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ABSTRACT
The classical Grothendieck inequality has applications to the
design of approximation algorithms for NP-hard optimiza-
tion problems. We show that an algorithmic interpretation
may also be given for a noncommutative generalization of
the Grothendieck inequality due to Pisier and Haagerup.
Our main result, an efficient rounding procedure for this
inequality, leads to a constant-factor polynomial time ap-
proximation algorithm for an optimization problem which
generalizes the Cut Norm problem of Frieze and Kannan,
and is shown here to have additional applications to robust
principle component analysis and the orthogonal Procrustes
problem.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Quadratic pro-
gramming methods
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In what follows, the standard scalar product on Cn is de-
noted 〈·, ·〉, i.e, 〈x, y〉 =

∑n
i=1 xiyi for all x, y ∈ Cn. We

always think of Rn as canonically embedded in Cn; in par-
ticular the restriction of 〈·, ·〉 to Rn is the standard scalar
product on Rn. Given a set S, the space Mn(S) stands
for all the matrices M = (Mij)

n
i,j=1 with Mij ∈ S for

all i, j ∈ {1, . . . , n}. Thus, Mn(Mn(R)) is naturally iden-
tified with the n4-dimensional space of all 4-tensors M =
(Mijkl)

n
i,j,k,l=1 with Mijkl ∈ R for all i, j, k, l ∈ {1, . . . , n}.

The set of all n × n orthogonal matrices is denoted On ⊆
Mn(R), and the set of all n× n unitary matrices is denoted
Un ⊆Mn(C).

Given M = (Mijkl) ∈Mn(Mn(R)) denote

OptR(M)
def
= sup

U,V ∈On

n∑
i,j,k,l=1

MijklUijVkl.

and similarly, for M = (Mijkl) ∈Mn(Mn(C)) denote

OptC(M)
def
= sup

U,V ∈Un

∣∣∣ n∑
i,j,k,l=1

MijklUijVkl

∣∣∣.
Theorem 1. There exists a polynomial time algorithm

that takes as input M ∈Mn(Mn(R)) and outputs U, V ∈ On
such that

OptR(M) 6 O(1)

n∑
i,j,k,l=1

MijklUijVkl.

Respectively, there exists a polynomial time algorithm that
takes as input M ∈ Mn(Mn(C)) and outputs U, V ∈ Un
such that

OptC(M) 6 O(1)
∣∣∣ n∑
i,j,k,l=1

MijklUijVkl

∣∣∣.
We will explain the ideas that go into the proof of Theo-

rem 1 later, and it suffices to say at this juncture that our
algorithm is based on a rounding procedure for semidefi-
nite programs that is markedly different from rounding al-
gorithms that have been previously used in the optimization
literature, and as such it indicates the availability of tech-
niques that have thus far remained untapped for the purpose
of algorithm design. Prior to explaining the proof of Theo-
rem 1 we list below some of its applications as an indication
of its usefulness.



Remark 2. The implied constants in the O(1) terms of
Theorem 1 can be taken to be any number greater than
2
√

2 in the real case, and any number greater than 2 in
the complex case. There is no reason to believe that the
factor 2

√
2 in the real case is optimal, but the factor 2 in

the complex case is sharp in a certain natural sense that
will become clear later. The main content of Theorem 1 is
the availability of a constant factor algorithm rather than
the value of the constant itself. In particular, the novelty
of the applications to combinatorial optimization that are
described below is the mere existence of a constant-factor
approximation algorithm.

1.1 Applications of Theorem 1
We now describe some examples demonstrating the use-

fulness of Theorem 1. The first example does not lead to a
new result, and is meant to put Theorem 1 in context. All
the other examples lead to new algorithmic results. Many
of the applications below follow from a more versatile refor-
mulation of Theorem 1 that is presented in Section 4 (see
Proposition 11).

1.1.1 The Grothendieck problem
The Grothendieck optimization problem takes as input

a matrix A ∈ Mn(R) and aims to efficiently compute (or
estimate) the quantity

max
ε,δ∈{−1,1}n

n∑
i,j=1

Aijεiδj . (1)

This problem falls into the framework of Theorem 1 by con-
sidering the 4-tensor M ∈Mn(Mn(R)) given by Miijj = Aij
and Mijkl = 0 if either i 6= j or k 6= l. Indeed,

OptR(M) = max
U,V ∈On

n∑
i,j=1

AijUiiVjj

= max
x,y∈[−1,1]n

n∑
i,j=1

Aijxiyj

= max
ε,δ∈{−1,1}n

n∑
i,j=1

Aijεiδj .

A constant-factor polynomial time approximation algo-
rithm for the Grothendieck problem was designed in [2],
where it was also shown that it is NP-hard to approximate
this problem within a factor less that 1 + ε0 for some ε0 ∈
(0, 1). A simple transformation [2] relates the Grothendieck
problem to the Frieze-Kannan Cut Norm problem [10] (this
transformation can be made to have no loss in the approx-
imation guarantee [22, Sec. 2.1]), and as such the constant-
factor approximation algorithm for the Grothendieck prob-
lem has found a variety of applications in combinatorial opti-
mization; see the survey [22] for much more on this topic. In
another direction, based on important work of Tsirelson [41],
the Grothendieck problem has found applications to quan-
tum information theory [6]. Since the problem of computing
OptR(·) contains the Grothendieck problem as a special case,
Theorem 1 encompasses all of these applications, albeit with
the approximation factor being a larger constant.

1.1.2 Robust PCA
The input to the classical principal component analysis

(PCA) problem is K,n ∈ N a set of points a1, . . . , aN ∈ Rn.

The goal is to find a K-dimensional subspace maximizing
the sum of the squared `2 norms of the projections of the
ai on the subspace. Equivalently, the problem is to find the
maximizing vectors in

max
y1,...,yK∈Rn

〈yi,yj〉=δij

N∑
i=1

K∑
j=1

|〈ai, yj〉|2, (2)

where here, and in what follows, δij is the Kronecker delta.
This question has a closed-form solution in terms of the sin-
gular values of the N × n matrix whose i-th row contains
the coefficients of the point ai.

