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Abstract

We design a randomized polynomial time algorithm
which, given a 3-tensor of real numbers A = {a;jx}}'; 1.—
such that for all i, j, k € {1,...,n} we have a;;j, = a;r; =
Akji = Qjik = Qkij = Qjki and @ik = 55 = a;j; = 0,
computes a number Alg(A) which satisfies with probability
at least %

logn n
el ) nzixr, < Alg(A
<\/Fn'> me?yﬁiyl_jiz aijrrizjey < Alg(A)

i,j,k=1

n

< max ik TiTiTh-

>~ :rE{fl,l}"_Z ijkLiljlk
1,5,k=1

On the other hand, we show via a simple reduction

from a result of Hdastad and Venkatesh [22] that un-

der the assumption NP ¢ DTIME (n(log")o(l)),

for every € > 0 there is no algorithm that approxi-
mates MaXge{_1,1}n» Z?] k1 QijkT;T ;T Within a factor

of 200 ' in time 20087

Our algorithm is based on a reduction to the problem
of computing the diameter of a convex body in R™ with re-
spect to the Ly norm. We show that it is possible to do so

up to a multiplicative error of O (1 /&), while no ran-
domized polynomial time algorithm can achieve accuracy

0 (‘ / @) This resolves a question posed by Brieden,

Gritzmann, Kannan, Klee, Lovdsz and Simonovits in [10].
We apply our new algorithm to improve the algorithm of
Hastad and Venkatesh [22] for the Max-E3-Lin-2 problem.
Given an over-determined system € of N linear equations
modulo 2 in n < N Boolean variables, such that in each
equation appear only three distinct variables, the goal is
to approximate in polynomial time the maximum number
of satisfiable equations in £ minus % (i.e. we subtract the
expected number of satisfied equations in a random assign-
ment). Hastad and Venkatesh [22] obtained an algorithm
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which approximates this value up to a factor of O (\/N )

We obtain a O ( L ) approximation algorithm. By re-

logn
lating this problem to the refutation problem for random
3—CNF formulas we give evidence that obtaining a signif-
icant improvement over this approximation factor is likely
to be difficult.

1 Introduction

A function f : {—1,1}" — R has Fourier expansion

~

f(@) = Xscq,.ny f(S)[;es zi- Assume that f has
a succinct representation in phase space, i.e. only poly-
nomially many of the Fourier coefficients f(S) are non-
zero. Can we then compute in polynomial time a good ap-
proximation of the maximum of f over the discrete cube
{—1,1}"™? In other words, if we are given polynomially
many Fourier coefficients, is there a way to approximate
maxge(—1,13» f(x) while only looking at the values of f on
a tiny part of the cube? As we shall see below, under widely
believed complexity assumptions the answer to this ques-
tion is generally negative. But, under some additional struc-
tural information on the support of he Fourier transform it is
possible to achieve this goal, and when this occurs such phe-
nomena have powerful algorithmic applications. Currently
our understanding of this fundamental problem is far from
satisfactory, and the purpose of the present paper is to inves-
tigate cases which have previously eluded researchers. As
a result, we uncover new connections to problems in algo-
rithmic convex geometry and combinatorial optimization.
The Fourier maximization problem described above has
been investigated extensively in the quadratic case, partly
due to its connections to various graph partitioning prob-
lems. In [3] it has been shown that a classical inequal-
ity of Grothendieck can be used to give a constant factor
approximation algorithm for computing the maximum of
functions f : {—1,1}" x {-1,1} — R which have
the form f(z,y) = Y7, >7L, aijw.y;. This algorithm
has various applications, including algorithmic versions of
Szemerédi’s regularity lemma. In the non-bipartite case



several researchers [27, 25, 12] have discovered an algo-
rithm which computes up to a factor O(logn) the max-
imum of functions f : {—1,1}" — R which have the
form f(x) = szzl a;jx;z;, where the matrix (a;;) is
assumed to be symmetric and vanish on the diagonal. This
result was shown in [12] to imply the best-known approxi-
mation algorithms to graph partitioning problems such as
MAXCUTGAIN and Correlation Clustering. In [2] the
structure of the “Fourier support graph”, i.e. the pairs
{i,j} € {1,...,n} for which a;; # 0, was taken into ac-
count. It was shown there that there exists an approximation
algorithm which approximates the maximum of f up to a
factor O(log®¥) = O(log x), where ¥ is the Lovasz Theta
Function of the complement of the Fourier support graph,
and Y is the chromatic number of this graph. We refer to [2]
for more information on this topic, as well as its connection
to the evaluation of ground states of spin glasses.

