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Abstract

Hilbert was at heart a Platonist. (“No one
shall expel us from the paradise that Cantor has
created for us.”) His formalism was primarily a
tactic in his battle against Brouwer’s intuitionism.

His mistake was to pose the problem of
showing that mathematics, beginning with Peano
Arithmetic, is consistent, rather than to ask whether
it is consistent.

In this talk I give reasons for taking seriously
the possibility that contemporary mathematics,
including Peano Arithmetic, may indeed be incon-
sistent.
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Potential vs. Completed Infinity

Let us distinguish between the genetic, in the
dictionary sense of pertaining to origins, and the
formal. Numerals (terms containing only the unary
function symbol S and the constant 0) are genetic;
they are formed by human activity. All of mathe-
matical activity is genetic, though the subject mat-
ter is formal.

Numerals constitute a potential infinity. Given
any numeral, we can construct a new numeral by
prefixing it with S.

Now imagine this potential infinity to be com-
pleted. Imagine the inexhaustible process of con-
structing numerals somehow to have been finished,
and call the result the set of all numbers, denoted
by N.

Thus N is thought to be an actual infinity or
a completed infinity. This is curious terminology,
since the etymology of “infinite” is “not finished”.
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We were warned.

Aristotle: Infinity is always potential, never
actual.

Gauss: I protest against the use of infinite
magnitude as something completed, which is never
permissible in mathematics.

We ignored the warnings.

With the work of Dedekind, Peano, and Can-
tor above all, completed infinity was accepted into
mainstream mathematics.

Mathematics became a faith-based initiative.

Try to imagine N as if it were real.

A friend of mine came across the following on
the Web:
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www.completedinfinity.com

Buy a copy of N!

Contains zero—contains the successor of ev-
erything it contains—contains only these.

Just $100.

Do the math! What is the price per number?

Satisfaction guaranteed!

Use our secure form to enter your credit card number
and its security number, zip code, social security number,
bank’s routing number, checking account number, date of
birth, and mother’s maiden name.

The product will be shipped to you within
two business days in a plain wrapper.
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My friend answered this ad and proudly showed
his copy of N to me. I noticed that zero was green,
and that the successor of every green number was
green, but that his model contained a red number.
I told my friend that he had been cheated, and had
bought a nonstandard model, but he is color blind
and could not see my point.

I bought a model from another dealer and am
quite pleased with it. My friend maintains that
it contains an ineffable number, although zero is
effable and the successor of every effable number is
effable, but I don’t know what he is talking about.
I think he is just jealous.

The point of this conceit is that it is impos-
sible to characterize N unambiguously, as we shall
argue in detail.
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As a genetic concept, the notion of numeral is
clear. The attempt to formalize the concept usu-
ally proceeds as follows:

(i) zero is a number;

(ii) the successor of a number is a number;

(iii) zero is not the successor of any number;

(iv) different numbers have different successors;

(v) something is a number only if it is so by
virtue of (i) and (ii).

We shall refer to this as the usual definition.
Sometimes (iii) and (iv) are not stated explicitly,
but it is the extremal clause (v) that is unclear.

What is the meaning of “by virtue of”? It is
obviously circular to define a number as something
constructible by applying (i) and (ii) any number
of times.

We cannot characterize numbers from below,
so we attempt to characterize them from above.
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The study of the foundations of arithmetic
began in earnest with the work of Dedekind and
Peano. Both of these authors gave what today
would be called set-theoretic foundations for arith-
metic. In ZFC (and extensions by definitions thereof)
let us write 0 for the empty set and define the suc-
cessor by

Sx = x ∪ {x }

We define

x is inductive ↔ 0 ∈ x & ∀y [ y ∈ x
→ Sy ∈ x ].

Then the axiom of infinity of ZFC is

∃x [x is inductive ]

and one easily proves in ZFC that there exists a
unique smallest inductive set; i.e.,

∃!x
[
x is inductive & ∀y [ y is inductive

→ x ⊆ y ]
]
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We define the constant N to be this smallest
inductive set:

N = x ↔ x is inductive & ∀y [ y is
inductive → x ⊆ y ]

and we define

x is a number ↔ x ∈ N.

