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Estimates for “Singular” Exponential Sums

Nicholas M. Katz

Introduction

Fix a finite field k and a nontrivial additive character

ψ: k→ C×.

In [D1, Thm. 8.4], Deligne proved the following beautiful estimate for exponential sums

in n ≥ 1 variables. Given a polynomial f(x1, . . . , xn) in n variables over k of some degree

d ≥ 1, write it as

f = Fd + Fd−1 + · · · F0

with Fi homogeneous of degree i. Suppose that the following two conditions are satisfied.

(1) The degree d is prime to p := char(k).

(2) The locus Fd = 0 is a nonsingular hypersurface in Pn−1 (for n = 1, this second

condition always holds).

Then we have the estimate∣∣∣∣∣∑
x∈kn

ψ(f(x))

∣∣∣∣∣ ≤ (d− 1)n(#k)n/2.

Now let us consider a slightly more general situation. We begin with a projective,

nonsingular, geometrically connected variety X/k, of some dimension n ≥ 1, given with

a projective embedding. We give ourselves a linear form on X,

L ∈ H0(X,O(1)),

an integer d ≥ 1, and a form of degree d on X,

H ∈ H0(X,O(d)).
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Suppose that the following three conditions are satisfied.

(0) The locus L = 0 in X, denoted X ∩ L, is nonsingular of codimension 1 in X.

(1) The degree is prime to p.

(2) The locus L = H = 0 in X, denoted X ∩ L ∩H, is nonsingular of codimension 1

in X ∩ L.

The ratio f := H/Ld makes sense as a function on the smooth affine variety V :=
X[1/L] := X− X ∩ L of dimension n,

f := H/Ld: V → A1.

Under these hypotheses, we have the estimate (see [L], [K, 5.1.1])∣∣∣∣∣∑
x∈V(k)

ψ(f(x))

∣∣∣∣∣ ≤ Const(X,O(1), d)(#k)n/2,

where the constant is topological, given in terms of the total Chern class c(X) of X and

the class L of O(1) by the explicit formula

Const(X,O(1), d) =
∣∣∣∣∫

X

c(X)/((1+ L)(1+ dL))

∣∣∣∣ .
Let us recall how this second result includes the first one as a special case. Take

X to be Pn with homogeneous coordinates X0, . . . , Xn, take L to be X0, and take H to be the

homogenization of f,

H := Fd + (X0)Fd−1 + (X0)2Fd−2 + · · · = (X0)df(X1/X0, . . . , Xn/X0).

We recover Deligne’s result above: V is An, and f is f. To see that the constant works

out correctly (to be (d − 1)n), recall that the total Chern class of Pn is (1 + L)n+1, so the

constant is∣∣∣∣∫
Pn

(1+ L)n/(1+ dL)

∣∣∣∣ = ∣∣coef. of Ln in (1+ L)n/(1+ dL)
∣∣

=
∣∣∣∣∣coef. of Ln in

(∑
a

Binom(n, a)La

)(∑
b

(−d)bLb

)∣∣∣∣∣
=
∣∣∣∣∣∑

a

Binom(n, a)(−d)n−a

∣∣∣∣∣ = |(1− d)n| = (d− 1)n.

In this paper, we drop, as much as we can, all the hypotheses of nonsingularity

made in the results discussed above. It is for this reason that we speak of “singular”

exponential sums in the title. Of course, our estimates suffer, but by surprisingly little. It

turns out that, under quite general conditions, only the dimension δ of the singular locus

of X∩ L∩H costs us anything, if we are willing to have results valid for all p sufficiently
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large. (The question of effectively estimating just how large p need be is itself quite

interesting and far from being solved. It is closely related to questions of independence

of `. We discuss it below.) If we want results that are valid in a fixed characteristic p, we

need to assume further that d is prime to p, and we need sometimes to take into account

the dimension of the singular locus of X ∩ L.

One cautionary remark is perhaps in order: our result may reveal essentially

nothing about sums that are in fact quite nice. We illustrate with two examples.

(1) Suppose we wish to sum ψ(f), f a polynomial of degree d > 1 in n variables, over

An. If the subscheme of Pn−1 defined by the highest-degree part Fd of f is highly singular,

then our result is quite weak. For instance, if Fd is a d-th power, then δ = n− 2, and we

get 2n − 1 as an upper bound for the weights in large characteristic. Yet we know from

[KL, 5.5.1] that if we add to f a general linear term, i.e., replace f(x1, . . . , xn) by f+∑i aixi

with the ai sufficiently general, then despite the fact that we have not changed Fd, the

sum becomes pure of weight n.

(2) The (n+ 1)-variable Kloosterman sum∑
x1x2...xn+1=1

ψ

(∑
i

xi

)
is known to be pure of weight n (see [D2, 7.5]). Yet a naive treatment would be to view the

domain of summation as the open set X[1/L], where L := X0 is invertible in the singular

projective hypersurface X of equation (X0)n+1 = ∏n+1
i=1 Xi, and to view the summand as

ψ(H/L) for H :=∑n+1
i=1 Xi. In this case, X∩ L∩H is the reducible hypersurface of equation(∏n

i=1 Xi

) (∑n
i=1 Xi

) = 0 in Pn−1. For n ≥ 2, its singular locus is of codimension 1; i.e.,

δ = n− 3. Thus we get the upper bound n+ δ+ 1 = 2n− 2 for the weights, quite far from

the correct upper bound, which is n, as soon as n is large.

Despite these caveats, there are some situations where we get significant improve-

ments over what was previously known. Some of these are given in the final section.

Notation, assumptions, and statements of the

main results

We fix a perfect field k, a (large) integer N, an integer r ≥ 1, and a list of r strictly

positive integers D1, . . . , Dr. We work in the projective space PN over k. Inside PN, we

give ourselves a closed subscheme X, which is definable, scheme-theoretically, in PN by a

set of r homogeneous equations of degrees D1, . . . , Dr. We call the data (N, r, D1, . . . , Dr) a

numerical type for X. (Of course, a given X in PN admits many different numerical types.)

We assume throughout that at least one of the conditions (H1) or (H1′) holds.

(H1) X⊗k k̄ is irreducible and integral, of dimension n ≥ 1.
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(H1′) X is Cohen-Macaulay and equidimensional, of dimension n ≥ 1.

We give ourselves a linear form on X,

L ∈ H0(X,O(1)),

an integer d ≥ 1, and a form of degree d on X,

H ∈ H0(X,O(d)).

We assume throughout that the following condition holds:

(H2) The scheme-theoretic intersection X ∩ L ∩H has dimension n− 2.

We denote by Sing(X∩L∩H) the singular locus of X∩L∩H. Because we are over a perfect

field, this is the set of points of X ∩ L ∩H whose local ring is not regular. We denote by δ

the dimension of this singular locus:

δ := dimension of Sing(X ∩ L ∩H).

We adopt the convention that the empty scheme has dimension −1.

By (H2), the scheme-theoretic intersection X ∩ L has dimension n− 1. We denote

by ε the dimension of its singular locus:

ε := dimension of Sing(X ∩ L).