The fact that the quantity appearing in (2) is the maxi-
mum of the sum of the squared norms of the projected points
makes it somewhat non-robust to outliers, in the sense that
a single long vector can have a large effect on the maximum.
Several more robust versions of PCA were suggested in the
literature. One variant, known as “R1-PCA,” is due to Ding,
Zhou, He, and Zha [8], and aims to maximize the sum of the
Euclidean norms of the projected points, namely,

max
y1,...,yK∈Rn

〈yi,yj〉=δij

N∑
i=1

( K∑
j=1

|〈ai, yj〉|2
)1/2

. (3)

We are not aware of any prior efficient algorithm for this
problem that achieves a guaranteed approximation factor.
Another robust variant of PCA, known as “L1-PCA”, was
suggested by Kwak [24], and further studied by McCoy and
Tropp [27] (see Section 2.7 in [27] in particular). Here the
goal is to maximize the sum of the `1 norms of the projected
points, namely,

max
y1,...,yK∈Rn

〈yi,yj〉=δij

N∑
i=1

K∑
j=1

|〈ai, yj〉|. (4)

In [27] a constant factor approximation algorithm for the
above problem is obtained for K = 1 based on [2], and for
general K an approximation algorithm with an approxima-
tion guarantee of O(logn) is obtained based on prior work
by So [38].

In the full version of the paper [29, Section 5.1] we show
that both of the above robust versions of PCA can be cast
as special cases of Theorem 1, thus yielding constant-factor
approximation algorithms for both problems and all K ∈
{1, . . . , n}.

1.1.3 The orthogonal Procrustes problem
Let n, d > 1 and K > 2 be integers. Suppose given n-point

subsets S1, . . . , SK ⊆ Rd of Rd. The goal of the generalized
orthogonal Procrustes problem is to rotate each of the Sk
separately so as to best align them. Formally, write Sk =
{xk1 , xk2 , . . . , xkn}. The goal is to find K orthogonal matrices
U1, . . . , UK ∈ Od that maximize the quantity

n∑
i=1

∥∥∥ K∑
k=1

Ukx
k
i

∥∥∥2
2
. (5)

If one focuses on a single summand appearing in (5), say∑K
k=1 Ukx

k
1 , then it is clear that in order to maximize its

length one would want to rotate each of the xk1 so that they
would all point in the same direction, i.e., they would all be
positive multiples of the same vector. The above problem



aims to achieve the best possible such alignment (in aggre-
gate) for multiple summands of this type. We note that
by expanding the squares one sees that U1, . . . , UK ∈ Od
maximize the quantity appearing in (5) if and only if they

minimize the quantity
∑n
i=1

∑K
k,l=1 ‖Ukx

k
i − Ulxli‖22.

The term “generalized” was used above because the or-
thogonal Procrustes problem refers to the case K = 2, which
has a closed-form solution. (The name “Procustes” is a
(macabre) reference to Greek mythology.) The generalized
orthogonal Procrustes problem has been extensively studied
since the 1970s, initially in the psychometric literature (see,
e.g., [5, 12, 40]), and more recent applications of it are to ar-
eas such as image and shape analysis, market research and
biometric identification; see the books [13, 9], the lecture
notes [39], and [28] for much more information on this topic.

The generalized orthogonal Procrustes problem is known
to be intractable, and it has been investigated algorithmi-
cally in, e.g., [40, 3, 37]. A rigorous analysis of a polynomial-
time approximation algorithm for this problem appears in
the work of Nemirovski [30], where the generalized orthog-
onal Procrustes problem is treated as an important special
case of a more general family of problems called “quadratic
optimization under orthogonality constraints”, for which he
obtains a O( 3

√
n+ d+logK) approximation algorithm. This

was subsequently improved by So [38] to O(log(n+d+K)).
In the full version [29, Section 5.2] we show how Theorem 1
can be applied to improve the approximation guarantee for
the generalized orthogonal Procrustes problem as defined
above to a constant approximation factor. We also refer to
the full version for a more complete discussion of variants of
this problem considered in [30, 38] and how they compare
to our work.

1.1.4 A Frieze-Kannan decomposition for 4-tensors
In [10] Frieze and Kannan designed an algorithm which de-

composes every (appropriately defined) “dense” matrix into
a sum of a few “cut matrices” plus an error matrix that has
small cut-norm. We refer to [10] and also Section 2.1.2 in
the survey [22] for a precise formulation of this statement,
as well as its extension, due to [2], to an algorithm that al-
lows sub-constant errors. In the full version of the paper we
apply Theorem 1 to prove the following result, which can be
viewed as a noncommutative variant of the Frieze-Kannan
decomposition. For the purpose of the statement below it is
convenient to identify the space Mn(Mn(C)) of all 4-tensors
with Mn(C) ⊗Mn(C). Also, for M ∈ Mn(C) ⊗Mn(C) we
denote from now on its Frobenius (Hilbert-Schmidt) norm
by

‖M‖2
def
=

√√√√ n∑
i,j,k,l=1

|Mijkl|2.

Theorem 3. There exists a universal constant c ∈ (0,∞)
with the following property. Suppose that M ∈ Mn(C) ⊗
Mn(C) and 0 < ε 6 1/2, and let

T
def
=

⌈
cn2‖M‖22

ε2OptC(M)2

⌉
. (6)

One can compute in time poly(n, 1/ε) a decomposition

M =

T∑
t=1

αt(At ⊗Bt) + E, (7)

such that At, Bt ∈ Un, the coefficients αt ∈ C satisfy |αt| =
O(‖M‖2/n), and OptC(E) 6 εOptC(M). Moreover, if M ∈
Mn(R) ⊗Mn(R) then one can replace OptC(M) in (6) by
OptR(M), take the coefficients αt to be real, At, Bt ∈ On
and E such that OptR(E) 6 εOptR(M).

Theorem 3 contains as a special case its commutative
counterpart, as studied in [10, 2]. Here we are given A ∈
Mn(R) with |aij | 6 1 for all i, j ∈ {1, . . . , n}, and we aim for
an error εn2. Define Miijj = aij and Mijkl = 0 if i 6= j or
k 6= l. Then ‖M‖2 6 n. An application of Theorem 3 (in the
real case) with ε replaced by εn2/OptR(M) yields a decom-

position A =
∑T
t=1 αt(atb

∗
t ) + E with at, bt ∈ [−1, 1]n and

E ∈ Mn(R) satisfying supε,δ∈{−1,1}
∑n
ij=1 Eijεiδj 6 εn2.

Moreover, the number of terms is T = O(1/ε2).
For the proof of Theorem 3 we refer to [29, Section 5.3].

The proof is based on an iterative application of Theorem 1,
following the “energy decrement” strategy as formulated by
Lovász and Szegedy [26] in the context of general weak reg-
ularity lemmas. Other than being a structural statement of
interest in its own right, we also show that Theorem 3 can be
used to enhance the constant factor approximation of Theo-
rem 1 to a PTAS for computing OptC(M) when OptC(M) =
Ω(n‖M‖2). Specifically, if OptC(M) > κn‖M‖2 then one
can compute a (1 + ε)-factor approximation to OptC(M) in

time 2poly(1/(κε))poly(n). This is reminiscent of the Frieze-
Kannan algorithmic framework [10] for dense graph and ma-
trix problems.

