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Abstract

We prove that for the class of UMD Banach spaces, the logn term in Pisier’s inequality [17] can
be replaced by a constant independent of n. This is applied to show that for UMD Banach spaces,
various non-linear notions of type p are implied by (Rademacher) type p.

1 Introduction

In [17], Pisier proved an elegant inequality for normed space valued functions on the discrete cube
{1,—-1}". He showed that for any such function f, for any 1 < p < oo and for any positive integer n
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where S;(w) is obtained from w by changing the sign of the i’th coordinate and P, is the normalized
counting measure on {1, —1}". This inequality is important in the non-linear theory of Banach spaces
as we shall explain below and also has a harmonic analytic flavor. It has also been shown by Talagrand
[18] that the logn factor in the inequality above is needed in general. Our initial motivation here was to
try and remove the logn factor for a wide class of normed spaces. As we shall see we managed to do it
for the class of UMD spaces (i.e., Banach spaces in which martingale differences are unconditional. We
shall say more about this notion at the end of this introduction). We begin with reviewing some notions
from the linear and then non-linear theory of Banach spaces.

The concept of (Rademacher) type of a Banach space has proved to be central to the modern theory
of Banach spaces, both in its analytic and its geometric aspects. A Banach space X is said to have type
p for some 1 < p < 2 if there is a constant 7" > 0 such that for every n and for every z1,...,z, € X the

following inequality holds:
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Here r1,...,r, are i.i.d. random variables which take the values +1 with probability % Every Banach
space has type 1, and X is said to have non-trivial type if it has type p for some p > 1. Type has proved
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to be useful in many ways, and in the past thirty years the study of this concept has developed into a
deep, and rich theory. Since a subspace of a space with type trivially has the same type (with the same
constant), type is instrumental in trying to decide if a given space isomorphically embeds into another.

As is seen in the definition of type, it is clearly a linear concept. When trying to decide Lipschitz
embedability of one normed (or more generally metric) space in another one is led to some non-linear
analogs of this concept. The first such concept, to the best of our knowledge (which actually predates
the definition of linear type), was introduced by Enflo in his study of the infinite dimensional version of
Hilbert’s 5’th problem [6],[7]. Enflo introduced the notion of roundness of a metric space, and proved
that under some additional technical assumptions, when a Banach space has non-trivial roundness, this
problem has a positive solution (see [2] chapter 17 for more details). A metric space (M, d) is said to
have roundness 1 < p < o if for every a;,a2,a3,a4 € M:

d(al, ag)p + d(a2, a4)” < d(al, ag)p + d(az, ag)p + d(a3, a4)p + d(a4, al)p.

This inequality easily tensorizes to an inequality for n-dimensional cubes in M. An n-dimensional cube
in M is a subset {zc}c.cf1,—13» C M. If C is an n-dimensional cube in M, the set of diagonals of C
is defined to be the set of unordered pairs diag(C) = {{ze,z_};¢ € {1,—-1}"}. An edge in C is an
unordered pair {z.,z.} such that € and € differ in only one coordinate. The set of all edges of C' is
denoted by edge(C). It is easy to verify that if (M, d) has roundness p then for every n dimensional

cube C C M:
da,b < Y dap)
{a,b}E€diag(C) {a,B}€edge(C)

In [8], Enflo generalized this concept to what is known today as Enflo type (or E-type). A metric space
(M, d) is said to have Enflo type p if there is a constant K > 0 such that for every n and for every
n-dimensional cube C' C M,

Y. dabdr<E Y de,p) (2

{a,b}ediag(C) {a,B}€edge(C)

It is obvious that for Banach spaces, Enflo type p implies type p. In [8] Enflo asked whether for Banach
spaces this non-linear concept is actually equivalent to type. In Theorem 6 below we solve this problem
positively for UMD Banach spaces. In particular, inequality (2) for X = L, ¢ > 2 and p = 2 seems to
be new.

Another notion of type for metric spaces is the so called non-linear type, which was introduced by
Bourgain, Milman and Wolfson [3]. A metric space (M, d) is said to have non-linear type p if there is a
constant K such that for every n and for every n-dimensional cube C C M,
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{a,b}ediag(C) {a.B}€edge(C)

Bourgain, Milman and Wolfson proved that a metric space has non trivial non-linear type (i.e. non-linear
type p > 1) if and only if it does not contain uniformly Lipschitz images of n-dimensional Hamming
cubes. (This is a nonlinear analogue of the previously known fact ([14] or see [13]) that a Banach space
has non-trivial (linear) type if and only if it doesn’t contain £7’s uniformly; i.e., the smallest isomorphism
constant between £7 and an n-dimensional subspace of X must tend to infinity with n). They also proved
that if a Banach space has type p > 1 then it also has non-linear type p; for every 1 < p; < p. This,
combined with results from the linear theory, implies the following striking geometric result: if a Banach
space contains n-dimensional Hamming cubes uniformly then it also contains ¢7’s uniformly. Bourgain,
Milman and Wolfson posed the question whether for Banach spaces type p implies non-linear type p.
In this paper we prove that the answer is positive for UMD Banach spaces (in this case, inequality (3)
seems to be new also for L, 1 < p < 2). In [17] Pisier proved that if a Banach space X has type p > 1



then it has Enflo type p; for every p; < p, and asked what is the precise relation between Enflo type
and non-linear type. We show in Theorem 6 below that for UMD Banach spaces Enflo type p implies
non-linear type p.