Lemma 3. We have an a priori inequality

ε ≤ δ+ 1.

Proof. Zariski locally on X ∩ L ∩H, X ∩ L ∩H is defined in X ∩ L by one equation, say, h.

So any closed point x of X ∩ L ∩H that is regular in X ∩ L ∩H is regular in X ∩ L. (Just lift

back the n− 2 parameters defining x in X ∩ L ∩H and tack on the defining equation h to

get n− 1 parameters defining x in X ∩ L.) In other words, we have

Reg(X ∩ L ∩H) ⊂ H ∩ Reg(X ∩ L).

Taking complements in X ∩ L ∩H, we have

H ∩ Sing(X ∩ L) ⊂ Sing(X ∩ L ∩H).

Because (a high enough power of ) H is (the restriction to X of ) a hypersurface in the

ambient PN, for every closed subscheme Z of X, we have (see [H, 7.2])

dim(H ∩ Z) ≥ dim(Z)− 1.

Thus we get

δ ≥ dim(H ∩ Sing(X ∩ L)) ≥ dim(Sing(X ∩ L))− 1 = ε− 1.
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We put

V := X[1/L], f := H/Ld: V → A1.

For a nontrivial C-valued additive character ψ of k, we are interested in bounding the

sum
∑

x∈V(k) ψ(f(x)).

Theorem 4. Given a numerical type (N, r, D1, . . . , Dr) and an integer d ≥ 1, denote by C

the explicit Bombieri constant

C := C(N, r, D1, . . . , Dr, d) := (4 Sup(1+D1, . . . , 1+Dr, d)+ 5)N+r.

For any finite field k in which the integer d is invertible, any nontrivial C-valued additive

character ψ of k, and any data (X in PN, L, H) over k as above, with X of numerical type

(N, r, D1, . . . , Dr) and H of degree d, which satisfies (H1) (or (H1)′) and (H2), we have the

following estimates.

(1) If ε ≤ δ, then∣∣∣∣∣∑
x∈V (k)

ψ(f(x))

∣∣∣∣∣ ≤ C× (#k)(n+1+δ)/2.

(2) If ε = δ+ 1, then∣∣∣∣∣∑
x∈V (k)

ψ(f(x))

∣∣∣∣∣ ≤ C× (#k)(n+2+δ)/2.

Remark on the constant C(N, r, D1, . . . , Dr, d). Bombieri [B, Theorems 1 and 2] showed

that if we consider any exponential sum of any polynomial in N variables of degree at most

d over any closed subscheme of AN defined by r equations of degrees at most D1, . . . , Dr,

then the total degree (i.e., total number of zeroes and poles in C) of the corresponding

L-function is bounded by

C := C(N, r, D1, . . . , DrD, d) := (4 Sup(1+D1, . . . , 1+Dr, d)+ 5)N+r.

If we think of L as the homogeneous coordinate X0 onPN, then X[1/L] is a closed subscheme

of AN defined by r equations of degrees at most D1, . . . , Dr, and the function inside the ψ

is a polynomial of degree at most d. So if we are able, using `-adic cohomology, to show

that the (at most C in number, after cancellation) Frobenius eigenvalues that occur all

have weight ≤ n + 1 + δ in case (1), and weight ≤ n + 1 + 2 in case (2), then we get the

asserted estimate.

Theorem 5. Given a numerical type (N, r, D1, . . . , Dr) and an integer d ≥ 1, there exists

a constant

B := B(N, r, D1, . . . , Dr, d)
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such that the following result holds. Take any finite field k of characteristic p > B, any

nontrivial C-valued additive character ψ of k, any data (X in PN, L, H) over k as above,

with X of numerical type (N, r, D1, . . . , Dr) and H of degree d, which satisfies (H1) (or (H1)′)

and (H2), and any nonzero form G of degree d− 1 on X,

G ∈ H0(X,O(d− 1)).

Consider the ratio H/LG as a function on X[1/LG]; i.e., put

V := X[1/LG], f := H/LG: V → A1.

Then for C1 the effective constant,

C1 := C(N+ 1, r+ 1, D1, . . . , Dr, d, d+ 1)

:= (4 Sup(1+D1, . . . , 1+Dr, d+ 1, d+ 1)+ 5)N+r+2,

we have the estimate∣∣∣∣∣∑
x∈V(k)

ψ(f(x))

∣∣∣∣∣ ≤ C1 × (#k)(n+1+δ)/2.

Remarks. How do Theorems 4 and 5 compare? A major deficiency of Theorem 5 is that

the constant B is, for the moment, not effective, and hence we have no idea just how large

p need be. Its major advantage over Theorem 4 is that for large p, it gives the “good” upper

bound n + 1 + δ for the weight, independent of the value of ε. What about the constant

C1? It arises when we view V := X[1/LG] as the open set of X[1/L] where the polynomial

g := G/Ld−1 is invertible. On X[1/L] we have the polynomial h := H/Ld. We introduce a

new variable xn+1, i.e., pass to X[1/L] × A1. In our exponential sum, we are summing,

inside the ψ, the polynomial xn+1h of degree at most d + 1 over the locus gxn+1 = 1 in

X[1/L] × A1. The locus of summation is defined in AN+1 by the previous r equations of

degrees at most D1, . . . , Dr in the first N variables, and by one more equation gxn+1 = 1

of degree at most d. So to prove the theorem, we may use `-adic cohomology and show

that all Frobenius eigenvalues that occur have weight at most n+ δ+ 1.

Proof of Theorem 5: The method of pencils

In this section, we fix a numerical type (N, r, D1, . . . , Dr) and an integer d ≥ 1.

Lemma 6. Fix a prime number `. There exists a constant

Betti(`, N, r, D1, . . . , Dr)
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with the following property. For any algebraically closed field K of characteristic not `,

any closed subscheme X of PN over K that has numerical type (N, r, D1, . . . , Dr), and any

integer i ≥ 0, we have

dimQ`
Hi(X,Q`) ≤ Betti(`, N, r, D1, . . . , Dr).

Proof. Given a field k and a closed subscheme X of PN over k that has numerical type

(N, r, D1, . . . , Dr), let us define an equation list of type (N, r, D1, . . . , Dr) for X to be the

auxiliary choice of homogeneous coordinates X0, . . . , XN for PN together with a choice of r

homogeneous forms FDi
of degree Di in these variables that define X. There is an obvious

universal family

π: X→ S

of data (X in PN of numerical type (N, r, D1, . . . , Dr), together with an equation list of

numerical type (N, r, D1, . . . , Dr)). Namely, one takes for S the product, over Z, of the r

projective spaces whose points are the homogeneous forms in n + 1 variables of degree

Di for i = 1 to r. Inside PN×S, one takes X to be the closed subscheme (incidence variety)

consisting of those points

{(x ∈ PN, FDi
for i = 1 to r) at which FDi

(x) = 0 for i = 1 to r},

with the map π: X→ S induced by the projection pr2 of PN×S onto S. This map is proper.

If we invert a prime number `, then we get the proper map

π[1/`]: X[1/`]→ S[1/`].

