @ k which is tame at zero and which is isomorphic to M as an I -

. Tepresentation. Suppose that for alla € k, F ® Ly(az) has all breaks 1 at
- . Then denoting by j : G, ® k =+ A'®k the inclusion, we have that nF
~is an elementary sheaf: Elem(1) is obvious and Elem(2) holds because

H?(Al ®k1j!-¢®£u‘)(u$)) o (j’-‘@ Eﬂ){am))Pm =0.

Consider the sheaf NFTy(51F) on A'®@k. It is an elementary sheaf on

A'®k, whose stalk at a € k = Al(k) is

H;(Gm, F® ,C‘p(a,,)).
By the Eunler~Poincaré formula, this stalk has dimension
Swanee (F @ Ly(az)) = rank(F),

ndependent of a. Because NFTy, (j,.F) satisfies Elem(1), this constancy of
ank means precisely that

NFTy(jiF) islisse on A'®k, of rank = rank{F).

-Let us temporarily denote NFTy(5#) by G. By Fourier inversion, we
ave

NFT5(G) 5 j.7(~1);
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becanse G is el
G ls elementary, we sce that for a €k = Al(k), of M are equal to oan integer n > 1 which is prime {o p. Then there

‘unigue a € k such that M ® Lyazn) has all ils breaks < n, this a

rank(F), if a 40 :
: and for any b € k with b # a, M ® Lyen) has all ils breaks equal

~ XA Ok, G ® Lygoaay) = dim{;;F(~1)), =
0 ifa=
Because § is lisse on A'@F, the EulerPoincard Formula gives
x(A'®k,C® Ly(—an)) = x.(A*@k) rank{G) - Swane, (¢ ® Loz
= rank(G) -~ Swane, (G @ Lop(=az)).

- Just as in 8.5.7, the only non-obvious assertion is that such a break-
ssing a exists. To prove existence, we argue as follows.
the projection formula, we have

Taking a = 0, this gives [)s (M @ Ly(azn)) = ([n](M)) @ Ly(ax)

y 1.13, [n]. (M) has all its breaks equal to 1. Applying 8.5.7 to any
ducible constituent of (n].(M), we see that there exists an a € k for
¢h ([n]s(M)) ® Ly(az) has some break < 1. By the projection formula
nd-1.13, we see that, for this a, M @ Ly(asn) has some break < n. By
reducibility, all its breaks are equal. [}

Swane. (G) = rank(G).
Taking —a # ¢ and remembering that rank(F) = rank(@G), we find
Swang, (G ® Loptazy) = 2 rank(G) for a#0.

> 1 f G 1 .7: 1 A n
et Tl ])e e rank ¢ — rank - 4 allf e b
the breal\s ()fg at o0, ( ) ( )’ )\ ,‘..,A

If a € k remains outside g finite (< ranl in,
oy e e o1 5 p (< rank(G)) set of break-depressin

5.8. Covollary, Let F be a non-zero elementary sheaf on A'@k. Then

(1) NFTy(F) is lisse on Al @k if and only if all P-breaks of F
are> 1.
(2) NFT4(F) is lisse on G, @ k if and only if all Po-brecks of F
' are # 1.
(3) NFT(F) ts lisse at zero if and only if all Pos-breaks of F are > 1.

n
Swan, (G @ Lijrany) = Z max(1, A;).
’ i=1
Thus we obtain the two equalities

-Proof. We know that in terms of the co-breaks Ay,... Ay of F, NFTy(F)

7
22 = n = rank(G)
= s lisse at a ¢ A'(k) if and only if

2 max(1, ;) = 2n = Zrank(G), Swanm(f®ﬁ¢(m)) - Zmax(l, A,

i=1

whence and that in general the inequality < helds.

a3

Semisimplify F as [,-representation, say
Foy miFy,

where F; has break t; (with multiplicity rank (F;)). Then NFTy(F) is
. lisse at e if and only if for each 7, ‘

(max(1, ;) - 4 ~ 1) = 0.
=1

L3

Each term in the sum is < 0, so we infer that

it

max(1,\) =1+ %, for i=1,...,n

)

and this is only possible if all Ai=0.Butn = M

M =0, contradiction, B i whence n = 0, whenee F; @ Lyrazy has all breaks = max(1,¢;}.

Therefore any ¢; < 1 introduces a “singiflarity” of NFTy(F) at zero, and

8.5.7.1. Variant. Let M be q finite-dimensional A-vector space on which
any t; = 1 introduces a “singularity” af some point a € k%, §

I operales continuousty, A-linearly, and irreducibly. Suppose that all the
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Gm®k) Assertion (3) is Fourier inversion. Assertion (4) may be checked at
4 single fibre, say over 1, where it becomes the assertion that nv*(G) ® Ly
on G, ® k has Hl = Hl, which holds because the sheaf in question has
5o non-zere invariants under either [y or Joo. B

8.6. Convolution with £y as Fourier transform
Let k be an over-field of By, [ #p, A= Eyor Ty, and 4 : (Fg,+) — A
a non-trivial additive character. We denote by
nv: G = G,
8,6.2. Proposition. Notaiions as above, let G & T have Gi= = 0. Then
(1} (Ly)#G €T, and has rank = rank(G} + Swane (§)

(2) ({Ly)r* G0 has dimension = Swang(§)
(3) All Poo-breaks of (Ly)1* G are < 1.

z—1/z

the multiplicative inversion, and by
i G o Al

the inclusion oof. Assertion (1) is just “mise pour meroire.” By the previous propo-

8.6.1. Proposition. Notations as ebove. Let G be a lisse A-sheaf on G, ®
which 1s tame at zero (i.e., G € T ). Then we have a canonical isomorphis

(*) (Ly)r+G = J"NETy (5 inv™(G)).
If in addition Gls = 0, then
(1) jiinv™(G) is a Fourier sheaf on A'®k.
(2) I({Ly) *G) = NFT¢,(]!H’1V (§)) is a Fourier sheaf on Algk,
(3) NFTF(e((£)r +6)) = rinv* (G)(-1).
(4) (Ly)r#G = (Ly)u*G.
Construction-proof. In terms of coordinates z,y on G,n x G,,, and the

new coordinates A = 1/y, B = ay on Gy, X Gy, we have, for any F,G on
G, ®k,

_ 3((Ly)r * G) =5 NFTy (G inv™ (G)).
.Comparing stalks at zero, we find

(Lo * Q) 2 HHAY @k, jiinvH(G)) = H (G @ k,10v*(G))
S HY G 9 k,6),

while, as 1 inv*(G) is Fourier, its HZ = 0, so the Euler-Poincaré formula
.'gives (2).

“"For (3), we argue as follows. By the previous proposition, j*((£¢}| * )
is elementary, and its NFT--(—-W)( 1) is Izsse on Gy, being 71 inv*(G). So
by 8.5.8 (2), all Poo-breaks of F((Ly) % G) are # 1. So it suffices to show
that j.((Ly)r *G) has all Py-breaks < 1.

k that
Fix G = R (eyh(Fe ©Gy) | We know tha

= RN B)(Fap ®Ga-1)
= R (praji(pri (inv* (@) ® p* (F)).
“Compactiflying” G, x Gy, to A’ ® A* with coordinates (A, B), we have
Fix G = (R (prah(pri Gilinv™ (6)) @ w7 (5, 7)),
(where now pri, pry, p are the maps 4,8, AB of A? — A%). In particular,
taking 7 = j*Ly, we obtain a canonical identification
(Ly)i+ G = 3" (NFTy{j: inv* (G))).

Suppose now that G'= = 0. Then (inv*(¢))’e = 0, and inv*(G) is lisse
on G ® k. Therefore j;inv* () = jwinv*(Q) is a Fourier sheaf on Al®k
(basic example (2) of 8.3). Therefore NFTy(fiinv™(G)) is a Fourier sheaf -
(8.2.5 (2)), and so the isomorphism (2) on A*®k is j, {the isom. (%) on

NFT(j (Lo + §)) = rinv™ (G)(=1),

and we know that j,((Ly) * G) Is lisse on Gy, and tame at zero, with, by
‘part (1),
drop(j.(...,*G),0) = rank G

Therefore the rank formula for NFT5 gives, for a € Al(k),

rank{j inv*(§))e = rank NFTg(5((Ly) *G))a
= —rank((Ly)r * G) + drop(j. {(Ly ) * §), 0)
+ Swaneo ((Lg): * G} @ Ly(az))
= —(rank(G) + Swane.(G)) + rank(G)
+ Swane, ({((Ly) * G) ® Lytas))
= Swane, ((Ly ) * G) @ Loptar)) — SWale (&)
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Taking a # 0, we find g5 dimension Swang, (M ® £E(ﬂr)) — dim #£%, and by (B),

rank G = Swanq, (({Ly) * G) @ Lyar)) — Swane (G), Swane, (H ® ﬁ?ﬂ(az)) = rank(H),

rank G = rank H — Swan (M), Let Ay, ..., A, be the Py-breaks of G,
must show that all A; = 0.
e know (Fourier inversion) that

which we may rewrite as

rank({Ly) ¥ G) = Swaneo (((Ly): * G) @ Ly(az))

for all @ # 0. Let Ay, ..., A, denote the Py -breaks of ({Ly) * G).
For a sufficiently general, this Swang,, = ¥ max(l, A;), so the ab
equality gives

NFTy (5 G} = G H(-1).
ra€ Al(fc), we have
rank(NFTy (71 G))a = —xo(A @ £, 51 G ® Ly(ax))

= Swalleo (G ® Liy(az))- + % \- <)

i A . W\ A
erefore, comparing dimensions we find

rank(H) a0 Mﬂg &07

n = rank((Ly)r * G) Zmax (1, A,
Z(max(l,)\g) —-1) =
i=1

As each term in this ) is > 0, each term vanishes, whence X; < 1 for

i. 8

Swaneo (G ® Ly(ar)) =
A% QJ\M\M%) Swan,(H) ifa=0.
cause NFTy(j: G) is lisse on G,,, we have, for a £ 0 in k,
Swane, (G & Ly(azy) = Ema.x(l, A;) = rank H."‘Mo (UJ)
b&w@, :

8.6.3. Proposition. Nolations as above, let H € T satisfy

(A) dim M = Swane (H)
(B) all Pyy-breaks of H are < 1
(C) j«H is a Fourter sheaf.

Then we have
(1) N¥T: (_}*’H) is @ Fourier sheaf
(2) NFT F(J<H) is lisse on Gy, of rank = rank(H) — Swane (H), v

z'shes at zero, and 1s tame at infinily.

Swane (F) = Z Ay = Swang (H). = {'ot/&»;a %7
already noted,

rank(&) = rank H — Swan, (M).

Proof. As always, (C) == (1). By (B), NFT;E;(J'*H) is lisse on G, A}

zero, the stalk of NFTE(j,,'H) is k{¢) tk{G)

_ 1, %) — A = tk{G),
HYAY @k, j,H); ; el A ; )
By (C), its dimension is ~x (Al @k, j.H) = — dim M — (G, @k, H) =

— dimHt 4 Swaneo (K) = 0 (by (A)). Thus we have S fmax(L, A) — 1= A = 0.

—( 1 = 4G = '* 5 . . .
NET3 (H) =36 = 5.6 As each term in this sum is < 0, we have
for some lisse G on Gp, @ k with GTo = 0. ‘ max(1, ;) = 1+ X
For a # 0, T K

Go=HHA'® kI H® ’C’E(ar)) whence A; = 0, as required. §
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8.6.4. Theorem. The construclions in A. Then there exist

n = rank(F) multiplicative characters x; : ¥y — AX
Gr— (f,._p)! *

3 tb(—Ekx :Gm(k)
inv* §*NFTZ(j, H)(1) N G poin

lisse, rank one, geometrically constant A-sheaves
T, T (for “twist”) on Gy @k
d isomorphisms of lisse sheaves on Gy @ k

{ FoT ~ (Eq‘b(bm) @'Exx) * (C'JJ ® L:x:!) Hoee ok (ﬁw ®£xﬂ)'
A

define quasi-inverse equivalences of calegories
{GeT with > =0} &=
all P, -breaks < 1

H el with § dimH = Swang, (M)

JoH is Fourier

F@T =~ (Trans)* (KI{(¥; x15 .-, Xn5 1 LD
A

Proof. We first explain why the second isomorphism is just a rewritingh Of

. : st e iting of
Ye first, For any character x : Fy — A*, and any hek ,;\e glmmknoe;
e sheaf Trans}(£y) on Gy ® k°°F is isomorphic to L. Indeed we

that under the multiplication moi‘:f)hism
(G @ Fy) X (G @ Fy) 7= Gn ® F,

(g;,y) — TY

we have for G «—— H in these categories

(1) Swan., (@) = Swane, (H).
(2) rank G + Swanu, (G) = rank{H).
3) el &M liesinC.

In particular, these constructions define quasi-inverse equivalences ‘we have a canonical isomorphism ot (G ® Fy) ¥ (G @ Fy)

:rr*(f,x)::'ﬁxﬂﬁx-

Extending scalars to k, and passing to the closed subscheme DY (Gm@k),
this isomorphism yields an isomorphism on G,k

Trans; (Lx) = 0" (Lx) ® Ly,

all Pm-breczks‘< 1
dmH™ = Swan,, (H)

=

H e C with

Proof. That we obtain quasi-inverse equivalences of the categories in ques-j
tion is the content of the previous two propositions, in which (1) and (2) are
also verified. Assertion (3) is the special case F = Ly of the cancellation
theorem 8.0.1. For the final assertion, if ¢ ¢ C then automatically Gle =,

and if  in C has all breaks in (0, 1), then, by 8.3 (1}, j+M is automatically
Fourier. g

as required. . _ |
Applying this to x1, we may rewrite the first isomorphisn of the theorem

in terms of the twist sheaf 7' = T ® b*(Ly,) as
FoT ~ ((T}ansb)*(£¢ @ Ly )} ¥ {Ly @ L) xx(Ly @ Ly)
A
= (Transy )" (K1(#; X1, Xns v oy 1),

the last isomorphism by property (11) of convelution (cf 5.1)..

To establish the first isomorphism, we proceed by induction on n o=
rank(F). For n = 1, F has break 1 at oo, so by the Breal.(-DiEI];es?lo?
Lemma, there exists a unique b # 0 in k (in k because unique 1n k ) such
that F® Ly(-1z) has break < 1 at oo. But inrankl, breal.{ < latoo m}n{phes
break = 0 at oo (integrality of Swane), 50 F @ Ly(~bs) 18 lisse of ran om?f
on Gy, ® k, tame at both zero and oo, with local monodromy at zero o

8.7. Ubiquity of Kloosterman Sheaves

Let k be a perfect over-field of Fo, 1 # p, A = E\ or Fy, and
¥ (Fy,+) — A¥ a non-trivial additive character.

8.7.1. Theorem. Let F be a lisse A-sheaf on G @k which is tame at zero,
and totally wild ot 0o, with Swane, (F) = 1. Suppose that the geometric local
monodromy of F at zero is quasi-unipotent (this is automatic if A =T, or
Cif k is finite), and that all its eigenvalues are g — L’st roots of unity which
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order dividing g — 1. Therefore for some x : F)* — AX, F@ Ly )@
is geometrically constant. Calling it 7~%, we obtain

rder dividing g— 1, then ¥ is isormorphic to a twist of an F-transiate

Kloosterman sheaf

FRT = Lyghay @ Ly, KI($; X1, - Xni Lo s 1)

.. -..What can we say about F if the characters x: of Iga‘f‘e oceurring In
'-Inot all of order dividing ¢ — 17 To analyze this question, we pass 10
e extension field of A = Ex or F over which these cha:ra.cters exist,
e adjoin to A the eigenvalues of p(yo) for 7o a topolc?glcal ge.ne‘ra..tor
ame - Because F s “defined over F” the characters (with mult.lpl‘lclty)
xn of I§*™® occurring in F are permuted by x — x* (this is the
# anderlying Girothendieck’s proof of the local monodromy theorer,

as required in rank one,

In general, the hypothesis on the local monodromy of F at zero sh.::
that for some character v, : F;‘ — A*, F @ L5, has

dim(F ® Lz )" > 1.
But as F € C, with Swane (F) = 1, we always have (cf. 7.5.1.3)

dim(F @ .C;-C-H)I0 < Swang, (F) = 1.

: ; i i ical orbit has the
Because n > 2, all the breaks of 7 @ Lz, at co are (1/n) < 1. There .+ Xn} into orbits under this action. A fypica orb)

there exists G € C of rank n — 1, Swan,(G) = 1, with o x® Xqv_l'

H yrn H
Ly*G=FR Ly, .ay form the “corresponding” Kloosterman sheaf of rank v,
. . . . vt
thanks to the previous theorem. Tensoring with £, gives K1(orbit) din KI(%) o trace v /g3 X Yoo xt L 1.

j:: (’CV‘} ® ’CXu) * (g ®.an).

1fd> 1is a common pualtiple of all the orbit lengths » which occur, then
Now begin again with G @ L, .... B ;

' i isomorphism
. contains each Fyv, and, on Gy @ Fya we have an P

8.7.2. Corollary. If k is a finile field, and A = E,, then any F € C with

KI(t) o tracep » jFg; X1s+ -+ X 1,...,0) = = Kl(orbit}.
Swaneo (F) = 1 and det(F) of finite order is pure of weight zero.

orbits

pplying the theorem §.7.1 over F e, we conclude that when F is ?ulled
ack to G @ Fya, it becomes a twist of a translate of a convolution of
arbit” sheaves Kl{orbit).

‘In fact, each orbit sheaf Kl(orbit), & priorl defined on G & Fyv, ‘has a
atural descent to G, @ Fy. To explain this, it is convenient to consider a
1ghtly more general situation (cf. iDe-3), second part of Remarque 7.18).

Proof. Because k is finite, the local monodromy of F at zero is quasi-
unipotent; being tame, its eigenvalues are roots of unity of order prime to
p, so of order dividing ¢ — 1 for some power ¢ of p. Enlarging E) and k,-:
we find ourselves in the hypotheses of the previcus theorem: up to a twist,
F is a translate of a Kleosterman sheaf, so pure of some weight, and this
weight can be none other than (1/ xank(¥))x (weight of det(7)). 5.8.4. Let B be a finite etale F-algebra of ranky > 1. Any additive

8.8. Fine Structure over Fo: Canonical Descents of Kloosterman character of I,

Sheaves P {B,+) = A%,
. . . iquely of the form
8.8.1. In this section, we work with k = F,, [ #p, A = E\ or F), and s uniquely of the

Y (Fy,+) — AX a non-trivial additive character. We suppose that A
contains the ¢ — 1'st roots of unity.

H(b) = v{tracen;¥,(b1b))

" for some element by € B. We say that }Z is non-degenerate if b% is 1n-
“vertible in B, or equivalently If (b, ") = (bd') makes (B,+) into its own
"Pontrajagin dual.

8.8.2. Let F € C have Swane(F) = 1. We have seen that if the characters.
x; of IE2™® which occur in the geometric local monodromy of F at zero all
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For any F,-algeh
g-algebra R, we define .
‘ or any finile extension k of Fy, and any point @ € B> = Gplk),

e have

B(Ry=B E@q) R, afinite fres R-algebra of rank v '
trace(Fy 5 | B TTNW(Lg ® £y) )

B*(R) = (}31@ R)X.
= (=077 Y d(tracerr, () x (Negr, (2)).

r€B(k)
N(z)=a

IfA=E\ or Oy, R”"'lN!(ﬁq; ® Ly) is pure of weight v — 1.

