Mat104 Solutions to Taylor and Power Series Problems from Old Exams

(1) (a). This is a 0/0 form. We can use Taylor series to understand the limit.
R 2

A
et = 1+I+§+§+Z+"'+m+...
o £C2 .%'3 .%'4 (_1)711.71
e = —l’—i—a—y—i—z"'—FT—F...
_x 223 220
Thus e* — e = 2I+?+?+

From this we find that
23
e’ —e ¥ —2r= e + higher degree terms

As z approaches 0, the lowest power of x will dominate because the higher degree terms
vanish much more rapidly. We can say that

3
ex+e_x—2x~?asx—>0.

Next we consider the denominator.
3 4 5

xln(1+:v):x(x—x2/2+x3/3—m4/4+...):x2—%+%—%—|—....

3
Thus the denominator z* — zIn(1 + z) will be dominated by its lowest degree term % as

we let £ — 0 and so

e +e -2z  223/30 4 2 0
~ =-=-asz—0.
22—zxln(l+2) 23/2 6 3

(Ib) Again we have a 0/0 form. In a similar manner we manipulate Taylor series to
determine what power of x the numerator and denominator resemble as x approaches 0.
First recall that

cosw =1—a22/20 +2* /4! —2°/6! + ... and sinz = x — 23 /3! +2°/5! — 27 /T + ...
Then we can easily compute that

cosz®? — 1+ x%/2 = x8/4! plus higher degree terms

z?(x — sinx)? = 28/(3!3!) plus higher degree terms

Thus

cosz? — 1+ 2*/2 28 /4! 31313
- ~ = =—asx—0
x%(x — sinx)? x8/(3!3!) 4l 2

tan(1/n)

1/n

(2) Rewrite ntan(1/n) as . This is a 0/0 form and we can use L’Hopital’s Rule to

show that the limit is 1.



(3) Use the Taylor series for sin z and e” to understand how the numerator behaves near x = 0.

(sinz)(e®”) = (z—a®/3 +25/5! — . YA+ +2*/2+...)

= (z+2%—2%/3'+ higher degree terms )
S0
sing - e — g = 52°/6 + higher degree terms.
Now for the denominator.
In(1+4 2% = 2* — (2*)?/2 + (2*)*/3 — --- = 2® + higher degree terms.

We conclude that the quotient will go to 5/6 as = goes to 0.

(4) Here we use the Taylor series for cosx.
cosz =1—22/21+ 2" /4 —2°/6!+ ... = 1 —cosz =2%/2! —x*/41 +2°/6! — .. ..

So when z is close to 0, 1 — cosz ~ z%/2!. When n is large, then 1/n will be close to 0, so

1 —cos(1/n) ~ 1/2n% Thus n*(1 — cos(1/n)) ~ 1/2 as n goes to infinity.
(5) Here it is useful to combine the fractions

1 1 (1—e7)—sinz

sing 1—e* (sinz)(l—e®)
Again we use power series to understand how the numerator and denominator behave near
x =0.
l1—e®—sinz = —z%/2+ higher order terms

(sinz)(1—e®) = (z—a3/3'+2°/5! + ... )(x —2?/2+23/3l +...)

= 22 + higher order terms.
2

So the quotient will behave like and go to —1/2 as x goes to 0.

2
(6) Use the Taylor series for cos(x), substitute x3 instead of z. Thus we find that

cos(z®) —1 = —2%/2 + higher order terms

Similarly,
6
x
sin(z?) — 2° = 3 + higher order terms
3 . 6
cosz® —1 —x°/2
and so the quotient ———— goes to —/ =3 as x goes to 0.
sinx? — 22 —25/6

(7) Using the Taylor series for sinz, cosz and for e*:

sint —x = —z*/3!+ higher order terms
(cosz —1)(e* —1) = (—a?/21+a2*/4! —28/6! +...)(2z + (22)%/2! + (22)3/3! +...)
= —2° + higher order terms

