
Understanding Intuitionism

by Edward Nelson
Department of Mathematics

Princeton University
http://www.math.princeton.edu/∼nelson/papers.html

Intuitionism was the creation of L. E. J. Brouwer [Br], and I like to
think that classical mathematics was the creation of Pythagoras. Imag-
ine a conversation between a classical mathematician and an intuitionist,
say a woman and a man respectively. She speaks first:

I have just proved ∃xA.
Congratulations! What is it?
I don’t know. I assumed ∀x¬A and derived a contradiction.
Oh. You proved ¬∀x¬A.
That’s what I said.

Or another:

I have proved A ∨B.
Good. Which did you prove?
What?
You said you proved A or B; which did you prove?
Neither; I assumed ¬A & ¬B and derived a contradiction.
Oh, you proved ¬[¬A & ¬B].
That’s right. It’s another way of putting the same thing.

But he does not agree with her last statement; they have a different
semantics and a different notion of proof. This paper is an attempt to
understand the differences between them.

I am grateful to Mitsuru Yasuhara for stimulating discussions of this
material and for pinpointing errors and obscurities in earlier drafts. I also
wish to thank Simon Kochen and Per Martin-Löf for helpful comments.

1. Incomplete communications

For a classical mathematician, a closed formula, true in a given
structure, is a complete communication. It expresses an objective state
of affairs in the universe of discourse; it is an ontological assertion. But

1



2 1. INCOMPLETE COMMUNICATIONS

to an intuitionist, a closed true formula may be an incomplete communi-
cation. For an existential formula he wants an object n for which Ax(n)
holds and further, since Ax(n) may itself be an incomplete communi-
cation, he wants the information needed to complete it. Similarly, for
A∨B he wants to know which, together with the information needed to
complete that communication.

To be specific, let us begin by discussing Arithmetic. The lan-
guage L of Arithmetic consists of the the constant 0, the unary function
symbol S (successor), +, and ·, together with the logical symbols: the
variables, =, and the logical constants ¬ & ∀ → ∃ ∨. This language is
the same for classical and intuitionistic arithmetic. Also the structure
for the language, the universe of discourse to which the language refers,
is the same: the universe is N, and the function symbols denote the usual
arithmetical operations. A numeral is a term containing only S and 0,
and each element of N is denoted by a unique numeral and vice versa.

Observe that a closed atomic formula C of L is an equation a = b
where a and b are variable-free terms. Any variable-free term reduces to
a unique numeral when the usual laws

x+ 0 = x

x+ Sy = S(x+ y)
x · 0 = 0
x · Sy = (x · y) + x

are applied repeatedly from left to right. We say that C is true in case
a and b reduce to the same numeral.

Negation can be eliminated in both classical and intuitionistic arith-
metic: replace ¬A by A→ S0 = 0.

Here is an attempt, following Kleene [Kl, §82], to put into words
the information an intuitionist needs to complete the communication in
a true closed formula C of Arithmetic. The description is by recursion
on the complexity of C:

(I1) Let C be atomic: no additional information.

(I2) Let C be A & B: the information needed to complete A and
the information needed to complete B.

(I3) Let C be ∀xA: a general method yielding for any numeral n
the information needed to complete Ax(n).

(I4) Let C be A→ B: a general method yielding for any information
completing A the information completing B.



2. CODES 3

(I5) Let C be ∃xA: a numeral n together with the information
needed to complete Ax(n).

(I6) Let C be A ∨ B: 1 or 2, indicating first or second disjunct,
together with the information needed to complete it.

Thus we see that the intuitionistic notion of truth is far richer than
the classical: rather than one bit of information (true) it may specify
numbers, choices of disjuncts, and general methods.

2. Codes

Kleene [Kl45] [Kl, §82] made an incisive analysis of intuitionistic
semantics based on the notion of realization. I shall express this notion
in a different formalism that avoids the intricacies of recursive partial
functions and Gödel numbering.

We introduce ten additional function symbols, written here with
variables to indicate the placement of arguments:

0 1 2 〈x, y〉 π1x π2x x{y} γ(x, y, z) λxy ρ(x, y)

called zero, first position, second position, pair, first projection, second
projection, evaluation, choice, lambda, and recursion. Recursion is spe-
cial to Arithmetic. Let L′ be L together with the additional function
symbols.

I have called λ a function symbol but in many respects it is like a
quantifier symbol. A code is a term c of L′ such that for every occurrence
of λ in c, its first argument is a variable. The notions of λ-bound and
λ-free occurrences of variables in codes, of λ-closed codes, of a code
being λ-substitutable for a variable in another code, and of a λ-variant
of a code are all defined by strict analogy with the corresponding notions
for quantifier symbols. If a and b are codes and x is a variable, ax(b) is
the code obtained by substituting b for each λ-free occurrence of x in a;
when we use this notation, we assume that b is λ-substitutable for x in a
(otherwise, first replace a by a λ-variant a′ such that b is λ-substitutable
for x in a′).

It will not be necessary to distinguish notationally between the addi-
tional constant 0 and the constant 0 of L. We call 1 and 2 positions. The
projections are tightly binding, so π1c{n} is parsed as (π1c){n}. Paren-
theses are used when necessary for grouping. Unless indicated otherwise
by parentheses, the scope of an occurrence of λx is the entire following
expression.