The norm map for B{R}/R maps B*(R) to kX
If . . . '

B(S)Ri;s af}; If‘q-glgebra, and S is a finite free Hf-algebra of rank r > 1 4

A afintte free B(R)-algebra of the same rank 7, The corres: n:
rm and trace maps are denoted simply Ns/r, traceg R -
The functors on (Sch/F,) defined by "

3)

of Assertion (2) follows from (1) via the Lefschetz trace formula and
formalism of the Lang torsor. Assertions (1) and (3) are invariant
é_r finite extension of the ground field Fy, so may be checked over a
e extension of ¥y over which B as Fy-algebra becomes isomorphic to
vfold direct product F; x -~ x Fy. In terms of the corresponding

R~ B(R), BX(R)

;r;c( izgrzsi?teld by smoo}fh commutative F-group schermnes, denoted B ;
o %(CFW)E_)_I; th B an open su_bs?heme of B. For any additive char..
B bgy o (Iesg. any multiplicative character X:BX(F,) = 4
o dener ¢ (Tesp. ) bhe corresponding lisse rank one A-sheaf o
p ), obtained by Pushout from the Lang torsor (cf. 4.3) ’

dinates z1,...,%,, we have

$(z) = [T (aiz;) all a; € FX

x(@) = TTxilz:)

d cancnical isomorphisms B = AY, B¥ = (G,,)", with N : B¥ — G,,

8.8.5. III@O CIni. }i 3 c d 13 a Ji?lﬂte etﬂlﬁ F ~Gl§ Eb?a o] ran, i« t
yulty Let I ¢ e a n'ﬁtﬁ _ﬁ l g i f k ] E 5 4 a il ]‘p e
Lhe .U'fOId FI 0 } ( )

v>11 A -adi ' '
# 0, A an l-adic coefficient ritg whose residue field contains 1,

pth roots of unity,
convolution,” whence

Vo B, % )
(B, 4) -— A% 4 non-degencrate additive characler, 0 itv-1

X1 BX —a A% 4 multinhicars
picative character, ‘
RINUL; ® Ly) = y
. £i1(ﬁ¢'(a;x) & ’Cx"(ﬁ))’ i=v-1§

Th 3 :
en denoling by N : BX _, Gm @ Fy the norm map, we have

(1)

L .
- 8.8.6. Definition. Given a finite etale F,-algebra B of rank v > 1, a non-
- degengrate additive character ¢ : (B,+) — A%, and a multiplicative char-
sacter x @ B — A™, we denote by KI(B; 4, x) the lisse A-sheaf of rank v

on G, ® 'y given by
KI(B; 4, x) F RINW(L; @ Ly).

0 ..
EN(C; L) = Titv-1

lisse, A-free of rank v jfi=—, _ 1
and the “forget supporis” map is an isomorphism

| As. the proof of the last theorem shows, we have

AN(L5 8 L) 5 RNL(L; & 2,
KI(B;;x) €C, Swane(K{(B;4,x)) = 1.

whose formation commutes with passage 1o fibres



Complements on Convolution 153

152 Chapter &

i ' 1 < v < rank(F).
€¢’ — 1'st reois of unily for ally in the mange 1 SV =

8.8.7. Lemma, Letv > 1, x : Fj. — A* a multiplicative charact
here exisl

1 finite etale ¥y I
2 non-degenerate additive character ¥ :
— A%
heaf of rank 1, T, on Gm@F,

B = Fgr, P = ¥ o tracer . /F,, X, we have a natural isomorph

Gm @ Fgv .alyebra B of rank = rank(F) =

(B,_H — A%
KI(F,e; 1 o trace, x) ~ KI(¢ o trace; x, x4, ..., x¥ ;1,...,1 :
( q.: : ( A ) ) o multiplicative characler X B
Proof. Indeed B = F,v is split as an F,algebra by the finite exte
F, of F;, and the resulting isomorphism is given explicitly by « €

V=1 .
(z,27,...,a7 J)inFpx - xFp. B

@ lisse geometrically constant A-s

n isomorphism of lisse sheaves on G @ Fy
F (§) T o KI(B; %, X)-

for F as above, there exists data
y at

8.8.8. Given a finite collection of non-gero finite etale Fj-algebras B;;
equipped with a non-degenerate additive character 1,5,7 (Bi,+)— A
a multiplicative character y; : 8% — A% we denote by 11.B; the prod
finite etale Fy-algebra, and by :

¢ TT%: (uBi,+) — 4
(z:); — Lt ()

% 1 i ion shows that
-»f The preceding discussion s '
fx) ofihe asserted type for which the geometric local monodrom
!

of KI{(B; %, x) is isomorphic to that of F.

Because both F and K1(B; J), x) 1ie_if1_C and have Sw.a,noo =1, i.t fo%m;rf
i the theorem 8.7.1, applied over Fg, {hat there exists b # 0 in (Fq

‘an isomorphism on Gy, ® Fy
' F = (Transs)* (KI(Bi 6, 1)),
=1, lows from 4.1.6 that the
. in C and has Swane(F) = 1, it fol c !
e Because both F and Ki(B;¢,x) are defined

F,o i s uni £ b that b lies in FJ.
ver ¥, it follows from the uniqueness of 0 t
:’.l%hetho sheaves F and (’I‘rans;,)*(Kl(B;_w,b,x)) on qm ®F, are nowb \:i
aF which on Gm ®F, become 1som£rph1c, andr o
: tations of m1(Gm @ Fy, 7). Therefore

TTo - (uB)* —s 4

\ (mi)i — HXg(Ii)
the product characters, additive and multiplicative regpectively, of th
product algebra. One checks easily that II1); is non-degenerate.

gca € ans
pantity b € F, is unique.

isse sheaves on Gm
re absolutely irreducible as represen

T = H(Gn @ F, F' @ (TranSa)*(Kl(B;ﬁ,x)))

8.8.8. Lemmma. We have a nafural isomorphism

KI(TLB;, i), M) = % KI(Bi; %, xi)-
Proof. By induction it suffices to treat the case qf two factors, in which, . Limensional A-space, on hich Gal(F, /F,) acts e tiomously, and
he natural map of lisse sheaves on Iy

F & Ty — (Transy)™ (KI(5; 2, %))
A

case it results from the commutative diagram

NxN
(B: x By)* = (B1)* % (By)* —s Gy X Gy~ G

¢ an isomorphism. _ .
Because B is a non-zero finite etale F,-algebra, the norm map

] 1 i wrl 1 t of finite ﬂ.el xte sions

FX is SUT_]ECthE', 1ndeed ]fltlng B as a pI‘OdUC e(]r ef ’ ll.t (e)r

Bq jad IF each facter F;u maps onto Fq by the norm. Cheretore here
e

exists b € B* with N(b) = b. Then for n = rank(B), we have
(Transy)* KI(B 3, x) = (Transy)” RIN(Ly ® L)
= (R”_lN!)(Transl;)*(E& @ Ly)

and the Kunneth formula.

8.9. Embedding in a compatible system

8.9.1. Structure Theorem. Lef k =F,, I#p A=FE, orF), and F €
with Swane,{F) = 1. We suppose that A contains the p’th roots of unity
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Just as explained in the proof of 8.7.1, the “primitivity” of L, on B
assures that for any b & B*, we have

(Trans;)*(Ly) = Ly @ T

where T3y is the inverse image on B* of the lisse rank one A-sheal

F™ = x()" on Spec(F,). On the ¥ side, we have
(Trans;)*(L;) = L

for the (still non-degenerate) additive character of B given by

Thus we find
(Trans)* (K} B; ¢, x)) = R"*N!(z; ® Ly ®T1)

=

whence the required isomorphism

2

I~

y%(To @Ty) S KI(B;¢,x). §

8.9.2. Corollary. Let k = Fy, | # p, and F a lisse Q;-sheaf on G, @ F,

which 18 tame ai zero and totally wild at co with Swane (F) = 1. Then if

det(F) takes algebraic values on Frobenius elements, there cxists o subfield
E of Q; which is a finite extension of Q, such that

(1) all the local reversed characteristic polynomials,
Pa,k = det(l - TF,._.}HJT&),

fer k an arbitrery finile exiension of F, and any o € Fq", have
coefficients in E.

(2) for every finite place A of I or residue characteristic different from
p, there exists a lisse Ey-sheaf F) on Gy @ Fy whose local reversed

chargcterisiie polynomials PCE,);c) have coefficients in E, equal to those
Of Pa,k-

Proof. That KI(B;J;,x) is part of a compatible system is obvious. The
hypothesis on the determinant of F insures that the geometrically constant
twisting sheaf T is of the form trace(Fy[T) = %8 for some algebraic
number ¢, B

CHAPTER 9

on in (1) of r-tuples of

Equidistributi
= s of Gauss Sums

Angle

quidistribution problem which we will study

ivate the e .
9.0. In order to motiva ful result of Davenport which dates

in this chapter, we first recall a beauti

' from 1931 (cf. [Dav.]).
Let » > 1 be an integer, and

O:1<G-2<"-<G.,-
a sequence of © necessarily distinct integers. Yor p largfe (e.g., p>ar ; ai),
the reductions mod p of a1, ...,a- wil all be distinct in Fy. For sucn a p,
" and for any element

.{:GFP—{—ﬂl,--v:"ar}:

the sums
$+a1)x+a2,'...,m+ar

i i estion:
alt lie in F. Davenport asks the following qu " o e e
How many of the p — r elements & e ¥, —{ a1 » .
property that  +a, 2 +ag,..., ¢+ ar are all squares in F

Tor example, if

(al:o-.;ar):(0)1:21"'>r_1)’

i

1 bh
we are asking “how many” sequences

(@, a+Lz+2,.. ., o+r—1)

of r successive integers are all squares mod p.
More generally, for any odd p, let us denote by

(

s

;FX—+ﬂ:1
p> g
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the quadratic character. Then we may consider the map

- {——al, .. .}—ELT} — (:l:l)r

- (52 (5

For any of the 27 elernents

£ of (£1)7, and for such f the above limit formula in question is
Nig; 1

i D) L

ploa p-—T 2r

ther “cbvious” choice of functions f on which to check such a limit

are the characters of the group (£1)". The case of the trivial

ter oflers no difficulty, because each pp already has total mass one.
non-trivial character, necessarily of the form

8‘—‘(81,...,5,)!—-—+H5;

e=(e1,...,&) € (£1)7,

let us denote by N{e;p) the integer ' "ES . .
Jme non-void subset S of {1,...,7}, its integral against pgaar vanishes,
N(e;p) =the number of elements 2 € F, ~ {~a,,...,—a.} what must be proven is that
such that (x-{—ai) =g foralli=1,2,...,r ' [T{z+ a)

: am 1 €5
f(H >dup Top-r 2 2
{1€S TEFp—{—ay,.,~ar}

_ds to zero as p | oo. By the Riemann Hypothesm for the corresponding

relhptlc curve .
= H(x +ai) o
1eS
er Fp, one finds that the above integral is O(1//p). (Of course when
wenport was writing, in 1931, the full strength of the Rlemann Hypothesis
of curves was not available, but enough was known about hyperelliptic
urves to give Davenport an estimate O(1/p%) for the integral....)

9.0.1. Theorem (Davenport). For any element ¢ in (£1)7, we have

. N(g 1
lim Nisip) _ —.
ptoe p—1 27
Davenport’s proof is based on the Riemann Hypothesis for the hyperellip
curves ‘
H (i + a;) over Fp.
some 1
Here is a minor reformulation of the theorem. For odd p > a, — ay, let

us denote by p, the positive measure of total mass 1 on the group (£1)"
defined by '

9,1. We now turn to the subject proper of this chapter. Once again we

1 Z (the Dirac §-measure supported ) fix an integer r > 1, and a sequence
lup - _ . t r—aq r—1 :
P T"'EFP“{—ai,---:“‘ar} : (( P )}.“,( ? )) a] < az << - < Up

of » necessarily distinct integers,
Let ¥, be a finite field, - ;

¢ (Fq,+) — C*

Then the theorem asserts that as p | oo, the measures pi, converge “weak

" 10 Haar measure lya,e on {£1)7, normalized to have total mass one
Concretely, this last statement just means that for any continuous C-valued
function '

Fizly —C

Hm di, = dl’aa.r-
pTOD/f Hp /f HH

The relation of this formulation to the original one is this: it suffices to check
the above limit formula for f the characteristic function of an arbitrar

“'a non-trivial additive character, and

we have X:F;(ch

-

~a multiplicative character of exact order ¢ — 1 (ed., x is a generator of the
< ¢yclic character group of F)). If

Q“—1>Qrma1,
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whichh we will henceforth assume, the characters

[+3

XXt

are all distinet. Therefore for any element

@€ Zf(g— 17— {~a1,...,~ar},

the characters

Tr-faq

T X

are all non-trivial. The corresponding gauss sums

Q(lb,xx+a£): izlr"w"'

are therefore complex numbers of absclute value /g, so we may view

| r+ay r+tar
Q(LB;FQ,?J),X) Cg_ﬂ (g(q’bj\);ﬁ )s"'ag(’d)’\)}‘g\ )>

as being a point of (S*)", where S* denotes the unit circle. As z varies over
Z/(q - 1)Z - {“all DR _ar}:

we obtain in this way a collection of ¢ — 1 — r points in (S1)". We will
prove that this set of g — 1 —r points in (S*)" becomes equidistributed with
respect to normalized Haar measure on {S1)", as ¢ tends to infinity.

9.2. More precisely, for each datum [F,,,x) as above, let us denote by
[i(F, ) the positive measure of total mass one on (S1)7 defined by

1 the Dirac delta
EE,vx) = PR measure supported at
' —1-r
? PEZ/(g—1E—{~a1,.,~ar} 6(W;Fq;'§b:X)

2.3. Theorem In any sequence of data (F,, v, x) as above in which ¢ tends
to co, the measures ) on (S')" converge (weak *) fo normalized

(total mass one) Haar measure on (SY)7, i.e., for any continuous C-velued
function [ on (S1)", we have

é}rg/fdﬂ(Fq,gb,x) - /fdﬂflaa.r:

the limit taken over any sequence of date (Fy 4, x) in which ¢ tends to co.
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9.4. Before proving the theorem, it will be convenient to give a version of
it which is both slightly stronger and slightly more ingrinsic. To motivate
it, let us fix a datum (F,,%,x) as above, with ¢ -1 > a, — a;. Then the

characters
ar

X1 =X X = X
are all distinct, and the sequences of characters

o+ay T,

X yee X
Wwith
s €Z/(qg~ 2L —{—as,...,—a}
may be described intrinsically as the sequences (p = ¥¥)
(X1, PX25 0 - 0Xr) '
as p NS over
p € (char. group of FX) ~ {¥%,,..., % |
This being so, we consider data of the following type:
(Fgi¥i X1, X )
where F; 1s a finite field, ¥ Is a non-trivial additive chgracter
¥ (qu%} — ¢,

and x1, .., X, are r distinct multiplicative characters y; : FY — C* {one of
which may be trivial). Having fixed such a datum, we consider for variable

X € (char. group of FX) ~ {%1,..., %, }

the element
H(X: F%w:Xl? L IXT) € (51)1‘

(l__’g(%b\;/);_ix)’m)’

defined by

Il

BOGEg %, X1, -, Xr)

and we denote by
F(Fatbixa,Xe)
the positive measure of total mass one on (51)" defined by

] the Dirac delta measure

HFy i hixa.xr) = —1—-r Z supported at
) x€(char.group of F;‘) B(X;Fg;¢;X1,-- -;Xr)
XE{‘X‘I:‘-WE:*} .



160 Chapter 9

9.5, Theorem. Fiz r > 1. In any sequence of data (Fy,%;x1,... y Xr) @s
above (Y non-trivial additive character of By, x1,...,%, r distinct mulli-
phcative characters of FX ) in which q tends to oo, the measures

(P 051, 0X0)

tend (weak x) to normelized Haar measure on (S*).

Proof. By the Weyl eriterion for equidistribution, it suffices to show that

hm/fdli(l:‘q,lp K1 Xr) = /fd,uHaar

for f any unitary character of the compact abeliar group (S')". For f the
trivial character, there is nothing to prove, for each individual

H(anw‘nxlr--x)(r)

already has total mass one,
Tke case of non-trivial unitary characters is more involved. If we view a
point of ($1)" as being an r-tuple

(z1,...,2r)

of complex numbers of absolute value one, then the unitary characters of
(51) are just the monomials in the 2

P

x(z, ..., 2) = Hz;“.

P |
Given a character x as above, we break the index set {1,...,7} into three

disjoint subsets
A = {i for which n; > 0}

B = {i for which n; < 0}

C = {i for which n; = 0}.
Writing ‘

my = —ny for i € B,
we thus obtain an express for our unitary character y as
x(z}= (H zf‘) (H "27””), with n;,m; >0
iEA JEB

just using the relation z;Z = 1. TFor x non-trivial, at least cne of the sets
A or B is non-empty.
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For non-trivial x, we have the orthogonality relation

fX ditHaar = 0,

so what must be proven is that for y non-trivial we have

3 du ) =0.
q%’% X #(Fqﬂfl’)){l)“wxr)

In fact, we will prove

9.6. Theorem For y non-trivial writlen as above, we have the estimate

sup(zn,;, Em,,) op

€A ie B

vioooT el

I/xduchiw;xl,.l.,xT) <

for any data (Fg,9¥; %1, ..., %) with ¥ a non-trivial additive character and
X1,--,%r 21 distinct multiplicative characters of F,. '

We now turn to the proof of this last theorem. By definition, we have

/X AR pixa, o xr)

SRR (e (G

x char of FX 164 i€l
XE{T 0%}

Each term after the ¥ is a product of numbers of absolute value one. The
“excluded” terms, i.e., those where x is one of the %, are products of terms
each of absclute value < 1 (because [g(¥, x;x)| = 1if ¥ = %,;). So the above -
integral is fairly well approximated by the quantity “S” defined as

am 1 (g(w,xix))”‘ (g(vb,Xfx))m‘,
! all c%‘s X i];;[i ‘\/& 1'EHB '\/a .
of F¥
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in fact

g—1-ryx’s rx's
e e I DRSS
G-Da—1-7, 2, =12

and since each monomial after the 3" has || ||< 1, we find

/_s(g(T?_’”_l).

Therefore we are reduced to proving the estimate

151 < o5 ) |

1A ich
V
To go further, we observe that the sum § is of the form
— > F00il0
xchars
of F’<

for the unique functions f, g on F whose multiplicative Fourier transforms

are

foo = (ﬁ)z TT ot xe20™

icAd

3x) = (:};]Zm TL o, x0™

el
Case 1. If A is empty, then f(x) is identically 1, whence

f = the Dirac é-function on F¥ supported at 1.

Case 2. If A is non-empty, then f is the inverse Fourier transform of a
monomial in gauss sums, so given by the trace function of a Kloosterman
sheafl on Gy, @ ¥y, More precisely, for any prime ! # p = char{F,), and
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any l-adic place A of the field F = Q((,,({;-1), viewed as a subfield of C

where 1) and the y; take values, we have

—fla) = (:ﬁ> -‘{Em trace(Fy | (Kla)z)

where Kls denotes the lisse Ey-sheaf on G,;, @ F, given by

Kia din Ki{y; the x; for 1 € A, each repeated n; times; 1,1,...

Symmetrically in B, we have
Case 1. If B is empty, then

g = the Dirac é-function on Fy supported at L.
Case 2. If B i1s non-empty, then

o) = (%) 5" race(F, | (Kin)a).

Let us now make use of the Parsefal identity (cf. 4.0)
> fla)g(a) _IZf(X 9‘(
aeFX q

to evaluate the second term, which is 5.
Case 1. A empty, B non-empty. Then

_§= (%)‘gmltrace(ﬂ [R5,

ll)

As Klg is lisse of rank Y my and pure of weight (Z mi> -~ 1, we have

il iEB

trace(F) (Klp)1| < (Z}; mi-)\(_\/q') ();_:;m> -
whence \2n:

15| < {8 as required.

Vi

Case 2. A non-empty, B empty. Then

_§= (ﬁ) E\n‘ trace(ﬂ. | Kla)1),
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and just as above we find hile its H? is pure of weight

(Zn)+{(Zm)

i€A JjEB

Pt
IS] < A as required.

N7

Case 3. A, B both non-empty. This is the only essentially new case. He

| this by Deligne’s results in Weil II. Therefore to prove the required

we have timate

sup(Ens, Ew)

icd jeBb

7 ;

_ Zn.‘+ ij
( 1>ieA e Z trace(Fy | (Kla)g)trace(F, | (Klg)s).