1.1.5 Quantum XOR games
As we already noted, the Grothendieck problem (recall

Section 1.1.1) also has consequences in quantum informa-
tion theory [6], and more specifically to bounding the power
of entanglement in so-called “XOR games”, which are two-
player one-round games in which the players each answer
with a bit and the referee bases her decision on the XOR of
the two bits. As will be explained in detail in Section 1.2 be-
low, the literature on the Grothendieck problem relies on a
classical inequality of Grothendieck [14], while our work re-
lies on a more recent yet by now classical noncommutative
Grothendieck inequality of Pisier [31] (and its sharp form
due to Haagerup [16]). Even more recently, the Grothendieck
inequality has been generalized to another setting, that of
completely bounded linear maps defined on operator spaces [33,
19]. While we do not discuss the operator space Grothendieck
inequality here, we remark that in [35] the operator space
Grothendieck inequality is proved by reducing it to the Pisier-
Haagerup noncommutative Grothendieck inequality. With-
out going into details, we note that this reduction is also
algorithmic. Combined with our results, it leads to an algo-
rithmic proof of the operator space Grothendieck inequality,
together with an accompanying rounding procedure.

In the preprint [36] written by the last two named authors,
the noncommutative and operator space Grothendieck in-
equalities are shown to have consequences in a setting that
generalizes that of classical XOR games, called “quantum
XOR games”: in such games, the questions to the players
may be quantum states (and the answers are still a single
classical bit). The results in [36] derive an efficient factor-2
approximation algorithm for the maximum success probabil-
ity of players in such a game, in three settings: players shar-
ing an arbitrary quantum state, players sharing a maximally
entangled state, and players not sharing any entanglement.



Theorem 1 implies that in all three cases a good strategy
for the players, achieving a success that is a factor 2 from
optimal, may be found in polynomial time. These matters
are taken up in [36] and will not be discussed further here.

1.2 The noncommutative Grothendieck
inequality

The natural semidefinite relaxation of (1) is

sup
d∈N

sup
x,y∈(Sd−1)n

n∑
i,j=1

Aij〈xi, yj〉, (8)

where Sd−1 is the unit sphere of Rd. Since, being a semidef-
inite program (SDP), the quantity appearing in (8) can be
computed in polynomial time with arbitrarily good precision
(see [15]), the fact that the Grothendieck optimization prob-
lem admits a constant-factor polynomial time approxima-
tion algorithm follows from the following inequality, which is
a classical inequality of Grothendieck of major importance to
several mathematical disciplines (see Pisier’s survey [32] and
the references therein for much more on this topic; the for-
mulation of the inequality as below is due to Lindenstrauss
and Pe lczyński [25]).

sup
d∈N

sup
x,y∈(Sd−1)n

n∑
i,j=1

Aij〈xi, yj〉 6 KG sup
ε,δ∈{−1,1}n

n∑
i,j=1

Aijεiδj .

(9)
Here KG ∈ (0,∞), which is understood to be the infimum
over those constants for which (9) holds true for all n ∈
N and all A ∈ Mn(R), is a universal constant known as
the (real) Grothendieck constant. Its exact value remains
unknown, the best available bounds [34, 4] being 1.676 <
KG < 1.783. In order to actually find an assignment ε, δ
to (1) that is within a constant factor of the optimum one
needs to argue that a proof of (9) can be turned into an
efficient rounding algorithm; this is done in [2].

If one wishes to mimic the above algorithmic success of
the Grothendieck inequality in the context of efficient com-
putation of OptR(·), the following natural strategy presents
itself: one should replace real entries of matrices by vectors
in `2, i.e., consider elements of Mn(`2), and replace the or-
thogonality constraints underlying the inclusion U ∈ On,
namely,

∀ i, j ∈ {1, . . . , n},
n∑
k=1

UikUjk =

n∑
k=1

UkiUkj = δij ,

by the corresponding constraints using scalar product. Specif-
ically, given an n×n vector-valued matrixX ∈Mn(`2) define
two real matrices XX∗, X∗X ∈Mn(R) by

(XX∗)ij
def
=

n∑
k=1

〈Xik, Xjk〉 and (X∗X)ij
def
=

n∑
k=1

〈Xki, Xkj〉,

(10)
for every i, j ∈ {1, . . . , n}, and let the set of d-dimensional
vector-valued orthogonal matrices be given by

On(Rd) def
=
{
X ∈Mn(Rd) : XX∗ = X∗X = I

}
. (11)

One then considers the following quantity associated to ev-
ery M ∈Mn(Mn(R)),

SDPR(M)
def
= sup

d∈N
sup

X,Y ∈On(Rd)

n∑
i,j,k,l=1

Mijkl 〈Xij , Ykl〉 . (12)

Since the constraints that underlie the inclusion X,Y ∈
On(Rd) are linear equalities in the pairwise scalar prod-
ucts of the entries of X and Y , the quantity SDPR(M) is
a semidefinite program and can therefore be computed in
polynomial time with arbitrarily good precision. One would
therefore aim to prove the following noncommutative variant
of the Grothendieck inequality (9),

∀n ∈ N, ∀M ∈Mn(Mn(R)), SDPR(M) 6 O(1)·OptR(M).
(13)

The term “noncommutative” refers here to the fact that
OptR(M) is an optimization problem over the noncommu-
tative group On, while the classical Grothendieck inequal-
ity addresses an optimization problem over the commuta-
tive group {−1, 1}n. In the same vein, noncommutativity
is manifested by the fact that the classical Grothendieck
inequality corresponds to the special case of “diagonal” 4-
tensors M ∈ Mn(Mn(R)), i.e., those that satisfy Mijkl = 0
whenever i 6= j or k 6= l.

Grothendieck conjectured [14] the validity of (13) in 1953,
a conjecture that remained open until its 1978 affirmative
solution by Pisier [31]. A simpler, yet still highly nontrivial
proof of the noncommutative Grothendieck inequality (13)
was obtained by Kaijser [21]. In the full version of the pa-
per [29, Section 4] we design a rounding algorithm corre-
sponding to (13) based on Kaijser’s approach. This settles
the case of real 4-tensors of Theorem 1, albeit with worse
approximation guarantee than the one claimed in Remark 2.
The algorithm modeled on Kaijser’s proof is interesting in
its own right, and seems to be versatile and applicable to
other problems, such as possible non-bipartite extensions of
the noncommutative Grothendieck inequality in the spirit
of [1]; we shall not pursue this direction here.

