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The configuration space of a physical system is a differentiable manifold M . The state
of a system is given by a point x in M and a tangent vector v at x, the velocity of the
configuration. Call the tangent bundle TM of M the state space of the system (though
the phrase “velocity phase space” is often used). A dynamical variable is a possibly time-
dependent function on state space.

Newtonian mechanics. The kinetic energy T of a system is given, using tensor
notation and the summation convention, by

(1) T =
1
2
mijv

ivj

where mij is a Riemannian metric, called the mass tensor. Using the Riemannian con-
nection we can define acceleration. If x(t) is the configuration of the system at time t,
then in local coordinates the acceleration a is given by ai = v̇i + Γi

jkv
jvk (where the dot

is the time derivative). A force F is a possibly time-dependent covector field. Now we can
express Newton’s law:

(2) Fi = mija
j

If F is given, we have the equations of motion for the system in state space TM , expressed
in local coordinates by

(3)
ẋi = vi

v̇i = mijFj − Γi
jkv

ivk

defining a flow, at least a local flow, on TM .

Lagrangian mechanics. A Lagrangian L is a dynamical variable with the dimen-
sions of energy. Given a path X in configuration space M with velocity vector Ẋ, define
the action I by

(4) I =
∫ t1

t0

L(X, Ẋ, t) dt

For an isolated system, L in time-independent. Hamilton’s principle of least action is
that I should be stationary under variations of the path with t0 and t1 fixed. This leads
to the Euler-Lagrange equation

(5)
∂L

∂xi
− d

dt

∂L

∂vi
= 0

1



Now let us put Newtonian and Lagrangian mechanics together. Let M be a Rie-
mannian manifold with mass tensor mij and kinetic energy (1), and define the potential
energy V by L = T − V .

Given a point x on a Riemannian manifold M , it is possible to choose normal coordi-
nates (NC) at x so that the first derivatives of mij and the Christoffel symbols are 0 at x.
Thus

(6)
∂L

∂xi
= − ∂V

∂xi
(NC)

By (5) and (6),

(7) − ∂V
∂xi

=
d

dt

(
mijv

j − ∂V

∂vi

)
(NC)

By (2),

(8)
d

dt
(mijv

j) = Fi (NC)

so that

(9) Fi = − ∂V
∂xi

+
d

dt

∂V

∂vi
(NC)

But Fi is a dynamical variable, a function of position and velocity, so ∂V
∂vi must be inde-

pendent of the velocity. That is, the Lagrangian must be of the form

(10) L =
1
2
mijv

ivj − ϕ+Aiv
i

This is a tensor equation, so it holds globally in general coordinates. Call ϕ the scalar
potential and Ai the covector potential, and call a Lagrangian of the form (10) a basic
Lagrangian.

Let X(s, x, t) be the configuration at time s of the system starting at x at time t.
Hamilton’s principal function is

(11) S(x, t) = −
∫ t1

t

L(
(
X(s, x, t), Ẋ(s, x, t), s

)
ds

A second form of the principle of least action is that S be stationary when the flow is
perturbed by a time-dependent vector field. This leads to the Hamilton-Jacobi equation

(12)
∂S

∂t
+

1
2

(∇iS −Ai)(∇iS −Ai) + ϕ = 0

with the same equations of motion (3). When the covector potential Ai is 0, so that ϕ = V ,
this becomes
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(12′)
∂S

∂t
=

1
2
∇iS∇iS + V

All of this is well known in classical deterministic mechanics, and an extended exposition
is in Chapter II of [1].

Basic stochasticization. The word “stochasticization” is cacophonous, but it is
a more accurate description of the procedure in stochastic mechanics than “stochastic
quantization”, because the physics remains classical despite the appearance of h̄. (Also,
the latter phrase has two distinct meanings.) The basic equations of stochastic mechanics
will be derived here under two simplifying assumptions (see [1] for the general case). First,
take M to be Rn and the mass tensor to be a constant diagonal matrix giving the masses
of the various particles making up the configuration. Then M is flat and the Christoffel
symbols Γi

jk are 0. But tensor notation is still useful; for example, vi is the velocity and
vi is the momentum, and the Laplacian ∆ = ∇i∇i has the appropriate mass coefficients
in it. Second, take the covector potential Ai to be 0.

Let w be the Wiener process on M , the stochastic process of mean 0 characterized by

(13) dwidwi = h̄dt+ o(dt)

We postulate that the motion of the configuration is a Markov process governed by the
stochastic differential equation

(14) dXi = bi
(
X(t), t

)
dt+ dwi

where bi is the forward velocity. Thus the fluctuations are of order dt
1
2 , and with a value

larger than h̄ in (13) this postulate could be falsified by experiment, without violating the
Heisenberg uncertainty principle.

