Note: Average was approximately 60 percent. Considered hard but fair.

1. (8 points) Compute the following integrals:
 (a) \(\int \frac{x}{(1 - x^2)^{3/2}} \, dx \)
 (b) \(\int x \ln(x + 1) \, dx \)

2. (12 points)
 (a) Let \(R \) be the region bounded by the \(x \)-axis and the graph of \(y = 1/(x^4 + 1) \) as \(x \) runs from 0 to \(\infty \). Find the volume of the solid of revolution obtained by revolving \(R \) about the \(y \)-axis.
 (b) Calculate the area of the surface obtained by revolving the graph of \(y = e^x \) between the points \((0, 1)\) and \((1, e)\) around the \(x \)-axis.

3. (16 points) Determine whether the following integrals converge or diverge. Give your reasons.
 (a) \(\int_0^\infty \frac{dx}{\sqrt{x} + x^3} \)
 (b) \(\int_0^1 \frac{\tan \sqrt{x}}{x + x^2} \, dx \)
 (c) \(\int_0^1 \frac{\ln(1 + x)}{x^3} \, dx \)
 (d) \(\int_1^\infty \frac{dx}{x \ln x} \)

4. (16 points) Determine whether the following series converge or diverge. Give your reasons.
 (a) \(\sum_{n=0}^{\infty} \frac{n^2}{\sqrt{n^6 + 1}} \)
 (b) \(\sum_{n=0}^{\infty} (-1)^n n^2 \frac{n^2 + 1}{n!} \)
 (c) \(\sum_{n=0}^{\infty} \frac{n^2 + 3^n}{n!} \)
 (d) \(\sum_{n=0}^{\infty} \frac{(n + 1)^n}{n + 3} \)
5. (12 points) Let \(f(x) = \sum_{n=0}^{\infty} \frac{1}{n+2} \left(\frac{x-2}{3} \right)^n \).

(a) For what values of \(x \) does the series converge? Give your reasons.
(b) Find \(f^{(50)}(2) \).

6. (12 points)

(a) Use Taylor series to compute \(\lim_{x \to 0} \frac{(e^x - 1 - x)^2 \cos x}{x(\sin x - x)} \).

(b) Find the Taylor series of \(F(x) = \int_0^x \frac{dt}{1 + t^4} \) centered at \(x = 0 \). For what values of \(x \) does it converge?

7. (12 points) For the questions below express your answers in the form \(a + ib \) where \(a \) and \(b \) are real numbers. Simplify your expressions for \(a \) and \(b \).

(a) Simplify \(\left(\frac{7 + i}{3 + 4i} \right)^{43} \).

(b) Solve \(z^4 = -8iz \).

8. (12 points) Find all real solutions to the following differential equations.

(a) \(y'' + 2y' + 10y = 0 \)

(b) \(2y'' + y' - 3y = 0 \)