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configuration space: M manifold

state space: TM tangent bundle

dynamical variable: function on TM × R

Newtonian mechanics

mass tensor: mij

kinetic energy: T =
1
2
mijv

ivj

Newton’s law: Fi = mija
j

equations of motion:

ẋi = vi

v̇i = mijFj − Γi
jkv

jvk

2



Lagrangian mechanics

Lagrangian: dynamical variable L = L(x, v, t)

path: X: R→M with velocity Ẋ

action: I =
∫ t1

t0

L(X, Ẋ, t) dt

Hamilton’s principle of least action: I sta-
tionary under variation of path

Euler-Lagrange equation:
∂L

∂xi
− d

dt

∂L

∂vi
= 0
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Basic mechanics

Basic = Newtonian ∩ Lagrangian

potential energy: V defined by L = T − V

Assume that the mij are constant, so the met-
ric is flat and the Christoffel symbols Γi

jk are 0.
(This can always be achieved at a single point in
normal coordinates, so the following holds in gen-
eral.)
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∂L

∂xi
= − ∂V

∂xi

− ∂V
∂xi

=
d

dt

(
mijv

j − ∂V

∂vi

)
d

dt
(mijv

i) = Fi

Fi = − ∂V
∂xi

+
d

dt

∂V

∂vi

But Fi is a dynamical variable, a function of

position and velocity, so
∂V

∂vi
must be independent

of the velocity. That is, the Lagrangian must be a

basic Lagrangian:

L =
1
2
mijv

ivj − ϕ+Aiv
i

scalar potential: ϕ

covector potential: Ai
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Hamilton’s principal function:

S(x, t) = −
∫ t1

t

L(
(
X(s, x, t), Ẋ(s, x, t), s

)
ds

A second form of the principle of least action
is that S be stationary when the flow is perturbed
by a time-dependent vector field.

Hamilton-Jacobi equation:

∂S

∂t
+

1
2

(∇iS −Ai)(∇iS −Ai) + ϕ = 0

When the covector potential Ai is 0, so that
ϕ = V , this becomes

∂S

∂t
=

1
2
∇iS∇iS + V
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Basic stochasticization

Two simplifying assumptions: First, take M to
be Rn and the mass tensor to be a constant diag-
onal matrix giving the masses of the various parti-
cles making up the configuration. Second, take the
covector potential Ai to be 0.

Let w be the Wiener process on M , the stochas-
tic process of mean 0 characterized by

dwidwi = h̄dt+ o(dt)

We postulate that the motion of the configuration
is a Markov process governed by the stochastic dif-
ferential equation

dXi = bi
(
X(t), t

)
dt+ dwi

where bi is the forward velocity.

Thus the fluctuations are of order dt
1
2 , and

with a value larger than h̄ this postulate could
be falsified by experiment, without violating the
Heisenberg uncertainty principle.
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Now let us compute the expected kinetic ac-
tion of this process. Let dt > 0 and let df =
f(t + dt) − f(t) (the increment rather than the
differential, which does not exist if f is not differ-
entiable). Then

dXi =
∫ t+dt

t

bi
(
X(r), r

)
dr + dwi

Apply this equation to itself, i.e. to X(r), giving

dXi =
∫ t+dt

t

bi
(
X(t) +

∫ r

t

b
(
X(s), s

)
ds+ w(r)− w(t), r

)
dr + dwi

= bidt+∇kb
iW k + dwi + O(dt2)

where

W k =
∫ t+dt

t

[wk(r)− wk(t)] ds
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From this it follows that

1
2
dXidXi =

1
2
bibidt

2+bidwidt+∇ib
idt2+

h̄dt

2
+o(dt2)

Let Et be the conditional expectation given the
configuration at time t.

First miracle:

The term bidwidt is singular, of order dt
3
2 , but

by the Markov property Etb
idwidt = biEtdwidt = 0.

Hence the expected energy is

Et
1
2
dXi

dt

dXi

dt
=

1
2
bibi+

1
2
∇ib

i+
h̄

2dt
−V

(
X(t)

)
+o(1)
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Second miracle:

The singular term h̄
2dt is a constant not de-

pending on the path, so it drops out when tak-
ing the variation—form the Riemann sum for the
action, take the variation with the singular term
dropping out, and then pass from the Riemann
sum to the integral.