Negative results on the performance of the above men-
tioned algorithms, as well as complexity lower bounds were
obtained in [3, 2, 5, 24, 1]. In particular, in was shown
in [2] that the semidefinite relaxation that was used in
the O(log n) algorithm discussed above had integrality gap
Q(logn). Moreover in [5] it was shown that unless NP C

DTIME (n0(<1°g ">3)) there is no polynomial time algo-

rithm which approximates the maximum of ZL" =1 Qi Tl
on {—1,1}" up to a factor smaller that (logn)?”, where ~ is
a universal constant. It was also shown in [5] that under the
assumption of the existence of sufficiently strong PCPs it is
also NP-hard to approximate this problem to within a factor
of O(logn).

The motivation for the present paper is to study the case
of functions whose Fourier expansion is supported on the
third level. Specifically, given a 3-tensor of real numbers
A= {aijk}?,j,kzl such that for all ¢,5,k € {1,...,n}
we have a;jr = Qikj = Qrjs = Qjik = Okij = Ojki
and a;;, = ai; = a;; = 0, we wish to approximate
the maximum of the function f : {-1,1}" — R given
by f(z) = 327, k=1 @ijkaiz;jzy. Despite being a modest
goal, this problem has eluded researchers for some time,
as the “obvious” semidefinite programming approach that
was previously applied to the quadratic case does not gen-
eralize to the degree-3 case. As we shall see below, this
issue reflects a major difference from the quadratic case:

Unless NP C DTIME (ntosm
there is no algorithm that approximates the maximum of
f within a factor of 2(l°g ™' in time 20967 On the
other hand, we will derive here a polynomial time algorithm
which approximates the maximum of f to within a factor of

), for every € > 0

0] ( 1Ogn) . This algorithm is based on a novel connection

between this problem and the problem of efficient compu-
tation of the diameter of convex bodies under the /1 norm,
which is the main new insight of the present paper. We

shall now describe our new approach, and its application to
a fundamental problem in combinatorial optimization: The
Max-E3-Lin-2 problem.

We associate to every 3-tensor A as above a convex body
K4 C R™. The body K4 admits a polynomial time so-
lution to the weak optimization problem for linear func-
tionals (see [19, 18] for the relevant background on convex
optimization). Moreover, we show that the /7 diameter of
K4, ie. diamg (K 4) := max,pek, ||a — b||1, is within a
constant factor of max,,e{—1,1} sz7k:1 QiK% T;Tk. This
step is crucially based on an application of Grothendieck’s
inequality. We therefore reduce the level-3 Fourier maxi-
mization problem to the following question: Given a convex
body K C R™ with a weak optimization oracle, approxi-
mate in oracle-polynomial time its ¢} diameter diam; (K).

Such problems have been studied extensively in the lit-
erature, though mostly in the context of the Euclidean ¢
diameter (see for example [6, 8, 18, 10, 9, 31] and the ref-
erences therein). In particular, a famous result of Barany
and Fiiredi states that no deterministic polynomial time al-
gorithm can approximate the ¢4 diameter of convex bod-

ies up to a factor of o (, /logn). In the paper [10] of

Brieden, Gritzmann, Kannan, Klee, Lovasz and Simonovits
it is shown that unlike the case of volume computation, ran-
domization does not help when it comes to approximating
the Euclidean diameter of convex bodies: The same lower
bound holds also for the accuracy of randomized oracle-
polynomial time algorithms. The paper [10] also studies
the case of the 7 diameter, or more generally the £} di-
ameter, i.e. diam,(K) := max,per, |l — bllp,. It is
shown there that there is an oracle polynomial time algo-
rithm which approximates diam; (X) to within a factor of
O (y/n), and no polynomial time algorithm can achieve ac-

(ﬂ> When 1 < p < 2 it is shown

logn

curacy better than O
in [10] that diam,,(K') can be approximated within a factor

0] (W) , and no polynomial time algorithm can

\ /L). These bounds

achieve accuracy better than O, ( Togn
coincide only when p = 2, and the question of closing the
gap in the remaining cases was raised in [10] (see also [9]).
Here we resolve this problem by showing that the accuracy

threshold for randomized oracle-polynomial algorithms that
compute diam,, (K) is © ( n ) forall1 < p < 2. Our

logn

improved accuracy lower bound when p = 1 is a slight vari-
ant of the argument in [10]. The main issue is obtaining an
improved approximation algorithm—our approach is differ-
ent from the polyhedral approximation of the £ ball that
was used in [10] (though we believe that the construction
of [10] is of independent interest).