A better approximation guarantee, and arguably an even
more striking rounding algorithm, arises from the work of
Haagerup [16] on the complex version of (13). In Section 3
we show how the real case of Theorem 1 follows formally
from our results on its complex counterpart, so from now on
we focus our attention on the complex case.

1.2.1 The complex case
In what follows we let Sd−1

C denote the unit sphere of Cd
(thus S0

C can be identified with the unit circle S1 ⊆ R2). The
classical complex Grothendieck inequality [14, 25] asserts
that there exists K ∈ (0,∞) such that for all n ∈ N and
A ∈Mn(C),

sup
x,y∈(S2n−1

C )n

∣∣∣ n∑
i,j=1

Aij〈xi, yj〉
∣∣∣ 6 O(1) sup

α,β∈(S0
C)

n

∣∣∣ n∑
i,j=1

Aijαiβj

∣∣∣.
(14)

Let KC
G denote the infimum over those K ∈ (0,∞) for

which (14) holds true. The exact value of KC
G remains

unknown, the best available bounds being 1.338 < KC
G <

1.4049 (the left inequality is due to unpublished work of
Davie, and the right one is due to Haagerup [17]).

For M ∈Mn(Mn(C)) we define

SDPC(M)
def
= sup

d∈N
sup

X,Y ∈Un(Cd)

∣∣∣ n∑
i,j,k,l=1

Mijkl 〈Xij , Ykl〉
∣∣∣,
(15)

where analogously to (11) we set

Un(Cd) def
=
{
X ∈Mn(Cd) : XX∗ = X∗X = I

}
.



Here for X ∈ Mn(Cd) the complex matrices XX∗, X∗X ∈
Mn(C) are defined exactly as in (10), with the scalar product
being the complex scalar product. Haagerup proved [16]
that

∀n ∈ N, ∀M ∈Mn(Mn(C)), SDPC(M) 6 2 ·OptC(M).
(16)

Our main algorithm is an efficient rounding scheme corre-
sponding to inequality (16). The constant 2 in (16) is sharp,
as shown in [18] (see also [32, Sec. 12]).

We note that the noncommutative Grothendieck inequal-
ity, as it usually appears in the literature, involves a slightly
more relaxed semidefinite program. In order to describe
it, we first remark that instead of maximizing over X,Y ∈
Un(Cd) in (15) we could equivalently maximize over X,Y ∈
Mn(Cd) satisfying XX∗, X∗X,Y Y ∗, Y ∗Y 6 I, which is the
same as the requirement ‖XX∗‖, ‖X∗X‖, ‖Y Y ∗‖, ‖Y ∗Y ‖ 6
1, where here and in what follows ‖ · ‖ denotes the operator
norm of matrices. This fact is made formal in Lemma 6 be-
low. By relaxing the constraints to ‖XX∗‖ + ‖X∗X‖ 6 2
and ‖Y Y ∗‖+ ‖Y ∗Y ‖ 6 2, we obtain the following quantity,
which can be shown to still be a semidefinite program.

‖M‖nc
def
= sup

d∈N
sup

X,Y ∈Mn(Cd)
‖XX∗‖+‖X∗X‖62
‖Y Y ∗‖+‖Y ∗Y ‖62

∣∣∣ n∑
i,j,k,l=1

Mijkl 〈Xij , Ykl〉
∣∣∣.

(17)
Clearly ‖M‖nc > SDPC(M) for allM ∈Mn(Mn(C)). Haagerup
proved [16] that the following stronger inequality holds true
for all n ∈ N and M ∈Mn(Mn(C)).

‖M‖nc 6 2 ·OptC(M). (18)

As our main focus is algorithmic, in the following discussion
we will establish a rounding algorithm for the tightest re-
laxation (16). In the full version [29, Section 2.3] we show
that the same rounding procedure can be used to obtain an
algorithmic analogue of (18) as well.

1.2.2 The rounding algorithm
Our main algorithm is an efficient rounding scheme corre-

sponding to (16). In order to describe it, we first introduce
the following notation. Let ϕ : R→ R+ be given by

ϕ(t)
def
=

1

2
sech

(π
2
t
)

=
1

eπt/2 + e−πt/2
. (19)

One computes that
∫
R ϕ(t)dt = 1, so ϕ is a density of a

probability measure µ on R, known as the hyperbolic secant
distribution. By [20, Sec. 23.11] we have

∀ a ∈ (0,∞),

∫
R
aitϕ(t)dt =

2a

1 + a2
. (20)

It is possible to efficiently sample from µ using standard
techniques; see, e.g., [7, Ch. IX.7].

In what follows, given X ∈Mn(Cd) and z ∈ Cd we denote
by 〈X, z〉 ∈ Mn(C) the matrix whose entries are 〈X, z〉jk =
〈Xjk, z〉.

Theorem 4. Fix n, d ∈ N and ε ∈ (0, 1). Suppose that
M ∈Mn(Mn(C)) and that X,Y ∈ Un(Cd) are such that∣∣∣ n∑

i,j,k,l=1

Mijkl〈Xij , Ykl〉
∣∣∣ > (1− ε)SDPC(M), (21)

Rounding procedure

1. Let X,Y ∈ Mn(Cd) be given as input. Choose z ∈
{1,−1, i,−i}d uniformly at random, and sample t ∈ R
according to the hyperbolic secant distribution µ.

2. Set Xz
def
= 1√

2
〈X, z〉 ∈ Mn(C) and Yz

def
= 1√

2
〈Y, z〉 ∈

Mn(C).

3. Output the pair of matrices (A,B) =

(A(z, t), B(z, t))
def
= (Uz|Xz|it, Vz|Yz|−it) ∈ Un × Un

where Xz = Uz|Xz| and Yz = Vz|Yz| are the polar
decompositions of Xz and Yz, respectively.

Figure 1: The rounding algorithm takes as input
a pair of vector-valued matrices X,Y ∈ Mn(Cd). It
outputs two matrices A,B ∈ Un(C).

where SDPC(M) is given in (15). Then the rounding proce-
dure described in Figure 1 outputs a pair of matrices A,B ∈
Un such that

E
[ ∣∣∣ n∑

i,j,k,l=1

MijklAijBkl

∣∣∣ ] >
(1

2
− ε
)

SDPC(M). (22)

Moreover, rounding can be performed in time polynomial in
n and log(1/ε), and can be derandomized in time poly(n, 1/ε).