The meaning of the additional function symbols is expressed by the
following reduction rules for codes:



4 2. CODES

replace: by:
(R1) π1〈a, b〉 a

(R2) π2〈a, b〉 b

(R3) γ(a, b, 〈1, c〉) a{c}
(R4) γ(a, b, 〈2, c〉) b{c}
(R5) (λxa){b} ax(b)
(R6) a+ 0 a

(R7) a+ Sb S(a+ b)
(R8) a · 0 0
(R9) a · Sb (a · b) + a

(R10) ρ(Sn, c) π2c{n}{ρ(n, c)}
(R11) ρ(0, c) π1c

The rules (R1) and (R2) say that the first or second projection of
a pair is the corresponding member of the pair; (R3) and (R4) give a
choice of whether to evaluate a or b on c; the rule (R5) is the usual rule
of the λ-calculus. The remaining rules are special to Arithmetic. If a is
a variable-free term of L, the rules (R6)–(R9) reduce it to a numeral n,
and then applications of (R10) and (R11) eliminate this occurrence of ρ
by recursion.

A code is irreducible in case none of these reduction rules applies to
any code occurring in it. Notice that for any term of L′, if the arguments
of the term are irreducible then at most one reduction rule applies to it.
The reduction algorithm for codes is this: repeatedly apply the reduction
rules from right to left (that is, starting at the leaves of the tree structure
of the term). Because of (R5), this algorithm may not terminate. A code
is terminating in case the algorithm terminates, in which case we say
that the code reduces to the irreducible code with which the algorithm
terminates. Let r be the function with domain the set of all terminating
codes c whose value rc is the code to which it reduces. In our notation
r binds less tightly than all the function symbols of L′, so that rc{a} is
parsed as r(c{a}).

An example of a non-terminating code is (λxx{x}){λxx{x}}, which
keeps on repeating itself, and there are others with explosive growth. But
if c is terminating, this can be effectively determined and the value rc
can be effectively computed. This is a concrete, syntactical formalism,
implementable by computer.

Now we describe the relation between a code c and a formula C.
This can be expressed by a program B. I believe it to be a faithful



3. REALIZATION 5

expression of Brouwer’s intent when he formulated intuitionism. It is
not an algorithm but an interactive program, since in general it will
prompt from time to time for input during its execution. Let c be a
λ-closed code and C a closed formula of L. Then the action of B(c, C)
is described as follows:

(B1) Let C be atomic. Then B(c, C) reduces the two variable-free
terms in the equation C to numerals and prints “true” if they are the
same and “false” otherwise. This does not depend on c.

(B2) Let C be A & B. Then B(c, C) splits into two programs,
running independently of each other, namely B(π1c, A) and B(π2c,B).

(B3) Let C be ∀xA. Then B(c, C) prompts for a numeral n and
runs B

(
c{n}, Ax(n)

)
.

(B4) Let C be A→ B. Then B(c, C) prompts for a λ-closed code a
and forms a pipe: it runs B(a,A) and if this terminates (and since it is
an interactive program, that may depend on the responses to prompts),
then it runs B(c{a}, B).

(B5) Let C be ∃xA. Then B(c, C) prints rπ1c (if π1c is terminating;
otherwise, the program does not terminate) and then runs the program
B
(
π2c, Ax(rπ1c)

)
(if rπ1c is a numeral; otherwise it prints an error mes-

sage).

(B6) Let C be A∨B. Then B(c, C) prints rπ1c (if π1c is terminating;
otherwise, the program does not terminate) and then runs the program
B(π2c, A) if rπ1c is 1, B(π2c,B) if rπ1c is 2, and otherwise prints an error
message.

We call ∀ and → input operators and ∃ and ∨ output operators.

3. Realization

The rules (B1)–(B6) are concrete, syntactical rules implementable
by computer. But now we ask, what is a good code for a formula?
When does a code c express the intuitionistic truth of the formula C?
Let c be a terminating λ-closed code and C a closed formula of L. Here
is Kleene’s definition of c realizes C, abbreviated c rz C, by recursion
on the complexity of C. It is expressed in our formalism and slightly
modified in the first clause (the realization code for a true closed atomic
formula can be arbitrary, not necessarily 0):



6 3. REALIZATION

(K1) Let C be atomic. Then c rz C in case C is true.
(K2) Let C be A & B. Then c rz C in case π1c rz A and π2c rz B.
(K3) Let C be ∀xA. Then c rz C in case for all numerals n, c{n} rz

Ax(n).
(K4) Let C be A→ B. Then c rz C in case for all λ-closed codes a,

a rz A implies c{a} rz B.
(K5) Let C be ∃xA. Then c rz C in case rπ1c is a numeral and

π2c rz Ax(rπ1c).
(K6) Let C be A ∨ B. Then c rz C in case rπ1c is a position, and

rπ1c is 1 implies π2c rz A, and rπ1c is 2 implies π2c rz B.
(K*) For a formula C that is not closed, let x1, . . . , xi be the distinct

variables occurring free in C, say in the order of first free occurrence.
Then c realizes C in case λx1 . . . λxic realizes ∀x1 . . .∀xiC (so c is termi-
nating and λ-closed). Equivalently, for all numerals n1, . . . , ni, we have
cx1,...,xi(n1, . . . , ni) rz Cx1,...,xi(n1, . . . , ni).

Because of the quantifiers for all over infinite domains (and notice
that in (K4) they can occur in the hypotheses of implications), realization
is an abstract notion.

The following two lemmas are proved by induction on the complexity
of C:

Lemma 1: Let C a closed formula of L. Then c rz C if and only if
rc rz C.