As remarked above, the non-linear type of a metric space (M,d) is related to the embedability of
Hamming cubes (i.e. the cubes {1, —1}" equipped with the ¢; metric) in M. We denote by ca({1,—1}")
the infimum over all constants L such that there is an embedding f : {1, —1}" — M with distortion less

than L, i.e.
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As was noted by Matousek [11] the results of Bourgain, Milman and Wolfson imply that for every p > 2
and for every € > 0 there is a constant C(p,€) > 0 such that for every n, ¢z, ({1,-1}") > C(p, €)nz .
The validity of the more natural estimate cr,({1,—1}") = Q(y/n) was left open. Our results imply
a positive answer to this problem. In fact, for any UMD Banach space X of type p, ex({1,—-1}") =
Q(nl_%) (and L,, p > 2 is a UMD space of type 2).

In [17] Pisier re-proved the main results of Bourgain, Milman and Wolfson via an important Poincaré
type inequality for functions on the discrete cube stated above as (1). Talagrand [18] proved that the
logn factor in Pisier’s inequality is best possible for general Banach spaces, but that it may be replaced
by an absolute constant (depending on p) when X is the real line. When p = oo, Wagner [19] proved
that the logn term can be removed when X is an arbitrary Banach space. In the present paper we prove
that when X is UMD, the logn term can be replaced by a constant (depending on X). This is the main
technical result here, the results concerning the non-linear theory of Banach spaces explained above are
corollaries of this result.

Pisier’s inequality for UMD Banach spaces (with the logn term removed) is proved in Section 2. The
martingale approach to Pisier’s inequality which we present is different from Pisier’s proof of (1). Section
2 also contain some related results including, in Theorem 2, a scale of inequalities, holding in any Banach
space, which include Pisier’s inequality (1). These inequalities involve the discrete Laplacian which is
defined by A = 31| 02 = >, 0, and we also use this operator to prove a reverse form of Pisier’s
inequality. Section 3 studies the connection between the boundedness of A~* on L,({1,-1}",X),
a>0, 1< p< oo, and the property of K-convexity of X (by a deep theorem of Pisier [16] this property
is equivalent to non trivial type). In Section 4 we apply the main inequality to prove the results,
concerning the non-linear theory of Banach spaces, described at the beginning of this introduction. In
Section 5 we discuss related problems concerning non-linear notions of type.

We conclude this introduction by reviewing some facts concerning the class of UMD spaces. Let X be
a Banach space, (2, F, P) a probability space and {F,,}32, a non-decreasing sequence of sub-o-algebras
of F. A sequence {d,}32, of integrable X-valued functions is said to be a martingale difference sequence
relative to the filtration {F,}52  if for every n > 0, d,, is F,-measurable and E(d,4+1|F,) = 0. The
space X is said to be UMD if for some 1 < p < oo there is a constant 8 > 0 such that for every X-valued
martingale difference sequence {d,}22, and every ws,...,w, € {—1,1}:

n
D wedy
k=0

The least such § is denoted by (,(X). Pisier proved (see [12]) that if (4) holds for some 1 < p < oo then
it holds for all 1 < p < oo.

UMD spaces are known to be superreflexive (i.e. they admit an equivalent uniformly convex norm).
There are however superreflexive spaces which are not UMD (see [15]). Examples of UMD spaces include
all the classical reflexive spaces, in particular L,, 1 < p < oo.
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2 Pisier’s Inequality Revisited

In this section we will prove our main result, i.e. that for UMD Banach spaces the logn term in (1) can
be replaced by a constant (depending on the UMD constant of the space, but not on n). Our approach
is based on martingale techniques, and is different from Pisier’s proof of (1). We will then return to the
original technique introduced by Pisier, and prove a scale of inequalities which include (1) as a limiting
case, and which hold in arbitrary Banach spaces. We will also prove a reverse form of these inequalities
which hold for K-convex Banach spaces.

We begin with some background and notation concerning harmonic analysis on the discrete cube.
Fix an integer n and let Q, = {1, —1}". We will denote by P, the uniform probability measure on 2,
ie. P,(A) = |A|/2" for every A C Q,,. For every Banach space X and ¢ > 1 we denote by L,(Q,,,X)
the space of all functions f : 2, - X equipped with the norm:

1/q
lans = ([ Mr@lrar@) "
For every A C {1,...,n} the Walsh function Wy : ,, — R is defined by:
Wa(w) = H wj.
icA
We also write Wy = 1. Any f: Q, — X can be decomposed as follows:
f@= Y fAWaw),
AcC{1,...,n}
where
) = [ FWa@ir)
For every f: Q, = X and A, > 0 define fy , : Qy x Q, = X by:
Poplw,w') = F) TTOwi + o).
Ac{1,...,n} i€EA