While the rounding procedure of Figure 1 and the proof
of Theorem 4 (contained in Section 2 below) appear to be
different from Haagerup’s original proof of (18) in [16], we
derived them using Haagerup’s ideas. One source of differ-
ence arises from changes that we introduced in order to work
with the quantity SDPC(M), while Haagerup’s argument
treats the quantity ‖M‖nc. A second source of difference is
that Haagerup’s proof of (18) is rather indirect and noncon-
structive, while it is crucial to the algorithmic applications
that were already mentioned in Section 1.1 for us to for-
mulate a polynomial-time rounding procedure. Specifically,
Haagerup establishes the dual formulation of (18), through
a repeated use of duality, and he uses a bootstrapping argu-
ment that relies on nonconstructive tools from complex anal-
ysis. The third step in Figure 1 originates from Haagerup’s
complex-analytic considerations. Readers who are accus-
tomed to semidefinite rounding techniques will immediately
notice that this step is unusual; we give intuition for it in
Section 1.2.3 below, focusing for simplicity on applying the
rounding procedure to vectors rather than matrices (i.e., the
more familiar setting of the classical Grothendieck inequal-
ity).

1.2.3 An intuitive description of the rounding proce-
dure in the commutative case

Consider the effect of the rounding procedure in the com-
mutative case, i.e., when X,Y ∈ Mn(Cd) are diagonal ma-
trices. Let the diagonals of X,Y be x, y ∈ (Cd)n, respec-
tively. The first step consists in performing a random pro-
jection: for j ∈ {1, . . . , n} let αj = 〈xj , z〉/

√
2 ∈ C and

βj = 〈yj , z〉/
√

2 ∈ C, where z is chosen uniformly at ran-
dom from {1,−1, i,−i}n (alternatively, with minor modifi-
cations to the proof one may choose i.i.d. zj uniformly from



the unit circle, as was done by Haagerup [16], or use stan-
dard complex Gaussians). This step results in sequences
of complex numbers whose pairwise products αkβj , in ex-
pectation, exactly reproduce the pairwise scalar products
〈xk, yj〉. However, in general the resulting complex numbers
αk and βj may have modulus larger than 1. Extending the
“sign” rounding performed in, say, the Goemans-Williamson
algorithm for MAXCUT [11] to the complex domain, one
could then round each αk and βj independently by simply
replacing them by their respective complex phase.

The procedure that we consider differs from this stan-
dard practice by taking into account potential information
contained in the modulus of the random complex numbers
αk, βj . Writing in polar coordinates αk = rke

iθk and βj =
sje

iφj we sample a real t according to a specific distribution
(the hyperbolic secant distribution µ), and round each αk
and each βj to

ak
def
= ei(θk+t log rk) ∈ S0

C, and bj
def
= ei(φj−t log sj) ∈ S0

C,

respectively. Observe that this step performs a correlated
rounding: the parameter t is the same for all j, k ∈ {1, . . . , n}.

The proof presented in [16] uses the maximum modulus
principle to show the existence of a real t for which ak, bj as
defined above provide a good assignment. Intuition for the
existence of such a good t can be given as follows. Varying
t along the real line corresponds to rotating the phases of
the complex numbers αj , βk at a speed proportional to the
logarithm of their modulus: elements with very small modu-
lus vary very fast, those with modulus 1 are left unchanged,
and elements with relatively large modulus are again var-
ied at (logarithmically) increasing speeds. This means that
the rounding procedure takes into account the fact that an
element with modulus away from 1 is a “miss”: that partic-
ular element’s phase is probably irrelevant, and should be
changed. However, elements with modulus close to 1 are
“good”: their phase can be kept essentially unchanged.

We identify a specific distribution µ such that a random
t distributed according to µ is good, in expectation. This
results in a variation on the usual “sign” rounding technique:
instead of directly keeping the phases obtained in the initial
step of random projection, they are synchronously rotated
for a random time t, at speeds depending on the associated
moduli, resulting in a provably good pair of sequences ak, bj
of complex numbers with modulus 1.
Roadmap. In Section 2 we prove Theorem 4. The real

case as well as a closely related Hermitian case are treated
next in Section 3. Finally, in Section 4 we briefly outline how
Theorem 4 and its real analogue can be applied to derive the
applications that were outlined in Section 1.1.

2. ANALYSIS OF THE ROUNDING
PROCEDURE

In this section we prove Theorem 4. The rounding proce-
dure described in Figure 1 is analyzed in Section 2.1. For
the derandomized version we refer to [29, Section 2.2]. The
efficiency of the procedure is clear; we also refer to [29, Sec-
tion 2.2] for a discussion on how to discretize the choice of
t.

In what follows, it will be convenient to use the following
notation. Given M ∈ Mn(Mn(C)) and X,Y ∈ Mn(Cd),

define

M(X,Y )
def
=

n∑
i,j,k,l=1

Mijkl 〈Xij , Ykl〉 ∈ C. (23)

Thus M(·, ·) is a sesquilinear form on Mn(Cd) ×Mn(Cd),
i.e., M(αX, βY ) = αβM(X,Y ) for all X,Y ∈ Mn(Cd) and
α, β ∈ C. Observe that if A,B ∈Mn(C) then

M(A,B) =

n∑
i,j,k,l=1

MijklAijBkl =

n∑
i,j,k,l=1

Mijkl

(
A⊗B

)
(ij),(kl)

.

(24)

2.1 Analysis of the rounding procedure

Proof of (22). Let X,Y ∈ Un(Cd) be vector-valued ma-
trices satisfying (21). Let z ∈ {1,−1, i,−i}d be chosen uni-
formly at random, and

Xz
def
=

1√
2
〈X, z〉 and Yz

def
=

1√
2
〈Y, z〉

be random variables taking values in Mn(C) defined as in
the second step of the rounding procedure (see Figure 1).
Then,

Ez
[
M(Xz, Yz)

]
=

1

2
Ez
[ d∑
r,s=1

zrzs

n∑
i,j,k,l=1

Mijkl(Xij)r(Ykl)s
]

=
1

2
M(X,Y ), (25)

where we used the fact that E[zrzs] = δrs for every r, s ∈
{1, . . . , d}.

Observe that (20) implies that

∀ a ∈ (0,∞), Et[ait] = 2a− Et[a2+it].