We apply the results described above to obtain a sig-
nificant improvement to the Max-E3-Lin-2 algorithm of



Hastad and Venkatesh [22]. This fundamental problem
is described as follows. Consider a system £ of N lin-
ear equations modulo 2 in n Boolean variables z1, ..., z,,
such that in each equation appear only three distinct vari-
ables. We assume throughout that N > n (thus avoid-
ing degenerate cases). Let MAXSAT(E) be the maximum
number of equations in £ that can be satisfied simultane-
ously. A random assignment of these variables satisfies
in expectation % equations, so in the Max-E3-Lin-2 prob-
lem it is natural to ask for an approximation algorithm to
MAXSAT(E) — &. This problem was studied extensively
by Hastad and Venkatesh in [22], where the best known
upper and lower bounds were obtained. In particular, us-
ing the powerful methods of Hastad [21] they show that
unless NP C DTIME (n(log”)o(l)>, for every ¢ > 0
there is no algorithm that approximates MAXSAT(€) — &
within a factor of 20°6™" ™% in time 20°5™°" " More-
over, they design a randomized polynomial time algorithm
which approximates MAXSAT(E) — & to within a factor
of O (\/N )

Let £ be a system of linear equations as above. Write
a;jx(E) = 1 if the equation z; + z; + 2, = 0 is in the
system £. Similarly write a;;5(£) = —1 if the equation
zi + zj + 2 = lisin £. Finally, write a;;%(£) = 0if no
equation in & corresponds to z; + z; + 2. Assume that the
assignment (z1,. .., zx) satisfies m of the equations in £.
Then 327", oy @ik (E)(=1)%F5 1% = m — (N —m) =
2 (m — &). It follows that

n

max Z aijk(é’)xixjxk

i€{—-1,1} <
@€l }w,kzl
n
= max E aijr(E)(—1)7t=ite
z;€{0,1}  “
i,j,k=1

= 2 (MAXSAT(&') - ‘;V) .

n
logn

the Max-E3-Lin-2 problem. Note that when N = ©(n) our
improvement over the Héstad-Venkatesh algorithm is only
logarithmic, but typically N can be as large as © (N?).
The above reasoning also allows us to apply the Hastad-
Venkatesh hardness result for Max-E3-Lin-2 that was de-
scribed above to the level-3 Fourier maximization problem.
In particular it follows that this problem is computationally
much harder than the quadratic case, in which a O(logn)
approximation is possible. Finally, our reasoning comes full
circle to shed light on the problem of approximating the ¢}
diameter diam; (K'). While the proof in [10] is essentially
an “entropy argument” showing that there are simply too
many convex bodies to allow an approximation factor better

Thus our algorithm yields a O ( ) approximation to

than O (4/n), our reduction produces a concrete family of
convex bodies for which computing the /7 diameter within

a factor of is 2(°8™)" ™ is hard.

2 A new algorithm for Max-E3-Lin-2

As described in the reduction that was presented in the
introduction, our new algorithm for Max-E3-Lin-2 will
follow from the more general algorithm for approximat-
ing the maximum of functions whose Fourier transform
is supported on subsets of size 3. So, from now on let
{aijk}7; 1= be real numbers such that for all i,7,k €
{17 ... ,n} we have a;jr = Gik; = Qrjs = Qi = Apgj =
Qjki and a;;, = Qij; = Qij; = 0. Our first lemma re-
duces the problem of maximizing ij k1 ijkTiT; T O
the analogous tripartite case. Note that such a result is
false in the quadratic case. Indeed, Theorem 3.5 in [2]
implies that the gap between max,, c_1 13 ZZ;’:1 Qi T
and maxg, ,.e{-11} szzl ai;jT;y; can be as large as

(i)
gn
this cannot happen in the level-3 case is identity (1) below.

