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IIIInnnnttttrrrroooodddduuuuccccttttiiiioooonnnn We work over an algebraically closed field k, in
which a prime number … is invertible. We fix a projective, smooth,
connected k-scheme X/k, of dimension n ≥ 1. We also fix a projective
embedding i : X fi @. This allows us to speak of smooth hyperplane
sections X€L of X, or more generally of smooth hypersurface
sections X€Hd of X of any degree d ≥ 1 (i.e., Hd is a degree d

hypersurface in the ambient @, and the scheme-theoretic
intersection X€Hd is smooth over k, and of codimension one in X).

The paper [Ka-LAM] applied results of Larsen to the problem of
determining the monodromy of the universal family of smooth
hypersurface sections X€Hd of X of fixed degree d. Consider the lisse

ä$…-sheaf Ï…,d on the parameter space, given by

Hd ÿ Hn-1(X€Hd, ä$…)/H
n-1(X, ä$…).

Denote by Nd the rank of Ï…,d. One knows that Ï…,d is orthogonally

self dual if n-1 is even, and symplectically self-dual if n-1 is odd. We
denote by

Ggeom fi O(Nd), if n-1 is even,

Ggeom fi Sp(Nd), if n-1 is odd,

the Zariski closure of the image of the geometric fundamental group
of the parameter space in the ä$…-representation which Ï…,d "is".

Deligne showed in [De-Weil II, 4.4.1 and 4.4.2a] that for any d ≥ 2
(and also for d=1 if X admits a Lefschetz pencil of hyperplane
sections, which it always does in characteristic zero, cf. [SGA 7 Exp.
XVII, 2.5.2]), one has

Ggeom = Sp(Nd), if n-1 is odd.

When n-1 is even, he showed [De-Weil II, 4.4.1, 4.4.2s, and 4.4.9] that
either Ggeom is the full orthogonal group O(Nd), or Ggeom is a finite

reflection group.
The finite reflection case does occur. For instance, if n-1 = 0,

Ggeom is the symmetric group S1+Nd
in its Nd-dimensional "deleted

permutation" representation. And for X = @3 embedded linearly in
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@, and d=3, we get the universal family of smooth cubic surfaces in

@3, which has finite monodromy group equal to the Weyl group of
E6 in its reflection representation. However, one has the following

result.

TTTThhhheeeeoooorrrreeeemmmm 0000 [[[[KKKKaaaa----LLLLAAAAMMMM,,,, 2222....2222....4444]]]] Suppose n-1 ≥ 2 is even and d ≥ 3. If
Nd > 8, then Ggeom = O(Nd).

One knows [SGA 7 Exp. XVIII, 6.4.2.1] that for fixed (X, i), Nd as

a function of d is a polynomial of degree n, of the form

Nd = deg(X)dn + lower terms.

This makes it clear that for d >> 0, we will indeed have Nd > 8. But

how large does d really need to be to insure that Nd > 8? Is d ÿ Nd
strictly increasing for d ≥ 2?

Consider first the case when X is @n, embedded linearly in @.
In this case, Nd is given by the well-known formula

Nd = ((d-1)/d)((d-1)n - (-1)n).

Armed with this explicit formula, one checks easily that d ÿ Nd is

strictly increasing for d ≥ 2, and that one has:
if n = 3 and d ≥ 4, then Nd > 8,

if n ≥ 4 and d ≥ 3, then Nd > 8.

In particular, for d ≥ 3 and n-1 ≥ 2 even, we always have Nd > 8,

except in the one exceptional case (n = 3, d = 3) of cubic surfaces in

@3, for which N3 = 6.

This observation led us to wonder how Nd for a general (X, i),

which we will denote
Nd(X, i)

to emphasize its dependence on both X and i, compared with Nd for

the special case (@n, linear embedding), which we will denote

Nd(@
n, lin).