As was noted in [17], if X is a Banach space then for every f : @, - X, 0 < ¢t <1 and p >
L fei-ellz,@nx0.,x) < Ifllz,@.,x)- We recall for the sake of completeness the simple convexity
argument which proves this. For n = 1, we have to show that for every z,y € X:

Iz + Il + [lz = ylI” + l|lz + (2t — Dy||” + [|lz - (2¢ — Dyll* _
4 <

|z +yll” + llz — yll”

< | ,
- 2

and this is indeed true since the function s — ||z + sy||? + ||z — sy||? is convex and even, and hence
non-decreasing on [0, 00). We pass to general n by induction as follows: for every wy,w!, € {1,—1} define
g ¥n 1 Q1 = X by:

o= N fAWA e+ (L-twl) Y AU n)Wa

Ac{1,...,n—1} Ac{1,...,n—1}

9

It is obvious that for every w,w’ € Qy,:

7
ft,l—t(wawl) = gt,l—tn ((LU1, .. 7wn—1)7 (wlla .- )wln—la ))



Applying the induction hypothesis we get:
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If we denote for w € Q,,_1:

swy= Y, fAWaw),
AcC{1,....n—1}
and

yw)= Y. fAU{nhWa(w),
Ac{1,...,n—-1}
then:

wn,w

P, P (W) =
q(nn_l,x)d 1 (wn)d Py (wy,)
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For every i € {1,...,

n} we denote by D; the so called annihilation operator on L2(Qy,, R), which is
defined for every A C {1,...,n} by:

) _ WA\{i} ieA
DiWa = {0 i¢A
It is easy to verify that D}, the so called creation operator, is given by:

" _Waui¢ A
DiWA_{o icA

The discrete Laplacian is defined by AW, = |A|W4. For any power a we also denote by A% the linear

extension of the operator defined by A*W,4 = |A|*W4 (with A*Wy = 0 also for negative o). It is easy

to check that A = Y7 | DfD;. For every e > 0 the diagonal operators T¢, Se and T, are defined by
TWa = AW, SWa = ¢ A1 W4 and T!W4 =

|A|el41=1W 4. These operators can be interpreted as
follows:

T.f= (H(l +eW{i})> * f,

i=1



and n
[T, (1 + EW{i}) -1
€

Sef—/gnfsz x f.

In particular it easily follows that T is a contraction on Ly(Qy,,X) for every 1 <p< oo and 0 <e<1.
The following simple identity is fundamental:

n
Z D:T.D; =T
i=1
All the above operators extend to operators on Ly (€2, X) by taking D; ® Ix, Df ® Ix and A® Ix. By

a slight abuse of notations, we will still denote these operators by D;, D and A, respectively.
For every f : Q, — X we clearly have:

f(wla"'awi—17]-7wi+17'"7wn) - f(wla"'7wi—17_15wi+15"'7wn)

Dif(w) = 2

We will also use the related partial differentiation operator:

6zf(W) — f((/J) — g(SZ(W)) — wz’Dif(w)a

where S;(w) is obtained from w by changing the sign of the i’th coordinate.
Our main theorem is:

Theorem 1 Let X be a UMD Banach space and 1 < p < oo. Then for every f € Ly(Qy, X):

Hf—/m fap,

Proof: For k > 1 denote by Fj the o-algebra generated by wy,...,wg, i.e. the o-algebra of sets
which depend only on the first k£ coordinates. We also denote by Fy the trivial o-algebra. Fix some
wi,-..,wy, € {—1,1}. Since:
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By the UMD property of X, for any fixed wi,...,w!, € {-1,1}:

z wi0; f (w) = Z dy(w)
=1 Lp(Qn,X) k=1 Ly(Qn,X)
1 - ;
bl TIPS (Z w;) FAWaw)
p k=1 max A=k \icA Lp(Q20,X)

Taking expectation with respect to w’ we get:
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We now elaborate on the methods of [17] to prove a family of inequalities which include Pisier’s
inequality as an extreme case. The following identity is essentially contained in [17].

Lemma 1 Let X be a Banach space, f € L,(2,,X), g € Lg(Qy, X*), \,p > 0 and v € R. Then:

1 n
; . /angn <9A,u(w,w’),;wgDiA’Yf(w)> dPn(w)dPn(w') _

= Y AMTAR (g(4), fA).
AcC{1,...,n}

Proof:  Since the Walsh system {W4}acqi,...,n} forms an orthonormal basis of L(2, R), expanding
the products in the definition of g, , gives:

/Q B <g)\7,,(w,w'),ZwQD,-A7f(w)>dPn(w)dPn(w')=

i=1

:'“Z< > )\lAl_l!?(A)WA\{i},DiA”’f>

i=1 \AC{1,...n}icA

=p > (TaDig, D;A" f)

i=1



=u <Z D;-"TADig,A”f>

i=1

—u(Tg, A ) =p Y NATAPT (54), F(A4).
AcC{1,...,n}

Theorem 2 let X be a Banach space, 1 < p < oo and v > 0. Then for every integer n and for every
f € Lp(Qn, X):
<

Hf - / fdp,
2n LP(QTHX)

<ufi ()] |}

In particular, toking v — 0 we recover Pisier’s inequality.