Applying this identity to the nonzero singular values of Xz⊗
Yz, we deduce the matrix equality

Et
(
A⊗B

)
= Et

[ (
Uz|Xz|it

)
⊗
(
Vz|Yz|it

) ]
= 2Xz ⊗ Yz − Et

[ (
Uz|Xz|2+it

)
⊗
(
Vz|Yz|2+it

) ]
= 2Xz ⊗ Yz − Et

[ (
Uz|Xz|2+it

)
⊗
(
Vz|Yz|2−it

) ]
,

(26)

where Uz, Vz ∈ Un are such that Xz = Uz|Xz| and Yz =
Vz|Yz| are the polar decompositions of Xz and Yz, respec-
tively (and therefore the polar decomposition of Yz is Yz =
Vz|Yz|), and we recall that the output of our rounding scheme
as described in Figure 1 is A = Uz|Xz|it and B = Vz|Yz|−it.

It follows from (23), (24), (25) and (26) that

Ez,t
[
M(A,B)

]
= M(X,Y )−Ez,t

[
M
(
Uz|Xz|2+it, Vz|Yz|2−it

) ]
.

(27)
Our goal from now on is to bound the second, “error” term
on the right-hand side of (27). Specifically, the rest of the
proof is devoted to showing that for any fixed t ∈ R we have∣∣∣Ez[M(Uz|Xz|2+it, Vz|Yz|2−it) ]∣∣∣ 6 1

2
SDPC(M). (28)

Once established, the estimate (28) completes the proof of



the desired expectation bound (22) since

Ez,t
[
|M(A,B)|

] (27)∧(28)
> M(X,Y )− 1

2
SDPC(M)

(21)

>

(
1

2
− ε
)

SDPC(M).

So, for the rest of the proof, fix some t ∈ R. As a first
step towards (28) we state the following claim.

Claim 5. Let W ∈ Mn(Cd) be a vector-valued matrix,
and for every r ∈ {1, . . . , d} define Wr ∈Mn(C) by (Wr)ij =
(Wij)r. Let z ∈ {1,−1, i,−i}d be chosen uniformly at ran-
dom. Writing Wz = 〈W, z〉 ∈Mn(C), we have

Ez
[
(WzW

∗
z )2
]

= (WW ∗)2 +

d∑
r=1

Wr(W
∗W −W ∗rWr)W

∗
r ,

(29)

Ez
[
(W ∗zWz)

2] = (W ∗W )2 +

d∑
r=1

W ∗r (WW ∗ −WrW
∗
r )Wr.

(30)

Claim 5 is a slight generalization of [16, Lem. 4.1], and we
refer to the full version for the simple proof. For every t ∈ R
define two vector-valued matrices

F (t), G(t) ∈Mn

(
C{1,−1,i,−i}d

)
by setting for every j, k ∈ {1, . . . , n} and z ∈ {1,−1, i,−i}d,

(F (t)jk)z
def
=

1

2d

(
Uz|Xz|2+it

)
jk
, (G(t)jk)z

def
=

1

2d

(
Vz|Yz|2−it

)
jk
.

(31)
Thus,

M(F (t), G(t)) =
1

4d

∑
z∈{1,−1,i,−i}d

M
(
Uz|Xz|2+it, Vz|Yz|2−it

)
= Ez

[
M
(
Uz|Xz|2+it, Vz|Yz|2−it

) ]
. (32)

Moreover, recalling that Xz = Uz|Xz| is the polar decompo-
sition of Xz, we have

F (t)F (t)∗ =
1

4d

∑
z∈{1,−1,i,−i}d

Uz|Xz|4U∗z

= Ez
[
Uz|Xz|4U∗z

]
s = Ez

[
(XzX

∗
z )

2
]
. (33)

Similarly F (t)∗F (t) = Ez
[
(X∗zXz)

2], so that an application

of Claim 5 with W = 1√
2
X yields, using XX∗ = X∗X = I

since X ∈ Un(Cd),

F (t)F (t)∗ +
1

4

d∑
r=1

XrX
∗
rXrX

∗
r = F (t)∗F (t) +

1

4

d∑
r=1

X∗rXrX
∗
rXr

=
1

2
I. (34)

Analogously,

G(t)G(t)∗ +
1

4

d∑
r=1

YrY
∗
r YrY

∗
r = G(t)∗G(t) +

1

4

d∑
r=1

Y ∗r YrY
∗
r Yr

=
1

2
I. (35)

The two equations above imply that F (t), G(t) satisfy the
norm bounds

max
{
‖F (t)F (t)∗‖, ‖F (t)∗F (t)‖,

‖G(t)G(t)∗‖, ‖G(t)∗G(t)‖
}
6

1

2
. (36)

As shown in Lemma 6 below, (36) implies that there exists a

pair of vector-valued matrices R(t), S(t) ∈ Un(Cd+2n2

) such
that

M(R(t), S(t)) = M(
√

2F (t),
√

2G(t)). (37)

(This fact can also be derived directly using (34) and (35).)
Recalling the definition of SDPC(M) in (15), it follows that
for every t ∈ R,∣∣∣Ez[M(Uz|Xz|2+it, Vz|Yz|2−it) ]∣∣∣ (32)

= |M(F (t), G(t))|

(37)
=

1

2
|M(R(t), S(t))|

6
1

2
SDPC(M), (38)

completing the proof of (28).

Lemma 6. Let X,Y ∈Mn(Cd) be such that max(‖X∗X‖,
‖XX∗‖, ‖Y ∗Y ‖, ‖Y Y ∗‖) 6 1. Then there exist R,S ∈ Un(Cd+2n2

)
such that for every M ∈ Mn(Mn(C)) we have M(R,S) =
M(X,Y ). Moreover, R and S can be computed from X and
Y in time poly(n, d).

Proof. Let A = I −XX∗ and B = I −X∗X, and note
that A,B > 0 and Tr(A) = Tr(B). Write the spectral de-
compositions of A and B as A =

∑n
i=1 λi(uiu

∗
i ) and B =∑n

j=1 µj(vjv
∗
j ) respectively. Set σ =

∑n
i=1 λi =

∑n
j=1 µj ,

and define

R
def
= X⊕

( n⊕
i,j=1

√
λiµj
σ

(uiv
∗
j )
)
⊕
(

0
Mn(Cn2

)

)
∈Mn(Cd+n

2+n2

).

With this definition we have RR∗ = XX∗ + A = I and
R∗R = X∗X + B = I, so R ∈ Un(Cd+2n2

). Let S ∈
Un(Cd+2n2

) be defined analogously from Y , with the last
two blocks of n2 coordinates permuted. One checks that
M(R,S) = M(X,Y ), as required.

Finally, A,B, their spectral decomposition, and the re-
sulting R,S can all be computed in time poly(n, d) from
X,Y .