TTTThhhheeeeoooorrrreeeemmmm 1111 Let X/k be projective, smooth, and geometrically
connected, of dimension n ≥ 1. Let i : X fi @ be a projective
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embedding. Then we have the following results.
1) For every integer d ≥ 1, we have the inequality

Nd(X, i) - N1(X, i) ≥ deg(X)Nd(@
n, lin).

2 For every integer d ≥ 1, we have the inequality

Nd(X, i) ≥ deg(X)Nd(@
n, lin).

3) The function d ÿ Nd(X, i) is strictly increasing for d ≥ 2.

CCCCoooorrrroooollllllllaaaarrrryyyy 2222 Hypotheses as in Theorem 1, suppose n ≥ 3 and d ≥ 3.
Then we have Nd(X, i) > 8 except for the one exceptional case

n = 3, d = 3, and (X, i) is (@3, lin),

of cubic surfaces in @3.

pppprrrrooooooooffff ooooffff CCCCoooorrrroooollllllllaaaarrrryyyy 2222 As noted above, we have Nd(@
n, lin) > 8

except in the one exceptional case. Since deg(X) ≥ 1, it follows from
part 2) of the theorem that Nd(X, i) > 8 except in the case

n = 3, d = 3, deg(X) = 1.
But the only projective smooth connected 3-fold X in @ with deg(X)

= 1 is @3, linearly embedded, cf. [Hart, Ch. I, Ex. 7.6, page 55]. QED

CCCCoooorrrroooollllllllaaaarrrryyyy 3333 Notations as in Theorem 1, suppose n ≥ 3 is odd, d ≥ 3,

and (X, i, d) is not (@3, lin, 3). The monodromy of the universal
family of smooth, degree d hypersurface sections of X has Ggeom =

O(Nd(X, i)).

pppprrrrooooooooffff ooooffff CCCCoooorrrroooollllllllaaaarrrryyyy 3333 This is immediate from Corollary 2 and the
cited Theorem 0. QED

In proving Theorem 1, we stumbled across a striking
inequality, relating the number

ùVanCyclesd(X, i)

of vanishing cycles in any Lefschetz pencil of degree d hypersurface
sections of (X, i) to the dimension Nd(X, i) of the space they span, cf.

[SGA 7, Expose XVIII, 3.2.10, 6.6 and 6.6.1].

TTTThhhheeeeoooorrrreeeemmmm 4444 Hypotheses as in Theorem 1, suppose in addition that
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either the fibre dimension n-1 is odd, or that char(k) ± 2. Then for
every integer d ≥ 2 (and also for d=1 if X admits a Lefschetz pencil
of hyperplane sections), we have the inequality

ùVanCyclesd(X, i) ≥ 2Nd(X, i).

The proofs of these results are based on positivity properties of
integrals involving Chern classes, see Section II. These positivities,
although elementary, do not seem to have been noticed before, and
seem to be useful in other contexts as well. To illustrate this, we
apply these positivities in the final section IV of the paper to Chern
integral expressions for "dimensions" of exponential sums.

SSSSeeeeccccttttiiiioooonnnn IIII:::: SSSSttttaaaannnnddddaaaarrrrdddd ffffaaaaccccttttssss aaaabbbboooouuuutttt CCCChhhheeeerrrrnnnn ccccllllaaaasssssssseeeessss
We continue to work over an algebraically closed field k in

which a prime number … is invertible. We fix an integer n ≥ 0 and a
projective, smooth (but not necessarily connected) equidimensional
k-scheme X/k of dimension n, given with a projective embedding i :

X fi @. We denote by A\(X) the Chow ring of X, cf. [Gro-Ch] or [Ful,
Ch. 8]. If X is the disjoint union of connected components Xå, then

A\(X) is the direct sum ring ·åA
\(Xå). The theory is usually stated

for connected X, but it is convenient to allow the more general case,
so that one can inductively take hyperplane sections as many times
as one likes.