\/g aEF‘;‘

Let us denote by Klg the Kloosterman sheaf which is the “complex conj
" gate” of Klp, lLe.,

|5 <
suffices to prove the following

houtd

7. Proposition. In the above situation, we have

Ky = L | 7
KI(3#; those characters X; for i € B, each repeated m; times; 1,...,1). H(Gm ® Fy Kla®Klg) =0, .
Then we have dim H (G @ _:ET;: Kls ®Klp) < sup (E”ix E mi) :

icd  jeB

trace(F, | (Ig):) = trace(F, | (Klg)a —
« | (€ln)e) (Fa | (Klp)a), roof, To prove that H? vanishes for a lisse sheaf F on G ® Fy, it
rtainly suffices to show that as representation of Iy, F has no non-zero
invariants (because up to a Tete twist the H2 ;. is a quotient of the

invariants, namely the coinvariants under all of #8°°™). But

80 we may write

-1 2ot my —
S = <%) Z trace(F, | (Kly ®@Kip)s).

Applying the Lefschetz trace formula to the lisse sheaf Kl4 @Klg on
Gm ® Fy, we have '

“EFy Kla = Kl(9; various of the x;, ¢ € A, repeated; 1,...,1)

Kl = Kl(_i,z; various of the X;, j € B, repeated; 1,...,1).

o0 by the explicit determmination of the local monodromy at zero of Kloost-

E trace(F, | (Klsa ®Klg)a) man sheaves, we have

acF ] As Ip-representation, Klg is a successive

z extension of various £,, with i € A,

=% (=1) trace(F | H(Gm ® Fy, Kl ®Klp)).
i=1 while Klg 18 a successive extension of various 'C')?j

Because Kl4 @Klg is pure of weight - with j € B.

() -1+ () -

i€A jcB

haracters _ .
Lyx, withi€ A and j'€ B.

its H} is mixed of weight

wtih < (Ym) +(Tm) -1

y the original hypothesis, the characters y1, ..., v, are all distinct, so the
act that A and B are disjoint guarantees that

xix; #1ifi€ Aand j € B.
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Therefore K1, @Kl as [g-representaticn is a successive extension of non-
trivial characters of Iy, so it certainly has no non-zero Iy-coinvariants. This
proves the asserted vanishing of HZ.

Once we know H2 = 0, then dim H} is just minus the Euler characteristic.
As both Kl and Klg are tame at zero, so is Kl4 ®Klg, so by the Euler-
Poincaré formula we have :

dll’l’lHj(Gm ®Fq, Kl, ®KIB) = SW&HOO(KLA ®1TIB)
By the structure at oo of Kloosterman sheaves, we know that
Kls has Swane = 1, all breaks = 1/ 3 ny

€A

Klp has Swane = 1, all breaks = 1/ 3 my,
meB

Therefore Kl 4 @Klg has all breaks at oo

<mex(1/ T 1/ T ),

i€a jEB

(%) (5m)

jEB

while 1{s rank 1s

because its Swan,, is < (1k)x (biggest break), we find

Swane (Kla ®I—{TB) < max(z My, Zm). E

JjeB icA

9.8. Remark. If 3, 4 # 2 -.cp, e, if Kly and Klg have different ranks,
then their breaks at oo are disjeint, so that ewvery break at co of Kly @Klg

is equal to
max(l/Zni, 1/2'@-).

This shows that Kiy @Klp is totally wild at oo in this case, and so gives
angther proof of the vanishing of H? in the case when Kly and Klg have
different ranks, Continuing with this case, our exact knowledge of the
breaks at oo gives

Swan o (Klg ®EB) = max (2 n;, Z mj)
i€d  jEB

provided 3 n; # 5 my, i.e., the inequality for dim H! in the proposition is
an equality in this case. :
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Now, quite generally, the fact that all Kloosterman sheaves are geomet-
rically irreducible (cf. 4.1.2) shows that for any twe Kloosterman sheaves
Kl and KI', we have

there exists a geometric
HY (G @ Fy, KIQ KY') # 0 <= isomorphism K1’ = (KI)¥ on
: Gm @ F,
and so in particular (cf. 4.1.3)

there exists a geometric
HCZ(Gm ®Fg, Kl@ﬁB) = ) < isomorghism Kig ~Klg en
Gm ®F,.

In the case when Kly and Klg have different ranks, they are certainly not

geometrically isomorphic, so we have “another” proof of the vanishing of
HZ?in this case. It is in the case of equal rank that we must (jusqu’a nouvel
ordre!) make use of the precise description of lecal monodromy at zero to
show that Kl4 and Klg are not geometrically isomorphic because they are
not Iy-isomorphic.

—
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Local Monodromy at co of Kloosterman Sheaves

f1i0.0. We begin by recalling some “independence of I" results. Thus we
X

a finite extension £ of Q
a finite field F,, whose characteristic is denoted D
a non-trivial additive character P (Fy, +) — Oz
an integer n > 1
multiplicative characters x1,; . ,)én (FY — OF
integers by, ... b,, all > 1. i
For every prime number | # p, and every l-adic place A of E, we denote by

Kl = KLy (¢; %1, . ...

theliisse E)\.-shea,f on G, @F,; whose existence is guaranteed by (4.1.1). For
meable A (ie., A running over the finite places of F of residue characteristic
different from p), the lisse E\-sheaves Klyon G, ® F, form a “compatible

system,” in the sense that for every closed point 2 of G,, @ F
of Frobenius at z,

an;bl,...,bn)

1, the trace

trace(Fy | (Klx)z),

which & priori lies in Ey, in fact lies in F and is independent of ). By
a resuit of Deligne ([De-1], 1.9), the fact that the Kly are compatible in

the above sense implies that as representations of I, (or of Iy, but this
case we have already analyzed) ,

, the Kly have ch t ith .
independent of ). aracter with values in £,

1 .1- P Op 1) AS p ton ] P -
“ r o] lthIl. re TESCnttIt Q 4] 1 tﬂ,ﬂ IISSE E SiLeq an
N , o0 A f

I<1A(11!)1X17 e an;bl: e )bﬂ)

has .chamcter with values in E which is independent of both X and of the
particular choice of the muliiplicative characiers x1,...,vn.
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Proof. The E-valuedness and independence of X, for fixed choice of x;’s, has
already been seen, just above. To compare (x1,...,xn) to {1,...,1), factor
each y; as a product of characters of prime power orders. Because y; has
order dividing ¢ — 1, the prime power orders which oceur are necessarily
prime to p. Proceeding cne I # p at a time, it suffices to show that if
Pli..-, Pn are characters of -power, order of F, then for A any l-adic place
of B, the Fy-sheaves

I(I)\(IJ[)IXIJ ey Xn bl) e 1bn)

and
I(IA(TI)) X1P1y 4 XnPns bl:i e lbn)

have E-valued and equal characters on P, As we already have seen the E-
valuedness, it suffices to show the characters on Po, agree in F,. Because in
both representations Py, acts through a finite p-group quotient, and [ < p, it
suffices to show that the two E)-representations of P., are isomorphic when
reduced mod A. But if we pick (F;-forms of the two sheaves in question, their
®F,’s are in fact isomorphic as representations of the entire (arithmetic)
{undamental group of G,, ® F,, because they are absolutely irreducible
(cf. 41.2) and because for every closed point #, the traces of Fy on the
two agree in F, (because the characters p;, being of I-power order, become
trivial after @F,). B

10.2. Corollary. The set of breaks with multiplicities at oo of o fensor
product

K% X1, -, Xn; iy o) @ KI5 xhs o X Dy )
of Kloosterman sheaves is independent of the particular choice of X and of
the multiplicative characters x1,...,xn ond xi,. .., X0,

Proof. 'The breaks with multiplicities are determined by the upper number-
ing filtration of Py, and by the values of the character of the representation
on each P& subgroup, By the propositionthis data is independent of both
A and of the choice of the x; and the x/. B

10.3. Corollary. Ifn =m and if (by,... b)Y = (4], ..,

Klk(w;)ﬁ.: -';bn)®1{ll(¥;xa)‘">X:q§bl;"°)bn>

is not totally wild at co, i.e., al least oneof ils breaks af co vanishes.

b)), then

)Xﬂ;bll“
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Proof. The question being independent of the choice of xi, we take x} = by the Lefschetz trace formula we have

Then the sheaf in question is a Tate twist of End(I{lA(gb; Xi's, bi’s)), whi
has a global (i.e. under #{°°™) invariant, namely the identity endomo
phism, so it certainly has non-zero invariants under P... B

Swan,, =degree as rational function of the L-function of

G ® Fy with coefficients in Kl (%) @ Kln(tz).

10.4. We now c;onsider in some detail the case when all the ; = 1, a
we write simply

KW x1, - xn) KL xe, - X L5 1)

If 7 # n, then we have already observed that
KL% xa, - - xn) ® KI5 X0, xm)

is totally wild at oo, with all its mn breaks equal to max(1/n,1/m).

plicitly, we have

L(Gum & Fy, Kln(191) @ Kl (), T') = exp (2 Sr—r~)

r>l

where for each r > 1 we have

= Z tIaCe(Fa;qu

aEF;“r

(Kl (%1) ® Kln(13))a)
10.4.1, Proposition, Lef ¢, and iy be non-trivial E-valued additive char :
acters of Fy, and denote by @ € FY their ratio, i.e.

Ya(z) = ¥i(az) for z€EF,

Let n > 1 be an integer, and X1,.-., Xn, X4y .-, X5 E-valued multiplicative
characters of B, Consider the tensor product

KL @Kl = KI(¢1;X1: N 1Xn) @ K1(¢2§X’1; . !X:l)

Z (—1)*-2 Z (1 o trace)(Tz;) Z (1 o trace)(Ty:)

% Ty...Tn=0 Y1Yn=a
aEF all 7, €F all yiEF,r

where “trace” is that of Fy /F,. Writing ¢2(z) = 11 (az), and remember-
ing that P(e)(y) = ¥{z + v), we find

| S. = Z Z : E (¥1 o trace)(Xz; + aly;)

Then we have

nif () #1in Fy

r.=a S yn=a
Swanoo (I{l]_ ® 1{12) - GGF:F ‘:'ll} "':éFq" aﬂ; yéuepq"
n—1if{—a)"=1inF, .
whence 0
Proof. As we have seen above (cf. 10.2), the breaks with their multiplicities .
of this tensor product are independent of the choice of the x; and the x/. Sy = Z (1 o trace)(Sa; + afys).

We will choose all x; =1 and all x! = 1. We will denote simply by Kln(¢) 5;1'1";”_";%;3{“
the lisse sheaf ’ )

dfn

Kln(¥) ¥ K1, 8 1., 1)

n times n times

Now let us explicitly keep track of-the dependence on n > 1 and on
a € FY. For this it is convenient to introduce, for n > 1, o € Fy and

Thus our problem is to compute Swan,, for 4 € ¥, the sums
g

Kl {21) @ Kl (12).

As this sheaf is lisse on Gy, @ F,, and tame at zero, we have

Swang, = —Xc(Gm ®?gaKln (Vbl) @ Kl, (¢'2));

Sna,f= > (% ; frace) (21: zy +aiyi>.

Br1. Ta=Yi. Yn
all oy in F:r



172 Chapter 10

For n = 1, we readily calculate

Se(l e, 8) = z (¢lotrace)(m+ay)

y=pr,
z,y in F;‘f

z {1p1 o trace)((1 + e)x)

veFX,
-1 if af#-1

T—1 i af=-1

10.4.2. Lemma, Forn>1, S.(n+1, a,f) = =14 ¢ S5 (n,a,—af).

Proof. We have

S’r(n—i—l,a,,@): Z

BE1. Tnp1=y1. . Ynt1
zi,y, all 0 in Fgr

Using #1,...,2n, 41, .., Ynt1 as free variables, we have

... yn—}-l

41 =
Bri...x,’

ntl n+1
{1 o trace) (Z z; +a Z yi) .
1 1
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o we may write

Sr(n+ 1,0!,ﬁ) =

S ($1o trace) (

T1yenr¥ny

__._-_-—-y“+1 + th + aZyz + ayn+1>
Yi,--al¥nga,

all £0'in Fgr : )

Z Py 0 trace) (ynﬂ (CY + ﬁygl

yn+1?50
in Fgr

z (1 0 trace) (Zmazy,)

;cl,.,.,x“

=— Y (¢1otrace)(i:ﬂi+ai%)

T1,03Tn
Yi,0Yn
all #0in Fgr

+ Y (drotrace) (5::m+a§1:yi> S (91 o trace) (yﬂ+1(a+ .

$1,4--,;n all Y
ks F r
all #0 in Fgr e Fo

=-1+q E {41 o trace) (th +0!Zy:')
1 1

= ~1+q¢85(na —af). B
Using this, we find
Se(n+ 1,0, 8) = =1 = ¢" + ¢ S(n =1, &, (—0)* )
v gD 4 g7 S (1, 0 (— )" )

P an if Q(»—a)ﬂ‘ﬂ ﬁ -1
g gD i a(—a) = 1.

=-1-g¢ —q¢" -
—{_'1__qf‘_q21‘__
__]A_qr__qu-_

)
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are equal to 1.As (p,n) = 1, this means that KI(+, x's)® Ki{1, x"’s) has all
“breaks 1/n, as asserted by the corollary.

If (~1)* = 1in ¥y, then ({1 +¢3)/n = 0 for precisely the n pairs (¢, —().
o in this case we find the additional

Taking B = 1, and replacing n + 1 by n, we see that the L function o
Kl (1) @ Kln()2) is given by
n—1 ,
T(1-9T) if (~a) #1
i=0

10.4.6. Corollary. If (p,n) = 1 and (—1)" = 1 in Fy, then for eny non-
rivial additive character v, and any mulliplicative - characters
..Xl,---,Xn:len---)Xi”

Kl x1, - xn) @ KN (¥ x4, -+, Xn)

“has 1ls breaks given by

n—-1

(1= ¢T)/(1- ") if (o) =1.

=0
10.4.3. Corollary. Notations as in the proposition 10.4.1, if (—a)™ % 1 in.
F, then :

KI{¥15x1, -0 Xa) @ K (¥ x4, -0, x0)
with Po(z) = Y1 {az), has all ils breaks at oo equel 1o 1/n.

break ¢ with multiplicity n

Proof. All its breaks at co are < 1/r, and its rank is n?, so “all breaks

break 1/n with multiplicity n® —n.
i/n” is equivalent to “Swany,, = n.” B ' '

.':_"10.5. Question. Does this last corollary remain true for n’s which are not
10.4.4. Corollary. If (—1)* # 1 in Fy, then for any non-irivial edditive

characler 1, and any multiplicative characlers Y1, .., Xn, X1, ) Xh

KI5 x1,- - Xn) @ KW x50, - X0)

has all ils breaks at oo equal {0 1/n. In particuler, when (—1)" £ 1 in ¥, -
the sheaf K1(1; x1,...,xn) admils no non-zero Poo-tnvariant bilinear form

Kl x Kl — Fy.
Proof. This is the case & = 1 of the above coroliary. §

10.4.5. Remark. If n is prime to p, this corollary also results from 5.6, ac-
cording to which if we take p1, ..., pn to be the n characters of order dividing
n of some F¥ with ¢ = 1 mod n, then Ki(¢;p1,..., p,) is geometrically
isomorphic to [n]uLy,,,. Therefore we have

[n}* (K1(¢1X1: Sy Xn)) pond @ £w<f“

»=1in F,
as representations of Py, for any x1,..., xn, thanks to 10.1, Thus we have,
as Peo-representations,

[T (KU x, - oxn) @ KWW XL, uxn)) 2 6D Loy
r=13=1 "
Ci€F,

Now if (=1)* # 1 in Py, then ({1 + (3)/n is always ron-zerc in F,, so

each Ly, .. has break 1, so in this case all n” breaks of

[n]* (K1(¢, x75) ® KI(%, x!'s))
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Global Monodromy of Kloosterman Sheaves

11.0. Formulation of the Theorem

11.0.1. Let us fix

an integer n > 2

a prime onumber p

a finite field F, of characteristic p

a finite extension E of Q containing gn%l

a non-trivial additive character ¢ : (F,;,+) — E*
a prime number [ # p

an l-adic place A of E.

As in previous chapters, we denote by

KL () = Ki{y;1,...,1; 1,...,1)

n fimes n times

the lisse Ej-sheal on G, ® F,; whose existence is guaranteed by 4.1

Recall that Kl, (%) has trace function given by {cf. 4.1.1) the “unadorne
Kloosterman sums

trace (Fax | (Kla(¥))a) = (=1)"*¢ Z (v o tracey/w, ) (i 9:,-).

Tl..Tn=d 1
all w;6k

Because E and hence ) contains ¢*5, which necessarily lies in (O
because [ # p, we may form the lisse rank-one E,-sheaf

n—1
E
()
first on Spec(F,) itself, then by inverse image on G,, ® F,, where it
characterized up to iscmorphism by
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(5252, (%)"

Fy

or every closed point z of G, @ Iy

11.0.3.

0.2,

Let us denote simply by F the lisse E5-sheaf

F= Kln(w)(” 1) = Kl (1) @E,\(ng -

N~

t us recall the basic facts we have established about Kl,(¢), but recast
terms of F (all these facts but the last appear already in [De-3]).

. F is lisse on Gy @ Fy of rank n, and pure of weight zero (cf. 4.1.1).
. F is unipotent as Ip-representation, with a single Jordan block

(cf. 7.4.1).

F is totally wild at co, with Swanw(f) =1 (cf 4.1.1).

det F is trivial, i.e. 2 I as lisse sheaf on G, ® F; (cf. 7.4.3).
I (—1)* = 1in F,, there exists a perfect pairing

(,) : FQ Frim Ey

of lisse sheaves on G,, ® F,, which is alternating if n is even and
which is syrametric if p = 2 and n is odd (cf. 4.2.1).

DI (-1)" # 1in Fy, then F® F is totally wild at oc, with all breaks

1/n (cf. 10.4.4). In particular, even as Py -representations there is
no non-zero Peg-equivariant bilinear form F @ F -~ E) (cornpare
4.1.7, where we proved this for I;).

Now let us choose
a geometric point  : Spec(Q)) — G, @ Fy, with
) a separably closed field, and
“chemins” connec@ng Z to the spectra 7y and 7,
of separable closures of the fraction fields of the
henselizations of P* ® F, at 0 and oo resp.

Usmg the chosen chemins, we obtain continuous homomorphisms of pro-

ﬁl(Gm ®Fq,i) ey 'JTl(Gm [} Fq, E)
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11.2. Remarks.

(1) In the above list, the groups Sp(n) and SO(n) are with respect to the
perfect pairings of 11.0.2.6 carried by the sheaf 7 = Kl,(¢) (25 1)

(2) The G3 in the above list is viewed as lying inside SO(7) by its unique
irreducible seven-dimensional representation. As subgroup of SO(7),
(35 is the fixer of some non-zero alternating trilinear form ASF — E,.
We will indirectly prove the eristence of such a trilinear form, but
we do not know an a priori description of it.

(3) Because Ggeon is defined as the Zariski closure of a set of Ex-valued
points in an affine Ej-scheme, it is immediate that for any overfield
K of E,, we have

The monodromy representation of F at T is denoted
p i (Gm ®F,, 5) — Autg, (Fz) = GL(n, Ey).
11.0.4. In view of fact 4 recalled in 11.0.2 above, we have
Image(p} C SL(n, E)).
In view of fact b, we have the supplementary information
Sp(n, Ea) if n even
Image(p) C
SO(n, E,) ifp=2andn=odd

where the Sp and SO are with respect to the perfect pairing of 6.

. Ggeom @K = the Zariski closure of p(#¥*“™) in GL(n ®K
Denoting by

. Ex
ﬂ,g;eom = ?Tl(Gm ® Fq, i‘) -

- 'Therefore it suffices to prove the Main Theorem with E replaced by any
: " convenient overfield (in occurrence £, ).

W?I‘lth — Wl(Gm ® Fq, E) ( A)
the “geometric” and “arithmetic” fundamental groups, we have a diagram
of subgroups of GL{n, Ej):

(7 ™) € p(ri) C L, By),
p(leo) '

with the additional information

©11.3. Corollary. Under the monodromy representation p, we have
p(ﬂ'?rith) C Ggeom(EA)-

" Proof. Except in the last case, this is just 11.0.4, given the explicit deter-
mination of (. In the last case, we notice that because 73" ig a normal
subgronp of with, p(ﬁrmth) normalizes Gy in SO(7). But every auto-
"morphism of Gy over Ey is inner (the Dynkin diagram has no non-trivial
" automorphisms), and the inclusion Gy < SO(7) is an absolutely irreducible
) - representation, so any element of SO(7, £, ) normalizing G2 may be written
Sp(n, E) if n even i the form
p(rei) C

SO(n, E)} ifp=2and n odd. (an element Of\q\%@')\)) x (a scalar in SO(7, Fa)).