By [SGA 4, Exposé XIV, Thm. 1.1], the sheaves Ri(π[1/`])∗Q` on S[1/`] are each constructible

(i.e., lisse on each piece of a stratification of S[1/`] by finitely many connected regu-

lar locally closed subschemes Wj,` of S[1/`]), and they vanish for i outside the range

[0, 2N]. Moreover, by proper base change (see [SGA 4, Exposé XII, Thm 5.1]), the stalk

of Ri(π[1/`])∗Q` at a geometric point s of S[1/`] is the cohomology group Hi(Xs,Q`) of the

corresponding geometric fibre. As S varies over all geometric points of S[1/`], the fibre Xs

runs over, with many repetitions, all possible X in PN over algebraically closed fields of

characteristic not ` that are of numerical type (N, r, D1, . . . , Dr). So we have only to take

Betti(`, N, r, D1, . . . , Dr) := SupiSupjrank of Ri(π[1/`])∗Q`|Wj,`.

Remark on the constants B and Betti. It is an old result of Milnor (see [M]) that for X in
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PN over C of numerical type N, D1, . . . , Dr, if we define

Dsup := Supi(Di),

then we have, for every `, the inequality∑
i

dimQ`
Hi(X,Q`) ≤ NDsup(2Dsup − 1)2N+1.

(In fact, Milnor’s inequality holds with coefficients in any field (see [M]).)

We expect that this same Milnor inequality [M] holds in arbitrary characteristic

not `. If it does, then we can take Betti(`, N, r, D1, . . . , Dr) to be NDsup(2Dsup − 1)2N+1 for

every `, and so we can take the constant B(N, r+ 1, D1, . . . , Dr, d) to be

1+ Betti(`, N, r+ 1, D1, . . . , Dr, d),

as we see below (see the remark following the proof of Theorem 15).

Lemma 7. Let K be the fraction field of a Henselian discrete valuation ring R, whose

residue field k is perfect of characteristic p > 0, Ksep a separable closure of K, D the

decomposition group Gal(Ksep/K), I ⊂ D the inertia group, and P ⊂ I the wild inertia

group (see [S]). Let ` be a prime not p, and suppose V is a finite-dimensional Q` or F`-

vector space on which I acts continuously, by ρ: I→ GL(V ). Then we have the following:

(1) If p > `dim(V ), then ρ is tame; i.e., P acts trivially.

(2) If p−1 > dim(V ) and if ` mod p is a generator of the multiplicative group (Fp)×,

or more generally, if dim(V ) < (the order of ` mod p), then ρ is tame.

Proof. In the Q` case, pick an I-stable Z` lattice V in V, so that the representation lands

in GL(V). The kernel of the reduction mod ` map from GL(V) to GL(V/`V) is pro-`, being

1 + ` End(V), so ρ is tame on V if and only if ρ mod ` is tame on V/`V. So it suffices

to treat the F`-case. We show that under either of the hypotheses (1) or (2), the group

GL(V ) ∼= GL(dim(V ),F`) has order prime to p. Indeed, this group has order

dim(V)−1∏
i=0

(`dim(V ) − `i) = (a power of `)×
dim(V )∏

i=1

(`i − 1).

Under either hypothesis (1) or (2), no factor (`i − 1) is divisible by p.

Corollary 8. Let k be a perfect field of characteristic p > 0, let C/k be a smooth, geo-

metrically connected curve over k, let C̄/k be its complete nonsingular model, let ` be a

prime number not p, and let F be a constructible Q`-sheaf on C of generic rank r; i.e., on

any dense open set U in C on which F is lisse, it is lisse of rank r. Suppose that either

p > `r, or that the multiplicative order of ` mod p is greater than r. Then F is everywhere



Estimates for “Singular” Exponential Sums 883

tamely ramified on C̄; i.e., for every closed point x ∈ C̄, the action of the inertia group I(x)

on the geometric generic fibre Fη̄ is tame.

We now return to the given numerical type (N, r, D1, . . . , Dr) and integer d ≥ 1. Let

k be a perfect field of characteristic p > 0, and (X in PN, L, H) over k with X of numerical

type (N, r, D1, . . . , Dr), which satisfies (H1) (or (H1)′) and (H2). Given any nonzero G ∈
H0(X,O(d − 1)), we wish to consider the one-parameter family H = λLG of hypersurface

sections of X. More precisely, inside X× A1 consider the incidence variety

X̃ := {points (x, λ), where H(x) = λ(LG)(x)}

and the projection onto the second factor

f̃: X̃→ A1.

The fibre over a point λ is precisely the hypersurface section H = λLG of X.

Lemma 9. Under the hpotheses given in the paragraph above, the morphism

f̃: X̃→ A1

is flat.

Proof. We reduce immediately to the case where k is algebraically closed (the hypothesis

(H1)′ is stable under extension of the ground field—see [EGA, IV, 6.7.1 and 7.3.8]). Because

the base A1 is reduced and the morphism is projective, it suffices to check that all the

fibres have the same Hilbert polynomial (see [H, III, Thm. 9.9] for the case of an integral

base, which is good enough here, but the given proof works over a reduced base as well,

using [Mu, Lemma 1, p. 51] and [EGA, III, 2.2.3 and 7.9.14]).

If (H1) and (H2) hold, we argue as follows. Let us temporarily admit that for each

λ ∈ A1, the form H− λLG is nonzero in H0(X,O(d)). Then for each fibre X̃λ, we have a short

exact sequence on X,

0→ OX(−d)
×(H−λLG)−−−−→OX→ OX̃λ

→ 0.

(The named map is injective because H − λLG is nonzero and X is integral.) Twisting by

OX(k) for every k, we get an equality of Hilbert polynomials

χ(X̃,OX̃λ
(k)) = χ(X,OX(k))− χ(X,OX(k− d)),

which shows that χ(X̃,OX̃λ
(k)) is independent of λ ∈ A1.

To see that H − λLG is nonzero, it suffices to see that its vanishing defines a

subscheme of X (namely, X̃λ) of dimension n− 1. But the intersection of this subscheme
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with the hyperplane L = 0 is the subscheme X∩L∩H, which by (H2) has dimension n−2,

and hence X̃λ has dimension n− 1.

If (H1)′ and (H2) hold, then (H− λLG, L) is a regular sequence for the graded ring

⊕m≥0Γ (X,OX(m)). In particular, the sheaf sequence above remains exact, and we argue as

above.

Lemma 10. Suppose that k is finite, and ψ is a nontrivial C-valued additive character

of k. With the notations

V := X[1/LG], f := H/LG: V → A1,

the sum∑
x∈V(k)

ψ(f(x))

may be expressed in terms of the fibration f̃: X̃→ A1 by the identity

∑
x∈V(k)

ψ(f(x)) =
∑

λ∈A1(k)

ψ(λ)#(X̃λ(k)).

Proof. We may rewrite the sum as

∑
λ∈A1(k)

ψ(λ)#{x ∈ V (k) with f(x) = λ}

=
∑

λ∈A1(k)

ψ(λ)#{x ∈ (X[1/LG])(k) with H(x)/(LG)(x) = λ}

=
∑

λ∈A1(k)

ψ(λ)#{x ∈ X̃λ(k) with (LG)(x) nonzero}.