Lp(Qn X2, X)

Proof: We may assume that f() = 0. Fix some 1/2 < A < 1. A simple change of variable shows

that for every u > 0:
AU 1 Ao N1
= =1 — . )
e = rar o s (3)] ®)

Put ¢ = 1%, and let g € Ly(Qy,X*) be such that [|gl|z, (.. x+) =1 and (g, Txf) = T2 fllz,(@..x)-
Now, using the fact that || Txf||,(.,x) > A" fllz,(@.,x) We get:

N f iz, @.,x) <49, Taf)

= Y AW, fw)

0#AC{1,...,n}
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TaA+y) \Jo T-¢|®
Assume first that 0 < v < 2. Then:
A ¥
1 A
<
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1/2 N7 A=ty
<2 log { = dt-l-/ ——dt
- /0 [ g(t>] 127 (1 —1)
1 1 Y A
52/ [log (—)] dt+2’y/ (1—t)"1dt
0 t 0
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Taking A =1 — n%H gives the required result. If v > 2 take A = 1 and use the estimate:
1 2l 1 % 2l
1 1 1
— |log (= ]| dt= th=1llog { = )| dt
f s (5] e e s (3)

=1
:r(7+1)z T S 3T(1 +7).
k=1

We now prove a reverse inequality. Before stating it, we recall some facts concerning K-convexity
that will be used in the proof. The Rademacher projection on Lo (€, R) is defined by:

[ W4if |4 =1
Rad(W,) = {0 if [ A] £ 1
When X is a Banach space, Rad extends to a projection on Ly(Q,,X): Rad ® Ix. Again, we will
slightly abuse the notation and continue to denote this projection by Rad. The K-convexity constant of
a Banach space X is defined by:

K(X) =sup ||Rad||L2(Qn,X)—>L2(Qn,X) .

X is called K-convex if K(X) < co. By a deep theorem of Pisier [16] (or see [13]), which we will refer to
in the sequel as the K-convexity theorem, X is K-convex if and only if X doesn’t contain #7’s uniformly.
It follows in particular that superreflexive spaces, and hence also UMD spaces are K-convex.

When f(w,w') is a function defined on Q,, x €,, with values in a Banach space X, we denote by
Rad,, (f) the Rademacher projection applied only to the variable w'.

Theorem 3 Let X be a K -convex Banach space, 1 < p < oo and v > 1. Then for every integer n and
for every f € Lp(Q,, X):

i w;DiA_'Yf(w)

i=1

<

Ly(Q25 X0y ,X)

canmfie (et o

In particular, when v — 1:

Lp(Qn,X)

i w;DiA_lf(w)

=1

< 20K (X)logn f—/ fdp,
Lp (9 X2, X) n

Lp(2n, X)

Proof: Assume that f()) =0 and 1/2 < X < 1. It is easy to verify that:
fri—t ; A
Rad,, (1——15 = Z f(A) Zt\ \ lngA\{i}
0£AC{L,m} 0=l

= Zn:w; > fAATDW . (6)

i=1 Ac{ly"',n}



Using (5) and the identity (6), applied to Ty, f we get:

i wgDiA_'Vf =

=1
- ﬁ/: (gw; ACEM (%)A f(A)tlAl—lDiWA> [Iog (%)]Hdt

~y—1

= ﬁ/o/\ (iw; > (Tl/Af)A(A)tlAllDz’WA> [log (%)] dt

i=1  AC{1,.,n}

_ ﬁ /0A Rado[(Tus Pl L t [Iog (%)]H dt.

Since [|T1/xfllz,(2..x) < A" Ifllz, (2. x), it follows that:

iwg D; A f

i=1

<
Lp(Q2n X2, X)

K(X) A A\ 77t
s AT () ( o 1—1¢ [log (;)] dt) 11|z, 2., x)

and the inequality follows just as in the proof of Theorem 2.

It is no coincidence that K-convexity appeared in the conditions of Theorem 3. We have in fact the
following simple characterization of K-convexity:

Theorem 4 Let X be a Banach space, and assume that for some integer n, f € R, 1 < p < o0 and
C >0, for every f € L,(Qp,X),

SKHf—/andPn

3 WD £ ()
i=1

Ly (25 X2, X) Lp(2n, X)

Then:
Rad,(X) < CK,

where C is an absolute constant (C = 100 will work).

Proof: Fix some a > 1 and f € L,(€,, X) with f(#) = 0. By Theorem 2,
1. 5
4—0||AB “fllz@n,x) <

<D wiDiA* AP f(w)

i=1 Lp(2n X2, X)
n

= ngDiAﬁf(w) < K| fllz 0., x)-
i=1 L, (R, xQ,,X)

Clearly lim,_so0o AP~ f = Rad(f). It follows that:
1

ﬁRadn(X) < ||Rad||L, (9, X)Ly (2.,x) < 40K.