. The key “trick” which allows us to prove that
Lemma 2.1. The following inequalities hold true:

1 n
— max E Qi ik TiYi 2k
10 17j,y_7’,2k€{—1,1} 3 t ly]

i,4,k=1
n
< max QKT T;Th
e{—1,1
melb iR
n
< max E ik TiY5 2k
zi,y5,2k€{—1,1} 4
1,5,k=1

Proof. Define

n
M = mféw{i - E QijkTiY5 2k,
ZiYj 2k s igk=1

and
n
m = max AiikTiTi T
wie{—l,l} ‘ Z ijkLiljlk
1,5,k=1
Clearly m < M, so we need to show that that M < 10m.

To see this observe first of all that ZZj,k:l Qi kT T T 1S
linear in x; for each ¢. This implies that

n
m = Imax E AijkTiT T
|zi|<1 4
1,5,k=1

Moreover, since > ;"5 _; aije®;z;Tk changes sign if we
replace x; by —z; for each ¢, we see that

n
E QijkTiTjTE| -

=iy k=1



Now, for each 4, j, k € {1,...,n} we have the identity

2%y Yk + 2%5YiYk + 2Tk Yy
= (zi + i)z +y5) (@K + yr)
(@i — yi) (w5 — y;) (e — yr)

23,757 — 2YY; Yk- (D

Multiplying this identity by a;;, summing over all 4, j,k €

{1,...,n}, and using the symmetries of the coefficients
a;jk, We see that

n
6 Z Wik Tl Yk

i,5,k=1
n
_ T+ Ty T+ Yk
%,J,kzl
yz xj—yj Tk — Yk
+8 Z awk R
i,5,k=1
n n
—2 > apnmimime —2 Y iRl
1,5,k=1 1,5,k=1
It follows that
n
20 10
M = max QistLills L2 _10
zi,y;€{-1,1} Z ijkLiYjYk| = 6 3

6,4, k=1

As before, because ZZ’] k—1 @ijk%:Y; Yk 1s linear in each of
the variables x; and y;, we have the identity

n

!
M = E ik Ty Yk | -
fedblusl<t |, 2

Now, consider the identity
Yize +yezj = (Y5 +25) Wk + 2k) — YUk — 252k

Multiplying by a;;1x;, and summing up, we get the identity

n n
Yj + Zj Yk + Zk
2 ikTiYizy =4 kL s T s ————
Z AijkTiYj2k Z Ak B) B)
i,j,k=1 i,j,k=1
n n
Z QijkLilY Yk — Z AijkTiZj 2k
i4,k=1 ij k=1
< 6M' <20m.
It follows that M < 10m, as required. O
Let (¢3)% denote the space of ¥ = (vq,...,v,) €

(R™)™, equipped with the norm

= max ||vJ||2

[y, =

<y
I

Similarly we let (¢5)} denote the space of
(v1,...,0,) € (R™)™, equipped with the norm

n

||77H(eg);1 = Z [0 l2-

Jj=1

Any n x n matrix B = (b;;) € M, (R) can be tensorized
with the identity to yield an operator B ® I : (¢5)% —
(£3)7 given by

((B® I)v)

Z bi;v;-

The operator norm of B ® I is given by

1B @ Illeg ys — ez )y

= max Z Zb”vJ : 11}1;1<XHHUJ»||2§1

=1 ||j=1

= max Y Y bijvi,u; )
iVj
j=1

i=1

R lojlle <1 A max ||ul||2 < 1}

= max bii (ui,v;). 2)
l[aill2sllv;ll2<1 .Z g {us vg)

i,j=1

)

By Lemma 2.1 our goal is to approximate the value

n
g Ak TiYj2k-

i,5,k=1

Opt(A) :=
p( ) T, Umgklg}{( 11}

For every € {—1,1}" define an n x n matrix A(z) €

My (R) by
(@)j6 = D aijui.
i=1

Since for each £ € R™ we have

n

| A(z) ®IH(z")n —(epyn = Max Z A(@)ijy;2k
Pl A ysllalst 4

it follows that

Opt(A) <  max

s 3 1 A(Z) @ Il (ggyn —epyr -

On the other hand, using (2), Grothendieck’s inequality (see
the discussion in [3]) says that

A Il prvm ny\n
S 14@) @ gy —epy

< max Kg max A(x) kY 2k
T oze{-11}" y,xe{— 11}" Z j Yi



where Ko < 2 is Grothendieck’s constant. It therefore suf-
fices to approximate the value of

max ||A(z) ® IH(zg)goe(Zg’)? .

ze{-1,1}n»
Define a norm || - |4 on R"™ by Jz||la :=
A(x) @ 1| pnyn _(pmyn- Then the wunit ball
(€5)5,— (£3)7

By = {& € R" : |z|la < 1} is a centrally sym-
metric convex body. Denote by K 4 = B the polar of B4,
ie.