3. THE REAL AND HERMITIAN CASES
The n×n Hermitian matrices are denoted Hn. A 4-tensor

M ∈Mn(Mn(C)) ∼= Mn(C)⊗Mn(C) is said to be Hermitian
if Mijkl = Mjilk for all i, j, k, l ∈ {1, . . . , n}. Investigating
the noncommutative Grothendieck inequality in the setting
of Hermitian M is most natural in applications to quan-
tum information, while problems in real optimization as de-
scribed in the Introduction lead to real M ∈ Mn(Mn(R)).
In this section we explain how these special cases can be
obtained from Theorem 4.

Consider the following Hermitian analogue of the quantity
OptC(M).

Opt∗C(M)
def
= sup

A,B∈Hn
‖A‖,‖B‖61

∣∣∣ n∑
i,j,k,l=1

MijklAijBkl

∣∣∣.



Note that the convex hull of Un consists of all the matrices
A ∈ Mn(C) with ‖A‖ 6 1, so by convexity for every M ∈
Mn(Mn(C)) we have

OptC(M) = sup
A,B∈Mn(C)
‖A‖,‖B‖61

∣∣∣ n∑
i,j,k,l=1

MijklAijBkl

∣∣∣. (39)

This explains why Opt∗C(M) should indeed be viewed as a
Hermitian analogue of OptC(M). The real analogue of (39)
is that, due to the fact that the convex hull of On consists
of all the matrices A ∈ Mn(R) with ‖A‖ 6 1, for every
M ∈Mn(Mn(R)) we have

OptR(M) = sup
A,B∈Mn(R)
‖A‖,‖B‖61

∣∣∣ n∑
i,j,k,l=1

MijklAijBkl

∣∣∣. (40)

The following theorem establishes an algorithmic equiva-
lence between the problems of approximating either of these
two quantities.

Theorem 7. For every K ∈ [1,∞) the following two as-
sertions are equivalent.

1. There exists a polynomial time algorithm Alg∗ that
takes as input a Hermitian M ∈Mn(Mn(C)) and out-
puts A,B ∈ Hn with max{‖A‖, ‖B‖} 6 1 and Opt∗C(M) 6
K|M(A,B)|.

2. There exists a polynomial time algorithm Alg that takes
as input M ∈Mn(Mn(R)) and outputs U, V ∈ On such
that OptR(M) 6 KM(U, V ).

In Section 3.2 we show that for every K > 2
√

2 there
exists an algorithm Alg∗ as in part 1) of Theorem 7. Con-
sequently, we obtain the algorithm for computing OptR(M)
whose existence was claimed in Theorem 1. We refer to the
full version [29, Theorem 10] for the proof of Theorem 7.

3.1 Two-dimensional rounding
In this section we give an algorithmic version of Krivine’s

proof [23] that the 2-dimensional real Grothendieck constant
satisfies KG(2) 6

√
2. The following theorem is implicit in

the proof of [23, Thm. 1].

Theorem 8 (Krivine). Let g : R → R be defined by
g(x) = sign(cos(x)), and let f : [0, π/2)→ R be given by

f(t)
def
=

1 if 0 6 t 6 π
4

,

6
π

(
π
2
− t
)
− 1

2

(
4
π

)3(
π
2
− t
)3

if π
4
6 t < π

2
.

Extend f to a function defined on all of R by requiring that
it is even and f(x+ π) = −f(x) for all x ∈ R. There exists
a sequence {b2`+1}∞`=0 ∈ RN such that for every L ∈ N the
numbers {b0, . . . , b2L+1} can be computed in poly(L) time,∑∞
`=0 |b2`+1| = 1,

∑∞
`=L+1 |b2`+1| 6 C/L for some universal

constant C, and for all x, y ∈ R,

cos(x−y)=

∞∑
`=0

b2`+1√
2π

∫ π

−π
f
(
(2`+1)x− t

)
g
(
t− (2`+1)y

)
dt.

An explicit formula for the sequence {b2`+1}∞`=0 can be
extracted as follows from the proof of [23, Thm. 1]. For any
` > 0, define a2` = 0,

a2`+1 = cos
( (2`+ 1)π

4

) (−1)`16

π2(2`+ 1)4

( 1

2`+ 1
− (−1)`

π

4

)
,

b1 =
√

2(π/4)3/(3a1), and for ` > 0,

b2`+1 = − 1

a1

∑
d|(2`+1)
d6=1

adb 2`+1
d
.

Then |a2`+1| = O(1/`4), from which one deduces the crude
bound |b2`+1| = O(1/`2).

Two-dimensional rounding procedure

1. Let ε > 0 and, for j, k ∈ {1, . . . , n} let xj , yk ∈ C with
|xj | = |yk| = 1, be given as input. Let f, g, C and
{b2`+1}∞`=0 be as in Theorem 8.

2. For every j, k let θj ∈ [0, 2π) (resp. φk ∈ [0, 2π)) be
the angle that xj (resp. yk) makes with the x-axis.

3. Select t ∈ [−π, π] uniformly at random. Let L = dC/εe
and p = 1−

∑∞
`=L+1 |b2`+1|. Select ` ∈ {−1, 0, . . . , L}

with probability Pr(−1) = 1 − p and Pr(`) = |b2`+1|
for ` ∈ {0, . . . , L}.

4. For every j, k, if ` > 0 then set λj
def
= sign(b2`+1)f((2`+

1)θj − t) and µk
def
= g(t − (2` + 1)φk). Otherwise, set

λj = 0, µk = 0.

5. Return (λj)j∈{1,...,n} and (µk)k∈{1,...,n}.

Figure 2: The two-dimensional rounding algorithm
takes as input real 2-dimensional unit vectors. It
returns real numbers of absolute value at most 1.

Figure 2 describes a two-dimensional rounding scheme de-
rived from Theorem 8. The following claim states its cor-
rectness in a way that will be useful for us later.

Claim 9. Let ε > 0 and for every j, k ∈ {1, . . . , n} let
xj , yk ∈ C satisfy |xj | = |yk| = 1. Then the rounding
procedure described in Figure 2 runs in time poly(n, 1/ε)
and returns λj , µk ∈ R with |λj |, |µk| 6 1 for every j, k ∈
{1, . . . , n}, and

E
[
λj µk

]
=

1√
2
< (xjyk) + ε〈x′j , y′k〉, (41)

where x′j , y
′
k ∈ L2(R) are such that ‖x′j‖2, ‖y′k‖2 6 1.

The proof of Claim 9 can be found in [29, Claim 12].