10



The left hand inequality follows from Kahane’s inequality (with best constant) when 1 < p < 2, and by
duality when p > 2.
|

Remark: Going through the estimates in the proof of Theorem 2 and Theorem 4, we actually get
the estimate: Rad,(X) < v2K.

3 The Operator A7 and K-Convexity

In the proof of Theorem 4 we have used the fact that limy,_,oo A™® = Rad. We have in fact the following
stronger characterization of K-convexity:

Theorem 5 Let X be a Banach space. Then the following are equivalent:

1) X is K-convex.

2) For every a >0 and 1 < p < o0,

sup [|A™Y L, (Qn, X)Ly (@, X) < OO-
n

3) There exist oo > 0 and 1 < p < oo such that
sup [|ATY L, (@, X)Ly (2, X) < OO-
n

Proof:

1)=2) Assume that X is K-convex and fix @ > 0,1 < p < oo. For every k = 0,1, ...,n, denote by Ry,
the projection:
Ref =) f(AWa.

|A|=k

In particular Rof = f(@) and R; = Rad. We first bound ||Rg||z, (0, ,x)—L,(2.,x)- This part is a
repetition of an argument from [16], in which it is stated for p = 2. Since 1 < p < 00, Ly(Qy, X) is also
K-convex. Pisier’s K-convexity theorem ([16] or see [13]) implies that there are ¢, M > 0 such that if
we define:

V={2€C;Rez >0, |arg 2| < ¢},

and: "
S. =) € Ry,
k=0

then sup,cv [1S:1z,(@.,x)=L,(@.,x) < M for all n (where X now denotes the complexification of the
original X). Put a = since for all —m <b<m a+ibeV,wehaveforallk=1,...,n:

T
tang?

1Rkl L, (20, X)Ly (Q0,X)

< Me*e.
Lp(Qn,X)—Lp (2, X)

eka 7l’ "
E_/_ﬂ. Sa_,_ibe’ db

Since by (5):
Aa—i/ltAI(I Ro) (1 ! a_ldt
- F(a) o 0 Og t bl

11



we get:

AT L, (2, X)Ly (2, X) <

1 e 2 1 a—1
< / t2~1(I — Ry) (log = dt
I'(a) |[Jo t
Lp(2,X) =Ly (2, X)
1 1 1 a—1
+— / t2~I(I — Ry) (log —) dt
F(Oé) e~ /2 t Lp(Qn,X)
p(Q2n, X)—=Lp(Qn,X)

n

9 e”%/2 o1 1 a—1
< — t" R, log — dt
~TI'(a) /0 Z k (og t)
k=1 Lp(Qn,X)—Lp(Qn,X)
2 1 1 a—1
+—/ (10g —) dt
(@) Je-ay2 Lp(Qn,X)—Lp(2n,X) t
9 e~ /2 n . . 1 a—1
<" “1pMeke ) (log - dt
=T Jy (? ¢ )(Ogt>
- (log )
—a/2
2 Me® —e/2 1 1 a—1 4e® 1 1 a—1
< — |log ~ dt + — log = dt
= T(a) / 1 ten ("gt> *r(a)/o (Ogt)

aMeo [1 1>t
< log = dt + 4e% < 4(M + 1)e®
—r(a)/o(°gt) et < AM A L)e

which is the required result.

L
t

+

3)="1) Another application of Pisier’s K-convexity theorem shows that if X is not K-convex then it
contains £7’s uniformly. It is therefore enough to show that for every a > 0,

(AT (@ L1 (@0 RY) = Ly Ba (20 D) F oy

is an unbounded sequence.
Define f € L,(Qy,, L1(Qp, R)) by:

fW) (W) =2"1q,. 1)(ww') = Z Wa(w)Wa(w).

AcA{1,...,n}
Then ||f||LP(Qn,L1(Q",R)) =1 and:
A f (W)W) =
1
= Y | |aWA(w)WA(w')
m;éAC{l,...,'n,}
1 1 |A]-1 1 a—1
- - )] (log - dt
1‘(04)/0 > T WaW) (ogt)
0#AC{l,...,n}
1 n oty a—1
: / iy (1 +wieit) — 1 (1ogl> dt.
a) Jo t t

Hence:

L(a)PIATFIT, (0. 11 (00 m)) =

12



/1 T, (14 wiwit) — 1 logl a—1 dt
o ¢ ¢

dpP, (w')) dPp(w)

- (/.
= </Qn /)1 Hy:l(l-:wét) — 1 (log%>a_ldt

For every w € Q,, define:

dPn(w')> :

Nw) = [{1<i <miw; = —1)].
By symmetry, P, (N(w) > 2) > 1. Hence, for n large enough:

IAT AT, (@ 21 (20 ) =

_ 1 / /1 (1 _ tZ)N(w)(l + t)n72N(w) -1 (log l)al W
I'(a) Q, |Jo t

t
1 _ 42 n/2 a—1
S 1 / 1—-(1-1¢) (1og1) &
2F(a) 1/vn t t

dP,(w)

Remark: It follows that for K-convex spaces, the right hand side of the inequality in the statement of
Theorem 2 is larger than the right hand side of the inequality in the statement of Theorem 1.