S sinx —x —23/6 1 0
0 = — —asz — 0.
(cosx —1)(e?* —1) —3 6




&) Use the absolute ratio test:
(8)
|| n?+1 " n?+1
= . = |\T _—
(n+1)2+1 |z n?+2n + 2

Therefore the series converges absolutely if |x| < 1 and diverges if |z| > 1. If |z| = 1, the
ratio test gives no information, so we have to look at the endpoints separately:

An+1

>—>|x| as n — oo
G

= (—1)" 1
r=1 = Z (=1 an absolutely convergent series by comparison to —
— n?+1 n?

o0
1 1
r=-1 = E an absolutely convergent series by comparison to —

— n?+1 n?

Conclusion: This power series is absolutely convergent on [—1,1] and diverges everywhere
else.
(9) Use the absolute ratio test:
o N 2" . n e n 1] el 1
= . =—-—— |jr—1—==lz—1lasn —
2t (n41) er-lz—1" 2 n+1 2

The series converges absolutely if this limit is less than 1, diverges if this limit is greater

Qp41
G,

e

than 1 and must be checked when the limit is equal to 1. Since 3 |z — 1| is less than 1
2 2 2

whenever |x — 1| < —, so the series is absolutely convergent on (1 — —, 1+ —) and divergent
e e e

2
on (—oo,1 — —) and on (1 + —, 00). Now we check the endpoints:
e e
2 G no 2\ 1 -l
r—1= - gives the series ; <§> . (E) = ; -2 divergent series

_ > _1\n
r— 1= — gives E u a conditionally convergent (alternating) series.
e n

n=1

2 2
Conclusion: This power series is absolutely convergent on (1 — — 1 4+ =), conditionally
e e

2
convergent at 1 — — and divergent everywhere else.
e

(10) Since
sin(t?) = t* — (£*)° /31 + (*)° /5! — () /70 + -+ - + % + ...
when we integrate we get
fla)=a"/3—=a"/(7-3) + 2" /(11-51) — 2" /(15 - T) + - - + M;;?;éjf it
f(lOO)(O)

The coefficient of 1% in the Taylor expansion is, by definition, . But our compu-

100!
tation shows that ' appears with coefficient 0. Conclusion: f1%9(0) = 0.



(1) 4k 4k
(11) 1 — cos(2z?) Z . Dividing through by z we find
=1

TR TR

1—cos 22%) i 1)k+1 4’c =1 g3 1627 64z
=1

Since the coefficient of 2 is zero, we conclude that f®(0) = 0. Since the coefficient of z7

2.7

is —16/4! = —2/3 we conclude that f(7(0)/7! = —2/3 and thus f(7(0) = ——

(12)
6 9 12 -1 n—1,.3n
(a) ln(1+x3):x3—%+%—%+---+()++...
and this will be valid if z* € (—1,1], that is, if z is in (—1,1].
1 _ 2 4 _ .6 .8 N ko 2k 1
(b) T2 = l—z*+2* -2+ —kz:;( 1)¥ 27" valid on (—1,1).
ﬁ = r-—24+2d—a"+2% ... = Z(—l)kx%“ also valid on (—1,1).

e
Il
o

(13)
(a) e =14+ a2+ 2*/20 +28/31 + .- + 22" /nl + ... valid on (—o0, o)

1
1— 23

(b) =1+2°+2%+2° +- 4+ 2% + ... valid if |2*| < 1 that is, on (—1,1)

) A+ =142zr+2>=1422+2>+0-2+0-2*+0-2°+---+0- 2"+ ...