Then the following are theorems:

(1) 0 is a number

(2) x is a number → Sx is a number

(3) x is a number → Sx 6= 0

(4) x is a number & y is a number & x 6= y
→ Sx 6= Sy.
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These theorems are a direct expression of
(i)–(iv) of the usual definition. But can we express
the extremal clause (v)? The induction theorem

x is a number & y is inductive → x ∈ y

merely asserts that for any property that can be
expressed in ZFC, if 0 has the property, and if the
successor of every element that has the property
also has the property, then every number has the
property.

We cannot say, “For all numbers x there ex-
ists a numeral d such that x = d” since this is a
category mistake conflating the formal with the
genetic.
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Using all the power of modern mathematics,
let us try to formalize the concept of number.

Let T be any theory whose language contains
the constant 0, the unary function symbol S, and
the unary predicate symbol “is a number”, such
that (1)–(4) are theorems of T.

For example, T could be the extension by defi-
nitions of ZFC described above or it could be Peano
Arithmetic P with the definition:
x is a number ↔ x = x.

Have we captured the intended meaning of the
extremal clause (v)?

To study this question, construct Tϕ by ad-
joining a new unary predicate symbol ϕ and the
axioms

(5) ϕ(0)

(6) ϕ(x) → ϕ(Sx).
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Notice that ϕ is an undefined symbol.
If T is ZFC, we cannot form the set

{x ∈ N : ϕ(x) } because the subset axioms of ZFC

refer only to formulas of ZFC and ϕ(x) is not such
a formula. Sets are not genetic objects, and to ask
whether a set with a certain property exists is to
ask whether a certain formula beginning with ∃
can be proved in the theory.

Similarly, if T is P we cannot apply induction
to ϕ(x) since this is not a formula of P. Induction
is not a truth; it is an axiom scheme of a formal
theory.

If T is consistent then so is Tϕ, because we
can interpret ϕ(x) by x = x. (And conversely,
of course, if T is inconsistent then so is Tϕ.) For
any numeral S. . .S0 we can prove ϕ(S . . .S0) in
S. . .S0 steps using these two axioms and detach-
ment (modus ponens).
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Let d be a variable-free term.
Proving ϕ(d) in Tϕ perfectly expresses

the extremal clause, that d is a number by
virtue of (i) and (ii) of the usual definition.
We can read ϕ(x) as “x is a number by virtue
of (i) and (ii)”.

Therefore we ask: can

(7) x is a number → ϕ(x)

be proved in Tϕ?
That is, can we prove that our formalization

“x is a number” captures the intended meaning of
the extremal clause?

Trivially yes if T is inconsistent, so assume
that T is consistent.

Then the answer is no. Here is a semantic ar-
gument for this assertion.
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By (1)–(4), none of the formulas

x is a number → x = 0 ∨ x = S0 ∨ · · ·
∨ x = S . . .S0

is a theorem of T. Hence the theory T1 obtained
from T by adjoining a new constant e and the ax-
ioms

e is a number, e 6= 0, e 6= S0, . . . , e 6=
S . . .S0, . . .

is consistent.
By the Gödel completeness theorem, T1 has a

model A. Let X be the smallest subset of the uni-
verse |A| of the model containing 0A and closed
under the function SA. Then eA is not in X . Ex-
pand A to be a model Aϕ of Tϕ by letting ϕAϕ

be X . Then (7) is not valid in this model, and so is
not a theorem of Tϕ.

The conclusion to be drawn from this argu-
ment is that it is impossible to formalize the notion
of number in such a way that the extremal clause
holds.

14



Despite all the accumulated evidence to the
contrary, mathematicians persist in believing in N
as a real object existing independently of any for-
mal human construction.