Thus A\(X) is the #≥0-graded commutative ring with unit,

whose underlying abelian group is the group of algebraic cycles on X,
modulo rational equivalence. The grading is by codimension of
support, and the multiplication is by intersection product. The group

An(X) is the group of 0-cycles on X, modulo rational equivalence.
There is a canonical surjective group homomorphism

deg : An(X) ¨ #,
which sends a 0-cycle ‡i niPi to its degree ‡i ni. Using it, one defines

a canonical surjective group homomorphism

—X : A\(X) ¨ #

as follows. Given an element ≈ = ‡i≈i in A\(X), ≈i in Ai(X), one defines

—X ≈ := deg(≈n).

The ring A\(X) receives a theory of Chern classes of coherent
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sheaves on X. The total chern class of the tangent bundle of X/k is
called the total chern class of X, denoted c(X). Thus

c(X) = 1 + c1(X) + ... + cn(X).
The first fundamental fact we need is the integration formula

—X c(X) = ç(X) := ‡i (-1)
idimHi(X, ä$…).

For the ambient @ = @N, the graded ring A\(@N) is the
truncated polynomial ring

A\(@N) = #[L]/(LN+1),

where L in A1(@N) is the class of a hyperplane. For an integer d ≥ 1,

and for Hd a degree d hypersurface in @, the class of Hd in A1(@N) is

dL.
Via the pullback ring homomorphism

i* : A\(@N) ¨ A\(X),

we obtain an element i*(L) in A1(X). When no confusion is likely, we

will denote this element of A1(X) simply as L. We have Ln+1 = 0 in

A\(X), and

—X Ln = deg(X).

If Hd in @ = @N is a degree d hypersurface such that X€Hd is

smooth and of codimension one in X, then the class of X€Hd in A1(X)

is dL.
The second basic fact we need is this. For X€Hd a smooth,

degree d hypersurface section of a projective smooth
equidimensional X with dimX ≥ 1, denote by

å : X€Hd ÿ X

the inclusion. We get an induced homomorphism of groups

å* : A\(X€Hd) ¨ A\+2(X),

as well as a ring homomorphism

å* : A\(X) ¨ A\(X€Hd).

The chern class of X€Hd is given by

c(X€Hd) = å*(c(X)/(1 + dL)).

For any element ≈ in A\(X), we have the projection formula

å*(å
*≈) = dL≈,
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and the integration formula

—X€Hd å*≈ = —X å*(å
*≈) = —X dL≈.

Thus for any power series f(L) in L with #-coefficients, we have
—X€Hd c(X€Hd)f(L) = —X c(X)(dL/(1 + dL))f(L).

The third basic fact we need is this. Suppose we are given an
integer r ≥ 1, a sequence of r ≥ 1 integers d1, d2,..., dr, each di ≥ 1,

and for each di a hypersurface Hdi
in @ of degree di such that the

following two transversality conditions hold:
1) For any integer j with 1 ≤ j ≤ r and with j ≤ dimX,

X€Hd1
€...€Hdj

is smooth and of codimension j in X,

2) For any integer j with dimX < j ≤ r,
X€Hd1

€...€Hdj
is empty.

Then we have the integration formula
—X c(X)°i=1 to r (diL/(1 + diL)) = ç(X€Hd1

€...€Hdr
).

[If r > dimX, both sides vanish. If r ≤ dim X, use the previous
integration formula r times.]

SSSSeeeeccccttttiiiioooonnnn IIIIIIII:::: SSSSttttaaaatttteeeemmmmeeeennnnttttssss ooooffff tttthhhheeee bbbbaaaassssiiiicccc ppppoooossssiiiittttiiiivvvviiiittttiiiieeeessss

We now introduce the element t in A\(X) defined by
t := -L/(1 + L).

Since L is nilpotent, with Ln+1 = 0, we have

t = -L + L2 - L3 + L4... = ‡i=1 to n (-1)iLi.

Thus t is also nilpotent, tn+1 = 0, and
L = -t/(1 + t).

