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Definitions

• A proper integral is a definite integral where the interval is finite and the integrand is defined
and continuous at all points in the interval.

– Proper integrals always converge, that is, always give a finite area
• The trouble spots of a definite integral are the points in the interval of integration that make it

an improper integral, i.e., keep it from being proper. They are of two types:
a. Points where the integrand is undefined or discontinuous
b. ∞ and −∞ are always trouble spots when they appear as limits of integration

• A simple improper integral is an improper integral with only one trouble spot, that trouble spot
being at an endpoint of the interval. Simple improper integrals are defined to be the appropriate
limits of proper integrals, e.g.: ∫ 1
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1
x
dx = lim
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1
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dx

– If the limit exists as a real number, then the simple improper integral is called convergent.
– If the limit doesn’t exist as a real number, the simple improper integral is called divergent.

Dealing with improper integrals

• First step: always locate all trouble spots and split the integral into simple improper integrals, then
deal with the pieces individually.

– If each and every one of the pieces converges, the original integral converges to their sum
– If even just one of the pieces diverges, the original integral diverges

• For certain simple improper integrals, it’s worthwhile to know offhand whether they converge or
diverge (though they aren’t difficult to compute directly):∫ ∞
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dx converges if a > 1; it diverges if a ≤ 1∫ 1
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dx converges if a < 1; it diverges if a ≥ 1∫∞
0
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Determining convergence or divergence: If a simple improper integral can be reasonably inte-
grated directly, then this is a fine way to determine whether it’s convergent or divergent. If not,
there are four primary tools at your disposal for determining whether a simple improper integral
converges or diverges (below, all integrals are presumed to be simple improper integrals, but for
simplicity the limits have been left off)

• Make sure that you’ve applied tests properly; explain what you’ve done and why your answer is
what it is. Usually, you will work backward, starting from the given integral and applying tests.
Your final answer, however, should be given starting with the last integral and working up to the
one that was initially given. For example, you might say:∫ ∞
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dx is convergent, so since 0 ≤ | sinx|
x2
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,

the comparison test for convergence shows that
∫ ∞
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| sinx|
x2

dx converges,

thus by the absolute convergence test, we know that
∫ ∞

1

sinx
x2

dx converges.



Absolute convergence test: If
∫
|f(x)| dx converges, then

∫
f(x) dx converges as well.

Note that this test is only useful for showing convergence; it’s often used to make the integrand
nonnegative so that the comparison test for convergence can be used.

Comparison test for convergence: If 0 ≤ f ≤ g and
∫
g(x) dx converges, then

∫
f(x) dx converges.

Remember the picture: To apply this test, you need a larger function whose integral converges.

Comparison test for divergence: If 0 ≤ f ≤ g and
∫
f(x) dx diverges, then

∫
g(x) dx diverges.

Remember the picture: To apply this test, you need a smaller function whose integral diverges.

Asymptotic functions (Recall that f(x) ∼ g(x) near a in case lim
x→a

f(x)
g(x)

= 1)

To determine the convergence or divergence of a simple improper integral, the integrand may be re-
placed by any other function asymptotic to it near the trouble spot, and the convergence/divergence
will remain the same. (Note that new trouble spots should never be introduced when using asymp-
totics.)

• Asymptotics near 0
– Anything having a nonzero limit as x→ 0 is asymptotic to that limit;

e.g., cosx ∼ 1, e−x ∼ 1

– If lim
x→0

f(x) = 0, then sin(f(x)) ∼ f(x);

e.g., sinx ∼ x, sin
√
x ∼
√
x, etc.

– A sum of powers of x is asymptotic to the lowest-powered term (constants are power zero);
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√
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.

– Asymptotics behave nicely with respect to products, quotients, and fixed powers;

e.g., (x+ 2)
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– Oscillating terms (e.g., sin 1
x or cos 1

x2 ) do not have any good asymptotic.
For such terms, use comparison instead.

• Asymptotics near ∞
– Anything having a nonzero limit as x→∞ is asymptotic to that limit;

e.g., tan−1 x ∼ π
2

– If lim
x→∞

f(x) = 0, then sin(f(x)) ∼ f(x);

e.g., sin 1
x ∼

1
x , sin 1√

x
∼ 1√

x
, etc.

– A sum of powers of x is asymptotic to the highest-powered term (constants are power zero);

e.g., 2 + 3
√
x+ x2 ∼ x2,
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– Asymptotics behave nicely with respect to products, quotients, and fixed powers;

e.g., (x+ 2)
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– Oscillating terms (e.g., sinx or cos(x2)) do not have any good asymptotic.
For such terms, use comparison instead.