(13d) Find the first three terms of the Taylor series at x = 1 for f(x) = % We need
x

to compute the first two derivatives and evaluate at x = 1. First f(1) = 1/2. Next

g1 1
= (1+x>2m1_1
1) = (20 +a)? = ;_32 _ _i

1
—> Taylor expansion = =+ - =
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(14) Normally we cannot substitute /2 into a power series and still get a power series, but in
this case we are OK because the Taylor series for cosine contains only even terms:

_]_kk
reosy/r = x(1—x/2!+x2/4!—x3/6!+---+%—F...)
—1)k$k+1
= — 12/2| 3/41 — 24/6) 4 ... <—
= x—x°/2l 42’ /4l — 2?6l + - - + 25)] +...
(15)
2 gt b (—1)ka2*
1
(b) T = l—z+2> -2+ —- +(=1)"2" +... wvalidon (—1,1)
x
cos T x?  xt af
(c) el (1—E+Z—a+...>(1—x+x2—x3+x4—...)

= 1l—z+22(1-1/2)+23(-1+1/2!) +...

2 3
= 1l—a+ 73 + higher order terms
‘ 5 . f”/(O)
(15d) The coefficient of z° is on the one hand S and on the other hand we found by
multiplying power series that it was —1/2. Thus f‘”’(O) = -3!/2=-3.

(16)

t3 t5 (_1)kt2k’+l
Nt = t——+— —-p 2
s CTR R O TR ST
_ st t? N t* N (—1)ke2k N
t 31 5! (2k+1)1
This series is absolutely convergent on (—oo, 00) since
. 22 (2k 4+ 1)! . |t|?
lim . = lim =
k—oo | (2k + 3)! t2k k—oo (2k + 3)(2k + 2)
We can integrate this series to get the series expansion for F'(z):
:133 $5 (_1)kx2k+1
Flz)=2— — .
@) == 35+ 50 TR r DR

Absolute convergence is guaranteed on the same interval (—oo, c0). (Basic principle — you
can’t ruin absolute convergence by integrating or differentiating). Finally,

F29(0) = (20" (coefficient of 22°) =0 = F29(0) = 0.
1

(1"

FEU(0) = (21)(coefficient of z*') = (21!) -
(0) (211)(coefficient of z*') = (21!) 51 1]




(17)
e* —1

X

1
== (z4+2?/2 423+ +a"/nl+ .. ) =1+a/2+ 2?3+ + 2" nl+ ..
X

This is absolutely convergent on (—o0, 00) since

Gr | _ |2t b el —0asn— oo
ay, (n+1)! an1 n+1 '
(100) 0 1
fTo(!) = coefficient of 2'% = o = F1%9(0) = 100!/101! = 1/101.
(18)
g T
e — €T N P -
2! (n—=1)!  mn!
,  ad " 2+
ret = x+x —|—§+--~+ (n—1)! + o + ...

(1+z)e” = 1+4+20+22(1/2'+ 1) +2*(1/3!+1/2)) + -+ 2™(1/n! + 1/(n — 1)) + . ..

I+n ,
= ) n!"x.

n=0

We are also asked to find the first four terms of the Taylor expansion of 1/v/x2 + 1
about z = 0. First compute the expansion for (1 + u)~*/2 and then make a substitution.

f(0) =1
fllw) = (=1/2)(1 +u) 7 = f(0) = -1/2.
fr(u) = (=1/2)(=3/2)(1 + u)~* = ["(0) = 3/4.
f"(u) = (=1/2)(=3/2)(=5/2)(1 + u)™"* = f"(0) = ~15/8
— (1+u)™Y2=1—u/2+ (3/4)u?/2! — (15/8)u’/3! + ...
= (1+u) 2 =1-u/2+3u?/8 —5u?/16 + ...
— (1+23)7V2=1-22/2+32%/8 — 525/16 + ...

(19) Use the absolute ratio test.

(n+1P°+1 n+l 1

e — _ _3
211 nx2 1 lmdl—

So the series is absolutely convergent if the limit |z —3|/4 is less than 1, that isif |z —3| < 4.
The series is divergent if |z — 3| is bigger than 4. We must check the endpoints. If z—3 = 4,
that is, if x = 7 the series becomes

> n2+1
Zn—|—1

n=0

Ap+1 |z — 3

Qn

as n — OoQ.