Lemma 2: Let A be a formula of L whose only free variable is x,
and let a be a variable-free term of L. Let ra be the numeral n. Then
c rz Ax(a) if and only if c rz Ax(n).

A formula is classical in case there is no occurrence of an output
operator ∃ or ∨ in it. Every formula is classically equivalent to a classical
formula.

Theorem 1: Let C be a closed classical formula of L and let c be a
terminating λ-closed code. Then c rz C if and only if 0 rz C.

Proof: By induction on the complexity of C, using (K1)–(K4).
(The reasoning does not apply to non-classical formulas, since (K5)–(K6)
restrict the form of realization codes for them.)

Consequently, we can simply say C is true, rather than c rz C, for
C a closed classical formula. Then for closed classical formulas, A & B
is true if and only if A is true and B is true; ∀xA is true if and only if
for all numerals n, Ax(n) is true; A→ B is true if and only if [not A is
true] or [B is true].



4. INTUITIONISTIC PROOFS 7

In short, the classical and intuitionistic semantics are identical on
classical formulas.

Let us remark that for any closed formula C, classical or not, c rz C
is expressed, in the metalanguage, with only the classical logical con-
stants and , for all, implies. Consequently, the classical and intuitionistic
semantics of c rz C are identical.

A classical mathematician might say that for a classical formula A,
¬∀x¬A means that there exists a numeral n such that Ax(n) is true,
but to her this means exactly the same as saying that not ∀x¬A is true,
so there is no dispute over any matter of substance between her and
an intuitionist. She need only defer to his sensibilities by rephrasing
statements in ways that to her are entirely equivalent and then they will
be in complete accord on the semantics of classical formulas.

We are led to the following conclusion: the intuitionistic semantics
is ontological and Platonic. This is because the classical semantics of
classical formulas is ontological and Platonic, but intuitionistic semantics
is identical with classical semantics on classical formulas.

It appears that this conclusion can be challenged only by main-
taining that realization is an unsatisfactory expression of intuitionistic
semantics. We shall return to intuitionistic semantics, but first we need
to discuss some syntactical questions.

4. Intuitionistic proofs

Let us list the axioms and rules of inference of Intuitionistic Arith-
metic. What follows is a version of Heyting’s formalization [He]. With
each axiom or axiom scheme we associate a code; these codes will be
discussed shortly.

The language is L. We associate→ from right to left. In the list, A,
B, and C are formulas, x and y (possibly with subscripts) are variables,
and a is a term (substitutable for x in A). The nonlogical axioms are
the usual:

1. ¬Sx = 0 0
2. Sx = Sy → x = y 0
3. x+ 0 = x 0
4. x+ Sy = S(x+ y) 0
5. x · 0 = 0 0
6. x · Sy = (x · y) + x 0
7. Ax(0) & ∀x[A→ Ax(Sx)]→ A λcρ(x, c)



8 4. INTUITIONISTIC PROOFS

The logical axioms are the identity and equality axioms:

8. x = x 0
9. x = y → Sx = Sy 0

10. x1 = y1 → x2 = y2 → x1 + x2 = y1 + y2 0
11. x1 = y1 → x2 = y2 → x1 · x2 = y1 · y2 0
12. x1 = y1 → x2 = y2 → x1 = x2 → y1 = y2 0

together with axioms schemes for the propositional calculus:

13. A→ B → A λaλba

14. [A→ B]→ [A→ B → C]→ A→ C λpλqλaq{a}{p{a}}
15. A→ B → A & B λaλb〈a, b〉
16. A & B → A λcπ1c

17. A & B → B λcπ2c

18. A→ A ∨B λa〈1, a〉
19. B → A ∨B λb〈2, b〉
20. [A→ C]→ [B → C]→ A ∨B → C λpλqλrγ(p, q, r)
21. [A→ B]→ [A→ ¬B]→ ¬A λpλqλaq{a}{p{a}}
22. ¬A→ A→ B 0

and the substitution axiom schemes of the predicate calculus:

23. Ax(a)→ ∃xA λy〈a, y〉
24. ∀xA→ Ax(a) λyy{a}.

A few comments on the axioms: (13) and (14) justify the use of
deductions (introduction and discharge of hypotheses); with the elimi-
nation of ¬, (21) is the special case of (14) in which C is S0 = 0; if the
axiom (22) is changed to (22′): ¬¬A → A, then the resulting theory is
classical Peano Arithmetic [Kl, §19].

There are three rules of inference:

25. A, A→ B / B

26. A→ B / ∃xA→ B (x not free in B)
27. A→ B / A→ ∀xB (x not free in A).

To each of these rules of inference we associate a rule for constructing
codes. For (25), let y1, . . . , yj be the variables occurring free in A but
not in B; for (26) and (27), let y be a variable that does not occur in A
or B. Then:



4. INTUITIONISTIC PROOFS 9

if a is a code associated with A and c is a code associated with
A→ B, associate (c{a})y1...yj (0 . . . 0) with B;

if c is associated with A → B and x is not free in B, associate
λy(λxc){π1y}{π2y} with ∃xA→ B;

if c is associated with A → B and x is not free in A, associate
λyλxc{y} with A→ ∀xB.

We use Kleene’s notation S for this intuitionistic theory. A simple
algorithm checks whether a purported intuitionistic proof in S is indeed
a proof, associates to each axiom its code, and associates to each formula
derived by a rule of inference the code constructed according to the rules
for constructing codes. Thus the algorithm associates to each proof in S
a code for the theorem of which it is a proof. This is concrete and
syntactical, implementable by computer.