But as SO(7) contains no non-trivial scalars, this shows that over Ey, (G

11.1. Main Theorem. The Zariski closure Gyeom of p(w¥™) in GL(n), is its own normalizer in SO(7). Therefore

as algebraic group over Ey, is given forn > 2 by
Sp(n) n even p(m3™) € G2 (Ex) NSO(T, Ex) = Ga(E»). B

SL(n) on odd

SO(n) p=2,noddn#T

Gy p=2,n="T.

As explained in Chapter 3, this last corollary leads to a rather concrete
equidistribufion theorem (concrete because we have determined the group

. Ggeom)-

Gg‘eom =
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11.4. Equidistribution Theorem. For any embedding E) — C;

any mazimal compact subgroup K of the complez Lie group G

the generalized “angles of Frobenius” for the sheaf F = Kl () ("—E—l

Gm®F,,

#(a) = the K-conjugacy class of any element of K which '_

i Ggeom(C) -conjugate to p{F,)%,

as a runs over the closed points of G, @ ¥, are equidistributed in {h

KU of conjugacy classes in I{ with respect to the direct image p!
- measure, in any of the three standard senses (X,Y,Z, ¢f. 5.5).

ExpLICITATION: For the sequence of measure X;, the explicit &
3.6.3 proven earlier gives, for the sheaf F = Kl.(¢)(25) on G @
estimate
dim(A)/7'
ftrace(A) dX;l < ——(—M-
n(¢ — 1)
Kt
for any irreducible non-trivial continuous representation A of K. '
explicitation is given in Chapter 13,

11.5. Axiomatics of the proof; Classification Theorems

11.5.1. Let K be an algebraically closed field of characteristic zero

an integer, and p a prime number. We suppose given

(O an n-dimensional vector space V over K,

@ a unipotent element Uy € SL{V) with a single Jordan blo
@& a Zariski-closed subgroup T'ee C SL{V),

@ a Zariski-closed subgroup Heo C T,

and we suppose that the following conditions are satisfled:

a) I'y acts irreducibly on V. .
b) I'e admits no faithful K-linear representation of dimension
¢} If pn is odd, we assume that

1) the space (V* @ V*)H“’ of H.,-invariant bilinear forms
vV % V — K is zero.

2) any character x : ' — Gy @ K of T, s trivial on Hes
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f.'I_‘he actual situation we have in mind is
K=E,V=(F)QRK,
Fx

Us = p(v0), for 7o a topological generator of I§*me
T = the finite subgroup p(l) C SL{V)
Hy = the finite subgroup p(Puo) C p(Iee),

will be useful for other applications {e.g. to calculating differential
groups) to work in the axiomatic situation.

1. Lemma. [n the aziomatic situation 11.5.1 above, let G C SL{V) be
riski-closed subgroup which contains Uy and Toy. Then the identily
onent G° of G is semisimple, and the action of G® on 'V is irreducible.

The group  acts irreducibly on V, because its subgroup ', does.
efore (7 acts completely reducibly on V. Because (G° is normal in G,
¢ommpletely reducibly on V.

Zariski closure in SI{V) of the abstract subgroup generated by Uy
G, given by t — exp(tlog(Uy)), so it is connected. Because Uy € G,
ariski closure lies in G, so lies in G°, Therefore Up lies in G®. But U/g
ly a single Jordan block acting in V', so V must be indecomposable
G%)-module, because it is already so under Ug. But V is completely
le as a GO-tepresentation, so being G°-indecomposable is equivalent
eing GO-irreducible. The semi-simplicity of G is given by

fE—y

2.2. Lemma. Let K be an algebraically closed field of characteristic
‘a finite-dimensional K -space, and G C SL(V) a connected Zariski-
subgroup which operates irreducibly on V. Then G° is semisimple.
Because G is given with a faithful completely reducible represen-
it is certainly reductive. So it suffices to show that its center Z(G%)
e, But G° C SL{V) acts irreducibly on V, so Z(G°) lies in both the
rs and in SL{V), so in SL(V)M scalars which is finite. &

3. Lemma, Hypotheses and notations as in Lemma 11.5.2.1 above,

_ G = Lie(G°) C End(V)
Lie algebra of G°, and put
N =log(Us) €G.

he incx’usz’on/g C End(V) is o faithful irreducible representation of G
ch N acis nilpotently with o single Jordan block, and G is a simple
ebra.

<
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Proof By 11.5.2.1, G° is semisimple, and G® < SL{V) is a faithful ir-
reducible representation. By hypothesis, the element Uy acts unipotently
with a gingle Jordan block. Therefore G is a semisimple Lie algebra, the
given representation § — End(V) is faithful and irreducible, and N acts
nilpotently with a single Jordan block. If G is not simple, then

G=G ®Ga
where §; and Go are non-gero semisimple Lie algebras, and the given faithful
irreducible representation of G is of the form

V=V@V

where ] and V, are faithful irreducible representations of §; and Gy respec-
tively. In particular we have dim{V;) > 2for i = 1, 2, because these are non-
trivial representations of semisimple Lie algebras. Writing N = Ny & N,,
we have N; and Ny nilpotent in §; and §; respectively, and N acts on
V=V,®Va by
NIV = (Ny | Vi) @ (idy,) + (idy,) © (Na | V2).
Because N; is nilpotent on V;, we have
(N;‘)dim Vi =0 on V;:;
whence by the binomial theorem we find that N = N1 ®id+id® N satisfies
(N)dim Vi4+dim Vo—1 =0,
Bul & has a single Jordan block, of size dim(V) = dim{}1) dim(V3), so we

know that
(N)dim(Vl)dim(Vg)Ml :,é 0.

Therefore we must have
dim(V1) + dim(Vp) > dim(V}) dim(Va).
But this is impossible, because both dim(Vi) and dim(V3) are finite and

>2. 8
11.5.2.4. Lemma. Hypotheses as in Lemma 11.5.2.1 suppose that there ez-
ists @ K -tsomorphism G =~ sl(2) of Lie algebras. Then we are in one of the
following two cases: '
() n=2, G" =G = SL(V) = SL(2).
{2 n = 3,p = 2, and with respect 1o some non-degensrate guadrolic
form on V' we have

G® = S0(3) C G € SO(3) x pyg C SL(3) = SL{V).
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Proof. If G ~ si(2), then G? is isomorphic to either SL(2) or to SL{2)/%1 as
algebraic group, and the given representation G C SL(V), being irreducible
on G, has no choice but to be Symm”~!(std) on G® where std denotes the
standard 2-dimensional representation of SL(2). Because Symm™™'(std) as
SL(2)-representation has kernel (=1)"~!, and is faithful on G°, we have

SL(2)/(£1)*~! ———=— , G® C G ¢ normalizer of G° in SL{V).

symm™—1{std)

Because every automorphism of G° is inner, and G° ¢ SL(V) is irreducible,
we have

normalizer of G® in SI(V) = G° - (scalars in SL(V))
= (G* x ,)/G" N,

(SL(2) x m,)/ (the diagonal £1)

if n 1s even.

SO(3) x , if n is odd.
I n is even, we have
SL(2) x g1, / (£1) & SL(2) x G, [ (1) = GL(2),
while if n is odd we have
SO(3) x p, — GL{3).
Therefore we have inclusions of K-algebraic groups
G — GL(2) if n even
{ @ <= 80(3) x g1, = GL(3) if n odd.
Consider the composite homomorphism
GL{2) ifn even
oo =G —
GL(3) if n odd.

By hypothesis, ', has no faithful representation of dimension < n. There-
fore we have n < 2 if n is even, and n < 3 if nis odd. By hypothesis, n > 2.
If n = 2, there is nothing to prove. If n = 3, then

G% ~ S0O(3) C G € SO(3) x pgg C SL(3) = SL(V).
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We must show that p = 2. If not, pn is odd, and any character of I's is
trivial on He. Consider the character

T G C SO(3) X iy ——r iy
it is trivial on Hao, so Heo lies in SO(3), and this contradicts the axiom

¢),1) of 11.5.1. B

11.5.2.5. Lemma. Hypoilheses and notations as in Lemma [1.5.2.1 suppose
that n 1s odd and that G° = SO(n) for some non-degenerate quadratic form
onV. Then p=2.

Proof. Just as in the above proof, we know that every automorphism of
SO(n) is inner {the Dynkin diagram has no non-trivial automorphisms},
and that SO{n) operates irreducibly on V', whence

G C normalizer of SO(n) in SL(V} = SO(n) x p,,
the last equality because SO{n) contains no non-trivial scalars. Again the
composite
oo € G C 50(n) X g, — g1,

is a character of ['e, s0 it must be trivial on Hg,, whence Hy, C SO(n),
and this contradicts axiom ¢),1) unless p=2. §

11.5.2.6. Lemuma, Hypotheses and nofotions as in Lemma 11.5.2.1, sup-
pose that n = 7 and that the subgroup G C SL(V) has G° = G, where
Gy C SO(T) C SL(7) = SL(V) by “the” irreducible seven-dimensional rep-
resentation of Go. Then p = 2.

Proof. Just as above, we have
(G C normalizer of Gy in SL{7) = G2 X 7,

and the argument proceeds as above. B

Let us temporarily admit the truth of the following Classification Theo-
rem.

11.6. Classification Theorem. Let K be an algebraically closed field of
characteristic zero, n > 2 an infeger, G a simple Lie algebra over K given
with a faithful irreducible representation

¢ < si(n).
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Suppose that there exists o nilpotent element N € G such that p(N) has
a single Jordan block. Then the pair (G, p} is K-isomorphic to one of the
following

(1) G = sl(2), p = Symm™ ™! (standard 2 — dim rep).

(2) G = sl{n), n >3, p = standard n-dimensional representation {or

its contragredient, but these are isomorphic).

(3) G = sp(n) tf n > 4 even, p = standard n-dimensional rep.

(4) G = s0(n) if n > 5 odd, p = stendard n-dimensional rep.

(5) G = Lie(G2) if n =7, with ils unigue 7-dimensional irreducible rep.
11.6.1. Lemma, Hypotheses and notations as tn Lemma 11.5.2.1, we have
the following list of pessible values for the subgroup G° of SL(V) = SL(n):

n even : G° = Sp(n) or SL(n)
pn odd : G® = SL(n)
p=2,n odd #7:G° =80(n) or SL(n)
p=2,n=7:G%= Gy or SO(7) or SL(T7).
Proof. This is immediate from the Classification Theorem and Lemmas
11.5.2.45-6. §

11.7. Axiomatic Classification Theorem. In the exiomalic situation
(11.5.1), suppoese in addition that if pn is even, we are given a non-
degenerate bilinear form {,) : V % V — K which is alternating if n is
even and symmetric if n is odd. Let
Sp(n) n even
G C ¢ SL(n) pn odd
SO(n) p=2,n odd
be a Zariski closed subgroup which contains Uy and T'y. Then
‘i/) Sp(n) n cven
SL(n) pn odd
SO(n) p=2,n odd #7
Gy orS0O(T) p=2,n=T.
Proof. Simply apply Lemma 11.6.1. In view of the a priori inclusions we
assume, we find that '

G =

Sp(n) neven
G°Cc Gc{ SL(n) pnodd
S0(n) p=2,nodd,
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and except for (p,n) = (2,7), Lemma 11.6.1 forces equality everywhere
above. In case (p,n) = (2,7), either G® = G5 or G® = SO(7). In the second
case we have G C G ¢ SO(7) with G° = SO(7) forcing G = SO(7). In
case G = G, G lies in the normalizer of Gy in SO(7), but this normalizer
is, as already noted (cf. 11.3), G itself. §

Applying this axiomatic classification theorem to Ggeom, we find the Main
Theorem except in the case p =2, n =7, in which case Geom is either Gy
or SO{7). Let us temporazily admit the truth of

11.8. G; Theorem. Forp=2, n =7, we hove Gyeom = G2.

Since even this exceptional case gives the smallest possible group for
Ggeom as allowed by the axiomatic classification theorem we find the fol-
lowing result, suggested to us by . Gabber,

geom

11.9. Density Theorem. The subgroup of p(n}™") generaled by Uy =
p(y0), 7o a topological generator of I, and by the finite subgroup 'p(Io)
is Zariski dense in Gyeom.

11.10. Proof of the Classification Theorem

11.10.1. In this section we will prove the Classification Theorem 11.6.
Thus K is an algebraically closed field of characteristic zero, & is a finite-
dimensional simple Lie algebra over K, n > 2 is an integer, N € G is a
nilpotent element, and p : ® < sl(n) is a faithful irreducible representation
in which p(N) has a single Jordan block.

In order to classify such pairs (8, p}, we will make use of the theory of

“principal s{(2)-triples,” the Weyl character formula, and the classification
- of simple Lie algebras.

1110.2. Let b be a Borel subalgebra of ® such that N lies in b, and let
b C b be a Cartan subalgebra of b; by {Bouraki Lie VIII, §3, Cor. of Prop
9), ff is a Cartan subalgebra of ®. Let R be the set of roots of & with
respect to §; an element o € £ is by definition a non-zero element of the
K -linear dual b* of A which occurs in the restriction to b of the adjoint
representation of & on itself. For « € R, the corresponding eigenspace
B® C & is one-dimensional, and as I{-vector spaces we have

@:b@(@cﬁ“)

«ER
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The set Ry of positive roots with respect to § is the set of those « € R
for which &* lies in B, and we have

b:fj@(@ ®a>.
agfiy

Let B C Ry denote the set of simple roots, i.e., B consists of those
elements o € Ry which cannot be expressed as a sum of two non-zero
elements of By. One knows that if & € R is a root, then exactly one of «
or — lies in By, and one knows that every element of 21 is a finite sum
of elements of B. One also knows that the oo € B form a K-basis of h*.

For any root a, the commutator [, =] is a one-dimengional subspace
of & which liesin b, and on which o, viewed as an element of h*, is non-zero.
There is consequently a unique element

Hy € [6%,67%]Ch

which satisfies
a(Ha) =2

The set {Hy}aer form a root system R in f, for Whﬁh {Huo}oenp is a
base and for which {H,}ser, is the corresponding set of positive roots. It
is possible to choose for each root @ € R a non-zero vector X, € B¢ such
that

(KXo, X o] =—He.

With this choice, one knows that the assigument

0 1
X+_<0 O)P—FXQ,
¢ 0 N4
- - of
= (40

1 0
= (0 —1) = Ha
defines a non-zero homomorphism of K-Lie algebras
sl{2) — &,

or, as one says, (Xo, Ha, X_4) is an si{2)-triple in &.
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Now let us denote by n C b the set of nilpotent elements of G which lie
in b. Then n is equal to
n = @ B,

acRy
As K-scheme, n is thus the affine space Af+.
By hypothesis, the set

{N € n such that p(N) has a single Jordan block}

is non-emnpty. It is clearly Zariski-open in n, because, p{V) being an n X n
nilpotent matrix in any case, we have for N € n the equivalences
p{N) has a single Jordan block
<= dim Ker(p(N)) =1
<= dimIm{p(N))=n~1
<= some (n— 1) x (n~ 1) minor of p{N) is invertible,
and this last condition is Zariski open. )

Recall that under the adjoint representation, for every N € n the endo-
morphism ad(N) has > dim(h) Jordan blocks. Those with exactly dim(h)
Jordan blocks are called the principal nilpotent elements. One knows that

the set of principal nilpotent elements in n is non-empty
and Zariski open In n
(cf. Bourbaki Lie VIII, p. 167).

Because the intersection of two non-empty Zariski open subsets of

n ~ AR+ is again non-empty, it follows that
there exists a principal nilpotent element Ny € n such
that p(N1) has a single Jordan block.

Now Ny, being nilpotent and non-zero, may be completed to an si(2)-
triple (z, h,y) = (N1,7,7) in ®. Because N; is a principal nilpotent, any
such si(2)-triple is principal {Lie VIII, §11, 4, Prop. 7). By (Lie VIII, §11,
4, Prop. 8 and 9), any principal sl{2)-triple in & is Aut.(®)-conjugate to
one of the form (7,h°,?} where

RS € b is the unique element in § for which a(h®) = 2 for
allo € B,
Furthermore, any si(2)-triple (2, h, y) with h = A% is principal.

By the standard representation theory of si(2), a finite dimensional rep-
resentation (V,7) of s{(2) is irreducible if and only if #(Xy) has a single
Jordan block. Therefore the restriction of p to any sl(2)-triple of the form
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(N1,7,7) is irreducible. But such an sl(2)-triple is principal, and all princi-
pal s1(2)-triples are Aut.{®)-conjugate (cf. above), so we conclude that the
resiriclion of p 1o any principal sl{2)-iriple iz irreducible. In particular:

the restriction of p to any s{(2)-triple (x, h,y) with
h = h® = the unique element k € b with «(h%) = 2 for all
o € B, 1s irreducible.

11.10.3. Now let us recall briefly the representation theory of ®. For any
finite-dimensional representation A of &, the weights of A are those elements
of B* which occur in the restriction of A to . The weights of & are the
elements of h* which are weights of some finite-dimensional A. The weights
are each Q-linear combinations of the o € B (which form a K-basis of h*).
We say that two weights w and w' satisfy w > v’ if

w—w = E n,o with rational coefficients n, > 0.
aEB

A weight w of & is said to he dominant if
w(Hy) is a non-negative integer for all o € B.

Because the vectors (Hy)aep form a K-basis of §, if we denote by (wa)aen
the dual basis of §*, we see that the dominant weights are precisely the finite
sums

Z Ng i, with integral coeflicients ny > 0.

ag
The weights (wy)acp are called the fundarmental weights.

One knows that every finite-dimensional irreducible representation has a

highest weight (in the sense of the above-defined partial order > on weights),
that its highest weight is a dominant weight, and that the map

isomorphism classes

of finite-dimensional highest weight  the set of dominant
- - e — 1

irreducible weights

representation of &

is bijective. Furthermore, given a deminant weight w, if we denote by V,
the unique finite-dimensional representation of & whose highest weight is

 w, we have the Weyl dimensional formula:

let A = g 1, be the sum of the fundamental weights; then
a€B
. w{Hq) )
dim(V,) = (1 + .
( w) H AO(HQ)

aER+
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Notice that because each H, with « € R4 is an N-linear and non-zero

_ linear combination of the H, with o € B, the denominator Ag(H,) for

each o € Ry is a strictly positive integer.

11.16.4. Lemma. Lef w be a dominant weight of &, Vi, the corresponding
irreducible representation. Then for any sl(2)-triple (z,h,y) in & with
h = R" = the unigue element h® € b with a(h®) = 2 for all « € B, the
highest weight of the compostte representaiion

(=.h°,
si2) Y, End(V,)

.

is the integer w(h®).

Proof. The weights of the composite representation are the integers w'(h?),
where w' ranges over the weights of V,,. Because w is the highest weight,
we have for any weight w of ¥,

w=w -+ E Ngty, Ty rational >0,
a€B

Therefore as a(ho) = 2for all & € B we find
wA®) =W (h*)+2 ) ne 2 w'(A°). B
1:3:1

From the elementary theory of §/{2)-representation {or by the Weyl di-
mension formula in this trivial case), a finite dimensional irreducible repre-
sentation (V,7) of sl{2) satisfies

dim(V) = 1 + the highest weight of 7 on si(2).
So for any finite dimensional representation (V, 1) of s1{2), we have
{ dim{V} — 1 > highest weight of = on 51(2)
with equality if and enly if (V, 7) is sI(2)-irreducible.
Combining this with the preceding discussion, we find
11.10.5. Criterion. Let w be a dominant weight of &. Then
dim(V,,) — 1 > w(k®),

with equality if and only if the restriction of V,, to every principal s{(2)-
tripie in ® is irreducible. '

In the trivial case when & = sI(2), there is nothing of 11.6 to prove.
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11.10.6. Lemma. If & # s1(2), ie., if dim b > 2, and if w is a non-zero
dominant weight of ® which satisfies

dim(Vy,) — 1 = w(h?),
then w is ¢ fundamenial weight.
Procf. If w is not fundamental, then we can write
w = W1J+ )

with w; and ws both non-zero dominant weights. As noted above, we
always have the inequality

dim(Vi,,) =1 > we(R%), i=1,2.
50
dim(V,) — 1+ dim{V,,,) — 1 2> wy(h%) + wy(h") = w(r?).
Thus it suffices to show that
Am(Vis, gow,) — L > dim(Va, ) — 1+ dim(V4,,) — 1,
or equivalently
14 dim( Vi, puw,) > dim(Vy,,) + dim(V,,, ).

