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A classical mathematician C and an intuitionist I use the same logical operators,
∧ ∀ → ¬ ∃ ∨, but with different semantics and different deductive procedures. When C

asserts a closed formula A, she is making an ontological statement: A is true in the structure
under consideration. Then A ∨ ¬A always holds: either A is true or it is not, there is no
third possibility. But when I asserts A, he is making an epistemological statement: I know
A. Thus to him, A ∨ ¬A means: I know A or I know that A is absurd—but now there is
clearly a third possibility. He rejects the principle of the excluded middle because to him
it is a principle of omniscience.

I overheard two conversations between C and I. She spoke first:

I have just proved ∃xA.
Congratulations! What is it?
I don’t know. I assumed ∀x¬A and derived a contradiction.
Oh. You proved ¬∀x¬A.
That’s what I said.

I have proved A ∨ B.
Good. Which did you prove?
What?
You said you proved A or B; which did you prove?
Neither; I assumed ¬A ∧ ¬B and derived a contradiction.
Oh, you proved ¬[¬A ∧ ¬B].
That’s right. It’s another way of saying the same thing.

He does not agree with her last statement, of course, but at least C can explain to him what
she has proved in a way that he can understand. This elimination of ∃ and ∨ must continue
all the way, in the component formulas A and B, until atomic formulas are reached. Here
C and I agree if they are discussing arithmetic, but in analysis C must explain an atomic
formula C as meaning ¬¬C to I.

Now that C has explained her theorem, will I accept her proof? Yes, Gödel showed this
in a remarkable five page paper published in 1933 [Gö]. At least, this is so for arithmetic.
In set theory, I will admit the correctness of the deduction but the axioms of set theory
will be gibberish to him.

The moral of Gödel’s result is that Brouwer did not require a restriction of classical
mathematics, as both he and his opponents believed, but rather provided an extension
of it: he introduced two new logical operators, the constructive ∃ and the constructive ∨
different from their classical counterparts. The intuitionistic semantics and proof syntax
for ∃xA and A ∨ B are quite different from those for ¬∀x¬A and ¬[¬A ∧ ¬B]. Stricter
standards of proof are required and richer information is obtained.

To C, a closed formula C contains one bit of information: true or false. To I, C is
an incomplete communication. For example, if C is ∃xA and I asserts that he knows C,
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then he is saying that he knows a number n (let us stick to arithmetic) such that he knows
Ax[n], and similarly for A ∨ B he asserts that he knows A or B and is prepared to say
which.

Kleene, not himself an intuitionist, saw deeply into the nature of intuitionism and for-
malized intuitionistic knowledge in terms of realizability. He encoded intuitionistic knowl-
edge of C in a code c, far richer than the classical true or false; see [Kl45] and [Kl52, §82].

The intuitionistic knowledge of a closed formula C of arithmetic can be explained in
terms of an interactive program:

If C is: and the code c is: the program:

atomic anything evaluates C as true or false.
A ∧ B 〈a, b〉 splits into two child processes, with code a for A and b for B.
∀xA c prompts for a number input n and runs c{n} on Ax[n].

A → B c prompts for code input a and forms a pipe: it runs a on A,
and if this terminates, runs c{a} on B.

∃xA 〈n, a〉 prints the output number n and runs a on Ax[n].
A ∨ B 〈1, a〉 prints “first” and runs a on A.
A ∨ B 〈2, a〉 prints “second” and runs a on B.

(We can replace ¬A by A → 0 = 1, so ¬ does not require separate discussion.)
Then “c realizes C” means that c is correct code for the interactive program C. As

the program runs, it also reduces the code to a form suitable for the subformulas that are
encountered. A fuller account of Kleene’s realizability in terms of programming is available
online [ENe].

The nature of intuitionism was greatly clarified by Heyting when he formalized the
intuitionistic predicate calculus and intuitionistic arithmetic in 1930. (Full disclosure: the
reviewer is a formalist.) Kleene introduced realizability in the expectation that every
theorem of intuitionistic arithmetic S was realizable, and David Nelson established this
by an algorithm [DNe]. The high point of this beautiful result is his proof by a single
induction that every induction axiom is realizable. Since 0 = 1 is not realizable, Nelson’s
theorem entails a consistency proof for S and so a fortiori for Peano Arithmetic P (since
by the Gödel interpretation S is an extension of P). The realization predicate cannot itself
be expressed in arithmetic, so conflict with Gödel’s second theorem, on the impossibility
of self-consistency proofs, is avoided.

Call a formula classical in case it does not contain the output operators ∃ or ∨. For
a classical closed formula C of arithmetic, “c realizes C” does not depend on the code c
and, from a classical perspective, is equivalent to the classical true-false notion. The extra
constructive information that a realization code c contains is algorithms for constructing
existentially quantified objects and for deciding between alternatives. This is why intu-
itionistic reasoning is important to programming. Thanks to Kleene, the two constructive
tendencies, algorithms and intuitionism, met. The connection between intuitionism and
programming is deeply pursued by Per Martin-Löf and his school; see [M-L] and [NoPeSm].