PPPPoooossssiiiittttiiiivvvviiiittttyyyy LLLLeeeemmmmmmmmaaaa 5555 Let k be an algebraically closed field k, X/k a
projective, smooth connected k-scheme of dimension n ≥ 1, given
with a projective embedding i : X fi @. We have the following
positivity results.
1) For all integers k ≥ 0, we have

—X (-1)nc(X)(1 + t)2tk ≥ 0.

2) For k > n, we have

—X (-1)nc(X)(1 + t)2tk = 0.

3) For k = n, we have
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—X (-1)nc(X)(1 + t)2tn = deg(X).

4) If n ≥ 1, we have

—X (-1)nc(X)(1 + t)2tn-1 ≥ 2deg(X) - 2.

5) If n ≥ 2, we have

—X (-1)nc(X)(1 + t)2tn-2 ≥ deg(X) - 1.

NNNNoooorrrrmmmmaaaalllliiiizzzzaaaattttiiiioooonnnn LLLLeeeemmmmmmmmaaaa 6666 If (X, i) is (@n, lin), then for k ≥ 0 we
have

—X (-1)nc(X)(1 + t)2tk = 0, if k ± n,

= 1, if k = n.

SSSSeeeeccccttttiiiioooonnnn IIIIIIIIIIII:::: PPPPrrrrooooooooffffssss
We choose a prime number … invertible in k, and use ä$…-

cohomology. We write

Hj(X) := Hj(X, ä$…).

We fix an isomorphism ä$…(1) ¶ ä$…, so that we can view the cycle

class map as a ring homomorphism

A\(X) ¨ H2\(X)
from the Chow ring to the even part of the cohomology ring. We will

also denote by L in H2(X) the image of the class L in A1(X). For X as
in the Positivity Lemma, the strong Lefschetz theorem tells us that
for each integer j ≥ 0, cupping j times with L is an isomorphism

Lj :Hn-j(X) ¶ Hn+j(X).
In particular, cupping once with L defines an injective map

L : Hn-2(X) ¨ Hn(X).
The weak Lefschetz theorem tells us that if X€L is a smooth
hyperplane section of X, then the restriction map

Hj(X) ¨ Hj(X€L)
is an isomorphism for j ≤ n-2, and is injective for j=n-1.

KKKKeeeeyyyy LLLLeeeemmmmmmmmaaaa 7777 Let X/k be as in the Positivity Lemma. Let L1 and

L2 be hyperplanes in @ such that both X€L1 and X€L2 are smooth

of codimension 1 in X, and such that X€L1€L2 is smooth of

codimension 2 (:= empty, if n=1) in X. Then we have the integration
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formulas

—X (-1)nc(X)(1 + t)2

= (-1)nç(X) + 2(-1)n-1ç(X€L1) + (-1)
n-2ç(X€L1€L2).

= dim(Hn(X)/LHn-2(X)) + 2dim(Hn-1(X€L1)/H
n-1(X))

+ dim(Hn-2(X€L1€L2)/(H
n-2(X)).

pppprrrrooooooooffff We readily compute

(1 + t)2 = (1 - L/(1 + L))2 = 1 -2L/(1 + L) + (-L/(1 + L))2.
Thus we have

—X (-1)nc(X)(1 + t)2

= (-1)nç(X) + 2(-1)n-1ç(X€L1) + (-1)
n-2ç(X€L1€L2).

Now expand out the individual Euler characteristics, using Poincare
duality.

(-1)nç(X) = hn(X) - 2hn-1(X) + 2hn-2(X) - ...,

2(-1)n-1ç(X€L1) = 2hn-1(X€L1) - 4h
n-2(X€L1) + ...

(using weak Lefschetz) = 2hn-1(X€L1) - 4h
n-2(X) + ...,

(-1)n-2ç(X€L1€L2) = hn-2(X€L1€L2) - ....

