1. Evaluate \(\int \frac{x^2}{x^6 - 1} \, dx \). Hint: try a substitution first.

2. Evaluate \(\int e^{\sqrt{x}} \, dx \).

3. For each of the following integrals, state whether it is convergent or divergent and give your reasons.

 a. \(\int_1^\infty \frac{x^3 \, dx}{\ln x + x^4} \).

 b. \(\int_0^\infty \frac{dx}{x^3 + \sqrt{x}} \).

4. Find each of the following limits or show that it does not exist.

 a. \(\lim_{n \to \infty} \frac{n + 17 \tan^{-1} n + 2}{1 - n} \).

 b. \(\lim_{n \to \infty} n \left(1 - \cos \frac{1}{n} \right) \).

5. For what \(x \) does the following series converge? Give your reasons.

 \[\sum_{n=2}^{\infty} \frac{(2x - 1)^n}{n \ln n} \]

6. Find the Taylor series at 0 of

 \[f(x) = \frac{1 - \cos(2x^2)}{x} \]

 and find \(f^{(7)}(0) \) and \(f^{(8)}(0) \).

7. Find all complex numbers \(z \), in Cartesian (rectangular) form, such that

 \[(z - 1)^4 = -1. \]
8. For what θ does
\[\sum_{n=0}^{\infty} \frac{\cos n\theta}{2^n}\]
converge? Evaluate the series.

9. Find all real solutions of the following differential equations:
 a. $y'' + 4y' + 13y = 0$.
 b. $y'' + 4y' + 13y = 13x^2 - 5x + 24$.

10. Find the arc length of the curve given by
 \[y = \frac{x^2}{2} - \frac{\ln x}{4}\]
 for x in the interval $[2, 3]$. Hint: the quantity under the square root sign can be rewritten as a square.

11. Let R be the region bounded by $y = x + x^2$, $x = 1$, $x = 2$, and the x-axis. Consider the solid formed by revolving R about
 a. the y-axis
 b. the line $x = 3$
 c. the x-axis.
 In each case express the volume of the solid as a definite integral, but do not evaluate the integral.