This we will do by looking at the general shape of the Weyl dimension
formula.

11.10.6.1, Sublemma. For & simple of rank (= dim § = £(B)) > 2, and
woany non-zere dominent weight, there exist at least two distinct elements
@ € Ry for which w(Hy) > 0.

Proof. Because @ is simple of rank > 2, its Dynkin diagram is connected
and contains > 2 points. Write w = EC\-GB ToWe With integral coefficients
ng > 0. Because w # 0, there is some «g € B with ng, # 0. Let @ € B be
an adjacent point to ap in the Dynkin diagram. Then both ag and @g + o
are positive roots, and the dual root to ap + o4 is

HQ9+(11 o .AUH&D +A1Ha1, with Ao,Al >0

(in terms of a W-invariant scalar product (, ) on the Q-span of the roots,
Hy =2a/(w, ), so the constants A; are given by

Ai = (e, 00) /(0 + o1, @0 + 1)),
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Therefore we find
w(Hy,) =g, >0
w(Hag+a1) = Aonag + Al”czl 2 AOnao > 0,

as required. §
Now let us return to the proof of Lemma 11.10.6. For each o € Ry, let

o wl(HQ)
o — AO(HC{))

_ wa(Hy)
Yo = AO(HQ).

Then the quantities ., Y. are non-negative rational numbers, because for
o« € Ry each H, is a non-negative integral combination of the H, with
o € B. So we have, thanks to the sublemma above,

all z, > 0, and z, > 0 for at least two values of «
all yo > 0, and y, > 0 for at least two values of .

By the Weyl dimension formula, we have

dim(V,,,) = [] (14 22)

DLER+
dim(Vy,) = T (1 +va)
aEfly
dim(Vw1+w3) = H (1+‘7"0’ +yﬂ)'
aER+ )

Sc to prove the lemma, we are reduced to proving the following.

11.10.6.2. Sublemma. (Hven o finite set By of > 2 elements, and real num-
bers 2, > 0 and yo 2 0 for each o € Ry, suppose that at least one z, and
at least two yg’s are > 0. Then

L4+ [JO +2a +ya) > [0+ 20) + [+ pa)-
o - o o
Proof. Fix the y,’s, and consider the funetion of { given by

F6) =1+ JJ( + 2o +va) — [ [ +t20) = T + va)-

This function vanishes at ¢ = 0, and its derivative is equal to

HOE Zma{ T1(1+tes+ys) - H(1+mﬁ)}.

o fra B
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Fort > 0, the coefficient of each @, in this expression is visibly non-negative.
There exists some value ag of o with 2o, > 0. Because at least two yg’s
are > 0, there exists a value fy for which §y # @ and ys, > 0, whence
the coefficients of 54, in the above expression is strictly positive. Therefore

/() > 0 for all t > 0, while f(0) = 0. Thus we find

1
10 =10)-10)= [ Foa>0. &

11.10.7. Thus it remains to lock In the tables to see which of the fundamen-
tal weights w of which of the simple Lie algebras

AnjBﬂ:Cﬂ)Dﬂ)EG:E7) ES}F‘i)GQ
satisfy the equality
1+ dim(Vy,) = w(k®).
In the tables (Bourbaki Lie VI, Planches I-IX, pp. 250-275), we find for

each fundamental w of each & its explicit expression

W= Z mar With m, € Qg
aeB
as a sum of simple roots. In terms of this expression, we have
wh) =2 m,.
acB
In (Bourbaki Lie VIII, Table 2, page 214), we find the explicit formula for

dim(V,,),

for each fundamental weight w of each simple Lie algebra &.
With some perseverance, one finds that the equality

dim(V,,) = 1 = w(k")

holds only for the following list of fundamental representations of simple
Lie algebras of rank > 2:

(Al >2 ; w; and wy
Bq i wy and wy
Bil>3 ;

Cy i wy and wy
Ol >3 0 w
Gy ;ow.
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We will only sketch the requisite calculations. For Ag, By ~ Cy, and the ex-
ceptional groups, one checks case by case and learns very little in the process
except that the list is correet for these. It remains to treat A;>3, Biys, Crys,
and Di>4(D3 ~ As).

11.10.8. Case A;,1 > 3. We have
1 . ~ . .
w,“m{21(1+1—1)aj+ Z 1([-{-1—_})&]'1{

1< i+1<i<

E

wi(ho)

il

[Ej(l+1—i)+ b i(1+1_j)]
1<

i+1<i<l

4
—

:%[(1-{-1)(!4—1—1)4—1 =)+ 1—1)]

=il+1-1)

dim(Vy,) = (1 t 1).
We must see for which 1 <4 <[ we have
(H;I) =il4+1—-9)+1.
This clearly holds for i = 1 and for i = {. The question is to show that
14il+1-1) < (’T) fo<i<i—1l,
But the identity (z — a)(z + a) = 2% — a® < 2? shows that,
1+2(1+1—t) <1+ (“;U
while for 2 < ¢ <[~ 1, the fact that binomial coefficients increase toward

the middle shows
(l + 1) (l + 1)
. > .
1 . 2

So we are reduced to checking that for [ > 3 we have

()45,
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ie.
{i41) I+ 1):Z
3 >1- FR
le.

AP+ 2A> A4+ 1241,
P2>5 §

11.10.9. Case By, 1> 3.

for I<i<l-1,

ZJCEJ -+ Z taJ

F=i4l

and for 1 = | we have

1
wy = E(al +2a + - -+ log).
Therefore
{2419 if 1<i<l-1
wy(RY) =
S Y
We have
(Y for 1<i<i—1
dim(Vy,;) = _
2 for i=1
For 7 = [, the inequality
P> 14— il + 1}

holds for I = 3 by inspection (8 > 7), and then for higher I by comparing
the first differences of both sides. For 1 <7 <1 — 1, the equality

2041
( N ):1+1‘(.21+1”_i)

holds only for i = 1 (as we saw in checking As). B
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11.10.10. Cluse D,1 > 4. Here we have
i -2 i
for 1<i<{—-2,w; = Ejaj +1 .Z‘-Haj + 5(0”'1 + )
i= j=i

-2
1 X ) -2
Wi_y = 3 (j2=1jaj -+ 501—1 + Tm)

i=1 2

Thus we find

{2 ~1—1) for1<i<i—2

w;(h%) =

Ma-i) fori=Il-landi=1.

We have
(i”) for1<i<i-2
dim(V,,}) =

-1 fori={|—1landi=1
For i =1 — 1 and I, we easily check that
i(l-1)

.2?»4-1 1 S
> 1+ 5

first by inspection for | = 4, then for higher [ by considering the first
differences of both sides. For 1 < i <1~ 2, we need

2
(,I) >1+4(21—-1-1).
z
But the universal inequality for Ay and wy gives
l
(2_) >14i(20—2),
i

which 18 more than adequate.

11.10.11, Hard Case Cy, ! > 3. We have
i-1

) ) 1
wf=ij+z(af+---+ar-1+§m),

j:l
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)
wi{h®) = i(20 - 1).
We have
(21!) fori=1
dim(Vy,) =
() = (%) rz<i<t
Clearly we have the required equality for ¢ = 1. For 2 < i < [ with | >3
we are to prove that :

(ZD - (fz) >1+4(2 - ).

We will prove this.in the form

(Qj) —~ (1,312) > 242l — ).

Write J=1—1; we need

1

21 21 _ . . :
(l—j) - (ij~2)22+(1_+3)(~'“.?) for0 <j<i-2

For this, notice first that from equating coefficients in (1+7)*(1+T)W =
(14 T7)=+9), we have the identity

Ty TAFY
(3)=2. 00
For n = y, we have

r+n _ T ny id z n
=2 00-=-3006)
Applying this with z =1+ j, n=1-j, we have
AN AN (1
()= () ()

Applying it with 2 =1+ 7+ 2, n=1—j—2, we have

()= () (717

a={
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Subtracting, we find

(33) - (1—?— 2) = Gfﬂ (t;) - (1 —“;iJ (r—l;iJ
D))

11.10.11.1, Lernma. For 1 < a <1 —j—2, we have
(1+j> (l_j) B (l+j+2><!—j—2) >
a a a a _

Proof. Proceeding in two steps j — j+1, j+4 1 j+2, it suffices to show

that
a a a a

Multiplying by ala!, this amounts to
(+5)(+ =1 (+5) = (a=1) - (1-5)(=j-1)- (=i —(a=1))

S (D) - (i (=) (=i =D)(i=§=2) -+ (=i =1=(a= 1))

Cancelling the common factors, this reduces to
(4i—(a—1)(—5)>+i+D0-i-1=(a=1))
And this with patience reduces to

a{2i+1)>0. K

Thus we have

(1?_13') - (z—ild) z Gji) i (t—lﬁl)(l_j)“(l‘jﬂg)’

and so we are reduced to showing that
(04 (137 Jempeaa-i-nz e te0-)

for 0<j<l=-2,123. .
If{—j > 3, then because binomial coefficients increase toward the middle
we have
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so in this case the last two terms already suffice:

(z_‘r;-rf1)(fw_j)+2(f—j—2)z(fw)(f—j)“'

as required.
If I — § =2, we need

(!;j) L= ) 2 24 T+ -5,

I+3
(7))
which certainly holds, because { +Jj > 3. ‘

It remains only to point out that the representations wy and wy of
By == Lie(SO(5)) are the standard and spin representations respectively,
but that under the isomorphism By ~ Co = Lie(Sp{4)), the representa-
tions w4 and ws of By become the representations ws and wy of Cy, with
w; the standard four-dimensional representation of Lie(Sp{4)), and w, the
5-dimension representation A?(standard)/(the symplectic form). Therefore
the list as given in the statement of the classification theorem, whick lists
Bs and C5 each with their “standard” representations wy, is compiete and
non-redundant. B

l.e. we need

11.10.12. Remark. In proving the Classification Theorem, we used a “gen-
eral position” argument to see that if there exists N € & which is nilpotent
such that g{N) has a single Jordan block, then there exists a principal
nilpctent Ny € & with the same property. In fact, we can see with hind-
sight that any such N is autornatically itself a principal nilpotent. Tor by
the theory of si(2)-triples, any sl{2)-triple in ® is Aut.(®)-conjugate to
one of the form (2, h,y) where h € § is an element satisfying

for every o« € B, «a(h) €{0,1,2},

and such an s/{2)-triple ig principal if and only if a(h) = 2 for all @ € B,
ie., if and only if h = h°.

In general, an s{(2)-triple is principal if and only if its z-component is
a principal nilpotent. So we must show that if & is a simple Lie algebra,
and if w is a fundamental weight of & such that the restriction of the
representation Vi, to an sl(2)-triple (z,h,y) as above is irreducible, then
h = kY. To see this, we notice that the highest weight of V,, restricted to the
sl(2)-triple (z,h,y) is w(h), because a(h) > 0 for ali & € B (compare the
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proof of 11.10.4). Therefore the irreducibility of V3, on (z,h,y) s equivalent
to
dim(V,,) = 1+ w(h).

Combining this with the inequality
dim(V) > 1+ w(h?)
we see that
' w(h) > w(h®).

But for & siraple, the expression of any fundamental weight as a Q-sum of
simple roots

wzzmaa, My € Q)

xeB
has ell its coefficients strictly positive, i.e. ma > Oforall o € B. (This may
be checked case by case by looking at Bourbaki Lie VI, Planches, pp. 250-
275, or remembered in the form “the inverse of the Cartan matrix of a
simple Lie algebra has all entries strictly positive.”) Therefore

w(h) = T maa(h)

w(h®) =25 m,
whence

0 < w(h) — w(h®) = = > _(2— o{A))ma
Since each mq > 0 and each 2 — a(h) > 0, the inequality above is possible
if and only if 2 = a(h) forall o € B. §
11.11. Proof of the 3 Theorem

11.11.1. We must prove that for p = 2 and n = 7, we have Ggeom = G2
We first Teduce to the case when F, = Fy. Indeed, let us denote by

Wi (Fg,+)— {£1} =2X C Q* C E¥
the unique non-trivial additive character of Fa: explicitly, we have
Y(z) = (-1)° for z€Z/2Z=F>.

Given a finite overfield F, of Fa, any non-trivial additive character Wy of
F, may be written uniquely in the form

P1(y) = ¢(tracepq/F2(ay)j for a unique a € F?
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Therefore the Ej-sheaf Ly, on Gy, @ Fy is related to £y ( = the inverse
image on G, ® Fy of the sheafl £y on G,, @ Fy) by '
Ly = (transe)*(Ly),

where trans, is the automorphism “translation by a € Gm(F,) of Gn®F,.

‘By property (11) of convolution (cf. 5.1), it follows that for every n > 1 we
have

Kl (1) ~ (transen)*(Kl, (1)),

an isemorphism of lisse Fy-sheaves on Gm®F,. Taking n = 7 and twisting,
this yields an isomorphism of lisse Fy-sheaves on G,, @ Fy,

Kl7(1)(3) = (transy)*(Kl7(#)(3)), b = o7

(This could also be checked by comparing trace functions, cf. Lemma 41.8)

So if we pick a chemin in G, ® ¥, from any given geometric point T to
its translate 6%, and denote by Fy, F the sheaves

Fi=Kli(¢,)(3), F =Kl(¥)(3),
we have a commutative diagram of monodromy representations

Wl(Gm ®Fq,f} AutEA(J‘-}}

meno of F,

based at ¥

chemin Int{chemin)

el _ mono of )
7['1( m & Fq,bz) ————-H~—+(tramb)’(}_) AutEA(fbg)
based at z

-,

e} AutEA ((f]_ )f)

mona of F,

based at Z.

In particular, the monodromy representations p; of F, and pof Fof
711 (Gm®7F,, £) are Ey-isomorphic, as are their restrictions to 75%™, There-
fore up to Ej-isomorphism, the E)-algebraic group Ggeom We are trying to
compute is the same for F; and for F.

11.11.2. Henceforth, we will deal with the lisse sheaf
F=K(¥)(3) on G, @F,.
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11.11.3. We know that Ggeom is either Gz or SO(7). Let us first explain
how to distinguish these groups by means of their representation thecry.
For the group SO(7), the representation

A®(standard seven-dimensicnal representation)

is irreducible (cf. Bourbaki Lie V1L, §13, 2, p. 195). Therefore A3(std) has
o non-zero invariants or coinvariants under SO(7). We will use this fact
to show that if Ggeom = SO(7), then we arrive at a contradiction.
For consider the sheafl
G = A(F).

If Ggeom = SO(7) for F, then G as representation of 75°“™ has no non-zero
invariants or coinvariants (by Zariski density of p($°""} in SO(T)). Thus
if G geom = SO(T), the following condition (H) is satisfied.

(H) H(Gr ®F2,6) = 0= H2(Gm ®F2,0).
We will show that (H) lends to a contradictior.

11.11.4. Lemma. As representation of Ip, G is unipofent with 5 Jordan
blocks, of dimensions {13,9,7,5,1}. The space GTo has dimension 5, and
the eigenvalues of Fo on G'o are {78, ¢ % ¢3¢ %1}, withg=2.

Proof. We have G = A%(F) = A*(Kl7(¢)(3)) = (AP(K17(+)))(9).

We know {cf. 7.3.2) that Ki(1) as representation of Ip is unipotent with a
single seven-dimensional Jordan block, that any element Fy € Dg of degree
one acts on (Klz{#))™® as the identity, and that its eigenvalues on all of
Kl7(1) as Dg-representation are

{1,¢.¢%-..,¢°}

Therefore the eigenvalues of any such Fy on A®(Klz(y)) are all positive
integral powers of ¢, because each is a product of three distinct of the above
eigenvalues. Therefore the eigenvalues of Fo on G as Dg-representation,
obtained from those on A3 (Kl (%)) by dividing by ¢°, are all integral powers
of g. Because § is lisse on G, @ Fz and pure of weight zero with unipotent
monodromy at zero, we have (cf. 7.0.7(2))

dim G’ = number of Jordan blocks of Iy acting on G
and if )
G~ EB (a Jordan block of dimension 1+ iu),

u=1
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then after renumbering, we have

the eigenvalues ay,..., o4 of Iy on Glo
have complex absolute values

loy! = (V@)™ for u=1,...,k

Combining this with the knowledge that all the «, above are integral pow-
ers of g, we see that the {,’s are necessarily even integers, and that the
eigenvalues of Fp on GTe are the numbers

{g7/?} for u=1,...,k.

Thus in order to prove the lemma, it suffices to show that as
Tp-representation, ¢ is unipotent with Jordan blocks of sizes {13,9,7,5,1}.
Because G = A3(F) with F a unipotent 7-dimensional Ip-representation
with a single Jordan block, this is the assertion

3 (a, unipotent Jordan ) _ (QB of unipotent Jordan blocks
block of size 7 ~ \of sizes {13,9,7,5,1} '

Eqﬁivalently, if we see the unipotent as the image of (é 1 ) in Symm?® (the

standard 2-dim rep of SL(2}), this is the assertion that as representations
of SL(2), we have

A¥{(Symm®) = Symm!? + Symm® + Symm® + Symm®* + Symm?,

an identity certainly known in the last century.

Here is an alternate approach to the question. In terms of the numbers
@y, ...,y and their weight-drops 71, ..., we know that the totality of the
35 eigenvalues of Fy on G are the numbers

{au,qau,...,q{“(au)}, u=1,...,k

Because 1, is even > 0 and @, = ¢~%*/2, these are sequences of successive
powers of ¢, each sequence symmetric around ¢° = 1. So the smallest {in
the archimedean sense) of any of the 35 eigenvalues is certainly among the
o, say oy: cancelling oy, gon,¢%e1,...,1/w; from our list, the smallest
remaining eigenvalue is another ay, say og;. ... '

Let us carry this out explicitly. The seven eigenvalues of Fy on F =

Kl7()(3) are {¢73,¢7%,47%,1,4,¢% ¢®}. The set of all triple products of
three distinct of these is the following set of powers of g, in “lexicographic
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d »
order 6,5 4,3, 2

—4,-3, -2, -1
~2,-1,0

0,1

2
—3,-2,-1,0
-1,0,1

1,2

0,1,2
2,3

4

3,4

5

6

The smallest power is ¢~ %, Striking out its cycle {¢7%,¢7%,...,¢%, ¢}, the
smallest power remaining is ¢~ %. Siriking out its cycle {774, ¢7%,...¢% ¢*},
the smallest remaining power is ¢3. Striking out its cycle {g7%¢72,. .., ¢* ,¢°},
the smallestremaining power is ¢~ 2. Striking out its cycle{g~?,¢71,1,¢,4%},
we are left with ¢° = 1. B

11.11.5. Corollary. We have dim H°(G,, ® F2,6) < 1.

Proof, We know that Ggeom is a semi-simple algebraic greup (being either
G ot SO(7)). Therefore by Zariski density of p{x5°*™™) in Ggeom, & is com-
pletely reducible as representation of #5°°™. In particular, the invariants
are a direct factor, sc on G,, ® Fy we have

the constant sheaf
~ = H
G o (HD(Gm®F2,g) )@

where H 1s a lisse sheaf with
HYG,, @F;,H)=0.

Restricting the above direct-sum decomposition to Iy, we see that
the number of 1-dimensional :
dmHY(G,, ®F,,G) < (Jordan blocks in the action of Iy on
. Gg.

Global Monodromy of Kloosterman Sheaves 205

By the above lemma, the number of such Jordan blocks is equal to one. §
Suppose now that (H) holds. The inclusion j : G, — P! gives a short
exact sequence of sheaves on P @ ¥,
0= 40 — 5.6~ ghog= -y,

where G’ and G7= are viewed as punctual sheaves at zero and oo respec-
tively. If (H) holds, the long exact cohomology sequence on P' @ Ty gives

a short exact sequence

0=G"BG™> - HHGn @F2,0) — H' (P @ Ty, 7.0) — 0.
11.11.6. Lemma. If (H) holds, then dim HX{G,, ® Fy,G) < 5.
Proof. Because G is lisse, H) = 0, and by (H) H2 = 0. Therefore the

Euler—Poincaré formula gives-
dim H} (G ® Fa,G) = Swang(G) + Swan e (G).