By weak Lefschetz, the terms indicated by ... cancel out in each
degree when we add up. Then use strong Lefschetz to write

hn(X) - hn-2(X) = dim(Hn(X)/LHn-2(X)). QED

CCCCoooorrrroooollllllllaaaarrrryyyy 8888 Fix an integer d ≥ 1. Let Hd and H'd be degree d

hypersurfaces in @ such that both X€Hd and X€H'd are smooth of

codimension 1 in X, and such that X€Hd €H'd is smooth of

codimension 2 (:= empty, if n=1) in X. Then we have the identity

(-1)nç(X) + 2(-1)n-1ç(X€Hd) + (-1)
n-2ç(X€Hd€H'd).

= dim(Hn(X)/LHn-2(X)) + 2dim(Hn-1(X€Hd)/H
n-1(X))

+ dim(Hn-2(X€Hd€H'd)/(H
n-2(X)).

pppprrrrooooooooffff This is just the second equality of Lemma 7 above, applied to
the d-fold Segre embedding built out of the given embedding i. QED
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CCCCoooorrrroooollllllllaaaarrrryyyy 9999 1) If n := dimX = 1, then

—X (-1)nc(X)(1 + t)2 ≥ 2deg(X) - 2.

2) If n := dimX = 2, then

—X (-1)nc(X)(1 + t)2 ≥ deg(X) - 1.

pppprrrrooooooooffff For n= 1, 2deg(X) - 2 is the middle term

2dim(Hn-1(X€L1)/H
n-1(X))

in the expression for this integral. For n = 2, deg(X) -1 is the last
term

dim(Hn-2(X€L1€L2)/(H
n-2(X))

in the expression for this integral. QED

PPPPrrrrooooooooffff ooooffff TTTThhhheeeeoooorrrreeeemmmm 4444 If either n-1 is odd or if char(k) ± 2, one
knows [SGA 7, Expose XVIII, 3.2.10, 6.6 and 6.6.1] that the number of
vanishing cycles in a Lefschetz pencil of degree d hypersurface
sections of X is given by

ùVanCyclesd(X, i)

= (-1)nç(X) + 2(-1)n-1ç(X€Hd) + (-1)
n-2ç(X€Hd€H'd).

By the corollary just above, this last expression is equal to

= dim(Hn(X)/LHn-2(X)) + 2dim(Hn-1(X€Hd)/H
n-1(X))

+ dim(Hn-2(X€Hd€H'd)/(H
n-2(X)),

the middle term of which is 2Nd(X, i). QED

PPPPrrrrooooooooffff ooooffff tttthhhheeee PPPPoooossssiiiittttiiiivvvviiiittttyyyy LLLLeeeemmmmmmmmaaaa 6666 For k > n, we have

—X (-1)nc(X)(1 + t)2tk = 0,

simply because tn+1 = 0. For k ≤ n, denote by
X(lin, codim k) fi X

the intersection of X with a general linear space of codimension k in
the ambient @. Recalling that t is -L/(1 + L), we see by the
projection and integration formulas for chern classes that

—X (-1)nc(X)(1 + t)2tk

= —X(lin, codim k) (-1)
n-kc(X(lin, codim k))(1 + t)2.

For k = n, X(lin, codim n) consists of deg(X) reduced points, and the
integral is equal to deg(X). For k < n, we compute this integral by the
Key Lemma, which shows that it is non-negative, and Corollary 9,
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which gives the asserted inequalities for high values of k. Thus for n
≥ 1, we have

—X (-1)nc(X)(1 + t)2tn-1

= —X(lin, codim n-1) (-1)c(X(lin, codim n-1))(1 + t)2

≥ 2deg(X(lin, codim n-1)) - 2 = 2deg(X) - 2.
Similarly, for n ≥ 2 we have

—X (-1)nc(X)(1 + t)2tn-2

= —X(lin, codim n-2) (-1)
2c(X(lin, codim n-2))(1 + t)2

≥ deg(X(lin, codim n-2)) - 1 = deg(X) - 1. QED

PPPPrrrrooooooooffff ooooffff tttthhhheeee NNNNoooorrrrmmmmaaaalllliiiizzzzaaaattttiiiioooonnnn LLLLeeeemmmmmmmmaaaa 7777 Use the identity above,

—X (-1)nc(X)(1 + t)2tk

= —X(lin, codim k) (-1)
n-kc(X(lin, codim k))(1 + t)2,

applied with X = @n embedded linearly. We get

—@n (-1)nc(@n)(1 + t)2tk

= —@n-k (-1)n-kc(@n-k)(1 + t)2.