The codes for the axioms and code construction rules for the rules of
inference are due to David Nelson. (He and I are unrelated.) At Kleene’s
suggestion, Nelson undertook to establish that each intuitionistic theo-
rem of Arithmetic is realizable, and achieved this in [Ne].

Let us give a proof in our formalism of Nelson’s theorem. First
we need to show that the associated codes realize the axioms. By (K*)
and (K3), we assume that in each axiom the free variables are replaced
by numerals, with the same replacements for the λ-free variables in the
associated code.

Since each variable-free instance of (1)–(6) is true, 0 realizes each of
them, and similarly for the identity and equality axioms (8)–(12).

7: By (K*) we assume that x is the only free variable in A. Sup-
pose c rz Ax(0) & ∀x[A → Ax(Sx)]. To show: ρ(n, c) rz Ax(n)
(where n is a numeral). The proof is by induction on n, and the
beauty of the argument is that a single induction yields the realiza-
tion of all induction axioms. By (R11), rρ(0, c) is rπ1c. By (K2) and
Lemma 1, this realizes Ax(0). Suppose ρ(n, c) rz Ax(n). To show:
ρ(Sn, c) rz Ax(Sn). By (R10), rρ(Sn, c) is rπ2c{n}{ρ(n, c)}. By (K2)
and (K3), π2{n} rz Ax(n)→ Ax(Sn), so by (K4) and the induction hy-
pothesis π2c{n}{ρ(n, c)} rz Ax(Sn). The proof is complete by Lemma 1.

In the following proofs, such frequent use is made of the reduction
rule (R5), for (λxa){b}, and (K4), for →, that no explicit reference is
made to these rules.

13: Suppose a′ rz A. To show: λba′ rz B → A. Suppose b′ rz B. To
show: a′ rz A. But it does, by hypothesis.

14: Suppose p′ rz A→ B. To show: λqλaq{a}{p′{a}} rz [A→ B →
C]→ A→ C. Suppose q′ rz A→ B → C. To show: λaq′{a}{p′{a}} rz



10 4. INTUITIONISTIC PROOFS

A → C. Suppose a′ rz A. To show: q′{a′}{p′{a′}} rz C. But since
a′ rz A and q′ rz A → B → C, we have q′{a′} rz B → C. Also, since
q′ rz A→ B, we have p′{a′} rz B. Consequently, q′{a′}{p′{a′}} rz C.

15: Suppose a′ rz A. To show: λb〈a′, b〉 rz B → A & B. Suppose
b rz B. To show: 〈a′, b′〉 rz A & B. But it does, by (K2).

16: Suppose c′ rz A & B. To show: π1c
′ rz A. This holds by (K2).

17: Suppose c′ rz A & B. To show: π2c
′ rz B. This holds by (K2).

18: Suppose a′ rz A. To show: 〈1, a′〉 rz A ∨ B. By (R1), rπ1〈1, a′〉
is 1, so this holds by (K6).

19: Suppose b′ rz B. To show: 〈2, b′〉 rz A ∨ B. By (R1), rπ1〈2, a′〉
is 2, so this holds by (K6).

20: Suppose p′ rz A → C. To show: λqλrγ(p′, q, r) rz [B → C] →
A∨B → C. Suppose r′ rz A∨B. To show: λrγ(p′, q′, r) rz A∨B → C.
Suppose r′ rz A ∨B. To show: γ(p′, q′, r′) rz C. By the reduction algo-
rithm for codes (which works from right to left) and Lemma 1, we assume
that p′, q′, and r′ are irreducible. By (K6), rπ1r

′ is a position, and there
are two cases. First, suppose rπ1r

′ is 1. Since r′ is irreducible, by (R1)
it is of the form 〈1, a〉 where a is irreducible. By (K6), a rz A. Since
p′ rz A → C, p′{a} rz C. But rγ(p′, q′, r′)—that is, rγ(p′, q′, 〈1, a〉)—is
rp′{a} by (R3). By Lemma 1, γ(p′, q′, r′) rz C. The second case, that
rπ1r

′ is 2, is similar.
21: This is the special case of (14) in which C is S0 = 0.
22: Suppose c rz ¬A; that is, c rz A → S0 = 0. To show: 0{c} rz

A→ B. That is, we need to show that if a rz A then 0{c}{a} rz B. But
this holds vacuously since the hypothesis is untenable: if a rz A then
c{a} rz S0 = 0, which is impossible by (K1).

23: Suppose b rz Ax(a). To show: 〈a, b〉 rz ∃xA. Let n be ra, so
that n is a numeral. By Lemma 2, b rz Ax(n). By (K5), 〈a, b〉 rz ∃xA.

24: Suppose b rz ∀xA. To show: b{a} rz Ax(a). Let n be ra, so that
n is a numeral. By (K3), b{n} rz Ax(n). By Lemma 1, b{a} rz Ax{n},
and by Lemma 2, b{a} rz Ax(a).

Finally, we must prove that the rules of inference with the rules for
constructing codes preserve realization.

25: Suppose a rz A and c rz A→ B. Let y1, . . . , yj be the variables
occurring free in A but not B and let b be c{a}y1...yj (0 . . . 0). To show:
b rz B. Let a′, b′, c′, A′, and B′ be the codes and formulas obtained
by replacing the λ-free and free variables by numerals, but with the
y1, . . . , yj replaced by 0. By (K*), we need to show that b′ rz B′. But
c′ rz A′ → B′ and a′ rz A′, so c′{a′} rz B′. But c′{a′} is b′.