Now G = A%(F) with F tame at zero and with all breaks of F at oo equals
to 1/7. Therefore G is tame at zero, and all its breaks at oo are < 1/7,
whence

{ Swang(G) =0, ~
Swanes (§) < rk(G) x ( biggest break at co) < 35 x (1/7) < 5. B

Combining these last two'lemmas, we find that, under the hypothesis
(H), we have, for dimension reasons,

{ G 5 HY(G,n ® Fs,6) has dim$5,
) eigenvalues of Fy are {¢7%,¢7%,¢73,¢72,1}
with ¢ = 2. Replacing G = A3(F) by

G(=9) = A (K (%)),
we see that, under (H), we have
' 0 for i # 1
H(Grm®Fz, A (Klo(¢))) = : .
for i =1, a 5-dimensional space on
which F has eigenvalues {¢%,¢%,¢%,¢7, ¢°}.
11.11.7. We next apply the Lelschetz trace formula to the lisse sheaf

A3(Klz (1)) on Gpm ® Fa, which very conveniently has just a single rational
point, “1.” Under hypothesis (H), we find

trace(Fy | A*(Klo())1) = — (¢ + 0% + ¢ + 47+ ¢°).
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Now the stalk at “1” € G (F3) of Klr(3) has, for all n > 1, 11.11.8. The sum
srace((F1)" | (Klz(#))1) = Sa Sa= ), (Yotracer,/r,)(d @)
h a?ll;z:;z‘r?‘:za
where . Z I )(ZJJ) 1s invariant under permutation of the variables Z1;...,%7. In particular, it
n L e Fan [Fa ’ : is invariant under Z/77% acting by cyclic permutation of the variables. The
2i€F,m ‘ only fixed points under Z /7% are those (a1, .. ,o7) with 2] = 29 =+ =
by the fundamental trace property of Kloosterman sheaves. Writing this in 7, and any non-fixed point lies in a Z/7Z-orbit of precisely seven elements.
the form Therefore for each n > I we have a congruence modulo 7
Spd™m
det(1 - TF ! (Kl{3p))1) = exp (_ Z “n ) Sn = Z (1/) o tracepznlrgg)("f’m) mod 7
977:
ngzl ; .’EEFgln.
and expanding simply because the function being summed in S, is constant and Z-valued
i i i on each Z/77Z orbit,
—TF, | (Kl = —1) trace(Fy | A"(KL{(¥))1)17, > '
det(1 v (Kr(9))) Z( _ The sum 5 is readily computed mod 7, since Fy contains only one 7’th
we see by equating coeflicients that root of unity, namely # = 1:
~ trace(F} | A3KL(¥))1) S = Z’tf)(’?ﬁ) =9(7) = (~1)"=-1 med 7.
=l .
S,T2  S4TP The sum S; is also easy, becanse F¥ = pg contains only one Tth root of
= coef of T in exp (*—5'1T -ty _"3—") unity, 2 = 1:

J2 = E(?f’ o .tracequpz)(’{m) = TIL’(tfaCeFng('T)) =9(14)=1 mod 7.
= coef of T in =1

As for S3,F¥ = py, so by non-triviality of 4 o trace,

S)IT? (83373 S, T? 53T = = _
(1——51T+ ( 1?2 ! 1% i . 1- 2 S3 = zx(mpotracepalpg)(az)_ 1 mod 7.
z€F{
Substituting the mod 7 values —1,1, -1 for S1,55,53, we find
_ 518 Sa (S1)° | 111

5 3 E —§+§+6523+25+26+27+29mod'?,
Substituting our putative value for this trace, we find that if (H) holds, ie.
then 55 S (S 0=2%+25 425497299 mod 7.

3 1 3 6 6 7 9
122——3—v—'"—6'"—7—f1 +¢ g+, But 2° = § = 1(7), so (H) leads to

with ¢ = 2. The sums Sy, 52,53 are all inte-gei”s (3 .takes values 1 only}, 0=14+2" 414241 mod (7,
s0 in order to prove that the above identity is false, it suffices to show that o o
it is false modulo some integer M which is prime to 6. For this purpose, which is visibly false. Therefore (H) is false, whence Ggeom # SO(T), and

we take M =1T. 50 Ggeom = (3 by default. g
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11.11.9. We will now explain why the method we employed “had” to work.
Because (Ggeom lies in SL(7), the sheal G = A3(F) is self-dual, so
dim H(Gp, @ F2,0) = dim H3(Gp @ F2,G)

because the two spaces are, up to a Tate twist, duals of each other. In
view of 11.11.5, this common dimension is < 1. Suppose that it is equal
to I. Then Ggeom = (G2, because SO((7) is excluded. In this case we
have seen {cf. 11.3) that p(73™) C Ggeom{Er), s0 we have a direct-sum
decomposition

GeEveH

as lisse sheaves on ‘Gm @ Fy (reductivity of Ga), and by 11.11.5 we have
HY G @ T, M) =0= H(G,, ® F2,H).
The cohomology sequence for jiH — j,H yields a short exact sequence
0— HP @ Hle = HY (G @Fy 1) — H (P @F,, 5.H) — 0.
Because § ~ E, @M, the earlier Lemma 11.11.4 showé'that
dim(H') = 4, and Fy acts with
eigenvalues {¢7%, ¢7%,¢7% ¢7*}.
Because H has H) = H? = 0, we have, just as in 11.11.6,
dim HN G, ® Fa,H) = Swang(H) —;— Swan, (H)
= Swane, (M)
< [(rank H)( biggest break at oo)]
< [(34(1L/7)] = 4.

For dimension reasons, we find

~

Ho D HN G @ T, H),
{eigenvalues of Fyare {g7%, ¢ % ¢ %, ¢} ¢=2
Therefore the cohomolegy of G = H & E) i3 given by
(Ofori=0

Hi(G oF &) for ¢ = 1, 5-dimensional, F' acting
e P¥7Y with cigenvalues {¢7% ¢7% ¢7% ¢7% 1}

for i = 2, 1-dimensional, ¥ acts as g:
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The Lefschetz trace formula applied to G{—9) = AMKlr () on Gy, @ Fy
gives

trace(Fy | A(KIr(¢)1) = ¢ = ( + "+ ¢° + ¢" +¢°)
with ¢ = 2 as always. Because
219 2£ 0 mod (7),

we may distinguish this case from the earlier one (where we assumed (H))
by computing mod 7, which is exactly what we did.



CHAPTER 12

Integral Monodromy of Kloosterman Sheaves

(d’apres O. Gabber)

12.0. Formulation of the theorem

Let us fix

an integer n > 2

a prime number p

a finite field ¥, of characteristic p

a finite extension E of @, containing q'"?L'

a non-trivial additive character ¢ : (¥, +) — E*.

For each finite place A of E whose residue characteristic is [ # p, we
choose an Ox-form F of the lisse Ej-sheaf Kl,(¥)(251) on Gn & Fy.
For example, we may take for F the twist by O ,\(”—;—1) of the n-fold self-
convolution of “Ly as lisse (Jy-sheaf of rank one”; in view of 4.1.2, any
other choice is (?3-isomorphic to this one by an isomorphism which is itself
unigue up to an OF scalar. If pn is even, we also choose a bilinear form

Fi @ Fo— Oy
(25N

which is non-zero mod A. By 4.1.11 and 4.2.1, we know that, for pn even,
such forms exist, that any two are O¥-proportional, and that any such form
is an Oy-autoduality of Fy which is alternating if n is even and symmetric
if n1s odd.

We also fix, exéctly as in the previous chapter {cf. 11.0.3), a geometric
point  : Spec(2} = Gy @ Fy, and “chemins” connecting  to the spectra
7o and 7j of separable closures of the fraction fields of the henselizations
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of P! @ F, at 0 and oo resp. The chemins give rise to a diagram

Iy
(Grn ®F,,2) — m(GnoF,z)
Lo
ﬁ.iseom ,ﬂ.iarit;h

The monodromy representation of Fy at Z is denoted
ot ﬂ,?rith — Autoh((f)\)f) o GL(TL,O,\)

The existence of the pairing when pn is even, and 11.0.2 (4) in general, give
the & priori inclusions

Sp(n,0,) - neven

geom

pA(TET) C pa(afPy C ¢ SL(n,05)  pnodd

SO(n,Oy) p=2, nodd.

12.1. Theorem (O. Gabber). Suppose that n is even or p # 2. There
erists an integer D depending upon (n,p,q, B, 1) such that for any finite
place A of E of residue characteristic ! > I, 1 £ p, ot which Oy = %, we
have
Sp(n,0x) if n even
p/\(ﬂ_%eom) —
SL(n,0,) ifn odd.

In fact, there is a more precise statement which clarifies the role of the
“Ox = Z;” condition in the above theorem. As before, let us fix a topolog-
ical generator vp of If*™¢, Then pa(y0) is a unipotent n x n matrix. So for
A any finite place of residue characteristic { > n, the elements

{exp(tlog(pa(yo))) }reo,

form a closed subgroup of Sp(n, @,) for n even, and of SL{n,0,) for n odd.
If Ox = Z, this group is just px(lp).
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12.2. Theorem (O. Gabber). Suppose n is even or p # 2. There exists
an integer D depending on (n,p,q, E,¥) such that for any finite place A of
E of residue characteristic I > D, 1# p, the group
Sp{n, 0,) if n even

{ SL{n, O,) if moodd
is generated by the finite subgroup pa(le) end by the one-parameter sub-
group

{exp(tlog(pa(70))) }eeon-
In particular, if Oy = 2y, and | > D), then we have

Sp(n,0,) n even

georm arith

subgroup generated by
ba = p(rf™") = p(ni™") =

I} and p(Iee
plla) and p(leo) SL(n,0x) n odd.

12.3. Reduction to a universal situation

12.3.1. Lemama. For fized (n,p,q, E,¥), the finite group pr(ls) is canoni-
cally independent of the choice of the finite place A of E of residue charac-
teristic | # p.

Proof. By Deligne, the character of pa on I, is independent of A {cf. 10.0).
Because pa(leo) is finite (cf. 1.11), the kernel of p) on I, consists precisely
of those elements o € I, where trace{px(c)) = n. Therefore Ker(px | 1)
is independent of A, and py(I) ~ Teo/Kex(ps | o). B

Let us denote by
Peo = the finite group I, /Ker(ps | I.)
Hoo = Poo /Ker{ps | Poo) = the p-Sylow subgroup of I'eq
and by .
char, : Poo — Op

the common trace function of the p)’s. This data depends only on
(nlp) q)ES 17[))'

12.3.2. Lemmma. Let K be an algebraically closed over-field of £, V an n-
dimensional vector space over K, and

¥ I — GL(V)
a group homomorphism such that for all 45, € Do we have

trace(Y(veo)) = char,(yeo ).
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Then
(1) v is injective
(2) T'wo acts irreducibly on V
(3) To admits no faithful K-linear representation of dimension < n.
(4) if pn is odd, there exisls no non-zero Heo-invariant bilinear form
v % V=K

(6) if pn is odd, any character x : Toe — K> is Irivial on He.

Proof. Properties (3) and (5) are intrinsic properties of T', as finite group,
and have already been established (cf. 1.19). Properties (1), {2), (4) depend
only cn the character of 4 and on its restriction to Hy,, so they hold if and
only if they hold for ¢ = seme p), in which case they have already been
established {cf. 1.19, 10.4.4, 11.02). B

tame

12.3.3. Lemma. For vy @ {opological generator of IN*™®, and any finite place
A of E of residue characteristic I # p, the unipoteni element

pa(vo) € Auto, ((Fa)s) =2 GL(n,0)
has a single Jordan block “over (057 in the sense thal
{ (pa(re) — 1) = 0, but
palro) —1 has an n— 1 x n— 1 minor which is invertible in Oy

Proof. This amounts to the statement that pj(vo) @ F'a has a single Jordan
block. It certainly has at least one, and the fact that it has at most one Is,
as explained in 7.5.1.3, a consequence of the fact that Fy @ F) is lisse on
Gm, tame at zero, and totaily wild at co with Swan,, = 1. B

12.3.4. For given (n,p,q, E, ¢}, we will define a moduli problem M (ie.
a covariant functor) on the categery of all Q[1/p]-algebras, where @ = O
denotes the ring of algebraic integers in E.

12.3.4.1. If pn is odd, then we define, for any O{1/p]-algebra R, M(R) =
the set of all pairs (¢, ) where
% : T — SL{n, R) is a group homomorphism
with trace(y(v)) = char,(7) for all ¥ € Tw.
7 € SL(n, R) is an element satisfying
a)}(U—-1)"=0
b) Zariski locally on Spec(R), some (n — 1) x (n — 1) minor of I/ ~ 1

is invertible.
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12.3.4.2. If n is even, then for any O[1/pl-algebra R, we define M(R) =
the set of triples ({, },4,U) where

{,}:R" x R” — R is a strongly alternating
(meaning {v,v) = 0 for v € k") H-bilinear
R-autoduality of R? with itself.
W Too — Autr(R™, {, )) = Sp{n, Rt) is a group homomorphism
with trace(t(7)) = char,(y) for all v € l'eo.
U € Sp(n, R) is an element satisfying

a) (U =1 =0
b) Zariski locally on Spec(R), some (n—1) x (n—1) minor of U — 1

is invertible.

12.3.4.3. Finally, if p = 2 and n is odd, we define M just as in 12.3.4.2
above but with {,} a symmetric autoduality, and with Sp(n, R) replaced by
SO(n, R).

12.3.5. Lemma. The moduli problem M is representable by an O /pl-
scheme of finite type (still denoted M),

Proof. Indeed if we specify in addition which (n — 1) x (n — 1) minor of
I/ —1 is to be invertible, the corresponding open sub-problem is represented
by the spec of a finitely generated O[1/pl-algebra. For example, when prn
is odd, we adjoin n?#(Te) indeterminates for the matrix coefficients of
the elements %(v), ¥ € I'w, and n? more indeterminates for those of U.
The conditions that the ¥(y) be in SL(V7), that (y1)(v2) = ¥(y17v2) for
all 71,72 Too, that trace¥(y) = chary(v), and that (U =1y = 0, all are
expressed by polynomial identities in the matrix coefficients. The condition
that a given minor of U — 1 be invertible is obtained by adjoining its in-
verse. The case n even is sirpilar, but here one needs also to add (n® —n)
tadeterminates for the skew-symmetric matrix of the form (,)}, to assure
non-degeneracy by inverting its determmant, and to impose the additional
polynomial identities that express that U and all the ${y), 7 € ' lie
the symplectic group for this form. The case p = 2, n odd is similar, but
here one adds 1(n? 4 n) indeterminates for the symmetric matrix of the

form {,),.... &
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12.3.6. Qver the O[1/p]-scheme M of finite type, we have the following
“universal” structure, which represents the moduli problem:

a free Op-module V of rank n, namely (Oa)”,

if pn is even, an O aq-linear autoduality V 0® V — O which is
strictly alternating if n is even, symmetric ifA;m is odd,

SL(V) pn odd
the corresponding M-group scheme G = ¢ Sp(V,(,)),n even

_ SO(V,(,}),nodd,p=2,

a unipotent element Uyniv € G(M), with a single Jordan block

((U = 1)* =0, and Zar-loc. on M, some (n — 1) x (n — 1) minor

of U — 1 is invertible},

a homomorphism Yyniv : [eo — G{M) with character equal to

char,.

The point of considering thig universal situation is that for each finite

place A of E of residue cha,ra_ct"eristic [ # p, once we pick an x-basis of
{Fa)ze as free Oy-module of rank n, the data

(,),:chosen(,):f;\c@f)\ﬁ(% if pn even
A
T/):P)\[Toc

U = pal7o)
defines an @) -valued point of M. This observation “reduces” us to studying
the situation over M itseif,

12.3.7. lLemma. Suppose (p,n) # (2,7). Then for every geometric point
of M in characteristic zero; i.e. for every z : Spec{K) — A with K an
algebraically closed extension field of E, the subgroup of G,(K) generated by

the unipotent element Uyniy (2) and by the subgroup Yuniv(Too )(2) C G, (K)
18 Zariski dense in G,.

Proof. This is “just” the Axiomatic Classification Theorem 11.7, in view of
Lemmas 12.3.2 and 12.3.3. B

12.3.8. Lemuma. Let T' C G(M) be the subgroup generated by the element
Uuniv and by the finite subgroup vuniv(Poo). Then there exist
¢ finite sef of elements vi,7v2,..., 7 of I, and an integer
Dy > 1 such that over Mi1/(n — 1)1Dy], the logarithms
log('ﬁUuniv’)’;‘_l) =i IOg(UUniV)?’i_l span E(G) a5 an
O pq-module. '



218 Chapter 12

Proof. Once we invert (n—1)!, log(Uuniv) makes sense as a nilpotent global
section over M of Lie((), as do its conjugates by any v € I'. Because M
is noetherian and Lie(@) is a free Oaq-module of finite rank, it is encugh
to prove that over a suitable A4[1/{n—1)11], Lie(@) is spanned over O
by all the 7log[Uun-w)'y”“1 for all v € F. Consider the support 7 of the
cokernel of the map

oy —1

@(9,\4 @y log(Uyniv )7 &(G)

YeT
It is a scheme of finite type over Z, being a closed subscheme of M. So
either Z is annihilated by some integer Ih > 1, or it has some geometric
- point of characteristic zero. In the first case, the lemma “works” with this
Dy. In the second case, let z be a characteristic-zero valued geometric point
of the support, say z : Spec{K) — Z C M. The I'{z) is Zarisk: dense in (7,
by Lemma 5, and, as G, is stmple, Lie(F,) is an irreducible representation
of G, so also an irreducible representation of I'(z) by Zariski density. The
element log(Uuniv)(2z) € Lie{(;) is certainly non-zero, so by irreducibility
Lie(, ) is spanned over K by all the transforms v(2)(log{Uuniv }(2))¥(2) ™!
of log(Uuniv)(z) by 7(2)’s in I'(z). Therefore z is not in the support 7,
contradiction. B

12.3.9. Lemma. Notations as above, Zariski locally on M[1/(n — 1)I}]
there exist a finite sel v1, ..., vaimg of dim(G) elements of T' such that the
logarithms {y;log(Uuniv )y Yiza, .. dim(e) form an O gq-basis of Lie(G).

Proof. Obvious from Lemma 12.3.8, §

12.3.10. Lemma. There ezists an integer Dg > 1 such that M[1/Dg] is flat
over 4.

Proof. By Lemma 12.3.5, M is of finite type over Z, cf. {[A-K], V, 5.2). B

12.3.11, Theorem. Suppose that either n is even, or that pn 1s odd, so that
the group G over M is either Sp(n) or SL(n). There exists an integer Dy =
Dy(n,p,q, E, ) with Dz > 1 such that for any complete noetherian local
Cgell/p(n — DIDg Dy D3)-algebra R with finite residue field, and any point
z € M(R), the group G,(R} s generated by the subgroup
exp( Rlog(Uyniv(2))) and by finitely many of its conjugates by elements of
the subgroup T'(z) C G,(R).

This theorem, applied to B = O,, z € M(O)) the point defined by
the Kloosterman sheal F», vields Theorem 12.2. Tt is itself a special case
of the following thecrem, applied to¢ X running over a finite covering of
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M1/ (n — 1)!DgD;] by open sets over which Lemma 12.3.9 holds, to G =
Sp(n) or SL(n) over X, and to the unipotent elements Ui = villunivy !
whose logarithms form an O x-basis of Lie(G).

12.4. Generation by unipotent elements

12.4.1. Theorem (O. Gabber). Let n > 2 be an integer, X a flat
Z[1/(n — 1)]-scheme of finite type, and

G C GL(R)X

@ Zariski closed subgroup scheme which is smooth over X with geometrically
connected fibres of constant dimension d = dim((). Suppose that

(1) we are given unipotent elements Ui, .. Udimg € G(X), each satis-
fying (Ui =1)" = 0 in M(n)(X), whose logarithms form an Ox-basis
of Lie(G).

{2} for EVErY characteristic-zero valued  geometric  point
z : Spec(K) — X with K an algebraically closed field of character-
istic zero, the geometric fibre G, is simply connected (in the sense
that 1t has no non-trivial finite etale coverings).