Ka={yeR": Vz € By, (z,y) <1}.

Then

e [A@) @ Ill(gpyn ey = jonaX [E4p

= max max(z,y)
izl o <1 yEK 4

= max max (z,y)
YEK A [|ofloo <1

= max llylls

1
= §diam1 (Ka4).

We have thus reduced our original problem to approxi-
mating diam; (K 4) in polynomial time. Note that (2) im-
plies that the computation of ||z| 4 is a semidefinite pro-
gram. Therefore by the theory of Grotschel, Lovdsz and
Schrijver [19] it follows that linear functionals can be op-
timized on B4 in polynomial time. As shown in [19], this
property is preserved under polarity, i.e. linear function-
als can be optimized on By = K4 in polynomial time.
We have therefore reduced the problem of approximating
Max, c{—1,1} sz)kzl a;jkT;T;TE to the problem of ap-
proximating diam;(K) in oracle polynomial time, where
K is a centrally symmetric convex body with a weak opti-
mization oracle. This problem is resolved in Section 3, thus
proving the following theorem, which is our main result.

Theorem 2.2. There is a randomized polynomial time algo-
rithm which, given a 3-tensor A = {a;jx}}; y—, such that
foralli,j k€ {1,...,n} we have a;j, = a;; = akj; =
Qjik = Qkij = Qjki and ag, = Q555 = aq5; = 0, computes

a number Alg(A) which satisfies with probability at least
1
2

n
max Z a;ijrxizjer < Alg(A)
xe{—m}nij —~

n
n
<0 1 max g il Ti L.
ogn ~1,1}m
gn ) ze{-1,1} Ayl

3 An approximation algorithm for the L, di-
ameter

The main result of this section is the following theorem,
which settles a problem posed by Brieden, Gritzmann, Kan-
nan, Klee, Lovasz and Simonovits in [10].

Theorem 3.1. Let K C R" be a convex body with a weak
optimization oracle. Then there exists a randomized algo-
rithm which computes in oracle-polynomial time a number
Alg(K) such that with probability at least L,

1
5V Oi” - diam; (K) < Alg(K) < diam; (K).

On the other hand, no randomized oracle-polynomial
time algorithm can compute diam;(K) with accuracy

o (yeim)

Since we will be only using Theorem 3.1 when K is
0-symmetric, i.e. K = —K, we will prove it under this
assumption. This is only for the sake of simplifying the
notation—identical arguments work in the general case.
Our starting point is the following distributional inequality.

Lemma 3.2. For every § € (0,%) there is a con-
stant ¢(0) > 0 with the following property. Fix a =
(a1y...,an) € R™ and let €1, ...,y be i.i.d. symmetric
Bernoulli random variables. Then

Proof. Write X = 37", a;e;. Assume first of all that

N
lalf~ ~ 127

3)

The classical Paley-Zygmund inequality [28, 23, 4] states
that for every § € (0, 1) we have

2 (BX?)° (1-0)
EX+ — 9

Pr(X?>6EX?) > (1-10) (4)

where we used the well known (and easy) fact that EX*4 <
9 (Ex?)%.