The stochastic principal function:

S(x, t) = −Ex,t

∫ t1

t

(
1
2
bibi +

h̄

2
∇ib

i − V
)(

X(s), s
)
ds

where Ex,t is the expectation conditioned by X(t) = x.
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In addition to the forward velocity bi there are
the

backward velocity: bi∗

current velocity: vi =
bi + bi∗

2

osmotic velocity: vi =
bi − bi∗

2

The osmotic velocity depends only on the
time-dependent probability density ρ. Let

R =
h̄

2
log ρ

Then
ui =

1
h̄
∇iR
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Computation shows that

∂S

∂t
+

1
2
∇iS∇iS + V − 1

2
∇iR∇iR−

h̄

2
∆R = 0

∂R

∂t
+∇iR∇iS +

h̄

2
∆S = 0

The first equation is the stochastic Hamilton-Jacobi
equation. There is no deterministic analogue of the
second equation since R = 0 when h̄ = 0. These
two coupled nonlinear partial differential equations
determine the process X.

Third miracle:

With
ψ = e(R+iS)

these equations are equivalent to the Schrödinger
equation

∂ψ

∂t
= − i

h̄

(
−1

2
∆ + V

)
ψ
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This derivation is that of Guerra and Morato
[2], but using the classical Lagrangian. The result
extends to the general case, when there is a covec-
tor potential Ai and M is not necessarily flat; see
[1].
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Stochastic mechanics of particles.

The wave function ψ describes the Markov
process completely:

ρ = |ψ|2

ui = ∇i< logψ

vi = ∇i= logψ

Stochastic mechanics has been developed by
many people, especially in Italy and the US. There
are discussions of energy, nodes, interference, bound
states, statistics (Bose or Fermi), and spin in [1],
together with references to the original work.
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The original hope that stochastic mechanics
would provide a realistic alternative to quantum
mechanics has not been realized by the theory in
its present form.

This is because the Markov process lives on
configuration space M , and a point in M may con-
sist of widely separated particles in physical space.

This leads to an unphysical nonlocality if the
trajectories of the process are regarded as physi-
cally real; see the discussion in [3].

15

http://iopscience.iop.org/1742-6596/361/1/012011/


Stochastic mechanics of fields

There are two motivations for applying stochas-
tic mechanics to fields. One is that fields live on
physical spacetime and nonlocality problems may
be avoided. The other is that it may provide use-
ful technical tools in constructive quantum field
theory.

The strategy is to apply basic stochasticization
to a basic field Lagrangian. So far as I know, this
approach has not been tried before.
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Consider a real scalar field ϕ on d-dimensional
spacetime. Choose a spacelike hyperplane Rs, where s,
the number of space dimensions, is d − 1. The
configuration space is a set of scalar functions ϕ
on Rs. Denote a velocity vector by π and define
the kinetic energy by∫

Rs
[(∇ϕ)2 + π2] dx1 . . . dxs

Then the classical motion with zero potential
energy satisfies the wave equation. Now we have
the setup to apply stochastic mechanics, with a
basic Lagrangian.
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There are problems both in the classical and
quantum theories due to the infinite number of
degrees of freedom in field theory. All I have to
report at present is this plan for research.

The hope is that making the Markov pro-
cesses, rather than the quantum field, the focus
of investigation will prove easier and more fruitful
than the usual Hamiltonian approach of construc-
tive quantum field theory.

The Markov process is governed by the action,
but Hamiltonian methods require the exponential
of the action, which is far harder to control.

18



References

[1] Edward Nelson, Quantum Fluctuations,
Princeton University Press, Princeton, New Jersey,
1985.
http://www.math.princeton.edu/˜nelson/books/qf.pdf

[2] Francesco Guerra and Laura M. Morato,
“Quantization of dynamical systems and stochastic
control theory”, Physical Review D, Vol. 27, No. 3,
pp. 1774-1786, 1983.
http://prd.aps.org/abstract/PRD/v27/i8/p1774 1

[3] Edward Nelson, “Review of Stochastic
Mechanics”, Journal of Physics: Conference Se-
ries, EmerQuM 11: Emergent Quantum Mechanics
2011 (Hans von Foerster Congress) 10-13 Novem-
ber 2011, Vienna, Austria, ed. Gerhard Grössing,
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