4. INTUITIONISTIC PROOFS 11

26: Suppose c rz A → B, where x is not free in B. To show:
λy(λxc){π1y}{π2y} rz ∃xA→ B. By (K*) we assume that x is the only
free variable in A → B. Suppose d rz ∃xA. Then we need to show:
(λxc){π1d}{π2d} rz B. By (K5), rπ1d is a numeral n and π2d rz Ax(n).
By (K*), cx(n) rz Ax(n) → B (this is where the assumption that x is
not free in B is used), so cx(n){π2d} rz B. But r(λxc){π1d}{π2d} is
rc{n}{π2d} by (R5), so (λxc){π1d}{π2d} rz B by Lemma 1.

27: Suppose c rz A → B, where x is not free in A. To show:
λyλxc{y} rz ∀xB. By (K*) we assume that x is the only free variable in
A→ B. Suppose a rz A. To show: λxc{a} rz ∀xB. Let n be a numeral.
By (K3), we must show that (λxc{a}){n} rz Bx(n). But r(λxc{a}){n}
is rcx(n){a} by (R5), since a is λ-closed (this is where the assumption
that x is not free in A is used). By (K*), cx(n) rz A → Bx(n), so
(λxc{a}){n} rz Bx(n) by Lemma 1.

This concludes the proof of Nelson’s theorem.
We can argue that since, by (K1), S0 = 0 is not realizable, it is

not a theorem of S, so S is consistent. This is entirely analogous to the
classical argument that Peano Arithmetic is consistent since the axioms
are true and the rules of inference preserve truth. The argument cannot
be formalized in S, if S is consistent, because of the arbitrarily large
number of alternating quantifiers needed to express the realization pred-
icate for formulas of high complexity. The realization predicate is not
arithmetical.

We have seen that a classical mathematician can explain a theorem
to an intuitionist in a manner that satisfies them both, but will he accept
her proof? This question was answered affirmatively, for Arithmetic, by
Gödel [Gö33] [Kl, §81]. The demonstration is by a very simple algorithm
that transforms a classical proof of a classical formula into an intuition-
istic proof of the same formula. Thus intuitionism is an extension of
classical mathematics in its proof syntax as well as semantically.

In practice if not in profession, intuitionistic arithmetic takes clas-
sical arithmetic, with classical semantics and proof syntax, as its base.
Brouwer created two new logical constants: the constructive ∃ and the
constructive ∨. The intuitionistic semantics and proof syntax of ∃xA and
A∨B are quite different from those of ¬∀x¬A and ¬[¬A & ¬B]. Stricter
standards of proof are required and richer information is obtained.

Let us call a formula C unconditional in case there is no occur-
rence of → in it. For an unconditional C, the program B(c, C) in non-
interactive; it is an algorithm. An intuitionistic proof of C yields a
realization code c, and this constructs recursive functions for the exis-
tentially quantified variables with the values of the universally quantified



12 5. KRIPKE SEMANTICS

variables as arguments; the placement of the quantifiers in C indicates
the dependencies. This suggests the possibility of using Nelson’s algo-
rithm as a means to construct and verify algorithms in a mode congenial
to mathematical ways of thinking. This is potentially a powerful tool,
but the practical applications of intuitionism as a method for obtain-
ing constructive information have been meager for most of this century.
Most often, important constructive results are obtained with no use of
intuitionism, for example Tarski’s decision procedure [Ta] for real al-
gebra with inequalities, which played an essential role in Hörmander’s
classification [Hö] of hypoelliptic partial differential equations. But the
situation is changing, spurred in part by the availability of fast com-
puters. One indication of this is the work of Martin-Löf and his school
[M-Lö] [NoPeSm].

For a conditional formula C, the program B(c, C) is interactive. Let
C be ∃xA→ ∃yB, where A and B are unconditional, and let c rz C. It
may be difficult to find an a realizing ∃xA, and only those in the know
would have access, via c{a}, to an n such that By(n) holds. If A and B
are themselves conditional, the situation is more complex. Kleene’s re-
alization predicate may be the natural tool for analyzing questions con-
cerning complex interactive programs, such as problems of system secu-
rity.

5. Kripke semantics

This is a very brief discussion of Kripke’s analysis [Kr] of intuition-
ism.

Kleene was concerned with the intuitionistic semantics of Arith-
metic under the intended interpretation; Kripke is concerned with the
intuitionistic semantics of the predicate calculus under all possible inter-
pretations.

In discussing the intuitionistic predicate calculus, rather than arith-
metic, we must make two changes. First, we do not have a specific
false formula S0 = 0 to use in eliminating ¬, so restore ¬. Second, in
the comparison of classical and intuitionistic arithmetic implicit use was
made of the fact that intuitionistically an atomic formula of arithmetic
is equivalent to its double negation, but this is not so in the predicate
calculus. Call a formula strongly classical in case it is classical and each
occurrence in it of an atomic formula is doubly negated. Every formula
is classically equivalent to a strongly classical formula. In part (d) of
Theorem 60 in [Kl, §81], Kleene modifies the Gödel reduction so that
the algorithm transforms a classical proof of a strongly classical formula
into an intuitionistic proof of the same formula.