3.2 Rounding in the Hermitian case
Let M ∈ Mn(Mn(C)) be Hermitian, and X,Y ∈ Un(Cd).

For every r ∈ {1, . . . , d} define as usual Xr, Yr ∈ Mn(C)
by (Xr)jk = (Xjk)r and (Yr)jk = (Yjk)r. Define X ′, Y ′ ∈
Mn(C2d) by

X ′jk
def
=

d∑
p=1

((
Xp +X∗p

2

)
jk

e2p−1 + i

(
Xp −X∗p

2

)
jk

e2p

)
,

and

Y ′jk
def
=

d∑
p=1

((
Yp + Y ∗p

2

)
jk

e2p−1 + i

(
Yp − Y ∗p

2

)
jk

e2p

)
.

Then (X ′)(X ′)∗ = (X ′)∗(X ′) = (XX∗ + X∗X)/2 = I, so
X ′ ∈ Un(C2d) and similarly Y ′ ∈ Un(C2d). Moreover, since



Hermitian rounding procedure

1. Let X,Y ∈Mn(Cd) and ε > 0 be given as input.

2. Let A,B ∈Mn(C) be the unitary matrices returned by
the complex rounding procedure described in Figure 1.
If necessary, multiply A by a complex phase to ensure
that M(A,B) is real. Write the spectral decomposi-
tions of A,B as

A =

n∑
j=1

eiθjuju
∗
j and B =

n∑
k=1

eiφkvkv
∗
k,

where θj , φk ∈ R and uj , vk ∈ Cn.

3. Apply the two-dimensional rounding algorithm from

Figure 2 to the vectors xj
def
= eiθj and yk

def
= eiφk . Let

λj , µk be the results.

4. Output A′
def
=

∑n
j=1 λjuju

∗
j and B′

def
=∑n

k=1 µkvkv
∗
k.

Figure 3: The Hermitian rounding algorithm takes
as input a pair of vector-valued matrices X,Y ∈
Mn(Cd). It outputs two Hermitian matrices A′, B′ ∈
Mn(C) of norm at most 1.

M is Hermitian, |M(X,Y )| = |M(X ′, Y ′)|. This shows that
for the purpose of proving the noncommutative Grothendieck
inequality for Hermitian M we may assume without loss of
generality that the“component matrices”of X,Y are Hermi-
tian themselves. Nevertheless, even in this case the round-
ing algorithm described in Figure 1 returns unitary matrices
A,B that are not necessarily Hermitian. A simple argument
shows how Krivine’s two-dimensional rounding scheme can
be applied on the eigenvalues of A,B to obtain Hermitian
matrices of norm 1, at the loss of a factor

√
2 in the approx-

imation, leading to the following theorem. (We refer to [29,
Theorem 13] for the proof.) A similar argument, albeit not
explicitly algorithmic, also appears in [36, Claim 4.7].

Theorem 10. Let n be an integer, M ∈ Mn(Mn(C))
Hermitian, ε ∈ (0, 1) and X,Y ∈ Un(Cd) such that∣∣M(X, Y ) ∣∣ > (1− ε)SDPC(M).

Then the rounding procedure described in Figure 3 runs in
time polynomial in n and 1/ε and outputs a pair of Her-
mitian matrices A′, B′ ∈ Mn(C) with norm at most 1 such
that

E
[ ∣∣M(A′, B′) ∣∣ ] >

( 1

2
√

2
−
(

1 +
1√
2

)
ε
)

SDPC(M).

4. APPLICATIONS
For a complete treatment of the applications we refer [29,

Section 5]. Here we outline the common idea behind these
applications, by observing that the problem of computing
OptR(M) is a rather versatile optimization problem, per-
haps more so than what one might initially guess from its
definition. The main observation is that by considering ma-
trices M which only act non-trivially on certain diagonal
blocks of the two variables U, V that appear in the defini-
tion of OptR(M), these variables can each be thought of

as a sequence of multiple matrix variables, possibly of dif-
ferent shapes but all with operator norm at most 1. This
allows for some flexibility in adapting the noncommutative
Grothendieck optimization problem to concrete settings, and
we explain the transformation in detail next.

For every n,m > 1, let Mm,n(R) be the vector space of
real m × n matrices. Given integers k, ` > 1 and sequences
of integers (mi), (ni) ∈ Nk, (pj), (qj) ∈ N`, we define the set
BilR(k, `; (mi), (ni), (pj), (qj)), or simply BilR(k, `) when the
remaining sequences are clear from context, as the set of all

f :
( k⊕
i=1

Mmi,ni(R)
)
×
(⊕̀
j=1

Mpj ,qj (R)
)
→ R

that are linear in both arguments. Concretely, f ∈ BilR(k, `)
if and only if there exists real coefficients αirs,juv such that

for every (Ai) ∈
⊕k

i=1Mmi,ni(R) and (Bj) ∈
⊕`

j=1Mpj ,qj (R),

f
(
(Ai)i∈{1,...,k}, (Bj)j∈{1,...,`}

)
=

k∑
i=1

∑̀
j=1

mi∑
r=1

ni∑
s=1

pj∑
u=1

qj∑
v=1

αirs,juv (Ai)rs(Bj)uv. (42)

For integers m,n > 1, let Om,n ⊂ Mm,n(R) denote the set
of all m×n real matrices U such that UU∗ = I if m 6 n and
U∗U = I if m > n. If m = n then On,n = On is the set of
orthogonal matrices; On,1 is the set of all n-dimensional unit
vectors; O1,1 is simply the set {−1, 1}. Given f ∈ BilR(k, `),
consider the quantity

OptR(f)
def
= sup

(Ui)∈
⊕k

i=1 Omi,ni

(Vj)∈
⊕`

j=1 Opj,qj

f
(
(Ui), (Vj)

)
.

Note that whenever f ∈ BilR(1, 1;n, n, n, n) this definition
coincides with the definition of OptR(f) given in the intro-
duction. The proof of the following proposition shows that
the new optimization problem still belongs the framework
of the noncommutative Grothendieck problem.

Proposition 11. There exists a polynomial time algo-
rithm that takes as input k, ` ∈ N, (mi), (ni) ∈ Nk, (pj), (qj) ∈
N` and f ∈ BilR(k, `; (mi), (ni), (pj), (qj)) and outputs (Ui) ∈⊕k

i=1Omi,ni and (Vj) ∈
⊕`

j=1Opj ,qj such that

OptR(f) 6 O(1) · f
(
(Ui), (Vj)

)
.

Moreover, the implied constant in the O(1) term can be taken
to be any number larger than 2

√
2.

The proof can be found in [29, Proposition 20].
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