The difference of this from
∑

λ∈A1(k) ψ(λ)#(X̃λ(k)) is∑
λ∈A1(k)

ψ(λ)#{x ∈ X̃λ(k) with (LG)(x) = 0}.

Now X̃λ has equation H = λLG in X, so LG = 0 in X̃λ defines the subscheme X ∩H ∩ (LG),

independent of λ ∈ A1. Thus our difference is

#{x ∈ X(k) with H(x) = (LG)(x) = 0} ×
∑

λ∈A1(k)

ψ(λ),

and this last sum vanishes, because ψ is nontrivial.

We now express the sum cohomologically.
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Lemma 11. Suppose that k is finite. For any prime ` invertible in k, we have the coho-

mological formula∑
λ∈A1(k)

ψ(λ)#(X̃λ(k)) =
∑
a,b

(−1)a+bTrace
(
Frobk, H

a
c (A1 ⊗k k̄,Lψ ⊗ Rbf̃∗Q`)

)
.

(In this formula, Lψ makes sense as a Q̄` sheaf, the tensor product in Lψ ⊗ Rbf̃∗Q` is over

Q`, the resulting sheaf and its cohomology group are viewed as Q̄`-objects, and the trace

is taken in that sense.)

Proof. For each λ ∈ A1(k), the Lefschetz trace formula on X̃λ with constantQ` coefficients

gives

#(X̃λ(k)) =
∑

b

(−1)bTrace(Frobk,λR
bf̃∗Q`).

Thus, ∑
λ∈A1(k)

ψ(λ)#(X̃λ(k)) =
∑

b

(−1)b
∑

λ∈A1(k)

Trace(Frobk,λ,Lψ ⊗ Rbf̃∗Q`).

For each b, applying the Lefschetz trace formula on A1 with Lψ⊗Rbf̃∗Q` coefficients gives

∑
λ∈A1(k)

Trace(Frobk,λ,Lψ ⊗ Rbf̃∗Q`)

=
∑

a

(−1)aTrace(Frobk, H
a
c (A1 ⊗k k̄,Lψ ⊗ Rbf̃∗Q`)).

Key Lemma 12. For any algebraically closed overfield E of k, and any point λ ∈ A1(E) = E,

the (n− 1)-dimensional fibre X̃λ := X ∩ (H = λLG) has the dimension of its singular locus

bounded by 1+ δ:

dimSing(X̃λ) ≤ 1+ δ.

Proof. The scheme-theoretic intersection of X̃λ with the hyperplane L = 0 is X ∩ L ∩ H,

as noted above in the proof of Lemma 9. So any regular point of X ∩ L ∩ H is regular on

X̃λ, and hence

L ∩ Sing(X̃λ) ⊂ Sing(X ∩ L ∩H).

Thus a hyperplane section of Sing(X̃λ) has dimension ≤ δ, and hence (compare to the proof

of Lemma 3) Sing(X̃λ) has dimension at most 1+ δ.
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Theorem 13. Let k be a perfect field of characteristic p > 0, and (X in PN, L, H) over k

with X of numerical type (N, r, D1, . . . , Dr), which satisfies (H1) (or (H1)′) and (H2). Given a

nonzero G ∈ H0(X,O(d− 1)), denote by

f̃: X̃→ A1

the one-parameter family H = λLG of hypersurface sections of X. For any prime number

` invertible in k, we have the following results concerning the sheaves Rif̃∗Q` on A1.

(1) For i > n+ δ+ 1, the sheaf Rif̃∗Q` is lisse on A1.

(2) For i = n + δ + 1, denote by j: U → A1 the inclusion of a dense open set on

which the sheaf Rif̃∗Q` is lisse. Then we have a short exact sequence of

sheaves on A1,

0→ (punctual, support in A1 −U)→ Rif̃∗Q`→ j∗ j
∗Rif̃∗Q`→ 0,

and the sheaf j∗ j
∗Rif̃∗Q` is lisse on A1.

Proof. We have seen above that f̃ is a proper flat map to A1 whose fibres have dimension

n − 1 and singular loci of dimension at most 1 + δ. The result is now immediate from

[SGA 7 I, Exposé I, Cor. 4.3], which tells us that for each k̄-valued point s ∈ A1, the I(s)-

equivariant specialization map

(Rif̃∗Q`)s→ (Rif̃∗Q`)η̄

is an isomorphism for i > n + δ + 1 and is surjective for i = n + δ + 1. Thus Rif̃∗Q` is

lisse on A1 for i > n + δ + 1. For i = n + δ + 1, the I(s)-equivariance of the surjective

specialization map shows that I(s) acts trivially on (Rif̃∗Q`)η̄, which means precisely that

j∗ j
∗Rif̃∗Q` is lisse on A1. (In [SGA 7 I, Exposé I, Cor. 4.3], the “n” is the fibre dimension,

our “n− 1,” and the “d” there is an upper bound for the dimension of the singular locus

of the special fibre, our “1+ δ.”)

Corollary 14. With hypotheses and notation as in Theorem 13 above, we have the fol-

lowing.

(1) Suppose that for each i ≥ n+ δ, the sheaf Rif̃∗Q` on A1 is tame at∞. Then the

cohomology groups

Ea,b
2 := Ha

c (A1 ⊗k k̄,Lψ ⊗ Rbf̃∗Q`)

vanish for a+ b ≥ n+ δ+ 2.

(2) Suppose that for each i ≥ n+ δ+ 1, the sheaf Rif̃∗Q` on A1 is tame at∞. Then

the cohomology groups

Ea,b
2 := Ha

c (A1 ⊗k k̄,Lψ ⊗ Rbf̃∗Q`)

vanish for a+b ≥ n+δ+2 with the possible exception of (a = 2, b = n+δ).

In particular, Ea,b
2 = 0 for a+ b ≥ n+ δ+ 3.
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Proof. For reasons of cohomological dimension, the terms E2
a,b vanish unless a lies in

[0, 2] and b lies in [0, 2n− 2]. What must be shown is as follows.

(1) For b ≥ n+ δ+ 2, Ea,b
2 = 0 for all a.

(2) For b = n+ δ+ 1, Ea,b
2 = 0 for a = 1, 2.

(3) If Rn+δf̃∗Q` is tame at∞, then for b = n+ δ, E2,n+δ
2 = 0.

To prove (1), recall that for b ≥ n+ δ+ 2, the sheaf Rbf̃∗Q` is lisse on A1. Since it

is also tame at∞, it is geometrically constant on A1, say, with constant value Vb. Then

Ea,b
2 := Ha

c (A1 ⊗k k̄,Lψ ⊗ Rbf̃∗Q`) = Ha
c (A1 ⊗k k̄,Lψ)⊗ Vb.

But Ha
c (A1 ⊗k k̄,Lψ) = 0 for all a.