Kleene’s explanation of intuitionistic knowledge is semantic and does not refer to
proofs at all. But many intuitionists attempt to explain the intuitionistic meaning of the
input operators ∀, →, and ¬ syntactically in terms of proofs, as in “A → B means that
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I know how from a proof of A to find a proof of B”. This viewpoint has been vigorously
questioned by Dummett [Du]. Taken literally, it would mean that we could dispense with
modus ponens, which is the rule of inference: from A and A → B infer B. But if A → B
means that I know how from a proof of A to find a proof of B, why not just do it rather than
bother with A → B? Alternatively, if one attempts to construct a syntactical predicate
“c verifies C” along the lines of Kleene’s semantic predicate “c realizes C”, it runs afoul
of Gödel’s second theorem and ¬¬ 0 = 0 turns out to be “unverifiable”; see [ENe]. No
one has given an account of the usual intuitionistic description of the meaning of → that
manages, in Dummett’s words, “to escape, not merely circularity, but total vacuousness”.
Curiously, the question of the intuitionistic meaning of → does not seem to have played
any role in the debate of the 1920s, though the meaning of ∃ and ∨ was central.

And this brings us to the book under review, whose main focus is on the debate from
the appearance of Weyl’s Grundlagenkrise in 1921 to about 1928. It is a fascinating story.
If you have a strong interest in foundations, you will begin at the beginning, continue until
you reach the end, then stop. Those with a more peripheral interest in the subject will
enjoy reading the conclusions to each chapter and to the book, browsing in the author index
to see the roles in the debate of Kolmogorov, Lévy, Zariski, and many more, and skimming
here and there. I found Chapter 1 on Brouwer’s predecessors gripping and Chapter 6 on
the cultural context less so.

I have said nothing in this article about Brouwer’s “second act of intuitionism” (§2.6)
and free choice sequences, but it makes interesting reading. There seems to be a consen-
sus that Bishop’s non-intuitionistic constructive analysis [Bi] is preferable to Brouwer’s
approach to analysis.

The author, Dennis Hesseling, is a mathematician with an additional background in
history and philosophy, and he speaks with confidence in all three areas. A book as fine as
this deserves more care from its publisher. In a number of places, particularly in footnotes
and the glossary, formulas are garbled, with printed instead of the intended symbol. The
author’s English is fluent and a pleasure to read, but there is an occasional unidiomatic
usage which careful editing would have corrected.

In strong contrast to the other great scientific debate of the twentieth century, that
between Niels Bohr and Einstein, the debate between Brouwer and Hilbert was acerbic,
with uncollegial words and acts, primarily on the part of Hilbert (see especially §2.8). It
strikes me as a curious historical fact that Bohr persuaded physicists, who used to study
the real world, to give up their belief in the objective reality of the physical world whereas
mathematicians, who study an abstract world that we ourselves create, followed Hilbert
(who was a Platonist at heart) in refusing to abandon our belief in the objective reality of
mathematical entities.

Hilbert’s program to secure the foundations of mathematics by finitary means is often
called a failure. But it achieved several things of fundamental value and lasting impor-
tance. Before the Formalist Enlightenment, even mathematicians who like Peano and
Zermelo were striving to be formal did not make an absolute distinction between syntax
and semantics. The distinction is essential; an axiom system in which one is required to
understand the meaning of some of the axioms is not an axiomatization at all. This dis-
tinction may be due more to Hilbert’s assistant Bernays than to Hilbert himself (§5.2.2).
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Thanks to this enlightenment, it became possible for the first time to study theories with
the same precision and clarity with which one studies groups or fields. Mathematics con-
sists of reasoning and computation, and of the two computation is the more fundamental.
Aristotle, Leibniz, Boole, and Hilbert each took a big step towards realizing the vision of
reducing reasoning to computation.

One of the most interesting themes of “Gnomes in the Fog” is the strong influence
that Brouwer had on Hilbert’s program. As Hesseling documents, Brouwer’s opposition
was not to formalism, which hardly existed at the time he founded intuitionism, but to
classical mathematics regarded as contentual. (This is a useful word that I learned from
the book. It is the English equivalent of the German inhaltlich, and the OED defines it
as “Belonging to, or dealing with, content” with the first citation from 1909.) Gradually,
step by step and without acknowledging his debt to Brouwer, Hilbert retreated from a
contentual view of classical mathematics and refined the formalist position to the point
where consistency was to be established essentially by intuitionistic methods. As Fraenkel
summarized the debate (§3.2.2), “As I see it, Brouwer has reached the biggest success for
his point of view by winning as an advocate of his starting position—Hilbert! . . . Hilbert
indeed has taken over the demand for constructivity and the rejection of a contentual
ground for the application of Aristotelian logic on infinite totalities.”

In evaluating the work of those like Brouwer who have made truly fundamental con-
tributions to human knowledge—Columbus and Freud also come to mind—we are in the
position that our world outlook has been completely changed by their work and we cannot
picture what it was like beforehand. Before Brouwer, were mathematicians aware that the
usual proofs of the fundamental theorem of algebra are not constructive (§4.3)?

Let us honor those with the courage foolishly to set sail into unknown seas and the
endurance to reach land, though the land discovered differ from the land of the vision.
What is the fog and who are the gnomes? The answer is found in the quotations with
which this beautiful book begins and ends.

References

[Bi] Errett Bishop, “Foundations of Constructive Analysis”, McGraw-Hill, New York,
1967.

[Du] Michael Dummett, “The philosophical basis of intuitionistic logic”, Proceedings
of the Logic Colloquium, Bristol, July 1973, ed. H. E. Rose and J. C. Shepherdson, pp. 5–
40, North-Holland, Amsterdam, 1975. Reprinted in Paul Benacerraf and Hilary Putnam,
eds., “Philosophy of Mathematics: Selected readings”, 2nd ed., Cambridge University
Press, Cambridge, 1983.
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