The inclusion of events {X? >0} C {X > \/5} U
{—X > \/5}, and the fact that X is symmetric, implies

that Pr (X > \/5) > 1 Pr(X?>6). Since § < % there
is no(d) € N such that for every n > ng(d) we have



485 logn

15

< 1. For such n we deduce that
n2

dlogn
B all

T
j=1

1 6logn
> gon (x> D)

® 1 48510gn @ 1
> = 2> o, > .
> 2Pr (X B EX ) 2 7

Hence Lemma 3.2 holds assuming (3) and n > ng(0).
By adjusting ¢(d) the required result holds also when n <
no(d), so it remains to deal with the case

Afal3vn 1

fal? = 120

®)

Assuming (5) we define

, 2||all3
S = {j e{l,...,n}: lgj] < ||a|\12 .
Then
lally = las[ + Y |y
jgs j€S

<dih sy szt iy e
lallz 5 = =
Hence,
>arz b ©)
2 > el
JES 2\/5

Write Y = > . gajej and Z = X — Y. For every
teRwehave {Y > 2t} C{Y +Z >t} U{Y — Z > t}.
Since Y + Z and Y — Z have the same distribution as X,
it follows that Pr(X > ¢) > 1Pr(Y > 2t). Let g be a
standard Gaussian random variable. By the Berry-Esseen
inequality (see [20]. The constant we use below follows
from [30]) we know that

Y 2t
Pr(Y >2t) = P >
(¥ =20) 1F(\/]EYQ o \/EY2>
> P L
T
- EY?2 ~ lal:
tv/n ;]|
> Pr{g> ) —max ——21
( a1 €5 5, gal

(6) 2 2
9 1 exp (_ t n2> B 4||a||22\/ﬁ.
V2 llallf lallt

dlogn |
n

Plugging t = |a||; we get that

1 4Ha|| \F<5> 1

6nd a2 = 12n8’

as required. O
Proof of Theorem 3.1. Let
{Eij:iE{l,...,m},jE{l,...,n}}

be i.i.d. symmetric Bernoulli random variables. Compute
the number

Alg(K):=2

B(K) =2 m, 133?2

Then Alg(K) < 2max,ck ||aljy = diam; (K'). Moreover,
M can be computed using O(m) oracle calls. Now, fix a €
K such that |ja||; = $diam; (K). Using Lemma 3.2 we see
that there exists a universal constant ¢ > 0 for which

Pr <A1g(K) > % logn -diaml(K)>

n

A - [logn
== l—Pl“ ﬂ Za]&—z‘] § n ! Ha“l

) ()

Choosing m = [@—‘ we see that with probability at least

Y]

2
logn
2 n

as required.

The algorithmic lower bound in Theorem 3.1 is essen-
tially already contained in [10]—the authors simply over-
looked there an easy stronger upper bound on the volume of
polytopes inscribed in in the cube [—1, 1]™. In Proposition
1.10 in [10] the authors prove that for every 0-symmetric
polytope P C [—1,1]™ with at most 2k vertices, where
20logy (£ +1) <n <k,

- diam; (K) < Alg(K) < diam; (K),

(vol(P))'™ < O(1)/1 + logn - log(fln—i—l).

The term +/1 + logn in (7) is precisely the reason why the
lower bound in [10] for the accuracy of randomized algo-

rithms which compute diam; (K) was Q (L) instead of

0] (, / logn) This term can be removed as follows.

(7




Let B2 be the standard unit Euclidean ball of ¢3. Write
P = conv{z£wvy,...,+v;}, where v; € [—1,1]". Then

:;H € BY, and by the results of [6, 11, 17] we deduce that

log (% + 1)

Since (vol (B3))!/" = © (%) it follows that

log (% + 1)

(vol(P))/™ < 0(1) -

O
3.1 The case of the L, diameter, 1 <p <2

Fix p € (1,2), and define ¢ =
be i.i.d. random variables whose den51ty is W
Let H be the random vector (hy,...,h,) € R™. Then the
random variables H/||H ||, and || H ||, are independent [29]
(see [7] for more information on this phenomenon). The
following lemma is analogous to Lemma 3.2.

>2 Lethl, .. hy

— t“]

Lemma 3.3. There exist universal constants §,c1,co > 0
such that for every a = (ay, .. .,a,) € R™ we have

H 6logn
Pr —_.a) > > .
(<mm > V ””J nee

Proof. The random variable |H|, has density
%u”fle*“q for v > 0 (see for example [26]).