4 Applications to the Geometry of Banach Spaces

In this section we apply Theorem 1 to prove the geometric results that were announced in the introduc-
tion. Recall that a subset C' = {z}.cq, of a Banach space X is called an n-dimensional cube. As in
the introduction, we denote by edge(C) and diag(C) the set of edges and diagonals of an n-dimensional
cube C' C X, respectively. For every u,v € Q,, we write u ~ v if u and v differ in exactly one coordinate.

Theorem 6 Let X be a UMD Banach space and p > 1. Then the following are equivalent:
1) X has type p.

2) For every 1 < q < oo there is a constant K > 0 such that for every n-dimensional cube C C X:

Yo lla-blr<K Y <Z||u—v||">m.

{a,b}€diag(C) ueC \v~u

3) There is some 1 < ¢ < o0 and K > 0 such that for every n-dimensional cube C C X:

Yoo lla-blr<K Y <Z||u—v||">m.

{a,b}€diag(C) ueC \v~u

13



Proof:

1) = 2) By Theorem 1 for every 1 < ¢ < oo there is a constant K > 0 such that for every n and for

every f € L,(Q,,X):
- dP,
-/,

Recall that by Kahane’s inequality, the fact that X has type p implies that for every 1 < ¢ < oo there
is a constant Ty such that for every z1,...,2, € X,

n q n a/p
/ S wlz| dPa!) < T, <Z ||g;i||p) .
Q|| i=1 i=1
If C ={z,}ueq, is a cube in X define f: Q, = X by f(w) = z,. Now:

S ==

{a,b}€diag(C)

<K

Z wiD; f(w)
i1

Lq(Qn,X) Lg (R X2, X)

—on /Q ) = S aP,

<wpt [ g- [ gap,
Q. Q.

n
< gnta—1frq /
- Qp Xy

q
dP,

APy (w')dPp (w)

wiD; f(w)
1

i=

n q/p

(ZnDif(w)np) AP ()
a/p

KT, »

IS (Sh-r)

u€eC \v~u

< ot KT, /
Q

n

3) = 1) Fix 21,...,2, € X. Define a cube C = {2:}ccq, by:

n
Ze = E €;L;.
i=1

Then, by Kahane’s inequality :

o\ 1/2

c 1/q
1
- (2— > - b||q)

n
E €iT;4
i=1

{a,b}Ediag(C)

14



1/q

KC q/p
<7 Qinz(Znu—vnP)

ueC \v~u

n 1/p
KC,
-5 ()
=1

so that X has type p. [

Remark: The case ¢ = p in Theorem 6 shows that for UMD Banach spaces, Enflo type is equivalent
to type. The question whether this holds for a general Banach space was raised in [8]. Unfortunately,
there are examples of Banach spaces with non trivial type which are not UMD [15] (although we can
safely say that these can’t be found among “common” Banach spaces).

Remark: A simple application of Theorem 6 shows that for UMD spaces both type and Enflo type
imply non-linear type. This answers, for the class of UMD spaces, questions posed by Bourgain, Milman
and Wolfson [3] and Pisier [17]. Indeed, if X is UMD and has either type p or Enflo type p then, since
necessarily p < 2, by Theorem 6 there is a constant K > 0 such that for every n-dimensional cube

CcX:
Yo lla-b<

{a,b}E€diag(C)
2/p
<K> <Z||U—U||p>

ueC \v~u

<Kni ' 3 fu—vl
{u,v}€edge(C)

We now prove a non-linear analogue of the fact that “equal norm type 2” implies type 2.

Theorem 7 Let X be a UMD Banach space and 1 < p,q < co. Then the following are equivalent:
1) There is a constant K > 0 such that for every n-dimensional cube C C X :

Yo lla-bP<KY (Dm-mﬁ)pﬂ,

{a,b}ediag(C) ueC \v~u

2) There is a constant K > 0 such that for every n-dimensional cube C C X with the property that for
every {u,v} € edge(C), |lu —v|| =1:

> lla—b|? < K2"n/2,
{a,b}Ediag(C)

Proof: The implication 1) = 2) is an application of Theorem 6. In the other direction, repeating
the argument that appeared in the proof of Theorem 6 we get that for every x,...,z, € X such that
for every i =1,...,n, ||z;|| = 1,

1/2

E €iTq

i=1

E < K'v/n.

Hence, X has “equal norm type” 2, which implies that X has type 2 ( This is a well known observation
of Pisier. See [9]). Another application of Theorem 6 gives the required result. [ |

Finally, we settle the gap noticed by Matougek [11] concerning lower bounds on the distortion required
to embed Hamming cubes in L,, p > 2 (or more generally, in UMD spaces of type p):
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Theorem 8 Let X be a UMD Banach space with type p. Then there is a constant ¢ > 0 such that for
1
every n, cx (W, || - |l1)) > en' 7.