For n=k, @n-k is a point, and the integral is equal to 1. To show that
it vanishes for k < n, we must show that for any n ≥ 1, we have

—@n (-1)nc(@n)(1 + t)2 = 0.

But this integral is equal to

= dim(Hn(@n)/LHn-2(@n) + 2dim(Hn-1(@n-1)/Hn-1(@n))

+ dim(Hn-2(@n-2)/Hn-2(@n)),

From the known cohomological structure of projective space, H\(@n)

¶ ä$…[L]/(L
n+1), with L in degree 2, we see that each term vanishes

for n ≥ 1. [When n= 0, it is the first term which is one-dimensional
instead of vanishing.] QED

PPPPrrrrooooooooffff ooooffff TTTThhhheeeeoooorrrreeeemmmm 1111 The idea is to compute Nd(X, i) - N1(X, i) as a

difference of Euler characteristics, to express this difference as a
chern class integral, and then to apply the positivity lemma and the
normalization lemma to that integral. We have

Nd(X, i) = hn-1(X€Hd) - h
n-1(X),
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N1(X, i) = hn-1(X€L) - hn-1(X).

But

(-1)n-1ç(X€Hd) = hn-1(X€Hd) - 2h
n-2(X€Hd) + ...,

(-1)n-1ç(X€L) = hn-1(X€L) - 2hn-2(X€L) + ....
In these two formulas, all the terms after the first agree, by weak
Lefschetz. So we get

Nd(X, i) - N1(X, i) = (-1)n-1ç(X€Hd) - (-1)
n-1ç(X€L)

= —X (-1)nc(X)[-dL/(1 + dL) - (-L/(1 + L))].

Write this in terms of t = -L/(1 + L). We readily calculate
-dL/(1 + dL) = dt/(1 - (d-1)t),
-L/(1 + L) = t,
-dL/(1 + dL) - (-L/(1 + L)) = dt(1 + t)/(1 - (d-1)t)

= (1 + t)2[(d-1)t/((1 + t)(1 - (d-1)t)).
So we get

Nd(X, i) - N1(X, i)

= —X (-1)nc(X)(1 + t)2[(d-1)t/((1 + t)(1 - (d-1)t))].

Now expand the bracketed term as a power series in t. We have

(d-1)t/((1 + t)(1 - (d-1)t)) = (d-1)t(‡i (-1)
iti)(‡j (d-1)

itj)

=(d-1)t‡k tk ‡i+j=k (-1)i(d-1)j

=(d-1)t‡k t
k ((d-1)k+1 - (-1)k+1)/((d-1) - (-1))

= ((d-1)/d)‡k≥1 t
k ((d-1)k - (-1)k).

So we get
Nd(X, i) - N1(X, i)

= ‡k≥1 ((d-1)/d)((d-1)k - (-1)k)—X (-1)nc(X)(1 + t)2tk.

All the integrals —X (-1)nc(X)(1 + t)2tk are non-negative, and at

least one is strictly positive, namely

—X (-1)nc(X)(1 + t)2tn = deg(X).

For each k ≥ 1, the coefficient ((d-1)/d)((d-1)k - (-1)k) is, for d ≥ 2,
non-negative and strictly increasing in d. So for fixed (X, i), the
expression Nd(X, i) - N1(X, i), and hence Nd(X, i) itself, is strictly

increasing for d ≥ 2. Moreover, looking only at the tn term, we get
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the inequality

Nd(X, i) - N1(X, i) ≥ deg(X)((d-1)/d)((d-1)n - (-1)n).