6. EPISTEMIC SEMANTICS 13

Roughly speaking, Kripke’s analysis involves stages of investigation
forming a tree where at each stage a classical semantics is imposed, with
the proviso that if a formula is true at one stage it remains true at all
later stages but if a formula is false at one stage it may become true at
a later stage; a formula is valid in case it is true at the root of the tree
in every structure. His completeness theorem establishes that a formula
is valid if and only if it is provable in Heyting’s predicate calculus (the
“if” part being trivial).

Theorem 2: The classical and Kripke semantics are identical on
strongly classical formulas.

Proof: Suppose that a closed strongly classical formula C is classi-
cally valid. By Gödel’s completeness theorem for classical logic [Gö30], it
is provable in the classical predicate calculus. By the reduction of classi-
cal proofs to intuitionistic proofs (Kleene’s modification of Gödel’s algo-
rithm), it is provable in Heyting’s intuitionistic predicate calculus, and
so is valid in Kripke’s intuitionistic semantics. Conversely, by Kripke’s
completeness theorem a formula valid in his semantics is provable in
Heyting’s intuitionistic predicate calculus, and therefore in the classical
predicate calculus, and hence is classically valid.

Kripke semantics leads to the same conclusions regarding the on-
tological Platonic nature of intuitionistic semantics, and intuitionism as
an extension of classical mathematics, as those reached on the basis of
Kleene’s realization predicate. When an intuitionist states that a clas-
sically valid strongly classical formula is not constructively valid (as is
frequently stated for the strongly classical translation of the axiom of
choice), he implicitly states that the Kripke semantics is an inadequate
description of intuitionistic semantics.

6. Epistemic semantics

Many writers on intuitionism base intuitionistic semantics on epis-
temology; on knowledge and proof. When Kleene [Kl, §82] introduces
realization, he avoids all reference to the notion of proof. But in the
informal discussion in §81, he writes (my italics):

The intuitionists’ use of negation and implication must then be
understood as only requiring us to recognize, e.g., that a particular
given proof is intuitionistically acceptable, or (when they prove a
statement of the form (A → B) → C) that if one should produce
an intuitionistically acceptable deduction of one statement B from
another A, then on the basis of it one could by a given method surely
construct an intuitionistically acceptable proof of a third C.



14 6. EPISTEMIC SEMANTICS

Heyting [He31] [BePu] says (again my italics):

It is important to note that the negation of a proposition always
refers to a proof procedure which leads to the contradiction, even if
the original proposition mentions no proof procedure.

Dummett [Du] [BePu] confronts the problem directly:

However, the distinction [between the notions of truth and as-
sertability] is unavoidable if the explanations of universal quantifi-
cation, implication and negation are to escape circularity. The stan-
dard explanation of implication is that a proof of A → B is a con-
struction of which we can recognise that, applied to any proof of A,
it would yield a proof of B.

. . . if the intuitionistic explanation of implication is to escape,
not merely circularity, but total vacuousness, there must be a re-
stricted notion of proof − canonical proof − in terms of which the
explanation is given. . .

The notion of canonical proof thus lies in some obscurity; and
this state of affairs is not indefinitely tolerable, because, unless it is
possible to find a coherent and relatively sharp explanation of the
notion, the viability of the intuitionist explanations of the logical
constants must remain in doubt.

Thus the standard explanation of the intuitionistic meaning of the
logical constants is based on the notion of proof. Let us call this epistemic
semantics. How can it be formalized?

Knowledge is most conveniently expressed in the first person sin-
gular, but we are interested only in communicable knowledge, so the
task is to describe how I can communicate my knowledge to you, and
what it is about my knowledge that will convince you once it has been
communicated. Knowledge is closely related to syntactical questions, to
the notion of proof. How else can I communicate my knowledge to you,
other than by an appeal to a shared vision of a common ontology or by
a demonstration? We have already discussed the former; the question
now is whether it can be dispensed with in explaining the intuitionistic
meaning of the logical constants.

Let us grant, for purposes of argument, that mathematical reason-
ing cannot be fully formalized. But consider all closed formulas of Arith-
metic with l or fewer logical constants. There are only finitely many of
them, modulo the infinity of atomic formulas. So if I am to communi-
cate to you in a convincing way my knowledge of the truth of such a
formula without appealing to ontology, it must be possible to formalize
the argument in a formal system Tl. This system must be axiomatic, so
that there is an effective method for deciding whether a putative proof
is indeed a proof.



6. EPISTEMIC SEMANTICS 15

Consider a closed formula C of L. If C is atomic, a = b, I com-
municate my knowledge by performing the computation and showing
that a and b reduce to the same numeral. For a conjunction A & B, I
communicate my knowledge of A and my knowledge of B. For ∃xA, I
exhibit a numeral n and communicate my knowledge of Ax(n), and for
a disjunction A ∨ B I choose one of the disjuncts and communicate my
knowledge of it.

But for the input operators ∀ and → there is a problem. The re-
alization predicate for them was expressed by means of quantifications
over infinite domains. This makes no sense epistemically; I cannot pro-
duce an infinitely long communication, not even introspectively. If I
know ∀xA without appeal to ontology, I must know it on the basis of a
general argument, and that argument must be formalizable in Tl. This
formalization requires an arithmetization, treating ∀xA as an entity of Tl
rather than as a formula. But it is neither necessary nor sufficient to
prove in Tl the arithmetization p∀xAq ; what I must do is prove in Tl an
arithmetization of my knowledge of Ax(n) for a general numeral n, some-
thing like pn is a numeral implies K(n) is my knowledge that Ax(n)q,
and similarly for implications A → B. Thus we must also require that
Tl be strong enough to arithmetize itself; we shall take each Tl to be an
axiomatic extension of S.