Then there exists an integer Dy > 1 such that for any complete noetherian
local ring R with finite residue field in which {n— 11Dy 1s mvertible, and
for any R-valued point z : Spec(R) — X of X,-

G, —— G

| l

Spec(R) ——— X
the group G, (R) is generated by the one-parameter subgroups

exp{Rlog(U{z))), i=1,...,dimG.

Proof. We first explain why the endomorphisms log(U;) lie in Lie(7), and
why ¢ - exp(tlog(Us}) defines an X-homomorphism from G, to (7. Both
statements are true over X with (3 replaced by GL(n)x, and by Lie theory
they are both true as stated over X % Q. Because G is smooth over X
and X is flat over Z, G is flat over Z, so G is necessarily equal to the
schematic closure of G 2 Q in GL({n)x . Similarly, Lie(G) is the schematic
closure of Lie(G) ® Q in Lie(GL(n)}. This second fact shows that log(U),
& priori a global section of Lie(GL{n)) which after ®Q falls into Lig(@),
already lies in Lie(G). The first fact shows that the morphism of X-groups
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G, — GL{n) defined by t — exp(? log(U;)) must land in &, because it does
so after ®(Q.
Consider the morphism of X-schiemes

Adim(G‘) SNy

dim &
(T]_, any Tdim(G)) L — H eXp(,ri' log(Ui)))
i=1
the product taken in the order 1 x 2 x 3 X -+ X dimG. Because the
(1og(Us)Yiw1,.. @im(c) form an Ox-basis of Lie(G), this map is etale along
the zero-section of A4™(@), Therefore if we denote by

el
o

Uc Adim(G)

the open set on which. this map is etale, then i is a smooth X-scheme

of finite type, all of whose geometric fibres are geometrically connected of .

dimension dim(G), and we have an etale morphism of X -schermes
F:U =G,

Because (G is smooth over X, the “multiplication in 7 morphism G Jd G~

G is smooth (by means of the “shearing” automorphism (z,y) — (z,zy) of
G x @, it’s isomorphic to pry : & % G — ). Therefore the composite map
b . _

Fxt mulé
Uxl —GExG——C
X X L

\‘\h_—’//
£(2)
is smooth, being an etale map followed by a smooth map. Similarly, the
composite map

1t
UXuxuxU—{MGxGxGxGLG
¥ X x X " x X

f(4)

is smooth.
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We will prove that, under the hypotheses of the theorem
there exists an integer Dy > 1 such that for any
complete noetherian local

(%) Z[1/(n — 1}1Dy]-algebra R with finite residue
field, and any.R-valued point z : Spec(R) — X,
the map f(4), obtained by base change

Cf(d); U, éuz ﬁuz ﬁuzm—wer
is surjective on H-valued points.

Because f(4), is a smooth morphism between smooth R-schemes, and B
is complete noetherian local, f(4), will be surjective on R-valued points if
and only if it is surjective on k-valued points where k is the residue field of
R. Therefore (*) is equivalent to

there exists an integer Dy > 1 such that for any
finite field & whose characteristic is prime to
(*%) (n — 1)!D3 and any k-valued point
z : Spec(k) — X, the map f(4), is surjective on
k-valued points.
The map f(4) is obtained from f(2) by doubling” it: we have a factor-
ization of f(4) as
wxiyx @ xwy)22Y 6™ o
X 'xX X b’y _
Therefore for a given finite field & and a given k-valued point
z : Spec(k) — X, if we denote by Im(2; k, 2) C G, (k) the image of

F@)z 1 U x Uy — G

on k-valued points, then the image of f(4); on k-valued points is equal to
the image of

1
(2, 2, k) x Im(2, 2, k) —s Go(R).

But given any subset S (e.g., Im(2, z, k))} of any finite group H (e.g., G;{k)),
the multiplication map § x S — H is surjective if #(5) > (1/2) #(H)
{because if h € H cannot be written 5152 with 51,59 in S, then the two
subsets S and hS~1 of H are disjoint, so the cardinality of their union is
2#(S) > #(H), contradiction). Therefore (=*) is implied by

there exists an integer Dy > 1 such that for any
(#%x) finite field k, and any k-valued point

z : Spec(k) — X[1/Ds], we have
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#Im(2;k,2) > (1/2) #(G.(k)).
For any X-scheme ¥ — X, the X-morphism
i u }(U -G
gives by inverse image a Y -morphism
F( 2y Uy }>5L{y — Gy.
Given an X-scheme Y — X, and an integer d > 1, we denote by
{x%+)(Y, d)

' the statement

for any finite field k and any k-valued point
z: Spec(k) — Y[1/d], we have

FTm(Zk,2) > (1/2) #(Ca (1))
Clearly we have
: (+2x){Y, d) <= {x **)(Y”‘d, d).

yred — U Zi
P

Moreover, if

is a partition of Y74 into a disjoint union of finitely many reduced locally
closed subschemnes, then

(x#4)(Z;,d) fori=1,...,r <= (#+x)(Y,d),
and if dy,...,d, are r possibly distinct integers each > 1, then
(o) 2y, dy) fori=1,... ,r = (++%)(Y,dy...d,).

Because X is of finite type over Z, X9 certainly admits a finite con-
structible partition
x=1]z

where each 7; 1s affine, irreducible, of finite type over Z, and either smooth
over Z or killed by some prime numbier p and smooth over Fp. If Z; 1s an
Fp-scheme, then (#x%)(Z;, p) holds trivially. So we are reduced to proving
{x+#) under the additional hypothesis

X is an irreducible smooth affine Z-scheme
of finite type.
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By induction on dim X, it suffices to prove, for given X as above, that

there exists an open neighborhood If C X of the
generic point of X such that {#%)(l{,d) holds for
some integer d > 1.

Consider the diagram

(@)

— X

Hoe— @

12.4.2, Lemma. The morphism f(2} is smooth of relative dimension
dim(G), and is surjective on geomelric poinis.

.Proof. The factorization of f(2) as

muls

le[—-—+GxG——>G

exhibits it as the composition of the etale map & x if — G x G with the
smooth map G x G — (G of relative dimension dim{G). For any geometric
point z : Spec(R) — X with K an algebraically cloged field,

fotlly — G

is an etale morphism, whose image contains the identity section by con-
struction. Therefore f,(i,) C G, is a non-void open set in &,. Now G, 1s
by hypothesis a connected smooth K-scheme, so it is irreducible, Therefore
for any K-valued point g € G,{K), the two non-void open sets of G,

fo(Us) and g(f:(U:))7"

must have a non-void intersection. As K is algebraically closed, this inter-
section contains a K -point, i.e., there exist uy, us in U, (K) such that

Folur) = o(fe(ua)) ™,
whence
g= fz(ul)fz(uil);
as required. §

Let us admit temporarily the truth of the following key lemma.

=l
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12.4.3. Key Lemma. The set of points i G over which the fibre of
f@UxU—G

is geometrically connected contains the generic point of G, i.e., the generic
point of the generic fibre G, of G — X.

The assertion “makes sense,” because G is normal and connected (being
smooth with geometrically connected fibres over X which is itself normal
and connected, being irreducible and smooth over Z). Therefore G has a
generic point, and as ¢ — X is dominating, the generic point of & lies over
the generic point of X

By (EGA 1V, 9.7.7), the set of points in G where the fibre of f{2) is
geometrically connected is constructible, so by the Key Lemma it contains
an open set V C G which is non-empty. The image of ¥V in X under
the structural map G - X is constructible, and it contains the generic
point of X, so it contains some non-empty open set I{ ¢ X. By our earlier
reductions, it suffices to prove that {*++)(lf, d) holds for some integer d > 1.
Further shrinking I, we may assume that there exists a prime pumber [
which is invertible on I{. Renaming & “X”, we are thus reduced to proving
that (###) holds under the following additional hypotheses:

a) X is a scheme of finite type over Z,
b) a prime number [ is invertible on X,
¢) there is an open set V' ¢ (& such that,

(1) The intersection of V' with every fibre of G — X is
non-empty. _
(2) Over V, the fibres of f(2) are geometrically connected.

We will do this by the “Lang-Weil method.” Let us denote by
Z=G-V

the closed complement of V' in (, say with its reduced structure. By hy-

pothesis, Z meets every fibre of & — X in a proper closed subset. Because

the fibres of G — X are smooth and geometrically connected of dimension

dim((), the fibres of Z — X all have dimension strictly less than dim(G),

while the fibres of V = G — Z — X are all smeoth and geometrically
" connected of dimension dim{G).
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Consider these morphisms

GHm(G)-2
—_——— V=G~ 7

|- le
dim{G)~2 X,

and the cohomology sheaves on X

RoQ;,  R'BQ.

These are each constructible sheaves on X, mixed of weight < ¢ by Weil II,

whose formation commutes with passage to fibres. We have, for dimension
reasons,

RlayQ; =0 for i > 2dim{G) — 2,
R'BQr=0 fori>2dim(G).
Because 3 is smooth and surjective with geometrically connected fibres of

dimension dim(G), the trace morphism provides an isomorphism of Q-
sheaves on X

R?¥™G)3,q; 5 Qi(~ dim(@)).
By constructibility, there exist integers 4 > 0, B > 0, such that for any
geometric point Z of X

2dim(G)~2

>, rank(RlaQ); < A

1=0

2dim(G)~1

> rank(RAQs < B.

$=0
Therefore if k is any finite field, and if
z : Spec(k) — X
is any k-valued point of X, the cardinalities of the partition
RORPACIANAC
satisfy

#V, (k) > (#(k)}dim((;) — B(#(k))dim(G)»Uz
#2,(k) < A(F(k))yH=E)-1,
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So there exists a constant C, depending cnly on A and B (explicitly, VC =
(B/2) + /A + (1/4)B?)) such that |
if#(k) > C, = then #(V, (k) > #Z,(kY,
ie., #V (k) > (1/2) #G. (k).
Now consider the morphism 7 defined by the cartesian diagram

U U — F)HV)

[r |
G —— V
By construction of V', the morphism 7 is smooth and. surjective with geo-
metrically connected fibres of dimension dim(G). So we have
RiyQy is constructible on V, mixed of weight
< i, zero for i > 2dim(G),
and .
REIM(Ey ; 5 Qi(— dim(G)).
So if we denote by D > 1 a bound for the sum of the ranks of the R Qq
for ¢ < 2dim(G) — 1, we have
for any finite field k, and any k-valued point
v : Spec(k) — V, the k-scheme y~*(v) has
EO (k) 2 (RIS = D#(R) O
In particular, we have
if #(k) > D?, then for any k-valued point
v € V(k), the fibre y~!(v) has a k-rational
point.
Thus if #{k) > max(C, D?), then for any z € X (k) we have

{ #Va(k) > (1/2) #Gx(k),

(e X Ue)(R) I®: G (k) contains Vi (kY;

so in particular if #(k) > max(C, D?), then we have
#1m(2;2,k) > (1/2) #G- (k).

Therefore we have proven that (##) holds on X, with D the product of
all prime numbers I < max(C, D?) (because if char{k) is prime to Dy, then
char(k) > max{(C, D?), and #{k) 2 char(k)). This concludes the proo.f of
the theorem, modulo the Key Lemma. Because the generic point 77 of X is of
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characteristic zero, the geometric generic fibre (G5 is by hypothesis simply
connected. Therefore the Key Lemma 12.4.2 results from the following
variant in which G’ becomes “G” and in which the two copies of Iz becomes
U and V respectively. B

12.4.4. Key Lemma (O. Gabber). Let K be an algebraically closed field, G
a smooth connected K -group scheme of finile type, and

f:U—=G, 9. V=G

BaTR e

two etale morphisms. Suppose that

(1) U and V are each non-empty smooth connected K-schemes of finite
type,

(2) G is simply connecled (in the sense that il has no non-trivial finite
elale coverings).

Then the morphism w: U X V — (G, defined as the composite

IxXg mult

UxV Gx G,
iy

is smooth of relative dimension dim(G), surjective on geometric points, and
ils gemeric fibre is geomeirically connected.

Proof. Just as in the proof of 12.4.1, we see that the morphism 7 is smooth
of relative dimension dim(G), and surjective on geometric points. Let us
denaote by € the generic point of G, ie., £ = Spec(K(G)). To show that
7 1(¢) is geometrically connected, it suffices to show that 7=1(¢) Kr?G) Lis

connected for any finite extension L of K(G). As connectedness is invariant
under purely inseparable field extension, it suffices to prove that 7~1{(¢)® L
is connected for any finite separable extension L of K(G). So if we fix

Ls = a separable closure of K{G)
Gal = Gal(Le /K(G))

§ = Spec(Leo) — €,

it suffices to prove that #—1(£) is connected.
Let us denote by

S = the set of connected components of =~ (€).
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Then S is a finite set on which Gal(Le/K(G)) acts continuously. Because
w”.l(f) is connected (because irreducible, as a localization of the irreducible
scheme U % V), Gal acts transitively on S,

Let us now fix a point v € V(k), and consider the commutative diagram

idXy
U —— UxV
K

A
G
where f, : U — G is the etale morphism u — f(u)g(v). Let us denote by

T, = the set of connected components of £, (£)
= the set of points of 71 (F).

Then just as above T, is a finite set upon which Gal(L./K{{)) acts con-
tinuously and transitively and the above commutative diagram, read over
£, gives a Gal(Le, /K (G))-equivariant morphism f;(€) — 7~ 1(€), which
induces on the respective sets of connected components a Gal{ Ly /K (G))-
equivariant map

T, — 5.

Because Gal acts transitively on S, and 7, is non-empty, this map is auto-
matically surjective:

T, — S.

Now the original morphism f : U — & is etale of finite type, so there
exists an open neighborhood Uy C G of the generie point £ of & over which
the induced morphism f~(U;)} — U, is finite etale. For this non-empty
open set I3 C (7, we have, by translation,

fu 1 U — G is finite etale over Uyg(v) C G.

Therefore T, as representation of Gal(Le./K(()) is the generic fibre of a
finite etale sheaf of sets on Uyg(v) (namely of the sheaf represented by the
finite etale map f; ' (U1g(v)) — Urg(v)). Because S is a quolient of T, as
finite Gal-set, it follows that

for every v € V{K), there exists a finite etale
sheaf of sets on U/19{v) whose generic fibre is S.

Because (7 is normal and connected, the sheaves in question are unique on
the open sets U3 g(v). For variable v € V(K), the open sets Uy g(v} cover G
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{(because Uy and g(V'} are two non-empty open sets in G), so we may patch
together these sheaves to conclude

there exists a finite etale sheaf of sets on (3 whose
generic fibre 1s S.

But as (7 is simply connected, any such sheaf on G is constant, i.e.,
Gal(Loo /K (G)) acts trivially on S. As it also acts transitively on S, we
must have #(5) = 1. B

12.5. Analysis of The Special Case p=2,n odd # 7
12.5.1. In this section we fix data (n,p,q, E, %) as in the first section, with
p=2, nedd,n#3 E=Q.

Let us temporarily fix a prime number [ # 2. Because F = Q, we write
JFy instead of F,. Because F; carries a unigue-up-to-Z; symmetric bilinear
autoduality

(,):fr%f;—»Zz

for p = 2, n odd, the monodromy representation pr of F; at the chosen
geometric point ¥ of G, @ F; is a homomorphism

pr AR SO(n, Zy),

the SO with respect to the symmetric bilinear autoduality {,). Let us
denote by

Spin(n)

the corresponding spin group, viewed as a smooth Z;-groupscheme. Then
Spin(n) is a finite etale {&1}-covering of SO{n), and on Z;-valued points
we have an exact sequence of groups

1 — {£1} — Spin(n, Z;) - SO(n, Z)).

In fact the index in SO(n, Z;) of the image of Spin(n, Z;) is two (by Hensel’s
Lemma, this index is equal to its Fi-analogue, and the groups Spin{n, )
and 30(n, F;) have the same orders). Thus we have an exact sequence of
groups

1 — {£1} — Spin(n, Z) — 80(n, Z;) o {1} — 1.

12.5.2. Lemma. The character x; : 8O(n, Zy)—+{&1} is trivial on pi(x 5™,
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Proof. 'The composite character x; 0 p; : 75 — 1 is tame at zero,

because p; is unipotent on Io. By 1.19, x; is trivial on pi(P). Therefore
X1 © pr is tame at co. But the “tame at zero and oo” quotient of x§*™
is Ty, Ze(1), a group of order prime to p = 2, so it has no non-trivial
characters to {£1}. B~

12.5.3. Theorem (O. Gabber). Ifp=2, n# 3 odd and n £ 7, then for all
suffictently large | we have

the subgroup in SO(n, Z;)
generated by pi(Is) and = pi(n§°°™) = the image of Spin(n, Z;).
by pi{lec)

geom

Proof. By the previous lemma, pi(#F ) lies in this image. Now consider
the moduli space M attached to the data (n,p,q, E,¢); it is a Z[1/2}-
scheme of finite type, over which we have a free (J-module V of rank n,
together with a symmetric bilinear autoduality

{, :VO%AV — O,
the corresponding M-groupscheme $O(n), a untpotent element
Univ € SO{n)(M)
and a homomorphism
Puniv : Loa = SO(n)(M),

satisfying various conditions as in 12.3.2.

QOver M, we can form the spin group Spin(n) attached to the symmetric
bilinear autoduality on V. Because Spin(n) is a finite etale {£1}-covering
of SO(n), they have canonically isomorphic Lie algebras. So once we invert
{n — 1! on M, the nilpotent elements of Lemma 12.3.8

105(')’1’ Uum'v')’;‘Hl) =V log(Uuniv)'Yiwl S L.E{SO(”))

make sense in Lie{Spin(n)). Because Spin(n) has a faithful linear represen-
tation of dimension 2"""“2:"1", its “spin represention,” once we further invert
(2°F" — 1)1, we have well defined AM-homomorphismes

G, — Spin(n)
T+ exp(T log(7: Uuniv¥i 1)),

which land in the unipotent elements of Spin{n).
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By Lemmas 12.3.8-9, once we Zariski localize on M and invert a large
integer, the nilpotent elements

Log (¥ Vwnivyi )

will form a basis of Lie(Spin(rn)) for suitable v; € .

Because Spin(n) is simply connected over algebraically closed fieids of
characterigtic zero, we may apply Theorem 12.4.0, to find in particular
that for { » 0, and any Z;-valued point z € M(Z;), the Zipoints of
the corresponding Spin group are generated by finitely many of the one-
parameter subgroups '

EXp(Z; log('fiUuniv'fi_l)(z)) C Spin(n, Zp).

Apply this to the points z € M(Z;) provided by the menodromy rep-
resentations p; of the #;. The images in SO(n, Zy) of the one-parameter
subgroups in question all lie in p(7§°°™), and they are all conjugates of
pi1(Jo) by elements of the subgroup generated by p1(Io) and by pr(1o). In

particular, for [ 3» 0 we have
%rnage of Spin(n, Z;) c subgroup of SO(n, 7)) generated
in SO{n, Z;) by pi(Io) and by pi(Loe).

As p§°°™) always lies in the image of Spin(n, Z;) in SO(n, Z;), by Lemma
12.5.1, the above inclusion forces equality throughout, §

12.6. Analysis of The Special Case p=2, n=7
12.6.1. In this section we fix data (n,p,q, E, ) with
pr=2, n=7 E=Q.
For each prime number ! # 2, we have the monodromy representation of
Fi,
IRE i SO(7,Zy),

the SO with respect to the unique-up-to-Z symmetric bilinear autoduality
(,) (cf. 4.1.11, 4.2.1).

We have proven that the Zariski closure of p(m8™) In SO(7), as alge-
braic group over Q; is G5 viewed as lying in SO(7) by its unique irreducible
representation stdy of dimension seven, and we have proven that the sub-

group of p;(r§*°™) generated by pi(lo) and by py(l,) is already Zariski
dense in this GS.

From the representation theory of G5, we know that A3(std7) has a one-
dimensional space of invariants under G (cf. 11.11.9).
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12.6.2. Lemma. Over an algebraically closed field of characteristic zero, the
Zariski closed subgroup Go C SO(T) is exactly the fizer in SO(7) of any
non-zero invariant of Ga acting on A%(stdy).