Hence for every t € (0, 1) we have

RetlHle — _ 4 /OO ot 1 gy,
L(n/q) Jo
_ 4 a1 —[-0)M ) g, 1
HW@/ v N

Since ¢ > 2 it follows that

Pr(J1H]g > n¥/7) < (- DEeO- I

— e n(17-1) < e n(3-3) < /8. (8)

Using the independence of H/| H]||, and || H ||, we deduce

that

. < H a>> [dlogn lal
15"/~ n :
H dlogn
> Pr|(+—=ra)> Nla
(@wm )=/ ”J

P (|l < n'')

H dlogn
= Pr —,a) > —— |la
(Qmm )=l

MWMSHW>

2}%0&@2 BT
Mwuénw>

> 1—Pr ((H,a> <n \/m la |p>

—Pr (||l > n'/7)

zr%cawz VM%”HHQ

—e /8, 9)

As in the proof of Lemma 3.2 we write X = 37, a;h;.
Let

2
S=qje{l,....;n}: |a;| <

Then, using the definition of S and Holder’s inequality, we
see that

lallp = > lagl” + > la; P

igs jes

lall;
2l|alf3 ¢ Z

(SIS

IN

+|S|7 a?

<.
m
9]

(NS}
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lelf
P

JES

a
'S a?>7” o _. (10)
jes 2pmr 2

It follows that



SetY := 3. gajh;, and note that
(10)
VEYZ= N a@2Er2=0(1) [Y a2 > cMals 1)
jes jes nez

where ¢ > 0 is a universal constant. Using the Berry-Esseen
inequality as in the proof of Lemma 3.2, we see that

- 1 [dlogn
Pr( Y ashy = niy[ <=2 - lall,

=1
> }Pr 7}/ 22cn17%\/610gn nr?
2 VEY n
1 ;
> max% ]E|h1|3

6 4c25 S
" 7€ \/Zkesai
2
i Loy (llallz\ 7
= ———-0|nr 2
6 < (o

1
> 1opAcs (12)
provided that
2
oy (lale\ ™ _
" 2(|a||,,) = i 4

for some small enough constant ¢. But, assuming that (13)
fails, and that J is small enough and n is large enough, we
may apply the Paley-Zygmund inequality to conclude that

& 1 [dlogn
Pr( Y ajhy > ni [ =22 - fall,

j=1
~2—p

> prx2> S 0108 gy
TL2_§_5_806

Vv
V

Pr <X2 > ———= .EX2) >Q(1), (14)
n C

where we used the fact that p € (1,2) and the easy bound
VEXT =0 <\/IEX2>. Combining (12) and (14) with (9)
yields the required result. O

Now, arguing as in the proof of Theorem 3.1, given a 0-
symmetric convex body K C R"™ with a weak optimization
oracle, we select m i.i.d. copies of H, Hy,...,H,,, and
define

H;
Alg(K) := 2 max max <HHHq a> '

Arguing as in the proof of Theorem 3.1, with Lemma 3.2
replaced by Lemma 3.3, we see that for m = poly(n), with
constant probability

Q(1)y/ loi” - diam, (K) < Alg(K) < diam, (K).

4 Discussion and open problems

We end this paper with some remarks and directions for
future research.

e We assumed throughout that a;, = a;5; = a;5 = 0.
This restriction, which also appeared in [2] as the condi-
tion that the Fourier support graph does not have self loops,
is necessary since otherwise if P # N P then there is no
polynomial time algorithm that evaluates the maximum of
S GijrTirjTg over ¥ € {—1,1}" up to any factor
i,j, k=1 QijkLiljlk ) p y
(even one that grows with n arbitrarily fast)—see the dis-
cussion in Remark 3.2 in [2].

o It would be interesting to investigate maximization prob-
lem of Z? j k=1 @ijkTiT Ty in terms of the combinato-
rial structure of the Fourier support hypergraph given by
{{i,7,k} + aijx # 0}. The results of [2] suggest that it
might be possible to achieve a better approximation guar-
antee in the presence of additional structural information of
this type.

e A natural question that arises from our results is to study
the maximization problem for

>, as]la

SC{l,...n} jes
|S|=k

when k£ > 4. Our methods do not immediately give good

k
bounds in this case—it is quite easy to geta O ((1 "5;%171
ogn
approximation algorithm for odd k by iterating our ap-
proach, and it would be desirable to get improved bounds.
Such improvements, beyond their intrinsic interest, might
have implications to the problem of refutation of random
k — CNF formulas [16, 15, 14] (see [13] for motivation of
such questions). The connection between these two prob-

lems is explained in the following theorem.