In a way this is not surprising. Mathematics
as a deductive discipline was invented by Pythago-
ras, possibly with some influence from Thales. The
Pythagorean religion held that all is number, that
the numbers are pre-existing and independent of
human thought. Plato was strongly influenced by
Pythagoras and has been called the greatest of the
Pythagoreans.

Over two and a half millennia after Pythago-
ras, most mathematicians continue to hold a re-
ligious belief in N as an object existing indepen-
dently of formal human construction.
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Against Finitism

There is obviously something inelegant about
making arithmetic depend on set theory. What
today is called Peano Arithmetic (P) is the theory
whose nonlogical symbols are the constant 0, the
unary function symbol S, and the binary function
symbols + and ·, and whose nonlogical axioms are

(8) Sx 6= 0

(9) Sx = Sy → x = y

(10) x + 0 = x

(11) x + Sy = S(x + y)

(12) x · 0 = 0

(13) x · Sy = (x · y) + x

and all induction formulas

(14) Ax(0) & ∀x [ A → Ax(Sx) ] → A

where A is any formula in the language of P.
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How is the induction axiom scheme (14) justi-
fied?

Assume the basis Ax(0) and the induction step
∀x [ A → Ax(Sx) ]. Then for any numeral S. . .S0
we can prove Ax(S . . .S0) in S. . .S0 steps without
using induction.

The usual belief is that any number is denoted
by a numeral, so that induction applies to any
number, but as we saw in the preceding section
this belief is inexpressible or meaningless. And if
this were all that there is to induction, why bother
to postulate it?

But the use of induction goes far beyond the
application to numerals. If there were a completed
infinity N consisting of all numbers, then the ax-
ioms of P would be true assertions about numbers
and P would be consistent.
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It is not a priori obvious that P can express
combinatorics, but this is well known thanks to
Gödel’s great paper on incompleteness. As a con-
sequence, exponentiation ↑ and superexponentia-
tion ⇑ can be defined in P so that we have

(15) x ↑ 0 = S0

(16) x ↑ Sy = x · (x ↑ y)

(17) x ⇑ 0 = S0

(18) x ⇑ Sy = x ↑ (x ⇑ y)

and similarly for primitive-recursive functions in
general.
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Finitists believe that primitive recursions al-
ways terminate; for example, that applying (10)–
(13) and (15)–(18) a sufficient number of times,

SS0 ⇑ SS0 ⇑ SS0 ⇑ SS0 ⇑ SS0 ⇑ SS0 ⇑ SS0 ⇑
SS0 ⇑ SS0 ⇑ SS0 ⇑ SS0 ⇑ SS0 ⇑ SS0 ⇑ SS0 ⇑ SS0 ⇑
SS0

reduces to a numeral. (Infix symbols are associated
from right to left.)

But the putative number of times these rules
must be applied can only be expressed by means
of a superexponential expression—the argument is
circular.

The objection to regarding variable-free
superexponential terms as denoting numbers is not
a naive feeling that they are too big. Rather, there
is a structural problem with them.

19



Recapitulation:

We take the extremal clause seriously: some-
thing is a number only if it can be proved to be a
number by (i) zero is a number, and (ii) the succes-
sor of a number is a number.

We cannot formalize this within any theory.
Instead, we adjoin a unary predicate symbol ϕ and
the axioms

(5) ϕ(0)

(6) ϕ(x) → ϕ(Sx).

and if we have proved ϕ(d) we say that d is a num-
ber. In this way we express the extremal clause by
a combination of the formal and the genetic.

20



We cannot prove

ϕ(x1) & ϕ(x2) → ϕ(x1 + x2).

That is, if we take the extremal clause at face
value, we cannot prove that the sum of two num-
bers is a number.

To see this, we again argue semantically. Con-
sider again the non-standard number e in our struc-
ture A, but now let X be the set of all individuals
of the form eA + ξ where ξ is standard—that is, of
the form A(S . . .S0)—and let ϕAϕ

be X . Then
ϕ(e) is true in the structure but ϕ(e + e) is not.