(20)

(21)

7

which diverges because its nth term grows without bound as n goes to infinity. If xr—3 = —4,
that is, if z = —1, then the series becomes
00 2
a1
Z (=1) 1
n=0 n

which also diverges by the nth term test.
Conclusion: This series is absolutely convergent on (—1,7) and divergent everywhere
else.

Again use the absolute ratio test. In this case
Intl) o jow— 1] . Inn
ap n+1 In(n+1)

By L’Hopital’s Rule, both fractions go to 1 as n goes to infinity. So the series is absolutely
convergent if |2z — 1| < 1 and divergent if |2z — 1| > 1. Check endpoints:

1
20 —1=1gives Y ° . T divergent by the integral test
nlnn

(="

20 —1=—1gives Yy o
nlnn

conditionally convergent by Alternating Series Test

Conclusion: absolutely convergent on (0,1). conditionally convergent at z = 0. Divergent
everywhere else.

Use the absolute ratio test. This series converges absolutely when |x —2| < 1 (that is, for =
in (1,3)). The series diverges if |z — 2| > 1. If x — 2 = 1 the series diverges by comparison

1
to Z —. If z — 2 = —1 the series converges (conditionally) by the alternating series test.
n

(17)(9 17+1)2 16! - 182
: 17!< ! = cocticient of (2~ )" - % = 07(2) = 1118 /17° = ==
(22) The absolute ratio test give
n +1 ntl +1 n
Un+1| _ (n n) 2| = (n+1)- <n > el
Qp, n n
n+1\"

(23)

(24)

3= x-1=2 — theseriesisz

-1 = 2—1= -2 = the series is Z

Recall that

goes to e as n goes to 0o. So the quotient |a,41/a,| equals 0 if x = 0,

but for any other choice of x it goes to oo as n does. This power series diverges except at
its center x = 0.

In this case |a,41/a,| approaches |z|/5 as n goes to co. The series is absolutely convergent
on (—5,5). The radius of convergence is 5.

Here |a,1/a,| approaches |z — 1|/2 as n goes to co. So we have absolute convergence on
(—1,3), divergence if z > 3 or if x < —1. Check endpoints.

n+1
2n+1

,divergent by the nth term test.

n+1
2n+1
Conclusion: Absolutely convergent on (—1,3). Divergent elsewhere.

(—1)" ,again divergent by the nth term test



(25) To estimate v/11 we use the Taylor series for f(x) = \/x centered at the point x = 9. First
we compute the derivatives:

fz)=vr — f(9)=3

F@) = (12 P = 5 = 10)=

P =020 =1 (52) = PO=-1 3 -1

W

meoy e 3/ 1Y wer 311
f(z) = (=3/2)(~1/4)5~ —g(ﬁ) N U

We can see a pattern emerging in these derivatives, but for us it is enough to notice that
the numbers £ (9) will alternate in sign, and the Taylor series will be an alternating series
(after the first term, and as long as we choose x bigger than 9.)

A OGO Gl

~ / _
fo) ~ FO)+ PO -9)+ T u
r—9 (z—9? (z—-9)?
= 3 . —...
"6 T 20108 TRe3ial
Thus, taking x = 11,
2 4 8 1 1 1
Vil= 34+ - — - =34+ -4+ ——....
6 20108 T 8. 313 375 681

This series converges to /11 and after the first term it becomes an alternating series. We
conclude that

1 10
First order (tangent line) approx to v11 = 3+ 33
1 1
Second order approx. to 11 = 3+ 35
Third order approx. to v/11 3+ ! ! + =
X. = - — —+ —
PP 3 54 ' 486
Once the series alternates we know that the actual value v/11 lies between any two partial
sums. So L1 L1 .
3+ - ——<VII <3+ - ——+—
* 3 54 * 3 54 + 486

1 1 1
or in other words, v11 ~ 3 + 37 m and the error is at most 156"