To prove (2), use the short exact sequence

0→ (punctual)→ Rn+δ+1f̃∗Q`→ j∗ j
∗Rn+δ+1f̃∗Q`→ 0,

in which the last term j∗ j
∗Rn+δ+1f̃∗Q` is lisse on A1 and tame at∞ and, hence, geometri-

cally constant, say, with constant value Vn+δ+1.

Consider the long exact cohomology sequence. We have

Ha
c (A1 ⊗k k̄, punctual) = 0 for a ≥ 1,

so we get, for a ≥ 1, an isomorphism

Ea,b
2
∼= Ha

c (A1 ⊗k k̄,Lψ ⊗ j∗ j
∗Rbf̃∗Q`) = Ha

c (A1 ⊗k k̄,Lψ)⊗ Vn+δ+1 = 0.

To prove (3), that H2
c (A1 ⊗k k̄,Lψ ⊗ Rn+δf̃∗Q`) vanishes, simply note that the sheaf

F := Rn+δf̃∗Q` is tame at∞, so the sheaf Lψ⊗F is totally wild at∞. Now apply [K, Lemme

Clef, (1), p. 131] to get the vanishing of H2
c (A1 ⊗k k̄,Lψ ⊗ F).

End of the proof of Theorem 5

Given a numerical type (N, r, D1, . . . , Dr) and an integer d ≥ 1, recall that for each prime

`, we have the constant

Betti(`, N, r+ 1, D1, . . . , Dr, d);

this is an upper bound for the `-adic Betti numbers of any closed subscheme of PN over

an algebraically closed field of characteristic not `, which is definable by r + 1 forms of

degrees D1, . . . , Dr, d.
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Theorem 15 (= Theorem 5 bis). Given a numerical type (N, r, D1, . . . , Dr) and an integer

d ≥ 1, take for B the constant

B := 2Betti(`=2,N,r+1,D1,...,Dr,d).

Let k be a finite field k of characteristic p > B, and let ψ be any nontrivialC-valued additive

character of k. Suppose we are given data (X in PN, L, H) over k with X of numerical type

(N, r, D1, . . . , Dr) and H of degree d, which satisfy (H1) (or (H1)′) and (H2):

(H1) X⊗k k̄ is irreducible and integral, of dimension n ≥ 1;

(H1)′ X is Cohen-MacCaulay and equidimensional, of dimension n ≥ 1;

(H2) the scheme-theoretic intersection X ∩ L ∩H has dimension n− 2.

Denote by δ the dimension of the singular locus of X∩ L∩H, with the convention

that the empty scheme has dimension −1.

For any nonzero form G of degree d− 1 on X,

G ∈ H0(X,O(d− 1)),

consider the ratio H/LG as a function on X[1/LG]; i.e., put

V := X[1/LG], f := H/LG: V → A1.

Then for C1 the effective constant

C1 := C(N+ 1, r, D1, . . . , Dr, d, d+ 1),

we have the estimate∣∣∣∣∣∑
x∈V(k)

ψ(f(x))

∣∣∣∣∣ ≤ C× (#k)(n+1+δ)/2.

Proof. Since p is odd, we may use 2-adic cohomology. Consider

f̃: X̃→ A1,

the one-parameter family H = λLG of hypersurface sections of X. The fibres of f̃ are all of

numerical type (N, r + 1, D1, . . . , dr, d), so their Betti numbers are all uniformly bounded

by Betti(`, N, r+ 1, D1, . . . , Dr, d). Applying this to the geometric generic fibre of f̃, we find

dimQ2 ((Rif̃∗Q2)η̄) ≤ Betti(`, N, r+ 1, D1, . . . , Dr, d).

Viewing (Rif̃∗Q2)η̄ as a representation of I(∞), the inertia group at ∞, it follows from

Lemma 7 and the hypothesis p > B that this representation is tame for every i. In other

words, all the sheaves Rif̃∗Q2 on A1 are tame at∞. By Corollary 14, we have

Ha
c (A1 ⊗k k̄,Lψ ⊗ Rbf̃∗Q2) vanishes for a+ b ≥ n+ δ+ 2.
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So by Lemmas 10 and 11, we have the following cohomological expression for∑
x∈V(k) ψ(f(x)):

∑
x∈V (k)

ψ(f(x)) =
∑

λ∈A1(k)

ψ(λ)#(X̃λ(k))

=
∑

a+b≤n+δ+1

(−1)a+bTrace(Frobk, H
a
c (A1 ⊗k k̄,Lψ ⊗ Rbf̃∗Q2)).

By the main theorem of [D3, 3.3.3 and 3.3.4], we know that Ha
c (A1 ⊗k k̄,Lψ ⊗ Rbf̃∗Q2) is

mixed of weight less than a+ b. Thus all the eigenvalues that enter have weight at most

n+ 1+ δ.

Remark. It is conjectured that for any scheme X of finite type over an algebraically

closed field k, any prime number ` invertible in k, and any integer i ≥ 0, the dimension of

Hi
c(X,Q`) is independent of the choice of `. If this is true, then Betti(`, N, r+1, D1, . . . , Dr, d)

is independent of `. In that case, we would have Theorem 5 with the choice B := 1 +
Betti(`, N, r+1, D1, . . . , Dr, d). To see this, choose a prime ` which, mod p, has multiplicative

order p− 1 (this choice is possible, thanks to Dirichlet), and use `-adic cohomology. For

p > B, we have

p− 1 > dimQ`
((Rif̃∗Q`)η̄) for every i.

We conclude from Lemma 7 that Rif̃∗Q` is tame at∞ for all i, and the rest of the proof is

unchanged.

A cautionary example. Here is an example to show that the requirement in Theorem 15

(= Theorem 5 bis) that the characteristic p of k be sufficiently large cannot be dropped,

even when d = 1. Fix an integer n ≥ 2. In Pn+1 over k with homogeneous coordinates

Y, Z, X1, . . . , Xn, take for X the hypersurface of equation

Yp − YZp−1 = X1Z
p−1,

p being the characteristic of k.

Take for L the linear form Z, and for H the linear form X1. Then X ∩ L is the

everywhere singular hypersurface Yp = 0 in the Pn defined by Z = 0, and X ∩ L ∩H is the

entirely singular hypersurface Yp = 0 in the Pn−1 defined by Z = X1 = 0. Thus we have

δ = n− 2. Thus n+ 1+ δ is 2n− 1.
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Take for ψ a nontrivial additive character of k of the form ψ1 ◦ Tracek/Fp , with ψ1

a nontrivial additive character of Fp; i.e., ψ is nontrivial and ψ(ap−a) = 1 for every a ∈ k.

For

V := X[1/L], f := H/L: V → A1,

the sum∑
x∈V

ψ(f(x))

is pure of weight 2n. Indeed, V is the variety yp − y = x1 ∈ An+1 with coordinates

y, x1, . . . , xn, f is the function x1, and our sum is∑
x∈V(k)

ψ(x1).

If we solve for x1 in terms of y, then V becomes the affine space An with coordinates

y, x2, . . . , xn, and the sum becomes∑
y,x2,...,xn∈k

ψ(yp − y) = (#k)n.

This same example is also a case in which the estimate of Theorem 4(2) (the case

“ε = δ+ 1”) is sharp.