But we can do something almost as good.
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Assuming the associative, distributive, and
commutative laws and the usual properties of ≤,
we can establish the following relativization scheme.
Introduce

(19) ϕ0(x) ↔ ∀y [ y ≤ x → ϕ(y) ]

(20) ϕ1(x) ↔ ∀y [ϕ0(x) → ϕ0(y + x) ]

(21) ϕ2(x) ↔ ∀y [ϕ1(y) → ϕ1(y · x) ].

Then ϕ2 is not only inductive but respects +
and · and is hereditary, and it is stronger than ϕ.
That is, we have the following theorem (proved
without using induction, of course, which is not
available for ϕ).

(22) ϕ2(0) & [ϕ2(x) → ϕ2(Sx) ] &

[ϕ2(x1) & ϕ2(x2) → ϕ2(x1 + x2) & ϕ2(x1 · x2) ] &

[ϕ2(x) & y ≤ x → ϕ2(y) ] &

[ϕ2(x) → ϕ(x) ].
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The use of relativization schemes permits an
extensive development of arithmetic staying within
the world of numbers—numbers x satisfying ϕ(x).

Associativity is essential to the relativization
scheme. For example, suppose that
ϕ2(x1) & ϕ2(x2); we want to prove ϕ2(x1 · x2).

Suppose that ϕ1(y); by (21), we need to prove
that

ϕ1
(
y · (x1 · x2)

)
.

But we have ϕ1(y · x1) by (21) and so
ϕ1

(
(y · x1) · x2

)
, again by (21). By the associativity

of multiplication we have the desired result.

Exponentiation is not associative, so we can-
not extend the relativization scheme, in the first
way one would think of, to include exponentiation.
In fact, one can prove the following theorem:
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Let T be any consistent theory containing the
axioms (8)–(13) and (15)–(18) (the usual axioms
for 0 S + · ↑ and ⇑) and the usual defining axiom
for ≤. Then there is no unary predicate symbol ϕ3

in an extension by definitions T′ of Tϕ such that

(23) `T′ ϕ3(0) & [ϕ3(x) → ϕ3(Sx) ] &

[ϕ3(x1) & ϕ3(x2) → ϕ3(x1 + x2) & ϕ3(x1 · x2) &

ϕ3(x1 ↑ x2) ] &

[ϕ3(x) & y ≤ x → ϕ3(y) ] &

[ϕ3(x) → ϕ(x) ].

That is, we cannot construct a world of num-
bers, within the world of those satisfying the ex-
tremal clause (those satisfying ϕ), that is closed
under exponentiation. If the extremal clause is
taken seriously, the conclusion is that exponenti-
ation is not total.
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The proof is based on a study of the algorithm
for eliminating special constants in the proof of the
Hilbert-Ackermann Consistency Theorem. This al-
gorithm is essentially a quantifier-elimination pro-
cedure, and it is superexponentially long but only
superexponentially long.

The method of proof also yields this:

With the same hypotheses, there is no unary
ϕ4 such that

(24) `T′ ϕ4(0) & [ ϕ4(x) → ϕ4(Sx) ] &
[ϕ4(x) → ϕ(SS0 ⇑ x) ].

If we take the extremal clause seriously, the
conclusion is that even if 2 ⇑ d happens to be a
number, satisfying ϕ(2 ⇑ d), there is no general
method for proving that the same holds for 2 ⇑ Sd.
That is, there is no reason to believe that every
explicit superexponential recursion terminates.
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The Goal

The goal is to produce an explicit superexpo-
nentially long recursion and prove that it does not
terminate, thereby disproving Church’s Thesis from
below, demonstrating that finitism is untenable,
and proving that Peano Arithmetic is inconsistent.

Do you wish me luck?
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Material relevant to this talk is in Predicative
Arithmetic, posted online at

www.math.princeton.edu/˜nelson/books/pa.pdf

This talk is posted at

www.math.princeton.edu/~nelson/papers/hm.pdf
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