Now let us compute the expected kinetic action of this process. Let dt > 0 and let
df = f(t + dt) − f(t) (the increment rather than the differential, which does not exist if
f is not differentiable). From (14),

(15) dXi =
∫ t+dt

t

bi
(
X(r), r

)
dr + dwi

Apply this equation to itself, i.e. to X(r), giving

(16)
dXi =

∫ t+dt

t

bi
(
X(t) +

∫ r

t

b
(
X(s), s

)
ds+ w(r)− w(t), r

)
dr + dwi

= bidt+∇kb
iW k + dwi + O(dt2)

where

(17) W k =
∫ t+dt

t

[wk(r)− wk(t)] ds
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From this it follows that

(18)
1
2
dXidXi =

1
2
bibidt

2 + bidwidt+∇ib
idt2 +

h̄dt

2
+ o(dt2)

Let Et be the conditional expectation given the configuration at time t. First miracle: the
term bidwidt in (18) is singular, of order dt

3
2 , but by the Markov property Etb

idwidt =
biEtdwidt = 0. Hence the expected energy is

(19) Et
1
2
dXi

dt

dXi

dt
=

1
2
bibi +

1
2
∇ib

i +
h̄

2dt
− V

(
X(t)

)
+ o(1)

Second miracle: the singular term h̄
2dt in (19) is a constant not depending on the path,

so it drops out when taking the variation—form the Riemann sum for the action, take the
variation with the singular term dropping out, and then pass from the Riemann sum to
the integral. The stochastic principal function is

(20) S(x, t) = −Ex,t

∫ t1

t

(
1
2
bibi +

h̄

2
∇ib

i − V
)(

X(s), s
)
ds

where Ex,t is the expectation conditioned by X(t) = x.
The definition of a Markov process is that given the present, the past and the future are

conditionally independent. This is a time-symmetric notion. In addition to the forward
velocity bi there is the backward velocity bi∗. The current velocity vi and the osmotic
velocity ui are defined by

vi =
bi + bi∗

2
(21)

ui =
bi − bi∗

2
(22)

The osmotic velocity depends only on the time-dependent probability density ρ. Let

(23) R =
h̄

2
log ρ

Then

(24) ui =
1
h̄
∇iR

Computation shows that

∂S

∂t
+

1
2
∇iS∇iS + V − 1

2
∇iR∇iR−

h̄

2
∆R = 0(25)

∂R

∂t
+∇iR∇iS +

h̄

2
∆S = 0(26)
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Here (25) is the stochastic Hamilton-Jacobi equation. There is no deterministic analogue
of (26) since R = 0 when h̄ = 0. These two coupled nonlinear partial differential equations
determine the process X. Third miracle: with

(27) ψ = e(R+iS)

these equations are equivalent to the Schrödinger equation

(28)
∂ψ

∂t
= − i

h̄

(
−1

2
∆ + V

)
ψ

This derivation is that of Guerra and Morato [2], but using the classical Lagrangian.
The result extends to the general case, when there is a covector potential Ai and M is not
necessarily flat; see [1].

Stochastic mechanics of particles. The wave function ψ describes the Markov
process completely; |ψ|2 is the time-dependent probability density ρ, ui = ∇i< logψ, and
vi = ∇i= logψ. Stochastic mechanics has been developed by many people, especially
in Italy and the US. There are discussions of energy, nodes, interference, bound states,
statistics (Bose or Fermi), and spin in [1], together with references to the original work.

The original hope that stochastic mechanics would provide a realistic alternative to
quantum mechanics has not been realized by the theory in its present form. This is be-
cause the Markov process lives on configuration space M , and a point in M may consist
of widely separated particles in physical space. This leads to an unphysical nonlocality—
instantaneous signaling between widely separated particles—if the trajectories of the pro-
cess are regarded as physically real; see the discussion in [3].

Stochastic mechanics of fields. There are two motivations for applying stochastic
mechanics to fields. One is that fields live on physical spacetime and nonlocality problems
may be avoided. The other is that it may provide useful technical tools in constructive
quantum field theory.

The strategy is to apply basic stochasticization to a basic field Lagrangian. So far as
I know, this approach has not been tried before.

Consider a real scalar field ϕ on d-dimensional spacetime. Choose a spacelike hyper-
plane Rs, where s, the number of space dimensions, is d − 1. The configuration space is
a set of scalar functions ϕ on Rs. Denote a velocity vector by π and define the kinetic
energy by

(29)
∫
Rs

[(∇ϕ)2 + π2] dx1 . . . dxs

Then the classical motion with zero potential energy satisfies the wave equation. Now
we have the setup to apply stochastic mechanics, with a basic Lagrangian. There are
problems both in the classical and quantum theories due to the infinite number of degrees
of freedom in field theory. All I have to report at present is this plan for research. The
hope is that making the Markov processes, rather than the quantum field, the focus of
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investigation will prove easier and more fruitful than the usual Hamiltonian approach of
constructive quantum field theory (whether in Minkowski spacetime or via the Euclidean
method).
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