Proof: Let f:Q, — X be an embedding such that for every w,w' € Q,,,
llw =o'l < NIf(w) = fFW)II < Lflw = &'[|1-

Now, C = {f(w)}weq, defines a cube in X. Clearly |diag(C)| = 2" and |edge(C)| = n2". Since by
Theorem 6, X has Enflo type p, there is a constant K > 0 such that:

2"nP <

< >, daby
{a,b}€diag(C)

<K > d(u,v)” < EKn2"L".
{u,v}€edge(C)

_1
Hence L > =4 -n'"». [ ]

5 Concluding Remarks

Our original motivation for studying non-linear type, came from a problem concerning the notion of
Markov type. Let (M, d) be a metric space. A stochastic process {Zy}72, is called a symmetric Markov
chain on M if it is a stationary Markov chain whose state space is a finite subset of M with a symmetric
transition matrix and such that Zy is uniformly distributed. In other words, there are z1,...,z, € M
and a symmetric stochastic m x m matrix A, such that for every k, P(Zyy1 = x;|Zy = x;) = a;; and
P(Zy = x;) = % for every 1 < 4,5 < m. The space M is said to have Markov type p > 0 if there
is a constant K > 0 such that for every symmetric Markov chain on M, {Z;}2,, and for every n,
Ed(Z,,, Zy)? < KPnEd(Z,,Zp)?. The least such K is denoted by M,(M). This notion was introduce
by K. Ball in [1] in connection with extension problems for Lipschitz maps. As is the case with other
non-linear notions of type, Markov type proved itself useful in Lipschitz embedding problems (see [10]).
In [1], Ball posed the problem whether L,, 2 < p < oo, has Markov type 2. Apart from the intrinsic
geometric and probabilistic interest in this question, a positive solution would imply results concerning
extensions of Lipschitz function between L, spaces and give lower bound on the distortion required to
embed graphs with large girth in Ly, p > 2 (see [1],[10] for more details). Our starting point was the
following

Proposition 1 Let (M, d) be a metric space with Markov type p > 1. Then M also has Enflo type p.
To be more precise, for every n-dimensional cube C C M:

d(a,b)P <24-6PMu(M)P > d(a, B)P.
{a,b}€diag(C) {a.B}€edge(C)

Having realized that a positive solution to the Markov type 2 problem would imply that L,, 2 < p <
oo has Enflo type 2, it was somewhat discouraging that the only space that was known to have Enflo
type 2 was Hilbert space. The purpose of this article was to remedy this. The class of spaces with Enflo
type 2 is now known to include UMD spaces with linear type 2 (particularly L,, 2 < p < o0), and as we
shall see below, metric trees also have Enflo type 2. Unfortunately, we are unable to prove a result in
the reverse direction of Proposition 1.

In this section we will prove Proposition 1, and then proceed to study the Markov type of trees.

Denote by ‘H the Hamming metric on {25,:

H(w,7) = {1 <i<njw; # T}

We will begin with the following technical lemma:
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Lemma 2 Let (M,d) be a metric space and f : Q,, — M. For every p > 1 and every integer 3 < k <n
the following inequality holds:

> d(f(w) , f)P <

H(u,v)=n
() > d(f > d(fw), f(v)P

H(u,v)=k " H(u,v)=1

Proof: For every u,v € (1, define:
A(u,v) = {(a,b) € Q,, x Qp; H(u,a) = H(a,b) = H(b,v) = k}.

Assume first that n — k is even. In this case, whenever H(u,v) = n, A(u,v) # 0. Indeed, let a be
any element of €2,, which is obtained from u by flipping k£ coordinated, and b be any vector which is
obtained from a by flipping 3’“ % of those k coordinates, and "2;’“ of the remaining n — k coordinates.
It is easy to check that in thls case (a,b) € A(u,v) (the conditions k¥ > n/3 and n — k even ensure
that (n — k)/2 and (3k — n)/2 are integers). By symmetry, the size of A(u,v) does not depend on the
choice of u,v with H(u,v) = n. Denote this size by N. Again, the symmetry of the cube implies that
if we consider the union of all the (3 - 2")-tuples ((4,Guv), (Quv;buv), (buvs V)3 (u,v)=n OVer all possible
choices of (ayy,buy) € A(u,v) for each u,v € Q,, with H(u,v) = n, then each pair (z,y) € Q, x Q,, with
H(z,y) = k appears in it with the same multiplicity, say M. The total number of these (3 - 2™)-tuples
is N2", since there are 2" pairs (u,v) € Q, x Q, with H(u,v) = n. On the other hand, since there are
2"(7) pairs (z,y) € Q, x Q, with H(z,y) = k, it follows that

3.97 . N2" = .2 (Z)

For every (u,v) € Q, X Q, choose (ayy,byy) € A(u,v). Then:
Y. d(f(w), fw) <
H(u,v)=n

< Y (W), flaw)) + d(f (), fBun)) +d(f (buo), £(0)]P

H(u,v)=n

S 3p—1 Z [d(f(u)a f(au’u)p + d(f(auv: buv))p + d(f(buv)’ f(v))p]

H(u,v)=n

Summing up over all possible choices of (ayy, byy) We get that:

NZY D d(f(u), )P <3TTIM Y d(f(w), f)7,
H(u,v)=n H(u,v)=k
so that:
D d(f(w), fv Y d(f(w), f@)P.
H(u,v)=n (k) H(u,v)=k

This proves the required result (when n — k is even).