Another cautionary remark. Consider the special case of Theorem 15 in which X is Pn,

with homogeneous coordinates X0, X1, . . . , Xn, L is X0, and d ≥ 2. Then we are looking at∑
x∈(An[1/g])(k)

ψ(h(x)/g(x)),

where h is a polynomial of degree d, and where g is an arbitrary nonzero polynomial

of degree ≤ d − 1. The theorem asserts that if the highest-degree term Hd of h defines

a smooth hypersurface in Pn−1, then in any sufficiently large characteristic, this sum is

bounded by C× (#k)n/2.

It is natural to ask what one can say about sums of (ψ evaluated at) more general

rational functions. What can we say about∑
x∈(An[1/g])(k)

ψ(h(x)/g(x)),

if we keep h as above, of degree d with Hd = 0 smooth in Pn−1, but now allow g to be a

nonzero polynomial of degree ≥ d?
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If g has degree d, this reduces to a question we can treat by the same techniques.

We can view h/g as H/G with H and G homogeneous of degree d, and we are looking at

the sum ∑
x∈(Pn[1/LG])(k)

ψ((H/G)(x)),

which is the difference Sum1 − Sum2 of the two sums∑
x∈(Pn[1/G])(k)

ψ((H/G)(x))−
∑

x∈((Pn∩L)[1/G])(k)

ψ((H/G)(x)).

If we take the d-fold Segre embeddings of Pn and of Pn ∩ L, respectively, into giant pro-

jective spaces, then H and G become linear forms, and we can apply Theorem 5 to these.

Thus, for example, suppose that Pn ∩ G ∩ H is smooth of dimension n − 2, and suppose

that Pn ∩G ∩H ∩ L is of dimension n− 3 with at worst isolated singularities. Then from

Theorem 4 we get an estimate O((#k)n/2) for both Sum1 and Sum2 above, in all large enough

characteristics.

What can we say if degree(g) > degree(h)? For instance, what happens if we look at∑
x∈(An[1/h])(k)

ψ(1/h(x)),

where h is a polynomial of degree d, which is as nice as you please? To fix ideas, suppose

that h is H/Ld for L = X0, and that both Pn ∩H and Pn ∩H ∩ L are smooth, of dimensions

n− 1 and n− 2, respectively. In this case, for n ≥ 3, we claim that we have∑
x∈(An[1/h])(k)

ψ(1/h(x)) = (#k)n−1 +O(#k)n−2.

Thus the sum has weight 2n− 2, far worse than the “n” one might naively expect. To see

this, recall from [K, 5.1.2] that the complete sum has a good estimate:∑
x∈(Pn[1/H])(k)

ψ((Ld/H)(x)) = O((#k)n/2).

But our affine sum differs from this “complete” sum by

∑
x∈(Pn∩L)[1/H])(k)

ψ((Ld/H)(x)) = #((Pn ∩ L)[1/H])(k)

= (#k)n−1 +O((#k)n−2).

Proof of Theorem 4

Let us recall the statement of Theorem 4.
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Theorem 16 (= Theorem 4 bis). Given a numerical type (N, r, D1, . . . , Dr) and an integer

d ≥ 1, denote by C the explicit Bombieri constant

C := C(N, r, D1, . . . , Dr, d) := (4 Sup(1+D1, . . . , 1+Dr, d)+ 5)N+r.

Let k be a finite field in which d is invertible, and let ψ be any nontrivialC-valued additive

character of k. Suppose we are given data (X in PN, L, H), which satisfy (H1) (or (H1)′) and

(H2):

(H1) X⊗k k̄ is irreducible and integral, of dimension n ≥ 1;

(H1)′ X is Cohen-Macaulay and equidimensional, of dimension n ≥ 1;

(H2) the scheme-theoretic intersection X ∩ L ∩H has dimension n− 2.

Denote by δ the dimension of the singular locus of X∩L∩H, and denote by ε the dimension

of the singular locus of X ∩ L, with the convention that the empty scheme has dimen-

sion −1.

Then we have the following estimates.

(1) If ε ≤ δ, then∣∣∣∣∣∑
x∈V(k)

ψ(f(x))

∣∣∣∣∣ ≤ C× (#k)(n+1+δ)/2.

(2) If ε = δ+ 1, then∣∣∣∣∣∑
x∈V(k)

ψ(f(x))

∣∣∣∣∣ ≤ C× (#k)(n+2+δ)/2.

Proof. We pick any prime ` invertible in k, and we work with `-adic cohomology. We

claim that it suffices to show that the following statements (A) and (B) hold.

(A) If ε ≤ δ, then Rbf̃∗Q` is tame at∞ for b ≥ n+ δ.

(B) If ε = δ+ 1, then Rbf̃∗Q` is tame at∞ for b ≥ n+ δ+ 1.

Indeed, if (A) holds, then Corollary 14(1) gives

Ha
c (A1 ⊗k k̄,Lψ ⊗ Rbf̃∗Q`) = 0 for a+ b ≥ n+ δ+ 2,

and we conclude by invoking [D3] as in the proof of Theorem 5. If (B) holds, then Corol-

lary 14(2) gives

Ha
c (A1 ⊗k k̄,Lψ ⊗ Rbf̃∗Q`) = 0 for a+ b ≥ n+ δ+ 3,

and we conclude as above.

We first show that (A) and (B) hold in the case d = 1. In this case, we consider the

one-parameter family hyperplane sections µH − λL = 0 of X, parameterized by (λ, µ) in

P1. Let us denote by X in X× P1 the incidence variety

{(x, (λ, µ)) with µH(x) = λL(x)},
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and denote by π: X→ P1 the projection. (Thus over A1 ⊂ P1, we have the map f̃: X̃→ A1,

to which we have added X ∩ L as the fibre over ∞ := (1, 0)). The map π is proper and

flat, and its fibres have dimension n − 1. Moreover, all fibres have a singular locus of

dimension at most 1+ δ. So exactly as in Theorem 13, we have:

(1) for i > n+ δ+ 1, the sheaf Riπ∗Q` is lisse on P1;

(2) for i = n + δ + 1, denote by j: U → P1 the inclusion of a dense open set on

which the sheaf Riπ∗Q` is lisse. Then we have a short exact sequence of

sheaves on P1,

0→ (punctual, support in P1 −U)→ Riπ∗Q`→ j∗ j
∗Riπ∗Q`→ 0,

and the sheaf j∗ j
∗Rif̃∗Q` is lisse on P1.

Restricting to A1, we find that Rbf̃∗Q` is tame at∞ for b ≥ n+ δ+ 1, which is (B).

If in addition ε ≤ δ, then the∞-fibre of π, whose dimension is n−1, has singular

locus of dimension ≤ δ. By [SGA 7 I, Exposé I, Cor. 4.3], the specialization map

(Rn+δπ∗Q`)∞ → (Rn+δπ∗Q`)η̄ = (Rn+δf̃∗Q`)η̄

is surjective. Thus, the inertia group I(∞) acts trivially, and hence tamely, on (Rn+δf̃∗Q`)η̄,

which proves (A).