Proof. 1f we denote this fixer by K, we have G» C K C SO(7). Because
already (3o contains a unipotent Iy with a single J ordan block in stdz, we
may apply the Axiomatic Classification Theorem to K, with unipotent U
and with I's, = G2. Then K = Gy or K = 50(7), and the second case is
impossible because A3(std7) is SO('T) irredeucible. B

Because the subgroups p;{l’o) and (I} together generate a Zariski-
dense subgroup of Gg, it follows that

in A*((F)q), the Z;-module of simultaneous
invariants under p;(I) and under pi(ls,) is & free
Z;-module of rank 1; if we denote by

Ty € A%((F1)g)
a Z;-basis of this space of invariants, then G is
the fixer of T} in SO(7), as Q;-algebraic group.
12.6.3. Theorem (O. Gabber). Ifp=2 and n =7, then for all sufficiently
large | we have
the fizer of I

the subgroup generated by pi{1o) = py(r8om) = {
AT in SO(T,Z1).

and by pi{loo)

Proof. We will build a modified version M’ of the modull problem M. For
any Z[1/2}-algebra R, we define M'(R) = the set of quadruples ()9, U,T)
where

{,),: R* x R* — R is a symmetric R-lmear
autoduality of R™ with itself.
% : oo — SO(n, R) is a group homomorphism, with
trace(y(7)) = char,(y) forall y € '
U & SO(n, R) is an element satisfying
a) (U-1)"=40,
b) Zariski locally on R, some (n — 1) x (x— 1) minor of U —11s
invertible.
T € A*(R™)is a nowhere-vanishing section which is invariant under

$(Too) and under U.
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Just as in 12.3.5, we see that A’ is represented by a Z[1/2}-scheme of finite
type, still noted M’, over which we have the “universal” data

((7 )univ; 1Jbuni‘\rs Uuniv, Tuniv)v

We denote by
GC SO(V: (: )uni\r)

the closed AM’-subgroup-scheme of SO(n) defined by

G = the fixer of Ty in SO(V, (; )univ)-
M,

For any geometric point z : Spec(X) — M’ with K an algebraically
closed field of characteristic zero, the K-algebraic group G, is isomorphic
to Gz, by the Axiomatic Classification Theorem (which makes it either G'g
or SO(7)) and the fact that it has a non-zero invariant in A®(std7) (which
rules out SO(7)). In particular, the characteristic-zero geornetric fibres
of G — A’ are all smooth, connected and simply connected of constant
dimension dim{G»).

12.6.4. Leama. There exists an integer D > 1 such that (M'[1/D])™¢ is
flat over Z, and such that over (M'[1/D])*¢ the inverse image of G —

M’ is smooth with geometrically connected fibres of constant dimension
dlm(Gg)

Proof. Because A4’ is a scheme of finite type over Z, and G — M’ is a
morphism of finite type whose characteristic-zero geometric fibres are all
smooth and connected of constant dimension dim((), it follows by standard
constructibility arguments that there exists an integer D > 1 such that
(M[1/D]y*d is Hlat over 2, and a finite constructible partition

(M"l/D red _ U X

ST

where each X; is a smooth connected Z-scheme of finite type, over which the
induced group-scheme G'x;, — X; is smooth with geometrically connected
fibres of constant dimension dim(G3).
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We show that the lemma “works” with this choice of I, For if we denote
by X the scheme (M'[1/D}])™*?, then the inverse image of G — M over X,

Gx “—— SO(T)x

l

X
has all of its georhetric fibres smooth and connected of constant dimensi.on
dim(Ga). We need only show that Gx — X is flat. By the valuative
criterion for flatness (EGA IV, 11.8.1}, it suffices to prove that after any
base-change ¥ — X with Y the spectrum of a discrete valuation ring, the
induced Y-group-scheme

Gy &—— SO(N)y

L

is flat over Y. Let us denote by n and s respectively the generic and the
closed point of ¥, and by

Gy = the schematic closure of Gy in SO(My.

|

Y

Concretely, a global function on the affine scheme SO{T}y vanisk.les on Gy
if and only if it vanishes on Gy. Therefore the ideal defining Gy in SO(T}y
vanishes on Gy, whence Gy is a closed Y-subgroup-scheme of Gy . There-
fore the special fibre (éy) , is a closed subgroup-scheme of Gy )s. l?ecause
Gy — Y is flat, with generic fibre of dimension dim(Gy), the special fibre
(é}’), is purely of dimension dim(Gy), (ef. Alt-KI, Cha;?ter V1, 2.10) and
is non-empty, because it is a group-scheme, But {Gy), is smooth and ge-
ometrically connected of dimension dim(Gy), so any closed subscheme of
the same dimension must be all of it:

(GY)-! = (GY)-!‘

This implies that in fact )
GY = GY.

(For their affine rings sit in a short exact sequence of Oy -modules

0 —» Ker — Aff(Gy) — Aﬁ(é}’) — 0
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with the last term flat over Oy, so reducing mod 7, # a uniformizing
parameter for Oy, the equality of special fibres gives

Ker /o Ker = 0, so Ker =7 Ker=7"Ker = ...

But the general fibres are also equal, so
Ker[l/w] = 0.

Because Ker is an ideal in Aff(Gy). it is finitely generated as Aff(Gy)-
module, whence for some large integer N, ¥ kills each generator, whence

™ Ker = 0.

There Ker = 7 Ker = --- = 7" Ker = 0, whence Gy = Gy as claimed.)
Therefore Gy is flat over V. B
Thanks to the lemma, we may apply Theorem 12.4.0 to the inverse image

of G — M’ on (M'[L/D])*, and (once we invert a large integer and Zarisk
localize), a set of nilpotent elements

1Og(Ti Uuniv 7:_ ! )

which form a basis of Lie(G), for suitable y; € . Because the ring Z; is
reduced, all Z;-valued points of AM'[1/D] factor through (M'{1/D])*d. So
we may apply the conclusion of Theorem 12.4.0 to the Z;-valued points
defined by the monodromy g of F; and the chosen invariant 1.

12.6.5. Remark. As a by-product of the proof, we find that for ! » @, the
Zi-group-scheme defined as the fixer of T} in SO(7)z, is in fact smooth
over Z; with geometrically connected fibres (because for [ prime to the
unspecified integer D > 1, this group is the inverse image of Z; of the
universal group G over (M'{1/D])™4, by the Z;-valued point of M’ defined,
by pi and by 77). Is there a more direct way of seeing this?
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Equidistribution of “Angles” of Kloosterman Sums

13.0. Uniform description of the space of conjugacy classes and

its Haar measure
Fix an integer n > 2, and an n- dimensional complex vector space V. If

n is even, fix an alternating C-linear autoduality (,} of V. Denote by G
the complex Lie group )
SL{V) = SL(n,C) ifnodd

’ Sp(V,{,)) = Sp(n,C) if neven.
Let
KCG
be a maximal compact subgroup of G. We denote by
" P{n) C C[T)

the set of all those monic polynomials f(T7) of degree n which satisfy the
following conditions:
if n odd: there exist aq,...,ap in C with J[; o =1,

lasl=1 fori=1,...,n, and f(T)= H(T—a,)

if n even, say n = 2g; there exist o1,..., a4y in C with
g

-1
lagll=1 fori=1,..,9, and f(T}=](T—a)(T—eai)-
i=1 :
When n is even, by writing «; + arl = 2cosf; with 8; € [0,7], we may
rephrase this condition as:
if n = 2¢ is even; there exist real numbers fy,.. ., 8, in {0, 7]
g

such that f(T H — 2cos(8)T + 1).
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13.1. Lemma. Nolations as above, the map “characteristic polynomial”

K — C[T]
k v— det(T — k|V)

maps K onto P(n), and two elemenis of K are conjugate in K if and only
if they have the same tmage in P(n).

Proof. To see that K maps to and onto P(n), we argue as foilows. Because
K is a compact subgroup of GL(V), any element k € K is semi-simple with
all eigenvalues of absolute value one. Because all maximal compact sub-
groups of (7 are conjugate, any semi-simple element of 7 with all eigenval-
ues of absolute value one is (G-conjugate to an element of K. Because the
characteristic polynomial is invariant by G-conjugation (even by GL(V)-
conjugaﬁtion), we are “reduced” to showing that any semi-simple element of
¢ with eigenvalues of absolute value one has its characteristic polynomial
in P{n), and that every element of P(n) is such a characteristic polynomial.
For n odd, we have G = SL(n), and any semi-simple element is G-conjugate
to a diagonal matrix of determinant one, so the above assertion is obvious
in this case. For n even, say n = 2m, we have G = Sp(V,(,}). f g € G is
semi-simple, there exists a basis vq,...,v, of V and aq,..., @, € C* such
that gv; = ayv; for all . Because g € Sp, we have

('U;',’vj) = (gvi,gvj) = a;Cr;,:(T)g,’Uj),

and therefore
{vi,vj) #0= ooy = 1.

Because (,} is alternating and non-degenerate, we have {vy,v:) = § but
{(vy,v) # 0 for some i. Renumbering and scaling the v;, we may as-
sume {vy,Un41) = 1, and consequently ¢jevy, 1 = 1. Then the subspace
W = Cvy + Cuyqy of V is g-stable, and the restriction to it of {,) is non-
degenerate. Therefore V = W& L(W) is a g-stable orthogonal direct sum
decomposition. Repeating the above considerations with a diagonalization
of g on L{W), we conclude that V' admits a basis v,..., v, in which g is
diagonal, gv; = &y, and for which

(o, vy 20 i—jl=n/2=m

(vi,¥mpi) =1 fori=1,...,n/2=m

In such a “standard symplectic” basis of V, the matrix of g is

Diag(ev, ... ,an/z,oﬂ seens n/2)
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This shows that if our semi-simple g has all eigenvalues of absclute value
one, then its characteristic polynomial lies in P(n). Applying the pre-

ceding discussion to g = id, we see that V admits a “standard sym-
plectic” base wvy,...,v, as above. With respect to such a base, for any
@1, ..., 0y in C*, the diagonal matrix Diag(en, ..., a0, a7t .. ,a;}z)

lies in Sp(V,{,}). Therefore every element of P(n) is the characteristic
polynomial of a semi-simple element of G with all eigenvalues of absolute
value one, as required.

Given two elements of K with the same characteristic polynomial, we
must show they are K-conjugate. By representation theory {ef. 3.2), it
suffices to show they are (G-conjugate. So we are reduced to showing that

two semi-simple elements g, ¢’ of ¢ with the same eigenvalues &y, ..., oy, are
G-conjugate. To see this, choose bases vy, ..., v, and v],..., v, of V which
diagonalize ¢ and g’ respectively, gv; = oy, gvf = o] for i = 1,...,n,

and which are both “standard symplectic” bases of ¥V for n even (resp. are
bases giving equal volume elements vy A---Av, = v A .. 0}, in A"V, for n
odd). Then the antomorphism v of V' which maps w; to v for i =1,...,n
lies in G, and it conjugates g into ¢’ (ie., g’ = vgy™1). B

13.2. Remark. Here is another way to see that for both 5L(n,C) and
Sp(n, C), the coefficients of the characteristic polynomial, i.e., the traces
of the exterior powers A’(std) of the standard representation separate K-
conjugacy classes. By Peter-Weyl, it suffices to show that the character of
any finite-dimensional representation is a C-polynomial in the
trace{A(std))’s. In fact, for SL and Sp any such character is a Z-polynomial
in the trace(A’(std))’s, 1.e., the A*(std) generate the representation ring as
Z-algebra. To see this, it suffices to show that every fundamental rep-
resentation is a Z-polynomial in the A’(std), because the representation
ring is a polynomial ring over Z in the fundamental representations., For
SL(n), the n — 1 fundamental representations are given by w; = A’(std) for
i=1,...,n—1. For Sp(n), the n/2 fundamental representations are given
virtually by wy = std, wp = A¥(std) — 1, and w; = Af(std) — AP~ %{std) for
I<i<nf2

13.3. Thanks to this lemma, we may view P(n) as “the space KU of
conjugacy clagses in K, independently of the particuler maximal compact
K in the particular G = SL(V) or Sp(V, {,)) which we chose. Our next task
is to describe intrinsically the measure on P{n) which is “the direct image

on K" of normalized (total mass one) Haar measure on K.” In order to
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do this, it is convenient to view P(n) as the quotient of a suitable compact
torus T'(n) by a suitable finite group W(n). Here is the explicit description:

n odd T(n) is the subgroup of (R/27Z)" of

elements (6,...,0,) with £6; = 0 mod 272,
W{n) is the symmetric group S,, acting by
permutation of the 8,’s

T'(n)/W(n) = P(n) is the map
(B1,.0,0,) — f[(T — etfi)

n = 2g even: T'(n) is (R/27Z), coordinates 61, . .. .8,
W(n) is the semi-direct product ({£1})¢ x S,
where S, acts by permuting the §;’s, and an
element (e1,...,¢e5) in ({£1}) maps (6y,...,6,)
to (Elgl cen ,Eggg).

T(n)/W(n) > P(n) is the map
(01, ., 05y — [J(T?% = 2cos(8)T + 1).

=1

We denote by pu(n) the following measure on T'(n):
ifnis odd: use b1,...,6,_1 to identify T(n) to [0, 2#)”_1; then

4gnin-1)/2 1 n—1 . g; — 8;
p,(n) = T(-z—-;) ( H sin® (—-—-2'—'1')) dﬁl...dﬁ'n_l.

1£i<j<n

tf n=2¢ is even: use fy,...,0, toidentify T(n) to [0, 27)%; then

i=1
ol 0~ 0; 48
( 1 51112('—2"—) sin'”’(g‘ +4 )) dby . ..dd,.
1<i<j<y 2

In terms of the measure pu(n), we define a measure p(n)t on P{n) by de-
creemng that for any continuous C-valued function f on P(n) (“continuous”
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when we view P(n) as a compact subset of the C" of monic polynomials
of degree n, or equivalently when we view P(n) as T(n)/W(r) with the
quotient topelogy), with inverse image f on T(r), we have

ffdu(n)“ “ /fdu(n)‘
Pin) i)

13.4. Theorem (Weyl Integration Formula, cf. Bourbaki LIE IX, §6,‘ 2,
Cor. 2). The measure u(n)* on P(n) corresponds, via the isomorphism
K' 5 P(n) defined by the map “ haracteristic polynomial,” to the direct
image 1 on K of normalized (total mass one) Haar measure on K.

ExaMPLE: Forn =2, P(2)is the set of real polynomials T%—2 cos(0)T+1,
with 8 € [0, 7). Viewing P(2) as the quotient of T(2) = R/2nZ by 6 v —0,
#(2)! is Sato-Tate measure (2/7) sin? 6 d@ on [0, 7].

13.5. Formulation of the theorem
13.5.1. As in the previous section, we fix an mteger n > 2. For any triple
(Fy,%,a) consisting of

a finite field F,

a mon-trivial C-valued additive character 4 : (Fy,+) — G

an element a € F;‘ ,

we wish to define a point
0(F,,%,a) € P(n),

which we think of as the “generalized angle” of the corresponding n-variable
Kloosterman sum. _
Its intrinsic description as a monic polynomial

§(qh,0) ~ [J(T )

is as follows: for 1 € k < n, the Newton symmetric functions of the roots
ai,y...,0n are to be

n

(13.5.1.1) Z(ai)’“ = (—1)””“1(q1?m)k Z~ ¢(tracequlpq(z z3)).

; =G
i=1 z1 n

To see that the polynonial thus defined lies in P(n), we must appeal Fo
the l-adic theory, as follows. The polynomial in question has coefficients In
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the subfield Q (values of ¢) = Q{(,) of C, p denoting the characteristic
of F,, because its Newton functions do. For any [ # p, and any (-adic
place A of the field Q(¢,, ¢"7") = E, we may form the lisse rank n E,-sheaf
Fi= KL;,(TL)(”—EI-) on Gy, ® F, studied at such length in the previcus two
chapters, Viewed as an E\-polynomial, # is given by

(13.5.1,2) 8(Fy, %, a)(T) = det(T ~ Fy | (Fi)a)

where F,; denotes the geometric Frobenius at the rational peint a € F;‘ =
Gm(Fy) of Gy @ Fy (both sides are monic of degree n, and their Newton
symmetric functions agree, by the local trace property 4.1.1.(2) of Klooster-
man sheaves). Because Fy is pure of weight zero, with 73® acting through
SL (and through Sp for n even), it follows that (¥, %, a) does in fact lie
in P(n). Indeed, if we pick a complex embedding E, < C which agrees on
E with the given inclusion £ ¢ C, then if either n is even or if pn iz odd,
the element 6(F,,%,a) € P{n) when viewed as a conjugacy class in K7, is
none other than that of g, (F,)*, i.e. the class denoted “4(a)” in Theorem
11.4.

An equivalent “@ priori formula” for # is the following (a rewriting of
(13.5.1.2) above):

oQ T—nmnk
T"6(Fy, v, a)(1/T) :exP<(_1)nZ (/2 . ) Sk)
k=1
(13.5.1.3)
where S = Z ¢(tracquk/Fq(Z x)).

Ty..Enm=a
all xiEFqk

13.5.2. Having defined the points 8(F,, 4, a) in P(n), we now define a
measure u(Fg, ) on P(n), by

difn 1 Dirac delta measure at
r = — .
u(Fq,4) g—1 Ez}_;x <E(Fg,1;’),a) )

In terms of ) on G, ® F,, this is the measure “X;” on K% provided that
either n is even or that pn is odd.

In fact, the measure u(F,,¢) is independent of the auxiliary choice of
non-trivial ¢». For any other is of the form

Pu(z) = 9P(bz), for somed € Fy.
But we have trivially the identity

O(Fq, s, a) = 0(F,, ¥, b"a),
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as is immediate from looking at the corresponding Kloosterman sums
(cf. 11.11.1, where this also occurs). Therefore in the sum defining u(F,, ¢),
the effect of replacing 1 by ) is just to permute the terms. We denote
simply by

p(Fy) = p(F,,¥), for any non-trivial ¢

the resulting measure on P{n).

13.5.3. Theorem. Fiz n > 2. In any sequence of finite fields, possibly of
varying characierisiic, whose cardinalities tend {o co, and which for n odd
are all of odd characieristic, the measures u(F,) on the space P(n) tend
weak * to the “direct image of Haar measure” p(n) on P(n). More pre-
cisely, tf A is an irreducible non-trivial continuous representation of K, and
if By is any finite field (of odd characteristic, if n is odd), then we have the

estimate dmA) i
irn 7
L] trace(A}d u(Fy)| £ —=* o1
(n)
where trace{A), & priori a central function on K, is viewed as a conlin-
uwous function on P{n) viae the “characteristic polynomial” isomorphism
82 P(n). (In fact, trace(A) will be o Z-polynomial in the functions “th
coefficient” on P(n) viewed as a space of monic polynomials, cf. 13.2.)

Proof. In view of 11.1, 11.3, and 11.4, this is just 3.6.3, restated from

a slightly different perspective. Indeed for any ! # char(F,), and any

field embedding Q; — C, u(F,) is the measure X; attached to Fy on

Gn®F,. E

ExaMPLE 13.6: Take n = 2. Then P(2) = [0, #], u(2)* = (2/7)sin® 6 db.
For each prime number p, use the character

Pp  (Fp,+) — C*
x — exp(2mwiz/p).

For each a € F, we write

Ki(p,a) = Z ez + y)

sy=a
zyeF,

-1
— Ki(p, a) = 2cos{f(p, a}), f(p,a) € [C,n
7 (p,9) (8(p, a)) (p,a) € [0, ]
1 Dirac d-measure
F,) = the measure ——
#(Fy) p—la;:x (atﬂ(p,a) )
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on the interval {0,7]. The irreducible non-trivial representations of K —
SU(2) are the Symm"(std), n =1,2,..., whose traces are

sin{{n + 1)4)
sin
These functions, together with the constant function 1 (n = 0 above) form

an orthonormal base of L2[0, #] for the Sato—Tate measure (2/7)sin 0 df.
The estimate in this case is

T sin({n 4+ 1)) n+l /F
/0 o du(Fp )| < — P forn > 1.
In vyo-rds.: “as p T 00, the p — 1 Kioosterman angles {8(p,a)}serx become
equidistributed in [0, 7] for Sato-Tate measure.” ’

trace(Symm” (std)) = ,n=1,23 ...
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