We need some function symbols and predicate symbols in Tl. The
function symbols have default value 0 if the arguments do not match the
descriptions given. Let π1x and π2x be the first and second members
of the pair x and let Arg(x, y) be the xth argument of the arithmetized
formula y. Let “numeral(x)” express that x is a numeral in the arithme-
tized theory. Let “proof(x, y)” express that y is an arithmetized formula
of Tl and x is an arithmetized proof in Tl of it; the dependence on Tl is
not indicated in the notation.

Let C be a closed formula of L. We introduce, by recursion on the
complexity of C, a formula c vf C of Tl. This is read as c verifies C and
its intended meaning is that c is a communication of my knowledge that
C is intuitionistically true.

(V1) Let C be atomic. Then c vf C is C.

(V2) Let C be A & B. Then c vf C is π1c vf A & π2c vf B.

(V3) Let C be ∀xA. Then c vf C is proof(π1c, pnumeral(w) →
π2 vf Ax(w)q).

(V4) Let C be A→ B. Then c vf C is proof(π1c, pz vf A→ π2c vf
Bq).

(V5) Let C be ∃xA. Then c vf C is π2c vf Ax(π1c).



16 6. EPISTEMIC SEMANTICS

(V6) Let C be A ∨B. Then c vf C is π2c vf Arg(π1c, C).

In (V3) and (V4), w and z are variables not occurring previously
and π2c may, of course, depend on them.

For a general formula C of L, let c vf C be c vf C, where C is the
closure of C. We say that C is verifiable in case there is a consistent
axiomatic extension Tl of S and a variable-free term c of Tl such that
` c vf C (where ` means `Tl).

For fixed C the formula x vf C represents a recursive predicate,
so for each variable-free term c we have ` c vf C ∨ ¬ c vf C, and the
occurrences of→ can be eliminated in favor of ¬ . . .∨. . .. Thus epistemic
semantics explains the intuitionistic meanings of the quantifier symbols,
the constructive ∨, and the much-debated → in simpler terms.

But now we must ask whether this semantics is adequate for intu-
itionistic mathematics. The answer is no.

Theorem 3. ¬¬ 0 = 0 is unverifiable.
Proof: Suppose that ` c vf ¬¬ 0 = 0, where c is a variable-free

term. That is,
` c vf [¬ 0 = 0→ S0 = 0].

By (V4),

` proof(π1c, p[z vf ¬ 0 = 0]→ [π2c vf S0 = 0]q).

Now π2c vf S0 = 0 is S0 = 0 by (V1), so

` proof(π1c, p[z vf ¬ 0 = 0]→ [S0 = 0]q).

That is,
` proof(π1c, p¬ [z vf ¬ 0 = 0]q),

which is
` proof

(
π1c, p¬

[
z vf [0 = 0→ S0 = 0]

]
q
)
.

By (V4),

` proof
(
π1c, p¬proof

(
π1z, p[w vf 0 = 0]→ [π2z vf S0 = 0]q

)
q
)
,

which by (V1) is

` proof
(
π1c, p¬proof

(
π1z, p[w vf 0 = 0]→ [S0 = 0]q

)
q
)
.

That is,
` proof

(
π1c, p¬proof(π1z, p¬w vf 0 = 0q)q

)
.



6. EPISTEMIC SEMANTICS 17

Let u be a new variable and let d be π1c followed by the (arithmetized)
proof of the instance obtained by substituting 〈u, 0〉 for z and proving
π1〈u, 0〉 = u. Then

` proof
(
d, p¬proof(u, p¬w vf 0 = 0q)q

)
.

Let A be ¬proof(u, p¬w vf 0 = 0q). Then d is a variable-free term of
Tl and we have ` proof(d, pAq). Since proof(x, y) represents a recursive
predicate, we have a proof in Tl of A; that is, we have a proof in Tl of

¬proof(u, p¬w vf 0 = 0q).

Thus we have a proof in Tl that a certain arithmetized formula is un-
provable; that is, we have a self-consistency proof for Tl. But Tl is a
consistent axiomatized extension of S, so this is impossible by the mod-
ern form of Gödel’s second theorem [Gö31].

The trouble lies in the propositional calculus. Modus ponens, the
rule of inference (25) of the propositional calculus, preserves verifiability.
For suppose that Tl is a consistent axiomatic extension of S, and ` a vf A
and ` c vf A → B. Then ` proof(π1c, pz vf A → π2c vf Bq). Since
` a vf A we can arithmetize the proof and substitute a for z. This
gives us a variable-free term d such that ` proof(d, pπ2c vf Bq). Since
proof(x, y) represents a recursive predicate, we have ` π2c vf B.

Using Nelson’s realization proofs as templates, we can establish that
the propositional axioms (13)–(22) are verifiable, with one exception.
The exception is (14),

[A→ B]→ [A→ B → C]→ A→ C

and its special case (21).
This is used, together with (13), to justify deduction. Consider a

deduction, introducing a hypothesis A. So we suppose that for some a
we have a vf A. Then we establish B, with b vf B, and B → C, with
e vf B → C. We want to find a c such that c vf C. Why can’t we do this
by modus ponens? The proof that modus ponens preserves verification
used the fact that if proof(d, pDq) for a variable-free term d, then ` D.
But to prove this for a variable d, as would be necessary in a deduction,
we would need to prove in Tl the consistency of Tl, and this we cannot
do.