When n— & is odd the proof is similar, with an added complication since in this case A(u,v) = @ when
H(u,v) = n. We proceed as follows. Similar to the above reasoning, A(u,v) # 0 whenever H(u,v) =
n — 1. In this case denote the size of A(u,v) by N;. Let M; be the multiplicity of each pair of points
with Hamming distance k in the union of all the (3n2")-tuples ((&,@uv), (Guv; buv); (Buv, V)2 (w,v)=n—1
over all possible choices of (ayy,byy) € A(u,v) for each u,v € Q,, with H(u,v) =n — 1. We get that:

3n2" NI = M, 2" (:)

17



Applying the triangle inequality as before we get:

NPT d(f(w), f)P <3PTIML Y d(f(u), f(0)P,

H(u,v)=n—1 H(u,v)=k
so that: 3on
Y df(w), )P < T d(f (u), f(v))".
H(u,v)=n—1 (k) H(u,v)=k

For every E C {1,...n} and z € Q, denote by Sg(z) the vector obtained from z by flipping the

coordinates in E. Now:

> d(f(w), f)P <

H(u,v)=n
<Y Y S(u))) + d(F(Sp(w), )P
|E|=n— 17{(“”)‘”
TS Y ), F(Ss @) + d(f(Ss(w)), F0))7]

|E|l=n—1H(u,v)=n

:2,: > d(f(u),f(v))”+2: S d(f ), f)

H(u,v)=n—1 H(u,v)=1

>, s+

’H(u v)=k H(u,v)=1

I A

Proof of Proposition 1 Fix an integer n. Let {Z}{2, be the standard random walk on Q,, i.e. Zg
is uniformly distributed on Q,, and Zj1 flips each coordinate of Z; with probability % Clearly,

EH(Zk+1 5 Z0)|H(Zk, Zo)) =

= (2, 20) + 120 iz, 7) -

H(ZkaZO)
n
2

Hence:
EH(Zus1, Zo) = E[E(H(Zis1, Z0)H(Zk, Z0)] = (1 - —) EM(Z:, Z0) +

Solving the recursion we get that:
n 2\*
Zyp,Zg)=—[1-(1-—= .
BM(Z4. Z0) = [ (1-2) ]

Now, EH(Zn, Zo) > 2 (1 — %) > 32. Hence:

w

on
8
so that P (H(Zn, Zo) > %) > 5.

< EH(Zn, Zo) gg

18



Now, fix a function f : Q, - M. Using the the Markov type p condition for the symmetric Markov
chain {f(Zy)}32, we get:

Ed(f(Zn), f(Z0))? < Myp(M)PnEd(f(Z1), f(Z0))?

On the other hand, applying Lemma 2 we get that:

Ed(f(Z )f(Zo))p
> Y P(H(Zn, Z0) = K)EA(f(Z0), }(Z0))"|H(Zn, Zo) = F)

k>n/3
= > P(H(Zn, ) Y df(w), f)”
k>n/3 H(u,v)=k

o P(H(Zn, Z0) > 1/3) S df(w), f(v)”

- n—1
6v2 H(u,v)=n
2p—1
- Y dfw), f)P],
n
H(u,v)=1
and this implies the required result. [ ]

We end by adding one more family of metric spaces to the class of spaces with non-linear type 2,
namely we will prove that metric trees have type 2. This fact was noticed by the first named author in
collaboration with Nathan Linial. We thank him for his kind permission to include the proof here.

A metric space X is a metric tree provided it is metrically convex and there is a unique arc joining
each pair of points in X. Note that metric convexity implies that the unique arc joining a pair of points
in a metric tree must be a geodesic arc. For more information on metric trees we refer to the book [5].

Proposition 2 Let T be a metric tree. Then T has roundness 2 (i.e. Enflo type 2 with constant 1).

Proof:  As remarked in the introduction, a simple tenzorization argument shows that it is enough
to prove the roundness 2 condition for 2 dimensional cubes in 7. Any four point in 7 must be in the
following “double fork” configuration:

Hence, depending on whether {z,w}, {z,y} or {z, 2} are taken to be diagonals, our claim reduces to
the following three inequalities which should hold for every a, b, c,d,e > 0:

(a+c+e)?+b+c+d?<(a+b?+(d+e)’+(a+c+d?+(b+c+e)?,
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(a+b)?+(d+e)?<(a+c+d?+(a+c+e)+(b+c+e)+ (b+c+d)?,
(a+c+d?+b+c+e)? <(a+b)?+(d+e)+(a+c+e)+(b+c+d?

Expanding the squares, these inequalities are easy to verify. [ ]

Remark: Proposition 2 shows that in the non-linear setting, even ¢; objects such as metric trees can
have type 2. Since metric trees contain line segments, they cannot have Enflo type greater than 2. We
do not know whether metric trees have Markov type 2.
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