We now show that (A) and (B) hold when d ≥ 1 is prime to p. For this, we introduce

the variety Y := X[H1/d] obtained from X by adjoining the d-th root of H. More precisely,

in PN+1 with coordinates (Z, X0, . . . , XN), we consider the locus defined by the r forms Fi

in the X-variables (X0, . . . , XN), which define X in PN, together with the equation

Zd = H(X0, . . . , XN).

On Y, both L and Z make sense as linear forms, and we consider the one parameter family

of hyperplane sections µZ− λL = 0 of Y, parameterized by (λ, µ) ∈ P1. We denote by Y in

Y × P1 the corresponding incidence variety, and we denote by

π: Y→ P1

the projection. The fibre π−1(∞) over the point (λ, µ) = (1, 0) at∞ is

Y ∩ (L = 0) ∼= (X ∩ L)[H1/d].

The intersection of this∞-fibre with the hyperplane Z = 0 is X∩ L∩H. In particular, the

singular locus of the∞-fibre has dimension at most 1+ δ.

Lemma 17. If ε := dimSing(X∩L) ≤ δ := dimSing(X∩L∩H), then dimSing((X∩L)[H1/d]) ≤ δ.

Proof. Over the open set of X ∩ L, where H is invertible, the scheme (X ∩ L)[H1/d] is

finite étale (because d is prime to p), so Sing((X ∩ L)[H1/d])[1/H] is finite étale over
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Sing(X ∩ L)[1/H]. If x is a point of X ∩ L ∩H that is regular, then x is a regular point

in X ∩ L, H is transverse to X ∩ L at x, and (X ∩ L)[H1/d] is regular at the unique point lying

over x. Thus the singularities of (X ∩ L)[H1/d] lie over, by a finite flat map, singularities

of either X ∩ L ∩ H or of (X ∩ L)[1/H], and both of these singular loci have dimension at

most δ.

Lemma 18. The morphism π: Y→ P1 is flat.

Proof. The fibre over a finite point (λ, 1) is the hyperplane section Z = λL of Y. Now Y is

defined over X by the equation Zd = H, so its intersection with Z = λL is the hypersurface

section H = λdLd of X. Exactly as in the proof of Lemma 9, we see that all the fibres over

finite points (λ, 1) have the same Hilbert polynomial.

It remains to see that the ∞-fibre (X ∩ L)[H1/d] has this same Hilbert polyno-

mial. For this, we argue as follows. Think of X as Proj(R•), with R• the graded ring

⊕m≥0H
0(X,OX(m)) in which L ∈ R1 and H ∈ Rd are nonzero elements. If (H1) and (H2)

hold, R• is a graded integral domain. If (H1)′ and (H2) hold, both (L, H) and (H, L) are reg-

ular sequences in R•. Under either set of hypotheses, the maps f 7→ fL and f 7→ fH of R•
to itself are both injective.

We may obtain Y = X[H1/d] as follows. Form the graded ring R•[Z], with Z an

indeterminate of degree 1. Then we obtain Y as Proj(R•[Z]/(Zd − H)), and the ∞-fibre

π−1(∞) = (X∩L)[H1/d] is Proj(R•[Z]/(Zd−H, L)) = Pro j((R•/(L))[Z]/Zd−H)). In this description,

(R•/(L))[Z]/(Zd−H) is free of rank d as a graded module over R•/(L), with basis 1, Z, . . . , Zd−1.

Therefore, for each integer i, the k-dimension of its graded piece of degree i is given by

dim((R•/(L))[Z]/(Zd −H))i =
d−1∑
j=0

dim(R•/(L))i− j =
d−1∑
j=0

{dim Ri− j − dim Ri− j−1}

= dim Ri − dim Ri−d = dim(R•/(H))i.

As this holds for all i, it holds for all large i, and hence the∞-fibre (X ∩ L)[H1/d] has the

same Hilbert polynomial as the 0-fibre X ∩H.

Lemma 19. The sheaves Riπ∗Q` on P1 are unramified at∞ (meaning that I(∞) acts triv-

ially on (Riπ∗Q`)η̄) for i ≥ n + δ + 1. In particular, these sheaves for i ≥ n + δ + 1 are

all tame at ∞. If ε ≤ δ, then the sheaf Rn+δπ∗Q` is also unramified, and hence tame,

at∞.

Proof. The map π is proper and flat, with fibres of dimension n − 1. The∞-fibre has a

singular locus of dimension at most 1+ δ, because its intersection with the hyperplane

Z = 0 is X ∩ L ∩H. By Lemma 17, if ε ≤ δ, then the ∞-fibre has a singular locus of
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dimension less than or equal to δ. The result now follows from [SGA 7 I, Exposé I, Cor. 4.3]

(see the proof of Theorem 13).

Lemma 20. The morphism f̃: X̃ → A1, with fibre over λ the hypersurface section

X ∩ (H − λLd = 0) of X, is related to the morphism π: Y → P1, with fibre over (λ, µ),

the hyperplane section µZ = λL of Y := X[H1/d], as follows. Denote by

[d]: A1 → A1

the d-th power map. The restriction πaff of π to π−1(A1) sits in a Cartesian diagram

π−1(A1) −−−−→ X̃yπaff

yf̃

A1 −−−−→
[d]

A1 .

Proof. In terms of the graded ring R•, whose Proj is X, the scheme X̃ is

Projk[λ](R•[λ]/(H− λLd)).

The fibre product of X̃ with A1 over A1 by (f̃, [d]) is

Projk[λ](R•[λ]/(H−λdLd)).

But the scheme π−1(A1) is

Projk[λ](R•[λ, Z]/(Zd −H, Z− λL)) = Projk[λ](R•[λ]/((λL)d −H)).

Corollary 21. The sheaves Rif̃∗Q` on A1 attached to f̃: X̃→ A1 with fibres the hypersur-

face sections X ∩ (H− λLd = 0) and the restrictions to A1 of the sheaves Riπ∗Q` on P1 are

related as follows. For every i, we have

Riπ∗Q` | A1 ∼= [d]∗Rif̃∗Q`.

Proof. The result follows immediately from Lemma 20 by proper base change (see

[SGA 7 I, Exposé XII, Thm. 5.1]).

Corollary 22. The sheaves Rif̃∗Q` on A1 are tame at∞ for i ≥ n+ δ+ 1. If ε ≤ δ, then the

sheaf Rn+δf̃∗Q` on A1 is also tame at∞.

Proof. Since d is prime to p, the sheaf Rif̃∗Q` on A1 is tame at ∞ if and only if its

[d] pullback [d]∗Rif̃∗Q`
∼= Riπ∗Q` | A1 is tame at ∞. So the result is immediate from

Lemma 19.