When an intuitionist makes a deduction, introducing and discharg-
ing a hypothesis, he implicitly reifies a hypothetical situation, projecting
it onto an abstract ontology.

Epistemic semantics is adequate for mathematics shorn of the axiom
scheme (14), with deductions not permitted. But this drastic prohibition
would indeed deprive the boxer of the use of his fists.



18 7. CONCLUSIONS

7. Conclusions

This investigation has led to the following conclusions. Intuitionism
is an extension of classical mathematics, both in its proof syntax and
semantically. Intuitionistic semantics, being an extension of classical
semantics, is ontological and Platonic. Attempts to give an epistemic
basis for intuitionistic semantics, to explain the intuitionistic meaning of
the logical constants in terms of proof, are not viable. What is genuinely
new in intuitionism is Brouwer’s creation of two new logical constants,
the constructive ∃ and the constructive ∨, together with a rich notion of
truth containing much constructive information. But so far intuitionism
has not proved to be a powerful tool in constructive mathematics.

This is a somewhat negative assessment of intuitionism, but I want
to end on a constructive note. Since the advent of digital computers,
attention has turned from effective methods—functions computable in
principle—to feasible algorithms and programs. There is strong evidence
that polynomial time functions provide the correct formalization of the
intuitive notion of a feasible computation, and unlike the situation for
recursive functions there is a purely syntactical characterization [BeCo]
[Be] [Le] of polynomial time functions. I am convinced that intuitionism
reformulated in this context will become a powerful practical method
for constructing and verifying feasible algorithms, and that Kleene’s re-
alization predicate will provide an incisive tool for analyzing problems
concerning interactive programs.

References

[Be] Stephen J. Bellantoni, Predicative Recursion and Computational
Complexity, Technical Report 264/92, Department of Computer Science,
University of Toronto, 1992. Available on-line at
ftp://ftp.cs.toronto.edu/pub/reports/theory/cs-92-264.ps.Z

[BeCo] — and Stephen Cook, A new recursion-theoretic characterization
of the polytime functions, Computational Complexity, vol. 2, pp. 97–110,
1992.

[BePu] Paul Benacerraf and Hilary Putnam, eds., Philosophy of Math-
ematics: Selected readings, 2nd ed., Cambridge University Press, Cam-
bridge, 1983.

[Br] L. E. J. Brouwer, Die onbetrouwbaarheid der logische principes,
Tijdschrift voor wijsbegeerte, vol. 2, 1908.

[Du] Michael Dummett, The philosophical basis of intuitionistic logic,
Proceedings of the Logic Colloquium, Bristol, July 1973, ed. H. E. Rose



7. CONCLUSIONS 19

and J. C. Shepherdson, pp. 5–40, North-Holland, Amsterdam, 1975.
Reprinted in [BePu].

[Gö30] Kurt Gödel, Die Vollständigkeit der Axiome des logischen Funk-
tionenkalküls, Monatshefte für Mathematik und Physik, vol. 37, pp. 349–
360, 1930.

[Gö31] —, Über formal unentscheidbare Sätze der Principia Mathematica
und verwandter Systeme I, Monatshefte für Mathematik und Physik, vol.
38, pp. 173–198, 1931.

[Gö33] —, Zur intuitionistischen Arithmetik und Zahlentheorie, Ergeb-
nisse eines mathematischen Kolloquiums, Heft 4, pp. 34–38, 1933.

[He] Arend Heyting, Die formalen Regeln der intuitionistischen Logik,
Sitzungsberichte der Preussischen Akademie der Wissenschaften, Physi-
kalisch-mathematische Klasse, pp. 42–56, 1930.

[He31] —, Die intuitionistische Grundlegung der Mathematik, Erkennt-
nis, vol. 2, pp. 106–115, 1931. English translation as The intuitionist
foundations of mathematics in [BePu].

[Hö] L. Hörmander, On the theory of general partial differential opera-
tors, Acta. Math., vol. 94, pp. 161–248, 1955.

[Kl] S. C. Kleene, Introduction to Metamathematics, North-Holland, Am-
sterdam, 1971. First published 1952.

[Kl45] —, On the interpretation of intuitionistic number theory, Jour.
Symbolic Logic, vol. 10, pp. 109–124, 1945.

[Kr] Saul A. Kripke, Semantical analysis of intuitionistic logic I, Formal
Systems and Recursive Functions, Proceedings of the Eighth Logic Col-
loquium, Oxford, July 1963, ed. J. N. Crossley and M. A. E. Dummett,
pp. 93–130, North-Holland, Amsterdam, 1965.

[Le] Daniel Leivant, Ramified recurrence and computational complexity
I: Word recurrence and poly-time, in Feasible Mathematics II, ed. Pe-
ter Cole and Jeffrey Remmel, pp. 320–343, Perspectives in Computer
Science, Birkhauser-Boston, New York, 1994.

[M-Lö] Per Martin-Löf, Intuitionistic Type Theory, Bibliopolis, Naples,
1984.

[Ne] David Nelson, Recursive functions and intuitionistic number theory,
Trans. Amer. Math. Soc., vol. 61, pp. 307–368, 1947.

[NoPeSm] Bengt Nordström, Kent Petersson, Jan M. Smith, Program-
ming in Martin-Löf ’s Type Theory: An Introduction, The International
Series of Monographs on Computer Science 7, Clarendon Press, Oxford,
1990.



20 7. CONCLUSIONS

[Ta] Alfred Tarski, A Decision Method for Elementary Algebra and Ge-
ometry, Berkeley, 1951.