Theorem 4.1. Suppose for every £ € {1,...,k} there is a
deterministic polynomial time algorithm that approximates

max E as HCL’j

err2amn €= gory ny jes
|S|=¢

within factor f(n). Then there is a polynomial time refuta-
tion procedure that refutes w.h.p. a random k-CNF formula
with 24510 f(n)? clauses.

Remark 4.1. Note that for ¢ = 1, there is a (trivial) ex-
act algorithm and for ¢ = 2 the result of [27, 25, 12] give
a O(log n)-approximation. Therefore, as long as f(n) >
O(logn), the hypothesis in Theorem 4.1 is required to hold
only for3 < ¢ < k.



The best known refutation procedure for random
3 — CNF formulas works when they have O (n3/2)
clauses [16]. This can be viewed as evidence that obtaining
an improvement over our approximation factor to o (nl/ 4)
is likely to be difficult.

Before proving Theorem 4.1 we shall introduce some
notation. Let —1 represent logical TRUE and 1 represent
logical FALSE. Let ¢ = {C4,C5,...,C,,} be a k-CNF
formula on variables « := {x1,x2,...,z,}. Let the set of
indices of variables in the clause C; be denoted as S;, so
that |S;| = k. Define {o;; : 1 < i < m, j € S;} as
follows: o;; = 1 if z; appears in clause C; un-negated and
0;; = —1 if z; appears in clause C; negated. Consider the

expression
1
— 27 H (1 +O'ij.’L‘j).
JES;:

For any {—1,1}-assignment to variables, this expression
evaluates to 1 if the clause C; is satisfied and to O if the
clause C; is not satisfied. Therefore, the fraction of satis-
fied clauses is
1 m
Ez . (1+Uija?j) . (15)
=1 JES;:

For notational convenience, think of S; as an ordered k-
tuple of indices, and for ' C {1,...,k}, let S;[T] denote
the subset of .S; given by the co-ordinates in 7. With this
notation (15) can be rewritten as

1 1«
- == > IT i

i=1 0ATC{1,....k} jES; [T]
1
=15 + > Trx), (16)
PATCLL, ...k}

Where
x) = —li H 04T (17
m“
=1 j€S5;[T]

Lemma 4.2. If ¢ is satisfiable, then there exists a {—1,1}
assignment to variables of ¢ and a nonempty set T C

{1,...k} such that T'r(x) > m In other words,
J0#£TC{1 k} max [rp(z) > 1
sy kit X >
= et 2k (2F — 1)

Proof. Since ¢ is satisfiable, there is an assignment z that
satisfies every clause. For this assignment, the expression
(16) has value 1. Thus, for some T' C [k], T # 0, it must be

the case that T'p(z) > W}”—l) O

Lemma 4.3. Let ¢ be a random k-CNF formula with
m > 2%+Inf(n)? clauses. Then with probability
1 — 2790 over the choice of the formula, for every
{—1, 1}-assignment to variables and every nonempty T' C
{1,...,k} we have I'r(x) < oy f( 5 In other words,

Pp(z) < ——

VAT C{l,...,k < i)

1, max
ze{—1,1}"

Proof. Fix any {—1, 1}-assignment to the variables and a
nonempty set 77 C {1,...,k}. We will show that with
probability 1 — e~™ over the choice of ¢ we have I'r(x) <
QQ%M. Taking the union bound over all possible {—1,1}-
assignments to variables and all choices for 7" implies the
statement of the lemma.

Note that when ¢ is random, the signs o;; are random
and independent, and therefore an inspection of the defini-
tion (17) shows that I'p(z) is an average of m independent
Bernoulli random variables. By the Chernoff bound,

P (‘; E2aioye )

Pr FT( ) (
<e "

- 22’“J1°( )}

O

Proof of Theorem 4.1. The refutation procedure is very
simple. Given a formula ¢, use the f(n)-approximation al-
gorithm to compute, for every nonempty 7' C {1,...,k}, a
number Alg(T'r) such that

1
— < max FT(I)> < Alg(Tr) < max TI'p(x).
f(n) ze{-1,1}n we{—1,1}n

If there is some T' # () for which Alg(T'r) > m,
then say YES. Otherwise, say NO. Lemma 4.2 shows
that this procedure always says YES if ¢ is satisfiable.
Lemma 4.3 shows that the procedure says NO on a 1 —
2~ fraction of random formulas. O
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