If we repeat the computation with (X, i) taken to be (@n, lin), we
find

Nd(@
n, lin) - N1(@

n, lin)

= ‡k≥1 ((d-1)/d)((d-1)k - (-1)k)—@n (-1)nc(@n)(1 + t)2tk

= ((d-1)/d)((d-1)n - (-1)n), (by the normalization lemma).

On the other hand, N1(@
n, lin) = 0, so we recover the well known

formula

Nd(@
n, lin) = ((d-1)/d)((d-1)n - (-1)n). QED

SSSSeeeeccccttttiiiioooonnnn IIIIVVVV:::: AAAApppppppplllliiiiccccaaaattttiiiioooonnnn ttttoooo iiiinnnneeeeqqqquuuuaaaalllliiiittttiiiieeeessss ffffoooorrrr ddddiiiimmmmeeeennnnssssiiiioooonnnnssss ooooffff
eeeexxxxppppoooonnnneeeennnnttttiiiiaaaallll ssssuuuummmmssss

There are a number of cases in which an exponential sum in
several variables is given, up to sign, by the trace of Frobenius on a
single cohomology group, and where the dimension of that
cohomology group is given by an alternating sum of Euler
characteristics, or equivalently by an explicit chern class integral.
But it often seems miraculous that the integral in question comes
out to be non-negative, and its monotonicity in the degrees involved
is far from clear, as is its comparison with "what the corresponding

integral on @n would be". But the method used here, namely to
write the integral as

—X (-1)nc(X)(1 + t)2(a power series ‡k akt
k),

often gives a series ‡k akt
k with coeffficients which are visibly

positive, and which are visibly monotonic in the various degrees
that enter. We then apply to it the following theorem.

TTTThhhheeeeoooorrrreeeemmmm 11110000 Let k be an algebraically closed field, and let X/k be
projective, smooth, and equidimensional, of dimension n ≥ 0, given

with a projective embedding i : X fi @. Denote by L in A1(X) for the

class of a hyperplane section, and put t := -L/(1 + L) in A\(X). For

any series ‡k akt
k with non-negative integer coefficients, we have

the inequalities
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—X (-1)nc(X)(1 + t)2(‡k akt
k)

≥ deg(X)an, if n ≥ 0,

≥ deg(X)an + (2deg(X) -2)an-1, if n ≥ 1,

deg(X)an + (2deg(X) -2)an-1 + (deg(X) - 1)an-2, if n ≥ 2,

and the equality

—@n (-1)nc(@n)(1 + t)2(‡k akt
k) = an.

pppprrrrooooooooffff Immediate reduction to the case when X is connected. The
case n = 0 is trivial. For n ≥ 1, apply the Positivity Lemma 6 to get
the inequalities, and the Normalization Lemma 7 to get the equality.
QED

We now list three particular families of integrals, each of
which occurs, at least for certain choices of the parameters, as the
"dimension" of an exponential sum. We leave to the reader the
pleasant exercise of calculating, in each family, the corresponding

series ‡k akt
k as above.

EEEExxxxaaaammmmpppplllleeee 1111 —X (-1)nc(X)/((1 + L)(1 + dL)), parameter d ≥ 1, [Ka-SE,

5.1.1] and [Ka-MCS, Theorem 3].

EEEExxxxaaaammmmpppplllleeee 2222 —X (-1)nc(X)(1 + b(1-a)∂L)/((1 + a∂L)(1 + b∂L)),

parameters a, b, ∂ all ≥ 1, [Ka-SE, 5.1.2]

EEEExxxxaaaammmmpppplllleeee 3333 —X (-1)nc(X)/((1 + dL)°i=1 to r(1 + diL)), parameters di
and d all ≥ 1, [Ka-SE, 5.4.1] and [Ka-MCS, Theorem 5].
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