Thus we have proven that when d is prime to p, we have the assertions (A) and

(B) given at the beginning of the proof of Theorem 16 (= Theorem 4 bis).
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Application to complete intersections

Let k be a field, and let X in Pn+r over k be a smooth complete intersection of dimension

n ≥ 1, of multidegree (D1, D2, . . . , Dr). So (H1) holds. Thus X has numerical type (n +
r, D1, D2, . . . , Dr). We suppose that all Di are at least 2, i.e., that X is not contained in a

hyperplane. A remarkable result of Zak and Fulton-Lazarsfeld [F-L, Remark 7.5] asserts

that for any nonzero linear form L ∈ H0(Pn+r,OP(1)) ∼= H0(X,OX(1)), the intersection X ∩ L

is either smooth or has only isolated singularities. Now let L and H be nonzero linear

forms on X, and suppose that X ∩ L is smooth. Then X ∩ L is itself a smooth complete

intersection of dimension n− 1 in the Pn+r−1 of equation L = 0, of the same multidegree

(D1, D2, . . . , Dr). So X∩ L∩H is either smooth or has at worst isolated singularities. Thus

from Theorem 4 we get the following estimates.

Theorem 23. Let k be a finite field, and let ψ be a nontrivial C-valued additive character

of k. Let X in Pn+r over k be a smooth complete intersection of dimension n, of multidegree

(D1, D2, . . . , Dr), all Di ≥ 2. Let L and H be nonzero linear forms in H0(Pn+r,OP(1)) ∼=
H0(X,OX(1)), and suppose that X ∩ L is smooth. Put

V := X[1/L], f := H/L: V → A1,

C := C(n, r, D1, . . . , Dr, 1) := (4 Sup(1+D1, . . . , 1+Dr, 1)+ 5)n+r.

Then we have the following estimates:∣∣∣∣∣∣
∑

x∈X[1/L](k)

ψ(f(x))

∣∣∣∣∣∣ ≤ C× (#k)n/2 if X ∩ L ∩H is smooth,

and ∣∣∣∣∣∣
∑

x∈X[1/L](k)

ψ(f(x))

∣∣∣∣∣∣ ≤ C× (#k)(n+1)/2 if X ∩ L ∩H is not smooth.

Proof. This is an instance of Theorem 4 with ε = −1 and δ either −1 or 0.

Remark. In the case where X ∩ L ∩H is smooth, one can give a slightly better constant

of a topological nature (see [K, 5.1.1 and its proof] for details). Denote by c(X) the total

Chern class of X. Explicitly, we have

c(X) = (1+ L)n+r+1/

r∏
i=1

(1+DiL).

Then, when X ∩ L ∩H is smooth, we can take C to be∣∣∣∣∫
X

c(X)/(1+ L)2
∣∣∣∣ =

(
r∏

i=1

Di

)
×
∣∣∣∣∣coef. of Ln in

(
1+ L

)n+r−1
/

r∏
i=1

(1+DiL)

∣∣∣∣∣ .
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This expression has total degree n + r in the Di’s, and so it is of the same order of

magnitude as C(n, r, D1, . . . , Dr, 1), at least if all the Di are near a common large D.

In a similar vein, we might begin with X in Pn+r over k a complete intersec-

tion of dimension n, of multidegree (D1, D2, . . . , Dr), whose singular locus has some

dimension γ ≥ 0. (Recall that a complete intersection in Pn+r is Cohen-Macaulay and

equidimensional, so (H1)′ holds.) We suppose that all Di are at least 2, i.e., that X is not

contained in a hyperplane. It follows from the result of Zak and Fulton-Lazarsfeld [F-L,

Remark 7.5] that for any nonzero linear form L ∈ H0(Pn+r,OP(1)) ∼= H0(X,OX(1)), the inter-

section X ∩ L has a singular locus of dimension ≤ γ + 1. To see this, take γ + 1 general

linear forms L1, . . . , Lγ+1. The intersection

X ∩ L1 ∩ . . . ∩ Lγ+1

is then a smooth complete intersection of dimension n−γ−1 and multidegree (D1, D2, . . . , Dr).

By the result of Zak and Fulton and Lazarsfeld [F-L, Remark 7.5] applied to this smooth

complete intersection, the further intersection

X ∩ L ∩ L1 ∩ . . . ∩ Lγ+1

has at worst isolated singularities. But any point of

L1 ∩ . . . ∩ Lγ+1 ∩ Sing(X ∩ L)

is singular on X ∩ L ∩ L1 ∩ . . . ∩ Lγ+1 (see the proof of Lemma 3), and hence

L1 ∩ . . . ∩ Lγ+1 ∩ Sing(X ∩ L) is finite or empty, which in turn implies that Sing(X ∩ L)

has dimension at most γ + 1. For a general L, X ∩ L has its singular locus of dimension

γ−1. Now let L and H be nonzero linear forms on X, and suppose that X∩L has ε = γ−1.

As X ∩ L is itself a complete intersection of dimension n − 1 in the Pn+r−1 of equation

L = 0, of the same multidegree (D1, D2, . . . , Dr), we conclude that X ∩ L ∩H has δ ≤ γ. Of

course, for a general H, we have δ = γ− 2.

Applying Theorem 4, we find the following result.

Theorem 24. Let k be a finite field, and let ψ be a nontrivial C-valued additive character

of k. Let X in Pn+r over k be a complete intersection of dimension n, of multidegree

(D1, D2, . . . , Dr), all Di ≥ 2, whose singular locus has dimension γ. Let L and H be nonzero

linear forms in H0(Pn+r,OP(1)) ∼= H0(X,OX(1)), and suppose that X∩L has singular locus of

dimension ε = γ− 1. Put

V := X[1/L], f := H/L: V → A1,

C := C(n, r, D1, . . . , Dr, 1) := (4 Sup(1+D1, . . . , 1+Dr, 1)+ 5)n+r.
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Then we have the following estimates:∣∣∣∣∣∣
∑

x∈X[1/L](k)

ψ(f(x))

∣∣∣∣∣∣ ≤ C× (#k)(n+γ)/2 if δ ≤ γ− 1

and ∣∣∣∣∣∣
∑

x∈X[1/L](k)

ψ(f(x))

∣∣∣∣∣∣ ≤ C× (#k)(n+γ+1)/2 if not (i.e., if δ = γ).

Proof. This is an instance of Theorem 4 with ε = γ − 1 and δ either γ − 2 or γ − 1

or γ.

If we take arbitrary nonzero L and H, then X ∩ L has ε ≤ γ+ 1 and X ∩ L ∩H has

δ ≤ γ+ 2. So at worst we have the following estimate.

Theorem 25. Let k be a finite field, and let ψ be a nontrivial C-valued additive character

of k. Let X ∈ Pn+r over k be a complete intersection of dimension n, of multidegree

(D1, D2, . . . , Dr), all Di ≥ 2, whose singular locus has dimension γ. Let L and H be any

nonzero linear forms in H0(Pn+r,OP(1)) ∼= H0(X,OX(1)). Put

V := X[1/L], f := H/L: V → A1,

C := C(n, r, D1, . . . , Dr, 1) := (4 Sup(1+D1, . . . , 1+Dr, 1)+ 5)n+r.

Then ∣∣∣∣∣∣
∑

x∈X[1/L](k)

ψ(f(x))

∣∣∣∣∣∣ ≤ C× (#k)(n+γ+3)/2.

Proof. This is an instance of Theorem 4 with ε ≤ γ+ 1 and δ ≤ γ+ 2.
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